WO2016070763A1 - 一种小型无人直升机防除植物霜冻害的飞行方法 - Google Patents

一种小型无人直升机防除植物霜冻害的飞行方法 Download PDF

Info

Publication number
WO2016070763A1
WO2016070763A1 PCT/CN2015/093568 CN2015093568W WO2016070763A1 WO 2016070763 A1 WO2016070763 A1 WO 2016070763A1 CN 2015093568 W CN2015093568 W CN 2015093568W WO 2016070763 A1 WO2016070763 A1 WO 2016070763A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
flying
unmanned helicopter
frost
small unmanned
Prior art date
Application number
PCT/CN2015/093568
Other languages
English (en)
French (fr)
Inventor
胡永光
刘胜忠
鹿永宗
赵臣
吴文叶
朱霄岚
赵梦龙
Original Assignee
江苏大学
南京风工农业科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学, 南京风工农业科技有限公司 filed Critical 江苏大学
Publication of WO2016070763A1 publication Critical patent/WO2016070763A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/06Devices for generating heat, smoke or fog in gardens, orchards or forests, e.g. to prevent damage by frost

Definitions

  • the invention relates to the field of agricultural meteorological disaster monitoring and control, and particularly relates to a technology for improving the efficiency of an unmanned helicopter for controlling plant frost damage.
  • tea has the ecological characteristics of temperature and humidity resistance, but it is vulnerable to low temperature stress and is mainly planted in the subtropical hilly areas south of the Yangtze River.
  • China's major tea producing areas have suffered from late frost damage in March-April, and the losses are significant.
  • the traditional anti-frost measures include covering, smoking, heating, watering, etc., but the effect is poor; anti-frost technology such as water spray and overhead fan, because of its obvious anti-frost effect and high degree of automation, it is partially applied in production.
  • the elevated frost-proof fan varies in size from 1 to 4 hm 2 mu depending on the size of the model. However, the installation is mostly fixed, and the frost protection range is basically fixed.
  • the inversion layer generally exists in a certain height range from the ground, and the airflow disturbance of the unmanned helicopter rotor to the ground is also limited by its flying height. Therefore, the flying height is one of the important parameters of the anti-fog flight of the unmanned helicopter. In addition, the size of the flight speed and the length of the flight interval also affect the effectiveness, efficiency and cost of flight anti-frost.
  • the present invention provides a method for determining the flight parameters of an unmanned helicopter for controlling plant frost damage.
  • the object of the present invention is to provide a small unmanned helicopter to prevent plant frost damage, and to ensure the adaptability of the terrain parameters in the hilly mountainous area, and to optimize the combination of flight parameters to improve the effect of small unmanned helicopters on controlling plant frost damage. To avoid blindly repeating the flight of unmanned helicopters, and to reduce the frost-proof cost of unmanned helicopters per unit area.
  • the present invention utilizes a regression orthogonal test design method to design a regression orthogonal test with three factors of flight height, flight speed and flight interval time; by analyzing the test results, determining various factors
  • the primary and secondary order of the anti-frost effect is flight interval, flight altitude, and flight speed; the relationship between the anti-frost effect and the various factors is established.
  • the specific technical solutions adopted by the present invention are as follows:
  • a small unmanned helicopter flight method for preventing plant frost damage characterized in that the effect of controlling plant frost damage is improved by optimizing the combination of flight height, flight speed and flight time of small unmanned helicopters;
  • the flight parameters of the small unmanned helicopter above the botanical garden are as follows: the flight altitude is 4m, the flight speed is 6m ⁇ s -1 , and the flight interval is 20min.
  • the parameter optimization combination method is implemented by the following steps:
  • Step one design and implement a regression orthogonal test based on flight altitude, flight speed and flight interval time
  • Step 2 According to the test data of step 1, the relationship between the flight anti-frost effect and each of the above factors is established as follows:
  • y 1.603-0.063x 1 +0.117x 2 -0.013x 3 , where x 1 , x 2 and x 3 are flight altitude, flight speed and flight interval respectively; y is temperature rise, that is, flight anti-frost effect.
  • Step 3 Optimize the equation in the second step, and obtain the optimized flight parameters of the small unmanned helicopter over the botanical garden: the flying height is 4m, the flying speed is 6m ⁇ s -1 , and the flight interval is 20min.
  • the small unmanned helicopter has a main rotor diameter of 2.1 m and a maximum flying weight of 35 kg.
