WO2016068381A1 - Current control method of wind power generator - Google Patents
Current control method of wind power generator Download PDFInfo
- Publication number
- WO2016068381A1 WO2016068381A1 PCT/KR2014/011328 KR2014011328W WO2016068381A1 WO 2016068381 A1 WO2016068381 A1 WO 2016068381A1 KR 2014011328 W KR2014011328 W KR 2014011328W WO 2016068381 A1 WO2016068381 A1 WO 2016068381A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- output
- phase
- converter
- power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/04—Control effected upon non-electric prime mover and dependent upon electric output value of the generator
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/66—Regulating electric power
- G05F1/67—Regulating electric power to the maximum power available from a generator, e.g. from solar cell
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Definitions
- the present invention relates to a current control method of a wind turbine, and more particularly, by using a maximum power point trace (MPPT) tracking method using a slope of power vs. voltage, while rapidly following the maximum output of a wind turbine due to environmental changes.
- MPPT maximum power point trace
- the present invention relates to a current control method of a wind power generator that minimizes a drop in tracking speed.
- control methods for directing the generator to the maximum power point have been proposed in an environmentally friendly power generation method.
- the IncCond control method and the P & O control method have been proposed as one of the Maximum Power Point Trace (MPPT) control methods.
- the IncCond control method refers to the output conductance of the generator and the incremental conductance according to the environmental change. As a method of controlling power point tracking, it has a fast response to environmental changes, but it takes a lot of time to calculate conductance and incremental conductance, requiring a high performance processor and a system including the same, which leads to a cost increase. There is difficulty in dissemination.
- the IncCond control method follows the maximum power point by using the amount of change in conductance, and thus is easy to apply to the solar power generation method, but is not suitable for the wind power generation method.
- the P & O control method to ensure that the generator is to follow the maximum power point, measure the output power and the output voltage to be output from the generator and, corresponding to the output power and the output voltage control method for feeding back the control signal to advance reaches the set reference value, do.
- the P & O control method is simple to control and easy to disseminate. However, since the P & O control method is based on the fluctuating output power and output voltage, the P & O control method tends to use an average value for the output power and the output voltage. The response speed is not fast.
- Korean Patent Laid-Open Publication No. 10-2013-0079846 has proposed a maximum power tracking device that follows the maximum power point through MPPT control.
- MPPT control increases or decreases the output power to follow the maximum output point at which the maximum voltage and maximum power match.
- the output power and output voltage depend on the information corresponding to the maximum output, and determining the maximum output point is the main point, which is calculated according to the position of the sun or the irradiation amount of sunlight.
- the maximum power point is inquired or recalculated so that the output of the generator follows the maximum power point. This method of obtaining and using the maximum output point is difficult to apply to the wind power generator as the wind direction and the amount of wind changes from time to time.
- An object of the present invention is to control the current of each phase so that the current of each phase generated in the wind generator corresponds to the maximum power, the current control method of the wind power generator so that the power generated in the wind generator can quickly and accurately follow the maximum power point In providing.
- the above object is, according to the present invention, a wind power generator for generating a three-phase alternating current, a converter for converting the three-phase alternating current to a direct current and an inverter for converting the direct current of the converter into grid alternating current current control method
- the reference current for each phase corresponding to the converter output power is determined based on the converter output power output from the converter, and the output current of the converter is used by using the command current in the form of PWM pulse to follow the instruction current for each phase.
- Switching control the command current is generated by each phase of the three-phase alternating current, it is achieved by the current control method of the wind turbine generator for receiving feedback correction of the output current for each phase output from the inverter.
- the present invention by using the voltage and current of the output power output from the wind power generator to determine the command current and the command current for each phase (three phase), and the deviation between the output current controlled by the command current and the command current This allows for fast and accurate tracking of the wind turbine's maximum power point.
- FIG. 1 shows a schematic diagram of a wind turbine generator to which the present invention is applied.
- Figure 2 shows an example of the output characteristics graph for each wind speed of the wind power generator.
- FIG. 3 is a conceptual diagram illustrating a method of generating a command current using the command current according to the embodiment.
- FIG. 4 is a conceptual diagram for a method of generating a command current for each phase.
- FIG. 5 is a conceptual diagram illustrating a current control device and a wind turbine including the same according to an embodiment of the present invention.
- FIG. 6 is a conceptual diagram illustrating a process of generating a command current of a PWM pulse type for each of the three phase currents in the current control device according to the embodiment.
- FIG. 7 is a block diagram illustrating an example of a current control device to which the current control method described with reference to FIGS. 1 to 6 is applied.
- FIG. 8 shows an operational waveform diagram for the current control device of FIG. 7 determining switching pattern of the next period with switching information of the previous period.
- FIG. 1 shows a schematic diagram of a wind turbine generator to which the present invention is applied.
- the wind power generator includes a power generation unit 20 for generating three-phase AC power by rotation of a blade 10 rotating in accordance with wind power, and a converter for converting three-phase AC power to DC. 30, and an inverter 40 for converting the direct current converted by the converter 30 into alternating current of the system required by the system.
- the wind power generator transfers power to the system through a process of converting a three-phase alternating current-direct current-alternating current system, and the converter 30 and the inverter 40 generate voltage and current for three phases. As shown in FIG.
- the command current is determined according to the characteristics of the blade 10 and the power generation unit 20, the command current for ia, ib, and ic may be determined in advance in the design stage or the trial run stage.
- the converter 30 controls the output current of the power generation unit 20 so that the output power of the power generation unit 20 follows the maximum power, and is provided to the inverter 40 by performing PLL control to control the output current.
- the output current of each phase is increased and decreased, and thus the output power of the inverter 40 follows the maximum power point.
- the instruction current may be increased or decreased according to the voltage of the output power output from the power generation unit 20.
- the current control apparatus detects the output power generated by the power generation unit 20, and after detecting the output voltage of the output power, the instruction according to the output voltage Determine the current.
- a PLL Phase Locked Loop control is performed such that the detected output current follows the indicated current, according to the output voltage of the power generation unit 20. It is characterized by the maximum output power of the converter 30. This will be described with reference to FIGS. 3 and 4 together.
- FIG. 3 a conceptual diagram of a method of generating a command current using the command current according to the embodiment is shown.
- FIG. 3 illustrates an example of calculating and applying the result of comparing the output power P_real and the instruction power P_ref for tracking the maximum power to the PI controller 52.
- the comparator 51 calculates a difference between the output power P_real of the power generation unit 20 and the instruction power P_ref for the output power P_real to follow the maximum power, and converts the calculated difference power into the PI controller 52. To provide.
- the comparator 51 sets the maximum power determined according to the wind speed for rotating the blade 10 to the indication power (P-ref), and the actual output output from the power generation unit 20 as the output power (P_real). The difference can be calculated.
- the maximum power is determined according to the amount of air to rotate the blade 10, not to mean the maximum value that the power generation unit 20 itself can be output, it is determined that it is determined by the wind speed. For example, when the wind speed is 10 m / s, the maximum output that can be expected from the power generation unit 20 is around 350 kW, and the instruction power P_ref applied to the comparator 51 also corresponds to 350 kW.
- the indicated current corresponds to the current value for each phase at 350 kW. That is, the command power and the command current are determined by the wind speed, and are not determined by the model of the power generation unit 20 or the blade 10. It is noted that such matters apply equally throughout this specification.
- the output power P_real applied to the comparator 51 corresponds to the actual output power output from the power generation unit 20, and the indication power P_ref corresponds to the maximum power output from the power generation unit 20 according to the wind speed.
- the PI controller 52 may generate a command current with reference to the difference between the output power P_real and the instruction power P_ref, and the voltage of the output power P_real, where the command current is the output power P_real. It is a control signal for increasing to a maximum value and may have a form of a pulse width modulation (PWM) pulse.
- PWM pulse width modulation
- Three command currents may be generated according to three-phase currents output from the power generation unit 20. As shown in FIG. 4, the command current is generated by c_ia, c_ib, and c_ic for each phase, and the output form has the form of a PWM pulse, and the current output value is switched on and off using a PWM pulse. To increase or decrease the current output value.
