WO2016068257A1 - Method for producing cell and method for producing blood-forming tissue - Google Patents

Method for producing cell and method for producing blood-forming tissue Download PDF

Info

Publication number
WO2016068257A1
WO2016068257A1 PCT/JP2015/080610 JP2015080610W WO2016068257A1 WO 2016068257 A1 WO2016068257 A1 WO 2016068257A1 JP 2015080610 W JP2015080610 W JP 2015080610W WO 2016068257 A1 WO2016068257 A1 WO 2016068257A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
somatic
producing
hematopoietic
Prior art date
Application number
PCT/JP2015/080610
Other languages
French (fr)
Japanese (ja)
Inventor
敏 福本
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2016517012A priority Critical patent/JP6270995B2/en
Publication of WO2016068257A1 publication Critical patent/WO2016068257A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0664Dental pulp stem cells, Dental follicle stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere

Definitions

  • the present invention mainly relates to a method for producing a cell, a method for producing a hematopoietic tissue, a cell or hematopoietic tissue obtained by the production method, a cell inducer, a kit for producing a hematopoietic tissue, and a method for screening a cell inducer.
  • transplantation of hematopoietic tissues such as bone marrow is one of effective treatment methods.
  • transplanting bone marrow tissue derived from a donor different from the patient it is necessary to match the type of HLA, and there are few donors that can provide bone marrow in the first place, so patients who need treatment Currently, bone marrow transplantation has not been performed for all of these.
  • hematopoietic tissue such as bone marrow tissue derived from its own cells by regenerative medical technology, which does not cause the problem of conformity of HLA type, has been desired.
  • a method for producing hematopoietic tissue such as bone marrow tissue by regenerative medical technology has not yet been established.
  • Non-patent Document 1 cells derived from dental pulp tissue that can be acquired in dental treatment are attracting attention as a source of cells used in the regeneration technique.
  • the present invention has been made in view of the above-described background art, and includes a method for producing a cell, a method for producing a hematopoietic tissue, a cell or hematopoietic tissue obtained by the production method, a cell inducer, a kit for producing a hematopoietic tissue, and
  • the main object is to provide a screening method for cell inducers.
  • the present inventor has cultivated somatic cells in the presence of a compound represented by the following chemical formula, thereby dividing them into somatic cells different from the somatic cells. It has been found that cells that can be transformed can be produced.
  • the present invention has been completed based on such findings and further studies.
  • the present invention includes the following aspects.
  • Item 1 a method for producing a cell (B) capable of differentiating into a somatic cell (A), comprising the following steps: A step of culturing a somatic cell (C) different from the somatic cell (A) in the presence of a compound represented by the following chemical formula.
  • R 1 represents a hydrogen atom (H) or an acetyl group (CH 3 (C ⁇ O) —).
  • X represents a halogen atom.
  • Item 2 The method according to Item 1, wherein the compound is a compound represented by the following chemical formula.
  • Item 3 The method according to Item 1, wherein the somatic cell (C) is a cell obtained from a dental pulp or a mesenchymal stem cell.
  • Item 4 a method for producing a hematopoietic tissue, comprising the following steps: A step of culturing a somatic cell having no hematopoietic function in the presence of a compound represented by the following chemical formula.
  • Item 5 a method for producing a hematopoietic tissue, comprising the following steps: (1) culturing a somatic cell having no hematopoietic function in the presence of a compound represented by the following chemical formula;
  • Item 6 The method according to Item 4 or 5, wherein the somatic cell is a cell obtained from a dental pulp or a mesenchymal stem cell.
  • Item 7 A cell obtained by the method according to any one of Items 7 and 1-3.
  • a hematopoietic tissue obtained by the method according to any one of Items 8 and 4 to 6.
  • Item 9 A cell inducer comprising a compound represented by the following chemical formula.
  • a hematopoietic tissue preparation kit including a carrier.
  • a method for screening a cell inducer comprising the following steps: (1) a step of culturing somatic cells in the presence of a test substance, and evaluating the cell induction ability of the test substance, and (2) the cell induction ability of the test substance evaluated in the above step, and represented by the following chemical formula: Comparing the cell-inducing ability of the compound.
  • Item 12 To produce a cell (B) that can differentiate into a somatic cell (A), and for producing a cell (B) from a somatic cell (C) different from the somatic cell (A), Use of a compound represented by a chemical formula.
  • Item 13 Use of a compound represented by the following chemical formula for producing a hematopoietic tissue.
  • the present invention provides a novel cell production method, hematopoietic tissue production method, cells or hematopoietic tissue obtained by the production method, cell inducer, hematopoietic tissue preparation kit, and cell inducer screening method. .
  • the method of the present invention provides a method for providing hematopoietic tissue from somatic cells, and is expected to be a technique that can provide a new treatment method to patients who require treatment such as bone marrow transplantation.
  • the new properties of the compounds found by the present invention are also expected to become a tool for further progress in regenerative medicine technology.
  • the result of the morphological observation of mouse deciduous dental pulp cells is shown.
  • A The result of sorting is shown by a plot diagram. The result of the morphological observation of mouse deciduous dental pulp cells (mDP) is shown.
  • B A fluorescence microscope image is shown. The result of the morphological observation of mouse deciduous dental pulp cells (mDP) is shown.
  • C Quantification results (Relative length (relative length), Relative width (relative width), and elliptical form factor) are shown. The screening result of the drug which induces a dental pulp stem cell like form is shown.
  • A Shows the structure of GSK-3 inhibitor IX and BIO.
  • the screening result of the drug which induces a dental pulp stem cell like form is shown.
  • B A fluorescence microscope image is shown for the cell morphology. The screening result of the drug which induces a dental pulp stem cell like form is shown.
  • C The quantitative result (Relative eliptical form factor) of the form is shown. The effect of BIO processing is shown.
  • A Detection of phosphorylation of ⁇ -catenin by Western blotting.
  • B Quantitative results of phosphorylation of ⁇ -catenin are shown.
  • C Quantification results of expression of stem cell markers (Oct3 / 4 and Klf-4) are shown.
  • D shows the quantification result of the expression of the stem cell marker (Oct3 / 4).
  • BIO The ability of cells cultured in the presence of BIO to differentiate into osteoblasts.
  • A An example of the result of von Kossa staining is shown.
  • B Quantitative results of the intensity of von Kossa staining (Intensity of von Kossa staining) are shown.
  • the result of the transplantation experiment of mouse bone marrow-derived mesenchymal stem cells cultured in the presence of BIO is shown.
  • A, B When mouse bone marrow-derived mesenchymal stem cells (mBM-MSC) are treated.
  • A The operation scheme is shown.
  • B A microscope image obtained by observing the transplanted site is shown.
  • C, D When treating human deciduous dental pulp stem cells (SHED).
  • SHED human deciduous dental pulp stem cells
  • FIG. 1 shows the scheme of operation.
  • FIG. 1 shows a microscopic image of the transplanted site observed. The result of the transplantation experiment of human deciduous dental pulp stem cells cultured in the presence of BIO is shown.
  • FIG. 1 shows a microscopic image of the transplanted site observed. The result of the transplantation experiment of human deciduous dental pulp stem cells cultured in the presence of BIO is shown.
  • FIG. 1 shows a microscopic image of the transplanted site observed. The result of the transplantation experiment of human deciduous dental pulp stem cells cultured in the presence of BIO is shown.
  • A The result of gating is shown.
  • B Detection of human CD11b antigen (hCD11b) expression.
  • C Shows external findings of transplanted mice.
  • 1B and 2B also show a monochrome inverted image (Monochrome (inverted image).
  • the present invention provides the following cell production method: A method for producing a cell (B) capable of differentiating into a somatic cell (A), comprising the following steps: A step of culturing a somatic cell (C) different from the somatic cell (A) in the presence of a compound represented by the following general formula (I).
  • R 1 represents a hydrogen atom (H) or an acetyl group (CH 3 (C ⁇ O) —).
  • X represents a halogen atom.
  • the production method of the present invention uses somatic cells (C) as a material.
  • the production method of the present invention is characterized in that a somatic cell (C) as a material is different from a cell (A) from which the obtained cell (B) can be differentiated.
  • “different” is understood to mean belonging to different strains in the phylogenetic tree of cell differentiation. For example, cells derived from dental pulp originating from neural crest and mesenchymal stem cells originating from mesenchyme belong to a different lineage from hematopoietic cells originating from mesoderm.
  • Can differentiate means having the ability to differentiate into specific cells under normal physiological conditions or artificially induced differentiation conditions.
  • the present invention is a method that does not include a somatic cell reprogramming process such as a process of producing iPS cells.
  • Somatic cell initialization such as in the iPS cell production process, usually involves the introduction of a foreign gene.
  • cells (B) are obtained using somatic cells (C) as materials by the functions of endogenous genes (in particular, only by the functions of endogenous genes) without introducing foreign genes. Induces differentiation.
  • the method for producing cells of the present invention includes a step of culturing somatic cells (C) in the presence of the above compound.
  • the culture can be performed according to a normal cell culture method except that the culture is performed in the presence of the above compound.
  • the concentration of the compound in the culturing step of the present invention is not particularly limited as long as it does not impair the effects of the present invention.
  • the concentration is about 0.01 ⁇ M to 100 ⁇ M, about 0.1 to 10 ⁇ M, about 0.2 to 5 ⁇ M, It can be about 1 ⁇ M.
  • the medium to be used is not particularly limited as long as it is a medium suitable for culturing somatic cells (C).
  • a medium suitable for culturing somatic cells examples include Dulbecco's Modified a Eagle Medium (DMEM), alpha Modified a Eagle Minimum Essential Medium ( ⁇ MEM), and the like.
  • the culture medium may contain additives that are included when culturing ordinary somatic cells as necessary.
  • specific examples of the additive include fetal calf serum (fetal (bovine serum), amino acids (for example, L-glutamine), antibiotics (for example, penicillin, streptomycin, and the like).
  • fetal calf serum fetal (bovine serum)
  • amino acids for example, L-glutamine
  • antibiotics for example, penicillin, streptomycin, and the like.
  • Commercially available products such as DMEM / F12 (manufactured by Life Technologies), to which necessary additives are added in advance, can also be used.
  • Culturing can be performed in a suitable vessel.
  • suitable culture techniques include a technique of culturing under conditions of about 37 ° C. and a carbon dioxide concentration of about 5%, but is not limited thereto. Cultivation under the above conditions can be performed using, for example, a known CO 2 incubator.
  • the culture period is not particularly limited as long as the effects of the present invention are not impaired. For example, it can be about 12 hours to 20 days.
  • the effect of inducing the cell (B) by the above compound is achieved in 3 days or less, particularly in about 2 days. If necessary, for example, in order to obtain a sufficient number of cells, culture can be performed for a longer period of time.
  • subculture In culture, subculture can be performed as necessary. When subculture is performed, the cells are collected before reaching a confluent state, and the cells are seeded in a new medium. In the culture of the present invention, the medium can be changed as appropriate.
  • culture until reaching a confluent state is not limited.
  • the culture may be performed until a confluent state is reached.
  • Somatic cells (C) The somatic cell (C) used as a material in the method of the present invention is not particularly limited as long as it is a somatic cell derived from an animal. “Somatic cells” usually refer to differentiated cells and do not have the ability to differentiate into other cells.
  • the type of somatic cell (C) is not particularly limited.
  • somatic cells (C) is not particularly limited, but is preferably derived from mammals such as humans, monkeys, mice, rats, dogs, hamsters, rabbits, cats, cows and the like.
  • the obtained cell (B) is intended for treatment of a disease, it is preferable that the cell (B) is derived from an individual in need of treatment, but is not limited thereto.
  • Somatic cells are cells collected from living organisms, cells cultured from cells collected from living organisms (in particular, primary cultured cells), and cells established by continuing subculture using cells collected from living organisms. Any of these may be used.
  • the somatic cell (C) is a cell derived from the dental pulp.
  • the cells derived from dental pulp include dental pulp cells and dental pulp stem cells.
  • the cells derived from the dental pulp include cells obtained by culturing cells collected from the dental pulp (in particular, primary cultured cells) and cells established by continuing subculture using cells collected from the dental pulp. As the established cell line, those described in Non-Patent Document 1 can be used.
  • the somatic cell (C) is a mesenchymal stem cell.
  • the origin of mesenchymal stem cells is not particularly limited, and those derived from bone marrow, adipose tissue, and the like can be used. Of these, bone marrow-derived mesenchymal stem cells that are easy to prepare are preferred examples.
  • Mesenchymal stem cells can be prepared according to a known technique. For example, bone marrow-derived mesenchymal stem cells can be collected by centrifuging a bone marrow fluid obtained by bone marrow puncture.
  • the culture step in the production method of the present invention is characterized in that it is carried out in the presence of a compound represented by the following general formula (I).
  • R 1 represents a hydrogen atom (H) or an acetyl group (CH 3 (C ⁇ O) —).
  • X represents a halogen atom.
  • the above compound can also be represented by the following general formula (I ′).
  • the halogen atom represents a fluorine atom (F), a chlorine atom (Cl), a bromine atom (Br) or an iodine atom (I).
  • the position on the benzene ring to which X is bonded is not particularly limited, but is preferably bonded to the 6-position. That is, a preferred embodiment of the compound of the present invention is represented by the following general formula (II).
  • the compound represented by the above general formula (I) can be produced by a known production method or a method according to a known production method.
  • it can be produced by a production method described in the literature: J. Med. Chem. 2004, 47, 935-946 or a production method according to the production method described therein.
  • the above compound can also be represented by the following chemical formula.
  • the compound is a selective inhibitor of glycogen synthase kinase-3 ⁇ isoform (GSK-3 ⁇ ) and ⁇ isoform (GSK-3 ⁇ ).
  • the compound includes (2Z, 3E) -6'-Bromo-3- (hydroxyimino)-[2,3'-biindolinylidene] -2'-one, 6-bromoindirubin-3'-oxime, GSK-3 Inhibitor IX, It is known by names such as BIO.
  • BIO The compound is assigned CAS number: 667463-62-9, PubChem® CID: 5284844.
  • the above compound may be referred to as “BIO” hereinafter.
  • the compound can be produced by a known production method. Commercial products can also be used.
  • a compound having an action of suppressing the expression and / or function of GSK-3 other than the above compound is used in the method of the present invention.
  • a low molecular weight compound that functions as an inhibitor or antagonist of GSK-3 a compound that inhibits transcription and / or translation of the gene product of GSK-3 (eg, siRNA, shRNA, miRNA, etc.), specificity for GSK-3 Specific antibodies.
  • a compound that inhibits transcription and / or translation of the gene product of GSK-3 eg, siRNA, shRNA, miRNA, etc.
  • LiCl and LiF are unfavorable examples.
  • the ⁇ isoform of GSK-3 belongs to the Wnt / ⁇ -catenin pathway. Therefore, compounds having the same action as BIO on the Wnt / ⁇ -catenin pathway can also be used in the present invention.
  • the production method of the present invention provides a cell (B) that can differentiate into a somatic cell (A) different from the somatic cell (C).
  • the somatic cell (A) from which the cell (B) can be differentiated is not particularly limited as long as it is different from the somatic cell (C).
  • hematopoietic cells are hematopoietic stem cells and blood cells that can be differentiated from hematopoietic stem cells (specifically, leukocytes (neutrophils, eosinophils, basophils, lymphocytes, monocytes, macrophages, etc. ), Red blood cells, platelets, etc.).
  • the obtained cells (B) can differentiate into somatic cells (A).
  • somatic cells (A) One example is shown in the examples described later.
  • it can also confirm by the manufacturing method of the hematopoietic tissue mentioned later.
  • the cell (B) obtained by the method of the present invention is a stem cell.
  • a stem cell has the ability to differentiate into another cell (differentiation ability) with self-replication ability.
  • confirmation that a cell is a stem cell can also be confirmed by expression of a stem cell marker such as Oct3 / 4, Klf-4, etc., instead of confirming that it has self-renewal ability and differentiation ability.
  • this point is also different from the somatic cell (C).
  • the present invention also includes a cell (B) obtained by the method for producing the cell.
  • the cells (B) obtained by the production method of the present invention can be used, for example, for the production of somatic cells (A) and tissues containing them.
  • An example of the method for producing a hematopoietic tissue will be described in detail below.
  • the present invention also provides the following method for producing hematopoietic tissue: A step of culturing a somatic cell having no hematopoietic function in the presence of a compound represented by the following general formula (I).
  • a step of culturing a somatic cell having no hematopoietic function in the presence of the compound a step of transplanting the cultured cell together with a carrier into an animal.
  • hematopoietic tissue mainly refers to a tissue having a function of hematopoiesis, that is, a function capable of generating various blood cells. It is preferably a tissue containing hematopoietic stem cells or stem cells having a similar function.
  • a typical example of a hematopoietic tissue in vivo is bone marrow, and the hematopoietic tissue obtained by the production method of the present invention preferably has a function similar to that of bone marrow at least in terms of hematopoietic function. Therefore, the resulting hematopoietic tissue can be rephrased as “bone marrow” or “myeloid tissue”.