  • the plant is any one of a tea tree, an apple tree, a cherry tree, a pear tree, a peach tree, and an orange tree.
  • the working principle of the invention under normal circumstances, the temperature in the troposphere of the near-earth atmosphere decreases with the increase of the height, but in the case of the spring cold night frost, the temperature rises with the height in a certain height range, which This phenomenon is called inversion.
  • the invention uses an unmanned helicopter to fly above the inversion layer, and forces the upper warm air to convect below the inversion layer through its rotor to increase the canopy temperature of the tea tree, thereby avoiding or reducing the frost damage; The optimal combination of flight parameters to improve the anti-frost effect of unmanned helicopter flight.
  • the invention has the beneficial effects that the invention improves the efficiency of the unmanned helicopter to prevent plant frost damage by setting the optimal anti-frost flight parameter combination, and improves the plant canopy temperature to improve the inverse temperature difference between the flying height and the surface. 55%, reducing the frost-free cost per unit area of unmanned helicopters; in addition, it can effectively cope with the remote information lag and other reasons, and can not take anti-frost measures such as early deployment of anti-frost fans, etc., to avoid the introduction of major frost A major economic loss overnight.
  • FIG. 1 is a schematic view of anti-frost of an unmanned helicopter of the present invention
  • FIG. 2 is a schematic view showing the arrangement of the near-ground temperature test points of the present invention.
  • Fig. 3 is a graph showing the temperature change of the near-ground temperature of the tea garden of the present invention.
  • the method of the present invention is as shown in FIG. 1 , using an unmanned helicopter to fly above the inversion layer, and forcibly convecting the upper warm air to the bottom of the inversion layer through the rotor to improve the canopy temperature of the tea tree, thereby avoiding or reducing the frost damage. .
  • the main equipments and instruments used in the test are: CD-10 small plant protection unmanned helicopter with a rotor diameter of 2100mm, flight speed range of 0 ⁇ 8m ⁇ s -1 and maximum flight weight of 35kg; KIMO hot wire anemometer with five one-way configurations Probe STV-150, wind speed measurement error is ⁇ 3% of full scale; ZDR-3W1S temperature recorder, measuring range -40 ⁇ 100°C, accuracy is ⁇ 0.5°C; in addition, NK4000 portable anemometer is used, measurement accuracy ⁇ 0.1 m ⁇ s -1 , measuring range 0.4 ⁇ 40.0m ⁇ s -1 .
  • the trial was conducted from the evening of March 13, 2014 to the early morning of the following day.
  • a vertical 15.0m column is placed on the vertical ground as shown in Figure 2, and a ZDR-3W1S temperature is placed every 0.2m from the ground at 0.2m from the ground.
  • the humidity recorder has a total of 9 measuring points, and it is set to record the temperature once every 10 minutes.
  • the main factors affecting the anti-frost effect are: flight altitude, flight speed and flight interval.
  • the range of variation of the above three factors is selected as follows: flight height 4.0 to 10.0 m, flight speed 1.0 to 6.0 m ⁇ s -1 , and interval time 20 to 50 min.
  • flight height 4.0 to 10.0 m
  • flight speed 1.0 to 6.0 m ⁇ s -1
  • interval time 20 to 50 min.
  • the levels of flight height, flight speed, and flight interval are encoded as shown in Table 1.
  • the experimental tea fields were divided into 11 small pieces of the same size according to the treatment numbers in Table 2; and 6 sets of ZDR-3W1S temperature recorders were placed in the canopy layers of each treated tea tree, and the collection and implementation of each treatment before and after the treatment were carried out.
  • the temperature change of the tea tree canopy was taken as the experimental index value of the treatment. All test treatments were carried out between March 13 and 14, 2014 and after the frost occurred at night.
  • Z 1 , Z 2 and Z 3 are the coding values corresponding to the flight altitude, flight speed and flight interval. According to the coding formula, you can get:
  • the order of influence of each factor is: x 3 >x 1 >x 2 , that is, flight interval > flight altitude > flight speed.
  • the single factor golden section optimization method is adopted, that is, the MATLAB language programming calculation is used to optimize the regression equation (2).
  • the final optimization result is:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种无人直升机防除植物霜冻害的飞行方法,基于无人直升机(1)防霜原理的分析,利用回归正交试验设计方法,建立飞行防霜效果与各飞行参数之间的关系,进而确定无人直升机(1)防霜飞行参数。具体为:设计以飞行高度、飞行速度及飞行间隔时间为三因素三水平的回归正交试验;通过对试验结果的分析,确定各因素对防霜效果的作用主次顺序依次为飞行间隔时间、飞行高度、飞行速度;建立飞行防霜效果与各所述因素之间的关系y=1.603-0.063x1+0.117x2-0.013x3,从而确定防霜飞行的优化参数组合为飞行高度4.0m,飞行速度6.0m·s-1及飞行间隔时间20min。该无人直升机(1)防除植物霜冻害的飞行方法能提高防除植物霜冻害的效果。