- the command current may generate a PWM pulse having a large duty ratio to increase the current output value, and in the opposite case, decrease the duty ratio to reduce the current output value.
- the current control device is a method of directly increasing or decreasing the output current of the converter 30 in accordance with the deviation of
- the current increment is converted into a switching signal of the converter 30, and the converter 30 supplies the difference of
- the current control device When the conventional PI controller is applied to the converter 30, for the frequency stability of the switching frequency in the converter 30, there is a tendency to lower the proportional gain (Proportional gain), in this case, there is a disadvantage that the response speed is lowered.
- the current control device generates a PWM pulse corresponding to the control amount when the control amount for the current increase and decrease in the PI controller 52, by performing the switching control of the converter 30 with the generated PWM pulse The response characteristic of the PI controller 52 can be improved.
- the current control device according to the embodiment may be built in the converter 30 or may be formed separately from the converter 30, and when formed separately from the converter 30, an individual device that exchanges signals with the converter 30. It may be implemented as. However, to help understand the embodiment, an example in which the current control device is formed separately from the converter 30 will be described with reference to FIG. 5.
- FIG. 5 is a conceptual diagram illustrating a current control device and a wind turbine including the same according to an embodiment of the present invention.
- the wind power generator may include a converter 30, an inverter 40, and a current control device 100.
- the converter 30 may rectify the three-phase alternating current output from the power generation unit 20 to generate a direct current, and may include a switching device in which the output current is increased or decreased by PWM control of the current control device 100.
- the converter 30 rectifies the three-phase alternating current output from the power generation unit 20 to generate a direct current to the inverter 40, the inverter 40 may again generate three-phase alternating current.
- the converter 30 may increase or decrease the current to the DC by switching the output current in response to the PWM pulse provided from the current control device 100.
- the output current for each of the three-phase current is on-off according to the PWM pulse provided from the current control device 100 to the converter 30, the average value of the on-off controlled current is the duty ratio of the PWM pulse (Duty Ratio) The higher), the larger, and the lower the duty ratio, the smaller.
- the current control device 100 may include a control value obtaining unit 100a, a command value calculating unit 100b, and a feedback control unit 100c.
- the control value obtaining unit 100a obtains information on the output power, the output voltage, the output current, and the wind speed for each of the three phase currents Ia, Ib, and Ic as control values.
- the obtained control value is provided to the command value calculating unit 100b, and the command value calculating unit 100b uses the reference current for the maximum current point and the reference power according to the wind speed to calculate the command current for the maximum output. Can be calculated.
- the calculated command current is provided to the feedback control unit 100c, and the feedback control unit 100c generates a PWM pulse according to the command current and provides it to the switching control unit 32, and the return current value IF output from the inverter 40 (IF). ) And the indicated current to determine an error, and PLL control may be performed based on the determined error.
- the command current represents a current value at the maximum power
- the data for the command current and the maximum power at the command current may be provided and used in the command value calculator 100b.
- FIG. 6 is a conceptual diagram illustrating a process of generating a command current of a PWM pulse type for each of the three phase currents in the current control device 100 according to the embodiment.
- the current control device 100 generates command currents c-ia, c-ib, and c-ic for each phase in the PI controllers 52, 53, and 54 for each phase.
- the generated command current is compared with the return current value IF of the inverter 40 by each phase in the comparators 61, 62, and 63 corresponding to each phase, and calculates a current difference.
- three command currents are generated using one current error signal I *. Can be generated.
- the current control device Since the three-phase currents (ia, ib, ic) for each phase are generated sequentially without generating waveforms at the same time, the phase and voltage of each phase are similar, but the waveforms of three-phase currents (ia, ib, ic) It should be formed with time difference. However, since the current value for each phase may have a mutual deviation, in order to maintain the maximum power according to the wind speed, the output current output for each phase should be set to follow the maximum power.
- the controllers 61, 62, and 63 individually control the currents ia, ib, and ic for each phase. Thus, as shown in Figure 6, the current control device according to the embodiment generates the A-phase PWM signal, the B-phase PWM signal and the C-phase PWM signal separately.
- FIG. 7 is a block diagram illustrating an example of a current control device to which the current control method described with reference to FIGS. 1 to 6 is applied. The description of FIG. 7 will be described with reference to FIGS. 1 to 6.
- the current error signal (es) mentioned in the embodiment corresponds to "1" if it is a positive direction value and "0" if it is a negative direction value, and the command current and the inverter 40
- the error between the actual current of the output power output which corresponds to a digital signal consisting of 1 and 0. That is, if the current error signal es is "1", the current error has a positive value, and if the current error signal es is "0", the current error is negative.
- the output signal "S" of the comparator 122 is a switching signal and may be output in the form of a PWM pulse.
- the current error signal es described with reference to FIG. 6 is applied to each of the integrators 104, 108, 113, and 118, and at this time, the non-inverted current error signal es is applied to the integrators 104, 108, The current error signal / es inverted by the inverter 111 is applied to the integrators 113 and 118. Accordingly, the comparator 116,
- the ramp waveform TB-Ramp obtained through the integrator 112 and the ramp generator 115 may be received and compared. As shown in the ramp waveform shown in FIG. 8, when the current error signal es has a positive value, the waveform of the ramp waveform ramps monotonically and vice versa. Can be. Meanwhile, the integrator 104 and the integrator 118 count the time by integrating the non-inverted current error signal es and the inverted current error signal / es, respectively, and the counted times are compared in the comparator 121. To obtain the waveform Ex.
- Comparator 122 receives the output waveform (Ramp) of the comparator 116 to the inverting terminal, and compares the time coefficient value of the comparator 121 to the non-inverting terminal to compare the form of "0" or "1" Generates a pulse, and the generated pulse controls the current switching of the converter 20 as a PWM pulse.
- Pul the output waveform
- the waveform G1 corresponds to a waveform which measures an output voltage (ripple voltage flowing through an inductor) of the inverter 40 and compares it with a reference current signal.
- Ta and Tb represent the time when es is 1 and when 0, and the ramp waveform is generated as an integral in analog circuit and as a counter in digital circuit.
- Tar represents the time until the switch s is turned off when es is 1, and Tar1 of the next period can be determined through the operation of Equation 1 below.
- the voltage error signal es is a digital signal composed of 1s and 0s as error information between the command voltage and the actual voltage
- S is a switching signal.
- Reference numeral 110 an integrator for generating a ramp waveform having a slope proportional to Ta
- Reference numeral 115 Integrator for generating a ramp waveform having a slope proportional to Tb
- Reference numeral 105 an integrator (or counter) that makes time when es is 1 and s is 1.
- Reference numeral 120 corresponds to the integrator (or counter) that makes time when es is zero and s is zero.
- Tbf represents the time until switch s is turned on when es is 0, which determines T # bf1 of the next cycle by the operation of (b) of Table 1.
- the comparator 122 uses the signal thus produced, the comparator 122 generates the output signal Ex and determines the next cycle switching sequence by comparing Ta1 and Tb1 of the next cycle.
- the current control method of the wind turbine generator according to the present invention activates manufacturers, developers and distributors of the wind turbine generator as well as grid operators and energy distributors associated with the grid network using the power generated by the wind turbine. Can contribute to
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
The present invention calculates control current per phase (3-phase) by using the voltage and current of output power outputted from a wind power generator, and reduces deviation between the calculated control current and a reference value to be thereby capable of following the maximum power point of a wind power generator rapidly and accurately. To this end, the present invention determines, on the basis of a converter output power outputted from a converter, an instruction current per each phase corresponding to the converter output power; and switching-controls the output current of the converter by using a command current in the form of a PWM pulse so as to follow the instruction current per phase, wherein the command current is generated per each phase of 3-phase alternating current and may be compensated for by receiving feedback of the output current per phase outputted from an inverter.