  • Culturing step in the method for producing a hematopoietic tissue of the present invention can be performed in the same manner as the culturing step described in the above “1.” column, except that somatic cells having no hematopoietic function are used.
  • Somatic cells having no hematopoietic function are cultured.
  • Somatic cells that do not have a hematopoietic function include blood cells (specifically, leukocytes (neutrophils, eosinophils, basophils, lymphocytes, monocytes, macrophages, etc.), erythrocytes, platelets, etc. If it is a somatic cell except the cell which produces
  • somatic cells having no hematopoietic function is not particularly limited, but is preferably derived from mammals such as humans, monkeys, mice, rats, dogs, hamsters, rabbits, cats and cows.
  • the resulting hematopoietic tissue is intended for treatment of a disease, it is preferably derived from an individual in need of treatment, but is not limited thereto.
  • Somatic cells that do not have hematopoietic functions include cells collected from living organisms, cells cultured from cells collected from living organisms (especially primary cultured cells), and subculture using cells collected from living organisms. It may be any of the cells that have been turned into cells.
  • somatic cell that does not have a hematopoietic function is not particularly limited.
  • the somatic cell having no hematopoietic function is a cell obtained from the dental pulp.
  • Cells that can be obtained from dental pulp include dental pulp cells and dental pulp stem cells.
  • the cells obtained from the dental pulp include cells obtained by culturing cells obtained from the dental pulp (in particular, primary cultured cells) and cells obtained by continuing subculture using cells collected from the dental pulp.
  • the established cell line those described in Non-Patent Document 1 can be used.
  • the dental pulp may be derived from any tooth such as an incisor, a canine or a molar.
  • the somatic cell having no hematopoietic function is a mesenchymal stem cell.
  • bone marrow-derived mesenchymal stem cells that are easy to prepare are preferred examples.
  • Mesenchymal stem cells can be prepared according to a known technique. For example, bone marrow-derived mesenchymal stem cells can be collected by centrifuging a bone marrow fluid obtained by bone marrow puncture.
  • a preferred embodiment of the method for producing a hematopoietic tissue of the present invention includes a step of transplanting cultured cells into an animal together with a carrier.
  • the animal to be transplanted is not particularly limited.
  • preferred examples include mammals such as humans, monkeys, mice, rats, dogs, hamsters, rabbits, cats, and cows.
  • the target animal can also be made into a non-human animal as needed.
  • the animal to be transplanted may be the same or different from an animal from which a somatic cell having no hematopoietic function is derived. In the case of the same species, the animal to be transplanted may be the same or different from the individual from which the somatic cell having no hematopoietic function is derived.
  • the cell transplant site is not particularly limited. It is preferably a non-humoral animal part capable of supporting the hematopoietic tissue produced. For example, subcutaneous, intramuscular, bone cavity and the like.
  • the technique to transplant is not specifically limited, Since transplantation by injection is easy, it is mentioned as a preferable example.
  • the cultured cells are transplanted together with the carrier into an animal.
  • the carrier is used to support the cells that are induced into the hematopoietic tissue and to prevent diffusion or absorption by surrounding cells.
  • the carrier is not particularly limited as long as it can achieve the above purpose.
  • Preferred examples of the carrier include hydroxyapatite (HA), calcium triphosphate ( ⁇ -TCP), calcium octaphosphate (OPC) and the like.
  • the carrier can be about 10 to 200 mg, about 20 to 80 mg, and about 40 mg.
  • the period until the hematopoietic tissue is produced after transplantation can be appropriately set by those skilled in the art. For example, when the animal is a mouse, the period can be about 2 weeks to June, about January to March, or about February.
  • hematopoietic tissue is produced.
  • Production of hematopoietic tissue can be confirmed by evaluating that it has a function of generating blood cells.
  • the generation of blood cells can be confirmed by a method known to those skilled in the art, and an example thereof is shown in the examples described later.
  • the present invention also includes a hematopoietic tissue obtained by the method for producing the hematopoietic tissue.
  • the hematopoietic tissue obtained by the production method of the present invention can be used for the treatment of diseases based on abnormalities of hematopoietic tissue such as leukemia. Even if hematopoietic tissue is produced and treated in the body of a diseased animal (such as a patient), the hematopoietic tissue produced in the body of an animal other than the patient and transplanted to the animal having the disease Can also be treated.
  • the present invention also provides a cell inducing agent that can be used in the above-described cell production method and hematopoietic tissue production method.
  • the cell inducer of the present invention uses somatic cells (eg, somatic cells (C) described in the column “1.”) as raw materials, and cells that can differentiate into somatic cells different from the somatic cells of the raw materials (“ The cell (B) described in the column “1.” is exemplified.)
  • the compounds described in the column “1.” are used as the active ingredient of the cell inducer.
  • the above-mentioned BIO is mentioned as a preferred example. Accordingly, the present invention also provides the use of the compound for inducing cells.
  • the cell inducer may contain a normal solvent, a base material, and the like as long as the effect of the above compound is not inhibited depending on the form to be provided.
  • Hematopoietic tissue preparation kit The present invention also provides There is also provided a kit for preparing a hematopoietic tissue, comprising (1) a compound, and (2) a carrier.
  • the kit of the present invention can contain other components as required.
  • other components include, but are not limited to, a tool for transplanting cells (for example, a syringe), a positive control sample, a negative control sample, and the like. It can also include a document in which a procedure for performing the above method for producing a hematopoietic tissue is written.
  • the kit of the present invention can be suitably used in the method for producing a hematopoietic tissue described in the above “2.” column.
  • the present invention also provides a cell inducing agent screening method comprising the following steps: (1) a step of culturing somatic cells in the presence of a test substance, and evaluating the cell induction ability of the test substance; and (2) the cell induction ability of the test substance evaluated in the above step, and the following general formula (I): A step of comparing the cell inducibility of a compound represented by (for example, BIO).
  • the cell inducing agent selected by the screening method of the present invention is a somatic cell (the somatic cell (C) described in the column “1.”) is used as a raw material. It is a cell inducer capable of inducing cells that can differentiate into somatic cells different from cells (the cells (B) described in the column “1.” are exemplified).
  • somatic cells are first cultured in the presence of a test substance.
  • Somatic cell culture can be performed according to the culture process described in the column “1.” above.
  • somatic cells There are no particular limitations on the type of somatic cells .
  • somatic cells are not particularly limited, but is preferably derived from mammals such as humans, monkeys, mice, rats, dogs, hamsters, rabbits, cats and cows.
  • Somatic cells are cells collected from living organisms, cells cultured from cells collected from living organisms (especially primary cultured cells), and cells established by continuing subculture using cells collected from living organisms. There may be.
  • the somatic cell is a cell derived from the dental pulp.
  • the cells derived from dental pulp include dental pulp cells and dental pulp stem cells.
  • the cells derived from the dental pulp include cells obtained by culturing cells collected from the dental pulp (in particular, primary cultured cells) and cells established by continuing subculture using cells collected from the dental pulp. As the established cell line, those described in Non-Patent Document 1 can be used.
  • the somatic cell is a mesenchymal stem cell.
  • the origin of mesenchymal stem cells is not particularly limited, and those derived from bone marrow, adipose tissue, and the like can be used. Of these, bone marrow-derived mesenchymal stem cells that are easy to prepare are preferred examples.
  • Mesenchymal stem cells can be prepared according to a known technique. For example, bone marrow-derived mesenchymal stem cells can be collected by centrifuging a bone marrow fluid obtained by bone marrow puncture.
  • Test substance is not particularly limited, and any compound can be used.
  • the compound is confirmed to be safe for living organisms.
  • the cell-inducing ability of the test substance is evaluated based on the cells obtained by culturing.
  • Cell-inducing ability means an action that allows the test substance to induce somatic cells of a raw material into cells that can differentiate into somatic cells different from the somatic cells of the raw material. Therefore, evaluation of the cell inducing ability of the test substance evaluates the degree of such action.
  • the method for evaluating the “cell inducing ability” can be appropriately set by those skilled in the art.
  • somatic cells are derived from dental pulp, as described in Examples below, the morphology of cells obtained by culture, acquisition of the properties of stem cells (acquisition of self-replication ability and differentiation ability; acquisition of stem cell markers) And the like can be evaluated. Further, as the differentiation ability, the acquisition of differentiation ability to osteoblasts by von Kassa staining exemplified in the examples, and the acquisition of differentiation ability to hematopoietic tissues exemplified in the examples should be used as indices. You can also.
  • the somatic cell is a mesenchymal stem cell
  • the acquisition of differentiation ability into a hematopoietic tissue exemplified in the examples can be used as an index.
  • the cell inducing ability of the test substance evaluated in the above step is compared with the cell inducing ability of the compound (for example, BIO).
  • the cell induction ability of the compound means the cell induction ability when the somatic cells used in step (1) are cultured in the presence of the compound (eg, BIO). .
  • the cell inducing ability of the compound is preferably performed in the same manner as the evaluation performed in step (1) in order to appropriately compare.
  • the cell inducer is selected based on the result of the comparison in step (2).
  • a test substance that meets a preset standard is selected as a cell inducer.
  • the preset standard can be set to the same level or higher than the cell inducing ability of the above compound (for example, BIO), for example. Even when the cell inducing ability of the test substance is equal to or less than the cell inducing ability of the compound (for example, BIO), selection of the test substance as a cell inducer is not prevented. In this case, for example, when the test substance has an advantageous effect compared with the compound (for example, BIO) from the viewpoint of safety and economy, it can be considered.
  • the cell inducer is screened.
  • the cell inducer selected by screening can be suitably used in place of BIO in the method for producing cells in the column “1.” and the method for producing hematopoietic tissue described in the column “2.”.
  • the present invention is also for producing a cell (B) that can differentiate into a somatic cell (A), and for producing a cell (B) from a somatic cell (C) different from the somatic cell (A).
  • a cell (B) that can differentiate into a somatic cell (A)
  • a somatic cell (C) different from the somatic cell (A) for example, BIO
  • general formula (I) for example, BIO
  • mDP mouse deciduous dental pulp stem cell
  • Non-Patent Document 1 The mouse deciduous dental pulp stem cell (mDP) cell line prepared in Non-Patent Document 1 was stained with two colors of dyes, Hoechst 33342 (Hoechst Blue, blue) and Hoechst33258 (Hoechst Red, red), according to a conventional method.
  • Hoechst 33342 Hoechst Blue, blue
  • Hoechst33258 Hoechst Red, red
  • Fig. 1A Similar to the presence of 0.5 to 1.0% of dental pulp stem cells in the dental pulp, it was confirmed that cells having stem cell properties were also present in the mouse deciduous dental pulp cell (mDP) cell line.
  • mDP mouse deciduous dental pulp cell
  • mDP-SP selected dental pulp stem cells
  • mDP-MP dental pulp cells
  • FIG. 1B The microscope image is shown in FIG. 1B. Furthermore, the quantitative determination results (Relative length (relative length), Relataive width (relative width), and elliptical length factor) are shown in FIG. 1C.
  • “Elliptical form factor” is a value obtained by the formula Relative length / Relative breadth, and is an index indicating the degree of slenderness of the cell of interest.
  • Dental pulp stem cells have a spindle-shaped form. On the other hand, pulp cells have a flat form.
  • Example 1 Screening of drugs that induce dental pulp stem cell-like morphology Agents that can induce dental pulp stem cell-like morphology were screened by adding to dental pulp cells.
  • GSK-3 inhibitor IX and BIO were selected as drugs that can induce dental pulp stem cell-like morphology.
  • FIG. 2A shows the structure of GSK-3 inhibitor IX, BIO and the structure of MeBIO (control compound) that does not have similar activity.
  • FIG. 2B shows the morphology of mDP cells cultured in the presence of BIO.
  • FIG. 2C shows the quantitative results of the morphology.
  • BIO was selected as a drug capable of inducing dental pulp stem cell-like morphology.
  • Example 2 Verification of involvement of GSK-3 ⁇ and Wnt- ⁇ catenin pathway Since BIO is an inhibitor of GSK-3 ⁇ belonging to the Wnt- ⁇ -catenin pathway, GSK-3 ⁇ and Wnt- ⁇ - The involvement of the catenin pathway was verified.
  • Calyculin-A an inhibitor of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A-C), activates the Wnt signal and enhances phosphorylation of ⁇ -catenin It has been known.
  • the upper part of FIG. 3A shows ⁇ -catenin phosphorus detected with an antibody against phosphorylated ⁇ -catenin in mDP cells cultured for 0, 30 or 60 minutes in the presence of 0 to 20 nM Calyculin-A. Indicates the degree of oxidation.
  • mDP cells cultured in the presence of BIO were cultured in the presence of 20 nM Calyculin-A after washing and medium exchange, and the degree of phosphorylation of ⁇ -catenin was detected.
  • Controls were mDP cells cultured in the presence of BIO in the presence of DMSO.
  • Results are shown in FIGS. 3C and D.
  • mDP cells cultured in the presence of BIO and cells derived from mouse incisors and first molars expression of stem cell markers was increased. This indicates that culture as a stem cell was induced by culturing in the presence of BIO.
  • Example 4 Evaluation of differentiation ability into osteoblasts The differentiation ability of cells cultured in the presence of BIO into osteoblasts was evaluated.
  • Example 1 mDP cells were cultured in the presence of BIO. Thereafter, washing and medium exchange were performed, followed by culturing for 7 days in an osteoinduction medium or an osteoinduction medium further supplemented with 100 ng / ml of BMP2 protein.
  • the bone induction medium is the literature: Nakamura T, Naruse M, Chiba Y, Komori T, Sasaki K, Iwamoto M, Fukumoto S: Novel Hedgehog Agonists Promote Osteoblast Differentiation in Mesenchymal S : 10.1002 / jcp.24823. [Epub ahead of print]
  • FIG. 4A shows an example of the result of von Kossa staining.
  • FIG. 4B shows the quantitative results of the intensity of von Kossa staining (Intensitytensof von Kossatainingstaining).
  • Example 5 Production of bone marrow-like tissue from mouse bone marrow-derived mesenchymal stem cells Using mouse bone marrow-derived mesenchymal stem cells (mBM-MSC) treated with BIO, bone marrow-like tissue was produced in the mouse body.
  • mBM-MSC mouse bone marrow-derived mesenchymal stem cells
  • mBM-MSC Mouse bone marrow-derived mesenchymal stem cells
  • mice After culturing, the resulting cells were removed and washed with 1xPBS buffer BIO, a mixture of 1.0x 10 7 cells and hydroxyapatite (HA) (40mg), immunodeficient mice (NOD / ShiJic-scid / jcl mice ) was implanted by subcutaneous injection.
  • 1xPBS buffer BIO 1xPBS buffer BIO
  • HA hydroxyapatite
  • transplanted site was excised and stained with hematoxylin and eosin (HE staining) according to a conventional method.
  • FIGS. 5A and 5B Results are shown in FIGS. 5A and 5B.
  • FIG. 5A shows the scheme of operation.
  • FIG. 5B shows a microscopic image of the transplanted site observed (hematoxylin / eosin staining (HE staining)).
  • mice transplanted with cells cultured without addition of control BIO in mice transplanted with cells cultured without addition of control BIO (transplant without BIO), a bone-like hard tissue could be confirmed around HA.
  • HA in mice transplanted with cells cultured in the presence of BIO (transplant with BIO), HA was completely absorbed, and formation of a large amount of bone marrow-like tissue was confirmed along with bone tissue.
  • Example 6 Production of bone marrow-like tissue from human deciduous dental pulp stem cells Using BIO-treated human deciduous dental pulp stem cells (SHED), bone marrow-like tissue was produced in the body of a mouse.
  • SHED BIO-treated human deciduous dental pulp stem cells
  • mice were treated with immunodeficient mice (NOD / MSD) in the same manner as in Example 5 except that stem cells from Human Exfoliated Deciduous teeth (SHED) were used instead of mouse bone marrow-derived mesenchymal stem cells (mBM-MSC). ShiJic-scid / jcl mice).
  • SHED Human Exfoliated Deciduous teeth
  • FIGS. 5C and D show the results of FIGS. 5C and D.
  • FIG. 5C shows the scheme of operation.
  • FIG. 5D shows a microscopic image of the transplanted site observed (hematoxylin and eosin staining (HE staining)).
  • Example 7 Detection of peripheral blood cell formation In the mouse obtained in Example 6, the formation of human-derived peripheral blood cells was confirmed.
  • mice obtained according to the method of Example 6 transplant with BIO
  • blood was collected from mice 8 weeks after transplantation.
  • monocytes high FSC, low SSC; R1 group
  • granulocytes high FSC, high SSC; R2 group
  • hCD11b human CD11b antigen
  • FIG. 6A shows an example of the results of gating by flow cytometry (in the case of human blood cells).
  • FIG. 6B shows detection of human CD11b antigen (hCD11b) expression.
  • Example 8 External findings of transplanted mice The external findings of the mice obtained in Example 6 were observed.
  • mice In the mouse transplanted with human milk tooth-derived stem cells (SHED) cultured for 2 days in the presence of BIO, skin symptoms (inflammatory findings) were observed around the eyes and in the limbs. Thereafter, the mice die about 3 to 6 months after transplantation.
  • SHED human milk tooth-derived stem cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Developmental Biology & Embryology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Rheumatology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention mainly addresses the problem of providing: a method for producing a cell; a method for producing a blood-forming tissue; a cell or a blood-forming tissue obtained by the respective method; a cell inducing agent; a blood-forming tissue preparing kit; and a screening method of a cell inducing agent. As a means for solving the problem, provided is a method for producing a cell (B) capable of being differentiated into a somatic cell (A), including the following step: culturing a somatic cell (C) which is different from the somatic cell (A) in the presence of a compound represented by general formula (I). [In the formula, R1, X are as defined in the specification.]