Description

一种小型无人直升机防除植物霜冻害的飞行方法 技术领域
本发明涉及农业气象灾害监测与控制领域,具体涉及一种提高无人直升机防除植物霜冻害效率的方法的技术。
发明背景
茶叶作为我国一种重要的特色经济作物,具有喜温耐湿的生态特性,但易遭受低温胁迫,主要种植于长江以南的亚热带丘陵山区。近年来,我国茶叶主产区在3~4月连续遭受晚霜冻害侵袭,损失重大。传统的防霜措施有覆盖、烟熏、加热、灌水等,但效果较差;喷水和高架风机等防霜技术,因其防霜效果明显、自动化程度高,在生产上得到部分应用。高架防霜风机根据机型大小,防霜面积范围1~4hm2亩不等,但其安装大多为固定式,防霜范围也基本固定,不适合于低成本大规模应用,且防霜机仅在倒春寒期间使用,造成周年使用率低。为此,一种在茶垄中可移动的防霜机应运而生,显然它很难适用于丘陵坡地或山地。所以,一种受丘陵山区地形限制较小的、可移动的大规模防霜方法即无人直升机防除植物霜冻害的方法便诞生了。
逆温层一般存在于距离地面一定的高度范围内,同时无人直升机旋翼对地面的气流扰动也受到其飞行高度的限制,故飞行高度是无人直升机防霜飞行的重要参数之一。此外,飞行速度的大小和飞行间隔时间的长短也影响飞行防霜的效果、效率和成本。
因此研究如何确定无人直升机防霜飞行参数则具有重要的实践意义,所以本发明提供了一种确定无人直升机防除植物霜冻害飞行参数的方法。
发明内容
本发明的目的在于提供一种小型无人直升机防除植物霜冻害的飞行方法,在保证能适应丘陵山区地形限制的同时,实现飞行参数的优化组合,以提高小型无人直升机防除植物霜冻害的效果,避免无人直升机盲目重复飞行,同时降低单位面积的无人直升机防霜成本。
为了解决以上技术问题,本发明利用回归正交试验设计方法,设计了以飞行高度、飞行速度及飞行间隔时间为三因素三水平的回归正交试验;通过对试验结果的分析,确定各因素对防霜效果的作用主次顺序依次为飞行间隔时间、飞行高度、飞行速度;建立飞行防霜效果与各因素之间的关系。本发明所采用的具体技术方案如下:
一种小型无人直升机防除植物霜冻害的飞行方法,其特征在于:通过对小型无人直升机的飞行高度、飞行速度和飞行间隔时间的飞行参数优化组合,提高防除植物霜冻害的效果;
所述小型无人直升机在植物园上空的飞行参数组合如下:飞行高度为4m,飞行速度为6m·s-1,飞行间隔时间为20min。
所述参数优化组合方法通过以下步骤实现:
步骤一,设计并实施以飞行高度、飞行速度及飞行间隔时间为因素的回归正交试验;
步骤二,根据步骤一的试验数据,建立飞行防霜效果与各所述因素之间的关系方程为:
y=1.603-0.063x1+0.117x2-0.013x3,其中x1,x2和x3分别为飞行高度、飞行速度及飞行间隔时间;y为温升,亦即飞行防霜效果。
步骤三,对所述步骤二中的方程进行优化求解,得到小型无人直升机在植物园上空的飞行参数优化组合是:飞行高度为4m,飞行速度为6m·s-1,飞行间隔时间为20min。
所述小型无人直升机的主旋翼直径为2.1m,最大飞行重量为35kg。
所述的植物为茶树、苹果树、樱桃树、梨树、桃树、橘子树中的任一种。
本发明的工作原理:一般情况下,近地大气对流层中气温随着高度的增加而降低,但在倒春寒晚霜发生时,在一定的高度范围内,气温却随着高度的增加而升高,这种现象叫逆温。本发明使用无人直升机飞行于逆温层上方,通过其旋翼将上方较暖空气强制对流至逆温层下方,以提高茶树冠层温度,从而避免或减轻霜冻害;通过确定无人直升机防霜飞行的最优化参数组合,以提高无人直升机飞行的防霜冻效果。
