WO2016070481A1 - 动态热防护性能测评装置 - Google Patents

动态热防护性能测评装置 Download PDF

Info

Publication number
WO2016070481A1
WO2016070481A1 PCT/CN2014/093222 CN2014093222W WO2016070481A1 WO 2016070481 A1 WO2016070481 A1 WO 2016070481A1 CN 2014093222 W CN2014093222 W CN 2014093222W WO 2016070481 A1 WO2016070481 A1 WO 2016070481A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
tested
dynamic
disposed
thermal protection
Prior art date
Application number
PCT/CN2014/093222
Other languages
English (en)
French (fr)
Inventor
卢业虎
赖丹丹
王发明
Original Assignee
苏州大学张家港工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院 filed Critical 苏州大学张家港工业技术研究院
Publication of WO2016070481A1 publication Critical patent/WO2016070481A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity

Definitions

  • the present invention relates to a fabric protection performance evaluation device, in particular to a dynamic thermal protection performance evaluation device, belonging to the field of occupational safety and health technology.
  • a copper sheet heat flow sensor is placed to measure the heat flow through the fabric to be tested, and
  • the protective performance of the thermal protective fabric system was evaluated by recording with a data acquisition device and predicting the skin required for the secondary skin burn based on the Stoll curve.
  • the fabric to be tested is in a flat and relaxed state, and the fabric to be tested is in parallel contact with the skin or there is a certain gap, which can only simulate the protective performance of the protective fabric system under static conditions of the human body, ignoring the dynamics.
  • the protective performance of protective clothing in the situation cannot truly reflect the protective performance of thermal protective clothing under actual working conditions.
  • the wearer will be in different postures, the change of the posture of the human body will change the appearance of the fabric, and the deformation of the fabric will be produced.
  • the deformation of the fabric mainly includes the combined effects of stretching, bending, shearing and compression.
  • the gap between the garment and the human body also increases or decreases regularly with the movement of the human body, which affects the protective performance of the garment.
  • the fabric is in contact with human skin, and the energy stored in the garment is quickly released, which may cause skin burns.
  • the protective clothing will have different degrees of deformation.
  • the stretched portion of the fabric will directly contact or compress the skin, and the thickness of the air layer under the garment will decrease, so that the heat transfer speed is sharply accelerated.
  • the tensile deformation of the fabric changes its initial physical characteristics, resulting in the properties of fabric density, gas permeability, thickness, heat transfer coefficient, specific heat capacity and the like. Changes directly affect the thermal protection performance of the garment system.
  • the air layer between the garment and the human body regularly increases or decreases, which is bound to affect its protective performance.
  • the technical problem to be solved by the present invention is to solve the problem that no instrument in the prior art can realize the thermal protection performance evaluation of the fabric system under human dynamic conditions.
  • the present invention provides a dynamic thermal protection performance evaluation device for fixing a fabric to be tested to test the fabric to be tested, including a bracket and being disposed on the bracket to fix the fabric to be tested.
  • a human body dynamic simulation device for causing deformation of the fabric to be tested, a disaster source and a heat flow sensor disposed opposite to both sides of the human body dynamic simulation device, and a data acquisition and program control system coupled to the heat flow sensor signal
  • the human body dynamic simulation device The utility model comprises a human body simulator which is supported on the fabric to be tested and a stretching device which is at least one end of the fabric to be tested, the human body simulator has a resisting wall abutting on the fabric to be tested, the resisting wall and The disaster source is disposed on opposite sides of the fabric to be tested, and the fabric to be tested is disposed opposite to the heat flow sensor on opposite sides of the resisting wall, and the dynamic thermal protection performance evaluation device further comprises an air layer dynamic connection connected to the heat flow sensor.
  • a changing device
  • the human body simulator is provided with a hollow portion, and the hollow portion is disposed opposite to the fabric to be tested on both sides of the resisting wall, and the heat flow sensor is disposed in the hollow portion.
  • the air layer dynamic changing device is fixed in the hollow portion, and the air layer is dynamically changed.
  • the chemical device includes a cylinder fixed in the hollow portion and a plunger disposed on the cylinder and moving along the cylinder, and the heat flow sensor is disposed on the plunger.
  • the heat flow sensor includes a base disposed on the air layer dynamic changing device and a thermocouple disposed on the base, the base includes a mounting surface facing the resisting wall, and the thermocouple is disposed at The mounting surface.
  • the resisting wall is curved and curved
  • the mounting surface is a curved surface
  • the arc of the mounting surface is the same as the bending curvature of the resisting wall.
  • the stretching device comprises a weight, a connecting belt connected with the weight, and a sample clip connecting the connecting belt and the fabric to be tested.
  • the stretching device further includes an lifting platform, and the weight is placed on the lifting platform.
  • the stretching device further includes a spring gauge disposed between the weight and the connecting belt.
  • the stretching device further includes a fixed pulley disposed inside the connecting belt and abutting the connecting belt, and a fixing bracket fixing the fixed pulley.