Description

細胞の製造方法及び造血組織の製造方法Cell manufacturing method and hematopoietic tissue manufacturing method
 [関連出願の相互参照]
 本出願は、2014年10月31日に出願された日本国出願第2014-223316号明細書(それらの開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。
[Cross-reference of related applications]
This application claims priority based on Japanese Patent Application No. 2014-223316 filed on October 31, 2014, the entire disclosures of which are incorporated herein by reference.
 本発明は、主に、細胞の製造方法、造血組織の製造方法、当該製造方法により得られる細胞若しくは造血組織、細胞誘導剤、造血組織作製用キット、並びに、細胞誘導剤のスクリーニング方法に関する。 The present invention mainly relates to a method for producing a cell, a method for producing a hematopoietic tissue, a cell or hematopoietic tissue obtained by the production method, a cell inducer, a kit for producing a hematopoietic tissue, and a method for screening a cell inducer.
 近年、患者の欠損した又は異常な細胞、組織、器官等の機能の回復を目的とした、再生医療技術が着目されている。各種細胞、組織、器官等の誘導方法や培養方法の確立に加えて、iPS細胞技術の開発による自己の細胞を供給源とすることの可能性が提唱され、技術のさらなる進展が期待されている。 In recent years, regenerative medical technology has been attracting attention for the purpose of restoring functions of cells, tissues, organs, etc., which have been lost or abnormal in patients. In addition to establishing induction methods and culture methods for various cells, tissues, organs, etc., the possibility of using iPS cell technology as a source of self-cells has been proposed, and further advancement of the technology is expected .
 再生医療技術において、治療の目的とする細胞、組織、器官等の誘導方法や培養方法の確立が肝要である。 In regenerative medicine technology, it is important to establish a method for inducing and culturing cells, tissues, organs, etc. that are the purpose of treatment.
 白血病に代表される造血組織(造血幹細胞及びこれに由来する血球細胞等を含む。)の異常に基づく疾患においては、骨髄等の造血組織の移植が、有効な治療方法の一つである。しかしながら、患者とは異なるドナーに由来する骨髄組織を移植する場合、HLAの型の適合する必要があること、及び、そもそも骨髄を提供できるドナーが少ないことなどが問題となり、治療を必要とする患者のすべてに骨髄移植が実施できていないのが現状である。 In the case of diseases based on abnormalities in hematopoietic tissues typified by leukemia (including hematopoietic stem cells and blood cells derived therefrom), transplantation of hematopoietic tissues such as bone marrow is one of effective treatment methods. However, when transplanting bone marrow tissue derived from a donor different from the patient, it is necessary to match the type of HLA, and there are few donors that can provide bone marrow in the first place, so patients who need treatment Currently, bone marrow transplantation has not been performed for all of these.
 そこで、HLAの型の適合の問題が生じない、自己の細胞に由来する骨髄組織などの造血組織を再生医療技術によって製造する技術が待ち望まれている。しかしながら、再生医療技術によって骨髄組織等の造血組織を作製する方法は、まだ確立されていないのが現状である。 Therefore, a technique for producing hematopoietic tissue such as bone marrow tissue derived from its own cells by regenerative medical technology, which does not cause the problem of conformity of HLA type, has been desired. However, at present, a method for producing hematopoietic tissue such as bone marrow tissue by regenerative medical technology has not yet been established.
 歯科治療において取得できる歯髄組織などに由来する細胞は、取得が容易である等の観点から、再生技術に用いる細胞の供給源として着目されている(非特許文献1)。 From the viewpoint of easy acquisition, cells derived from dental pulp tissue that can be acquired in dental treatment are attracting attention as a source of cells used in the regeneration technique (Non-patent Document 1).
 本発明は、上記の背景技術を鑑みてなされたものであり、細胞の製造方法、造血組織の製造方法、当該製造方法により得られる細胞若しくは造血組織、細胞誘導剤、造血組織作製用キット、並びに、細胞誘導剤のスクリーニング方法を提供することを、主な課題とする。 The present invention has been made in view of the above-described background art, and includes a method for producing a cell, a method for producing a hematopoietic tissue, a cell or hematopoietic tissue obtained by the production method, a cell inducer, a kit for producing a hematopoietic tissue, and The main object is to provide a screening method for cell inducers.
 本発明者は、斯かる課題を解決するために鋭意検討を重ねた結果、下記化学式で表される化合物の存在下で、体細胞を培養することで、当該体細胞とは異なる体細胞に分化しうる細胞を製造できることを見出した。本発明は、斯かる発見に基づき、さらに検討を重ねて完成したものである。 As a result of intensive studies in order to solve such problems, the present inventor has cultivated somatic cells in the presence of a compound represented by the following chemical formula, thereby dividing them into somatic cells different from the somatic cells. It has been found that cells that can be transformed can be produced. The present invention has been completed based on such findings and further studies.
 すなわち、本発明は下記の態様を包含する。 That is, the present invention includes the following aspects.
 項1、下記の工程を含む、体細胞(A)に分化しうる細胞(B)の製造方法:
 下記化学式で表される化合物の存在下で、前記体細胞(A)とは異なる体細胞(C)を培養する工程。
Item 1, a method for producing a cell (B) capable of differentiating into a somatic cell (A), comprising the following steps:
A step of culturing a somatic cell (C) different from the somatic cell (A) in the presence of a compound represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[式中、Rは水素原子(H)またはアセチル基(CH(C=O)-)を表す。Xはハロゲン原子を表す。] [Wherein R 1 represents a hydrogen atom (H) or an acetyl group (CH 3 (C═O) —). X represents a halogen atom. ]
 項2、前記化合物が、下記化学式で表される化合物である、項1に記載の方法。 Item 2. The method according to Item 1, wherein the compound is a compound represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 項3、体細胞(C)が、歯髄から取得した細胞または間葉系幹細胞である、項1に記載の方法。 Item 3. The method according to Item 1, wherein the somatic cell (C) is a cell obtained from a dental pulp or a mesenchymal stem cell.
 項4、下記の工程を含む、造血組織の製造方法:
 下記化学式で表される化合物の存在下で、造血機能を有さない体細胞を培養する工程。
Item 4, a method for producing a hematopoietic tissue, comprising the following steps:
A step of culturing a somatic cell having no hematopoietic function in the presence of a compound represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 項5、下記の工程を含む、造血組織の製造方法:
 (1)下記化学式で表される化合物の存在下で、造血機能を有さない体細胞を培養する工程、
Item 5, a method for producing a hematopoietic tissue, comprising the following steps:
(1) culturing a somatic cell having no hematopoietic function in the presence of a compound represented by the following chemical formula;
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
及び
 (2)前記培養した細胞を、キャリアとともに動物に移植する工程。
And (2) a step of transplanting the cultured cells together with a carrier into an animal.
 項6、体細胞が、歯髄から取得した細胞または間葉系幹細胞である、項4または5に記載の方法。 Item 6. The method according to Item 4 or 5, wherein the somatic cell is a cell obtained from a dental pulp or a mesenchymal stem cell.
 項7、項1~3のいずれか1項に記載の方法により得られる、細胞。 Item 7. A cell obtained by the method according to any one of Items 7 and 1-3.
 項8、項4~6のいずれか1項に記載の方法により得られる、造血組織。 A hematopoietic tissue obtained by the method according to any one of Items 8 and 4 to 6.
 項9、下記化学式で表される化合物を含む、細胞誘導剤。 Item 9. A cell inducer comprising a compound represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 項10、(1)下記化学式で表される化合物、及び Item 10, (1) a compound represented by the following chemical formula, and
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 (2)キャリア
を含む、造血組織作製用キット。
(2) A hematopoietic tissue preparation kit including a carrier.
 項11、下記の工程を含む、細胞誘導剤のスクリーニング方法:
 (1)体細胞を被験物質の存在下で培養し、当該被験物質の細胞誘導能を評価する工程、及び
 (2)前記工程で評価した被験物質の細胞誘導能と、下記化学式で表される化合物の細胞誘導能とを比較する工程。
Item 11. A method for screening a cell inducer comprising the following steps:
(1) a step of culturing somatic cells in the presence of a test substance, and evaluating the cell induction ability of the test substance, and (2) the cell induction ability of the test substance evaluated in the above step, and represented by the following chemical formula: Comparing the cell-inducing ability of the compound.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 項12、体細胞(A)に分化しうる細胞(B)を製造するためであって、前記体細胞(A)とは異なる体細胞(C)から細胞(B)を製造するための、下記化学式で表される化合物の使用。
Figure JPOXMLDOC01-appb-C000017
Item 12, To produce a cell (B) that can differentiate into a somatic cell (A), and for producing a cell (B) from a somatic cell (C) different from the somatic cell (A), Use of a compound represented by a chemical formula.
Figure JPOXMLDOC01-appb-C000017
 項13、造血組織を製造するための、下記化学式で表される化合物の使用。
Figure JPOXMLDOC01-appb-C000018
Item 13. Use of a compound represented by the following chemical formula for producing a hematopoietic tissue.
Figure JPOXMLDOC01-appb-C000018
 本発明により、新規な細胞の製造方法、造血組織の製造方法、当該製造方法により得られる細胞若しくは造血組織、細胞誘導剤、造血組織作製用キット、並びに、細胞誘導剤のスクリーニング方法が提供される。 The present invention provides a novel cell production method, hematopoietic tissue production method, cells or hematopoietic tissue obtained by the production method, cell inducer, hematopoietic tissue preparation kit, and cell inducer screening method. .
 本発明の方法より、体細胞より造血組織を提供する方法が提供され、骨髄移植等の治療を必要とする患者に、新たな治療方法を提供しうる技術となることが期待される。また、本発明により見出された化合物の新たな性質は、再生医療技術のさらなる進展のためのツールとなることも期待される。 The method of the present invention provides a method for providing hematopoietic tissue from somatic cells, and is expected to be a technique that can provide a new treatment method to patients who require treatment such as bone marrow transplantation. The new properties of the compounds found by the present invention are also expected to become a tool for further progress in regenerative medicine technology.
マウス乳歯由来歯髄細胞(mDP)の形態観察の結果を示す。(A)ソートの結果を、プロット図により示す。The result of the morphological observation of mouse deciduous dental pulp cells (mDP) is shown. (A) The result of sorting is shown by a plot diagram. マウス乳歯由来歯髄細胞(mDP)の形態観察の結果を示す。(B)蛍光顕微鏡像を示す。The result of the morphological observation of mouse deciduous dental pulp cells (mDP) is shown. (B) A fluorescence microscope image is shown. マウス乳歯由来歯髄細胞(mDP)の形態観察の結果を示す。(C)形態の定量結果(Relative length(相対長さ)、Relative breadth(相対幅)及びElliptical form factor)を示す。The result of the morphological observation of mouse deciduous dental pulp cells (mDP) is shown. (C) Quantification results (Relative length (relative length), Relative width (relative width), and elliptical form factor) are shown. 歯髄幹細胞様形態を誘導する薬剤のスクリーニング結果を示す。(A)GSK-3 inhibitor IX, BIOの構造を示す。The screening result of the drug which induces a dental pulp stem cell like form is shown. (A) Shows the structure of GSK-3 inhibitor IX and BIO. 歯髄幹細胞様形態を誘導する薬剤のスクリーニング結果を示す。(B)細胞携形態について、蛍光顕微鏡像を示す。The screening result of the drug which induces a dental pulp stem cell like form is shown. (B) A fluorescence microscope image is shown for the cell morphology. 歯髄幹細胞様形態を誘導する薬剤のスクリーニング結果を示す。(C)形態の定量結果(Relative eliptical form factor)を示す。The screening result of the drug which induces a dental pulp stem cell like form is shown. (C) The quantitative result (Relative eliptical form factor) of the form is shown. BIO処理の効果を示す。(A)ウェスタンブロッティングによる、β-カテニンのリン酸化の検出を示す。(B)β-カテニンのリン酸化の定量結果を示す。(C)幹細胞マーカー(Oct3/4及びKlf-4)の発現の定量結果を示す。(D)幹細胞マーカー(Oct3/4)の発現の定量結果を示す。The effect of BIO processing is shown. (A) Detection of phosphorylation of β-catenin by Western blotting. (B) Quantitative results of phosphorylation of β-catenin are shown. (C) Quantification results of expression of stem cell markers (Oct3 / 4 and Klf-4) are shown. (D) shows the quantification result of the expression of the stem cell marker (Oct3 / 4). BIOの存在下で培養した細胞の、骨芽細胞への分化能を示す。(A)von Kossa染色の結果の一例を示す。(B)von Kossa染色の強度(Intensity of von Kossa staining)の定量結果を示す。The ability of cells cultured in the presence of BIO to differentiate into osteoblasts is shown. (A) An example of the result of von Kossa staining is shown. (B) Quantitative results of the intensity of von Kossa staining (Intensity of von Kossa staining) are shown. BIOの存在下で培養したマウス骨髄由来間葉系幹細胞の移植実験の結果を示す。(A、B)マウス骨髄由来間葉系幹細胞(mBM-MSC)を処理した場合。(A)操作のスキームを示す。(B)移植した部位を観察した顕微鏡像を示す。(C、D)ヒト乳歯由来歯髄幹細胞(SHED)を処理した場合。(C)操作のスキームを示す。(D)移植した部位を観察した顕微鏡像を示す。The result of the transplantation experiment of mouse bone marrow-derived mesenchymal stem cells cultured in the presence of BIO is shown. (A, B) When mouse bone marrow-derived mesenchymal stem cells (mBM-MSC) are treated. (A) The operation scheme is shown. (B) A microscope image obtained by observing the transplanted site is shown. (C, D) When treating human deciduous dental pulp stem cells (SHED). (C) shows the scheme of operation. (D) shows a microscopic image of the transplanted site observed. BIOの存在下で培養したヒト乳歯由来歯髄幹細胞の移植実験の結果を示す。(A)ゲーティングの結果を示す。(B)ヒト型CD11b抗原(hCD11b)の発現の検出を示す。(C)移植マウスの外的所見を示す。The result of the transplantation experiment of human deciduous dental pulp stem cells cultured in the presence of BIO is shown. (A) The result of gating is shown. (B) Detection of human CD11b antigen (hCD11b) expression. (C) Shows external findings of transplanted mice.
 図1B及び図2Bについては、白黒反転画像(Monochrome inverted image)を合わせて示す。 1B and 2B also show a monochrome inverted image (Monochrome (inverted image).
 1.細胞の製造方法
 本発明は下記の細胞の製造方法を提供する:
 下記の工程を含む、体細胞(A)に分化しうる細胞(B)の製造方法:
 下記一般式(I)で表される化合物の存在下で、前記体細胞(A)とは異なる体細胞(C)を培養する工程。
1. Cell Production Method The present invention provides the following cell production method:
A method for producing a cell (B) capable of differentiating into a somatic cell (A), comprising the following steps:
A step of culturing a somatic cell (C) different from the somatic cell (A) in the presence of a compound represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[式中、Rは水素原子(H)またはアセチル基(CH(C=O)-)を表す。Xはハロゲン原子を表す。] [Wherein R 1 represents a hydrogen atom (H) or an acetyl group (CH 3 (C═O) —). X represents a halogen atom. ]
 製造方法
 本発明の製造方法は、体細胞(C)を材料とする。本発明の製造方法は、材料である体細胞(C)と、得られる細胞(B)が分化しうる細胞(A)とが異なることを特徴とする。ここで、「異なる」とは、細胞分化の系統樹において異なる系統に属することを意味すると理解される。例えば、神経堤を起源とする歯髄に由来する細胞や間葉を起源とする間葉系幹細胞は、中胚葉を起源とする造血系の細胞とは、異なる系統に属する。
Production Method The production method of the present invention uses somatic cells (C) as a material. The production method of the present invention is characterized in that a somatic cell (C) as a material is different from a cell (A) from which the obtained cell (B) can be differentiated. Here, “different” is understood to mean belonging to different strains in the phylogenetic tree of cell differentiation. For example, cells derived from dental pulp originating from neural crest and mesenchymal stem cells originating from mesenchyme belong to a different lineage from hematopoietic cells originating from mesoderm.
 「分化しうる」とは、通常の生理条件下、又は、人為的な分化誘導の条件下で、特定の細胞へと分化する能力を有すること意味する。 “Can differentiate” means having the ability to differentiate into specific cells under normal physiological conditions or artificially induced differentiation conditions.
 通常の生理条件下では、細胞の分化は一方向に進み、逆行することはない。すなわち、分化した体細胞は、脱分化などの特異な現象を経ることなく、他の細胞に分化しうる細胞へと性質が変化することはない。従って、本発明は、iPS細胞の作製工程などの体細胞の初期化の工程を含まない方法であると理解される。 Under normal physiological conditions, cell differentiation proceeds in one direction and does not reverse. That is, the differentiated somatic cell does not undergo a special phenomenon such as dedifferentiation, and the property does not change to a cell that can differentiate into another cell. Therefore, it is understood that the present invention is a method that does not include a somatic cell reprogramming process such as a process of producing iPS cells.
 iPS細胞の作成工程などで行われる体細胞の初期化は、通常、外来遺伝子の導入を伴う。これに対して、本発明の製造方法においては、外来遺伝子の導入を行うことなく、内在遺伝子の機能によって(特に、内在遺伝子の機能のみによって)体細胞(C)を材料として、細胞(B)を分化誘導する。 ∙ Somatic cell initialization, such as in the iPS cell production process, usually involves the introduction of a foreign gene. On the other hand, in the production method of the present invention, cells (B) are obtained using somatic cells (C) as materials by the functions of endogenous genes (in particular, only by the functions of endogenous genes) without introducing foreign genes. Induces differentiation.
 培養
 本発明の細胞の製造方法は、上記化合物の存在下で、体細胞(C)を培養する工程を含む。培養は、上記化合物の存在下で行う以外は、通常の細胞の培養方法に準じて行うことができる。
Culture The method for producing cells of the present invention includes a step of culturing somatic cells (C) in the presence of the above compound. The culture can be performed according to a normal cell culture method except that the culture is performed in the presence of the above compound.
 本発明の培養工程における上記化合物の濃度は、本発明の効果を損なわない範囲であれば特に限定されるものではないが、例えば、0.01μM~100μM程度、0.1~10μM程度、0.2~5μM程度、1μM程度とすることができる。 The concentration of the compound in the culturing step of the present invention is not particularly limited as long as it does not impair the effects of the present invention. For example, the concentration is about 0.01 μM to 100 μM, about 0.1 to 10 μM, about 0.2 to 5 μM, It can be about 1 μM.
 培養は、培地を用いて行うことで、体細胞(C)の効率的な培養を行なうことができる。用いる培地は、体細胞(C)の培養に適した培地であれば特に限定されるものではない。このような培地として、Dulbecco's Modified Eagle Medium(DMEM)培地、alpha Modified Eagle Minimum Essential Medium(αMEM)等が挙げられる。培地は、必要に応じて通常の体細胞の培養の際に含める添加剤を含むものであってもよい。添加剤の具体例として、牛胎児血清(fetal bovine serum)、アミノ酸(例えば、L-グルタミン等)、抗生物質(例えば、ペニシリン、ストレプトマイシン等)などが挙げられる。必要な添加物を予め添加した、DMEM/F12(ライフテクノロジーズ社製)などの市販品を用いることもできる。 Cultivation can be performed efficiently using somatic cells (C). The medium to be used is not particularly limited as long as it is a medium suitable for culturing somatic cells (C). Examples of such a medium include Dulbecco's Modified a Eagle Medium (DMEM), alpha Modified a Eagle Minimum Essential Medium (αMEM), and the like. The culture medium may contain additives that are included when culturing ordinary somatic cells as necessary. Specific examples of the additive include fetal calf serum (fetal (bovine serum), amino acids (for example, L-glutamine), antibiotics (for example, penicillin, streptomycin, and the like). Commercially available products such as DMEM / F12 (manufactured by Life Technologies), to which necessary additives are added in advance, can also be used.
