WO2016067942A1 - Subject information processing device, information processing method, information processing program, and computer readable recording medium with same program recorded thereon - Google Patents

Subject information processing device, information processing method, information processing program, and computer readable recording medium with same program recorded thereon Download PDF

Info

Publication number
WO2016067942A1
WO2016067942A1 PCT/JP2015/079404 JP2015079404W WO2016067942A1 WO 2016067942 A1 WO2016067942 A1 WO 2016067942A1 JP 2015079404 W JP2015079404 W JP 2015079404W WO 2016067942 A1 WO2016067942 A1 WO 2016067942A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
waveform
unit
information processing
Prior art date
Application number
PCT/JP2015/079404
Other languages
French (fr)
Japanese (ja)
Inventor
博司 小川
淳 納本
Original Assignee
株式会社三菱ケミカルホールディングス
サルーステック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015049258A external-priority patent/JP6537854B2/en
Application filed by 株式会社三菱ケミカルホールディングス, サルーステック株式会社 filed Critical 株式会社三菱ケミカルホールディングス
Publication of WO2016067942A1 publication Critical patent/WO2016067942A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/095Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using a lock detector

Definitions

  • the present invention relates to a specimen information processing apparatus for normalizing a pulsating signal, an information processing method for normalizing a pulsating signal, an information processing program for normalizing a pulsating signal, and a computer-readable recording medium storing the program About.
  • Detecting pulse wave from specimen using photoelectric or piezoelectric pulse wave meter In particular, an attempt has been made to detect a pulse wave with a microphone on an arm through which a relatively thick blood vessel passes, or a fingertip with a capillary vessel stretched like a net. In addition, an attempt has been made to detect a pulse wave from a blood vessel existing in the ear canal by arranging a sensor in the ear of the specimen.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-115431
  • a casing having a cavity is attached to the skin surface by an attachment member, an opening in a part of the attachment surface is sealed by the skin, and vibration of the skin surface due to body sounds
  • a body sound acquisition device is disclosed that is directly transmitted to air in a cavity and can be acquired by a microphone.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2010-22572
  • the ear canal insertion part is inserted into the ear canal, the ear canal is closed to form a closed space between the eardrum and sound that is biological vibration is transmitted through the closed space.
  • a biological information detection device for detection is disclosed. Further, it is disclosed that only a low-frequency band signal component containing a large amount of biological information is extracted by a low-pass filter.
  • FIG. 16 shows the waveform of the pulsating signal detected from the external auditory canal of the specimen. From 3 seconds to around 12 seconds, the waveform of the pulse wave is obtained when the specimen is in a normal state. On the other hand, from around 13 seconds to around 43 seconds, the waveform of the pulse wave fluctuates due to the addition of a disturbance to the waveform of the pulse wave detected from the ear canal due to the utterance of Aiweo.
  • FIG. 17 also shows the waveform of the pulsating signal detected from the external auditory canal of the specimen.
  • the periodic pulse wave pattern is disturbed due to irregularity of the living body itself including so-called arrhythmia.
  • a change in the pulse rate itself can also be cited as a fluctuation of the pulsation signal.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide an apparatus that improves signal handling when a fluctuation occurs in a pulsation signal.
  • a sample information processing apparatus disclosed herein includes a sample information detection unit that detects a pulsation signal based on blood vessel pulse wave information in a sample, and a signal processing unit that normalizes the pulsation signal.
  • the signal processing unit includes a PLL circuit to which the pulsation signal is input. The PLL circuit compares the phases of the pulsation signal and the feedback signal, and a phase difference signal corresponding to the phase difference.
  • a phase comparator that outputs a voltage control signal from which the phase difference signal is input and a frequency component higher than a predetermined cutoff frequency is removed, and an oscillation frequency corresponding to the voltage of the voltage control signal
  • a voltage-controlled oscillator that outputs a clock signal having a frequency divider, and a frequency divider that receives the clock signal and outputs a divided signal obtained by dividing the clock signal by a predetermined frequency division ratio.
  • a frequency signal is input to the phase comparator as the feedback signal, and the oscillation frequency of the voltage controlled oscillator is controlled so that the phases of the pulsating signal and the feedback signal are synchronized, and the pulsating signal is controlled by the clock signal. Normalize It is preferable.
  • the signal processing unit includes a signal recording unit including an AD converter that acquires the signal strength of the pulsating signal as digital data, and a memory that stores the data obtained by the AD converter, A counter that receives the frequency-divided signal from the frequency divider, counts the frequency-divided signal, and outputs a waveform number indicating the order of pulse waves; and feedback that reads and filters the signal intensity recorded in the memory And a comb filter, wherein the AD converter acquires the signal strength at a timing when the clock signal is input from the voltage controlled oscillator and outputs the signal strength to the memory, and the memory is input from the counter.
  • a signal recording unit including an AD converter that acquires the signal strength of the pulsating signal as digital data, and a memory that stores the data obtained by the AD converter, A counter that receives the frequency-divided signal from the frequency divider, counts the frequency-divided signal, and outputs a waveform number indicating the order of pulse waves; and feedback that reads and filters the signal intensity recorded in the memory
  • the pulsation signal Upon receipt of the waveform number, the pulsation signal is recorded as a signal strength associated with the waveform number and a clock number corresponding to the input timing of the clock signal, and the feedback code is recorded. Filter, from the voltage controlled oscillator is the clock signal is input, it is preferable to pass the total number of clocks integral multiple frequency components per cycle of the pulsation of the signal.
  • the signal processing unit reads out the signal intensities of a plurality of waveform numbers recorded in the memory, adds the signal intensities of the same clock numbers, and outputs an average value for each waveform number. It is preferable to provide.
  • the signal processing unit determines whether or not the phase of the pulsation signal input to the PLL circuit and the feedback signal are synchronized, and detects whether or not the PLL circuit is locked. It is preferable to provide a lock detection unit.
  • the signal processing unit includes a signal counting unit that receives the divided signal and counts pulses per unit time of the divided signal.
  • the signal processing unit receives the signal processed by the averaging processing unit, generates a waveform representing the relationship between the clock number and the average value of the signal intensity, and generates a waveform for each waveform number. It is preferable to provide a waveform display unit that displays a waveform of one cycle obtained by averaging a plurality of pulse waves on the display.
  • the signal processing unit includes a differentiation processing unit that reads the signal strength recorded in the memory and numerically differentiates it.
  • the signal processing unit preferably includes an integration processing unit that reads the signal intensity recorded in the memory and numerically integrates it.
  • the information processing method disclosed here acquires a pulsation signal detected based on blood vessel pulse wave information in a specimen, and normalizes the pulsation signal.
  • the information processing program disclosed herein causes a computer to execute processing for acquiring a pulsation signal detected based on blood vessel pulse wave information in a specimen and normalizing the pulsation signal.
  • the computer-readable recording medium disclosed herein records the information processing program described above.
  • the present invention by normalizing the pulsating signal, it is possible to handle the signal regardless of the time axis even between waveforms having different pulse rates.
  • FIG. 1 is a block diagram showing an example of the configuration of a PLL circuit and an information processing apparatus according to the first embodiment of the first invention.
  • FIG. 2 is a diagram illustrating a waveform in a normal state
  • FIG. 2A illustrates a waveform of a pulsation signal input to the binarization processing unit
  • FIG. 2B illustrates a binarization processing unit
  • FIG. 2C shows the waveform of the clock signal output from the VCO.
  • FIG. 3 is a diagram illustrating a waveform in a normal state or during walking.
  • FIG. 3A illustrates a waveform of a pulsation signal input to the binarization processing unit
  • FIG. The waveform of the pulsating signal binarized by the binarization processing unit is shown, and FIG.
  • FIG. 4 is a diagram showing the waveform of a long-term pulsation signal in normal or walking, and the upper part of FIG. 4A shows the waveform of the pulsation signal input to the binarization processing unit.
  • 4 (b) shows the waveform of the voltage control signal output from the LPF, and the upper part of FIG. 4 (c) shows the waveform of the clock signal output from the VCO.
  • the lower part of FIG. 4B and FIG. 4C shows the waveform of the clock signal output from the VCO.
  • FIG. 5 is a schematic diagram for explaining the classification of pulse wave waveform patterns as pulses.
  • FIG. 5A shows a pattern when there is no temporal variation
  • FIG. 5A shows a pattern when there is no temporal variation
  • FIG. 6 is a block diagram showing an example of the configuration of the PLL circuit and the information processing apparatus according to the second embodiment of the first invention.
  • FIG. 7 is a schematic diagram for explaining the configuration of the memory and the memory bank.
  • FIG. 8 is a schematic diagram for explaining the relationship between the waveform of the pulse wave, the clock number, and the waveform number.
  • FIG. 9 is a block diagram for explaining the frequency characteristics of the feedback comb filter.
  • FIG. 10 is a graph for explaining the frequency characteristics of the feedback comb filter.
  • FIG. 11 is a diagram illustrating an example of a frequency spectrum of a volume pulse wave in a normal state.
  • FIG. 12 is a diagram for explaining an example of display on the display device according to the second embodiment when there is a variation in the pulse wave.
  • FIG. 13 is a diagram for explaining an example of display on the display according to the second embodiment when the pulse rate has increased.
  • FIG. 14 is a diagram illustrating an example of display of the pulse wave and the pulse rate when the pulse wave varies.
  • FIG. 15 is a diagram illustrating an example of display of a pulse wave and a pulse rate when the pulse rate increases.
  • FIG. 16 is a diagram showing a waveform of a pulsating signal detected from the external auditory canal when a normal state and eyeway are uttered.
  • FIG. 16 is a diagram showing a waveform of a pulsating signal detected from the external auditory canal when a normal state and eyeway are uttered.
  • FIG. 17 is a diagram showing a waveform of a pulsating signal detected from the external auditory canal when a normal state and an out-of-out voice are produced.
  • FIG. 18 is a flowchart for explaining an example of processing of the sample information processing apparatus according to the second embodiment of the first invention.
  • FIG. 19 is a block diagram showing an example of the configuration of the sample information processing apparatus according to the third embodiment of the first invention.
  • FIG. 20 is a flowchart for explaining an example of processing of the sample information processing apparatus according to the third embodiment of the first invention.
  • FIG. 21 is a block diagram showing an example of the configuration of the sample information processing apparatus according to the fourth embodiment of the first invention.
  • FIG. 22 is a flowchart for explaining an example of processing of the sample information processing apparatus according to the fourth embodiment of the first invention.
  • FIG. 23 is a diagram schematically showing the configuration of the sample information processing apparatus according to the first embodiment of the second invention.
  • FIG. 24 is a diagram schematically illustrating an example of a relationship with the outer ear when the sample information detection unit according to the first embodiment of the second invention is a canal-type inner-ear type headphone.
  • FIG. 25 is a diagram schematically illustrating an example of a relationship with the outer ear when the sample information detection unit according to the first embodiment of the second invention is an on-ear type headphone.
  • FIG. 26 is a diagram schematically illustrating an example of a relationship with the outer ear when the sample information detection unit according to the first embodiment of the second invention is an around-ear type headphone.
  • FIG. 24 is a diagram schematically illustrating an example of a relationship with the outer ear when the sample information detection unit according to the first embodiment of the second invention is a canal-type inner-ear type headphone.
  • FIG. 25 is a diagram schematically illustrating an example of a relationship with the outer ear when the
  • FIG. 27 is a diagram schematically illustrating an example of the relationship between the structure of the auricle and the mounting position of an on-ear type or around-ear type headphone.
  • FIG. 28 is an external view showing an example of an on-ear type headphone.
  • FIG. 29 is an external view showing an example of an around-ear type headphone.
  • FIG. 30 is a diagram schematically showing the structure of the jack according to the first embodiment of the second invention.
  • FIG. 30 (a) is a view seen from the side of the jack, and
  • FIG. 30 (b) is another diagram.
  • FIG. 30C is a diagram seen from another direction, and FIG. 30C is a diagram seen from another direction.
  • FIG. 30C is a diagram seen from another direction.
  • FIG. 31 is a diagram schematically showing the structure of a jack and a plug according to the first embodiment of the second invention.
  • FIG. 31 (a) is a diagram seen from the side of the jack, and
  • FIG. 31 (b) is a diagram.
  • FIG. 31C is a view seen from another direction, and
  • FIG. 31C is a view seen from another direction.
  • FIG. 32 is a block diagram for explaining an example of functional configurations of the gain switching unit and the frequency characteristic compensation unit.
  • FIG. 33 is a diagram illustrating an example of a frequency characteristic compensation pattern according to the first embodiment of the second invention.
  • FIG. 34 is a diagram illustrating an example of an electric circuit that performs frequency characteristic compensation according to the first embodiment of the second invention.
  • FIG. 31 is a diagram schematically showing the structure of a jack and a plug according to the first embodiment of the second invention.
  • FIG. 31 (a) is a diagram seen from the side of the jack
  • FIG. 31 (b) is a
  • FIG. 35 is a diagram illustrating an example of a Bode diagram of an electric circuit that performs frequency characteristic compensation according to the first embodiment of the second invention.
  • FIG. 36 is a schematic diagram for explaining clocks and sampling points in frequency characteristic compensation processing.
  • FIG. 37 is a block diagram for explaining an example of a functional configuration of the frequency correction processing unit.
  • FIG. 38A is a diagram illustrating the frequency characteristics of the driver unit, and
  • FIG. 38B is a diagram illustrating an example of the frequency response of the compensation circuit.
  • FIG. 39A is a diagram showing the frequency characteristics of a pulsating signal when the ear canal cannot be completely closed
  • FIG. 39B is a frequency characteristic of phase compensation that raises the low frequency region of the pulse wave detection band.
  • FIG. 40 is a diagram illustrating an example of a waveform of a pulse wave obtained when a pulsation signal of a blood vessel is detected in a state where a closed cavity is formed at a fingertip or an arm
  • FIG. 40B is a diagram showing a waveform of a detected signal
  • FIG. 40C is a diagram showing a waveform obtained by differentiating the detected signal.
  • FIG. 41 is a diagram illustrating an example of a waveform of a signal detected using a canal-type inner-ear type headphone sample information detection unit.
  • FIG. 41A illustrates a waveform obtained by integrating the detected signal.
  • FIG. 41B is a diagram illustrating a waveform of a detected signal
  • FIG. 41C is a diagram illustrating a waveform obtained by differentiating the detected signal.
  • Fig.42 (a) is a figure showing the frequency characteristic of the pulsation signal when the site
  • FIG.42 (b) uses overhead type headphones It is a figure showing the frequency characteristic of the phase compensation which raises the low frequency area
  • FIG. 43 is a diagram illustrating an example of a waveform of a signal detected using a specimen information detection unit that is an on-ear type headphone
  • FIG. 43 (a) is a diagram illustrating a waveform of the detected signal. 43 (b) shows a waveform obtained by further integrating the detected signal.
  • FIG.42 (a) is a figure showing the frequency characteristic of the pulsation signal when the site
  • FIG.42 (b) uses overhead type headphones It is a figure showing
  • FIG. 44 is a diagram illustrating an example of a waveform of a signal detected using a specimen information detection unit that is an around-ear type headphone
  • FIG. 44 (a) is a diagram illustrating a waveform of the detected signal
  • FIG. 44B shows a waveform obtained by further integrating the detected signal
  • FIG. 45 is a diagram illustrating an example of a waveform of a signal detected using a specimen information detection unit whose ear pad is an on-ear type headphone made of synthetic leather
  • FIG. 45 (a) illustrates a waveform of the detected signal.
  • FIG. 45B shows a waveform obtained by further integrating the detected signal.
  • FIG. 45 shows a waveform obtained by further integrating the detected signal.
  • FIG. 46 is a diagram illustrating an example of a waveform of a signal detected using a specimen information detection unit that is an around-ear type headphone equipped with a DSP, and FIG. 46A illustrates a waveform of the detected signal.
  • FIG. 46B is a diagram showing a waveform obtained by further integrating the detected signal.
  • FIG. 47 is a diagram illustrating an example of a waveform of a signal detected using a sample information detection unit whose ear pad is a fabric around-ear type headphone, and FIG. 47A illustrates a waveform of the detected signal.
  • FIG. 47B shows a waveform obtained by further integrating the detected signal.
  • FIG. 47 shows a waveform obtained by further integrating the detected signal.
  • FIG. 48 is a diagram illustrating an example of a waveform detected when the external auditory canal is opened when a sample information detection unit that is an on-ear type headphone is used.
  • FIG. 49 is a diagram illustrating an example of a waveform detected when the external auditory canal is closed when a sample information detection unit that is an on-ear type headphone is used.
  • FIG. 50 is a diagram illustrating an example of a waveform detected when the external auditory canal is opened when a specimen information detection unit that is an around-ear type headphone is used.
  • FIG. 51 is a diagram illustrating an example of a waveform detected when the ear canal is closed when a sample information detection unit that is an around-ear type headphone is used.
  • FIG. 52 is a diagram illustrating an example of a waveform detected when a specimen information detection unit that is a canal-type inner-ear type headphone is pressed against a tragus.
  • FIG. 53 is a diagram illustrating an example of a waveform detected when a specimen information detection unit that is a canal-type inner-ear type headphone is pressed against the earlobe.
  • FIG. 54 is a diagram for explaining an example of a frequency correction process of pulsation signal output.
  • FIG. 55 is a flowchart for explaining an example of processing of the sample information detecting apparatus and the sample information processing apparatus according to the first embodiment of the second invention.
  • FIG. 53 is a diagram illustrating an example of a waveform detected when a specimen information detection unit that is a canal-type inner-ear type headphone is pressed against the earlobe.
  • FIG. 54 is a diagram for explaining an example of a frequency correction process of pulsation signal output.
  • FIG. 55 is a flowchart for explaining an example
  • FIG. 56 is a diagram schematically showing the configuration of a sample information detecting apparatus and a sample information processing apparatus according to a modification of the first embodiment of the second invention.
  • FIG. 57 is a view schematically showing the structure of a jack according to a modification of the first embodiment of the second invention.
  • FIG. 57 (a) is a view seen from the side of the jack, and
  • FIG. b) is a view from another direction
  • FIG. 57 (c) is a view from another direction.
  • FIG. 58 is a diagram schematically showing the structure of a jack and a plug according to a modification of the first embodiment of the second invention
  • FIG. 58 (a) is a diagram seen from the lateral direction of the jack.
  • FIG. 58 (b) is a view from another direction
  • FIG. 58 (c) is a view from another direction
  • FIG. 59 shows an example of the circuit configuration of the connecting portion
  • FIG. 59 (a) is a diagram in the case where an FET is provided
  • FIG. 59 (b) is a diagram in the case where a capacitor is provided
  • FIG. c) is a diagram in the case of direct connection
  • FIG. 60 is a diagram illustrating an example of a waveform displayed by superimposing the waveform of the signal obtained by the R headphone unit and the waveform of the signal obtained by the L headphone unit.
  • FIG. 61 is an enlarged view of an example of a waveform obtained by superimposing the waveform of the signal obtained by the R headphone unit and the waveform of the signal obtained by the L headphone unit.
  • FIG. 62 is a diagram illustrating an example of signal processing of a signal waveform obtained by the R headphone unit and a signal waveform obtained by the L headphone unit, and FIG. 62 (a) is obtained by the R headphone unit.
  • FIG. 62 (b) is a diagram showing the waveform of a signal obtained by the L headphone unit, and
  • FIG. 62 (c) is a diagram showing the signal obtained by the R headphone unit and the L headphone unit. It is a figure showing the waveform which added the obtained signal.
  • FIG. 62 is a diagram illustrating an example of signal processing of a signal waveform obtained by the R headphone unit and a signal waveform obtained by the L headphone unit
  • FIG. 62 (a) is obtained by the R headphone unit.
  • FIG. 63 is a diagram illustrating an example of signal processing of a signal waveform obtained by the R headphone unit and a signal waveform obtained by the L headphone unit, and FIG. 63A is obtained by the R headphone unit.
  • FIG. 63B is a diagram illustrating the waveform of a signal obtained from the L headphone unit
  • FIG. 63C is a diagram illustrating the signal obtained from the R headphone unit and the L headphone unit. It is a figure showing the waveform which integrated the obtained signal.
  • FIG. 64 schematically shows a configuration of a sample information processing apparatus that adds a signal obtained by an R headphone unit and a signal obtained by an L headphone unit according to a modification of the first embodiment of the second invention. It is a figure.
  • FIG. 64 schematically shows a configuration of a sample information processing apparatus that adds a signal obtained by an R headphone unit and a signal obtained by an L headphone unit according to a modification of the first embodiment of the second invention. It is a figure.
  • FIG. 65 schematically shows a configuration of a sample information processing apparatus that adds and divides a signal obtained by the R headphone unit and a signal obtained by the L headphone unit according to a modification of the first embodiment of the second invention.
  • FIG. 66A and 66B are diagrams for explaining an example of waveform disturbance detection.
  • FIG. 66A is a diagram showing a waveform when a pulse-like disturbance is added to a pulse waveform
  • FIG. 66B is a diagram for detecting the waveform disturbance. It is a figure showing the accompanying detection output.
  • Specimen information processing devices A6, A7, and A8 disclosed herein include a sample information detection unit A101 and information processing devices A2, A3, and A4 as shown in FIGS.
  • the specimen information detection unit A101 detects a pulsation signal based on blood vessel pulse wave information in the specimen.
  • the information processing devices A2, A3, and A4 include signal processing units A15, A16, and A17 that normalize the pulsating signal.
  • the signal processing units A15, A16, A17 include a PLL circuit A12 (see FIG. 6), or a pulse frequency detection unit A301, A302, and a clock generator A303 (see FIGS. 19, 21).
  • the information processing apparatus A1 and the sample information processing apparatus A5 according to the first embodiment including the PLL circuit A11 that locks to the input pulsation signal will be described.
  • the information processing apparatus A2 and the sample information processing apparatus A6 according to the second embodiment, in which the pulsation signal is normalized by the PLL circuit A12 will be described.
  • the apparatus A4 and the sample information processing apparatus A8 will be described.
  • a PLL (phase locked loop) circuit A11, an information processing apparatus A1 including a PLL circuit A11, and a sample information processing apparatus A5 according to a first embodiment of the present invention will be described with reference to FIG.
  • the first embodiment is also simply referred to as this embodiment.
  • the PLL circuit A11 includes a phase comparator A21, an LPF (low pass filter) A22, and a VCO (voltage controlled oscillator) A23a.