  • the disaster source is a high temperature liquid disaster heat source
  • the high temperature liquid disaster heat source includes a water tank
  • a spray head facing the fabric to be tested a transfer line connecting the water tank and the spray head, and a water pump and a control valve disposed on the transfer line, the spray head being disposed on opposite sides of the fabric to be tested, the water tank having Temperature control device.
  • the present invention has at least the following advantages:
  • the dynamic deformation adjustment of the fabric to be tested is realized by the human body simulator and the stretching device, and the heat flow sensor is driven by the air layer dynamic change device and the air flow dynamic change device is driven.
  • the resisting wall of the human body simulator moves to change the distance between the heat flow sensor and the fabric to be tested to simulate the change of the size of the air layer under the clothes caused by human motion, thereby more realistically simulating the deformation of the human body joints in the working environment.
  • the post-protection performance makes up for the impact of the dynamic factors neglected by the existing protective performance evaluation device on the thermal protection performance. It has very important practical significance for protecting the life safety of professional personnel and developing high-tech thermal protection equipment.
  • DRAWINGS 1 is a schematic structural view of a dynamic thermal protection performance evaluation device of the present invention
  • FIG. 2 is a schematic structural view of the human body simulator and the air layer dynamic changing device of FIG. 1 from another perspective.
  • a dynamic thermal protection performance evaluation device is used to fix a fabric to be tested to test the fabric to be tested (not numbered).
  • the dynamic thermal protection performance evaluation device comprises a bracket 8, a human body dynamic simulation device disposed on the bracket 8 to fix the fabric to be tested and causing the fabric to be tested to be deformed, a disaster source 4 disposed on one side of the human body dynamic simulation device, and a disaster source 4 a heat flow sensor 6 disposed opposite the fabric to be tested, an air layer dynamics changing device 3 connected to the heat flow sensor 6, and a data acquisition and program control system 7.
  • the human body dynamics simulation device includes a human body simulator 5 that abuts on the fabric to be tested and a stretching device 2 that clamps both ends of the fabric to be tested.
  • the human body simulator 5 is fixed on a bracket 8 having a resisting wall (not labeled) that is pressed against the fabric to be tested to deform the fabric to be tested, the resisting wall and the disaster source 4 is oppositely disposed on both sides of the fabric to be tested.
  • the human body simulator 5 is used to simulate a human body leg, and has a cylindrical shape.
  • the resisting wall is curved and curved to bend the fabric to be tested.
  • the human body simulator 5 has a diameter of 200 mm and a length of 150 mm and is made of an inorganic composite material, so that its thermal diffusion property is close to that of the skin, and it also has waterproof performance.
  • the human body simulator 5 is provided with a hollow portion (not labeled), and the hollow portion is disposed opposite to the fabric to be tested on both sides of the resisting wall.
  • the resisting wall is disposed upward, and the hollow portion is located at the upper end.
  • the abutment wall can also be oriented toward other means, such as facing down.
  • the hollow portion is a square hole having a width of 100 mm.
  • the stretching device 2 is two fixed at two ends of the fabric to be tested, and is respectively located at two sides of the human body simulator 5.
  • Each stretching device 2 includes a weight 25, a connecting belt 23, a sample holder 21, a spring meter 24, a micro lifting table 26, a fixed pulley 22, and a holder 27.
  • the sample holder 21 has a herringbone tooth (not numbered) for clamping the fabric to be tested and fixed by screws (not labeled).
  • the fixing bracket 27 fixes the fixed pulley 22, and the fixed pulley 22 is located inside the connecting belt 23 and abuts the connecting belt 23, so that the sample holder 21 is placed at 45°, so as to be combined with the arc-shaped bending resisting wall,
  • the fabric was tested for different bending, stretching and shear deformation states.
  • the sample The clip 21 is connected to the fabric to be tested, and the other end is connected to the spring gauge 24 via a connecting belt 23.
  • the weight 25 is coupled to the spring gauge 24, and the weight 25 is placed on the micro-lifting platform 26.
  • the micro-lifting platform 26 is coupled to the data acquisition and program control system 7 and controlled by the data acquisition and program control system 7, through data acquisition and
  • the program in the program control system 7 adjusts the height of the micro-lifting table 26, and changes the elongation of the spring meter 24 to control the degree of deformation of the fabric to be tested, thereby simulating the dynamic deformation of the fabric to be tested under human motion conditions.
  • the connecting belt 23 can be directly connected to the weight 25, thereby changing the amount of stretching by changing the weight of the weight 25.
  • micro lifting platform 26 can also be omitted; or the stretching device 2 can Only the one end of the fabric to be tested is clamped, or both ends of the fabric to be tested are clamped by only one stretching device 2; in other embodiments, the stretching device 2 may not contain the spring gauge 24, the micro lifting platform 26. Fixed pulley 22 and fixed frame 27.
  • the air layer dynamic changing device 3 and the heat flow sensor 6 are both disposed in the hollow portion, and the air layer dynamic changing device 3 is a cylinder, and includes a cylinder block 31 fixed in the hollow portion and a column mounted on the cylinder block 31.