 培養は、適切な容器中で行なうことができる。好適な培養を行なう手法として、約37℃程度および二酸化炭素濃度約5%程度の条件下で培養する手法が例示されるが、これに限定されるものではない。上記条件での培養は、例えば公知のCO2インキュベータを用いて行なうことができる。 Culturing can be performed in a suitable vessel. Examples of suitable culture techniques include a technique of culturing under conditions of about 37 ° C. and a carbon dioxide concentration of about 5%, but is not limited thereto. Cultivation under the above conditions can be performed using, for example, a known CO 2 incubator.
 培養を行う期間は、本発明の効果を損なわない範囲で、特に限定されるものではない。例えば、12時間から20日間程度とすることができる。 The culture period is not particularly limited as long as the effects of the present invention are not impaired. For example, it can be about 12 hours to 20 days.
 本発明を拘束するものではないが、上記化合物による細胞(B)の誘導の効果は、3日以下、特に2日程度で達成されると考えられる。必要に応じて、例えば十分な細胞数を得るために、これより長い期間の培養をすることができる。 Although not limiting the present invention, it is considered that the effect of inducing the cell (B) by the above compound is achieved in 3 days or less, particularly in about 2 days. If necessary, for example, in order to obtain a sufficient number of cells, culture can be performed for a longer period of time.
 培養において、必要において継代を行うことができる。継代を行う場合は、コンフルエント状態に到達する前に細胞を回収し、細胞を新しい培地に播種する。また、本発明の培養において、培地を適宜交換することもできる。 In culture, subculture can be performed as necessary. When subculture is performed, the cells are collected before reaching a confluent state, and the cells are seeded in a new medium. In the culture of the present invention, the medium can be changed as appropriate.
 ただし、コンフルエント状態に到達するまでの培養が制限されるわけではない。例えば、前述の十分な細胞数を得ることを目的とした培養の場合は、コンフルエント状態に到達するまで培養を行ってもよい。 However, culture until reaching a confluent state is not limited. For example, in the case of the culture for the purpose of obtaining a sufficient number of cells as described above, the culture may be performed until a confluent state is reached.
 体細胞(C)
 本発明の方法において材料として用いる体細胞(C)は、動物に由来する体細胞であれば特に限定されるものではない。通常、「体細胞」とは分化した細胞を指し、他の細胞へ分化する能力を有さない。
Somatic cells (C)
The somatic cell (C) used as a material in the method of the present invention is not particularly limited as long as it is a somatic cell derived from an animal. “Somatic cells” usually refer to differentiated cells and do not have the ability to differentiate into other cells.
 体細胞(C)の種類は、特に限定されるものではない。 The type of somatic cell (C) is not particularly limited.
 体細胞(C)の由来は特に限定されるものではないが、ヒト、サル、マウス、ラット、イヌ、ハムスター、ウサギ、ネコ、ウシ等の哺乳類に由来するものであることが好ましい。得られる細胞(B)が、疾患の治療を目的とするものである場合、治療を必要としている個体に由来することが好ましいが、これに限定されるものではない。 The origin of somatic cells (C) is not particularly limited, but is preferably derived from mammals such as humans, monkeys, mice, rats, dogs, hamsters, rabbits, cats, cows and the like. When the obtained cell (B) is intended for treatment of a disease, it is preferable that the cell (B) is derived from an individual in need of treatment, but is not limited thereto.
 体細胞(C)は、生体から採取した細胞、生体から採取した細胞を培養した細胞(特に、初代培養細胞。)、生体から採取した細胞を用いて継代培養を継続して株化した細胞のいずれであってもよい。 Somatic cells (C) are cells collected from living organisms, cells cultured from cells collected from living organisms (in particular, primary cultured cells), and cells established by continuing subculture using cells collected from living organisms. Any of these may be used.
 本発明のある態様においては、体細胞(C)は、歯髄に由来する細胞である。歯髄に由来する細胞には、歯髄細胞、歯髄幹細胞が含まれる。歯髄に由来する細胞は、歯髄から採取した細胞を培養した細胞(特に、初代培養細胞。)や歯髄から採取した細胞を用いて継代培養を継続して株化した細胞が包含される。株化した細胞としては、非特許文献1に記載されているものを使用することができる。 In one embodiment of the present invention, the somatic cell (C) is a cell derived from the dental pulp. The cells derived from dental pulp include dental pulp cells and dental pulp stem cells. The cells derived from the dental pulp include cells obtained by culturing cells collected from the dental pulp (in particular, primary cultured cells) and cells established by continuing subculture using cells collected from the dental pulp. As the established cell line, those described in Non-Patent Document 1 can be used.
 本発明の別の態様においては、体細胞(C)は間葉系幹細胞である。間葉系幹細胞の由来は特に限定されず、骨髄由来のもの、脂肪組織由来のものなどを用いることができる。なかでも、調製が容易である骨髄由来の間葉系幹細胞が好ましい例である。間葉系幹細胞は、公知の手法に従い調製することができる。例えば、骨髄由来の間葉系幹細胞は、骨髄穿刺により得られる骨髄液を遠心分離することで採取することができる。 In another embodiment of the present invention, the somatic cell (C) is a mesenchymal stem cell. The origin of mesenchymal stem cells is not particularly limited, and those derived from bone marrow, adipose tissue, and the like can be used. Of these, bone marrow-derived mesenchymal stem cells that are easy to prepare are preferred examples. Mesenchymal stem cells can be prepared according to a known technique. For example, bone marrow-derived mesenchymal stem cells can be collected by centrifuging a bone marrow fluid obtained by bone marrow puncture.
 化合物
 本発明の製造方法における培養工程は、下記一般式(I)で表される化合物の存在下で行うことを特徴とする。
Compound The culture step in the production method of the present invention is characterized in that it is carried out in the presence of a compound represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[式中、Rは水素原子(H)またはアセチル基(CH(C=O)-)を表す。Xはハロゲン原子を表す。] [Wherein R 1 represents a hydrogen atom (H) or an acetyl group (CH 3 (C═O) —). X represents a halogen atom. ]
 上記化合物は、下記の一般式(I’)で表すこともできる。 The above compound can also be represented by the following general formula (I ′).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[式中、R、Xは前記に同じ。] [Wherein, R 1 and X are the same as defined above. ]
 ハロゲン原子とは、フッ素原子(F)、塩素原子(Cl)、臭素原子(Br)またはヨウ素原子(I)を表す。 The halogen atom represents a fluorine atom (F), a chlorine atom (Cl), a bromine atom (Br) or an iodine atom (I).
 上記の一般式(I)で表される化合物において、Xが結合するベンゼン環上の位置は特に限定されないが、6位の位置に結合することが好ましい。すなわち、本発明の化合物の好ましい態様は、下記一般式(II)で表される。 In the compound represented by the above general formula (I), the position on the benzene ring to which X is bonded is not particularly limited, but is preferably bonded to the 6-position. That is, a preferred embodiment of the compound of the present invention is represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
[式中、R、Xは前記に同じ。] [Wherein, R 1 and X are the same as defined above. ]
 上記の一般式(I)で表される化合物は、公知の製造方法または公知の製造方法に準じた方法により製造することができる。例えば、文献:J. Med. Chem. 2004, 47, 935-946に記載の製造方法またはこれに記載の製造方法に準じた製造方法により製造することができる。 The compound represented by the above general formula (I) can be produced by a known production method or a method according to a known production method. For example, it can be produced by a production method described in the literature: J. Med. Chem. 2004, 47, 935-946 or a production method according to the production method described therein.
 本発明の化合物の好ましい態様の一つとして、下記化学式で表される化合物が例示される。 As a preferred embodiment of the compound of the present invention, a compound represented by the following chemical formula is exemplified.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記化合物は、下記の化学式で表すこともできる。 The above compound can also be represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 当該化合物は、グリコーゲンシンターゼキナーゼ-3のαアイソフォーム(GSK-3α)及びβアイソフォーム(GSK-3β)の選択的な阻害剤である。当該化合物は、(2Z, 3E)-6’-Bromo-3-(hydroxyimino)-[2,3’-biindolinylidene]-2’-one、6-bromoindirubin-3'-oxime、GSK-3 Inhibitor IX、BIOなどの名称で知られている。当該化合物は、CAS番号:667463-62-9、PubChem CID:5287844が付与されている。上記の化合物を、以下「BIO」と記載する場合がある。 The compound is a selective inhibitor of glycogen synthase kinase-3 α isoform (GSK-3α) and β isoform (GSK-3β). The compound includes (2Z, 3E) -6'-Bromo-3- (hydroxyimino)-[2,3'-biindolinylidene] -2'-one, 6-bromoindirubin-3'-oxime, GSK-3 Inhibitor IX, It is known by names such as BIO. The compound is assigned CAS number: 667463-62-9, PubChem® CID: 5284844. The above compound may be referred to as “BIO” hereinafter.
 当該化合物は、公知の製造方法により製造することができる。市販品を使用することもできる。 The compound can be produced by a known production method. Commercial products can also be used.
 上記の化合物に替えて、上記化合物以外のGSK-3(GSK-3α及びGSK-3βの両方若しくはいずれか一方。)の発現及び/又は機能を抑制する作用を有する化合物を本発明の方法において用いることもできる。例えば、GSK-3の阻害剤又はアンタゴニストとして機能する低分子化合物、GSK-3の遺伝子産物の転写及び/又は翻訳を阻害する化合物(例えば、siRNA、shRNA、miRNA等。)、GSK-3に対する特異的な抗体などが挙げられる。ただし、LiCl、LiFは好ましくない例であると理解される。 Instead of the above compound, a compound having an action of suppressing the expression and / or function of GSK-3 other than the above compound (both GSK-3α and / or GSK-3β) is used in the method of the present invention. You can also. For example, a low molecular weight compound that functions as an inhibitor or antagonist of GSK-3, a compound that inhibits transcription and / or translation of the gene product of GSK-3 (eg, siRNA, shRNA, miRNA, etc.), specificity for GSK-3 Specific antibodies. However, it is understood that LiCl and LiF are unfavorable examples.
 さらに、GSK-3のβアイソフォームは、Wnt/β-カテニン経路に属する。従って、Wnt/β-カテニン経路に対して、BIOと同様の作用を有する化合物も、本願発明において使用することができる。 Furthermore, the β isoform of GSK-3 belongs to the Wnt / β-catenin pathway. Therefore, compounds having the same action as BIO on the Wnt / β-catenin pathway can also be used in the present invention.
 細胞(B)の製造
 かくして、本発明の製造方法により、上記体細胞(C)とは異なる体細胞(A)に分化しうる細胞(B)が得られる。
Production of Cell (B) Thus, the production method of the present invention provides a cell (B) that can differentiate into a somatic cell (A) different from the somatic cell (C).
 細胞(B)が分化しうる体細胞(A)は、体細胞(C)と異なるものであれば、とくに限定されない。 The somatic cell (A) from which the cell (B) can be differentiated is not particularly limited as long as it is different from the somatic cell (C).
 例えば、体細胞(C)として歯髄から取得した細胞、若しくは、間葉系幹細胞を用いる場合、得られる細胞(B)は、骨芽細胞、造血系の細胞などに分化することができる。ここで、「造血系の細胞」とは、造血幹細胞及び造血幹細胞から分化できる血球細胞(具体的には、白血球(好中球、好酸球、好塩基球、リンパ球、単球、マクロファージなど)、赤血球、血小板などを包含する。)が例示される。 For example, when cells obtained from dental pulp as somatic cells (C) or mesenchymal stem cells are used, the resulting cells (B) can be differentiated into osteoblasts, hematopoietic cells, and the like. Here, “hematopoietic cells” are hematopoietic stem cells and blood cells that can be differentiated from hematopoietic stem cells (specifically, leukocytes (neutrophils, eosinophils, basophils, lymphocytes, monocytes, macrophages, etc. ), Red blood cells, platelets, etc.).
 得られた細胞(B)が、体細胞(A)に分化できることは、当業者に明らかの手法で確認をすることができる。その一例を、後述の実施例に示す。また、後述の造血組織の製造方法によっても確認をすることができる。 It can be confirmed by those skilled in the art that the obtained cells (B) can differentiate into somatic cells (A). One example is shown in the examples described later. Moreover, it can also confirm by the manufacturing method of the hematopoietic tissue mentioned later.
 本発明の好ましい態様においては、本発明の方法により得られる細胞(B)は、幹細胞である。幹細胞とは、自己複製能と別の細胞へと分化する能力(分化能)を有する。本明細書において、細胞が幹細胞であることの確認は、自己複製能と分化能を有することの確認に換えて、Oct3/4、Klf-4などの幹細胞マーカーの発現によっても確認することもできる。細胞(B)が幹細胞である場合、この点においても体細胞(C)とは異なる。 In a preferred embodiment of the present invention, the cell (B) obtained by the method of the present invention is a stem cell. A stem cell has the ability to differentiate into another cell (differentiation ability) with self-replication ability. In the present specification, confirmation that a cell is a stem cell can also be confirmed by expression of a stem cell marker such as Oct3 / 4, Klf-4, etc., instead of confirming that it has self-renewal ability and differentiation ability. . In the case where the cell (B) is a stem cell, this point is also different from the somatic cell (C).
 本発明はまた、当該細胞の製造方法による得られる細胞(B)をも包含するものである。 The present invention also includes a cell (B) obtained by the method for producing the cell.
 本発明の製造方法によって得られる細胞(B)は、例えば体細胞(A)やこれを含む組織の製造に使用することができる。その一例である造血組織の製造方法について、以下に詳述する。 The cells (B) obtained by the production method of the present invention can be used, for example, for the production of somatic cells (A) and tissues containing them. An example of the method for producing a hematopoietic tissue will be described in detail below.
 2.造血組織の製造方法
 本発明は下記の造血組織の製造方法をも提供する:
 下記一般式(I)で表される化合物の存在下で、造血機能を有さない体細胞を培養する工程。
2. Method for Producing Hematopoietic Tissue The present invention also provides the following method for producing hematopoietic tissue:
A step of culturing a somatic cell having no hematopoietic function in the presence of a compound represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
[式中、R、Xは前記に同じ。] [Wherein, R 1 and X are the same as defined above. ]
 本発明の造血組織の製造方法の好ましい態様においては、
 (1)上記化合物の存在下で、造血機能を有さない体細胞を培養する工程、及び
 (2)前記培養した細胞を、キャリアとともに動物に移植する工程
を含む。
In a preferred embodiment of the method for producing a hematopoietic tissue of the present invention,
(1) a step of culturing a somatic cell having no hematopoietic function in the presence of the compound, and (2) a step of transplanting the cultured cell together with a carrier into an animal.
 造血組織
 本明細書において、「造血組織」とは、造血の機能、すなわち、各種の血球細胞を生成することができる機能を有する組織を主に指す。造血幹細胞又はこれに類する機能を有する幹細胞を含む組織であることが好ましい。生体内における造血組織の典型例としては骨髄が挙げられ、本発明の製造方法により得られる造血組織は、少なくとも造血の機能の点においては、骨髄と同様の機能を有することが好ましい。従って、得られる造血組織は、「骨髄」又は「骨髄様組織」と換言することができる。
In this specification, “hematopoietic tissue” mainly refers to a tissue having a function of hematopoiesis, that is, a function capable of generating various blood cells. It is preferably a tissue containing hematopoietic stem cells or stem cells having a similar function. A typical example of a hematopoietic tissue in vivo is bone marrow, and the hematopoietic tissue obtained by the production method of the present invention preferably has a function similar to that of bone marrow at least in terms of hematopoietic function. Therefore, the resulting hematopoietic tissue can be rephrased as “bone marrow” or “myeloid tissue”.
 培養
 本発明の造血組織の製造方法における培養工程は、造血機能を有さない体細胞を用いる以外は、上記「1.」欄に記載の培養工程と同様に行うことができる。
Culturing The culturing step in the method for producing a hematopoietic tissue of the present invention can be performed in the same manner as the culturing step described in the above “1.” column, except that somatic cells having no hematopoietic function are used.
 造血機能を有さない体細胞
 本発明の造血組織の製造方法における培養工程において、造血機能を有さない体細胞を培養する。
Somatic cells having no hematopoietic function In the culturing step in the method for producing a hematopoietic tissue of the present invention, somatic cells having no hematopoietic function are cultured.
 造血機能を有さない体細胞とは、血球細胞(具体的には、白血球(好中球、好酸球、好塩基球、リンパ球、単球、マクロファージなど)、赤血球、血小板などを包含する)を生成する細胞を除いた体細胞であれば、特に限定されない。また、血球細胞も該当しない。 Somatic cells that do not have a hematopoietic function include blood cells (specifically, leukocytes (neutrophils, eosinophils, basophils, lymphocytes, monocytes, macrophages, etc.), erythrocytes, platelets, etc. If it is a somatic cell except the cell which produces | generates), it will not specifically limit. Also, blood cells are not applicable.
 造血機能を有さない体細胞の由来は特に限定されるものではないが、ヒト、サル、マウス、ラット、イヌ、ハムスター、ウサギ、ネコ、ウシ等の哺乳類に由来するものであることが好ましい。得られる造血組織が、疾患の治療を目的とするものである場合、治療を必要としている個体に由来することが好ましいが、これに限定されるものではない。 The origin of somatic cells having no hematopoietic function is not particularly limited, but is preferably derived from mammals such as humans, monkeys, mice, rats, dogs, hamsters, rabbits, cats and cows. In the case where the resulting hematopoietic tissue is intended for treatment of a disease, it is preferably derived from an individual in need of treatment, but is not limited thereto.
 造血機能を有さない体細胞は、生体から採取した細胞、生体から採取した細胞を培養した細胞(特に、初代培養細胞。)、生体から採取した細胞を用いて継代培養を継続して株化した細胞のいずれであってもよい。 Somatic cells that do not have hematopoietic functions include cells collected from living organisms, cells cultured from cells collected from living organisms (especially primary cultured cells), and subculture using cells collected from living organisms. It may be any of the cells that have been turned into cells.
 造血機能を有さない体細胞の種類は、特に限定されるものではない。 The type of somatic cell that does not have a hematopoietic function is not particularly limited.
 本発明のある態様においては、造血機能を有さない体細胞は、歯髄から取得した細胞である。歯髄から取得できる細胞には、歯髄細胞、歯髄幹細胞が含まれる。歯髄から取得した細胞は、歯髄から取得した細胞を培養した細胞(特に、初代培養細胞。)や歯髄から採取した細胞を用いて継代培養を継続して株化した細胞が包含される。株化した細胞としては、非特許文献1に記載されているものを使用することができる。歯髄は、切歯、犬歯、臼歯等のいずれの歯由来であってもよい。 In one embodiment of the present invention, the somatic cell having no hematopoietic function is a cell obtained from the dental pulp. Cells that can be obtained from dental pulp include dental pulp cells and dental pulp stem cells. The cells obtained from the dental pulp include cells obtained by culturing cells obtained from the dental pulp (in particular, primary cultured cells) and cells obtained by continuing subculture using cells collected from the dental pulp. As the established cell line, those described in Non-Patent Document 1 can be used. The dental pulp may be derived from any tooth such as an incisor, a canine or a molar.
 本発明の別の態様においては、造血機能を有さない体細胞は間葉系幹細胞である。なかでも、調製が容易である骨髄由来の間葉系幹細胞が好ましい例である。間葉系幹細胞は、公知の手法に従い調製することができる。例えば、骨髄由来の間葉系幹細胞は、骨髄穿刺により得られる骨髄液を遠心分離することで採取することができる。 In another embodiment of the present invention, the somatic cell having no hematopoietic function is a mesenchymal stem cell. Of these, bone marrow-derived mesenchymal stem cells that are easy to prepare are preferred examples. Mesenchymal stem cells can be prepared according to a known technique. For example, bone marrow-derived mesenchymal stem cells can be collected by centrifuging a bone marrow fluid obtained by bone marrow puncture.
 移植
 本発明の造血組織の製造方法の好ましい態様は、培養した細胞を、キャリアとともに動物に移植する工程を含む。