  • the phase comparator A21 compares the phases of the input pulsation signal and the feedback signal, and outputs a pulse signal having a width corresponding to the phase difference to the LPFA 22 as a phase difference signal.
  • the phase comparator A21 according to the present embodiment is configured by an XOR (exclusive OR) circuit. Further, the phase comparator A21 outputs the pulsation signal and the feedback signal to the lock detection unit A41.
  • the LPF A22 receives the phase difference signal and outputs it to the VCOA 23a as a voltage control signal from which a frequency component higher than a predetermined cutoff frequency has been removed. As a result, a voltage corresponding to the phase difference between the pulsation signal and the feedback signal is generated and input to the voltage controlled oscillator. Since the LPFA 22 is a first-order or higher-order low-pass filter having a cutoff frequency, the PLL circuit A11 becomes a higher-order loop of a second-order or higher system. The following description will be made on the premise of a second-order PLL, which is characterized by locking with a phase difference of zero within a certain time against a sudden shift of the phase of an input pulse wave.
  • the VCO A 23a outputs a clock signal having an oscillation frequency corresponding to the voltage of the input voltage control signal.
  • the clock signal is input to the phase comparator A21 as the feedback signal described above.
  • the oscillation frequency of the VCOA 23a is designed to vary around 1 Hz, which is about the same as the frequency of the pulse wave.
  • the VCOA 23a outputs a clock signal to the signal counting unit A42.
  • the PLL circuit A11 is configured as described above, and the oscillation frequency of the VCOA 23a is controlled so that the phases of the pulsating signal input to the PLL circuit A11 and the clock signal as a feedback signal are synchronized. As a result, the PLL circuit A11 locks (synchronizes) with the input pulsation signal.
  • the PLL circuit A11 according to the present embodiment is a secondary PLL having a natural frequency ⁇ n of 0.5, a damping factor ⁇ of 0.8, a pull-in time of 10 seconds and a 5% error. That is, the PLL circuit A11 is a PLL circuit for locking to a pulsation signal.
  • the pulsating signal input to the PLL circuit A11 may be fluctuated due to sudden burst burst disturbance or pulse wave pattern disturbance due to the occurrence of an irregular pulse in addition to the frequency change of the signal itself. . It is preferable to design such that the order of the PLL and the type of the loop gain are matched on the premise of the factors of fluctuation of these pulsation signals.
  • the loop gain types can be divided into three types, Type 1 to Type 3, depending on the shape of the filter.
  • the loop gains G 1 to G 3 can be obtained by the following formulas (1) to (3).
  • k is a constant representing the gain of the filter.
  • a is a constant representing a pole or zero indicating the characteristics of the filter.
  • b is a constant representing a zero point or pole indicating the characteristics of the filter.
  • s is a complex number representing the angular frequency in polar coordinates, and is used to describe the characteristics of the filter.
  • the loop gain G of the PLL can be obtained by the following equation (4) from the natural frequency ⁇ n of the PLL circuit and the damping factor ⁇ .
  • G 2 ⁇ ⁇ ⁇ ⁇ n (4)
  • the PLL circuit A11 of the present embodiment is a secondary PLL in order to take a wide range in which the locked state can be maintained after being locked once. Considering only the phase step change, the above type 2 PLL is used.
  • the information processing apparatus A1 is a portable information terminal (smart phone) as a mobile terminal for processing a detected signal.
  • the smartphone as the information processing apparatus A1 includes an input / output device (not shown), a storage device (memory such as ROM, RAM, and nonvolatile RAM), a central processing unit (CPU), a timer counter, a wireless transmission unit, and the like.
  • the smartphone includes an input / output device (not shown), a storage device (memory such as ROM, RAM, and nonvolatile RAM), a central processing unit (CPU), a timer counter, a wireless transmission unit, and the like.
  • the information processing apparatus A1 includes a gain switching unit A51, a frequency characteristic compensation unit A61, a frequency correction processing unit A71, a binarization processing unit A31, a PLL circuit A11, a lock detection unit A41, and a signal counting unit A42.
  • the above components of the information processing apparatus A1 are collectively referred to as a signal processing unit A14.
  • the information processing apparatus A1 includes a display A81.
  • the pulsation signal detected by the specimen information detection unit A101 is output to the information processing apparatus A1, and the PLL circuit is passed through the gain switching unit A51, the frequency characteristic compensation unit A61, the frequency correction processing unit A71, and the binarization processing unit A31. Input to A11.
  • the sample information detection unit A101 will be described, and then the information processing apparatus A1 will be described.
  • the specimen information detection unit A101 is a measuring apparatus having a sensor that can detect a pulsating signal based on blood vessel pulse wave information in a specimen.
  • the sample information detection unit A101 of this embodiment uses a headphone dynamic type driver unit as a sensor, and is attached to the outer ear of the sample so as to form a cavity having a spatial structure in which the external ear canal of the sample is closed or substantially closed. Detect pulsatile signals from the ear canal.
  • the specimen information detection unit A101, the sensor, and the measurement site are not limited to this.
  • a light emitting diode is used as the light emitting unit
  • a photodiode or phototransistor is used as the light receiving unit.
  • a photoelectric measuring device that detects the sex signal can be used.
  • a piezoelectric measuring device that detects a pulsating signal by pressing a piezoelectric element on the artery of the arm can be used.
  • the measuring device that detects the pulsation signal with the microphone and the vibration source closed is used.
  • the above-mentioned “blood vessel pulse wave information” is pulse wave information transmitted through the blood vessel, and is information (signal) indicating vibration transmitted through the blood vessel caused by the heartbeat of the specimen. is there.
  • the specimen information detection unit A101 outputs the detected pulsation signal to the information processing apparatus A1.
  • the pulsation signal input to the information processing apparatus A1 is input to the gain switching unit A51.
  • the gain switching unit A51 is an electric circuit that adjusts the gain of an input signal to amplify or attenuate the signal and adjust the signal level.
  • the gain switching unit A51 detects the saturation of the signal detected by the specimen information detection unit A101, and performs a process of reducing the signal level when the saturation is detected.
  • the gain switching unit A51 outputs the processed signal to the frequency characteristic compensation unit A61.
  • the frequency characteristic compensation unit A61 is an electric circuit that performs phase compensation on an input signal and corrects the frequency characteristic.
  • the pulsation signal detected by the specimen information detection unit A101 and input to the information processing apparatus A1 includes sensor characteristics, signal detection status, and a digital signal processor (DSP) included in the specimen information detection unit A101 or the information processing apparatus A1. ) May be affected by the signal characteristics.
  • the frequency characteristic compensation unit A61 performs phase compensation at least in a frequency band in which blood vessel pulse wave information is detected, compensates for a frequency response indicated by the pulsation signal, and obtains a pulsation signal indicating the original pulse wave waveform. Perform equalization processing.
  • a pulsating volume signal, a pulsating velocity signal, or a pulsating acceleration signal is obtained by phase compensation by the frequency characteristic compensator A61.
  • the frequency characteristic compensation unit A61 outputs the processed signal to the frequency correction processing unit A71.
  • the frequency of the pulse wave may vary from around 0.8Hz during normal times to around 3Hz during intense exercise.
  • the frequency characteristic compensator A61 does not operate the waveform equalization process correctly in relation to the cutoff frequency of the compensation circuit that performs phase compensation. There is a case.
  • the signal output from the frequency characteristic compensator A61 is not for monitoring the waveform but is supplied to the PLL circuit A11 to generate a clock signal, these upper and lower frequencies are set. It can be used if the design is taken into consideration.
  • the frequency correction processing unit A71 performs at least one of an amplification operation, an integration operation, and a differentiation operation on the input signal at the frequency of the pulsating signal, thereby causing a pulsating volume signal and a pulsating velocity. It is an electric circuit for extracting one of the signal and the pulsating acceleration signal. Processing for extracting one of the pulsating volume signal, the pulsating velocity signal, and the pulsating acceleration signal by the frequency correction processing unit A71 is also referred to as frequency correction processing.
  • the waveforms indicated by the pulsating volume signal, the pulsating velocity signal, and the pulsating acceleration signal are also referred to as volume pulsation wave, velocity pulsation wave, and acceleration pulsation wave, respectively.
  • the frequency correction processing unit A71 outputs a velocity pulse wave signal to the binarization processing unit A31.
  • the frequency correction processing unit A71 is a compensation circuit that performs an integration operation or a differentiation operation when the frequency component of the pulsation signal has a lower limit of about 0.8 Hz or an upper limit of about 3 Hz.
  • the frequency correction process may not operate correctly due to the relationship with the cutoff frequency.
  • the signal output from the frequency correction processing unit A71 is also supplied to the PLL circuit A11 to generate a clock signal, so if the design is performed in consideration of these upper and lower frequencies. Can be used.
  • the binarization processing unit A31 is an electric circuit that converts an input pulsation signal into an on / off binary signal.
  • the pulses are shaped so that the duty ratio in the ON section is approximately 50% with reference to the rise or fall of the input pulse wave signal. Further, conversion is performed so as to turn off from the on section to the next rising edge.
  • the phase comparator A21 is an XOR circuit, binarization is performed by the above-described method. However, the binarization processing is performed by using the converted pulsation signal. Is not limited as long as processing is performed so that the phase comparator A21 can detect the signal.
  • the binarization processing unit A31 outputs the processed signal to the PLL circuit A11.
  • the lock detector A41 determines whether or not the phase of the pulsating signal input to the PLL circuit A11 and the feedback signal are synchronized, and detects whether the PLL circuit A11 is locked to the pulsating signal. Circuit.
  • the lock detector A41 receives the pulsation signal and the feedback signal from the phase comparator A21 and compares the phases of the two signals. Since the characteristic of the phase comparator A21 uses XOR logic, when the phase of the pulsation signal and the feedback signal is shifted by 90 degrees, it is determined that the phases of both signals are synchronized.
  • the lock detection unit A41 detects such a relationship and determines whether the phases are synchronized.
  • the lock detection unit A41 determines that the phase of the pulsation signal and the feedback signal are synchronized, and outputs a lock detection signal to the display A81 when detecting the lock of the PLL circuit A11. On the other hand, the lock detection unit A41 outputs an unlock detection signal to the display unit A81 when determining that the phase is not synchronized, and thus detecting the lock of the PLL circuit A11.
  • the signal counter A42 receives the clock signal from the VCO A 23a and counts pulses per unit time of the clock signal.
  • the signal counting unit A42 is realized by a microcomputer that counts the number of pulses of the input clock signal with an internal high frequency clock. In the present embodiment, the signal counting unit A42 counts the number of pulses of the clock signal per minute. The signal counting unit A42 outputs the signal count value to the display A81.
  • the display device A81 is a display device that presents information related to the pulsation signal.
  • the display A81 receives a lock detection signal or an unlock detection signal from the lock detection unit A41 and displays whether or not the PLL circuit A11 is locked.
  • the display A 81 receives the count value from the signal counting unit A 42 and displays the count value of the clock signal per unit time.
  • the display screen of the display provided in the information processing apparatus A1 functions as the display A81.
  • the display A81 lights a green icon indicating that the PLL circuit A11 is locked.
  • the display A81 lights a red icon indicating that the PLL circuit A11 is not locked. Further, the display A81 displays the numerical value of the count value of the clock signal on the display screen.
  • the sample information processing apparatus A5 is configured as described above, and a pulsation signal detected by the sample information detection unit A101 and input to the information processing apparatus A1 is converted into a gain switching unit A51, a frequency characteristic compensation unit A61, a frequency
  • the data is input to the PLL circuit A11 through the correction processing unit A71 and the binarization processing unit A31.
  • the PLL circuit A11 outputs a clock signal from the VCOA 23a.
  • the information processing apparatus A1 displays the outputs from the lock detection unit A41 and the signal counting unit A42 on the display A81.
  • the binarization processing unit A31 binarizes the pulsation signal input to the information processing apparatus A1 and inputs the binarized signal to the PLL circuit A11 (step SA11).
  • the phase comparator A21 compares the phase of the binarized pulsation signal and the feedback signal, and outputs a phase difference signal corresponding to the phase difference (step SA12).
  • the LPF A22 outputs a voltage control signal obtained by removing a frequency component greater than a predetermined cutoff frequency from the phase difference signal (step SA13).
  • the VCO A 23a outputs a clock signal having an oscillation frequency corresponding to the voltage of the voltage control signal (step SA14). At this time, in step SA14, the oscillation frequency of the VCOA 23a is controlled so that the phases of the pulsation signal and the feedback signal are synchronized.
  • the VCO A 23a inputs the clock signal as a feedback signal to the phase comparator A21 and outputs it to the signal counting unit A42.
  • FIG. 2 (a) to 2 (c) show waveforms when a pulsating signal is detected and the sample is input to the PLL circuit A11 while the specimen is in a normal state.
  • the horizontal axis represents time (seconds)
  • the vertical axis represents signal intensity (V) (the same applies to the following waveforms showing pulse wave waveforms).
  • pulse waves are detected at a uniform interval with a substantially constant intensity.
  • the waveform obtained by binarizing the pulsation signal is also at a constant interval.
  • the waveform of the clock signal output from the VCOA 23a is also at a constant interval.
  • FIG. 3 (a) to FIG. 3 (c) show that the specimen is in a normal state from 0 second to 2 seconds, the specimen is walking from 2 seconds to 7 seconds, and from 7 seconds to 10 seconds.
  • the interval represents a waveform when a pulsating signal is detected in a normal state of the specimen.
  • the pulse wave is affected by the influence of walking, and the peak intensity and the peak interval are disturbed. In such a state, it is difficult to observe the original pulse wave due to noise in the waveform of FIG.
  • the waveform in which the pulsation signal is binarized also becomes long or short in the binarized waveform between 2 and 7 seconds, and the interval between the waveforms.
  • the waveform of the clock signal output from the VCOA 23a is substantially constant without any significant change even if there is a disturbance. This is because the clock signal output from the VCOA 23a does not move greatly even when the signal input to the PLL circuit A11 fluctuates due to a certain inertia acting due to the flywheel effect by the PLL.
  • FIGS. 4 (a) to 4 (c) show the state in which the specimen walks for 13 seconds to 17 seconds, 25 seconds to 28 seconds, 35 seconds to 41 seconds, and 1 minute 30 seconds to 33 seconds, Other than that, it shows a waveform when a pulsation signal is detected in a normal state of the specimen.
  • a disturbance is added to the pulse wave according to the movement of the specimen.
  • the binarized signal similarly to the case of FIG. 3B, the binarized signal also changes its waveform under the influence of disturbance.
  • the PLL circuit A11 is a secondary PLL having a natural frequency ⁇ n of 0.5.
  • a disturbance is generated in the detected pulsation signal and is input to the PLL circuit A11.
  • the clock signal output from the VCOA 23a does not change suddenly due to the flywheel effect, and a stable waveform indicating the original pulse wave interval can be output.
  • the PLL circuit A11 is configured such that the voltage control signal changes in accordance with fluctuations in the input signal and the clock signal follows accordingly, so that the clock signal gradually becomes a heart beat. Will synchronize with.
  • FIG. 5 (a) to 5 (f) show the positions of the pulses in the plurality of pulse wave patterns 1 to 6 represented by the heartbeat, and the positions of the pulses when the pulses are generated at regular intervals are indicated by vertical broken lines. ing. These patterns are cited from Ken Grauer, Daniel Cavallaro, Nobuhiro Takao, “Arrhythmia Interpretation Training”, Medical School, 2001, pages 33-34.
  • FIG. 5A shows pattern 1.
  • Pattern 1 is a pulse of a heartbeat when there is no time variation at all, and pulses are generated at regular intervals. Normally, the sympathetic nerve and parasympathetic nerve clash causes fluctuations in the pulse wave signal, so that pattern 1 is a pattern that is seen by people close to the end. Normally, such a pattern is not seen in healthy people.
  • FIG. 5B shows pattern 2.
  • the pattern 2 is a pulse of a heartbeat having a slight temporal fluctuation in time, and the pulses are generated at almost regular intervals.
  • Pattern 2 is a pattern that is found in most healthy individuals.
  • FIG. 5C shows the pattern 3.
  • Pattern 3 is a pattern having a period in units of groups, and is generated by regularly repeating a generation pattern of pulses indicated by a group of every third or fourth pulse in units of groups. However, the pattern 3 is an irregular pulse when viewed as a whole. In pattern 3, the level fluctuation of the amplitude component of the pulse wave may be repeated for each group. In practice, pattern 3 often occurs in combination with pattern 2.
  • FIG. 5D shows the pattern 4.
  • Pattern 4 shows a pattern in the case of being almost completely random, and regularity is not seen when the interval between pulses is shortened to about half of the normal interval or increased to about one cycle. Clinically, most heart rhythms are considered to apply to any of the above patterns 1 to 4.
  • FIG. 5 (e) shows pattern 5. This shows a pattern when the arrhythmia A is present in the pattern 2.
  • an arrhythmia is generated by the fourth pulse, and the fourth pulse is generated before the normal interval.
  • pulses are generated at regular intervals in the same manner as in pattern 2. It is considered that pattern 5 is caused by three places, atria (PAC), atrioventricular node (PJC), and ventricle (PVC), in which premature beats (extrasystole) appear.
  • PAC atria
  • PVC ventricle
  • FIG. 5 (f) shows pattern 6. This shows a pattern when the arrhythmia B is present in the pattern 2.
  • pattern 6 an arrhythmia occurs in the 4th pulse, the phase of the 4th pulse shifts, and it is sent about 0.7 beats than usual, and the phase is different from that up to the 3rd pulse. There is a pulse. Further, from the fifth pulse, pulses are generated at substantially regular intervals while being shifted from the phase before the arrhythmia as in the fourth pulse. This is called escape beat (replenishment contraction) and prevents extreme bradycardia. When the pulse is restored after the arrhythmia as in the pattern 6, it cannot be predicted from what phase the pulse wave starts before the arrhythmia occurs. At this time, it can be said that a change on the phase step occurs.
  • a pulsation signal indicating pattern 1 or pattern 2 is input to the PLL circuit A11, a signal in which pulses are generated at a regular interval is input, so the PLL circuit A11 Can be locked.
  • the lock detection unit A41 detects that the PLL circuit A11 is locked, and the display A81 lights a green icon indicating that the PLL circuit A11 is locked.
  • the signal counting unit A42 counts the pulses of the clock signal synchronized with the input pulsation signal, and the display A81 displays the count value as the pulse rate of the specimen.
  • the PLL circuit A11 and the information processing apparatus A1 operate in the same manner as the pattern 1 or 2 described above until an arrhythmia occurs.
  • the phase of the input pulsation signal and the feedback signal are not synchronized, so it is detected that the pulse has been unlocked. If this state continues for a set time of the PLL or longer, the lock detection unit A41 detects that the PLL circuit A11 is not locked, and the display A81 displays a red icon indicating that the PLL circuit A11 is not locked. Lights up.
  • a pulsation signal in which pulses are generated at a regular interval is input again, so that the feedback signal follows the input pulsation signal, so that the PLL circuit A11 pulsates. Lock to sex signal again.
  • the signal counting unit A42 counts the pulses of the clock signal, and the display A81 displays the count value as the pulse rate. At this time, since the clock signal does not change abruptly due to the flywheel effect, even when the arrhythmia occurs, the same pulse rate as when there is no arrhythmia is displayed.
  • the PLL circuit A11 cannot be locked to the input pulsation signal.
  • the lock detection unit A41 detects that the PLL circuit A11 is not locked for a certain period of time, and the display A81 lights a red icon indicating that the PLL circuit A11 is not locked.
  • the signal counting unit A42 counts the pulses of the clock signal, and the display A81 displays the count value as the pulse rate.
  • the PLL circuit A11 can lock to the input pulsation signal if the pulse wave is considered to be approximately periodic. As a result, even when the arrhythmia occurs and the pulse wave pattern is disturbed, the PLL circuit A11 and the information processing apparatus A1 are locked to the pulsation signal again over time, and the pulse rate Can be displayed. Further, even when the PLL circuit A11 cannot be locked even if the PLL circuit A11 cannot be locked, the information processing apparatus A1 displays that the PLL circuit A11 that bears the flywheel effect does not lock, and the clock signal The count value can be displayed.
  • the PLL circuit A11 is a secondary PLL because the LPF A22 is primary, and the phase of the input pulsation signal and the clock signal as the feedback signal is synchronized.
  • the oscillation frequency of the clock signal output from the VCOA 23a is controlled.
  • the PLL circuit A11 can lock the input pulsation signal and output a clock signal synchronized with the pulsation of the heart.
  • the input pulsation signal is fluctuated due to a sudden burst burst disturbance or a periodic pulse wave pattern disturbance due to arrhythmia.
  • the output clock signal does not immediately change greatly, and a signal indicating the same interval as the original pulse wave can be output.
  • the clock signal is gradually synchronized with the heart beat.
  • the PLL circuit A11 has robustness against fluctuations. That is, according to the PLL circuit A11, it is possible to stably observe the pulse wave regardless of fluctuations.
  • the information processing apparatus A1 can detect whether or not the PLL circuit A11 is locked by including the lock detection unit A41. As a result, the information processing apparatus A1 determines that the clock signal output from the PLL circuit A11 represents a pulsation in a locked state and is not disturbed by fluctuations in the pulsation signal. Can do. Further, when a random signal is input, it can be determined that the PLL circuit A11 is not locked.
  • the information processing apparatus A1 can count pulses per unit time of the clock signal by including the signal counting unit A42. As a result, the information processing apparatus A1 can measure the pulse rate synchronized with the pulsation of the heart using the clock signal even if the pulsation signal varies.
  • the information processing apparatus A1 includes the display A81, thereby displaying whether or not the PLL circuit A11 is locked and displaying the count value of the clock signal per unit time.
  • the information processing apparatus A1 can display the synchronization state of the PLL circuit A11 and the pulse rate. Therefore, according to the information processing apparatus A1, the sample can confirm the display result and can adjust the intensity of the exercise by himself / herself in real time. Furthermore, when a random signal is input among the pulsating signals to be input, the pulse rate can be displayed after displaying that the PLL circuit A11 is not locked.
  • the PLL circuit A12, the information processing apparatus A2 including the PLL circuit A12, and the sample information processing apparatus A6 according to the second embodiment of the present invention will be described with reference to FIG.
  • the second embodiment is also referred to as this embodiment.
  • the PLL circuit A12 and the information processing apparatus A2 according to the present embodiment are configured in the same manner as the PLL circuit A11 and the information processing apparatus A1 according to the first embodiment described above except for a part of the configuration. A description of the same components as the information processing device A1 will be omitted, and description will be made using the same reference numerals.