  • the plug 32 is movable along the cylinder block 31.
  • the cylinder block 31 has a port (not labeled) facing the abutting wall, and the heat flow sensor 6 is disposed on the plunger 32, and the plunger 32 is driven.
  • the heat flow sensor 6 moves relative to the resisting wall, thereby changing the distance between the heat flow sensor 6 and the resisting wall, simulating the change in the size of the under-coating air layer caused by the movement of the human body.
  • the air layer dynamic changing device 3 and the data acquisition and program control system 7 are signally connected and controlled by the data acquisition and program control system 7, and are controlled by controlling the lifting speed and frequency of the plunger 32 of the air layer dynamic changing device 3.
  • the air layer dynamic changing device 3 may also be of other construction, such as an automatic lift.
  • the heat flow sensor 6 is a skin sensing sensor including a base 62 disposed on the plunger 32 and a thermocouple 61 disposed on the base 62.
  • the base 62 and the human body simulator 5 are made of the same inorganic composite material, and the base 62 has a mounting surface (not labeled) facing the resisting wall, the mounting surface is a curved surface, and the arc and the mounting surface are resisted.
  • the bending of the wall is the same. Since the cylinder 31 has a rake facing the abutting wall, and the arc of the mounting surface is the same as the bending curvature of the abutting wall, the mounting surface can be placed against the resisting wall, and the thermocouple 61 is pressed against the resisting wall. .
  • the heat flow sensor 6 is connected to a data acquisition and program control system 7.
  • the data acquisition and program control system 7 is connected with a PCI-6251 multi-function DAQ data board and self-programmed program control software.
  • the thermocouple 61 is embedded on the mounting surface, and the thermocouple 61 is a T-type thermocouple, and the number is three.
  • the disaster source 4 may be one or more of a convective disaster heat source, a radiation disaster heat source, a high temperature liquid disaster heat source, and a high temperature steam disaster heat source, so that the dynamic thermal protection performance evaluation device of the present invention has good expandability. .
  • the disaster source 4 is a high temperature liquid disaster heat source.
  • the high temperature liquid disaster heat source includes a water tank 41, a spray head 46 facing the fabric to be tested, a transfer line 44 connecting the water tank 41 and the spray head 46, and a water pump 43 and a control valve 45 disposed on the transfer line 44.
  • the water tank 41 is provided with a temperature control unit 42 which automatically controls the heater 42 to ensure a constant temperature of the liquid.
  • the water pump 43 has a pressure control system that sets the pressure of the high temperature liquid.
  • a three-way ball valve (not shown) is mounted on the transfer line 44, and the water pump 43, the spray head 46, and the water tank 41 are connected, respectively.
  • the control valve 45 is a solenoid valve, and the solenoid valve 45 is connected to the data acquisition and program control system 7.
  • the liquid in the water tank 41 can be circulated through the transmission line 44 to ensure The temperature of the liquid in the transfer line 44 is constant to avoid a drop in the temperature at which the liquid is ejected at the beginning of the experiment, which affects the accuracy of the experiment.
  • the head 46 is made of a stainless steel tube and has a diameter of 6 to 8 mm.
  • the two ends of the fabric to be tested are respectively fixed on the two sample holders 21, and the maximum deformation degree of the fabric to be tested is calculated according to the weight of the weight of the weight of the sample 25, and the two micro-lifting platforms are adjusted.
  • the height of 26 changes the dynamic deformation of the fabric to be tested; sets the frequency and speed of the change of the air layer dynamic change device 3, and adjusts the dynamic change of the air layer size between the heat flow sensor 6 and the fabric to be tested, thereby realizing the skin under dynamic conditions of the human body.
  • both the stretching device 2 and the air layer dynamic changing device 3 can be used in conjunction with each other to simulate the process of joint movement of the human body; or used alone to simulate fabric deformation or air layer size change.
  • the dynamic deformation adjustment of the fabric to be tested is realized by the human body simulator 5 and the stretching device 2, and the air flow dynamic change device 3 is provided and the heat flow sensor 6 is driven by the air layer dynamic change device 3 to simulate the human body.
  • the resisting wall of the device 5 moves to change the distance between the heat flow sensor 6 and the fabric to be tested to simulate the change of the size of the air layer under the clothes caused by the movement of the human body, thereby more realistically simulating the deformation of the human body joints in the working environment.
  • the post-protection performance makes up for the impact of the dynamic factors neglected by the existing protective performance evaluation device on the thermal protection performance. It has very important practical significance for protecting the life safety of professional personnel and developing high-tech thermal protection equipment.
  • the design of the human body dynamic simulation device is simple. Single, low cost;
  • the air layer dynamic change device 3 and the micro lift table 26 can be controlled by the data acquisition and program control system 7, so that the operation is safe and convenient.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种动态热防护性能测评装置,属于职业安全与健康技术领域,用以固定待测织物以对该待测织物进行测试。该装置包括支架(8)、设置在支架(8)上以固定待测织物并促使待测织物发生形变的人体动态模拟装置、相对设置在人体动态模拟装置两侧的灾害源(4)和热流传感器(6)、以及与热流传感器(6)信号连接的数据采集及程序控制系统(7),人体动态模拟装置包括抵持在待测织物上的人体模拟器(5)和至少夹持在待测织物一端的拉伸装置(2),人体模拟器具有抵持在待测织物上的抵持壁,抵持壁与灾害源(4)相对设置在待测织物的两侧,待测织物与热流传感器(6)相对设置在抵持壁的两侧,动态热防护性能测评装置还包括驱动热流传感器相对抵持壁移动的空气层动态变化装置(3)。