Transplantation A preferred embodiment of the method for producing a hematopoietic tissue of the present invention includes a step of transplanting cultured cells into an animal together with a carrier.
 移植の対象となる動物は、特に限定されるものではない。例えば、ヒト、サル、マウス、ラット、イヌ、ハムスター、ウサギ、ネコ、ウシ等の哺乳類が好ましい例として挙げられる。ただし、移植対象の選定に際しては、法令、並びに、倫理、インフォームドコンセント等に関する規定等を遵守することが望ましい。また、必要に応じて、対象とする動物を非ヒト動物とすることもできる。 The animal to be transplanted is not particularly limited. For example, preferred examples include mammals such as humans, monkeys, mice, rats, dogs, hamsters, rabbits, cats, and cows. However, it is desirable to comply with laws and regulations, ethics, informed consent, etc. when selecting transplant targets. Moreover, the target animal can also be made into a non-human animal as needed.
 移植の対象となる動物は、造血機能を有さない体細胞が由来する動物と同種であっても異種であってもよい。同種である場合、移植の対象となる動物は、造血機能を有さない体細胞が由来する個体と同一であっても異なってもよい。 The animal to be transplanted may be the same or different from an animal from which a somatic cell having no hematopoietic function is derived. In the case of the same species, the animal to be transplanted may be the same or different from the individual from which the somatic cell having no hematopoietic function is derived.
 細胞を移植する部位は、特に限定されるものではない。製造される造血組織を支持できる、体液性でない動物の部位であることが望ましい。例えば、皮下、筋中、骨の空洞などが挙げられる。移植する手法は特に限定されないが、注射による移植が簡便であるため、好ましい例として挙げられる。 The cell transplant site is not particularly limited. It is preferably a non-humoral animal part capable of supporting the hematopoietic tissue produced. For example, subcutaneous, intramuscular, bone cavity and the like. Although the technique to transplant is not specifically limited, Since transplantation by injection is easy, it is mentioned as a preferable example.
 移植を行う前に、一般式(I)で表される化合物(例えばBIO)を洗浄などの手段により除去することが好ましい。 It is preferable to remove the compound represented by the general formula (I) (for example, BIO) by means such as washing before transplantation.
 キャリア
 上記移植工程は、培養した細胞を、キャリアとともに動物に移植する。キャリアは、造血組織へと誘導される細胞を支持し、拡散若しくは周囲の細胞に吸収されることを防止するために用いられる。
Carrier In the transplantation step, the cultured cells are transplanted together with the carrier into an animal. The carrier is used to support the cells that are induced into the hematopoietic tissue and to prevent diffusion or absorption by surrounding cells.
 キャリアは、上記目的を達成できるものであれば特に制限されるものではない。キャリアの好ましい例として、ヒドロキシアパタイト(HA)、トリリン酸カルシウム(β―TCP)、オクタリン酸カルシウム(OPC)などが例示される。 The carrier is not particularly limited as long as it can achieve the above purpose. Preferred examples of the carrier include hydroxyapatite (HA), calcium triphosphate (β-TCP), calcium octaphosphate (OPC) and the like.
 移植をする際の、細胞とキャリアとの配合比率は、特に限定されるものではない。例えば、細胞1.0x107個に対して、キャリアを10~200mg程度、20~80 mg程度、40 mg程度とすることができる。 There are no particular limitations on the mixing ratio of the cells and the carrier at the time of transplantation. For example, for 1.0 × 10 7 cells, the carrier can be about 10 to 200 mg, about 20 to 80 mg, and about 40 mg.
 移植後、移植をした動物を適切な期間管理する。非ヒト動物であれば、通常の飼育条件下で管理することが好ましい。移植後、造血組織が製造されるまでの期間は、当業者が適宜設定することができる。例えば、動物がマウスである場合、2週間~6月程度、1月~3月程度、2月程度とすることができる。 After the transplantation, manage the transplanted animals for an appropriate period. If it is a non-human animal, it is preferable to manage it under normal breeding conditions. The period until the hematopoietic tissue is produced after transplantation can be appropriately set by those skilled in the art. For example, when the animal is a mouse, the period can be about 2 weeks to June, about January to March, or about February.
 造血組織の製造
 かくして、造血組織が製造される。
Production of hematopoietic tissue Thus, a hematopoietic tissue is produced.
 造血組織の製造は、血球細胞を生成する機能を有することを評価することで確認をすることができる。血球細胞の生成は、当業者に公知の手法で確認をすることができ、その一例を後述の実施例に示す。 Production of hematopoietic tissue can be confirmed by evaluating that it has a function of generating blood cells. The generation of blood cells can be confirmed by a method known to those skilled in the art, and an example thereof is shown in the examples described later.
 本発明はまた、当該造血組織の製造方法による得られる造血組織をも包含するものである。 The present invention also includes a hematopoietic tissue obtained by the method for producing the hematopoietic tissue.
 本発明の製造方法によって得られる造血組織は、例えば、白血病などの造血組織の異常に基づく疾患の治療に用いることができる。造血組織を、疾患を有する動物(患者など。)の体内で製造し治療をするものであっても、患者以外の動物の体内で製造し、製造された造血組織を、疾患を有する動物に移植して治療をすることもできる。 The hematopoietic tissue obtained by the production method of the present invention can be used for the treatment of diseases based on abnormalities of hematopoietic tissue such as leukemia. Even if hematopoietic tissue is produced and treated in the body of a diseased animal (such as a patient), the hematopoietic tissue produced in the body of an animal other than the patient and transplanted to the animal having the disease Can also be treated.
 3.細胞誘導剤
 本発明はまた、前述の細胞の製造方法及び造血組織の製造方法に使用することができる細胞誘導剤をも提供する。本発明の細胞誘導剤は、体細胞(「1.」欄に記載の体細胞(C)が例示される)を原料として、当該原料の体細胞とは異なる体細胞に分化しうる細胞(「1.」欄に記載の細胞(B)が例示される。)を誘導するために用いられる。
3. Cell Inducing Agent The present invention also provides a cell inducing agent that can be used in the above-described cell production method and hematopoietic tissue production method. The cell inducer of the present invention uses somatic cells (eg, somatic cells (C) described in the column “1.”) as raw materials, and cells that can differentiate into somatic cells different from the somatic cells of the raw materials (“ The cell (B) described in the column “1.” is exemplified.)
 細胞誘導剤の有効成分としては、上記「1.」欄に記載の化合物を用いる。化合物としては、前述のBIOが好ましい例として挙げられる。従って、本発明は、当該化合物の、細胞を誘導するための使用をも提供する。 As the active ingredient of the cell inducer, the compounds described in the column “1.” are used. As a compound, the above-mentioned BIO is mentioned as a preferred example. Accordingly, the present invention also provides the use of the compound for inducing cells.
 細胞誘導剤は、提供される形態に応じて、上記化合物の効果を阻害しない範囲で、通常の溶媒、基材などを含むものであってもよい。 The cell inducer may contain a normal solvent, a base material, and the like as long as the effect of the above compound is not inhibited depending on the form to be provided.
 4.造血組織作製用キット
 本発明はまた、
 (1)化合物、及び
 (2)キャリア
を含む、造血組織作製用キットをも提供する。
4). Hematopoietic tissue preparation kit The present invention also provides
There is also provided a kit for preparing a hematopoietic tissue, comprising (1) a compound, and (2) a carrier.
 本発明のキットに含まれる化合物、キャリアとしては、上記「2.」欄に記載のものを用いる。化合物としては、前述のBIOが好ましい例として挙げられる。 As the compound and carrier contained in the kit of the present invention, those described in the above “2.” column are used. As a compound, the above-mentioned BIO is mentioned as a preferred example.
 また、本発明のキットには、必要に応じて他の成分を含めることができる。他の成分は、例えば細胞を移植するための道具(例えば、注射器。)、ポジティブコントロール試料及びネガティブコントロール試料などが挙げられるが、これに限定されない。上記造血組織の製造方法を行うための手順を書き記した書面などを含むこともできる。 Moreover, the kit of the present invention can contain other components as required. Examples of other components include, but are not limited to, a tool for transplanting cells (for example, a syringe), a positive control sample, a negative control sample, and the like. It can also include a document in which a procedure for performing the above method for producing a hematopoietic tissue is written.
 本発明のキットは、上記「2.」欄に記載の造血組織の製造方法に好適に用いることができる。 The kit of the present invention can be suitably used in the method for producing a hematopoietic tissue described in the above “2.” column.
 5.細胞誘導剤のスクリーニング方法
 本発明はまた、下記の工程を含む、細胞誘導剤のスクリーニング方法をも提供する:
 (1)体細胞を被験物質の存在下で培養し、当該被験物質の細胞誘導能を評価する工程、及び
 (2)前記工程で評価した被験物質の細胞誘導能と、下記一般式(I)で表される化合物(例えば、BIO)の細胞誘導能とを比較する工程。
5). Cell Inducing Agent Screening Method The present invention also provides a cell inducing agent screening method comprising the following steps:
(1) a step of culturing somatic cells in the presence of a test substance, and evaluating the cell induction ability of the test substance; and (2) the cell induction ability of the test substance evaluated in the above step, and the following general formula (I): A step of comparing the cell inducibility of a compound represented by (for example, BIO).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
[式中、R、Xは前記に同じ。] [Wherein, R 1 and X are the same as defined above. ]
 細胞誘導剤のスクリーニング方法
 本発明のスクリーニング方法により選別される細胞誘導剤は、体細胞(「1.」欄に記載の体細胞(C)が例示される)を原料ととして、当該原料の体細胞とは異なる体細胞に分化しうる細胞(「1.」欄に記載の細胞(B)が例示される。)を誘導することができる細胞誘導剤である。
Cell Inducing Agent Screening Method The cell inducing agent selected by the screening method of the present invention is a somatic cell (the somatic cell (C) described in the column “1.”) is used as a raw material. It is a cell inducer capable of inducing cells that can differentiate into somatic cells different from cells (the cells (B) described in the column “1.” are exemplified).
 工程(1)
 本発明のスクリーニング方法の第1の工程において、体細胞を被験物質の存在下で培養し、当該被験物質の細胞誘導能を評価する。
Process (1)
In the first step of the screening method of the present invention, somatic cells are cultured in the presence of a test substance, and the cell induction ability of the test substance is evaluated.
 培養
 当該工程において、まず体細胞を被験物質の存在下で培養する。体細胞の培養は、上記「1.」欄に記載の培養工程に準じて行うことができる。
In this step, somatic cells are first cultured in the presence of a test substance. Somatic cell culture can be performed according to the culture process described in the column “1.” above.
 体細胞
 体細の種類は、特に限定されるものではない。
There are no particular limitations on the type of somatic cells .
 体細胞の由来は特に限定されるものではないが、ヒト、サル、マウス、ラット、イヌ、ハムスター、ウサギ、ネコ、ウシ等の哺乳類に由来するものであることが好ましい。 The origin of somatic cells is not particularly limited, but is preferably derived from mammals such as humans, monkeys, mice, rats, dogs, hamsters, rabbits, cats and cows.
 体細胞は、生体から採取した細胞、生体から採取した細胞を培養した細胞(特に、初代培養細胞。)、生体から採取した細胞を用いて継代培養を継続して株化した細胞のいずれであってもよい。 Somatic cells are cells collected from living organisms, cells cultured from cells collected from living organisms (especially primary cultured cells), and cells established by continuing subculture using cells collected from living organisms. There may be.
 本発明のスクリーニング方法のある態様においては、体細胞は、歯髄に由来する細胞である。歯髄に由来する細胞には、歯髄細胞、歯髄幹細胞が含まれる。歯髄に由来する細胞は、歯髄から採取した細胞を培養した細胞(特に、初代培養細胞。)や歯髄から採取した細胞を用いて継代培養を継続して株化した細胞が包含される。株化した細胞としては、非特許文献1に記載されているものを使用することができる。 In one embodiment of the screening method of the present invention, the somatic cell is a cell derived from the dental pulp. The cells derived from dental pulp include dental pulp cells and dental pulp stem cells. The cells derived from the dental pulp include cells obtained by culturing cells collected from the dental pulp (in particular, primary cultured cells) and cells established by continuing subculture using cells collected from the dental pulp. As the established cell line, those described in Non-Patent Document 1 can be used.
 本発明の別の態様においては、体細胞は間葉系幹細胞である。間葉系幹細胞の由来は特に限定されず、骨髄由来のもの、脂肪組織由来のものなどを用いることができる。なかでも、調製が容易である骨髄由来の間葉系幹細胞が好ましい例である。間葉系幹細胞は、公知の手法に従い調製することができる。例えば、骨髄由来の間葉系幹細胞は、骨髄穿刺により得られる骨髄液を遠心分離することで採取することができる。 In another embodiment of the present invention, the somatic cell is a mesenchymal stem cell. The origin of mesenchymal stem cells is not particularly limited, and those derived from bone marrow, adipose tissue, and the like can be used. Of these, bone marrow-derived mesenchymal stem cells that are easy to prepare are preferred examples. Mesenchymal stem cells can be prepared according to a known technique. For example, bone marrow-derived mesenchymal stem cells can be collected by centrifuging a bone marrow fluid obtained by bone marrow puncture.
 被験物質
 被験物質は、特に限定されるものではなく、あらゆる化合物を使用することができる。好ましい態様においては、生体に対する安全性が確認された化合物であることが好ましい。
Test substance The test substance is not particularly limited, and any compound can be used. In a preferred embodiment, the compound is confirmed to be safe for living organisms.
 細胞誘導能の評価
 次いで、培養をして得られた細胞に基づき、被験物質の細胞誘導能を評価する。
Evaluation of cell-inducing ability Next, the cell-inducing ability of the test substance is evaluated based on the cells obtained by culturing.
 「細胞誘導能」とは、当該被験物質が、原料の体細胞を、当該原料の体細胞とは異なる体細胞に分化しうる細胞に誘導できる作用を意味する。従って、被験物質の細胞誘導能を評価は、斯かる作用の程度を評価する。 “Cell-inducing ability” means an action that allows the test substance to induce somatic cells of a raw material into cells that can differentiate into somatic cells different from the somatic cells of the raw material. Therefore, evaluation of the cell inducing ability of the test substance evaluates the degree of such action.
 「細胞誘導能」を評価する方法は、当業者が適宜設定することができる。 The method for evaluating the “cell inducing ability” can be appropriately set by those skilled in the art.
 一例として、体細胞が歯髄に由来する細胞である場合、後述の実施例に記載の如く、培養により得られた細胞の形態、幹細胞の性質の獲得(自己複製能と分化能の獲得;幹細胞マーカーの発現等。)などに基づいて評価をすることができる。また、分化能としては、実施例に記載に例示されるvon Kassa染色による骨芽細胞への分化能の獲得、実施例に記載に例示される造血組織への分化能の獲得を指標とすることもできる。 As an example, when somatic cells are derived from dental pulp, as described in Examples below, the morphology of cells obtained by culture, acquisition of the properties of stem cells (acquisition of self-replication ability and differentiation ability; acquisition of stem cell markers) And the like can be evaluated. Further, as the differentiation ability, the acquisition of differentiation ability to osteoblasts by von Kassa staining exemplified in the examples, and the acquisition of differentiation ability to hematopoietic tissues exemplified in the examples should be used as indices. You can also.
 別の例として、体細胞が間葉系幹細胞である場合、実施例に記載に例示される造血組織への分化能の獲得を指標とすることができる。 As another example, when the somatic cell is a mesenchymal stem cell, the acquisition of differentiation ability into a hematopoietic tissue exemplified in the examples can be used as an index.
 工程(2)
 本発明のスクリーニング方法の第2の工程において、前記工程で評価した被験物質の細胞誘導能と、上記化合物(例えば、BIO)の細胞誘導能とを比較する。
Process (2)
In the second step of the screening method of the present invention, the cell inducing ability of the test substance evaluated in the above step is compared with the cell inducing ability of the compound (for example, BIO).
 化合物の細胞誘導能
 上記化合物(例えば、BIO)の細胞誘導能は、工程(1)において用いた体細胞を、当該化合物(例えば、BIO)の存在下で培養した場合の細胞誘導能を意味する。当該化合物(例えば、BIO)の細胞誘導能は、適切に対比を行うために、工程(1)で行った評価と同様にして行うことが好ましい。
Cell induction ability of the compound The cell induction ability of the compound (eg, BIO) means the cell induction ability when the somatic cells used in step (1) are cultured in the presence of the compound (eg, BIO). . The cell inducing ability of the compound (for example, BIO) is preferably performed in the same manner as the evaluation performed in step (1) in order to appropriately compare.
 細胞誘導剤の選別
 細胞誘導剤の選別は、工程(2)の比較の結果に基づいて行う。
Selection of cell inducer The cell inducer is selected based on the result of the comparison in step (2).
 具体的には、予め設定した基準に適合する被験物質を、細胞誘導剤として選別する。予め設定した基準は、例えば、上記化合物(例えばBIO)の細胞誘導能と同程度あるいは同程度以上とすることができる。被験物質の細胞誘導能が、当該化合物(例えば、BIO)の細胞誘導能と同程度以下である場合も、当該被験物質を細胞誘導剤として選別することは妨げられない。この場合、例えば当該被験物質が安全性、経済性などの観点で当該化合物(例えば、BIO)に比して有利な効果を有している場合は参酌できる。 Specifically, a test substance that meets a preset standard is selected as a cell inducer. The preset standard can be set to the same level or higher than the cell inducing ability of the above compound (for example, BIO), for example. Even when the cell inducing ability of the test substance is equal to or less than the cell inducing ability of the compound (for example, BIO), selection of the test substance as a cell inducer is not prevented. In this case, for example, when the test substance has an advantageous effect compared with the compound (for example, BIO) from the viewpoint of safety and economy, it can be considered.
 かくして、細胞誘導剤がスクリーニングされる。スクリーニングにより選別された細胞誘導剤は、上記「1.」欄の細胞の製造方法、「2.」欄に記載の造血組織の製造方法において、BIOに換えて好適に使用することができる。 Thus, the cell inducer is screened. The cell inducer selected by screening can be suitably used in place of BIO in the method for producing cells in the column “1.” and the method for producing hematopoietic tissue described in the column “2.”.
 6.使用
 本発明はまた、体細胞(A)に分化しうる細胞(B)を製造するためであって、前記体細胞(A)とは異なる体細胞(C)から細胞(B)を製造するための、前述の一般式(I)で表される化合物(例えば、BIO)の使用をも提供する。
6). Use The present invention is also for producing a cell (B) that can differentiate into a somatic cell (A), and for producing a cell (B) from a somatic cell (C) different from the somatic cell (A). Of the above-mentioned general formula (I) (for example, BIO) is also provided.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
[式中、R、Xは前記に同じ。] [Wherein, R 1 and X are the same as defined above. ]
 また、造血組織を製造するための、上記化合物の使用も提供される。 Also provided is the use of the above compound for producing hematopoietic tissue.
 具体的な使用態様としては、上記「1.」欄の細胞の製造方法、「2.」欄に記載の造血組織の製造方法が例示される。 Specific examples of usage include the method for producing cells in the column “1.” and the method for producing hematopoietic tissues described in the column “2.”.
 以下、本発明を更に詳しく説明するため、実施例を挙げるが、本発明はこれに限定されるものではない。 Hereinafter, examples are given to describe the present invention in more detail, but the present invention is not limited thereto.
 参考例1:マウス乳歯由来歯髄幹細胞の形態の観察
 非特許文献1において作製したマウス乳歯由来歯髄細胞(mDP)の形態を観察した。
Reference Example 1: Observation of morphology of mouse deciduous tooth-derived dental pulp stem cell The morphology of mouse deciduous tooth-derived dental pulp cell (mDP) prepared in Non-Patent Document 1 was observed.
 <方法及び結果>
 非特許文献1において作製したマウス乳歯由来歯髄幹細胞(mDP)の細胞株を、常法に従い、Hoechst 33342(Hoechst Blue、青色)及びHoechst33258(Hoechst Red、赤色)の2色の色素で染色した。フローサイトメトリー法により、色素が排出されて2色の染色の程度が弱い細胞をソートして、歯髄幹細胞(mDP-SP)を選別した。なお、幹細胞は色素の排出能力が向上していると考えられている。