  • the PLL circuit A12 includes a phase comparator A21, an LPFA 22, a VCO A 23b, and a frequency divider A24.
  • the phase comparator A21 and the LPF A22 are configured similarly to the PLL circuit A11 according to the first embodiment.
  • the VCO A 23b outputs a clock signal having an oscillation frequency corresponding to the voltage of the input voltage control signal.
  • a clock signal is input to the frequency divider A24.
  • the oscillation frequency of the VCOA 23b is designed to vary around 128 Hz.
  • the frequency divider A24 divides the frequency of the clock signal by a predetermined frequency division ratio N and outputs the divided frequency as a divided signal.
  • the frequency-divided signal is input to the phase comparator A21 as a feedback signal.
  • the frequency division ratio N is 128.
  • the PLL circuit A12 is configured as described above, and the oscillation frequency of the VCOA 23b is controlled so that the phases of the pulsation signal and the divided signal as the feedback signal are synchronized. As a result, the PLL circuit A12 locks to the input pulsation signal.
  • the VCOA 23b When the PLL circuit A12 is locked to the pulsation signal, the VCOA 23b generates a clock signal having 128 clock numbers in one pulse wave waveform. Thereby, the PLL circuit A12 normalizes the pulsating signal with the clock signal. That is, the PLL circuit A12 is a PLL circuit for normalizing the pulsation signal.
  • the information processing apparatus A2 includes a gain switching unit A51, a frequency characteristic compensation unit A61, a frequency correction processing unit A71, a binarization processing unit A31, a PLL circuit A12, a lock detection unit A41, and a signal count.
  • Unit A42, counter A25, AD converter A32, first memory A33, feedback comb filter A34, second memory A35, averaging processing unit A36, differentiation processing unit A37, integration processing unit A38, and waveform display unit A43 is provided.
  • the above components of the information processing apparatus A2 are collectively referred to as a signal processing unit A15.
  • the information processing apparatus A2 includes a display A81.
  • the gain switching unit A51, the frequency characteristic compensation unit A61, the frequency correction processing unit A71, the binarization processing unit A31, and the lock detection unit A41 are configured in the same manner as the information processing apparatus A1 according to the first embodiment.
  • the pulsation signal output from the gain switching unit A51 is output to the frequency characteristic compensation unit A61 and the AD converter A32.
  • the AD converter A32 and the first memory A33 are also collectively referred to as a signal recording unit 13.
  • a case where a velocity pulse wave is input to the frequency characteristic compensation unit A61 and the AD converter A32 will be described.
  • the signal counting unit A42 receives the frequency division signal from the frequency divider A24 instead of the signal input from the VCO A 23a, counts the pulses per unit time of the frequency division signal, and divides the frequency per unit time. Other than displaying the count value of the signal on the display A81, the configuration is the same as in the case of the first embodiment.
  • the counter A25 receives the frequency-divided signal from the frequency divider A24, counts it, and outputs a waveform number indicating the order of the pulse waves according to the number of the frequency-divided signal.
  • the waveform number is counted by an integer value that increases by 1 in order from 0, 1, 2,...
  • the counter A25 resets the waveform number as appropriate according to the storage capacity of the first memory A33 and the second memory A35, and starts counting from 0 again.
  • a circuit obtained by adding a counter A25 to the PLL circuit A12 is also referred to as a clock address generation unit.
  • the AD converter A32 receives a pulsation signal as analog data, converts the signal intensity value of the pulsation signal into digital data, and acquires the digital data.
  • the AD converter A32 receives the clock signal from the VCOA 23b, and acquires the signal strength at the timing when the clock signal is input.
  • the AD converter A32 outputs the acquired digital data of the signal strength to the first memory A33.
  • the first memory A33 receives the digital data of the signal strength obtained by the AD converter A32 and records this data.
  • the first memory A33 is also simply referred to as a memory.
  • the first memory A33 is a memory bank obtained by dividing the storage area into a plurality of banks.
  • the first memory A33 according to the present embodiment has 64 banks.
  • the first memory A33 is a ring buffer in which data is sequentially written to the bank and old memory is erased according to capacity limitations.
  • the first memory A33 records the signal strength data for each clock number corresponding to the input timing of the clock signal. Further, the first memory A33 receives the waveform number input from the counter A25 and records the signal strength data in each bank divided for each waveform number. That is, the first memory A33 records the pulsation signal as the signal intensity associated with the waveform number and the clock number for each period of the pulse wave.
  • FIG. 7 illustrates an example of the banks corresponding to the waveform numbers 0, 1, 2, 9, and 10 among the 64 banks included in the first memory A33.
  • the first memory A33 has a plurality of banks A211, A212, A213, A214, A215 corresponding to the waveform numbers 0, 1, 2,. Data of signal strength corresponding to clock numbers 0 to 127 is recorded in each bank. In this way, in the first memory A33, it is specified in which form the data of the acquired signal strength indicates where in one cycle of the pulse wave waveform, such as which clock number of which waveform number. Data is stored.
  • VCO A 23b takes one period from the rise of one waveform to the rise of the next waveform as one period in the pulse wave, and one period of the pulse wave is counted by a total of 128 clocks from 0 to 127. Divide equally.
  • the clock numbers are assigned in order of 0, 1, 2,..., 125, 126, and 127 for each waveform in order from the waveform having the waveform number defining the number of clocks to 0.
  • the rising edge clock number of the pulse wave waveform is set to 0, and the signal intensity a1 is sampled at this timing.
  • the signal strength of clock number 0 of the sampled waveform of waveform number 0 is recorded at the beginning of memory bank A211 of first memory A33 as shown in FIG.
  • the signal strength a2 is sampled at the timing of the clock number 1, and is recorded next to the signal of the clock number 0 in the memory bank A211.
  • the signal strength a128 at the timing of the clock number 127 is sampled and recorded in the memory bank A211 from the clock number 0 to 127 in order.
  • the signal is sampled sequentially from the signal strength b1 at the timing of the clock number 0 of the waveform of the waveform number 1, and stored in the memory bank A212.
  • the signal strength is read from the first memory A33 in the order of the clock number in one waveform number, and after reading up to the clock number 127, the signal strength is read in order from the clock number 0 of the next waveform number. Data can be read out in the original time-series order. At this time, the pulsation signal is obtained as a signal normalized by a clock signal having 128 clocks.
  • the feedback comb filter A34 is configured by a digital signal processor (DSP) that reads out the signal intensity recorded in the first memory A33 and performs a filter process that passes a specific frequency component.
  • DSP digital signal processor
  • the feedback comb filter A34 outputs the filtered signal to the second memory A35.
  • the feedback comb filter A34 is executed by an operation between the DSP and the first memory A33 and the second memory A35.
  • the feedback comb filter A34 is a feedback type comb filter having a delay A201 that delays a signal by a predetermined delay time K, a multiplier A202, and an adder A203.
  • a part of the signal input to the feedback comb filter A34 is delayed by the delay A201, the delayed signal is amplified by the multiplier A202, further input to the adder A203, and fed back to the input signal.
  • the frequency characteristic of the feedback comb filter A34 is determined by the delay time K of the delay A201 and the feedback gain ⁇ of the multiplier A202.
  • the feedback comb filter A34 is a filter that allows an input signal to pass a frequency component that is an integral multiple of a predetermined frequency that is the reciprocal 1 / K of the delay time K in a comb shape. Function. Further, as the feedback gain ⁇ increases to 0.5, 0.75, and 0.9, a filter having a steep characteristic can be obtained.
  • the feedback comb filter A34 receives the clock signal from the VCOA 23b and counts the total number of clocks per cycle (one waveform) of the pulsation signal.
  • the feedback comb filter A34 uses the total clock number as an inverse 1 / K of the delay time K, and passes a frequency component that is an integral multiple of the total clock number.
  • the feedback comb filter A34 passes the frequency components 128, 256, 384, 512. .
  • the steepness of the feedback comb filter A34 is about 20 dB.
  • the signal strength is sequentially read from the first memory A33 from the clock number 0 to 127 at the waveform number 0, and then the signal strength from the clock number 0 to 127 at the waveform number 1. Is read. Similarly, signal intensities after waveform number 2 are read sequentially. In this way, the pulsating signal can be obtained as discrete data of signal strength normalized by the clock signal in the original time series order.
  • the discrete data is filtered by the feedback comb filter A34, and the filtered signal is output to the second memory A35.
  • the second memory A35 receives the signal strength of the signal filtered by the feedback comb filter A34 and records data of this signal strength.
  • the second memory A35 is configured in the same manner as the first memory A33 described with reference to FIG. 7, and stores the signal intensity of the filtered signal in association with the waveform number and the clock number.
  • the averaging processing unit A36 reads out the signal intensity data of a plurality of continuous waveform numbers recorded in the second memory A35, adds them, and divides them by the number of added data, thereby obtaining each clock number for each waveform number. An averaging process is performed to output an average value of the signal intensity. The averaging processing unit A36 outputs the result of the averaging process to the waveform display unit A43. In the present embodiment, an average of 10 consecutive signal intensity values is taken.
  • the clock signals of the same timing that is, the signal strengths of the same clock numbers are read from the respective banks, and these are added to obtain 10
  • the average value of the data for the number of waveforms is output.
  • the clock number is shifted backward by one, and the average value is calculated in order in the same manner.
  • the average value is calculated sequentially from the first clock number of the next 10 consecutive waveform numbers. In this way, an average of 10 signal strength values is obtained corresponding to each clock number for each waveform number.
  • the average value of the signal intensity in a certain waveform number means the average value corresponding to the last waveform number when the average value corresponding to a plurality of continuous waveform numbers is calculated.
  • the averaging process by the averaging processing unit A36 will be described. First, in waveform numbers 0 to 9, 10 data of a1 to j1 of clock number 0 are read and an average value is output. Next, the clock number is shifted by one, and the average value of 10 data a2 to j2 of clock number 1 of waveform numbers 0 to 9 is output. In this way, an average value of 10 data items a128 to j128 from the clock numbers 127 of the waveform numbers 0 to 9 is output. The average values at this time are the average values for waveform number 9 respectively.
  • the waveform numbers are shifted by one, and in the waveform numbers 1 to 10, 10 data from b1 to k1 of the clock number 0 are read and the average value is output.
  • the average value at this time is the average value in waveform number 10 respectively. Thereafter, the average value is sequentially output in the same manner.
  • the differentiation processing unit A37 reads the signal strength data recorded in the first memory A33 and performs numerical differentiation.
  • the differentiation processing unit A37 outputs the result of the numerical differentiation to the waveform display unit A43. Since the numerical differentiation only yields the slope of discrete data sampled with 128 clocks, a known calculation method can be used as appropriate. As an example, if the forward difference is taken as the simplest method, if the sample values of the point of interest and the subsequent point are f (x i ) and f (x i + 1 ), the following (f (x i +1 ) -f (x i )) / ⁇ x In this example, it is sufficient to calculate between adjacent sample values with 1/128 as ⁇ x.
  • the integration processing unit A38 reads the signal strength data recorded in the first memory A33 and performs numerical integration.
  • the integration processing unit A38 outputs the result of numerical integration to the waveform display unit A43. Since numerical integration only calculates the slope area of discrete data sampled with 128 clocks, a known calculation method such as trapezoidal rule or Simpson rule can be used as appropriate. According to the Simpson rule, if this is ⁇ x in steps of 1/128, the sample values of points before and after the point of interest are f (x i-1 ), f (x i ), f (x i + 1 ). Then, the following ⁇ x ⁇ f (x i-1 ) + 4f (x i ) + f (x i + 1 ) ⁇ / 3 It can be calculated by the following formula.
  • the waveform display unit A43 reads the signal intensity recorded in the second memory A35, generates waveform data representing the relationship between the clock number and the signal intensity, and outputs the waveform data to the display A81.
  • the waveform display unit A43 receives the result processed by the averaging processing unit A36, the differentiation processing unit A37, or the integration processing unit A38, and generates waveform data representing the relationship between the clock number and the signal strength. Output to the display A81.
  • the waveform display unit A43 can perform the same processing in any case, but in the present embodiment, a case will be described in which the result of the averaging process performed by the averaging processing unit A36 is input to the waveform display unit A43.
  • the waveform display unit A43 receives the average values of the signal intensities from the clock number 0 to the clock number 127 in order from the clock number 0 in the desired waveform number from the averaging processing unit A36, so that 10 waveform numbers of each clock number are input.
  • the average value of the signal intensity for the waveform is acquired in the original time-series order.
  • the waveform display unit A43 takes a total of 128 clock numbers with the time axis in one pulse wave on the horizontal axis, and takes the average value of the input signal intensity on the vertical axis, thereby generating 10 pulse waves. Data that displays the averaged waveform for one period in two dimensions is generated.
  • the waveform display unit A43 generates waveform data representing the relationship between the clock number and the average value of the signal strength in the desired waveform number. Further, the waveform display unit A43 receives the average value of the signal intensity at the next waveform number, similarly generates waveform data, and sequentially outputs them.
  • the display unit A81 is configured in the same manner as in the first embodiment, except that the waveform data is input from the waveform display unit A43 and the pulsation signal is displayed as a waveform of one cycle of the pulse wave for each waveform number. ing. Note that the display A81 according to the second embodiment displays the count value of the divided signal per unit time by inputting the count value from the signal counting unit A42. The display A81 displays a signal from the second memory A35, the averaging processing unit A36, the differentiation processing unit A37, or the integration processing unit A38 via the waveform display unit A43.
  • the display device A81 displays an image of a waveform of one pulse wave with the horizontal axis indicating the clock number of 128 and the vertical axis indicating the signal intensity in the waveform display area of the display screen.
  • the display device A81 displays the waveform of the pulse wave in the original time-series order by sequentially inputting the waveform data in the order of the waveform numbers.
  • the display device A81 receives waveform data representing the relationship between the clock number and the average value of the signal intensity from the waveform display unit A43, and averages 10 pulse waves for each waveform number. Displays the waveform for each cycle.
  • the sample information processing device A6 is configured as described above, and the pulsation signal detected by the sample information detection unit A101 and input to the information processing device A2 is connected to the frequency characteristic compensation unit A61 through the gain switching unit A51. Input to AD converter A32.
  • the pulsation signal processed by the frequency characteristic compensation unit A61 is input to the PLL circuit A12 through the frequency correction processing unit A71 and the binarization processing unit A31.
  • the PLL circuit A12 outputs a clock signal from the VCOA 23b to the AD converter A32 and the feedback comb filter A34. Further, a frequency division signal is output from the frequency divider A24 to the counter A25.
  • the pulsating signal input to the AD converter A32 is recorded as signal strength in the first memory A33, and the signal filtered by the feedback comb filter A34 is recorded in the second memory A35.
  • the signal recorded in the second memory A35 is read out by the averaging processing unit A36, the differentiation processing unit A37, or the integration processing unit A38, and each is processed to output a processing result.
  • the information processing device A2 displays the outputs from the lock detection unit A41, the signal counting unit A42, and the waveform display unit A43 on the display A81.
  • the sample information processing device A6 detects the pulsation signal by the sample information detection unit 101, and acquires the pulsation signal by inputting the pulsation signal to the information processing device A2 (step SA20).
  • the binarization processing unit A31 binarizes the pulsation signal input to the information processing apparatus A2, and inputs the binarized signal to the PLL circuit A12 (step SA21).
  • the phase comparator A21 compares the phase of the binarized pulsation signal and the feedback signal, and outputs a phase difference signal corresponding to the phase difference (step SA22).
  • the LPF A22 outputs a voltage control signal obtained by removing a frequency component greater than a predetermined cutoff frequency from the phase difference signal (step SA23).
  • the VCO A 23b outputs a clock signal having an oscillation frequency corresponding to the voltage of the voltage control signal (step SA24).
  • the oscillation frequency of the VCOA 23b is controlled so that the phases of the pulsation signal and the feedback signal are synchronized.
  • the VCO A 23b outputs the clock signal to the frequency divider A24, the AD converter A32, and the feedback comb filter A34.
  • the frequency divider A24 divides the frequency of the clock signal by a predetermined frequency dividing ratio and outputs a frequency divided signal (step SA25).
  • the frequency divider A24 inputs the frequency-divided signal as a feedback signal to the phase comparator A21 and outputs it to the counter A25 and the signal counting unit A42.
  • the counter A25 counts the frequency-divided signal and outputs a waveform number (Step SA26).
  • the AD converter A32 acquires the signal intensity of the pulsation signal as digital data at the timing of receiving the clock signal, and outputs it to the first memory A33 (step SA27).
  • the first memory A33 records the signal strength of each clock number in the bank for each waveform number (step SA28).
  • the feedback comb filter A34 performs a filter process that allows a frequency component that is an integral multiple of the total number of clocks to pass (step SA29).
  • the second memory A35 records the filtered signal (step SA30).
  • the averaging processing unit A36 reads the signal intensity data recorded in the second memory A35, calculates the average value, and outputs it to the waveform display unit A43 (step SA31).
  • the waveform display unit A43 generates waveform data representing the relationship between the clock number and the average value of the signal intensity, and outputs the waveform data to the display A81 (step SA32).
  • the display A81 displays a waveform of one cycle obtained by averaging a plurality of pulse waves for each waveform number (step SA33).
  • the PLL circuit A12 is stable when the signal input to the PLL circuit A12 fluctuates without the sudden change of the clock signal output from the VCOA 23b due to the flywheel effect. A waveform indicating a pulse wave can be output.
  • the operation of the PLL circuit A12 will be described with reference to FIGS. 2 to 4.
  • the VCOA 23b outputs a clock signal having an oscillation frequency that fluctuates around 128 Hz, and the frequency divider A24 outputs this clock signal. The signal is divided by a dividing ratio of 128 and output as a divided signal.
  • the input signal has a disturbance as shown in the waveforms shown in the lower part of FIGS. 2 (c), 3 (c), 4 (a) to 4 (c). Even if it does, a big change does not appear and it is output at almost constant intervals.
  • the PLL circuit A12 changes the voltage control signal according to the fluctuation, and accordingly, the clock signal and the frequency dividing signal are changed.
  • the frequency-divided signal is gradually synchronized with the heart beat.
  • the PLL circuit A12 and the information processing apparatus A2 are locked to the pulsating signal even when the arrhythmia occurs and the pulse wave pattern is disturbed, similarly to the PLL circuit A11 and the information processing apparatus A1.
  • the pulse rate can be displayed.
  • the VCO A 23b when the pulsation signal is locked, the VCO A 23b generates a clock signal of 128 clocks in one cycle of the pulse wave.
  • FIG. 11 shows the frequency spectrum of the pulse wave when the specimen is normal, with the horizontal axis representing frequency and the vertical axis representing signal intensity.
  • the pulse wave normally has a signal in the vicinity of 1 Hz where the fundamental frequency T is about 1 Hz and its reciprocal 1 / T, such as 1 Hz, 2 Hz, 3 Hz,. .., 2 / T, 3 / T, 4 / T,...
  • the clock signal is generated so that there are 128 pulse signals in one pulse wave, that is, one cycle of the pulse wave.
  • the signal normalizes the pulsating signal.
  • the 1 / T frequency at which the pulse wave signal appears can be defined by converting it with 128 clock signals.
  • the pulsation signal is defined on the clock axis.
  • the pulse wave varies in order to supply the necessary amount of oxygen according to the case of stationary, active, intense exercise, etc., and it is difficult to handle these on the time axis. there were.
  • the handling of the pulse wave is improved by normalizing the pulsation signal.
  • the feedback comb filter A34 allows frequency components that are an integral multiple of the total number of clocks per cycle, such as 128, 256, 384.
  • the component derived from the pulse wave can be passed.
  • components derived from disturbance can be removed from the signal input to the feedback comb filter A34.
  • the pulsation signal is defined on the clock axis by locking the pulsation signal with the PLL circuit A12 and normalizing the pulsation signal with the clock signal.
  • the frequency spectrum obtained by Fourier transforming the waveform of the pulse wave is 2 times, 3 times, 4 times, and so on, centered on the fundamental wave of about 1 Hz. It is made up. Further, the frequency of the fundamental wave and the harmonic wave changes according to the motion state of the specimen. Since FIG.
  • the information processing apparatus A2 passes all the comb-shaped harmonics of FIG. 11 through the feedback comb filter A34 having a steep pass characteristic as shown in FIG. 10 and a frequency at which the energy of the original pulsating signal does not exist. Suppresses the component.
  • the PLL circuit A12 locks to the pulsation signal, so that there is always a fixed number of clocks in one pulse wave cycle, so that the cutoff frequency A stable differential or integral result can be obtained while maintaining the relationship between the fundamental frequency of the pulse wave and the pulse wave.
  • FIGS. 14 and 15 show examples of display when the pulsation signal has fluctuations such as disturbance and arrhythmia.
  • the waveform indicating the velocity pulse wave is displayed in a state where a component derived from a disturbance is added to the original velocity pulse wave.
  • the display of 78 indicating the pulse rate indicates the original pulse rate because the pulsation signal is disturbed due to fluctuation.
  • FIG. 15 shows an example of display when the pulse rate has increased from the state of FIG.
  • the display A81 of the information processing apparatus A2 displays the velocity pulse wave, the locked state, and the pulse rate as shown in FIGS.
  • FIG. 12 shows a display when a pulsation signal that has been conventionally displayed as shown in FIG. 14 is input to the information processing apparatus A2.
  • the display A81 displays the waveform indicating the velocity pulse wave on the clock axis composed of 128 clock numbers. A pulse wave is displayed in a certain area defined by.
  • the information processing apparatus A2 displays the waveform in a state in which the fluctuation of the waveform added to the pulsation signal by the flywheel effect is suppressed while the waveform disturbance is removed by the feedback comb filter A34.
  • the display A81 turns on the green (G) icon indicating that the PLL circuit A12 is locked and turns off the red (R) icon indicating that the PLL circuit A12 is not locked. To do.
  • the display of 75 indicating the pulse rate on the display A81 indicates a substantially correct value due to the lock of the PLL circuit A12.