Description
본 발명은 풍력발전장치의 전류제어방법에 관한 것으로, 더욱 상세하게는 전력대 전압의 기울기를 이용하는 MPPT(Maximum Power Point Trace) 추종 방식을 이용하여 풍력발전기의 최대 출력을 빠르게 추종하면서도 환경 변화에 의한 추종속도 저하를 최소화하는 풍력발전장치의 전류제어방법에 관한 것이다.The present invention relates to a current control method of a wind turbine, and more particularly, by using a maximum power point trace (MPPT) tracking method using a slope of power vs. voltage, while rapidly following the maximum output of a wind turbine due to environmental changes. The present invention relates to a current control method of a wind power generator that minimizes a drop in tracking speed.
석탄 또는 석유를 기반으로 하는 에너지원은 필연적으로 환경오염을 유발함은 물론, 자원 고갈을 유발한다. 자원의 고갈과 환경 오염에 대한 대안으로서, 풍력발전, 태양열 발전, 및 조력 발전과 같은 친환경 발전방법이 대두되고 있는데, 이들 친환경 발전방법은 주변 환경, 예컨대 바람의 세기, 태양 광의 조사 시간대 및 조수 차의 변화에 따라 전력 생산량에 편차가 있으며, 출력되는 전압과 전류의 곱인 전력의 최대값이 최대전압과 일치하지 않는 경우가 많아 전류제어를 통해 계통에 전력을 전달해야 할 필요가 있다.Energy sources based on coal or petroleum inevitably lead to environmental pollution as well as resource depletion. As an alternative to resource depletion and environmental pollution, environmentally friendly power generation methods such as wind power generation, solar power generation and tidal power generation are emerging. These environmental power generation methods are used in the surrounding environment such as wind strength, solar irradiation time and tidal wave. There is a variation in the power production according to the change of, and the maximum value of power, which is the product of the output voltage and the current, does not always coincide with the maximum voltage, so it is necessary to deliver power to the system through current control.
이에 따라, 친환경 발전방법에서 발전기가 최대 전력점(전력의 최대 출력점)을 지향하도록 하는 제어방식들이 제안되어 왔다. 대표적으로, MPPT(Maximum Power Point Trace) 제어 방식의 하나로서, IncCond 제어방법 및 P&O 제어방법이 제시되어 왔는데, IncCond 제어방법은 발전기의 출력 컨덕턴스와, 환경 변화에 따른 증가분 컨덕턴스를 참조하여 발전기가 최대 전력점을 추종하도록 제어하는 방법으로서, 환경 변화에 대해 빠른 응답성을 가지는 반면, 컨덕턴스 및 증가분 컨덕턴스 계산에 많은 시간이 소요되어, 고성능의 프로세서 및 이를 포함하는 시스템을 요구하고, 이는 단가상승으로 이어져 보급에 애로점이 있다. 또한, IncCond 제어방법은 컨덕턴스의 변화량을 이용하여 최대 전력점을 추종하므로, 태양광 발전방법에 적용하기에는 용이하나, 풍력 발전방식에 적합하지 않은 면이 있다.Accordingly, control methods for directing the generator to the maximum power point (maximum output point of electric power) have been proposed in an environmentally friendly power generation method. Representatively, the IncCond control method and the P & O control method have been proposed as one of the Maximum Power Point Trace (MPPT) control methods. The IncCond control method refers to the output conductance of the generator and the incremental conductance according to the environmental change. As a method of controlling power point tracking, it has a fast response to environmental changes, but it takes a lot of time to calculate conductance and incremental conductance, requiring a high performance processor and a system including the same, which leads to a cost increase. There is difficulty in dissemination. In addition, the IncCond control method follows the maximum power point by using the amount of change in conductance, and thus is easy to apply to the solar power generation method, but is not suitable for the wind power generation method.
P&O 제어방법은 발전기가 최대 출력점을 추종하도록 하기 위해, 발전기에서 출력되는 출력전력과 출력전압을 측정하고, 출력전력과 출력전압이 미리 설정된 기준값에 도달하도록 제어신호를 피드백하는 제어방법에 대응한다. P&O 제어방법은 제어방법은 간단하여 보급에 용이한 반면, 변동이 심한 출력전력과 출력전압을 기반으로 하므로 출력전력과 출력전압에 대한 평균값을 이용하는 경향이 있으며, 이러한 특징에 따라, 환경변화에 대한 응답속도가 빠르지 않은 면이 있다.P & O control method to ensure that the generator is to follow the maximum power point, measure the output power and the output voltage to be output from the generator and, corresponding to the output power and the output voltage control method for feeding back the control signal to advance reaches the set reference value, do. The P & O control method is simple to control and easy to disseminate. However, since the P & O control method is based on the fluctuating output power and output voltage, the P & O control method tends to use an average value for the output power and the output voltage. The response speed is not fast.
이에 대해, 한국공개특허 10-2013-0079846은 MPPT 제어를 통해 최대 전력점을 추종하는 최대전력 추종장치를 제안한 바 있다. MPPT 제어는 출력 전력을 증감하여 최대 전압과 최대 전력이 매칭되는 최대 출력점을 추종하도록 한다. 그러나, 공개특허 10-2013-0079846은 출력 전력과 출력 전압이 최대 출력에 대응하는 정보에 의존하며, 최대 출력점이 올바른 값인가를 판단하는 것이 주요 요지로서 태양의 위치나 태양광의 조사량에 따라 산출되는 최대 전력점을 조회하거나 재산출하여 발전기의 출력이 최대 출력점을 추종하도록 하고 있다. 이러한 최대 출력점 획득 및 이용 방법은 풍향과 풍량이 수시로 변경되는 풍력발전장치에는 그대로 적용하는데 어려움이 있다.In this regard, Korean Patent Laid-Open Publication No. 10-2013-0079846 has proposed a maximum power tracking device that follows the maximum power point through MPPT control. MPPT control increases or decreases the output power to follow the maximum output point at which the maximum voltage and maximum power match. However, in Patent Publication No. 10-2013-0079846, the output power and output voltage depend on the information corresponding to the maximum output, and determining the maximum output point is the main point, which is calculated according to the position of the sun or the irradiation amount of sunlight. The maximum power point is inquired or recalculated so that the output of the generator follows the maximum power point. This method of obtaining and using the maximum output point is difficult to apply to the wind power generator as the wind direction and the amount of wind changes from time to time.
본 발명의 목적은 풍력 발전기에서 생성되는 각 위상별 전류가 최대전력에 대응하도록 각 위상별 전류를 제어하여 풍력발전기에서 생성되는 전력이 빠르고 정확하게 최대 전력점을 추종하도록 하는 풍력발전장치의 전류제어방법을 제공함에 있다.An object of the present invention is to control the current of each phase so that the current of each phase generated in the wind generator corresponds to the maximum power, the current control method of the wind power generator so that the power generated in the wind generator can quickly and accurately follow the maximum power point In providing.
상기한 목적은 본 발명에 따라, 3상 교류를 생성하는 풍력발전기, 상기 3상 교류를 직류로 변환하는 컨버터 및 상기 컨버터의 직류를 계통 교류로 변환하는 인버터를 구비하는 풍력발전장치의 전류제어방법에 있어서, 컨버터에서 출력되는 컨버터 출력전력을 기준으로, 컨버터 출력전력에 대응하는 각 위상별 지시 전류를 판단하고, 위상별 지시 전류를 추종하도록 컨버터의 출력전류를 PWM 펄스형태의 지령 전류를 이용하여 스위칭 제어하며, 지령 전류는, 3상 교류의 각 위상별로 생성되고, 인버터에서 출력되는 위상별 출력전류를 피드백받아 보정하는 풍력발전장치의 전류제어방법에 의해 달성된다.The above object is, according to the present invention, a wind power generator for generating a three-phase alternating current, a converter for converting the three-phase alternating current to a direct current and an inverter for converting the direct current of the converter into grid alternating current current control method In the present invention, the reference current for each phase corresponding to the converter output power is determined based on the converter output power output from the converter, and the output current of the converter is used by using the command current in the form of PWM pulse to follow the instruction current for each phase. Switching control, the command current is generated by each phase of the three-phase alternating current, it is achieved by the current control method of the wind turbine generator for receiving feedback correction of the output current for each phase output from the inverter.