<Method and results>
The mouse deciduous dental pulp stem cell (mDP) cell line prepared in Non-Patent Document 1 was stained with two colors of dyes, Hoechst 33342 (Hoechst Blue, blue) and Hoechst33258 (Hoechst Red, red), according to a conventional method. By the flow cytometry method, the cells that had been discharged of the dye and weakly stained in two colors were sorted to select dental pulp stem cells (mDP-SP). Stem cells are thought to have improved pigment discharge capacity.
 ソートの結果を図1Aに示す。歯髄の中には歯髄幹細胞が0.5~1.0%存在することと同様に、マウス乳歯由来歯髄細胞(mDP)の細胞株中にも幹細胞の性質を有する細胞が存在することが確認できた。 The result of sorting is shown in Fig. 1A. Similar to the presence of 0.5 to 1.0% of dental pulp stem cells in the dental pulp, it was confirmed that cells having stem cell properties were also present in the mouse deciduous dental pulp cell (mDP) cell line.
 次いで、選別した歯髄幹細胞(mDP-SP)及び歯髄細胞(mDP-MP)の形態を観察した。それぞれの細胞を、常法に従い、Phalloidin-Alexa594(アクチン染色、赤)及びDAPI(核染色、青)で染色し、蛍光顕微鏡で観察した。 Next, the morphology of the selected dental pulp stem cells (mDP-SP) and dental pulp cells (mDP-MP) was observed. Each cell was stained with Phalloidin-Alexa594 (actin staining, red) and DAPI (nuclear staining, blue) according to a conventional method, and observed with a fluorescence microscope.
 顕微鏡像を図1Bに示す。さらに、形態の定量結果(Relative length(相対長さ)、Relataive breadth(相対幅)及びElliptical form factor)を図1Cに示す。「Elliptical form factor」は、Relative length/Relative breadthの式で求められる値であり、注目する細胞の細長さの度合いを示す指数である。 The microscope image is shown in FIG. 1B. Furthermore, the quantitative determination results (Relative length (relative length), Relataive width (relative width), and elliptical length factor) are shown in FIG. 1C. “Elliptical form factor” is a value obtained by the formula Relative length / Relative breadth, and is an index indicating the degree of slenderness of the cell of interest.
 歯髄幹細胞は紡錘形の形態を有する。一方、歯髄細胞は扁平形態を有する。 Dental pulp stem cells have a spindle-shaped form. On the other hand, pulp cells have a flat form.
 実施例1:歯髄幹細胞様形態を誘導する薬剤のスクリーニング
 歯髄細胞に加えることで、歯髄幹細胞様の形態を誘導できる薬剤をスクリーニングした。
Example 1: Screening of drugs that induce dental pulp stem cell-like morphology Agents that can induce dental pulp stem cell-like morphology were screened by adding to dental pulp cells.
 <方法及び結果>
 FCS(ウシ胎児血清)を10%添加したDMEM/F12培地(ライフテクノロジーズ社製)に、FDA Approved Drug Screen-Well Libraryの各薬剤を2 μM(終濃度)添加して、mDP細胞を2日間培養した。その後、Phalloidin-Alexa594によるアクチン染色をした細胞について、顕微鏡観察により歯髄幹細胞様の形態の誘導を評価した。各薬剤は、DMSOの溶液として提供されている。
<Method and results>
Add 2 μM (final concentration) of each drug of FDA Approved Drug Screen-Well Library to DMEM / F12 medium (Life Technologies) supplemented with 10% FCS (fetal calf serum), and culture mDP cells for 2 days did. Thereafter, for the cells stained with actin with Phalloidin-Alexa594, the induction of dental pulp stem cell-like morphology was evaluated by microscopic observation. Each drug is provided as a solution in DMSO.
 その結果、GSK-3 inhibitor IX, BIOが、歯髄幹細胞様の形態を誘導できる薬剤として選別された。 As a result, GSK-3 inhibitor IX and BIO were selected as drugs that can induce dental pulp stem cell-like morphology.
 結果を図2に示す。図2Aは、GSK-3 inhibitor IX, BIOの構造、及び、類似する活性を有さないMeBIO(対照化合物)の構造を示す。図2Bに、BIOの存在下で培養したmDP細胞の形態を示す。図2Cは、形態の定量結果を示す。 The results are shown in FIG. FIG. 2A shows the structure of GSK-3 inhibitor IX, BIO and the structure of MeBIO (control compound) that does not have similar activity. FIG. 2B shows the morphology of mDP cells cultured in the presence of BIO. FIG. 2C shows the quantitative results of the morphology.
 BIOの存在下で培養したmDP細胞は、その形態がmDP-SP細胞に類似するものとなっていた。このような効果は、対照のDMSOのみの存在下及びMeBIOの存在下で培養した場合には、観察されなかった。以上のとおり、BIOが、歯髄幹細胞様の形態を誘導できる薬剤として選別された。 The morphology of mDP cells cultured in the presence of BIO was similar to that of mDP-SP cells. Such an effect was not observed when cultured in the presence of control DMSO alone and in the presence of MeBIO. As described above, BIO was selected as a drug capable of inducing dental pulp stem cell-like morphology.
 実施例2:GSK-3β及びWnt-βカテニン経路の関与の検証
 BIOはWnt-β-カテニン経路に属するGSK-3βの抑制剤であるため、BIOによる効果における、GSK-3β及びWnt-β-カテニン経路の関与を検証した。
Example 2: Verification of involvement of GSK-3β and Wnt-β catenin pathway Since BIO is an inhibitor of GSK-3β belonging to the Wnt-β-catenin pathway, GSK-3β and Wnt-β- The involvement of the catenin pathway was verified.
 <方法及び結果>
 プロテインフォスファターゼ1(PP1)及びプロテインフォスファターゼ2A(PP2A-C)の阻害剤であるCalyculin-Aは、その作用によってWntシグナルが活性化され、β-カテニン(β-catenin)のリン酸化が亢進することが知られている。図3A上段は、0~20nMのCalyculin-Aの存在下で、0分、30分又は60分培養したmDP細胞におけるリン酸化β-カテニン(phospho-βcatenin)に対する抗体で検出したβ-カテニンのリン酸化の程度を示す。
<Method and results>
Calyculin-A, an inhibitor of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A-C), activates the Wnt signal and enhances phosphorylation of β-catenin It has been known. The upper part of FIG. 3A shows β-catenin phosphorus detected with an antibody against phosphorylated β-catenin in mDP cells cultured for 0, 30 or 60 minutes in the presence of 0 to 20 nM Calyculin-A. Indicates the degree of oxidation.
 実施例1と同様にしてBIOの存在下で培養したmDP細胞を、洗浄及び培地交換の後、20nMのCalyculin-Aの存在下で培養し、β-カテニンのリン酸化の程度を検出した。DMSOの存在下BIOの存在下で培養したmDP細胞を対照とした。 In the same manner as in Example 1, mDP cells cultured in the presence of BIO were cultured in the presence of 20 nM Calyculin-A after washing and medium exchange, and the degree of phosphorylation of β-catenin was detected. Controls were mDP cells cultured in the presence of BIO in the presence of DMSO.
 結果を図3A下段及び図3Bに示す。BIOの存在下で培養したmDP細胞においては、対照で観察されるβ-カテニンのリン酸化の亢進は観察されなかった。この結果は、BIOの存在下で培養の培養により、GSK-3βの機能が抑制されていることを示している。 The results are shown in the lower part of FIG. 3A and FIG. 3B. In mDP cells cultured in the presence of BIO, the enhanced phosphorylation of β-catenin observed in the control was not observed. This result indicates that the function of GSK-3β is suppressed by culturing in the presence of BIO.
 実施例3:幹細胞マーカーの発現の評価
 BIOの存在下で培養した細胞における、幹細胞マーカーの発現を検出した。
Example 3 Evaluation of Expression of Stem Cell Marker Expression of stem cell marker was detected in cells cultured in the presence of BIO.
 <方法及び結果>
 実施例1と同様にしてBIOの存在下で培養したmDP細胞における幹細胞マーカーOct3/4及びKlf-4の相対遺伝子発現量(Relative gene expression)を、リアルタイムRT-PCR法により測定した。
<Method and results>
In the same manner as in Example 1, the relative gene expression levels of stem cell markers Oct3 / 4 and Klf-4 in mDP cells cultured in the presence of BIO were measured by real-time RT-PCR.
 また、マウスの切歯(incisor)及び第1臼歯(1st molar)の歯髄から採取した細胞の初代培養細胞を用いて、同様に、BIOの存在下で培養し、Oct3/4の相対遺伝子発現量(Relative gene expression)を測定した。 In addition, using the primary cultured cells collected from the dental pulp of the mouse incisor and 1st molar (1st molar), similarly, in the presence of BIO, the relative expression level of Oct3 / 4 (Relative gene expression) was measured.
 結果を図3C及びDに示す。BIOの存在下で培養したmDP細胞、並びに、マウス門歯及び第1臼歯由来の細胞において、幹細胞マーカーの発現が亢進していた。このことは、BIOの存在下で培養することで、幹細胞としての性質が誘導されたことを示している。 Results are shown in FIGS. 3C and D. In mDP cells cultured in the presence of BIO and cells derived from mouse incisors and first molars, expression of stem cell markers was increased. This indicates that culture as a stem cell was induced by culturing in the presence of BIO.
 実施例4:骨芽細胞への分化能の評価
 BIOの存在下で培養した細胞の、骨芽細胞への分化能を評価した。
Example 4: Evaluation of differentiation ability into osteoblasts The differentiation ability of cells cultured in the presence of BIO into osteoblasts was evaluated.
 <方法及び結果>
 実施例1と同様にして、mDP細胞をBIOの存在下で培養した。その後、洗浄及び培地交換を行い、引き続き骨誘導培地若しくはBMP2タンパク質100ng/mlをさらに添加した骨誘導培地で7日間培養した。
<Method and results>
As in Example 1, mDP cells were cultured in the presence of BIO. Thereafter, washing and medium exchange were performed, followed by culturing for 7 days in an osteoinduction medium or an osteoinduction medium further supplemented with 100 ng / ml of BMP2 protein.
 なお、骨誘導培地は、文献:Nakamura T, Naruse M, Chiba Y, Komori T, Sasaki K, Iwamoto M, Fukumoto S: Novel Hedgehog Agonists Promote Osteoblast Differentiation in Mesenchymal Stem Cells. J Cell Physiol. 2014 Sep 12. doi: 10.1002/jcp.24823. [Epub ahead of print]に準じて作製した。 The bone induction medium is the literature: Nakamura T, Naruse M, Chiba Y, Komori T, Sasaki K, Iwamoto M, Fukumoto S: Novel Hedgehog Agonists Promote Osteoblast Differentiation in Mesenchymal S : 10.1002 / jcp.24823. [Epub ahead of print]
 次いで、von Kossa染色により、石灰化物を染色し、骨芽細胞への誘導を評価した。von Kossa染色は、非特許文献1に準じて行った。DMSOのみを添加培地に添加、又は、MeBIOを培地に添加する以外は同様とした群を、対照とした。 Next, the calcified product was stained by von Kossa staining, and the induction into osteoblasts was evaluated. von Kossa staining was performed according to Non-Patent Document 1. A group similar to that except that only DMSO was added to the addition medium or MeBIO was added to the medium was used as a control.
 結果を図4に示す。図4Aは、von Kossa染色の結果の一例を示す。図4Bは、von Kossa染色の強度(Intensity of von Kossa staining)の定量結果を示す。 The results are shown in FIG. FIG. 4A shows an example of the result of von Kossa staining. FIG. 4B shows the quantitative results of the intensity of von Kossa staining (Intensitytensof von Kossatainingstaining).
 BIOの存在下で培養した細胞において、von Kossa染色の強い染色が観察され、当該細胞は骨芽細胞への分化能を獲得していることが明らかとなった。 In cells cultured in the presence of BIO, strong staining of von Kossa staining was observed, and it was revealed that the cells had acquired the ability to differentiate into osteoblasts.
 実施例5:マウス骨髄由来間葉系幹細からの骨髄様組織の製造
 BIOで処理したマウス骨髄由来間葉系幹細胞(mBM-MSC)を用いて、骨髄様組織をマウスの体内で製造した。
Example 5: Production of bone marrow-like tissue from mouse bone marrow-derived mesenchymal stem cells Using mouse bone marrow-derived mesenchymal stem cells (mBM-MSC) treated with BIO, bone marrow-like tissue was produced in the mouse body.
 <方法及び結果>
 マウス骨髄由来間葉系幹細胞(mBM-MSC)は、文献:Yamaza T et al. PLoS One. 2008 Jul 9;3(7):e2615.に準じて調製した。得られたmBM-MSCを、実施例1と同様にして、BIOの存在下で12日間培養した。培地は、FCS(ウシ胎児血清)を10%添加したDMEM/F12培地に替えて、FCSを20%添加したαMEM培地を使用した。BIOの添加なしに培養した細胞を対照とした。
<Method and results>
Mouse bone marrow-derived mesenchymal stem cells (mBM-MSC) were prepared according to the literature: Yamaza T et al. PLoS One. 2008 Jul 9; 3 (7): e2615. The obtained mBM-MSC was cultured in the presence of BIO for 12 days in the same manner as in Example 1. The medium was replaced with DMEM / F12 medium supplemented with 10% FCS (fetal calf serum), and αMEM medium supplemented with 20% FCS was used. Cells cultured without the addition of BIO served as controls.
 培養後、得られた細胞を1xPBS緩衝液で洗浄しBIOを除去し、1.0x 107細胞をヒドロキシアパタイト(HA)(40mg)と混合して、免疫不全マウス(NOD/ShiJic-scid/jclマウス)の背部へ、皮下注射により移植した。 After culturing, the resulting cells were removed and washed with 1xPBS buffer BIO, a mixture of 1.0x 10 7 cells and hydroxyapatite (HA) (40mg), immunodeficient mice (NOD / ShiJic-scid / jcl mice ) Was implanted by subcutaneous injection.
 移植したマウスを8週間通常に飼育した後に、移植部位を摘出して常法に従いヘマトキシリン・エオジン染色(HE染色)を行い、観察した。 After transplanted mice were reared normally for 8 weeks, the transplanted site was excised and stained with hematoxylin and eosin (HE staining) according to a conventional method.
 結果を図5A及びBに示す。図5Aは、操作のスキームを示す。図5Bは、移植した部位を観察した顕微鏡像を示す(ヘマトキシリン・エオジン染色(HE染色))。 Results are shown in FIGS. 5A and 5B. FIG. 5A shows the scheme of operation. FIG. 5B shows a microscopic image of the transplanted site observed (hematoxylin / eosin staining (HE staining)).
 対照のBIOの添加なしに培養した細胞を移植したマウス(transplant without BIO)では、HAの周囲に骨様の硬組織が確認できた。一方、BIOの存在下で培養した細胞を移植したマウス(transplant with BIO)では、HAが完全に吸収され、骨組織とともに大量の骨髄様の組織の形成が確認された。 In mice transplanted with cells cultured without addition of control BIO (transplant without BIO), a bone-like hard tissue could be confirmed around HA. On the other hand, in mice transplanted with cells cultured in the presence of BIO (transplant with BIO), HA was completely absorbed, and formation of a large amount of bone marrow-like tissue was confirmed along with bone tissue.
 実施例6:ヒト乳歯由来歯髄幹細胞からの骨髄様組織の製造
 BIOで処理したヒト乳歯由来歯髄幹細胞(SHED)を用いて、骨髄様組織をマウスの体内で製造した。
Example 6: Production of bone marrow-like tissue from human deciduous dental pulp stem cells Using BIO-treated human deciduous dental pulp stem cells (SHED), bone marrow-like tissue was produced in the body of a mouse.
 <方法及び結果>
 マウス骨髄由来間葉系幹細胞(mBM-MSC)に換えてヒト乳歯由来幹細胞(Stem Cells from Human Exfoliated Deciduous teeth;SHED)を用いる以外は、実施例5と同様にして細胞を免疫不全マウス(NOD/ShiJic-scid/jclマウス)に移植した。
<Method and results>
The cells were treated with immunodeficient mice (NOD / MSD) in the same manner as in Example 5 except that stem cells from Human Exfoliated Deciduous teeth (SHED) were used instead of mouse bone marrow-derived mesenchymal stem cells (mBM-MSC). ShiJic-scid / jcl mice).
 結果を図5C及びDに示す。図5Cは、操作のスキームを示す。図5Dは、移植した部位を観察した顕微鏡像を示す(ヘマトキシリン・エオジン染色(HE染色))。 The results are shown in FIGS. 5C and D. FIG. 5C shows the scheme of operation. FIG. 5D shows a microscopic image of the transplanted site observed (hematoxylin and eosin staining (HE staining)).
 完全にHAは吸収されなかったものの、BIOの存在下で培養した細胞を移植したマウス(transplant with BIO)では対照群と比較して骨の形成が促進されて おり、マウス骨髄由来間葉系幹細胞を用いた場合と同様に、骨髄様の組織の形成が確認された。 Although HA was not completely absorbed, bone formation was promoted in mice transplanted with cells cultured in the presence of BIO (transplant with BIO) compared to the control group, and mouse bone marrow-derived mesenchymal stem cells The formation of bone marrow-like tissue was confirmed as in the case of using.
 実施例7:末梢血細胞の形成の検出
 実施例6で得たマウスにおいて、ヒト由来の末梢血細胞の形成を確認した。
Example 7: Detection of peripheral blood cell formation In the mouse obtained in Example 6, the formation of human-derived peripheral blood cells was confirmed.
 <方法及び結果>
 実施例6の方法に従って得たマウス(transplant with BIO)において、移植後8週間後のマウスから血液を採取した。まず、フローサイトメトリー法により、血液成分からFSC/SSCプロットにおいて、単球(高FSC、低SSC;R1群)及び顆粒球(高FSC、高SSC;R2群)をゲーティングした。ゲーティングされたR1群及びR2群のそれぞれについて、ヒト型CD11b抗原(hCD11b)の発現を検出した。独立した2例について、試験をした。
<Method and results>
In mice obtained according to the method of Example 6 (transplant with BIO), blood was collected from mice 8 weeks after transplantation. First, monocytes (high FSC, low SSC; R1 group) and granulocytes (high FSC, high SSC; R2 group) were gated on the FSC / SSC plot from blood components by flow cytometry. For each of the gated R1 group and R2 group, the expression of human CD11b antigen (hCD11b) was detected. Two independent cases were tested.
 ヒトから採取した血液(human blood cells)、移植をしなかったマウス(non-transplant)、BIOの添加なしに培養した細胞を移植したマウス(transplant without BIO)に由来する試料を対照とした。 Samples derived from blood collected from humans (human blood cells), mice not transplanted (non-transplant), and mice transplanted with cells cultured without the addition of BIO (transplant® without BIO) were used as controls.
 結果を図6に示す。図6Aは、フローサイトメトリー法によるゲーティングの結果の一例(ヒト血液(human blood cells)の場合。)を示す。図6Bは、ヒト型CD11b抗原(hCD11b)の発現の検出を示す。 The results are shown in FIG. FIG. 6A shows an example of the results of gating by flow cytometry (in the case of human blood cells). FIG. 6B shows detection of human CD11b antigen (hCD11b) expression.
 BIOの存在下で培養した細胞を移植したマウスにおいて特異的に、ヒト型CD11b抗原(hCD11b)の陽性細胞が検出できた。このことは、移植した細胞からヒトの機能的な血球細胞が生じており、移植した細胞が造血組織を形成したことを示している。 In human mice transplanted with cells cultured in the presence of BIO, positive cells of human CD11b antigen (hCD11b) could be detected specifically. This indicates that human functional blood cells were generated from the transplanted cells, and the transplanted cells formed hematopoietic tissue.
 実施例8:移植マウスの外的所見
 実施例6で得たマウスの外的所見を観察した。
Example 8: External findings of transplanted mice The external findings of the mice obtained in Example 6 were observed.
 <結果>
 結果を図6Cに示す。
<Result>
The result is shown in FIG. 6C.
 BIOの存在下で2日間培養したヒト乳歯由来幹細胞(SHED)を移植したマウスにおいて、眼の周りや四肢に皮膚症状(炎症所見)が観察された。その後、このマウスは移植後3~6ヶ月後頃には死に至る。 In the mouse transplanted with human milk tooth-derived stem cells (SHED) cultured for 2 days in the presence of BIO, skin symptoms (inflammatory findings) were observed around the eyes and in the limbs. Thereafter, the mice die about 3 to 6 months after transplantation.
 本発明を束縛するものではないが、この結果は、移植した細胞からヒト血球細胞が生じて、移植片対宿主病(graft versus host disease; GVHD)を引き起こしていると考えられる。すなわち、移植した細胞からヒトの機能的な血球細胞が生じており、移植した細胞が造血組織を形成したことを示している。 Although this is not a limitation of the present invention, it is considered that this result is that human blood cells are generated from the transplanted cells and cause graft-versus-host disease (GVHD). That is, it shows that human functional blood cells were generated from the transplanted cells, and the transplanted cells formed hematopoietic tissue.
 <考察>
 本発明の造血組織の製造方法により造血組織が形成できる作用機序は、十分明らかではないものの、BIOの存在下で培養することで、(1)体細胞が造血幹細胞又はこれに類する機能を有する幹細胞に分化しうる能力が獲得され、(2)移植後に造血幹細胞又はこれに類する機能を有する幹細胞への誘導が、移植箇所の周辺からの刺激で惹起されるためと考えられる。ただし、斯かる作用機序は推定に過ぎず、本発明を束縛するものではない。
<Discussion>
Although the mechanism of action by which the method for producing a hematopoietic tissue of the present invention can form a hematopoietic tissue is not clear enough, by culturing in the presence of BIO, (1) somatic cells have a function of hematopoietic stem cells or the like It is considered that the ability to differentiate into stem cells is acquired, and (2) induction into hematopoietic stem cells or stem cells having a function similar to that after transplantation is induced by stimulation from around the transplant site. However, such an action mechanism is only an estimation and does not restrict the present invention.