  • FIG. 13 shows an example of display when the pulse rate is increased from the state of FIG. 12, that is, what is conventionally displayed as shown in FIG. Since the information processing apparatus A2 normalizes the pulsation signal with the clock signal, as shown in FIG. 13, the display device A81 displays the velocity pulse even when the pulse rate increases, as in FIG. A waveform indicating a wave is displayed as a single pulse wave in a certain region. Further, as in the case of FIG. 12, the information processing apparatus A2 displays the waveform in a state in which the fluctuation of the waveform is suppressed and the fluctuation added to the pulsation signal is suppressed. Further, the display A 81 displays the locked state as in the case of FIG. In addition, it is presumed that the display of 130 indicating the pulse rate on the display A81 also represents a substantially correct value, as in the case of FIG.
  • the PLL circuit A12 can lock the input pulsation signal and output a frequency-divided signal synchronized with the heartbeat. it can. Furthermore, the PLL circuit A12 has robustness against fluctuations, and can stably observe a pulse wave regardless of fluctuations.
  • the pulsation signal can be normalized by the clock signal. That is, when the pulsation signal is locked, the same number of clocks can be assigned to each waveform of the pulse wave, and the signal can be handled regardless of the time axis. This makes it possible to compare signal strengths at the same clock signal timing even between waveforms having different pulse rates.
  • the information processing apparatus A2 includes the AD converter A32, the first memory A33, and the counter A25, so that the pulsation signal is signal strength data associated with the waveform number and the clock number.
  • the pulse wave normalized by the clock signal can be defined in a certain space composed of 128 clocks.
  • the information processing apparatus A2 allows the signal derived from the pulsating signal to pass through using the feedback comb filter A34 because the pulsating signal is normalized by a predetermined number of clock signals. Disturbances caused by body movements and utterances can be effectively removed. As a result, the information processing apparatus A2 can improve the S / N ratio (signal to noise ratio) of the detection signal.
  • the information processing apparatus A2 averages the signal strength data by the averaging processing unit A36. Since the averaged pulse wave waveform does not change greatly and shows a response that gradually changes with respect to fluctuations, the information processing apparatus A2 can obtain a pulsation signal that indicates a more stable display of pulse waves. Can do. For this reason, the waveform of the pulse wave similar to the normal time can be obtained by averaging even at the timing when a dropout such as an arrhythmia occurs in one pulse wave of the input pulsating signal. In addition, a stable pulse wave waveform can be obtained even in a situation where sudden disturbance occurs in the input pulsatile signal due to, for example, the movement of the specimen.
  • the information processing apparatus A2 includes the lock detection unit A41, so that it can detect whether or not the PLL circuit A12 is locked. As a result, the information processing apparatus A2 determines that the clock signal output from the PLL circuit A12 represents a pulsation in a locked state and is not disturbed by fluctuations in the pulsation signal. Can do.
  • the information processing apparatus A2 includes the signal counting unit A42, so that it can count pulses per unit time of the divided signal. As a result, the information processing apparatus A2 can measure the pulse rate synchronized with the pulsation of the heart using the frequency-divided signal even if the pulsation signal varies.
  • the information processing apparatus A2 includes the display A81, thereby displaying whether or not the PLL circuit A12 is locked and displaying the count value of the divided signal per unit time. Thereby, information processing apparatus A2 can display the pulse rate while displaying the synchronous state of PLL circuit A12. Therefore, according to the information processing apparatus A2, the sample can confirm the display result and can adjust the intensity of the exercise by himself / herself in real time.
  • the information processing apparatus A2 includes the waveform display unit A43, so that the waveform of one cycle normalized by the clock signal and averaged by the averaging processing unit A36 can be displayed on the display A81. it can. Thereby, a waveform unrelated to the original pulse wave due to body movement or the like is displayed as a slight state change of the waveform. Further, for example, there are cases where the pulse rate is small or large depending on the specimen or depending on the exercise state, but even when the pulse width (time length) of such a pulse wave is different, the normalized constant One waveform can be displayed in the plane.
  • the specimen observes a waveform that is always displayed for one period and shows the same waveform as the original pulse wave, even when fluctuations are added to the pulsation signal. be able to.
  • the specimen can confirm the pulse wave waveform displayed in a unified manner together with the lock state and the pulse rate, and can adjust the intensity of exercise in real time.
  • the information processing apparatus A2 includes the differentiation processing unit A37, so that the pulsation signal can be differentiated by numerical differentiation with respect to the waveform defined on the clock axis instead of the time axis. Differential operation is possible without being affected by the frequency. Thereby, the information processing apparatus A2 can correctly convert the volume pulse wave, velocity pulse wave, and acceleration pulse wave.
  • the information processing apparatus A2 includes the integration processing unit A38, so that the pulsation signal can be integrated by numerical integration of the waveform defined on the clock axis instead of the time axis. Integration can be performed without being affected by the frequency. Thereby, the information processing apparatus A2 can correctly convert the volume pulse wave, velocity pulse wave, and acceleration pulse wave.
  • FIG. 3 An information processing device A3 including a pulse frequency detection unit A301, a clock generator A303, and a sample information processing device A7 according to a third embodiment of the present invention will be described with reference to FIG.
  • the third embodiment is also referred to as this embodiment.
  • the pulse frequency detection part A301 which concerns on 3rd embodiment is also called 1st pulse frequency detection part A301.
  • the pulse frequency detection unit A302 according to the fourth embodiment is also referred to as a second pulse frequency detection unit A302.
  • the information processing apparatus A3 according to the present embodiment is configured in the same manner as the information processing apparatus A2 according to the second embodiment described above except for a part of the configuration. The description is omitted using the same reference numerals.
  • the signal processing unit A16 of the information processing device A3 is replaced with a binarization processing unit A31, a phase comparator A21, an LPFA 22, a VCO A23b, and a lock detection unit A41 included in the information processing device A2.
  • An AD converter A305, a first pulse frequency detector A301, and a clock generator A303 are provided.
  • the first pulse frequency detection unit A301 includes an LPFA 311, a differentiation processing unit A312, a timing detection unit A313, an interval acquisition unit A314, a frequency calculation unit A315, and a moving average processing unit A316.
  • the AD converter A305 converts the signal intensity value of the pulsation signal input from the frequency correction processing unit A71 into digital data, and outputs the digital data to the LPFA 311 of the first pulse frequency detection unit A301.
  • the LPF A 311 performs LPF processing on the pulsating signal input to the LPFA 311.
  • the LPF A 311 performs processing for passing the fundamental frequency component of the frequency band including the fundamental wave of the pulse wave information of the blood vessel and attenuating the harmonic number component of the frequency band including the harmonic of the fundamental frequency.
  • a pulsation signal composed of the fundamental frequency portion of the pulse wave information is obtained.
  • the LPFA 311 reduces noise components derived from other than the pulse wave information included in the pulsation signal.
  • the cut-off frequency of the low-pass filter by the LPF A311 can be set as appropriate so as to exhibit the above-mentioned effect, but the lower limit of the cut-off frequency is usually 1.5 Hz or more, preferably 2 Hz or more, more preferably 2.5 Hz or more. .
  • the upper limit of the cutoff frequency is usually 5 Hz or less, preferably 4 Hz or less, more preferably 3.5 Hz or less. Since the cut-off frequency of the low-pass filter is larger than the lower limit, for example, even when the sample moves and the pulse rate increases, the fundamental frequency component can be passed. Further, the cutoff frequency of the low-pass filter is smaller than the above upper limit, so that the harmonic component can be attenuated and the noise component can be reduced. In the present embodiment, the cutoff frequency of the low-pass filter by the LPFA 311 is 3 Hz.
  • the differentiation processing unit A312 performs numerical differentiation on the pulsation signal subjected to low-pass filter processing by the LPF A311.
  • the differential processing unit A312 obtains the gradient of the numerical change accompanying the time change in the change over time of the intensity of the pulsating signal.
  • the timing detection unit A313 detects the timing when the signal obtained by the differentiation processing unit A312 becomes zero.
  • the timing detection unit A313 obtains the timing of the peak position in the time change of the intensity of the pulsation signal.
  • the timing detection unit A313 sequentially detects the timing when the signal becomes 0 in accordance with the temporal change of the pulsation signal.
  • the interval acquisition unit A314 acquires a time interval between adjacent timings among the timings detected by the timing detection unit A313.
  • the interval acquisition unit A314 obtains the interval between adjacent timings as the length of one cycle of the pulse wave sandwiched between adjacent peaks of the pulsating signal.
  • the frequency calculation unit A315 calculates the pulse frequency by taking the interval of the timing acquired by the interval acquisition unit A314, that is, the reciprocal of the length of one cycle of the pulse wave.
  • the frequency calculation unit A315 sequentially detects the pulse frequency in accordance with the change with time of the pulsation signal.
  • the moving average processor A316 performs a moving average process on the plurality of pulse frequencies calculated by the frequency calculator A315. In the present embodiment, an average is taken with respect to the values of the last 10 consecutive pulse frequencies.
  • the moving average processing unit A316 obtains a frequency in which changes occurring between a plurality of continuous pulse frequencies are smoothed.
  • the first pulse frequency detection unit A301 is configured as a DSP including the above-described functional units.
  • the first pulse frequency detector A301 outputs the averaged pulse frequency of the input pulsation signal to the clock generator A303.
  • the clock generator A303 receives a signal having a frequency obtained by the moving average processing by the moving average processing unit A316, and oscillates a clock signal having a frequency synchronized with this signal.
  • the clock generator A303 according to the present embodiment oscillates a clock signal having a frequency obtained by multiplying the value of the pulse frequency input from the first pulse frequency detector A301 by 128. As a result, the clock generator A303 generates 128 clock signals in the waveform of one pulse wave.
  • the information processing apparatus A3 normalizes the pulsation signal with this clock signal.
  • the frequency divider A304 divides the frequency of the clock signal oscillated from the clock generator A303 by a predetermined frequency division ratio N, and outputs the divided frequency as a frequency division signal.
  • the frequency division ratio N is set to 128, similarly to the frequency divider A24 according to the second embodiment.
  • the sample information processing device A7 is configured as described above, and the pulsation signal detected by the sample information detection unit A101 and input to the information processing device A3 is connected to the frequency characteristic compensation unit A61 through the gain switching unit A51. Input to AD converter A32.
  • the pulsation signal processed by the frequency characteristic compensation unit A61 is input to the first pulse frequency detection unit A301 through the frequency correction processing unit A71 and the AD converter A305.
  • the first pulse frequency detector A301 outputs the pulse frequency subjected to the moving average processing by the moving average processor A316 to the clock generator A303.
  • the clock generator A303 outputs the clock signal to the AD converter A32, the feedback comb filter A34, and the frequency divider A304.
  • the frequency divider A304 outputs the frequency-divided signal to the counter A25 and the signal coefficient unit A42.
  • the sample information processing device A7 detects the pulsation signal by the sample information detection unit A101, and inputs the pulsation signal to the information processing device A3.
  • the AD converter A305 converts the pulsation signal input to the signal processing unit A16 into digital data, and outputs the digital data to the first pulse wave frequency detection unit A301. In this way, the sample information processing apparatus A7 acquires a pulsation signal for performing the normalization process (step SA40).
  • the LPF A 311 performs a low-pass filter process on the pulsating signal input to the information processing apparatus A3, and outputs a signal composed of the fundamental frequency portion of the pulse wave information (step SA41).
  • the differentiation processor A 312 differentiates the low-pass filtered signal to obtain the slope of the change in the pulsation signal (step SA42).
  • the timing detector A313 detects the timing at which the differentiated signal value becomes 0 (step SA43).
  • the interval acquisition unit A314 acquires an interval between adjacent timings among the detected plurality of timings (step SA44).
  • the frequency calculation unit A315 calculates a pulse frequency from the acquired timing interval (step SA45).
  • the moving average processor A316 performs a moving average process on the pulse frequency (step SA46).
  • the clock generator A303 receives the signal of the frequency subjected to the moving average process, and oscillates the clock signal of this frequency (step SA47).
  • the clock generator A303 outputs the clock signal to the frequency divider A304, the AD converter A32, and the feedback comb filter A34.
  • the frequency divider A304 divides the frequency of the clock signal by a predetermined frequency division ratio and outputs a frequency divided signal (step SA48).
  • the frequency divider A304 outputs the frequency-divided signal to the counter A25 and the signal counting unit A42.
  • step SA47 a clock signal synchronized with the pulse wave frequency is output. Subsequent processing using the frequency-divided signal and the clock signal by the information processing device A3 can be performed in the same manner as the processing by Step SA26 to Step SA33 of the information processing device A2.
  • the information processing apparatus A3 includes the first pulse frequency detection unit A301 to detect the pulse frequency of the input pulsation signal. At this time, since the pulse frequency has been subjected to moving average processing, a stable pulse wave frequency can be obtained even in a situation in which fluctuation occurs in the input pulsation signal. Furthermore, the information processing apparatus A3 includes a clock generator A303, so that a clock signal corresponding to the pulse frequency is output. As a result, a clock signal synchronized with the heart beat can be output. Furthermore, by normalizing the pulsating signal with the clock signal, the same number of clocks can be assigned to each waveform of the pulse wave, and the signal can be handled regardless of the time axis.
  • FIG. 4 An information processing device A4 including a pulse frequency detection unit A302, a clock generator A303, and a sample information processing device A8 according to a fourth embodiment of the present invention will be described with reference to FIG.
  • the fourth embodiment is also referred to as this embodiment.
  • the information processing apparatus A4 according to the present embodiment is configured in the same manner as the information processing apparatus A2 according to the second embodiment described above except for a part of the configuration. The description is omitted using the same reference numerals.
  • the signal processing unit A17 of the information processing device A4 is replaced with a binarization processing unit A31, a phase comparator A21, an LPFA 22, a VCO A23b, and a lock detection unit A41 included in the information processing device A2.
  • An AD converter A305, a second pulse frequency detector A302, and a clock generator A303 are provided.
  • the second pulse frequency detection unit A302 includes an LPFA 321, a frequency analysis unit A322, a peak detection unit A323, a frequency acquisition unit A324, and a moving average processing unit A325.
  • the AD converter A305 converts the signal intensity value of the pulsation signal input from the frequency correction processing unit A71 into digital data, and outputs the digital data to the LPFA 321 of the second pulse frequency detection unit A302.
  • the LPF A 321 performs LPF processing on the input pulsation signal, similarly to the LPFA 321 according to the third embodiment, and obtains a signal composed of the fundamental frequency portion of the pulse wave information.
  • the frequency analysis unit A322 performs frequency analysis on the pulsating signal subjected to the low-pass filter processing by the LPF A321.
  • the frequency analysis unit A322 converts the pulsation signal into a spectrum of pulse waves in the frequency domain.
  • frequency analysis for example, FFT (Fast Fourier Transform), MEM (Maximum Entropy Method), or autocorrelation analysis, especially AR (Auto-regressive) can be used.
  • the Wavelet method can be used in a broad sense.
  • the frequency analysis is performed by shifting a time corresponding to a predetermined interval with respect to a pulsating signal having a predetermined length of time.
  • the length and interval for performing the frequency analysis by the frequency analysis unit A322 can be set as appropriate, but the length of the frequency analysis is usually from 8 seconds to 30 seconds, preferably from the relationship between securing the number of samplings and the load of signal processing, preferably It is 12 seconds or more and 24 seconds or less, more preferably 14 seconds or more and 18 seconds or less.
  • the frequency analysis interval corresponds to the interval at which the pulse frequency is obtained by the second pulse frequency detection unit A302, and is normally 3 seconds or less, preferably 2 seconds or less, more preferably from the viewpoint of following the fluctuation of the pulse frequency. 1 second or less.
  • a frequency analysis is performed on a pulsating signal having a length of 16 seconds, and then a frequency analysis having a length of 16 seconds after an interval of 1 second is performed. Thereafter, similarly, frequency analysis is performed by shifting the time by 1 second intervals.
  • the frequency analysis unit A322 obtains a power spectrum (pulse wave spectrum) every other second of a pulse wave signal having a length of 16 seconds.
  • the peak detector A323 detects the peak having the maximum spectrum intensity from the pulse wave spectrum obtained by the frequency analyzer A322. Since the pulsating signal is a signal composed of the fundamental frequency portion of the pulse wave information by the LPFA 321 described above, the peak frequency detected by the peak detecting unit A323 represents the pulsating frequency of the pulsating signal. The peak detector A323 sequentially detects the maximum peak for each one-second pulse wave spectrum obtained by the frequency analyzer A322.
  • the frequency acquisition unit A324 acquires the pulse frequency by reading the frequency at the maximum peak position detected by the peak detection unit A323. The acquisition of the pulse frequency by the frequency acquisition unit A324 is also performed for each peak detected from the pulse wave spectrum at intervals of 1 second.
  • the moving average processing unit A325 performs a moving average process on the plurality of pulse frequencies acquired by the frequency acquisition unit A324. In the present embodiment, an average is taken with respect to the values of the last 10 consecutive pulse frequencies.
  • the moving average processing unit A325 obtains a frequency in which changes in a plurality of continuous pulse frequencies are smoothed at intervals of 1 second.
  • the second pulse frequency detection unit A302 is configured as a DSP including the above-described functional units.
  • the second pulse frequency detector A302 outputs an averaged pulse frequency of the input pulsation signal to the clock generator A303.
  • the clock generator A303 receives a signal having a frequency obtained by the moving average processing by the moving average processing unit A325, and oscillates a clock signal having a frequency synchronized with this signal, similarly to the clock generator A303 according to the third embodiment. To do.
  • the information processing apparatus A4 normalizes the pulsation signal based on this clock signal.
  • the sample information processing device A8 is configured as described above, and the pulsation signal detected by the sample information detection unit A101 and input to the information processing device A4 is connected to the frequency characteristic compensation unit A61 through the gain switching unit A51. Input to AD converter A32.
  • the pulsation signal processed by the frequency characteristic compensation unit A61 is input to the second pulse frequency detection unit A302 through the frequency correction processing unit A71 and the AD converter A305.
  • the second pulse frequency detection unit A302 outputs the pulse frequency subjected to the moving average processing by the moving average processing unit A325 to the clock generator A303.
  • the clock generator A303 outputs the clock signal to the AD converter A32, the feedback comb filter A34, and the frequency divider A304.
  • the frequency divider A304 outputs the frequency-divided signal to the counter A25 and the signal coefficient unit A42.
  • the sample information processing device A8 detects the pulsation signal by the sample information detection unit A101, and inputs the pulsation signal to the information processing device A4.
  • the AD converter A305 converts the pulsation signal input to the signal processing unit A17 into digital data, and outputs the digital data to the second pulse wave frequency detection unit A302. In this way, the sample information processing apparatus A8 acquires a pulsation signal for performing the normalization process (step SA60).
  • the LPF A321 performs a low-pass filter process on the pulsating signal input to the information processing apparatus A4, and outputs a signal composed of the fundamental frequency portion of the pulse wave information (step SA61).
  • the frequency analysis unit A322 performs frequency analysis on the low-pass filtered signal to obtain a pulse wave power spectrum (step SA62).
  • the peak detector A323 detects the peak having the maximum spectrum intensity from the power spectrum of the pulse wave (step SA63).
  • the frequency acquisition unit A324 acquires the pulse frequency from the detected maximum peak (step SA64).
  • the moving average processing unit A325 performs moving average processing on the pulse frequency (step SA65).
  • the clock generator A303 receives the signal of the frequency subjected to the moving average process and oscillates the clock signal (step SA66).
  • the clock generator A303 outputs the clock signal to the frequency divider A304, the AD converter A32, and the feedback comb filter A34.
  • the frequency divider A304 divides the frequency of the clock signal by a predetermined frequency dividing ratio and outputs a frequency divided signal (step SA67).
  • the frequency divider A304 outputs the frequency-divided signal to the counter A25 and the signal counting unit A42.
  • step SA61 to SA65 the pulse frequency of the pulsation signal acquired by the information processing apparatus A4 is output.
  • step SA66 a clock signal synchronized with the pulse wave frequency is output. Subsequent processing using the frequency-divided signal and the clock signal by the information processing device A4 can be performed in the same manner as the processing by Step SA26 to Step SA33 of the information processing device A2.
  • the information processing apparatus A4 includes the second pulse frequency detection unit A302 to detect the pulse frequency of the input pulsation signal. At this time, since the pulse frequency has been subjected to moving average processing, a stable pulse wave frequency can be obtained even in a situation in which fluctuation occurs in the input pulsation signal. Furthermore, the information processing apparatus A4 includes a clock generator A303, so that a clock signal corresponding to the pulse frequency is output. As a result, a clock signal synchronized with the heart beat can be output. Furthermore, by normalizing the pulsating signal with the clock signal, the same number of clocks can be assigned to each waveform of the pulse wave, and the signal can be handled regardless of the time axis.
  • smartphones are exemplified as the information processing apparatuses A1 to A4.
  • the information processing apparatuses A1 to A4 are not limited thereto.
  • the present invention can be applied to a tablet-type terminal (tablet PC), a desktop personal computer, a notebook personal computer, or other measuring equipment or display equipment.
  • the output of signals from the VCOA 23a, the phase comparator A21, the averaging processing unit A36, the differentiation processing unit A37, and the integration processing unit A38 is not limited to this, and is used for signal processing inside the information processing devices A1 to A4.
  • the information may be sent to an external information processing apparatus for signal processing by being stored in a recording medium or using wireless or wired communication.
  • the display screen of the display provided in the information processing devices A1 to A4 functions as the display A81 has been described.
  • the configuration of the display A81 is not limited to this.
  • green and red LED lamps provided in the information processing apparatuses A1 to A4, which indicate the locked state of the PLL circuits A11 and A12 by lighting them.
  • the display A81 may be composed of a plurality of 7-segment displays provided in the information processing apparatuses A1 to A4, and display the count value of the clock signal by lighting them.
  • the waveform may be displayed by inputting the output from the waveform display unit A43 to an external waveform display device such as a liquid crystal display, a CRT, a printer, an oscilloscope, or a pen recorder.
  • the signal processing application software is developed on the memory included in the information processing apparatuses A1 to A4 and executed by the CPU, so that it functions as a gain switching unit, a frequency characteristic compensation unit, a frequency correction processing unit, and a PLL. It may be.
  • the feedback comb filter A34 is executed by an operation between the microcomputer and the first memory A33 and the second memory A35. May be.
  • the processing by each means (normalizing means) for normalizing these pulsating signals is performed by developing application software for signal processing on the memory provided in the information processing apparatuses A1 to A4 and executing it by the CPU. It may be made to function as a conversion means.
  • the information processing apparatuses A1 to A4 convert the pulsating signal into digital data using an AD converter, acquire the digital data of the pulsating signal, and execute processing for normalizing the pulsating signal.