본 발명에 따르면, 풍력발전기에서 출력되는 출력전력의 전압과 전류를 이용하여 각 위상(3상)별 지시 전류와 지령 전류를 판단하고, 지시 전류와 지령 전류에 의해 제어되는 출력 전류 사이의 편차를 감소시켜 풍력발전기의 최대 전력점을 빠르고 정확하게 추종할 수 있도록 한다.According to the present invention, by using the voltage and current of the output power output from the wind power generator to determine the command current and the command current for each phase (three phase), and the deviation between the output current controlled by the command current and the command current This allows for fast and accurate tracking of the wind turbine's maximum power point.
도 1은 본 발명이 적용되는 풍력 발전장치의 계통 개념도를 도시한다.1 shows a schematic diagram of a wind turbine generator to which the present invention is applied.
도 2는 풍력발전기의 풍속별 출력특성 그래프의 일 예를 도시한다.Figure 2 shows an example of the output characteristics graph for each wind speed of the wind power generator.
도 3은 실시예에 따른 지시 전류를 이용하여 지령 전류를 생성하는 방법에 대한 개념도를 도시한다.3 is a conceptual diagram illustrating a method of generating a command current using the command current according to the embodiment.
도 4는 각 위상별로 지령 전류를 생성하는 방법에 대한 개념도를 도시한다.4 is a conceptual diagram for a method of generating a command current for each phase.
도 5는 본 발명의 일 실시예에 따른 전류제어장치 및 이를 포함하는 풍력발전장치에 대한 개념도를 도시한다.5 is a conceptual diagram illustrating a current control device and a wind turbine including the same according to an embodiment of the present invention.
도 6은 실시예에 따른 전류제어장치에서 삼상 전류 각각에 대해 PWM 펄스 형테의 지령 전류를 생성하는 과정에 대한 개념도를 도시한다.6 is a conceptual diagram illustrating a process of generating a command current of a PWM pulse type for each of the three phase currents in the current control device according to the embodiment.
도 7은 도 1 내지 도 6을 통해 설명된 전류제어 방법을 적용한 전류제어장치의 일 예에 따른 블록개념도를 도시한다.7 is a block diagram illustrating an example of a current control device to which the current control method described with reference to FIGS. 1 to 6 is applied.
도 8은 이전 주기의 스위칭 정보를 가지고 다음 주기의 스위칭 패턴을 결정하는 도 7의 전류제어장치에 대한 동작 파형도를 도시한다.FIG. 8 shows an operational waveform diagram for the current control device of FIG. 7 determining switching pattern of the next period with switching information of the previous period.
도 9는 각 주기에 따른 전압 오차신호에 대한 파형도를 나타낸다.9 shows a waveform diagram of a voltage error signal according to each period.
도 1은 본 발명이 적용되는 풍력 발전장치의 계통 개념도를 도시한다.1 shows a schematic diagram of a wind turbine generator to which the present invention is applied.
도 1을 참조하면, 본 발명에 따른 풍력 발전장치는, 풍력에 따라 회전하는 블레이드(10)의 회전에 의해 3상 교류전력을 생성하는 발전부(20), 삼상 교류전력을 직류로 변환하는 컨버터(30), 및 컨버터(30)에서 변환된 직류를 계통에서 요구하는 계통의 교류로 변환하는 인버터(40)를 포함하여 구성될 수 있다. 풍력 발전장치는 3상 교류 - 직류 - 계통의 교류로 변환하는 과정을 통해 계통에 전력을 전달하며, 컨버터(30) 및 인버터(40)에서는 3상에 대한 전압과 전류가 생성된다. 풍력 발전장치는 도 2에 도시된 바와 같이 풍속에 비례하여 출력 전력이 증가하다가 풍속이 일정 속도(예컨대 12m/s)를 넘으면 출력 전력이 증가하지 않고 포화상태가 된다. 또한, 출력 전력의 전압과 전류가 동 위상을 이루지 않으므로 발전부(20)에서 출력되는 삼상 전류(ia, ib, ic)의 최대일 때와 최대출력이 발생하는 시점은 일치하지 않는다. 따라서, 출력전력이 최대전력이 되려면, 전압과 전류의 승산 값이 최대인 전압 값과 전류 값이 요구되며, 이때의 전류 값을 "지시 전류"라 한다. 지시 전류는 블레이드(10)와 발전부(20)의 특성에 따라 결정되므로 설계단계 또는 시운전 단계에서 ia, ib, ic에 대한 지시 전류는 사전에 그 값이 결정될 수 있다.Referring to FIG. 1, the wind power generator according to the present invention includes a power generation unit 20 for generating three-phase AC power by rotation of a blade 10 rotating in accordance with wind power, and a converter for converting three-phase AC power to DC. 30, and an inverter 40 for converting the direct current converted by the converter 30 into alternating current of the system required by the system. The wind power generator transfers power to the system through a process of converting a three-phase alternating current-direct current-alternating current system, and the converter 30 and the inverter 40 generate voltage and current for three phases. As shown in FIG. 2, when the output power increases in proportion to the wind speed, and the wind speed exceeds a predetermined speed (eg, 12 m / s), the wind power generator is saturated without increasing the output power. In addition, since the voltage and the current of the output power do not form the same phase, when the maximum of the three-phase current (ia, ib, ic) output from the power generation unit 20 and the maximum output occurs does not coincide. Therefore, in order for the output power to become the maximum power, a voltage value and a current value having a maximum multiplication value of the voltage and current are required, and the current value at this time is referred to as "instruction current". Since the command current is determined according to the characteristics of the blade 10 and the power generation unit 20, the command current for ia, ib, and ic may be determined in advance in the design stage or the trial run stage.
컨버터(30)는 발전부(20)의 출력전력이 최대전력을 추종하도록 발전부(20)의 출력전류를 제어하며, 출력전류의 제어를 위해, PLL 제어를 수행하여 인버터(40)로 제공되는 각 위상별 출력전류를 증감하고, 이를 통해 인버터(40)의 출력전력이 최대 전력점을 추종하도록 한다. 이때, 지시 전류는 발전부(20)에서 출력되는 출력전력의 전압에 따라 증감될 수 있다.The converter 30 controls the output current of the power generation unit 20 so that the output power of the power generation unit 20 follows the maximum power, and is provided to the inverter 40 by performing PLL control to control the output current. The output current of each phase is increased and decreased, and thus the output power of the inverter 40 follows the maximum power point. In this case, the instruction current may be increased or decreased according to the voltage of the output power output from the power generation unit 20.
이러한 전류제어 방법을 컨버터(30)에 적용하기 위해, 실시예에 따른 전류제어장치는 발전부(20)에서 생성되는 출력전력을 검출하고, 출력전력의 출력전압을 검출 후, 출력전압에 따른 지시 전류를 판단한다.In order to apply this current control method to the converter 30, the current control apparatus according to the embodiment detects the output power generated by the power generation unit 20, and after detecting the output voltage of the output power, the instruction according to the output voltage Determine the current.
이후, 인버터(40)에서 컨버터(30)로 제공되는 출력전류를 검출 후, 검출된 출력전류가 지시 전류를 추종하도록 PLL(Phase Locked Loop) 제어를 수행하여 발전부(20)의 출력전압에 따라 컨버터(30)의 출력전력이 최대가 되도록 하는데 그 특징이 있다. 이는 도 3과 도 4를 함께 참조하여 설명하도록 한다.Subsequently, after detecting the output current provided from the inverter 40 to the converter 30, a PLL (Phase Locked Loop) control is performed such that the detected output current follows the indicated current, according to the output voltage of the power generation unit 20. It is characterized by the maximum output power of the converter 30. This will be described with reference to FIGS. 3 and 4 together.