Claims (13)

  1.  下記の工程を含む、体細胞(A)に分化しうる細胞(B)の製造方法:
     下記一般式(I)で表される化合物の存在下で、前記体細胞(A)とは異なる体細胞(C)を培養する工程。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは水素原子(H)またはアセチル基(CH(C=O)-)を表す。Xはハロゲン原子を表す。]
    A method for producing a cell (B) capable of differentiating into a somatic cell (A), comprising the following steps:
    A step of culturing a somatic cell (C) different from the somatic cell (A) in the presence of a compound represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 represents a hydrogen atom (H) or an acetyl group (CH 3 (C═O) —). X represents a halogen atom. ]
  2.  前記化合物が、下記化学式で表される化合物である、請求項1に記載の方法。
    Figure JPOXMLDOC01-appb-C000002
    The method according to claim 1, wherein the compound is a compound represented by the following chemical formula.
    Figure JPOXMLDOC01-appb-C000002
  3.  体細胞(C)が、歯髄から取得した細胞または間葉系幹細胞である、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the somatic cells (C) are cells obtained from dental pulp or mesenchymal stem cells.
  4.  下記の工程を含む、造血組織の製造方法:
     下記化学式で表される化合物の存在下で、造血機能を有さない体細胞を培養する工程。
    Figure JPOXMLDOC01-appb-C000003
    A method for producing a hematopoietic tissue comprising the following steps:
    A step of culturing a somatic cell having no hematopoietic function in the presence of a compound represented by the following chemical formula.
    Figure JPOXMLDOC01-appb-C000003
  5.  下記の工程を含む、造血組織の製造方法:
     (1)下記化学式で表される化合物の存在下で、造血機能を有さない体細胞を培養する工程、
    Figure JPOXMLDOC01-appb-C000004
    及び
     (2)前記培養した細胞を、キャリアとともに動物に移植する工程。
    A method for producing a hematopoietic tissue comprising the following steps:
    (1) culturing a somatic cell having no hematopoietic function in the presence of a compound represented by the following chemical formula;
    Figure JPOXMLDOC01-appb-C000004
    And (2) a step of transplanting the cultured cells together with a carrier into an animal.
  6.  体細胞が、歯髄から取得した細胞または間葉系幹細胞である、請求項4または5に記載の方法。 The method according to claim 4 or 5, wherein the somatic cells are cells obtained from dental pulp or mesenchymal stem cells.
  7.  請求項1~3のいずれか1項に記載の方法により得られる、細胞。 A cell obtained by the method according to any one of claims 1 to 3.
  8.  請求項4~6のいずれか1項に記載の方法により得られる、造血組織。 A hematopoietic tissue obtained by the method according to any one of claims 4 to 6.
  9.  下記化学式で表される化合物を含む、細胞誘導剤。
    Figure JPOXMLDOC01-appb-C000005
    A cell inducer comprising a compound represented by the following chemical formula:
    Figure JPOXMLDOC01-appb-C000005
  10.  (1)下記化学式で表される化合物、及び
    Figure JPOXMLDOC01-appb-C000006
     (2)キャリア
    を含む、造血組織作製用キット。
    (1) a compound represented by the following chemical formula, and
    Figure JPOXMLDOC01-appb-C000006
    (2) A hematopoietic tissue preparation kit including a carrier.
  11.  下記の工程を含む、細胞誘導剤のスクリーニング方法:
     (1)体細胞を被験物質の存在下で培養し、当該被験物質の細胞誘導能を評価する工程、及び
     (2)前記工程で評価した被験物質の細胞誘導能と、下記化学式で表される化合物の細胞誘導能とを比較する工程。
    Figure JPOXMLDOC01-appb-C000007
    A method for screening a cell inducer comprising the following steps:
    (1) a step of culturing somatic cells in the presence of a test substance, and evaluating the cell induction ability of the test substance, and (2) the cell induction ability of the test substance evaluated in the above step, and represented by the following chemical formula: Comparing the cell-inducing ability of the compound.
    Figure JPOXMLDOC01-appb-C000007
  12.  体細胞(A)に分化しうる細胞(B)を製造するためであって、前記体細胞(A)とは異なる体細胞(C)から細胞(B)を製造するための、下記化学式で表される化合物の使用。
    Figure JPOXMLDOC01-appb-C000008
    In order to produce a cell (B) that can differentiate into a somatic cell (A), the cell is represented by the following chemical formula for producing a cell (B) from a somatic cell (C) different from the somatic cell (A). Use of the compounds to be made.
    Figure JPOXMLDOC01-appb-C000008
  13.  造血組織を製造するための、下記化学式で表される化合物の使用。
    Figure JPOXMLDOC01-appb-C000009
     