  • the storage devices in the information processing devices A1 to A4 function as the PLL circuit A12, the first pulse frequency detection unit A301, the second pulse frequency detection unit A302, and the clock generator A303, respectively, by causing the CPU to execute them. Save the program to be executed.
  • the CPUs of the information processing devices A1 to A4 realize various functions by reading out and executing programs stored in the storage device.
  • the CPU functions as normalizing means of the signal processing units A15 to A17 by executing these programs. In this way, the program causes the computers A2 to A4 to execute processing for acquiring the pulsating signal and normalizing the pulsating signal.
  • the first pulse frequency detection unit A301 is a functional part that is arithmetically processed by the CPU inside the information processing apparatus A3, and each function is configured as an individual program. That is, the first pulse frequency detection unit A301 functions as LPF means, differentiation processing means, timing detection means, interval acquisition means, frequency calculation means, and moving average processing means.
  • the second pulse frequency detection unit A302 is a functional part that is arithmetically processed by the CPU inside the information processing apparatus A4, and each function is configured as an individual program. That is, the second pulse frequency detection unit A302 functions as LPF means, frequency analysis means, peak detection means, frequency acquisition means, and moving average processing means.
  • the programs for realizing the functions as these functional means are, for example, a flexible disk, CD (CD-ROM, CD-R, CD-RW, etc.), DVD (DVD-ROM, DVD-RAM, DVD-). R, DVD + R, DVD-RW, DVD + RW, HD DVD, etc.), Blu-ray disc, magnetic disc, optical disc, magneto-optical disc, and the like.
  • the information processing devices A1 to A4 read the program from the recording medium, transfer it to the internal storage device or the external storage device, and use it.
  • the program is recorded in a storage device (recording medium) (not shown) such as a magnetic disk, an optical disk, or a magneto-optical disk, and is provided to the information processing apparatuses A1 to A4 via the communication path. It may be.
  • the information processing apparatuses A3 and A4 convert the input pulsation signal into a digital signal using the AD converter A305 and the pulse frequency detection units A301 and A302 configured as a DSP.
  • the case of processing is described.
  • the processing of the pulsation signal is not limited to this, and the information processing devices A3 and A4 may not include the AD converter A305, and each functional part of the pulse frequency detection units A301 and A302 may be configured by an analog circuit.
  • the information processing apparatuses A3 and A4 process the input pulsation signal in the form of an analog signal.
  • the PLL circuits A11 and A12 are secondary system PLLs.
  • the PLL circuits A11 and A12 are not limited thereto, and may be any higher-order loop than the secondary system. Good.
  • the PLL circuits A11 and A12 can lock with a phase difference of zero within a certain time even when the phase of the pulse wave of the input pulsating signal is suddenly shifted.
  • the oscillation frequency of the VCO A 23b is designed to vary around 128 Hz and the frequency division ratio N of the frequency divider A24 is 128 has been described.
  • the number of clocks and the frequency division ratio are not limited to this and may be changed as appropriate.
  • the number of clocks and the frequency division ratio may be 256, 512, or 1024.
  • the frequency divider A24 may be a programmable frequency divider that can change the frequency division ratio N in accordance with the oscillation frequency of the VCOA 23b.
  • the loop gain that determines the characteristics of the PLL decreases accordingly, so that the so-called lock range tends to decrease.
  • this is preferable from the viewpoint of increasing the accuracy of waveform determination.
  • control tends to be required to stably oscillate the VCO at a low frequency, but this is preferable from the viewpoint of no decrease in loop gain.
  • the velocity pulse wave signal is output to the binarization processing unit A31, the AD converter A32, or the AD converter A305 has been described.
  • the binarization processing unit A31 and the AD converter A32 are output.
  • the signal input to the AD converter A305 may be a pulse wave signal of a volume pulse wave, a velocity pulse wave, or an acceleration pulse wave.
  • the averaging processing unit A36 outputs the average value of the signal intensity of 10 waveforms.
  • the number of average values to be calculated is not limited to this, and may be changed as appropriate. It's okay.
  • the number of signals to be averaged is large, it is possible to obtain a signal having a characteristic that responds slowly to changes in the signal. This is suitable when there is a large variation with respect to the signal, such as when the specimen is moving.
  • the number of signals to be averaged is small, it is possible to obtain a signal that exhibits characteristics that easily follow changes in the signal. This is suitable when it is desired to observe changes in the pulse wave, such as when the specimen is at rest.
  • a signal corresponding to one waveform may be output without performing averaging by the averaging processing unit A36.
  • the feedback comb filter A34 reads out the signal intensity of the pulsating signal recorded in the first memory A33, performs the filter process, and records the signal intensity data after the filter process in the second memory A35.
  • the signal strength recorded in the second memory A35 is read and processed by the averaging processing unit A36, the differentiation processing unit A37, and the integration processing unit A38.
  • the order and contents of the processing of the pulsation signal are not limited to this, and may be changed as appropriate.
  • the averaging processing unit A36, the differentiation processing unit A37, and the integration processing unit A38 read the signal intensity of the pulsating signal recorded in the first memory A33, respectively. It may be processed. Further, the differential processing unit A37 and the integration processing unit A38 may process the average signal intensity calculated by the averaging processing unit A36.
  • the waveform display unit A43 first increases the signal intensity from the second memory A35 to the clock number 127 in order from the clock number 0 to the desired waveform number. read out.
  • the waveform display unit A43 generates one waveform data representing the relationship between the clock number and the signal strength, and outputs it to the display A81.
  • the display A81 receives the data from the waveform display unit A43 and displays the pulsation signal as a waveform for each cycle of one pulse wave.
  • the waveform display unit A43 generates data for displaying a waveform for one cycle, and the display A81 displays a pulsating signal as a waveform for one cycle. You may comprise so that not only a wave but the waveform of a desired number of pulse waves may be displayed. In this case, the waveform display unit A43 displays the waveform for a plurality of periods in a two-dimensional manner by taking a clock number that is an integer multiple of 128 corresponding to the number of waveforms on the horizontal axis for the signal intensity at a plurality of waveform numbers. Data can be generated.
  • the lock detection unit A41 has been described with respect to the case where the pulsation signal and the feedback signal are input from the phase comparator A21 and the phases of the two signals are compared.
  • the determination of phase synchronization and the detection of the lock of the PLL circuits A11 and A12 are not limited to this.
  • the lock detector A41 receives the phase difference signal from the phase comparator A21, compares the magnitude of the input phase difference signal with a predetermined set value, and the PLL circuits A11 and A12 lock the pulsation signal. It may be determined whether or not.
  • the magnitude of the input phase difference signal is compared with a predetermined set value, and when the magnitude of the input phase difference signal is smaller than the predetermined set value, it is determined that the lock is established. Further, when the magnitude of the input phase difference signal is equal to or larger than a predetermined set value, it is determined that the lock is not established.
  • the display of the lock state is displayed on the display A 81 as detecting that a change in the lock state is detected when the locked state or the unlocked state continues for a certain period of time. May be.
  • the information processing apparatus A2 may have means for displaying a pulsation signal that deviates more than the average value.
  • a disturbance that is meaningful as a biological signal, such as a rare arrhythmia, may be required to display only that portion.
  • the specimen information detection unit A101 detects a pulsation signal, and the pulsation signal is input to the information processing devices A1 to A4, whereby the information processing devices A1 to A4 acquire the pulsation signal.
  • the pulsation signal may be acquired by reading out the pulsation signal data stored in the storage means inside or outside the information processing apparatuses A1 to A4.
  • the acquisition of the pulsation signal may use the sample information detecting device and the sample information processing device according to the second invention described later.
  • the sample information detection unit A101 according to the first invention corresponds to the sample information detection units B32 and B33 according to the second invention.
  • the gain switching unit A51, the frequency characteristic compensation unit A61, the frequency correction processing unit A71, and the AD converter A305 according to the first invention are the same as the gain switching unit B95, the frequency characteristic compensation unit B96, This corresponds to the frequency correction processing unit B90 and the AD conversion unit B89, respectively. For this reason, both can combine each structure suitably.
  • the pulsation signal processed by the gain switching unit B95 and the frequency characteristic compensation unit B96 according to the second invention is input to the frequency correction processing unit A71 or the AD converter A305 according to the first invention. It may be.
  • the signals processed by the input processing unit, gain switching unit B95, and frequency characteristic compensation unit B96 according to the second invention are input to the frequency correction processing unit A71 or AD converter A305 according to the first invention. You may make it do.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide an apparatus capable of obtaining a pulsating signal suitable for observation regardless of a unit used for measurement. .
  • the present invention it is possible to detect a pulsation signal of a blood vessel and input an appropriate signal whose signal level is adjusted to the information processing apparatus.
  • the sample information processing apparatus B3 As shown in FIG. 23, the sample information processing apparatus B3 according to the first embodiment of the present invention includes a sample information detection apparatus B13 and an information processing apparatus B23.
  • the first embodiment is also simply referred to as this embodiment.
  • FIG. 23 schematically illustrates the configuration of the sample information processing apparatus B3 according to the present embodiment.
  • the sample information detection apparatus B13 includes a sample information detection unit B32 and a connection unit B53.
  • the sample information detection unit B32 is a headphone provided with a right-ear headphone unit B35 (R headphone unit) and a left-ear headphone unit B37 (L headphone unit).
  • the R headphone unit B35 and the L headphone unit B37 are formed in a symmetrical shape in accordance with the structure of the left and right ears, but the configuration and function are the same. For this reason, in this embodiment, the R headphone unit B35 will be mainly described as an example.
  • the signal line B36 of the R headphone unit B35 is connected to the switch circuit B68 of the connection portion B53.
  • the signal line B38 of the L headphone unit B37 is connected to an L headphone terminal B66 provided in the first plug B62 of the connection portion B53.
  • the ground line B41 obtained by joining the ground line B41a of the R headphone unit B35 and the ground line B41b of the L headphone unit B37 is connected to the ground terminal B64 provided in the first plug B62 of the connection portion B53.
  • the specimen information detection unit B32 is provided with a headphone driver unit that detects a pulsation signal of a blood vessel and a housing portion that includes the sensor inside.
  • the sample information detection unit B32 is attached toward a part constituting the outer ear of the sample.
  • the housing When the casing is mounted facing the specimen or including the specimen, the housing is surrounded by the casing and the specimen and communicates with the sensor, and the casing is located outside the internal space. An external space that is blocked by the body part is formed. At this time, the housing part forms a cavity having a closed or substantially closed space structure while isolating a part constituting the outer ear from the external space while being attached to the specimen.
  • a mode in which a cavity having a closed or almost closed space structure is formed is a method of mounting the specimen information detection unit B32 on the specimen, It changes depending on the shape of the housing part and the relationship between the housing part and the parts constituting the outer ear.
  • the housing portion forms a cavity that is a closed or substantially closed space structure together with a portion constituting the outer ear.
  • the housing portion forms a cavity that includes a portion constituting the outer ear and forms a closed or substantially closed space structure.
  • the casing portion may form a cavity that is a closed or substantially closed space structure including a part of the part constituting the outer ear together with a part of the part constituting the outer ear.
  • specimen information detection unit B32 that forms such a cavity
  • canal type inner ear type headphones, on-ear type headphones, or around ear type headphones can be used.
  • the sample information detection unit B32 is a canal-type inner-ear type headphone that is used in a state where the housing portion B211 is inserted into the external opening B105 of the ear canal B104.
  • B32a can be used.
  • the canal-type earbud headphones are sometimes called canal-type earbud earphones.
  • the specimen information detection unit B32a includes a housing part B211 that forms a cavity B109a that forms a closed or almost closed space structure together with the external auditory canal B104 that is a part constituting the external ear B107. That is, the specimen information detection unit B32a is configured such that the cavity B109a formed when the specimen B101 is attached to the specimen B101 forms a closed or almost closed space structure, and the volume in the cavity B109a is kept constant. Prepare.
  • sample information that is an on-ear type headphone that is used in a state in which a housing portion B612 is attached to a position B601 on the auricle B108 that is a part constituting the outer ear B107.
  • the detection unit B32b can be used (see FIG. 28).
  • the specimen information detection unit B32b includes a housing portion B612 that forms a cavity B109b having a closed or almost closed space structure together with the external auditory canal B104 and the pinna B108. That is, the specimen information detection unit B32b has a configuration in which the cavity B109b formed when the specimen information detection unit B32 is mounted on the specimen B101 forms a closed or almost closed space structure, and the volume in the cavity B109b is kept constant. Prepare. At this time, the casing B612 covers a part of the outer ear B107 to form a cavity B109b that includes a part of the auricle B108 and has a closed or almost closed space structure.
  • FIG. 26 and FIG. 27 a sample that is an around-ear type headphone that is used in a state in which a housing portion B622 is attached to a position B602 on the head B110 that covers the periphery of the auricle B108.
  • An information detection unit B32c can be used (see FIG. 29).
  • Around-ear headphones are sometimes referred to as over-ear headphones.
  • the specimen information detection unit B32c includes a housing portion B622 that includes a pinna B108 and forms a cavity B109c that has a closed or almost closed space structure.
  • the housing portion B622 forms a cavity B109c having a closed or substantially closed space structure together with the external auditory canal B104 and the pinna B108. That is, the sample information detection unit B32c is configured such that the cavity B109c formed when the sample B101c is attached to the sample B101 forms a closed or almost closed space structure, and the volume in the cavity B109c is kept constant. Prepare.
  • sample information detection unit B32 The above on-ear type headphones and around-ear type headphones may be collectively referred to as overhead type headphones.
  • the structure of each headphone and the configuration of the sample information detection unit B32 corresponding to each headphone will be described in detail.
  • the description will be given with the same reference numeral as the “sample information detection unit B32”, and the same reference numerals will be given to portions common to the respective sample information detection units. May be explained.
  • the cavities B109a, B109b, and B109c will be described with the same reference numerals as “cavity B109” unless otherwise distinguished.
  • 24, 25, and 26 are diagrams schematically illustrating an example of the relationship between the sample information detection unit B32 and the outer ear B107 of the sample information detection apparatus B13 according to the first embodiment.
  • 24, 25, and 26 schematically show the structure of an ear in a human head B110 as a specimen B101, which has a cochlea and a semicircular canal and is connected to the vestibular nerve and the cochlear nerve, the inner ear, the ossicle, and the ear.
  • FIG. 27 schematically shows the structure of an auricle B108 which is a part of the outer ear B107. As shown in FIG. 27, each part of the auricle B108 is located at a position covering the external auditory canal B104. These are referred to as the upper opposite leg B118, the triangular fossa B119, the lower opposite leg B120, and the concha B121.
  • the sample information detection unit B32a which is a canal-type inner-ear type headphone, has a housing part B211 in which a sensor B212 is built, and includes a pair of right and left. These correspond to the R headphone unit B35 and the L headphone unit B37, respectively.
  • the R headphone unit B35 includes a housing part B211 and the housing part B211 is provided with a sensor B212.
  • the sensor B212 functions as a speaker that generates air vibration according to the input signal, and also functions as a microphone that detects pressure information of the air vibration and inputs a signal.
  • the configuration of the sample information detection unit B32a will be described with reference to FIG. 24 taking the R headphone unit B35 as an example.
  • the casing B211 closes the external opening B105 in the external auditory canal B104 of the specimen B101, and can be formed as a cavity B109a having a spatial structure in which the external auditory canal B104 is closed or substantially closed. It can be attached to B107.
  • the casing B211 includes a sensor B212 inside, a housing B218 that houses the sensor B212, and an earpiece B213 that is attached to the housing B218.
  • the housing B218 is made of a hard material such as synthetic resin, metal, or wood, and has a space inside. Inside the housing B218, a sensor B212 is provided as shown in FIG.
  • the earpiece B213 has a cylindrical shape, a dome shape, a bullet shape, and the like so as to form a cavity B109a that closes the outer opening B105 and closes or substantially closes the outer ear canal B104. Or it is preferable to have a bell-shaped outer shape.
  • the outer shape of the earpiece B213 it is possible to insert the top portion B216 side of the cylindrical, dome-shaped, shell-shaped, or bell-shaped housing portion B211 toward the depth direction of the ear canal B104. Thereby, according to the expansion of the outer diameter from the top part B216 of the earpiece B213 to the end part B217, the external opening B105 can be suitably closed.
  • the earpiece B213 preferably has a size that prevents the outer opening B105 when the top B216 side is inserted into the ear canal B104.
  • the diameter of the earpiece B213 in the circumferential direction is equal to the inner diameter of the outer opening B105 of the ear canal B104. It is preferable that the sizes are substantially the same or larger. With this configuration, the casing B211 can suitably close the external opening B105.
  • the earpiece B213 is preferably made of an elastic material, for example, rubber or silicon rubber is used.
  • the earpiece B213 is preferably configured to be elastically deformed in accordance with the internal shape of the external opening B105 of the external auditory canal B104 and to close the external opening B105. With this material, the earpiece B213 can block the external opening B105 in accordance with the shape of the ear canal B104.
  • an earpiece used for a canal-type inner earphone (sometimes referred to as an eartip or an earbud) can be used.
  • the earpiece B213 is formed with a concave portion B214 having a concave cylindrical space from the center of the top portion B216 toward the inside of the earpiece B213.
  • the recessed portion B214 is provided with an opening B215 that communicates the top B216 side and the end B217 side of the earpiece B213.
  • the sensor B212 closes the end B217 side of the opening B215.
  • the sensor B212 is configured to detect a pulsation signal of the blood vessel through the opening B215.
  • a driver unit is housed in the space inside the housing B218. When listening to music using the sample information detection unit B32a as headphones, the driver unit functions as a speaker unit for headphones.
  • the sample information detection unit B32a uses this driver unit as the sensor B212.
  • As the driver unit a dynamic type, balanced armature type, or capacitor type driver unit can be used.
  • Sensor B212 is not limited to the above driver unit as long as it detects a pulsation signal of a blood vessel.
  • a microphone or a piezoelectric element that electrically detects air vibration (sound pressure information) caused by vibration of the skin or tympanic membrane B106 part in the site constituting the outer ear B107, which is caused by blood vessel pulsation in the site constituting the outer ear B107
  • a pressure sensitive element can be suitably used.
  • a condenser microphone (condenser microphone) is preferable in terms of directivity, S / N ratio, and sensitivity, and an ECM (electret condenser condenser microphone; hereinafter, also simply referred to as “ECM”) is preferably used. it can.
  • ECM electro-electret condenser condenser microphone
  • MEMS-ECM MEMS type ECM
  • MEMS-ECM microelectromechanical system
  • PZT piezoelectric element using lead zirconate titanate also referred to as PZT
  • PZT lead zirconate titanate
  • the blood vessel in the part constituting the outer ear B107 means a blood vessel existing in the ear canal B104, the tympanic membrane B106, or the pinna B108.
  • the sensor B212 is connected to the signal line B36 and the ground line B41a.
  • the signal line B36 is connected to the gain switching unit B95 via the switch circuit B68 of the connection unit B53 (FIG. 23).
  • the sample B101 attaches the sample information detection unit B32a to the outer ear B107 so that the earpiece B213 is inserted into the external opening B105.
  • the earpiece B213 of the casing B211 and the external opening B105 come into contact with each other in an airtight manner, so that the external auditory canal of the specimen B101 is obtained.
  • the external opening B105 in B104 is closed. Accordingly, the outer ear canal B104, the tympanic membrane B106, and the housing portion B211 form a cavity B109a so as to have a spatial structure in which the outer ear canal B104 is closed or substantially closed.
  • the closed space structure formed by the cavity B109a is also referred to as “Closed Cavity”.
  • the sensor B212 is provided in the opening B215 of the earpiece B213, the external opening B105 is blocked by the casing B211 and the sensor B212, so that the ear canal B104, the eardrum B106, the casing B211, A cavity B109a is formed by the sensor B212.
  • the external opening B105 is closed by the casing B211
  • a space structure in which the external auditory canal B104 is closed can be achieved, but actually, for example, the casing B211 and the external auditory canal are caused by body hairs present in the external auditory canal B104.
  • the external auditory canal B104 is formed as a hollow space structure that is completely closed by closing the external opening B105 with the housing part B211, it is said that the external auditory canal B104 has a closed space structure.
  • the external opening B105 is closed by the housing part B211, for example, due to the influence of body hair as described above, the external opening B105 is closed, but the external auditory canal B104 is completely closed.
  • it is formed as a hollow that should not be called, it is called a substantially closed space structure.
  • the ear canal B104 Since there is an element that cannot completely close the ear canal B104 as described above, when the ear canal B104 is closed by the housing portion B211, the ear canal B104 is formed as a cavity B109a that has a closed or almost closed space structure. Will do.
  • the vibration of the air generated by the vibration of the skin of the ear canal B104 or the tympanic membrane B106 accompanying the pulsation of the blood vessel in the ear canal B104 propagates in the cavity B109a and is transmitted to the sensor B212 through the opening B215.
  • the sensor B212 detects this vibration of air. That is, the sensor B212 detects the pulsation signal of the blood vessel in the ear canal B104 as pressure information propagating in the cavity B109a due to the pulsation signal. Thereby, the sensor B212 can detect the pulsation signal of the blood vessel in the specimen B101 by receiving the pressure information resulting from the pulsation signal of the blood vessel existing inside the ear canal B104 or in the eardrum B106.
  • the specimen information detection unit B32a can detect the pulsating signal of the specimen B101 as pressure information that propagates through the cavity B109a due to the pulsating signal.
  • the sensor B212 outputs the detected signal to the signal line B36 as a pulsation signal. This signal is input to the gain switching unit B95 of the connection unit B53 connected to the sample information detection unit B32.
  • the specimen information detection unit B32b which is an on-ear type headphone, includes a pair of left and right housing parts B612 that incorporate a sensor B212, which are respectively provided to the R headphone unit B35 and the L headphone unit B37.
  • the sample information detection unit B32b includes an attachment member B615 that is connected to the case B612 and attaches the case B612 to the sample B101.
  • FIGS. 25 and 28 taking the R headphone unit B35 as an example.
  • the sample information detection unit B32b is partially configured in the same manner as the above-described sample information detection unit B32a, and the description of the same components as the above-described sample information detection unit B32a is omitted.
  • the housing portion B612 includes a sensor B212 therein, and includes a housing B613 that houses the sensor B212, and an ear pad B614 that is attached to the housing B613.
  • the housing B613 is made of a hard material such as synthetic resin, metal, or wood, and is formed into a short cylindrical or dome shape having a space inside.