도 3을 참조하면, 실시예에 따른 지시 전류를 이용하여 지령 전류를 생성하는 방법에 대한 개념도를 도시한다.Referring to FIG. 3, a conceptual diagram of a method of generating a command current using the command current according to the embodiment is shown.
먼저, 도 3은 출력전력(P_real)과 최대전력 추종을 위한 지시전력(P_ref)을 비교한 결과를 PI 제어기(52)에 인가하여 연산하는 일 예를 도시한다.First, FIG. 3 illustrates an example of calculating and applying the result of comparing the output power P_real and the instruction power P_ref for tracking the maximum power to the PI controller 52.
비교기(51)는 발전부(20)의 출력전력(P_real)과 출력전력(P_real)이 최대전력을 추종하기 위한 지시전력(P_ref) 사이의 차이를 산출하고, 산출된 차 전력을 PI 제어기(52)로 제공한다. The comparator 51 calculates a difference between the output power P_real of the power generation unit 20 and the instruction power P_ref for the output power P_real to follow the maximum power, and converts the calculated difference power into the PI controller 52. To provide.
이때, 비교기(51)는 블레이드(10)를 회전시키는 풍속에 따라 결정되는 최대전력을 지시전력(P-ref)으로 설정하고, 발전부(20)에서 출력되는 실제 출력을 출력전력(P_real)로 설정하여 차 전력을 산출할 수 있다. At this time, the comparator 51 sets the maximum power determined according to the wind speed for rotating the blade 10 to the indication power (P-ref), and the actual output output from the power generation unit 20 as the output power (P_real). The difference can be calculated.
본 실시예에서, 최대 전력은, 블레이드(10)를 회전시키는 풍량에 따라 결정되는 것으로서, 발전부(20) 자체가 출력 가능한 최대치를 의미하는 것이 아니며, 풍속에 따라 결정되는 것임을 밝혀둔다. 예컨대, 풍속이 10m/s인 경우, 발전부(20)에서 기대할 수 있는 최대 출력은 350kW 전후가 되고, 비교기(51)로 인가되는 지시 전력(P_ref) 또한 350kW에 대응하는 것이다. In this embodiment, the maximum power is determined according to the amount of air to rotate the blade 10, not to mean the maximum value that the power generation unit 20 itself can be output, it is determined that it is determined by the wind speed. For example, when the wind speed is 10 m / s, the maximum output that can be expected from the power generation unit 20 is around 350 kW, and the instruction power P_ref applied to the comparator 51 also corresponds to 350 kW.
또한, 지시 전류는 350kW일 때의 각 위상별 전류 값에 대응한다. 즉, 지시 전력, 지시 전류는 풍속에 따라 결정되는 것으로서, 발전부(20)나 블레이드(10)의 기종에 따라 결정되는 것이 아니다. 이러한 사항은 본 명세서 전반에 걸쳐 동일하게 적용됨을 미리 밝혀둔다.In addition, the indicated current corresponds to the current value for each phase at 350 kW. That is, the command power and the command current are determined by the wind speed, and are not determined by the model of the power generation unit 20 or the blade 10. It is noted that such matters apply equally throughout this specification.
비교기(51)로 인가되는 출력전력(P_real)은 발전부(20)에서 출력되는 실제 출력전력에 대응하며, 지시전력(P_ref)은 풍속에 따라 발전부(20)에서 출력 가능한 최대 전력에 대응한다. PI 제어기(52)는 출력전력(P_real)과 지시전력(P_ref)의 차 전력, 및 출력전력(P_real)의 전압을 참조하여 지령 전류를 생성할 수 있는데, 여기서 지령 전류는 출력전력(P_real)을 최대값으로 증가시키기 위한 제어신호이며, PWM(Pulse Width Modulation) 펄스의 형태를 가질 수 있다. 컨버터(30)가 3상 교류를 직류로 변환할 때, 전자식 스위칭 소자를 이용한 스위칭 제어가 요구되며, 지령 전류는 스위칭 소자를 온-오프 제어하기 위한 제어 펄스의 형태로 구현될 수 있다. The output power P_real applied to the comparator 51 corresponds to the actual output power output from the power generation unit 20, and the indication power P_ref corresponds to the maximum power output from the power generation unit 20 according to the wind speed. . The PI controller 52 may generate a command current with reference to the difference between the output power P_real and the instruction power P_ref, and the voltage of the output power P_real, where the command current is the output power P_real. It is a control signal for increasing to a maximum value and may have a form of a pulse width modulation (PWM) pulse. When the converter 30 converts three-phase alternating current into direct current, switching control using an electronic switching element is required, and the command current may be implemented in the form of a control pulse for on-off control of the switching element.
지령 전류는 발전부(20)에서 출력되는 3상 전류에 맞추어 3개가 생성될 수 있다. 도 4에 도시된 바와 같이, 지령 전류는 각 위상별로 c_ia, c_ib 및 c_ic로 생성되고, 출력 형태는 PWM 펄스의 형태를 가지며, PWM 펄스를 이용하여 전류 출력값을 온-오프 스위칭하여 컨버터(30)가 전류 출력값을 증감할 수 있도록 한다.Three command currents may be generated according to three-phase currents output from the power generation unit 20. As shown in FIG. 4, the command current is generated by c_ia, c_ib, and c_ic for each phase, and the output form has the form of a PWM pulse, and the current output value is switched on and off using a PWM pulse. To increase or decrease the current output value.
컨버터(30)의 전류 출력값이 적을 경우, 지령 전류는 듀티 비(Duty Ratio)가 큰 PWM 펄스를 생성하여 전류 출력값을 증가시키고, 반대의 경우는 듀티 비를 낮추어 전류 출력값을 감소시킬 수 있다. 이때, 실시예에 따른 전류제어장치는 통상적인 PLL 제어방법에 따라 피드백되는 이득을 증감하는 대신, |최대전력 - 지시전력|의 편차에 따라 컨버터(30)의 출력전류를 직접적으로 증감하는 방식이 이용되는 점에서 종래의 PLL 제어방법과 차별된다. |최대전력 - 지시전력|의 편차, 및 출력전압을 고려하여 전류 증감분을 컨버터(30)의 스위칭 신호로 변환하여 공급하고, 컨버터(30)는 |최대전력 - 지시전력|의 차를 "0"으로 수렴하기 위한 PWM 펄스를 생성하여 컨버터(30)의 출력전류를 증감할 수 있다.When the current output value of the converter 30 is small, the command current may generate a PWM pulse having a large duty ratio to increase the current output value, and in the opposite case, decrease the duty ratio to reduce the current output value. At this time, the current control device according to the embodiment is a method of directly increasing or decreasing the output current of the converter 30 in accordance with the deviation of | maximum power-indicating power | It is distinguished from the conventional PLL control method in that it is used. In consideration of the deviation of | maximum power-directed power | and output voltage, the current increment is converted into a switching signal of the converter 30, and the converter 30 supplies the difference of | maximum power-directed power | to "0". By generating a PWM pulse to converge to the output current of the converter 30 can be increased or decreased.
통상의 PI 제어기가 컨버터(30)에 적용될 경우, 컨버터(30)에서 스위칭 주파수의 주파수 안정성을 위해, 비례 이득(Proportional gain)을 낮추는 경향이 있는데, 이 경우, 응답 속도가 떨어지는 단점이 있다. 그러나, 실시예에 따른 전류제어장치는 PI 제어기(52)에서 전류 증감을 위한 제어량이 산출되면, 제어량에 대응하는 PWM 펄스를 생성하고, 생성된 PWM 펄스로 컨버터(30)의 스위칭 제어를 수행함으로써, PI 제어기(52)의 응답 특성을 개선할 수 있다.When the conventional PI controller is applied to the converter 30, for the frequency stability of the switching frequency in the converter 30, there is a tendency to lower the proportional gain (Proportional gain), in this case, there is a disadvantage that the response speed is lowered. However, the current control device according to the embodiment generates a PWM pulse corresponding to the control amount when the control amount for the current increase and decrease in the PI controller 52, by performing the switching control of the converter 30 with the generated PWM pulse The response characteristic of the PI controller 52 can be improved.