本发明所具有有益效果:本发明通过设定最优化防霜飞行参数组合进行防霜飞行,提高无人直升机防除植物霜冻害的效率,使植物冠层温度提高了飞行高度与地表之间逆温差的55%,降低了单位面积的无人直升机防霜成本;此外可以有效地应对区偏远信息滞后等原因来不及采取防霜措施如提早布设防霜风机等的突发情况,避免由重大霜冻带来的一夜之间的重大经济损失。
附图说明
图1为本发明无人直升机防霜示意图;
图2为本发明近地气温测试点布置示意图;
图3为本发明茶园近地气温随时间变化。
具体实施方式
下面结合附图,对本发明的技术方案做进一步详细说明。
本发明的方法如图1所示,使用无人直升机飞行于逆温层上方,通过其旋翼将上方较暖空气强制对流至逆温层下方,以提高茶树冠层温度,从而避免或减轻霜冻害。
以茶树园即茶园防霜为例
实施设备条件:试验于2014年3月13~14日在江苏省丹阳市迈春茶场(北纬32°01'35”,东经119°40'21”,海拔高度18.5m,属于丘陵平地)进行,供试茶树品种为鸠坑,树龄约20a。试验使用的主要设备和仪器有:CD-10型小型植保无人直升机,其旋翼直径2100mm,飞行速度范围0~8m·s-1,最大飞行重量35kg;KIMO热线风速仪,配置5个单向探头STV-150,风速测量误差为满量程的±3%;ZDR-3W1S温度记录仪,测量范围 -40~100℃,精度为±0.5℃;此外还是使用了NK4000便携式风速计,测量精度±0.1m·s-1,测量范围0.4~40.0m·s-1
试验方法
为寻求无人直升机茶园防霜的合理飞行参数,在不受无人直升机飞行干扰的地方,放置温度传感器,记录试验时的背景温度变化;设计以飞行高度、飞行速度及间隔时间为三因素的一次回归正交试验。
背景逆温测试试验
该试验于2014年3月13日晚至次日凌晨进行。在不受直升机防霜飞行任何影响的区域,如图2所示垂直地面放置一根长15.0m的立柱,并在立柱上从距地面0.2m处,每隔2.0m布置1个ZDR-3W1S温湿度记录仪,一共布置9个测点,设定其每10min记录1次温度。
无人直升机防霜飞行的回归正交试验
由无人直升机飞行防霜原理分析可知,影响其防霜效果的因素主要有:飞行高度、飞行速度、飞行间隔时间。这里选定上述三个因素的变化范围分别是:飞行高度4.0~10.0m,飞行速度1.0~6.0m·s-1,间隔时间20~50min。为确定各因素影响防霜效果的主次顺序,及建立飞行防霜效果与各因素之间的关系,从而确定防霜飞行的优化参数组合,拟采用一次回归正交试验设计。
对飞行高度、飞行速度、飞行间隔时间3个因素的各水平进行编码,如表1所示。
表1因素水平编码表
Figure PCTCN2015093568-appb-000001
选用合适的正交表并设计试验,本实验选择正交表L8(27),这里不考虑各因素间的交互作用,得到的3因素一次回归正交表,如表2所示。其中试验序号为8、9、10号的实验为安排零水平重复性试验,目的是通过失拟检验来提高回归方程的精度。
表2正交试验方案
Figure PCTCN2015093568-appb-000002
Figure PCTCN2015093568-appb-000003