  • the housing B613 is formed in an oval shape or an elliptical shape having the same size as the position B601 on the auricle B108 in accordance with the shape and size of the ear pad B614.
  • the driver unit is housed in the space inside the housing B613.
  • the driver unit When listening to music using the sample information detection unit B32b as headphones, the driver unit functions as a speaker unit for headphones.
  • the sample information detection unit B32b uses this driver unit as the sensor B212.
  • a dynamic type, balanced armature type, or capacitor type driver unit can be used as in the case of the above-mentioned canal type inner ear type headphones.
  • the housing B613 has an opening B616 on the surface facing the sample B101 when the sample B101 is mounted with the sample information detection unit B32b, and the opening B616 is provided so that the earpad B614 closes the opening B616. Yes. External driver vibration is transmitted to the driver unit in the housing B613 through the opening B616 and the ear pad B614.
  • the housing B613 includes a sealed type (closed type) in which a portion other than the opening B616 described above is sealed, an open type (open air type) in which a portion other than the opening B616 is opened, and a sealed type and an open type.
  • a semi-open type semi-open type which is closed in between the mold.
  • the closed level of the closed cavity can be increased when the sample B101 is mounted with the sample information detection unit B32b, which is preferable for detecting a pulsating signal. Even in the case of the semi-open type, the closed level of the closed cavity is lower than in the case of the closed type, but the pulsation signal can be detected.
  • a case where the housing B613 is a sealed type will be described.
  • the ear pad B 614 includes a cushioned inner member B 617 formed in a substantially disc shape, and an outer member B 618 that covers the inner member B 617 and contacts the specimen B 101.
  • the inner member B617 is made of a synthetic resin or rubber as a raw material and is a porous material that is elastically deformed.
  • the inner member B617 is formed in a substantially disk shape with a slightly depressed central portion.
  • the material of the inner member B617 is mainly urethane.
  • the external material B618 is a flexible thin sheet-like member made of synthetic leather, artificial leather, cloth, or synthetic resin.
  • the ear pad B614 covers the above-described opening B616 of the housing B613 so that the sample B101 is attached to a portion that comes into contact with the sample B101 when the sample information detection unit B32b is mounted.
  • the mounting member B615 connects the pair of left and right housing parts B612.
  • the mounting member B615 is formed in a substantially C shape, and a housing portion B612 is attached to both end portions thereof so that the ear pad B614 portion faces inward.
  • the mounting member B615 is formed so as to urge the tension with the substantially C-shaped end portions directed toward the inner portion.
  • the mounting member B615 is made to be extendable or foldable. Thereby, the length between the housing
  • the mounting member B615 by extending or shortening the length of the mounting member B615 in accordance with the size of the head B110 of the sample B101 or the position of the auricle B108, when the sample B101 mounts the sample information detection unit B32b, The body part B612 can be worn so that it comes to the position of the right ear and the left ear, respectively. Further, when the mounting member B615 can be folded, the folding portion is extended during use, and folded during storage or transportation, so that space-saving storage and easy transportation are possible.
  • the specimen B101 attaches the specimen information detection unit B32b to the head so that the ear pad B614 is applied to the position B601 above the pinna B108 and the mounting member B615 is placed on the head.
  • the ear pad B 614 is pressed so as to be pressed against the head B 110 by the tension of the mounting member B 615, and deforms according to the shape of the head B 110 and the auricle B 108.
  • the sample B101 can be mounted with the sample information detection unit B32b so as to prevent a gap from being generated between the ear pad B614 and the head B110 and the pinna B108.
  • the ear pad B614 is interposed between the eardrum B106 and the sensor B212, and can transmit air vibrations.
  • the housing part B612 by isolating the part constituting the outer ear B107 from the external space by the housing part B612, it is possible to obtain a space structure in which the cavity B109b is closed.
  • the deformation of the earpad B614 according to the shape of the head B110 or the pinna B108 is insufficient, or hair or body hair is caught. In some cases, voids may occur.
  • the cavity B109b may not be completely closed. Therefore, when the part constituting the outer ear B107 is isolated from the external space by the housing portion B612, the space structure including the part constituting the outer ear B107 and part of the auricle B108 is closed or substantially closed.
  • the cavity B109b is formed.
  • the ear pad B614 of the housing B612 and the auricle B108 come into contact with each other so as to be airtight, so that a part constituting the outer ear B107 is blocked from the external space. Can be removed. Accordingly, the external ear canal B104, the tympanic membrane B106, the auricle B108, and the housing portion B612 form a cavity B109b that has a spatial structure that is closed or substantially closed together with a portion that forms the outer ear B107.
  • a space B109b including a space inside the ear canal B104, a space between the ear canal B104 and the auricle B108 and the ear pad B614, and a space inside the housing portion B612 is formed and includes a part of the auricle B108.
  • the sensor B212 can detect the pulsation signal of the blood vessel in the specimen B101 in response to the pressure information resulting from the pulsation signal of the blood vessel existing inside the ear canal B104, the tympanic membrane B106, or the pinna B108.
  • the specimen information detection unit B32c which is an around-ear type headphone, includes a pair of left and right housing parts B622 that incorporate a sensor B212, which are provided in the R headphone unit B35 and the L headphone unit B37. Each corresponds. Furthermore, the sample information detection unit B32b includes an attachment member B625 that is connected to the case B622 and attaches the case B622 to the sample B101.
  • the configuration of the sample information detection unit B32c will be described with reference to FIGS. 26 and 29, taking the R headphone unit B35 as an example.
  • the sample information detection unit B32c is partially configured in the same manner as the above-described sample information detection unit B32b, and the description of the same components as the above-described sample information detection unit B32b is omitted.
  • the housing portion B622 includes a sensor B212 therein, and includes a housing B623 that houses the sensor B212 and an ear pad B624 that is attached to the housing B623.
  • a housing B623 that houses the sensor B212
  • an ear pad B624 that is attached to the housing B623.
  • one ear pad B624 faces the front side in the figure and the other ear pad B624 faces the back side in the figure, but in use, the pair of housing parts B622 has the ear pad B624 part inward. Wear them so that they face each other.
  • the housing B623 is configured in the same manner as the housing B613, but is slightly larger than the position B601 on the auricle B108 and about the same as the position B602 covering the auricle B108 in accordance with the shape and size of the earpad B624. It is formed in the shape of an ellipse or ellipse.
  • the ear pad B624 is configured in the same manner as the ear pad B614, but has an annular part B629 formed in a substantially annular shape having an inner member B627 having a size similar to that of the position B602 covering the auricle B108. External material B628 covers.
  • the annular portion B629 is formed with such a thickness that the inner portion B630 of the annular portion B629 does not press the auricle B108 when the sample B101 mounts the sample information detection unit B32c.
  • the ear pad B624 is attached so as to cover the opening 626 of the housing B623 in the inner portion B630 of the annular portion B629.
  • the mounting member B625 is configured in the same manner as the mounting member B615.
  • the specimen B101 attaches the specimen information detection unit B32c to the head so that the ear pad B624 is applied to a position B602 on the head B110 that covers the pinna B108 and the mounting member B625 is placed on the head.
  • the ear pad B624 is mounted so that the auricle B108 fits into the inner portion B630 of the annular portion B629 of the earpad B624.
  • the ear pad B624 receives pressure so as to be pressed against the head B110 by the tension of the mounting member B625, and deforms in accordance with the shape of the head B110.
  • the sample B101 can be mounted with the sample information detection unit B32c so as to prevent a gap from being generated between the ear pad B624 and the head B110.
  • the inner portion B630 of the annular portion B629 is interposed between the eardrum B106 and the sensor B212, and can transmit air vibrations.
  • the space B109c can be closed.
  • the housing part B612 in reality, there is a case where a gap is generated and the cavity B109c cannot be completely closed. Therefore, when the part constituting the outer ear B107 is isolated from the external space by the housing portion B622, the cavity B109c including the auricle B108 and the closed or almost closed space structure is formed together with the part constituting the outer ear B107. Will form.
  • the ear pad B624 of the housing unit B622 and the head B110 come into contact with each other so as to be airtight, so that the part constituting the outer ear B107 is blocked from the external space. Can be removed.
  • the external ear canal B104, the eardrum B106, the housing part B622, and the head part B110 form a cavity B109c so as to have a spatial structure that is closed or substantially closed together with the parts constituting the outer ear B107.
  • a cavity B109c including the auricle B108 is formed, which includes a space inside the ear canal B104, a space surrounded by the ear canal B104, the head B110, and the ear pad B624, and a space inside the housing portion B622.
  • the sensor B212 can detect the pulsation signal of the blood vessel in the specimen B101 in response to the pressure information resulting from the pulsation signal of the blood vessel existing inside the ear canal B104, the tympanic membrane B106, or the pinna B108.
  • connection unit B53 includes a switch circuit B68, a switch B69, a gain switching unit B95, a waveform equalization processing unit B271, and a frequency characteristic compensation unit B96 having a waveform determination unit B272, and a power supply B71. , FET B72, and first plug B62.
  • the configuration of the connecting portion B53 will be described with reference to FIG.
  • connection unit B53 inserts the first plug B62 into the first jack B81 of the information processing device B23, thereby allowing the sample information detection device B13, the information processing device B23, and the like to pass through the first plug B62 and the first jack B81. Is connected.
  • the connection portion B53 constitutes a plug portion of the sample information detection unit B32 as a headphone that is inserted into the jack B (first jack B81) of the smartphone B23.
  • the switch circuit B68 is switch means for switching whether the signal line B36 of the R headphone unit B35 is connected to the gain switching unit B95 or to the R headphone terminal B65 of the first plug B62.
  • the switch circuit B68 includes a connection from the sensor B212 to the microphone terminal B63 of the first plug B62 via the gain switching unit B95 and the frequency characteristic compensation unit B96, and a connection from the sensor B212 to the R headphone terminal B65. Is to switch.
  • the switch B69 is a switch provided so that the switch circuit B68 can be operated from the outside of the connection portion B53.
  • a push switch, a slide switch, a toggle switch, or the like is used.
  • the connection of the switch circuit B68 can be switched by operating the switch B69.
  • the gain switching unit B95 performs level adjustment processing that adjusts the gain of an input signal to perform amplification or attenuation and adjust the level of the signal.
  • the gain switching unit B95 detects the saturation of the signal detected by the sensor B212, and performs a process of reducing the signal level when the saturation is detected.
  • the signal processed by the gain switching unit B95 is input to the frequency characteristic compensation unit B96.
  • the frequency characteristic compensation unit B96 includes a waveform equalization processing unit B271 and a waveform determination unit B272, and corrects the frequency characteristics of the input signal. Specifically, a low frequency region including a pulse wave information detection band that is a frequency band in which the waveform equalization processing unit B271 detects a pulse wave information of a blood vessel with respect to a signal output from the specimen information detection unit B32. By performing the phase compensation, waveform equalization processing for compensating the frequency response in the low frequency region is performed.
  • the waveform determination unit B272 calculates a signal pattern indicated by the pulse wave and a signal pattern indicated by the velocity pulse wave or the acceleration pulse wave with respect to the pulse wave of the signal phase-compensated by the waveform equalization processing unit B271. A waveform comparison process for comparison is performed.
  • the signal processed by the frequency characteristic compensation unit B96 is input to the gate terminal of the FET B72.
  • the first plug B62 includes a microphone terminal B63, a ground terminal B64, a right-ear headphone terminal B65 (R headphone terminal), and a left-ear headphone terminal B66 (from the root of the plug to the tip. L headphone terminal) in order.
  • the microphone terminal B63, the ground terminal B64, the R headphone terminal B65, and the L headphone terminal B66 are formed by processing a conductive metal plate into a substantially cylindrical shape.
  • Insulating members B67a, B67b, and B67c are provided between the microphone terminal B63 and the ground terminal B64, between the ground terminal B64 and the R headphone terminal B65, and between the R headphone terminal B65 and the L headphone terminal B66, respectively. Yes.
  • the insulating members B67a, B67b, and B67c are made of an insulating resin or rubber material, and the terminals are insulated from each other by being interposed between the conductive terminals.
  • Information processing apparatus B23 which concerns on this embodiment is a portable information terminal (smart phone) as a mobile terminal for processing the detected signal.
  • the smartphone as the information processing device B23 includes an input / output device (not shown), a storage device (memory such as ROM, RAM, and nonvolatile RAM), a central processing unit (CPU), a timer counter, a wireless transmission unit, and the like.
  • a storage device memory such as ROM, RAM, and nonvolatile RAM
  • CPU central processing unit
  • timer counter timer counter
  • wireless transmission unit and the like.
  • the information processing apparatus B23 includes a first jack B81, an AD conversion unit B89 that converts an analog signal into a digital signal, a frequency correction processing unit B90, a DA conversion unit B91 that converts a digital signal into an analog signal, And a sound source B92.
  • the first jack B81 includes an insertion hole B82 into which the first plug B62 is inserted. As shown in FIG. 23, inside the insertion hole B82 of the first jack B81, a microphone terminal B83, a ground terminal B84, an R headphone terminal B85, and an L headphone terminal B86 are provided in this order from the front to the back of the insertion hole B82. .
  • the microphone terminal B83, the ground terminal B84, the R headphone terminal B85, and the L headphone terminal B86 are formed by processing a conductive metal plate into a plate shape and providing it on the wall surface of the insertion hole B82 of the first jack B81. ing.
  • the plate-like terminal is bent toward the center direction of the insertion hole B82 to form a convex portion having bending elasticity, and the convex portion of this terminal is provided so as to protrude in the center direction of the insertion hole B82. ing.
  • FIGS. 30A to 30C the contour shape of the first jack B81 is indicated by a two-dot chain line.
  • FIG. 30A is a view of the first jack B81 as viewed from the side, and shows the arrangement of the microphone terminal B83.
  • FIG. 30B is a view showing the end surface of the first jack B81 as viewed from the direction of arrow A-A ′, and shows the arrangement of the microphone terminal B83, the ground terminal B84, the R headphone terminal B85, and the L headphone terminal B86.
  • FIG. 30C is a diagram showing the end surface of the first jack B81 as viewed from the direction indicated by the arrow B-B ', and shows the arrangement of the ground terminal B84, the R headphone terminal B85, and the L headphone terminal B86.
  • the microphone terminal B63 of the first plug B62 and the microphone terminal B83 of the first jack B81 come into contact with each other.
  • the ground terminal B64 of one plug B62 contacts the ground terminal B84 of the first jack B81
  • the R headphone terminal B65 of the first plug B62 contacts the R headphone terminal B85 of the first jack B81
  • the first plug B62 The first plug B62 and the first jack B81 are formed so that the L headphone terminal B66 and the L headphone terminal B86 of the first jack B81 are in contact with each other.
  • FIG. 31A is a diagram of the first jack B81 viewed from the side, and shows the arrangement of the first plug B62 and the microphone terminal B83.
  • FIG. 31 (b) is a view showing the end surface of the first jack B81 taken along the line CC ′, and the arrangement of the first plug B62, the microphone terminal B83, the ground terminal B84, the R headphone terminal B85, and the L headphone terminal B86. Is shown.
  • FIG. 31A is a diagram of the first jack B81 viewed from the side, and shows the arrangement of the first plug B62 and the microphone terminal B83.
  • FIG. 31 (b) is a view showing the end surface of the first jack B81 taken along the line CC ′, and the arrangement of the first plug B62, the microphone terminal B83, the ground terminal B84, the R headphone terminal B85, and the L headphone terminal B86. Is shown.
  • the microphone terminal B83, the ground terminal B84, the R headphone terminal B85, The L headphone terminal B86 is in contact with each terminal of the opposed first plug B62 and elastically deforms in accordance with the shape of each terminal. At this time, a contact state is maintained by the bending elasticity in the convex part of each terminal.
  • the microphone terminal B63 and the microphone terminal B83 are connected, the ground terminal B64 and the ground terminal B84 are connected, the R headphone terminal B65 and the R headphone terminal B85 are connected, and the L headphone terminal B66 and the L headphone terminal B86. And are connected.
  • the microphone terminal B83 of the first jack B81 is connected to the AD conversion unit B89, and the signal input to the microphone terminal B63 of the first plug B62 passes through the first jack B81.
  • the data is input to the conversion unit B89.
  • the ground terminal B84 of the first jack B81 is grounded, and the ground line B41 connected to the ground terminal B84 of the first plug B62 is grounded via the first jack B81.
  • the R headphone terminal B85 of the first jack B81 is connected to the DA converter B91 corresponding to the sound source B92 for the right ear, and the signal connected to the R headphone terminal B65 and the R headphone terminal B65 of the first plug B62.
  • a signal from the DA conversion unit B91 corresponding to the right ear sound source B92 is input to the line B36.
  • the L headphone terminal B86 of the first jack B81 is connected to the DA converter B91 corresponding to the sound source B92 for the left ear, and the signal connected to the L headphone terminal B66 and the L headphone terminal B66 of the first plug B62.
  • a signal from the DA conversion unit B91 corresponding to the sound source B92 for the left ear is input to the line B38.
  • the frequency correction processing unit B90 performs at least one of an amplification operation, an integration operation, and a differentiation operation on the input signal at a frequency of the pulsation signal, thereby at least pulsating volume signal, pulsation property.
  • a frequency correction process for extracting one of the speed signal and the pulsation acceleration signal is performed.
  • Processing for extracting one of the pulsating volume signal, the pulsating velocity signal, and the pulsating acceleration signal by the frequency correction processing unit B90 is also referred to as correction processing.
  • the sample information processing apparatus B3 includes a sample information detection apparatus B13 and an information processing apparatus B23.
  • the sample B101 to which the sample information detection device B13 and the sample information processing device B3 are applied is a space that is closed or substantially closed by isolating a part constituting the outer ear B107 from the external space by the casing parts B211, B612, and B622.
  • the part constituting the external ear B107 means at least one or more of the external auditory canal B104, any part of the auricle B108 shown in FIG. 27, and the back side part of the auricle B108 shown in FIG.
  • the specimen B101 may be mounted on the specimen B101 so that the specimen information detection unit B32 isolates at least a part of the outer ear B107 from the external space to form the cavity B109. If the cavity B109 can be formed by isolating a part of the part constituting the outer ear B107 from the external space, the casing parts B211, B612, and B622 also include peripheral parts other than the part constituting the outer ear B107.
  • the specimen information detection unit B32 may be mounted so as to form the cavity B109. For example, the cavity B109 may be formed together with the portion around the auricle B108 of the head B110 to isolate the auricle B108 from the external space.
  • the intensity of the detected pulsatile signal is large and a sharp peak is obtained, so that the external ear canal B104, tragus B111, or ear lobe B113 is isolated from the external space, and the cavity B109 is formed. It is preferable to attach to the specimen B101 so as to form. From the magnitude of the detected signal amount, among the parts constituting the outer ear B107, the external auditory canal B104 or the tragus B111 is more preferable, and the tragus B111 is particularly preferable.
  • a signal having a high intensity can be obtained by combining signals derived from a plurality of vibration sources in the cavity B109. Therefore, a plurality of vibration sources may be isolated from the external space to form the cavity B109, or the outer ear B107 or the auricle B108 may be entirely isolated from the external space to form the cavity B109.
  • the external auditory canal B104 and the tragus B111 may be isolated from the external space to form the cavity B109.
  • the external ear canal B104, tragus B111, and ear lobe B113 may be isolated from the external space to form the cavity B109.
  • the sample information detection apparatus B13 and the sample information processing apparatus B3 according to the present embodiment are configured as described above, and the parts constituting the outer ear B107 are configured by the casing portions B211, B612, and B622 of the sample information detection unit B32.
  • a cavity B109 that forms a closed or almost closed space structure isolated from the external space is formed. In this state, pressure information resulting from the pulsation signal of the blood vessel existing inside the ear canal B104, the eardrum B106, or the pinna B108 in the specimen B101 is received, and the pulsation signal based on the pulsation information of the blood vessel in the specimen B101 It is to detect.
  • the “blood vessel pulse wave information” mentioned above is pulse wave information transmitted through the blood vessel, and information (signal) indicating vibrations transmitted through the blood vessel caused by the heartbeat of the specimen B101. It is. Hereinafter, this is also simply referred to as “blood vessel pulse wave information”.
  • the sample information processing device B3 When functionally representing the sample information processing device B3, the sample information processing device B3 includes a sample information detection device B13 and an information processing device B23 as shown in FIG.
  • the sample information detection apparatus B13 includes a sample information detection unit B32, and a connection unit B53 including a gain switching unit B95 and a frequency characteristic compensation unit B96.
  • the information processing apparatus B23 includes an AD conversion unit B89, a frequency correction processing unit B90, a DA conversion unit B91, and a sound source B92.
  • the application software for signal processing is downloaded to the smartphone B23 as the information processing apparatus B23 according to the present embodiment, and the smartphone B23 can perform signal processing by starting the application software.
  • the frequency correction processing unit B90 functions as a frequency correction processing unit when the above-described application software is expanded on the memory and executed by the CPU.
  • the gain switching unit B95 and the frequency characteristic compensation unit B96 are processed by an analog circuit built in the connection unit B53.
  • the gain switching unit B95 When the gain switching unit B95 is functionally represented, as shown in FIG. 32, the gain switching unit B95 includes an AGC (automatic gain control) B261, a saturation detection unit B262, and a PLL (phase-locked loop). Circuit) B263 and a lock detector B264.
  • AGC automatic gain control
  • saturation detection unit B262 a saturation detection unit
  • PLL phase-locked loop
  • the pulsation signal output detected by the sensor B212 is input to the gain switching unit B95, this signal is first input to the AGCB 261.
  • the AGC B 261 performs automatic gain control for automatically adjusting the amplification factor (gain) of the input signal, and amplifies or attenuates the input signal.
  • the AGCB 261 outputs the processed pulsation signal to the saturation detection unit B262.
  • the saturation detection unit B262 detects signal saturation by determining whether or not the input pulsation signal is saturated. In particular, saturation is detected in a low frequency region of 0.1 to 10 Hz, which is a pulse wave information detection band (also referred to as a pulse wave detection band), which is a frequency band in which blood vessel pulse wave information is detected. Whether the signal is saturated is determined by comparing the absolute value of the level of the input signal with a predetermined threshold, and when the absolute value of the level of the input signal is equal to or higher than the predetermined threshold And determining that the signal is saturated. Further, when the absolute value of the level of the input signal is lower than a predetermined threshold, it is determined that the signal is not saturated.