실시예에 따른 전류제어장치는 컨버터(30)에 내장되거나, 컨버터(30)와는 별개로 형성될 수 있으며, 컨버터(30)와 별개로 형성되는 경우, 컨버터(30)와 신호를 주고 받는 개별 장치로 구현될 수도 있다. 다만, 실시예에 대한 이해를 돕기 위해, 도 5를 참조하여 전류제어장치가 컨버터(30)와 개별 형성되는 일 예를 예시하고자 한다.The current control device according to the embodiment may be built in the converter 30 or may be formed separately from the converter 30, and when formed separately from the converter 30, an individual device that exchanges signals with the converter 30. It may be implemented as. However, to help understand the embodiment, an example in which the current control device is formed separately from the converter 30 will be described with reference to FIG. 5.
도 5는 본 발명의 일 실시예에 따른 전류제어장치 및 이를 포함하는 풍력발전장치에 대한 개념도를 도시한다.5 is a conceptual diagram illustrating a current control device and a wind turbine including the same according to an embodiment of the present invention.
도 5를 참조하면, 실시예에 따른 풍력발전장치는 컨버터(30), 인버터(40) 및 전류제어장치(100)를 포함하여 구성될 수 있다. 컨버터(30)는 발전부(20)에서 출력되는 3상 교류를 정류하여 직류를 생성하며, 전류제어장치(100)의 PWM 제어에 의해 출력전류가 증감되는 스위칭 소자를 구비할 수 있다. 이때, 컨버터(30)는 발전부(20)에서 출력되는 3상 교류를 정류하여 직류를 생성하여 인버터(40)로 제공하는데, 인버터(40)가 재차 삼상의 교류를 생성할 수 있다. 컨버터(30)에는 전류제어장치(100)에서 제공되는 PWM 펄스에 응답하여 출력전류를 스위칭하여 직류에 대한 전류를 증감할 수 있다. 이때, 전류제어장치(100)에서 컨버터(30)로 제공하는 PWM 펄스에 따라 삼상 전류 각각에 대한 출력전류가 온-오프되며, 온-오프 제어되는 전류의 평균값은 PWM 펄스의 듀티 비(Duty Ratio)가 높을수록 크고, 듀티 비가 낮을수록 작아질 수 있다.Referring to FIG. 5, the wind power generator according to the embodiment may include a converter 30, an inverter 40, and a current control device 100. The converter 30 may rectify the three-phase alternating current output from the power generation unit 20 to generate a direct current, and may include a switching device in which the output current is increased or decreased by PWM control of the current control device 100. At this time, the converter 30 rectifies the three-phase alternating current output from the power generation unit 20 to generate a direct current to the inverter 40, the inverter 40 may again generate three-phase alternating current. The converter 30 may increase or decrease the current to the DC by switching the output current in response to the PWM pulse provided from the current control device 100. At this time, the output current for each of the three-phase current is on-off according to the PWM pulse provided from the current control device 100 to the converter 30, the average value of the on-off controlled current is the duty ratio of the PWM pulse (Duty Ratio) The higher), the larger, and the lower the duty ratio, the smaller.
바람직하게는 전류제어장치(100)는 제어값 획득부(100a), 지령값 산출부(100b) 및 피드백 제어부(100c)를 포함하여 구성될 수 있다.Preferably, the current control device 100 may include a control value obtaining unit 100a, a command value calculating unit 100b, and a feedback control unit 100c.
제어값 획득부(100a)는 삼상 전류(Ia, Ib, Ic) 각각에 대한 출력전력, 출력전압, 출력전류 및 풍속에 대한 정보를 제어값으로서 획득한다. 획득한 제어값은 지령값 산출부(100b)로 제공되며, 지령값 산출부(100b)는 풍속에 따른 최대전력점의 지시 전류 및 지시 전력에 대한 기준데이터를 이용하여 최대출력을 위한 지령 전류를 산출할 수 있다. 산출된 지령 전류는 피드백 제어부(100c)로 제공되고, 피드백 제어부(100c)는 지령 전류에 따라 PWM 펄스를 생성하여 스위칭 제어부(32)로 제공하며, 인버터(40)에서 출력되는 회송 전류값(IF)과 지시 전류를 비교하여 오차를 판단하고, 판단된 오차를 토대로 PLL 제어를 수행할 수 있다. 전술한 바와 같이, 지시 전류는 최대전력일 때의 전류값을 나타내며, 지시 전류 및 지시 전류일 때의 최대전력에 대한 데이터는 지령값 산출부(100b)에 마련되어 이용될 수 있다.The control value obtaining unit 100a obtains information on the output power, the output voltage, the output current, and the wind speed for each of the three phase currents Ia, Ib, and Ic as control values. The obtained control value is provided to the command value calculating unit 100b, and the command value calculating unit 100b uses the reference current for the maximum current point and the reference power according to the wind speed to calculate the command current for the maximum output. Can be calculated. The calculated command current is provided to the feedback control unit 100c, and the feedback control unit 100c generates a PWM pulse according to the command current and provides it to the switching control unit 32, and the return current value IF output from the inverter 40 (IF). ) And the indicated current to determine an error, and PLL control may be performed based on the determined error. As described above, the command current represents a current value at the maximum power, and the data for the command current and the maximum power at the command current may be provided and used in the command value calculator 100b.
도 6은 실시예에 따른 전류제어장치(100)에서 삼상 전류 각각에 대해 PWM 펄스 형테의 지령 전류를 생성하는 과정에 대한 개념도를 도시한다.6 is a conceptual diagram illustrating a process of generating a command current of a PWM pulse type for each of the three phase currents in the current control device 100 according to the embodiment.
도 6을 참조하면, 실시예에 따른 전류제어장치(100)는 각 위상별 PI 제어기(52, 53, 54)에서 각 위상별 지령 전류(c-ia, c-ib, c-ic)를 생성하고 생성된 지령 전류는 각각의 위상에 대응하는 비교기(61, 62, 63)에서 인버터(40)의 회송 전류값(IF)과 각 위상별로 비교하여 전류 오차(Difference)를 산출하며, 위상별로 산출된 전류 오차만큼 출력전류를 증가 또는 감소시키기 위한 PWM 신호를 생성하게 된다.Referring to FIG. 6, the current control device 100 according to the embodiment generates command currents c-ia, c-ib, and c-ic for each phase in the PI controllers 52, 53, and 54 for each phase. The generated command current is compared with the return current value IF of the inverter 40 by each phase in the comparators 61, 62, and 63 corresponding to each phase, and calculates a current difference. Generates a PWM signal to increase or decrease the output current by the current error.
예컨대, 3상 전류가 각각 A, B, C 상이라고 할 때, 하나의 전류 오차 신호(I*)를 이용하여 3개의 지령 전류(A상 PWM 신호, B상 PWM 신호, C상 PWM 신호)를 생성할 수 있다.For example, when the three phase currents are A, B, and C phases, three command currents (A phase PWM signal, B phase PWM signal, and C phase PWM signal) are generated using one current error signal I *. Can be generated.
각 위상별 삼상 전류(ia, ib, ic)가 동일 시점에 파형을 생성하지 않고, 순차로 생성되므로 각 위상별 전압과 전류의 크기는 유사하되, 삼상 전류(ia, ib, ic)의 파형은 시간차를 두고 형성되어야 한다. 그러나, 각 위상별 전류값은 상호 편차를 가질 수 있으므로, 풍속에 따른 최대 전력이 유지되도록 하기 위해서는 각 위상별로 출력되는 출력 전류가 최대 전력을 추종하도록 설정되어야 하고, 이를 위해, 실시예에 따른 PI 제어기(61, 62, 63)는 각 위상별 전류(ia, ib, ic)를 개별 제어하게 된다. 따라서, 도 6에 도시된 바와 같이, 실시예에 따른 전류제어장치는 A상 PWM 신호, B상 PWM 신호 및 C상 PWM 신호를 개별적으로 생성한다.Since the three-phase currents (ia, ib, ic) for each phase are generated sequentially without generating waveforms at the same time, the phase and voltage of each phase are similar, but the waveforms of three-phase currents (ia, ib, ic) It should be formed with time difference. However, since the current value for each phase may have a mutual deviation, in order to maintain the maximum power according to the wind speed, the output current output for each phase should be set to follow the maximum power. The controllers 61, 62, and 63 individually control the currents ia, ib, and ic for each phase. Thus, as shown in Figure 6, the current control device according to the embodiment generates the A-phase PWM signal, the B-phase PWM signal and the C-phase PWM signal separately.