试验的实施,将试验茶地按表2中处理数,划分为11个大小相同的小块;并在各处理的茶树冠层处放置6组ZDR-3W1S温度记录仪,采集实施各处理前后的茶树冠层的温度变化,取温升平均值作为该处理的试验指标值。所有试验处理于2014年3月13~14日间和夜间出现霜后实施。
实验结果与分析
试验背景逆温动态变化
试验期间自然风速较小,在0~0.2m·s-1范围内变化,最低温达到了-1.1℃,伴随轻度霜降出现。在不受直升机飞行任何影响的区域,气温变化如图3所示。日落后气温迅速下降,17:00逆温开始形成,直到凌晨6:00,此后由于日出气温迅速上升,7:00左右逆温消失。在22:00~5:30时段,茶树冠层处气温降至0℃以下,实地观察有霜生成。在18:00~7:00时段,0~14m的高度范围内,存在逆温分层现象,最大的逆温差于21:00出现,为5.9℃。防霜飞行试验在4:40~5:50间进行,此时地面与离地14.0m高处的温差为3.8℃。
飞行防霜回归正交试验结果
一、实施11个飞行处理后的试验结果,见表3。
表3飞行防霜试验结果
Figure PCTCN2015093568-appb-000004
由表3计算可知方程(1)的回归系数为:b0=1.007,b1=-0.188,b2=0.175,b3=-0.193
故飞行后温升与各飞行参数之间存在如下关系:
y=1.007-0.188Z1+0.175Z2-0.193Z3             (1)
其中Z1、Z2、Z3分别为飞行高度、飞行速度、飞行间隔时间相对应的编码值。根据编码公式,可得:
Figure PCTCN2015093568-appb-000005
由该回归方程偏回归系数绝对值大小可知,各因素影响的主次顺序为:x3>x1>x2,即飞行间隔时间>飞行高度>飞行速度。
二、回归方程显著性检验
对回归方程进行方差分析结果如表4所示。
表4方差分析
Figure PCTCN2015093568-appb-000006
注:F0.1(1,7)=3.59,F0.05(1,7)=5.59,F0.05(3,7)=4.35
表4中的各统计量如下:
F1=6.432>F0.05
F2=5.568>F0.1
F3=6.773>F0.05
F=6.250>F0.05(3,7)
由检验结果可知,飞行高度、飞行速度、飞行间隔时间对温升指标均有显著影响,所建立的方程是显著的。
Figure PCTCN2015093568-appb-000007
代入式(1)得到自然变量的方程:
y=1.603-0.063x1+0.117x2-0.013x3                   (2)
三、方程失拟性检验
通过对3次零水平试验的误差及失拟合平方和的计算,最终得到FLf=8.093。
由于FLf=8.093<F0.1(5,2)=9.33,故失拟不显著,回归模型与实际情况拟合得很好。因此,在无人直升机防霜过程中,各飞行参数对防霜效果的影响可用式(2)来表示。
四、方程优化求解
为了获得最佳的飞行参数组合,采用单因素黄金分割优选法,即通过MATLAB语言编程计算,对回归方程(2)进行优化求解,最终优化结果为:
当x1=4.0,x2=6.0,x3=20时,最大值y=1.8,即当飞行高度为4.0m、飞行速度为6.0m.s-1飞行间隔时间20min时,飞行后温升最大为1.8℃。
实验结果表明,利用本发明的飞行参数组合进行飞行具有更好的防霜效果。