Description

动态热防护性能测评装置
[0001] 本申请要求了申请日为 2014年 11月 03日, 申请号为 201410608109.3, 发明名称 为"动态热防护性能测评装置"的中国专利申请的优先权, 其全部内容通过引用结 合在本申请中。
技术领域
[0002] 本发明涉及一种织物防护性能测评装置, 尤其是一种动态热防护性能测评装置 , 属于职业安全与健康技术领域。
背景技术
[0003] 海军、 消防、 石油化工、 能源工业、 食品加工等行业工作人员可能会遭受各种 热灾害环境 (包括火焰、 辐射热、 高温液体或高压蒸汽等) , 从而对他们的健 康产生潜在的威胁。 客观准确地测评防护织物的防护性能, 可以为防护材料及 装备的研发与选择提供重要的科学依据。 当前对火焰和辐射热灾害防护性能的 评价主要采用 TPP测试仪、 RPP测试仪、 锥形量热仪等; 高温液体防护性能的测 评采用 ASTM F 2701规定的高温液体防护性能测试仪。 主要原理是将待测织物试 样直接放置在传感器板上, 并暴露在特定的热灾害环境下, 待测织物的另一面 放置铜片热流传感器用于测定透过待测织物的热流量, 并通过数据采集仪记录 并基于 Stoll曲线预测人体皮肤达到二级烧伤所需要的吋间, 从而评价热防护织物 系统的防护性能。 然而, 在这些实验室模拟条件下, 待测织物处于平整松弛状 态, 待测织物与皮肤之间平行接触或存在一定的间隙, 仅能模拟人体静态条件 下防护织物系统的防护性能, 忽略了动态情形下防护服装的防护性能, 不能真 正反映实际工作条件下热防护服装的防护性能。
[0004] 在实际工作环境下, 着装者会处于不同的姿势, 人体姿势的变化会改变织物的 外观形态, 产生织物形变, 织物形变主要包括拉伸、 弯曲、 剪切和压缩等综合 作用。 其次, 服装与人体之间的间隙也随着人体运动而有规律地增加或减小, 影响服装的防护性能。 最后, 因人体运动引起服装面料与人体皮肤接触, 储存 在服装内的能量迅速释放, 可能会导致皮肤烧伤。 [0005] 实际上, 由于人体动作姿态的变化, 防护服装会产生不同程度的形变, 一方面 织物拉伸形变的部位会直接贴近或压迫皮肤, 衣下空气层厚度下降, 使热量传 递速度急剧加快, 尤其是当织物中存储热释放吋更容易导致人体的烧伤; 另一 方面, 织物拉伸形变会改变其初始的物理特征, 导致织物的密度、 透气性、 厚 度、 热传导系数、 比热容等属性发生变化, 直接影响服装系统的热防护性能。 此外, 在人体动态条件下, 服装与人体之间的空气层有规律地增加或减小, 势 必会影响其防护性能。
[0006] 综上所述, 很有必要设计和幵发更好的测评装置并准确地测试动态条件下热防 护装备的热防护性能, 确保着装者的职业健康与安全。
技术问题
[0007] 本发明要解决的技术问题是解决现有技术中没有任何一种仪器可以可实现人体 动态条件下织物系统热防护性能测评的问题。
问题的解决方案
技术解决方案
[0008] 为了解决上述技术问题, 本发明提供了一种动态热防护性能测评装置, 用以固 定待测织物以对该待测织物进行测试, 包括支架、 设置在支架上以固定待测织 物并促使待测织物发生形变的人体动态模拟装置、 相对设置在人体动态模拟装 置两侧的灾害源和热流传感器、 以及与所述热流传感器信号连接的数据采集及 程序控制系统, 所述人体动态模拟装置包括抵持在待测织物上的人体模拟器和 至少夹持在待测织物一端的拉伸装置, 所述人体模拟器具有抵持在待测织物上 的抵持壁, 所述抵持壁与灾害源相对设置在待测织物的两侧, 所述待测织物与 热流传感器相对设置在抵持壁的两侧, 所述动态热防护性能测评装置还包括与 所述热流传感器连接的空气层动态变化装置, 所述空气层动态变化装置驱动所 述热流传感器相对抵持壁移动, 所述空气层动态变化装置、 拉伸装置分别和数 据采集及程序控制系统连接并由数据采集及程序控制系统控制。
[0009] 进一步的, 所述人体模拟器设置有中空部, 所述中空部与待测织物相对设置在 抵持壁的两侧, 且热流传感器设置在中空部内。
[0010] 进一步的, 所述空气层动态变化装置固定在所述中空部内, 所述空气层动态变 化装置包括固定在中空部内的缸体和设置于缸体且沿缸体移动的柱塞, 所述热 流传感器设置在柱塞上。
[0011] 进一步的, 所述热流传感器包括设置在空气层动态变化装置上的底座和设置在 底座上的热电偶, 所述底座包括朝向所述抵持壁的安装面, 所述热电偶设置在 所述安装面上。
[0012] 进一步的, 所述抵持壁呈弧形弯折, 所述安装面为弧形面, 所述安装面的弧度 与抵持壁的弯折弧度相同。
[0013] 进一步的, 所述拉伸装置包括砝码、 与砝码连接的连接带、 以及连接连接带与 待测织物的试样夹。