도 7은 도 1 내지 도 6을 통해 설명된 전류제어 방법을 적용한 전류제어장치의 일 예에 따른 블록개념도를 도시한다. 도 7에 대한 설명은 도 1 내지 도 6을 함께 참조하여 설명하도록 한다.7 is a block diagram illustrating an example of a current control device to which the current control method described with reference to FIGS. 1 to 6 is applied. The description of FIG. 7 will be described with reference to FIGS. 1 to 6.
먼저, 실시예에서 언급되는 전류 오차신호(es)는 양(+)의 방향 값이면 "1"이고, 음(-)의 방향 값이면 "0"에 해당하며, 지령 전류와 인버터(40)에서 출력되는 출력전력의 실제전류 사이의 오차로서, 1과 0으로 구성되는 디지털 신호에 해당한다. 즉, 전류 오차신호(es)가 "1"이면 전류 오차가 양(+)의 값을 갖고, 전류 오차신호(es)가 "0"이면 전류 오차가 음(-)의 값임을 나타낸다. 비교기(122)의 출력신호 "S"는 스위칭신호로서, PWM 펄스의 형태로 출력될 수 있다.First, the current error signal (es) mentioned in the embodiment corresponds to "1" if it is a positive direction value and "0" if it is a negative direction value, and the command current and the inverter 40 The error between the actual current of the output power output, which corresponds to a digital signal consisting of 1 and 0. That is, if the current error signal es is "1", the current error has a positive value, and if the current error signal es is "0", the current error is negative. The output signal "S" of the comparator 122 is a switching signal and may be output in the form of a PWM pulse.
도 6을 통해 설명된 전류 오차신호(es)는 각 적분기(104, 108, 113 및 118)에 인가되는데, 이때, 적분기(104, 108)에는 비 반전되는 전류 오차신호(es)가 인가되고, 적분기(113, 118)에는 인버터(111)에 의해 반전된 전류 오차신호(/es)가 인가된다. 이에 따라, 비교기(116)는,The current error signal es described with reference to FIG. 6 is applied to each of the integrators 104, 108, 113, and 118, and at this time, the non-inverted current error signal es is applied to the integrators 104, 108, The current error signal / es inverted by the inverter 111 is applied to the integrators 113 and 118. Accordingly, the comparator 116,
1) 적분기(108) 및 램프 생성기(110)를 통해 획득되는 램프 파형(Ta-Ramp)을 입력받고,1) receiving a ramp waveform Ta-Ramp obtained through the integrator 108 and the ramp generator 110,
2) 적분기(112) 및 램프 생성기(115)를 통해 획득되는 램프 파형(TB-Ramp)을 입력받아 비교할 수 있다. 도 8에 도시된 램프 파형(Ramp) 파형과 같이, 전류 오차신호(es)가 양(+)의 값을 가질 때에는 램프 파형(Ramp)의 파형이 단조 증가하고, 반대의 경우 단조 감소하는 것을 볼 수 있다. 한편, 적분기(104)와 적분기(118)는 각각 비 반전된 전류 오차신호(es)와 반전된 전류 오차신호(/es)를 적분하여 시간을 계수하고, 계수된 시간들은 비교기(121)에서 비교되어 파형(Ex)을 획득한다. 2) The ramp waveform TB-Ramp obtained through the integrator 112 and the ramp generator 115 may be received and compared. As shown in the ramp waveform shown in FIG. 8, when the current error signal es has a positive value, the waveform of the ramp waveform ramps monotonically and vice versa. Can be. Meanwhile, the integrator 104 and the integrator 118 count the time by integrating the non-inverted current error signal es and the inverted current error signal / es, respectively, and the counted times are compared in the comparator 121. To obtain the waveform Ex.
비교기(122)는 반전 단자로 비교기(116)의 출력 파형(Ramp)을 입력받고, 비 반전 단자로는 비교기(121)의 시간 계수값을 입력받아 비교하여 "0" 또는 "1"의 형태를 갖는 펄스를 생성하며, 생성된 펄스는 PWM 펄스로서 컨버터(20)의 전류 스위칭을 제어하게 된다. Comparator 122 receives the output waveform (Ramp) of the comparator 116 to the inverting terminal, and compares the time coefficient value of the comparator 121 to the non-inverting terminal to compare the form of "0" or "1" Generates a pulse, and the generated pulse controls the current switching of the converter 20 as a PWM pulse.
한편, 도 8에서 파형(G1)은 인버터(40)의 출력전압(인덕터에 흐르는 리플전압)을 측정하여 기준전류신호와 비교하는 파형에 대응한다. Ta와 Tb는 es가 1일 때 와 0일 때의 시간을 나타내는 것으로 아날로그 회로에서는 적분, 디지털 회로에서는 카운터로서 램프 파형을 만들어 낸다. Tar은 es가 1일 때, 스위치 s가 턴 오프 될 때까지의 시간을 나타내며, 아래의 수학식 1의 연산을 통해 다음 주기의 Tar1을 결정할 수 있다. In FIG. 8, the waveform G1 corresponds to a waveform which measures an output voltage (ripple voltage flowing through an inductor) of the inverter 40 and compares it with a reference current signal. Ta and Tb represent the time when es is 1 and when 0, and the ramp waveform is generated as an integral in analog circuit and as a counter in digital circuit. Tar represents the time until the switch s is turned off when es is 1, and Tar1 of the next period can be determined through the operation of Equation 1 below.
수학식 1 Equation 1
여기서, * 는 목표 값, # 는 계산된 값, ^ 는 측정한 값을 나타낸다. Where * denotes a target value, # denotes a calculated value, and ^ denotes a measured value.
또한, 전압 에러 신호(es)는 지령전압과 실제전압의 오차정보로 1과 0으로 구성되는 디지털 신호이며 S는 스위칭 신호이다. 여기서, In addition, the voltage error signal es is a digital signal composed of 1s and 0s as error information between the command voltage and the actual voltage, and S is a switching signal. here,
참조부호 110 : Ta에 비례한 기울기를 갖는 ramp 파형을 생성하는 적분기,Reference numeral 110: an integrator for generating a ramp waveform having a slope proportional to Ta,
참조부호 115 : Tb에 비례한 기울기를 갖는 ramp 파형을 생성하는 적분기,Reference numeral 115: Integrator for generating a ramp waveform having a slope proportional to Tb,
참조부호 105 : es가 1이고 s가 1일 때의 시간을 만드는적분기(또는 counter) 및Reference numeral 105: an integrator (or counter) that makes time when es is 1 and s is 1.
참조부호 120 : es가 0이고 s가 0일 때의 시간을 만드는 적분기(또는 counter)에 대응한다.Reference numeral 120: corresponds to the integrator (or counter) that makes time when es is zero and s is zero.
Tbf는 es가 0일 때, 스위치 s가 턴 온 될 때까지의 시간을 나타내며 이는 표 1의 (b)의 연산으로 다음주기의 T#bf1을 결정하게 된다. 이렇게 만들어진 신호를 이용하여 비교기(122)는 출력신호 Ex을 만들어 내고 다음 주기의 Ta1과 Tb1의 비교를 통하여 다음 주기 스위칭 시퀀스를 결정하게 된다.Tbf represents the time until switch s is turned on when es is 0, which determines T # bf1 of the next cycle by the operation of (b) of Table 1. Using the signal thus produced, the comparator 122 generates the output signal Ex and determines the next cycle switching sequence by comparing Ta1 and Tb1 of the next cycle.