Claims (4)

  1. 一种小型无人直升机防除植物霜冻害的飞行方法,其特征在于:通过对小型无人直升机的飞行高度、飞行速度和飞行间隔时间的飞行参数优化组合,提高防除植物霜冻害的效果;
    所述小型无人直升机在植物园上空的飞行参数组合如下:飞行高度为4m,飞行速度为6m·s-1,飞行间隔时间为20min。
  2. 根据权利要求1所述的一种小型无人直升机防除植物霜冻害的飞行方法,其特征在于所述参数优化组合方法通过以下步骤实现:
    步骤一,设计并实施以飞行高度、飞行速度及飞行间隔时间为因素的回归正交试验;
    步骤二,根据步骤一的试验数据,建立飞行防霜效果与各所述因素之间的关系方程为:
    y=1.603-0.063x1+0.117x2-0.013x3,其中x1,x2和x3分别为飞行高度、飞行速度及飞行间隔时间;y为温升,亦即飞行防霜效果;
    步骤三,对所述步骤二中的方程进行优化求解,得到小型无人直升机在植物园上空的飞行参数优化组合是:飞行高度为4m,飞行速度为6m·s-1,飞行间隔时间为20min。
  3. 根据权利要求1所述的一种小型无人直升机防除植物霜冻害的飞行方法,其特征在于:所述小型无人直升机的主旋翼直径为2.1m,最大飞行重量为35kg。
  4. 根据权利要求1所述的一种小型无人直升机防除植物霜冻害的飞行方法,其特征在于:所述的植物为茶树、苹果树、樱桃树、梨树、桃树、橘子树中的任一种。
PCT/CN2015/093568 2014-11-06 2015-11-02 一种小型无人直升机防除植物霜冻害的飞行方法 WO2016070763A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410620814.5 2014-11-06
CN201410620814.5A CN104460683A (zh) 2014-11-06 2014-11-06 一种小型无人直升机防除植物霜冻害的飞行方法

Publications (1)

Publication Number Publication Date
WO2016070763A1 true WO2016070763A1 (zh) 2016-05-12

Family

ID=52906903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093568 WO2016070763A1 (zh) 2014-11-06 2015-11-02 一种小型无人直升机防除植物霜冻害的飞行方法

Country Status (2)