[0014] 进一步的, 所述拉伸装置还包括升降台, 所述砝码放置在升降台上。
[0015] 进一步的, 所述拉伸装置还包括设置在所述砝码与连接带之间的弹簧计。
[0016] 进一步的, 所述拉伸装置还包括设置在连接带内侧并抵持连接带的定滑轮和固 定所述定滑轮的固定架。
[0017] 进一步的, 所述灾害源为高温液体灾害热源, 所述高温液体灾害热源包括水箱
、 朝向待测织物的喷头、 连接水箱和喷头的传送管路、 及设置在传送管路上的 水泵和控制阀, 所述喷头相对抵持壁设置在待测织物的两侧, 所述水箱带有温 控装置。
发明的有益效果
有益效果
[0018] 借由上述方案, 本发明至少具有以下优点: 通过人体模拟器和拉伸装置实现待 测织物的动态形变调节, 通过设置空气层动态变化装置并由空气层动态变化装 置驱动热流传感器相对人体模拟器的抵持壁移动, 以改变热流传感器与待测织 物之间的距离, 以模拟人体运动引起的衣下空气层尺寸变化, 从而更加真实地 模拟工作环境中人体关节活动部位造成织物形变后的防护性能, 弥补了现有防 护性能测评装置所忽略的动态因素对热防护性能的影响, 对于保护职业人员的 生命安全和研发高新技术的热防护装备都具有非常重要的现实意义。
对附图的简要说明
附图说明 [0019] 图 1是本发明的动态热防护性能测评装置的结构示意图;
[0020] 图 2是图 1中人体模拟器及空气层动态变化装置于另一视角上的结构示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0021] 下面结合附图和实施例, 对本发明的具体实施方式作进一步详细描述。 以下实 施例用于说明本发明, 但不用来限制本发明的范围。
[0022] 参见图 1和图 2, 本发明一较佳实施例所述的动态热防护性能测评装置用以固定 待测织物以对该待测织物 (未标号) 进行测试。 该动态热防护性能测评装置包 括支架 8、 设置在支架 8上以固定待测织物并促使待测织物发生形变的人体动态 模拟装置、 设置在人体动态模拟装置一侧的灾害源 4、 与灾害源 4相对设置在待 测织物的两侧的热流传感器 6、 与所述热流传感器 6连接的空气层动态变化装置 3 、 以及数据采集及程序控制系统 7。
[0023] 所述人体动态模拟装置包括抵持在待测织物上的人体模拟器 5和夹持待测织物 两端的拉伸装置 2。 所述人体模拟器 5固定在支架 8上, 所述人体模拟器 5具有抵 持在待测织物上以使待测织物发生形变的抵持壁 (未标号) , 所述抵持壁与灾 害源 4相对设置在待测织物的两侧。 在实施例中, 所述人体模拟器 5用来模拟人 体腿部, 呈圆柱型, 该抵持壁呈弧形弯折, 以使待测织物发生弯曲形变。 所述 人体模拟器 5的直径为 200mm, 长度为 150mm, 采用无机复合材料制成, 使其热 扩散性能与皮肤接近, 且还具有防水性能。 所述人体模拟器 5设置有中空部 (未 标号) , 中空部与待测织物相对设置在抵持壁的两侧, 在实施例中, 所述抵持 壁朝上设置, 该中空部位于抵持壁的后方, 在其他实施方式中, 该抵持壁也可 以朝向其他方式, 如朝下设置。 所述中空部为 100mm宽的方形孔。
[0024] 所述拉伸装置 2为相对固定在待测织物两端的两个, 分别位于人体模拟器 5的两 侧。 每个拉伸装置 2包括砝码 25、 连接带 23、 试样夹 21、 弹簧计 24、 微型升降台 26、 定滑轮 22及固定架 27。 所述试样夹 21具有人字齿 (未标号) , 用于夹紧待 测织物, 并用螺钉 (未标号) 固定。 所述固定架 27固定定滑轮 22, 该定滑轮 22 位于连接带 23的内侧且抵持连接带 23, 使试样夹 21呈 45°放置, 从而结合弧形弯 折的抵持壁, 实现待测织物发生不同的弯曲、 拉伸和剪切形变状态。 所述试样 夹 21—端连接待测织物, 另一端通过连接带 23与弹簧计 24相连。 所述砝码 25与 弹簧计 24相连, 砝码 25放置在微型升降台 26上, 微型升降台 26和数据采集及程 序控制系统 7相连并由数据采集及程序控制系统 7控制, 通过数据采集及程序控 制系统 7内的程序调节微型升降台 26的高度, 改变弹簧计 24的伸长量控制待测织 物的形变程度, 从而模拟人体运动条件下待测织物发生的动态形变。 在其他实 施方式中, 连接带 23可直接与砝码 25连接, 从而通过改变砝码 25的重量改变拉 伸量, 另外, 还可不设置微型升降台 26; 又或者, 所述拉伸装置 2可以仅为夹持 待测织物一端的一个, 或仅通过一个拉伸装置 2将待测织物的两端夹持; 在其他 实施方式中, 该拉伸装置 2可以不含有弹簧计 24、 微型升降台 26、 定滑轮 22及固 定架 27。