  • a pulse wave information detection band also referred to as a pulse wave detection band
  • the predetermined threshold is the level at which the signal at the peak top portion above a certain level is cut when the waveform, especially the peak position level, increases in the pulse waveform of the input pulsation signal. Value.
  • the saturation detection unit B262 When saturation is detected by the saturation detection unit B262, the saturation detection unit B262 outputs a saturation detection signal to the AGCB 261. When the saturation detection signal is sent, the AGC B 261 again performs automatic gain control of the signal. On the other hand, when saturation is not detected by the saturation detection unit B262, the saturation detection unit B262 outputs a pulsation signal to the PLLB 263. This operation is not always performed, but is a kind of calibration work.
  • the PLL B 263 detects the rising of the waveform of the input pulsating signal, and further detects the period from the rising of the pulsating signal to the rising of the next pulsating signal as one cycle, and locks the signal.
  • the PLLB 263 divides this one period by, for example, 128 clocks, and sends a total of 128 lock phases (also referred to as timing or clock) from 0 to 127 to the waveform determination unit B272 of the frequency characteristic compensation unit B96. Output. Further, the PLLB 263 outputs a phase difference signal between the input signal and the output signal to the lock detection unit B 264.
  • the lock detection unit B264 compares the magnitude of the input phase difference signal with a predetermined set value and detects whether the PLLB 263 has locked the pulsation signal.
  • the magnitude of the input phase difference signal is compared with a predetermined set value, and when the magnitude of the input phase difference signal is smaller than the predetermined set value, it is determined that the lock is established. Further, when the magnitude of the input phase difference signal is equal to or larger than a predetermined set value, it is determined that the lock is not established.
  • a lock detection signal is output to the AGCB 261.
  • an unlock detection signal is output to the AGCB 261.
  • the AGC B 261 stops the adjustment of the amplification factor by the automatic gain control, and the frequency characteristic guarantees the pulsating signal amplified or attenuated in a state in which the gain is not moved.
  • the AGCB 261 performs control to increase the gain by increasing the gain by automatic gain control and to enter the locked state.
  • the gain switching unit B95 With the above-described configuration, the pulsating signal to which AGC B261 is input is amplified or attenuated, and a pulsating signal whose signal level is adjusted by a constant amplification factor or attenuation factor is output. . As a result, a pulsation signal having a peak and gain that can be locked by the PLLB 263 is output. At this time, when the signal detected by the sensor B212 is saturated, the gain switching unit B95 decreases the signal level and outputs a signal from which the saturation is eliminated.
  • the frequency characteristic compensation unit B96 When functionally expressing the frequency characteristic compensation unit B96, the frequency characteristic compensation unit B96 includes a waveform equalization processing unit B271, a waveform determination unit B272, and an AGCB 273, as shown in FIG.
  • the pulsation signal processed by the AGC B261 of the gain switching unit B95 is input to the waveform equalization processing unit B271.
  • the waveform equalization processing unit B271 performs waveform equalization processing for compensating the frequency response in the low frequency region by performing phase compensation in the low frequency region on the signal output from the specimen information detection unit B32.
  • the waveform equalization processing by the waveform equalization processing unit B271 is caused by the electromagnetic conversion system of the sensor B212, the air leakage of the cavity B109, or the DSP included in the specimen information detection unit B32 by integral or differential phase compensation. This is a process of compensating for either the differential response or the integral response, or the frequency response generated by these.
  • the waveform equalization processing unit B271 performs integral-type phase compensation, compensates for the differential response added to the pulsation signal output from the specimen information detection unit B32, and outputs it as a velocity pulse wave. The case will be described.
  • the integral type phase compensation by the waveform equalization processing unit B271 is such that the input pulsation signal has a frequency characteristic that raises the low frequency region of 0.1 to 10 Hz, which is the pulse wave detection band, as shown in FIG. It is processing performed by putting in an electric circuit having
  • the low frequency region refers to a frequency region including a pulse wave information detection band that is a frequency band in which blood vessel pulse wave information is detected.
  • the waveform equalization processing unit B271 may process the pulsating signal by putting it in one stage in such an electric circuit, or may process it by putting it in two stages. In the present embodiment, integration is performed approximately once by performing processing with one stage.
  • FIG. 33 as an example, there are three ways of passing a flat curve at ⁇ 20 dB / dec from 0.1 Hz to 0.68 Hz, from 0.1 Hz to 7 Hz, from 0.1 Hz to 10.6 Hz, and thereafter.
  • the frequency characteristic compensation pattern is shown. These show phase compensation patterns with different boost amounts of integral type phase compensation, each raising the low frequency region of 0.1 to 10 Hz. That is, FIG. 33 shows that the frequency component higher than the pulse wave information detection band is passed, and the gain of the frequency component of the pulse wave information detection band is gradually increased as the frequency decreases, and the gain of the frequency component lower than the pulse wave information detection band is increased.
  • An example of integral type phase compensation for amplifying the signal is shown.
  • FIG. Electrical circuit of Figure 34 includes an operational amplifier (hereinafter, referred to as an operational amplifier) B 221, capacitor B222 capacitance C 1, the resistance value of the resistor R 1 B 223, the resistance of the resistance value R 2 B 224, a resistor B225 of the resistance value R 3.
  • the transfer function of the electric circuit of FIG. 34 can be expressed as the following formula (1).
  • the waveform equalization processing unit B271 is an incomplete integration circuit with a finite DC gain, and outputs an input signal as a signal in which attenuation in the low frequency region is amplified. It is. Further, when the electric circuit of FIG. 34 is represented by a Bode diagram, it can be represented as shown in FIG.
  • the frequency characteristics of the phase compensation can be adjusted by setting the frequency band through which the signal passes to a predetermined value.
  • three types of frequency characteristic compensation patterns as shown in FIG. 33 can be realized.
  • the frequency characteristics of the phase compensation pattern can be changed as in the three patterns shown in FIG.
  • the R 3 continuously is difficult, by selecting the best one by switching them to prepare a value of some number of R 3, the value of R 3 Can be changed.
  • the waveform equalization processing unit B271 outputs the phase-compensated signal to the waveform determination unit B272.
  • the waveform determination unit B272 determines whether phase compensation (conditions for waveform equalization processing) in the waveform equalization processing is appropriate for the input signal.
  • the waveform determination unit B272 when the pulse wave of the signal that has been phase compensated by the waveform equalization processing unit B271, equally divides one cycle of the pulse wave by a predetermined number of clocks, the intensity of the signal in the clock at a specific timing And a pulse wave comparison process for comparing the pattern indicated by the signal strength of the clock at the same timing when the pulse wave when the velocity pulse wave or the acceleration pulse wave is equally divided by the same number of clocks.
  • the waveform determination unit B272 equally divides the pulsation signal input from the waveform equalization processing unit B271 by a clock of one cycle based on the clock input from the PLL B 263, and a plurality of clocks at a specific timing. Take a sampling point. The number of clocks at this time is determined by the number of clocks of the PLLB 263.
  • a case where five sampling points a to e are taken will be described as an example.
  • the velocity pulse wave or acceleration pulse wave has a characteristic shape (peak).
  • the waveform equalization processing unit B271 performs phase compensation, if the processed waveform is obtained as a velocity pulse wave, the waveform naturally exhibits a shape characteristic of the velocity pulse wave. Become. Therefore, when the pulse wave indicates a velocity pulse wave or an acceleration pulse wave, the pulse wave is equally divided by a clock input from the PLLB 263, and a sampling point is set at a clock at a specific timing indicating a characteristic shape of the waveform. To obtain the signal strength (sample value) at that clock. In this way, the signal intensity is obtained at a plurality of points where the waveform has a characteristic shape, and by performing the sampling operation, a unique pattern indicating the intensity of the velocity pulse wave or acceleration pulse wave signal during one cycle Can be obtained.
  • the waveform shown in FIG. 36 shows a velocity pulse wave.
  • One cycle of the pulse wave is equally divided by a total of 128 clocks from 0 to 127 obtained by the PLLB 263.
  • the Peak value at which the pulse wave waveform has a peak is set as the PLL synchronization phase 0, and the sampling point b is arranged at this timing.
  • Sampling point a and sampling point c are arranged at specific clocks at timings before and after the time axis of sampling point b.
  • the sampling point e is arranged at a clock at a specific timing which becomes a point where the pulse wave polarity is negative, that is, a deflection point of the volume pulse wave.
  • sampling point d is arranged in a clock at a specific timing between the sampling point c and the sampling point e.
  • sampling points are arranged in a clock at a specific timing, which is a characteristic point of the velocity pulse wave or acceleration pulse wave waveform.
  • the signal intensity at each sampling point a to e is obtained as a sample value, and a specific pattern indicated by the intensity of the velocity pulse wave or acceleration pulse wave signal is acquired.
  • the waveform determination unit B272 is set so that the pulse wave of the signal phase-compensated by the waveform equalization processing unit B271 has the same number of clocks as that in the case of sampling the velocity pulse wave or the acceleration pulse wave as described above. One cycle of the pulse wave is equally divided by the clock obtained by the PLLB 263. Then, the waveform determination unit B272 obtains, as sample values A to E, signal intensities at specific timing clocks corresponding to the sampling points a to e in the case of the above-described velocity pulse wave or acceleration pulse wave, respectively.
  • the waveform determination unit B272 for the input signal, sample values A to E of signal intensity corresponding to a clock at a specific timing at which the velocity pulse wave or the acceleration pulse wave has a characteristic shape, and these signals. Waveform patterns indicated by the sample values A to E of the intensity can be acquired.
  • the waveform determination unit B272 compares the pattern of the sample values A to E indicated by the pulse wave of the signal phase-compensated by the waveform equalization processing unit B271 with the pattern indicated by the velocity pulse wave or the acceleration pulse wave. If they match or approximate, it can be determined that a desired velocity pulse wave or acceleration pulse wave has been obtained. At this time, it can be said that the waveform equalization processing in which the frequency response of the input signal is compensated can be performed by phase compensation with an appropriate frequency characteristic.
  • the sample value E at the sampling point e becomes a negative value
  • the sample value at the sampling point d D shows a pattern in which D is close to 0, and sample values A and C at sampling points a and c are about 1 ⁇ 2 of sample value B (peak value) at sampling point b.
  • the waveform changes accordingly.
  • the boost amount due to phase compensation is insufficient, the differential element remains, and the sample value D at the sampling point d tends to be a negative value.
  • the sample value B at the sampling point b is large, the sample values A and C at the sampling points a and c are small, and the waveform has a pattern in which the peak is slim (steep) than the original waveform. .
  • the waveform obtained after the phase compensation is changed, and the sample values A to E at the sampling points a to e are changed.
  • a waveform equalization suitability signal is output to the waveform equalization processing unit B271.
  • a waveform equalization inappropriate signal is output to the waveform equalization processing unit B271.
  • the waveform equalization processing unit B271 outputs a phase compensated signal to the AGCB 273 when the waveform equalization suitability signal is input.
  • the waveform equalization processing unit B271 performs phase compensation by changing the frequency characteristics, and outputs the phase compensated signal to the waveform determination unit B272.
  • phase compensation can be performed with appropriate frequency characteristics, and a signal with a compensated frequency response can be obtained.
  • the frequency characteristic compensation unit B96 the differential response in the low frequency region including the pulse wave detection band can be compensated for the pulsating signal output from the specimen information detection unit B32 to obtain a velocity pulse wave. it can.
  • the AGC B273 amplifies or attenuates the input signal and outputs the processed signal to the outside of the frequency characteristic compensation unit B96. This is because the peak level of the signal may change as a result of the waveform equalization processing by the waveform equalization processing unit B271, and this is readjusted.
  • connection part B53 The circuit configuration of the connection part B53 is shown in FIG.
  • the signal line B36 of the R headphone unit B35 is connected to the switch circuit B68.
  • the connection of the signal line B36 to the R headphone terminal B65 of the first plug B62 or the gain switching unit B95 is switched by the switch circuit B68.
  • the gain switching unit B95 is connected to the power source B71.
  • the gain switching unit B95 is connected to the frequency characteristic compensation unit B96. Since the frequency characteristic compensation unit B96 is connected to the gate terminal (G) of the FET B72, the signal processed by the gain switching unit B95 and the frequency characteristic compensation unit B96 is input to the gate terminal (G) of the FET B72.
  • the drain terminal (D) of the FET B72 is connected to the microphone terminal B63 provided in the first plug B62 of the connection portion B53.
  • the source terminal (S) of the FET B72 merges with the ground line B41 and is connected to the ground terminal B64 provided in the first plug B62.
  • the signal line B36 when the signal line B36 is connected to the gain switching unit B95 by the switch circuit B68, the signal detected by the sensor B212 is input to the gain switching unit B95. Further, the signal processed by the gain switching unit B95 and the frequency characteristic compensation unit B96 is input to the microphone terminal B63 and input to the AD conversion unit B89 of the information processing apparatus B23 via the microphone terminal B83 of the first jack B81. .
  • the sensor B212 functions as a microphone.
  • the signal line B36 is connected to the R headphone terminal B65 by the switch circuit B68, the sound signal from the sound source B92 is input to the sensor B212 of the R headphone unit B35. In this case, the sensor B212 functions as a speaker. In this way, the specimen information detection device B13 outputs the signal detected by the sensor B212 and processed by the gain switching unit B95 and the frequency characteristic compensation unit B96 to the information processing device B23.
  • the frequency correction processing unit B90 performs frequency correction processing on the input signal to extract at least one of the pulsating volume signal, the pulsating velocity signal, and the pulsating acceleration signal. It is.
  • the frequency correction processing unit B90 includes an amplifier B131, an integral correction unit B132, and a differential correction unit B133, as shown in FIG.
  • the frequency correction processing unit B90 can obtain a velocity pulse wave without performing frequency correction processing other than amplification processing.
  • the volume pulse wave can be obtained by inputting the output signal of the amplifier B131 to the integration correction unit B132 and performing compensation by the integration circuit.
  • an acceleration pulse wave can be obtained by inputting the output signal of the amplifier B131 to the differential correction unit B133 and performing compensation by the differential circuit.
  • the sound source B92 outputs a digital sound signal for outputting sound from the R headphone unit B35 and the L headphone unit B37.
  • the pulsation signal output from the specimen information detection unit B32 is a state in which a part constituting the outer ear B107 is isolated from the external space so as to form a closed cavity that is closed or substantially closed. This is detected by the sensor B212.
  • the sensor B212 when detecting a change in the volume of a blood vessel due to the pulsation of the blood vessel accompanying the contraction of the heart, it is considered that it is originally detected as a volume pulse wave.
  • the pulsation signal is obtained as a volume pulse wave.
  • the signal output from the specimen information detection unit B32 is affected by the signal level or the frequency characteristics due to the frequency characteristics of the sensor B212.
  • the signal detected by the specimen information detection unit B32 is affected by the signal level or frequency characteristics due to the closed level of the closed cavity, that is, the air leakage of the cavity B109. Furthermore, when the sample information detection unit B32 includes a DSP and this DSP applies processing to the signal detected by the sensor B212, this also affects the level or frequency characteristics of the signal. The detected waveform or signal level is also affected by the vibration source detected by the specimen information detection unit B32.
  • the signal processing in the sample information processing apparatus B3 is preferably performed so as to reduce the influence of the characteristics of the sensor B212, the closed level of the closed cavity, and the processing by the DSP as described above. That is, the frequency characteristic compensation unit B96 compensates the frequency response indicated by the pulsation signal output from the specimen information detection unit B32 due to these influences by the waveform equalization process. Further, the gain switching unit B95 adjusts the level of the signal according to the change in the level of the pulsation signal output from the specimen information detection unit B32 due to these effects by the level adjustment process.
  • the relationship between the influence of the pulsation signal output from the specimen information detection unit B32 and the signal processing will be described with an example of a pulse wave waveform detected by the specimen information detection unit B32.
  • the frequency characteristic of the low frequency region of 100 Hz or less of the driver unit used as the sensor B212 is obtained by taking the frequency (Hz) scale as Log (logarithmic) on the horizontal axis and Gain (dB) on the vertical axis. It is represented as shown in FIG. As shown in FIG. 38A, the driver unit shows a response in which the sensitivity decreases by 20 dB / dec toward the low frequency region. For example, in the case of a dynamic driver unit, this is considered to be caused by the fact that the electromagnetic conversion system for converting the vibration of the diaphragm into a current has a differential response.
  • the pulsation signal detected by the specimen information detection unit B32 is also detected as a signal showing the frequency characteristics to which a similar differential response is added.
  • integral type phase compensation that passes through an electric circuit (compensation circuit) having frequency characteristics as shown in FIG. 38B may be applied. That is, as shown in FIG. 38 (b), phase compensation for passing through a flat curve at ⁇ 20 dB / dec from the very low frequency region to around 100 Hz may be performed on the output of the sensor B212.
  • the “closed level of the closed cavity” represents the degree of closing of the cavity B109, and is also simply referred to as the “closed level”.
  • the closed level of the closed cavity varies depending on whether the specimen information detection unit B32 is a canal-type inner ear type, on-ear type, or around-ear type headphone.
  • the closing level also changes depending on the type, shape, and material of the earpiece B213, the ear pads B614, B624, and the housing parts B211, B612, B622.
  • the closing level changes depending on the shape of the head B110 and the pinna B108 of the sample B101, the presence or absence of head hair or body hair, or how the sample B101 wears the sample information detection unit B32.
  • the closed level of the closed cavity affects the frequency characteristics indicated by the pulsation signal detected by the specimen information detection unit B32.
  • FIG. 40B shows an example of a waveform of a pulse wave obtained when a pulsation signal of a blood vessel is detected in a state where a closed cavity is formed in a fingertip or an arm, that is, completely closed.
  • the waveform shown in FIG. 40B can be said to be a velocity pulse wave from the shape of the waveform.
  • the volume pulse wave showing the waveform of FIG. 40 (a) is obtained.
  • the acceleration pulse wave shown in FIG. 40 (c) is obtained by differentiating the pulsation signal of the velocity pulse wave showing the waveform of FIG. 40 (b).
  • the unit [s] on the horizontal axis in the figure represents the second (hereinafter, the same applies to the unit [s] in the figure).
  • a canal-type inner-ear type headphone was used to detect the pulsatile signal of the blood vessel by forming the external ear canal B104 as a cavity B109a having a closed or almost closed space structure.
  • An example of the waveform obtained at this time is shown in FIG.
  • the pulse wave showing the waveform of FIG. 41 (a) is obtained.
  • the pulsation signal shown in FIG. 41 (b) is obtained by differentiating the pulsating signal showing the waveform of FIG. 41 (b).
  • the waveform of FIG. 41 (b) is close to the acceleration pulse wave of FIG. 40 (c)
  • the waveform of FIG. 41 (c) is a double differential of the velocity pulse wave of FIG. 40 (b). It can be seen that the waveform is close to the differential waveform of the acceleration pulse wave of FIG. This is because the waveforms shown in FIGS. 41 (a) to 41 (c) when a pulsating signal is detected using a canal-type inner-ear type headphone form a completely closed closed cavity.
  • a new differential element is added at the frequency of these pulse wave components.
  • the pulsation signal detected using the canal type inner ear type headphones as the specimen information detection unit B32 is detected as a signal indicating the frequency characteristics with the addition of the differential element.
  • an integral type or semi-integral type phase compensation is made to pass through an electric circuit (compensation circuit) having a frequency characteristic as shown in FIG. Should be applied.
  • the specimen information detection unit B32b in accordance with the attenuation of the gain of the region including the low frequency region of 0.1 to 10 Hz which is the pulse wave detection band, Perform phase compensation to increase the gain. That is, the phase compensation may be performed so as to amplify the gain in the low frequency region by compensating for the decrease in the gain in the low frequency region including the pulse wave detection band.
  • the earpiece B213 used for the canal-type inner earphone When the earpiece B213 used for the canal-type inner earphone is used as the casing, as shown in FIG. 39A, it attenuates with a corner frequency of the differential response in the vicinity of the pulse wave detection band. As a result, Gain falls.
  • the ear pads B614 and B624 of the on-ear type and the around-ear type it is attenuated from a region higher than the vicinity of the pulse wave detection band, and compared with the case of the earpiece B213 used for the canal type inner earphone. Gain greatly falls. At this time, since the corner frequency at which the attenuation begins to drop is far away from the pulse wave frequency, the gain reduction near the pulse wave detection band is stable.
  • the corner frequency of the differential response due to air leakage may be close to or less than the pulse wave frequency.
  • the signal waveform is detected as a waveform close to the speed response.
  • the corner frequency of the differential response due to air leakage is usually sufficiently higher than the pulse wave frequency. For this reason, the signal waveform is detected as a stable acceleration response under the influence of the differential response of the electromagnetic conversion system described above and the differential response due to air leakage.
  • the frequency characteristic is increased by a compensation pattern that gradually increases the gain of the frequency component in the frequency region including the pulse wave information detection band at 20 dB / dec as the frequency decreases. If compensation is performed, it is considered that the differential response due to air leakage can be compensated.
  • the amount of phase compensation boost compensates for at least the differential response due to air leakage. It is considered possible.
  • the closed level of the closed cavity may be affected.
  • the degree of attenuation of the frequency characteristics as shown in FIG. 42A changes according to the change of the corner frequency due to the influence of the air gap according to the closed level of the closed cavity.
  • the closing level becomes higher than usual due to how the sample information detection unit B32b is attached, how the ear pad B614 fits into the auricle B108, the degree of sealing of the housing portions B612, B622, and the like. Is mentioned.
  • the corner frequency of the differential response due to air leakage approaches the frequency of the pulse wave, it is necessary to perform phase compensation by changing the boost amount for compensation according to this change.
  • sample information detection unit B32b As the sample information detection unit B32b, an example of a waveform obtained when a pulsation signal of a blood vessel is detected using an on-ear type headphone so as to form a cavity B109b having a closed or almost closed space structure is shown. This is shown in FIG. 43 (a). Further, by integrating the pulsation signal showing the waveform of FIG. 43 (a), the pulse wave showing the waveform of FIG. 43 (b) is obtained.
  • the waveform of FIG. 43A is the same as that of FIG. It can be seen that the waveform of FIG. 43 (b) is the same waveform as the velocity pulse wave of FIG. 40 (b). Compared with the waveforms in FIGS. 41 (a) to 41 (c), the waveform in FIG. 43 (a) has a clearer peak than the waveform in FIG. 41 (b) close to the acceleration pulse wave. I understand. It can also be seen that the waveform in FIG. 43 (b) has a clearer peak than the waveform in FIG. 41 (a) which is close to the velocity pulse wave.