    Use of a compound represented by the following chemical formula for producing a hematopoietic tissue.
    Figure JPOXMLDOC01-appb-C000009
PCT/JP2015/080610 2014-10-31 2015-10-29 Method for producing cell and method for producing blood-forming tissue WO2016068257A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016517012A JP6270995B2 (en) 2014-10-31 2015-10-29 Cell manufacturing method and hematopoietic tissue manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-223316 2014-10-31
JP2014223316 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016068257A1 true WO2016068257A1 (en) 2016-05-06

Family

ID=55857592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080610 WO2016068257A1 (en) 2014-10-31 2015-10-29 Method for producing cell and method for producing blood-forming tissue

Country Status (2)

Country Link
JP (1) JP6270995B2 (en)
WO (1) WO2016068257A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108949682A (en) * 2018-08-22 2018-12-07 广东唯泰生物科技有限公司 A kind of preparation, culture and the purification process of dental pulp mescenchymal stem cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062147A1 (en) * 2009-11-17 2011-05-26 国立大学法人 岡山大学 Method for inducing differentiation of dental pulp cells into odontoblasts
US20110223140A1 (en) * 2009-10-06 2011-09-15 Snu R&Db Foundation Method for differentiation into retinal cells from stem cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223140A1 (en) * 2009-10-06 2011-09-15 Snu R&Db Foundation Method for differentiation into retinal cells from stem cells
WO2011062147A1 (en) * 2009-11-17 2011-05-26 国立大学法人 岡山大学 Method for inducing differentiation of dental pulp cells into odontoblasts

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHO J ET AL.: "Distinct roles of glycogen synthase kinase (GSK)-3alpha and GSK-3beta in mediating cardiomyocyte differentiation in murine bone marrow-derived mesenchymal stem cells.", J BIOL CHEM, vol. 284, no. 52, 25 December 2009 (2009-12-25), pages 36647 - 36658 *
DASTJERDI FV ET AL.: "Inhibition of GSK-3beta enhances neural differentiation in unrestricted somatic stem cells.", CELL BIOL INT, vol. 36, no. 11, 1 November 2012 (2012-11-01), pages 967 - 972 *
ESLAMINEJAD MB ET AL.: "Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells treated by GSK-3 inhibitors.", HISTOCHEM CELL BIOL., vol. 140, no. 6, December 2013 (2013-12-01), pages 623 - 633, XP035342880, DOI: doi:10.1007/s00418-013-1121-x *
KAWAI SAKI ET AL.: "Effect of 6-bromoindirubin- 3'-oxime on human deciduous tooth dental pulp cells", ORAL THERAPEUTICS AND PHARMACOLOGY, vol. 31, no. 3, 25 February 2013 (2013-02-25), pages 87 - 95 *
KO KH ET AL.: "GSK-3beta inhibition promotes engraftment of ex vivo-expanded hematopoietic stem cells and modulates gene expression.", STEM CELLS., vol. 29, January 2011 (2011-01-01), pages 10 8 - 118 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108949682A (en) * 2018-08-22 2018-12-07 广东唯泰生物科技有限公司 A kind of preparation, culture and the purification process of dental pulp mescenchymal stem cell

Also Published As

Publication number Publication date
JPWO2016068257A1 (en) 2017-04-27
JP6270995B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
Ladurner et al. Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth Macrostomum sp.: a bromodeoxyuridine analysis
Ratajczak et al. Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells
CN101495623B (en) Method to modulate hematopoietic stem cell growth
RU2756561C2 (en) Colony formation medium and its application
CN104582711B (en) pluripotent stem cells for inducing repair and regeneration of myocardial infarction
JP7041515B2 (en) Factors and cells that provide bone, bone marrow, and cartilage induction
EP2554660A1 (en) Intervertebral disc nucleus pulposus stem/progenitor cell, method for culturing same, and application
JPWO2003027281A1 (en) Skeletal muscle stroma-derived multipotent stem cells
Ivanovic et al. Anaerobiosis and stemness: an evolutionary paradigm for therapeutic applications
WO2018025975A1 (en) Method for inducing differentiation of pluripotent stem cells in vitro
Kumar Bone defect repair in mice by mesenchymal stem cells
JP6270995B2 (en) Cell manufacturing method and hematopoietic tissue manufacturing method
Zhou et al. Involvement of bone marrow stem cells in periodontal wound healing
WO2016103776A1 (en) Method for culturing normal cells and odontoma cells contained in oral tissue
Zerbst An investigation into the role of autophagy in mediating leukaemic cell location in the bone marrow niche
Lee Extrinsic regulation of Hematopoietic Stem Cells in the fetal liver
JP6582044B2 (en) Method for producing frozen mesenchymal cells and method for producing therapeutic material for transplantation
Pater et al. Stem Cells and Haemopoiesis
Amoah Characterization of aging-related changes in human hematopoietic stem cells
Siddiqui et al. Stem Cells
Nguyen Hic1 is a quiescence regulator of mesenchymal stromal cells in bone marrow and responsible for controlling the size of hematopoietic stem cell niche
Chong Defining the origin of adult cardiac multipotent colony forming stem cells
Imanirad et al. The Effects of Hypoxia on Hematopoietic Cells and Their Niche in the Developing Mouse Placenta
Schreck The role of Wnt5a in hematopoiesis and leukemia
Rashidi Regional localization and regulation of hematopoietic stem cells in the bone marrow stem cell niche

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016517012

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855975

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855975

Country of ref document: EP

Kind code of ref document: A1