[0025] 所述空气层动态变化装置 3和热流传感器 6均设置在该中空部内, 所述空气层动 态变化装置 3为气缸, 包括固定在中空部内的缸体 31和安装于缸体 31的柱塞 32, 所述柱塞 32可沿缸体 31移动, 所述缸体 31具有面向抵持壁的幵口 (未标号) , 所述热流传感器 6设置在柱塞 32上, 该柱塞 32驱动热流传感器 6相对抵持壁移动 , 从而改变热流传感器 6与抵持壁之间的距离, 模拟人体运动引起的衣下空气层 尺寸的变化。 所述空气层动态变化装置 3和数据采集及程序控制系统 7信号连接 并由所述数据采集及程序控制系统 7控制, 通过控制空气层动态变化装置 3的柱 塞 32的升降速度和频率, 改变热流传感器 6与待测织物之间的距离, 从而模拟人 体运动引起的衣下空气层尺寸变化。 在其他本实施例中, 该空气层动态变化装 置 3还可以为其他结构, 如自动升降机。
[0026] 所述热流传感器 6为皮肤感应传感器, 包括设置在柱塞 32上的底座 62和设置在 底座 62上的热电偶 61。 所述底座 62与人体模拟器 5采用相同的无机复合材料制成 , 所述底座 62具有朝向抵持壁的安装面 (未标号) , 该安装面为弧形面, 安装 面的弧度与抵持壁的弯折弧度相同。 由于缸体 31具有面向抵持壁的幵口, 且安 装面的弧度与抵持壁的弯折弧度相同, 可使安装面贴靠在抵持壁上, 热电偶 61 贴紧在抵持壁上。 所述热流传感器 6与数据采集及程序控制系统 7相连, 该数据 采集及程序控制系统 7连有 PCI-6251多功能 DAQ数据板卡和自行编制的程序控制 软件。 所述热电偶 61嵌设在安装面上, 热电偶 61为 T型热电偶, 数量为 3个。 [0027] 所述灾害源 4可以为对流灾害热源、 辐射灾害热源、 高温液体灾害热源、 高温 蒸汽灾害热源中的一种或以上, 从而使本发明的动态热防护性能测评装置具有 良好的扩展性。 在本实施例中, 所述灾害源 4为高温液体灾害热源。 所述高温液 体灾害热源包括水箱 41、 朝向待测织物的喷头 46、 连接水箱 41和喷头 46的传送 管路 44、 及设置在传送管路 44上的水泵 43和控制阀 45。 水箱 41带有温控装置 42 , 可以自动控制加热器 42, 确保恒定的液体的温度。 水泵 43带有压力控制系统 , 可以设定高温液体的压力。 传送管路 44上装有三通球阀 (未图示) , 分别连 接水泵 43、 喷头 46和水箱 41。 所述控制阀 45为电磁阀幵关, 该电磁阀幵关 45与 数据采集及程序控制系统 7相连, 在电磁阀幵关 45关闭吋, 水箱 41内的液体可以 通过传送管路 44循环, 保证传送管路 44内的液体温度恒定, 避免在实验幵始吋 喷射液体的温度有所下降, 影响实验精度。 所述喷头 46由不锈钢管制成, 直径 为 6〜8mm。
[0028] 在实验吋, 将待测织物的两端分别固定在两个试样夹 21上, 根据实验要求选择 砝码 25的重量计算待测织物的最大形变程度, 通过调节两个微型升降台 26的高 度改变待测织物的动态形变; 设定空气层动态变化装置 3的变化频率和速度, 调 节热流传感器 6与待测织物之间的空气层尺寸动态变化, 从而实现了人体动态条 件下皮肤与待测织物之间的动态变化模拟; 最后通过数据采集及程序控制系统 7 控制高温液体灾害的喷射压力和吋间, 通过数据采集及程序控制系统 7采集热流 传感器 6的数据, 从而对待测织物进行热防护性能评估。 在实验吋, 拉伸装置 2 和空气层动态变化装置 3两者可以相互配合同吋使用, 模拟人体关节运动的过程 ; 或者单独一个使用, 用于模拟织物形变或空气层尺寸变化。
[0029] 综上所述, 通过人体模拟器 5和拉伸装置 2实现待测织物的动态形变调节, 通过 设置空气层动态变化装置 3并由空气层动态变化装置 3驱动热流传感器 6相对人体 模拟器 5的抵持壁移动, 以改变热流传感器 6与待测织物之间的距离, 以模拟人 体运动引起的衣下空气层尺寸变化, 从而更加真实地模拟工作环境中人体关节 活动部位造成织物形变后的防护性能, 弥补了现有防护性能测评装置所忽略的 动态因素对热防护性能的影响, 对于保护职业人员的生命安全和研发高新技术 的热防护装备都具有非常重要的现实意义。 另外, 该人体动态模拟装置设计简 单, 成本低; 通过数据采集及程序控制系统 7即可控制空气层动态变化装置 3和 微型升降台 26, 从而操作安全方便。
以上所述仅是本发明的优选实施方式, 并不用于限制本发明, 应当指出, 对于 本技术领域的普通技术人员来说, 在不脱离本发明技术原理的前提下, 还可以 做出若干改进和变型, 这些改进和变型也应视为本发明的保护范围。