본 발명에 따른 풍력발전장치의 전류제어방법은 풍력발전장치의 제조업체, 개발업체 및 유통업체는 물론 풍력발전장치에서 생산되는 전력을 이용하는 계통망 사업자 및 계통망과 관련된 공공기관 및 에너지 판매업체의 활성화에 기여할 수 있다.The current control method of the wind turbine generator according to the present invention activates manufacturers, developers and distributors of the wind turbine generator as well as grid operators and energy distributors associated with the grid network using the power generated by the wind turbine. Can contribute to
Claims (5)
- 3상 교류를 생성하는 풍력 발전기, 상기 3상 교류를 직류로 변환하는 컨버터 및 상기 컨버터의 직류를 계통 교류로 변환하는 인버터를 구비하는 풍력발전장치의 전류제어방법에 있어서,
상기 컨버터에서 출력되는 컨버터 출력전력을 기준으로, 상기 컨버터 출력전력에 대응하는 각 위상별 지시 전류를 판단하고,
상기 위상별 지시 전류를 추종하도록 상기 컨버터의 출력전류를 PWM 펄스형태의 지령 전류를 이용하여 스위칭 제어하며,
상기 지령 전류는, 상기 3상 교류의 각 위상별로 생성되고, 상기 인버터에서 출력되는 상기 위상별 출력전류를 피드백받아 보정하는 것을 특징으로 하는 풍력발전장치의 전류제어방법.In the current control method of the wind power generator comprising a wind generator for generating three-phase alternating current, a converter for converting the three-phase alternating current to direct current, and an inverter for converting the direct current of the converter into grid alternating current,
Determining the instruction current for each phase corresponding to the converter output power, based on the converter output power output from the converter,
Switching control of the output current of the converter using a command pulse in the form of a PWM pulse so as to follow the instruction current for each phase,
The command current is generated for each phase of the three-phase alternating current, the current control method of the wind turbine generator, characterized in that for correcting by receiving the feedback output current for each phase output from the inverter. - 제1항에 있어서,
상기 지시 전류는,
상기 컨버터 출력전력별로 마련되고,
상기 컨버터 출력전력에 대해 각 위상별로 마련되는 것을 특징으로 하는 풍력발전장치의 전류제어방법.The method of claim 1,
The instruction current is,
It is provided for each converter output power,
The current control method of the wind power generator, characterized in that provided for each phase with respect to the converter output power. - 제1항에 있어서,
상기 지령 전류는,
상기 컨버터에서 출력되는 전류 량을 스위칭 제어하여 상기 컨버터의 최대 전력점을 추종토록 하는 것을 특징으로 하는 풍력발전장치의 전류제어방법.The method of claim 1,
The command current is
And controlling the amount of current output from the converter to follow the maximum power point of the converter. - 제1항에 있어서,
상기 지령 전류는,
상기 각 위상에 따라 개별 생성되는 것을 특징으로 하는 풍력발전장치의 전류제어방법.The method of claim 1,
The command current is
The current control method of the wind turbine, characterized in that it is generated separately according to each phase. - 제1항에 있어서,
상기 지령 전류는,
상기 인버터의 인버터 출력전력과 상기 컨버터 출력전력을 통해 각각에 대한 출력전류를 획득하고,
획득된 출력전류와 상기 각 위상별 지령 전류의 추종치와의 편차를 산출하여 PLL(Phase Locked Loop) 제어하는 것을 특징으로 하는 풍력발전장치의 전류제어방법.The method of claim 1,
The command current is
Acquiring an output current for each of the inverter through the inverter output power and the converter output power,
And calculating a deviation between the obtained output current and the following value of the command current for each phase to control a PLL (Phase Locked Loop).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140149412A KR101690222B1 (en) | 2014-10-30 | 2014-10-30 | Current control method for wind power generator |
KR10-2014-0149412 | 2014-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016068381A1 true WO2016068381A1 (en) | 2016-05-06 |
Family
ID=55857708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/011328 WO2016068381A1 (en) | 2014-10-30 | 2014-11-24 | Current control method of wind power generator |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101690222B1 (en) |
WO (1) | WO2016068381A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102212119B1 (en) | 2019-03-29 | 2021-02-04 | 데스틴파워 주식회사 | Grid connected type power conversion system to suppress transient voltage and its conversion method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080010117A (en) * | 2006-07-26 | 2008-01-30 | 창원대학교 산학협력단 | An controlling apparatus of a power converter of three-phases current for photovoltaic generation system |
JP2011217574A (en) * | 2010-04-02 | 2011-10-27 | Meidensha Corp | Wind power generation system, and device and method for controlling rotating machine |
JP2013069267A (en) * | 2011-07-29 | 2013-04-18 | General Electric Co <Ge> | Maximum power point tracking for power conversion system and method for the same |
KR20130067675A (en) * | 2011-12-14 | 2013-06-25 | 군산대학교산학협력단 | Wind power generation system and control method thereof |
-
2014
- 2014-10-30 KR KR1020140149412A patent/KR101690222B1/en active IP Right Grant
- 2014-11-24 WO PCT/KR2014/011328 patent/WO2016068381A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080010117A (en) * | 2006-07-26 | 2008-01-30 | 창원대학교 산학협력단 | An controlling apparatus of a power converter of three-phases current for photovoltaic generation system |
JP2011217574A (en) * | 2010-04-02 | 2011-10-27 | Meidensha Corp | Wind power generation system, and device and method for controlling rotating machine |
JP2013069267A (en) * | 2011-07-29 | 2013-04-18 | General Electric Co <Ge> | Maximum power point tracking for power conversion system and method for the same |
KR20130067675A (en) * | 2011-12-14 | 2013-06-25 | 군산대학교산학협력단 | Wind power generation system and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20160050688A (en) | 2016-05-11 |
KR101690222B1 (en) | 2016-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9780645B2 (en) | Method and apparatus for providing power conversion using an interleaved flyback converter with reactive power control | |
US8816667B2 (en) | Maximum power point tracking method | |
CN106817041B (en) | Power inverter, electricity generation system, control device and power transferring method | |
US9257896B1 (en) | Control circuit of power converter and method for maximum power point tracking | |
US20150009733A1 (en) | Power supply system and power source apparatus | |
CN103208921B (en) | Tracking boosting device and method for power factor correction circuit | |
JP6762680B2 (en) | Solar power system | |
CN107005049B (en) | Power controller and power control method | |
US20150260161A1 (en) | Control device for voltage source converter and operating method thereof | |
CN104660131A (en) | Voltage regulation device of mixed excitation direct-current generator and voltage regulation method of mixed excitation direct-current generator | |
Ananda-Rao et al. | Design of MPPT charge controller using zeta converter for battery integrated with solar Photovoltaic (PV) system | |
WO2016068381A1 (en) | Current control method of wind power generator | |
Putri et al. | Design of simple power converter for small scale wind turbine system for battery charger | |
KR101484064B1 (en) | Power management device for new Renewable Energy | |
CN201197114Y (en) | Pulse width modulation structure with regulation work period | |
US9036380B2 (en) | Multi-level inverter control method and controller for a wind generation power system | |
JP2009232516A (en) | Charging device for small wind generation | |
KR101690220B1 (en) | Power factor collection method for wind power generator using current control | |
US20160254739A1 (en) | Energy balance controller of electronic power converter and energy balance control method | |
Park et al. | Controller design of power conditioning systems with energy storage device for renewable energy source under stand-alone operation | |
CN104104253B (en) | Inverter power control method and device | |
CN105278612B (en) | A kind of tracking of maximum power point | |
RU2396690C1 (en) | Control method of four-quadrant converter with shaping of modulating signal | |
KR102259951B1 (en) | Power generation system | |
Rebei et al. | Implementation of Photovoltaic water pumping system with optimization controls |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14904693 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14904693 Country of ref document: EP Kind code of ref document: A1 |