Country Link
CN (1) CN104460683A (zh)
WO (1) WO2016070763A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460683A (zh) * 2014-11-06 2015-03-25 江苏大学 一种小型无人直升机防除植物霜冻害的飞行方法
CN106069415B (zh) * 2016-05-31 2019-06-25 江苏大学 一种农用防霜机群布置方法
CN111758465A (zh) * 2020-07-11 2020-10-13 浙江极客桥智能装备股份有限公司 一种基于无人机的茶叶防霜冻的方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067541A (en) * 1960-10-10 1962-12-11 American Liquid Gas Corp Agricultural method and apparatus for heating, treating, and circulating air
US4644683A (en) * 1985-07-12 1987-02-24 Jones Darrell R Method and apparatus for enhancing the pollination of alfalfa
CN101360418A (zh) * 2005-11-23 2009-02-04 先锋高级育种国际公司 用于对于风损害抵抗特性筛选植物群体的设备和方法
CN203053592U (zh) * 2013-01-23 2013-07-10 南京信息工程大学 基于arm系统的烟叶防霜无线温度数据采集系统
CN203735184U (zh) * 2014-01-27 2014-07-30 中国农业科学院茶叶研究所 一种基于茶园防霜冻的烟雾发生器
CN104460683A (zh) * 2014-11-06 2015-03-25 江苏大学 一种小型无人直升机防除植物霜冻害的飞行方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067541A (en) * 1960-10-10 1962-12-11 American Liquid Gas Corp Agricultural method and apparatus for heating, treating, and circulating air
US4644683A (en) * 1985-07-12 1987-02-24 Jones Darrell R Method and apparatus for enhancing the pollination of alfalfa
CN101360418A (zh) * 2005-11-23 2009-02-04 先锋高级育种国际公司 用于对于风损害抵抗特性筛选植物群体的设备和方法
CN203053592U (zh) * 2013-01-23 2013-07-10 南京信息工程大学 基于arm系统的烟叶防霜无线温度数据采集系统
CN203735184U (zh) * 2014-01-27 2014-07-30 中国农业科学院茶叶研究所 一种基于茶园防霜冻的烟雾发生器
CN104460683A (zh) * 2014-11-06 2015-03-25 江苏大学 一种小型无人直升机防除植物霜冻害的飞行方法

Also Published As

Publication number Publication date
CN104460683A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
Zhao et al. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models
Yin et al. Determining factors in potential evapotranspiration changes over China in the period 1971–2008
Zhang et al. Energy exchange and evapotranspiration over irrigated seed maize agroecosystems in a desert-oasis region, northwest China
Lewis The physiological significance of variation in leaf structure
Liu et al. The response of sap flow in desert shrubs to environmental variables in an arid region of China
Zhang et al. Interaction of aerodynamic roughness length and windflow conditions and its parameterization over vegetation surface
WO2016070763A1 (zh) 一种小型无人直升机防除植物霜冻害的飞行方法
Yan et al. Substantial amounts of carbon are sequestered during dry periods in an old-growth subtropical forest in South China
Zhao et al. Comparative study of the net exchange of CO 2 in 3 types of vegetation ecosystems on the Qinghai-Tibetan Plateau
Shen et al. Measurement and analysis of evapotranspiration and surface conductance of a wheat canopy
CN104956933A (zh) 湿性阔叶林树种多样性及幼苗生境选择特征的研究方法
Chu et al. Impacts of future climate change on agroclimatic resources in Northeast China
Zhao et al. Evapotranspiration of an oasis-desert transition zone in the middle stream of Heihe River, Northwest China
Li et al. Climate simulation and future projection of precipitation and the water vapor budget in the Haihe River basin
Li et al. The potential connection between China surface air temperature and the Atlantic Multidecadal Oscillation (AMO) in the Pre-industrial Period
Dai et al. Characteristics and modelling of sap flow of degraded Populus simonii in areas where the ecology is vulnerable
Zhu et al. Relative soil moisture in China’s farmland
Seletković et al. Climate and relief properties influence crown condition of common beech (Fagus sylvatica L.) on the Medvednica massif
Villagran Two-Dimensional Numerical Study of the Microclimate Generated in Three Screenhouses for the Climatic Conditions of the Colombian Caribbean.
Ma et al. The prediction model for soil water evaporation based on BP neural network
Bian et al. Seasonal variation in turbulent fluxes over Tibetan Plateau and its surrounding areas: research note
CN104375420B (zh) 一种气候环境实验室模拟春夏秋冬四季的方法和装置
De Groote et al. ORCHIDEE-SRC v1. 0: an extension of the land surface model ORCHIDEE for simulating short rotation coppice poplar plantations
Wu et al. Reconstruction of interannual variability of NEP using a process-based model (InTEC) with climate and atmospheric records at Fluxnet-Canada forest sites.
CN104247649B (zh) 一种基于温光的设施杨梅果实生长模拟方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15857825

Country of ref document: EP

Kind code of ref document: A1