Claims

权利要求书
一种动态热防护性能测评装置, 用以固定待测织物以对该待测织 物进行测试, 包括支架、 设置在支架上以固定待测织物并促使待 测织物发生形变的人体动态模拟装置、 相对设置在人体动态模拟 装置两侧的灾害源和热流传感器、 以及与所述热流传感器信号连 接的数据采集及程序控制系统, 其特征在于: 所述人体动态模拟 装置包括抵持在待测织物上的人体模拟器和至少夹持在待测织物 一端的拉伸装置, 所述人体模拟器具有抵持在待测织物上的抵持 壁, 所述抵持壁与灾害源相对设置在待测织物的两侧, 所述待测 织物与热流传感器相对设置在抵持壁的两侧, 所述动态热防护性 能测评装置还包括与所述热流传感器连接的空气层动态变化装置 , 所述空气层动态变化装置驱动所述热流传感器相对抵持壁移动 , 所述空气层动态变化装置、 拉伸装置分别和数据采集及程序控 制系统连接并由数据采集及程序控制系统控制。
根据权利要求 1所述的动态热防护性能测评装置, 其特征在于: 所 述人体模拟器设置有中空部, 所述中空部与待测织物相对设置在 抵持壁的两侧, 且热流传感器设置在中空部内。
根据权利要求 2所述的动态热防护性能测评装置, 其特征在于: 所 述空气层动态变化装置固定在所述中空部内, 所述空气层动态变 化装置包括固定在中空部内的缸体和设置于缸体且沿缸体移动的 柱塞, 所述热流传感器设置在柱塞上。
根据权利要求 1所述的动态热防护性能测评装置, 其特征在于: 所 述热流传感器包括设置在空气层动态变化装置上的底座和设置在 底座上的热电偶, 所述底座包括朝向所述抵持壁的安装面, 所述 热电偶设置在所述安装面上。
根据权利要求 4所述的动态热防护性能测评装置, 其特征在于: 所 述抵持壁呈弧形弯折, 所述安装面为弧形面, 所述安装面的弧度 与抵持壁的弯折弧度相同。 根据权利要求 1所述的动态热防护性能测评装置, 其特征在于: 所 述拉伸装置包括砝码、 与砝码连接的连接带、 以及连接连接带与 待测织物的试样夹。
根据权利要求 6所述的动态热防护性能测评装置, 其特征在于: 所 述拉伸装置还包括升降台, 所述砝码放置在升降台上。
根据权利要求 6所述的动态热防护性能测评装置, 其特征在于: 所 述拉伸装置还包括设置在所述砝码与连接带之间的弹簧计。
根据权利要求 6所述的动态热防护性能测评装置, 其特征在于: 所 述拉伸装置还包括设置在连接带内侧并抵持连接带的定滑轮和固 定所述定滑轮的固定架。
根据权利要求 1所述的动态热防护性能测评装置, 其特征在于: 所 述灾害源为高温液体灾害热源, 所述高温液体灾害热源包括水箱 、 朝向待测织物的喷头、 连接水箱和喷头的传送管路、 及设置在 传送管路上的水泵和控制阀, 所述喷头相对抵持壁设置在待测织
PCT/CN2014/093222 2014-11-03 2014-12-08 动态热防护性能测评装置 WO2016070481A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410608109.3 2014-11-03
CN201410608109.3A CN104316562A (zh) 2014-11-03 2014-11-03 动态热防护性能测评装置

Publications (1)

Publication Number Publication Date
WO2016070481A1 true WO2016070481A1 (zh) 2016-05-12

Family

ID=52371823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093222 WO2016070481A1 (zh) 2014-11-03 2014-12-08 动态热防护性能测评装置

Country Status (2)

Country Link
CN (1) CN104316562A (zh)
WO (1) WO2016070481A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933224A (zh) * 2021-10-26 2022-01-14 航天特种材料及工艺技术研究所 一种热防护材料高温透气性测试系统及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107748176A (zh) * 2015-09-16 2018-03-02 东华大学 一种防护服装热防护水平的评价方法
CN109142085B (zh) * 2018-10-10 2019-07-26 哈尔滨工业大学 一种基于动态数据驱动的热防护在线分析系统及方法
CN109406568A (zh) * 2018-10-18 2019-03-01 南通纺织丝绸产业技术研究院 一种形状记忆织物防护性能测试用装置及用途
CN109603411A (zh) * 2018-11-29 2019-04-12 亿利洁能科技(颍上)有限公司 一种煤炭燃烧废气处理排气管
CN110412073B (zh) * 2019-07-31 2022-02-01 东华大学 衣下空气层形态及角度可调的织物热防护性能测评装置
CN113791108B (zh) * 2021-09-17 2024-03-22 苏州大学 含铁原料软熔滴落性能的测定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1509740A1 (ru) * 1988-01-19 1989-09-23 Ленинградский институт текстильной и легкой промышленности им.С.М.Кирова Устройство дл определени защитной способности текстильных материалов
CN201413276Y (zh) * 2009-06-11 2010-02-24 李文霖 全自动织物胀破仪
CN201926633U (zh) * 2010-11-19 2011-08-10 东华大学 一种新型的热防护装备的热防护性能测评装置
CN102269722A (zh) * 2011-05-05 2011-12-07 东华大学 一种织物系统热防护性测试仪
CN203053903U (zh) * 2013-01-18 2013-07-10 东华大学 一种新型的热防护装备高温液体防护性能测评装置
CN103399033A (zh) * 2013-07-19 2013-11-20 东华大学 一种织物系统热防护性测试仪
CN104062316A (zh) * 2014-07-09 2014-09-24 苏州大学 织物防护性能测评装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HRPK20130350B3 (hr) * 2013-04-19 2015-08-28 Dubravko Rogale Mjerni sustav za određivanje statičkih i dinamičkih toplinskih svojstava kompozita i odjeće
CN203502368U (zh) * 2013-09-10 2014-03-26 中国计量学院 一种纺织品动态导热性能测试装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1509740A1 (ru) * 1988-01-19 1989-09-23 Ленинградский институт текстильной и легкой промышленности им.С.М.Кирова Устройство дл определени защитной способности текстильных материалов
CN201413276Y (zh) * 2009-06-11 2010-02-24 李文霖 全自动织物胀破仪
CN201926633U (zh) * 2010-11-19 2011-08-10 东华大学 一种新型的热防护装备的热防护性能测评装置
CN102269722A (zh) * 2011-05-05 2011-12-07 东华大学 一种织物系统热防护性测试仪
CN203053903U (zh) * 2013-01-18 2013-07-10 东华大学 一种新型的热防护装备高温液体防护性能测评装置
CN103399033A (zh) * 2013-07-19 2013-11-20 东华大学 一种织物系统热防护性测试仪
CN104062316A (zh) * 2014-07-09 2014-09-24 苏州大学 织物防护性能测评装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933224A (zh) * 2021-10-26 2022-01-14 航天特种材料及工艺技术研究所 一种热防护材料高温透气性测试系统及方法

Also Published As

Publication number Publication date
CN104316562A (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
WO2016070481A1 (zh) 动态热防护性能测评装置
CN102980910B (zh) 导热材料性能测试设备
CN205898717U (zh) 快速检测膨胀型钢结构防火涂料膨胀与隔热性能的装置
Lu et al. A new protocol to characterize thermal protective performance of fabrics against hot liquid splash
FR2907899B1 (fr) Appareil indenteur a pointe propre a tester un bloc de materiau
Musa et al. Analysis and comparison of thickness and bending measurements from fabric touch tester (FTT) and standard methods
CN105259201A (zh) 织物热防护性能测评装置
CN104062316B (zh) 织物防护性能测评装置
EP2887046B1 (en) Test system and test method
CN203178248U (zh) 家用电器碳氢化合物制冷剂释放及低爆炸极限测量装置
He et al. THE EFFECT OF AIR GAP THICKNESS ON HEAT TRANSFER IN FIREFIGHTERS'PROTECTIVE CLOTHING UNDER CONDITIONS OF SHORT EXPOSURE TO HEAT
RU2410688C1 (ru) Способ определения эксплуатационных свойств текстильных материалов после изгиба
CN106714346A (zh) 一种双控温防覆盖的发热板系统
CN218512343U (zh) 一种耐高温型管材的试验装置
CN203132785U (zh) 制冷剂模拟泄漏检测装置
CN102305809B (zh) 一种测试强对流下的高温防护服热防护性能的仪器
CN106970206B (zh) 形状记忆纺织品抗褶皱特性的测试方法
CN206258324U (zh) 一种加热装置及加热监测装置
CN207423851U (zh) 一种均温装置及具有该均温装置的保温性能检测系统
CN103116005B (zh) 家用电器碳氢化合物制冷剂释放及低爆炸极限测量装置
CN109489966B (zh) 容器手柄动态负载耐久性测试装置
Zhu et al. Estimation of thermal performance of flame resistant clothing fabrics sheathing a cylinder with new skin model
CN208537486U (zh) 织物燃烧测试装置
CN108267229A (zh) 一种测量空气温度场的方法、装置及其制备方法
CN207600865U (zh) 一种纺织品触感特性测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905587

Country of ref document: EP

Kind code of ref document: A1