  • a velocity pulse wave waveform is observed due to the differential response of a dynamic type electromagnetic conversion system.
  • the closed level of the closed cavity is closed or almost closed, so the differential response of the dynamic electromagnetic conversion system and the corner frequency are the pulse wave frequency.
  • a new differential element is added at the frequency of the pulse wave component, so that the acceleration pulse wave is slightly higher than the velocity pulse wave. A waveform with this tendency added will be observed.
  • on-ear type headphones compared with the case where a pulsation signal is detected by forming a closed cavity that is completely closed, It can be seen that a pulsation signal was detected as a simple acceleration pulse wave.
  • a pulsation signal detected using an on-ear type headphone as the specimen information detection unit B32 is detected as a signal indicating frequency characteristics obtained by adding a differentiation to the speed response once.
  • an integral type phase compensation that passes an electric circuit (compensation circuit) having a frequency characteristic as shown in FIG. Good.
  • the specimen information detection unit B32c in accordance with the attenuation of the gain in the region including the low frequency region of 0.1 to 10 Hz which is the pulse wave detection band, Perform phase compensation to increase the gain. That is, the phase compensation may be performed so as to amplify the gain in the low frequency region by compensating for the decrease in the gain in the low frequency region including the pulse wave detection band.
  • FIG. 44 An example of a waveform obtained when a pulsation signal of a blood vessel is detected by using an around-ear type headphone as the specimen information detection unit B32c so as to form a cavity B109c having a closed or almost closed space structure. This is shown in FIG. 44 (a). Furthermore, by integrating the pulsation signal having the waveform of FIG. 44A, a pulse wave having the waveform of FIG. 44B is obtained.
  • the waveforms in FIGS. 44 (a) and 44 (b) are obtained as waveforms similar to the waveforms in FIGS. 43 (a) and 43 (b). Therefore, when the around-ear type headphones are used as the sample information detection unit B32c, the peak is clearer than when the canal type inner-ear earphones are used, as in the case of using the on-ear type headphones. It can be seen that a pulsating signal having an excellent S / N ratio can be detected. In addition, when using around-ear headphones, stable acceleration is achieved with a derivative applied almost once compared to the case of forming a completely closed closed cavity and detecting a pulsation signal. It turns out that a pulsating signal was detected in response.
  • a pulsation signal detected using an around-ear type headphone as the specimen information detection unit B32 is detected as a signal indicating a frequency characteristic obtained by adding a differentiation to the speed response once.
  • an integral type electric circuit having a frequency characteristic as shown in FIG. Compensation circuit may be applied for phase compensation.
  • FIG. 45A shows another example of a waveform obtained when a pulsation signal is detected using an on-ear type headphone as the specimen information detection unit B32. Furthermore, by integrating the pulsation signal showing the waveform of FIG. 45A, a pulse wave showing the waveform of FIG. 45B is obtained.
  • the outer member B618 of the ear pad B614 is formed of synthetic leather.
  • the waveform of FIG. 45 (a) is detected as an acceleration pulse wave as in FIGS. 42 (a) and 43 (a).
  • the waveform of FIG. 45 (b) is detected as a velocity pulse wave as in FIGS. 42 (b) and 43 (b).
  • FIG. 46A shows another example of a waveform obtained when a pulsating signal is detected using the second around-ear type headphone as the specimen information detection unit B32. Further, by integrating the pulsation signal showing the waveform of FIG. 46A, a pulse wave showing the waveform of FIG. 46B is obtained.
  • the second around-ear type headphone used here has an outer member B628 of the ear pad B614 similar to the on-ear type headphone described with reference to FIGS. 45 (a) and 45 (b). It is made of synthetic leather.
  • the second around-ear type headphone has a DSP inside, and processes the signal detected by the DSP.
  • FIG. 46A not the acceleration pulse wave, but a waveform closer to the differential response, that is, a waveform closer to the velocity pulse wave than the acceleration pulse wave is observed.
  • FIG. 46B obtained after integration, a waveform close to the volume pulse wave is observed instead of the velocity pulse wave. This is because the DSP included in the second around-ear type headphones corrects the frequency component including the pulse wave detection band so as to be boosted, so that an integral element is included in the pulsation signal detected by the specimen information detection unit B32. This is thought to be due to the participation.
  • a pulsation signal detected using a headphone equipped with a DSP as the specimen information detection unit B32 may be detected as an integral element or a signal indicating frequency characteristics to which the integral element is added.
  • the frequency characteristics of the DSP are not necessarily clear. Therefore, in an electric circuit having frequency characteristics as shown in FIG. Integral or semi-integral phase compensation may be applied.
  • the frequency characteristics of the pulsating signal output from the specimen information detection unit B32 change due to the characteristics of the sensor B212, the closed level of the closed cavity, the processing by the DSP, and the like as described above.
  • the frequency characteristic compensation processing is performed by the frequency characteristic compensation unit B96 (waveform equalization processing unit B271), thereby compensating the frequency response of the pulsation signal output from the sample information detection unit B32. And output as a signal equalized to a desired waveform.
  • the waveform phase-compensated by the waveform equalization processing unit B271 is compared with the waveform serving as a determination reference by the waveform determination unit B272, and the phase compensation is repeatedly performed until the frequency characteristic of the phase compensation becomes appropriate. And make a decision.
  • the phase compensation conditions are as follows: the degree of gradual increase in gain of the frequency characteristics, the magnitude of gain amplification, the frequency band in which gain is gradually increased, the frequency band in which gain is amplified, the frequency band in which signals are passed, and the like. Change as appropriate.
  • a waveform having a desired characteristic in which the frequency response is compensated can be obtained by setting the waveform serving as a reference for determination to a waveform having a desired characteristic. Accordingly, a desired waveform can be obtained by compensating the frequency response of a pulsating signal in which a plurality of frequency responses are combined.
  • the differential response resulting from the electromagnetic system of the sensor B212 and the differential response due to air leakage from the on-ear type headphones are combined, so that the pulsation signal output from the specimen information detection unit B32 is a pulse wave (acceleration) of the acceleration response. Pulse wave).
  • the frequency characteristic compensation unit B96 performs integral type phase compensation on the pulsating signal output from the specimen information detection unit B32 using the waveform serving as a reference for determination as a velocity pulsating wave.
  • it can be obtained as a velocity pulse wave in which the differential response for one time is compensated.
  • the differential response caused by the electromagnetic system of the sensor B212 and the differential element due to air leakage of the canal type in-ear type headphones are combined, so that the pulsation signal output from the specimen information detection unit B32 has a speed response. It is output as a pulse wave with a differential element added to the pulse wave (velocity pulse wave).
  • the frequency characteristic compensator B96 performs a semi-integral type phase compensation on the pulsating signal output from the specimen information detection unit B32 with the waveform serving as a reference as a velocity pulsating wave. By performing, it can be obtained as a velocity pulse wave in which a differential element due to air leakage is compensated.
  • the differential information resulting from the electromagnetic system of the sensor B212, the differential response due to air leakage of the on-ear type headphones, and the boost (integral element) by the DSP of the sample information detection unit B32 are combined, so that the sample information
  • the pulsation signal output from the detection unit B32 is output as a pulse wave obtained by adding an integral element to a pulse wave of acceleration response (acceleration pulse wave).
  • the frequency characteristic compensator B96 performs a semi-integral type phase compensation on the pulsating signal output from the specimen information detection unit B32 with the waveform serving as a reference as a velocity pulsating wave. By performing, it can be obtained as a velocity pulse wave in which the differential response and integral element for one time are compensated.
  • the specimen information detection apparatus B13 by performing phase compensation on the pulsating signal output from the specimen information detection unit B32, it is possible to obtain a waveform having a desired characteristic with a compensated frequency response. it can.
  • the same determination as that of the reference waveform can be made by performing the determination by the waveform determination unit B272.
  • a waveform having desired characteristics can be obtained.
  • FIG. 47A shows an example of a waveform obtained when a pulsating signal is detected using a third around-ear type headphone as the sample information detection unit B32. Further, by integrating the pulsation signal showing the waveform of FIG. 47 (a), the pulse wave showing the waveform of FIG. 47 (b) is obtained.
  • the outer member B628 of the ear pad B614 is formed of cloth.
  • the gain switching unit B95 automatically adjusts the signal level according to the signal input from the sample information detection unit B32.
  • the signal saturation can be eliminated by the gain switching unit B95, it is possible to automatically switch the gain and obtain a signal with an appropriate gain regardless of the type of headphones used.
  • the intensity of the detected signal is lower than in the case of the on-ear type or around ear type headphones.
  • the signal input to the information processing apparatus B23 may not be suitable for signal processing, such as being unable to lock by the PLL.
  • a signal amplified to an appropriate gain by the gain switching unit B95 can be obtained. Further, the gain switching unit B95 can automatically correct to an appropriate gain even when the signal level changes dynamically.
  • sample information detection unit B32 a headphone of a canal type inner ear type, on-ear type, or around ear type headphone can be used.
  • the detected signal is larger than in the case of an inner-ear type headphone, and the signal input to the information processing apparatus B23 may be saturated.
  • the signal level obtained by the sensor B212 is influenced by the characteristics of the driver unit used as the sensor B212.
  • the diameter of the diaphragm of the headphone is 8.8 mm ⁇ to 12.5 mm ⁇ in the case of a canal type inner earphone.
  • it is set to 30 mm ⁇ to 53 mm ⁇ .
  • These values are external shapes including fringes around the diaphragm, and the effective diameter of the diaphragm contributing to vibration is smaller than the above value. If the area is obtained as it is by using the diaphragm diameter on the above data, there is a difference of about 33 times in area ratio between 8 mm ⁇ and 53 mm ⁇ .
  • the volume of the cavity B109 formed when the canal-type inner earphone is inserted into the external ear canal B104 is 2 cc.
  • the volume of the headphones is about 6 cc. From these numerical values, it is predicted that the signal detected by the on-ear type or around-ear type headphones will be larger by about one digit in calculation.
  • the signal is received by the on-ear type headphones, the around ear type headphones, and the canal type inner ear type headphones, respectively. Attempted to detect.
  • the measurement was performed with a closed cavity formed by covering the external opening B105 of the ear canal B104. Further, the measurement was performed by using a canal-type inner-ear type headphone to close the external opening B105 of the ear canal B104 to form a closed cavity.
  • the amount of signal obtained from on-ear type headphones or around-ear type headphones is about a fraction of the signal obtained from canal-type inner-ear headphones for the same strength of signal input. became.
  • the amount of signal obtained when using an on-ear type or around-ear type headphone is the signal obtained when using a canal type inner ear type headphone. It shows that it is reduced to about a fraction of that. This is because when the on-ear type or around-ear type headphones are used, the volume of the cavity B109 formed is larger than that of the canal type inner ear type headphones, and the closed level of the closed cavity is low. It is presumed that air leaks from the cavity B109 and that the distance from the sensor B212 and the ear canal B104 that is the vibration source is long.
  • FIG. 48 shows an example of a waveform obtained when the external ear canal B104 is opened using an on-ear type headphone as the specimen information detection unit B32.
  • FIG. 48 shows an example of a waveform obtained when the external ear canal B104 is closed.
  • FIG. 50 shows an example of a waveform obtained when the external ear canal B104 is opened using an around-ear type headphone as the specimen information detection unit B32, and an example of a waveform obtained when the external ear canal B104 is closed. This is shown in FIG.
  • the average value of the signal intensity when the ear canal B104 is closed is about 70% when the ear canal B104 is opened. Further, among the pulsating signals detected by the around-ear type headphones, the average value of the signal intensity when the ear canal B104 is closed is about 80% when the ear canal B104 is opened.
  • the difference between the signal intensity when the ear canal B104 is opened and the signal intensity when the ear canal B104 is closed is considered to correspond to the intensity of the signal derived from the ear canal B104. That is, from this result, it is shown that about 30% of the pulsating signals detected by the on-ear type headphones are signals derived from the external ear canal B104, and about 70% are signals derived from other than the external ear canal B104. Yes. In addition, about 20% of the pulsating signals detected by the around-ear type headphones are signals derived from the external ear canal B104, and about 80% are signals derived from other than the external ear canal B104.
  • the cavity B109 including the external ear canal B104, the tragus B111, and the ear lobe B113 can be formed.
  • the pulsation signals of the blood vessels derived from the tragus B111 and the earlobe B113 are obtained. Can be detected.
  • the signal detected from the tragus B111 has a high intensity and a sharp peak.
  • the difference in the level of the signal output from the specimen information detection unit B32 is automatically corrected to an appropriate gain by the gain switching unit B95.
  • the opening B215 is directed to the tragus B111, and the earpiece B213 is pressed and brought into contact therewith to detect a pulsating signal.
  • An example of the waveform obtained at this time is shown in FIG.
  • the opening B215 is directed to the earlobe B113, the earpiece B213 is pressed and brought into contact, and a pulsation signal is detected.
  • FIG. 53 shows an example of the waveform obtained. These represent the waveforms of signals detected using only the tragus B111 or only the earlobe B113 as a vibration source.
  • the intensity of the signal obtained from the tragus B111 is greater than the signal obtained from the earlobe B113 when compared with the same surface area as the size of the opening B215 of the canal-type inner-ear type headphones. Can be seen to be large.
  • the signal amount obtained from the external auditory canal B104 is 1, the signal amount obtained from the tragus B111 is approximately 2.3, and the signal amount obtained from other parts of the auricle B108 such as the tragus B111 is approximately 0.2. 5 is estimated.
  • the frequency correction process can be described as a process of passing an electric circuit (compensation circuit) having a frequency response as shown in FIG.
  • Such processing may be realized by a hardware circuit or software, or a combination of hardware and software.
  • FIG. What is necessary is just to apply the frequency correction process which passes the electric circuit which makes the frequency response shown.
  • the integration is made to pass through an electric circuit having a frequency characteristic of a flat curve at -20 dB / dec from an extremely low frequency range to 100 Hz.
  • a (volume) pulse wave is obtained.
  • the volume pulse wave has a gain change of 0 dB / dec accompanying a change in frequency, and has a flat frequency characteristic in the vicinity of the frequency of the pulse wave.
  • the acceleration pulse wave has a gain of 40 dB / dec as the frequency increases, and has a frequency characteristic indicating a speed response in the vicinity of the frequency of the pulse wave.
  • a velocity pulsation wave is obtained.
  • the velocity pulse wave increases in gain at 20 dB / dec as the frequency increases, and has a frequency characteristic indicating an acceleration response near the frequency of the pulse wave.
  • the frequency correction processing refers to the acceleration of the velocity pulse wave obtained by the waveform equalization processing by performing an integration operation on the pulse wave frequency of 1 Hz to obtain a volume pulse wave and performing a differentiation operation. It can also be said that the processing is to obtain a velocity pulse wave by obtaining a pulse wave and performing an amplification operation.
  • the sample information detection unit B32 first detects a pulsation signal by the sensor B212 in the R headphone unit B35 (step SB11).
  • the pulsation signal detected by the specimen information detection unit B32 is input to the connection part B53.
  • the signal input to the connection part B54 shows the frequency characteristics resulting from the electromagnetic conversion system of the sensor B212, air leakage, or the specimen information detection unit B32 provided with a DSP. .
  • the pulsation signal input to the connection unit B53 is input to the gain switching unit B95 via the switch circuit B68.
  • the gain switching unit B95 performs level adjustment processing on the pulsating signal output from the specimen information detection unit B32 to adjust the signal level (step SB12).
  • the signal processed by the gain switching unit B95 is input to the frequency characteristic compensation unit B96.
  • the frequency characteristic compensation unit B96 performs waveform equalization processing on the signal processed by the gain switching unit B95 (step SB13). At this time, the signal is a velocity pulse wave by compensating the frequency response of the pulse wave detection band by waveform equalization processing.
  • the signal processed by the frequency characteristic compensator B96 is input to the microphone terminal B63 of the first plug B62 via the FET B72, and input to the information processing apparatus B23 via the microphone terminal B83 of the first jack B81 (step). SB14).
  • the signal input to the information processing apparatus B23 is input to the AD conversion unit B89 and converted into a digital signal by the AD conversion unit B89 (step SB15).
  • the signal converted into the digital signal is input to the frequency correction processing unit B90.
  • the frequency correction processing unit B90 performs frequency correction processing on the signal converted by the AD conversion unit B89, and extracts one of the pulsating volume signal, the pulsating velocity signal, and the pulsating acceleration signal ( Step SB16). Since the signal input to the frequency correction processing unit B90 is a velocity pulse wave, a volume pulse wave is obtained by performing an integral operation, an acceleration pulse wave is obtained by performing a differential operation, and an amplification operation is performed. Get velocity pulse wave.
  • the digital sound signal from the sound source B92 is input to the DA converter B91 as a left ear sound signal and a right ear sound signal, respectively.
  • the DA converter B91 converts the left ear sound signal and the right ear sound signal into analog sound signals, respectively.
  • the sound signal for the right ear processed by the DA conversion unit B91 is input to the R headphone terminal B85 of the first jack B81, and is output to the specimen information detection apparatus B13 via the first plug B62.
  • the sound signal for the left ear processed by the DA conversion unit B91 is input to the L headphone terminal B73 of the first jack B81, and is output to the sample information detection apparatus B13 via the first plug B62.
  • the right ear sound signal output to the sample information detection apparatus B13 is input to the R headphone unit B35 via the switch circuit B68, and the sound corresponding to the sound signal for the right ear of the sound source B92 is output to the R headphone unit.
  • the sound signal for the left ear output to the sample information detection apparatus B13 is input to the L headphone unit B37, and the sound corresponding to the sound signal for the left ear of the sound source B92 is used as the headphone (speaker) of the L headphone unit B37.
  • Output from the sensor B212 Output from the sensor B212.
  • the sample information processing apparatus B3 is configured as described above.
  • the switch B69 is operated to connect the sensor B212 and the gain switching unit B95 by the switch circuit B68. To do. Thereby, the pulse wave can be detected by the sensor B212 of the R headphone unit B35 attached to the specimen B101.
  • the pulse wave can be detected by the mounted R headphone unit B35 while the R headphone unit B35 is mounted. It is.
  • the specimen B101 is suitable for measuring a pulse wave for a long time by switching from a state in which music is being listened to when measuring a pulse wave, for example.
  • the parts constituting the outer ear B107 of the sample B101 are closed or substantially closed by the casing parts B211, B612, B622 from the external space.
  • a cavity B109 that forms a closed space structure is formed.
  • the sensor B212 detects the pulsation signal of the blood vessel in the part constituting the outer ear B107 as pressure information propagating in the cavity B109 due to the pulsation signal, thereby existing in the part constituting the outer ear B107.
  • a pulsating signal of the specimen B101 can be detected by using blood vessels, particularly blood vessels present in the ear canal B104, tragus B111, ear lobe B113, or tympanic membrane B106.
  • the spatial structure in which the part constituting the outer ear B107, the housing parts B211, B612, B622, and the sensor B212 are closed Measured to form (closed cavity).
  • the frequency response in the low frequency region where the pulse wave is detected can be improved by performing measurement in the closed state. Therefore, the S / N ratio and sensitivity of the pulsating signal in the low frequency region are improved as compared with the conventional case of detecting the pulsating signal with the sensor open.
  • the gain switching unit B95 attenuates the signal when the signal output from the sample information detection unit B32 is saturated. Thereby, even if the level of the signal detected by the specimen information detection unit B32 changes, it is possible to automatically switch the gain and output an appropriate signal with the signal level adjusted.
  • the canal-type inner-ear type can be attached to the outer ear B107 of the specimen B101 so as to form a cavity B109 having a closed or substantially closed space structure while isolating a portion constituting the outer ear B107 from the external space.
  • an on-ear type or around-ear type headphone it is possible to detect a pulsating signal regardless of the type. Further, by using such headphones as the sample information detection unit B32, daily measurement can be easily performed.
  • the waveform equalization processing unit B271 performs the waveform equalization process, thereby detecting the sample information by the sensor B212 and the sample information detection unit B32.
  • the frequency response of the pulse wave information detection band indicated by the signal output from can be compensated.
  • the waveform equalization processing unit B271 can obtain the pulsation signal as a velocity pulse wave signal or an acceleration pulse wave signal to which a differential element or an integral element is not added.
  • the waveform equalization processing unit B271 performs waveform equalization processing
  • the waveform determination unit B272 performs waveform comparison processing.
  • the frequency characteristic compensation unit B96 can obtain a pulsation signal in which the frequency response is compensated so as to show the same pattern as the reference waveform for the signal output from the specimen information detection unit B32.
  • the waveform determination unit B272 compares the input pulse wave with the reference waveform divided by the same number of clocks at the time normalized by dividing the pulse wave by the clock. Thereby, even when the time axis of the waveform of the signal output from the specimen information detection unit B32 fluctuates, the patterns indicated by the intensity of the pulse wave signal can be compared at the same timing.
  • the frequency correction processing unit B90 can obtain the velocity pulse wave, the volume pulse wave by the integration operation, or the acceleration pulse wave by the differential operation.
  • the connection unit B53 includes the gain switching unit B95 and the waveform equalization processing unit B271.
  • the pulsatile signal which performed level adjustment processing and waveform equalization processing to smart phone B23 by using sample information detection device B13 concerning this embodiment as headphones connected to information processor B23 (smart phone B23). Can be entered. That is, the level adjustment process and the waveform equalization process can be performed on the pulsation signal input to the smartphone B23 without changing the smartphone B23.
  • the connection unit B54 has the first plug B62
  • the information processing apparatus B23 has the first plug B62 connected thereto.
  • a pulsation signal having a jack B81 and processed by the gain switching unit B95 and the waveform equalization processing unit B271 is input to the information processing apparatus B23 via the first jack B81.
  • the sample information detection apparatus B13 connected to the first jack B81 is removed, and the gain switching unit B95 and the waveform equalization process are removed. What is necessary is just to connect the normal headphone microphone which does not have the part B271.
  • the sample information processing apparatus B4 according to the modification of the first embodiment of the present invention is partially configured in the same manner as the sample information processing apparatus B3 according to the first embodiment described above, and the first embodiment described above.
  • the description of the same components as the sample information processing apparatus B3 according to the embodiment will be omitted and will be described using the same reference numerals.
  • the modification of the first embodiment is also simply referred to as this modification.
  • the sample information processing apparatus B4 according to the present modification includes a sample information detection apparatus B14 and an information processing apparatus B23, as shown in FIG.
  • the sample information detection unit B32 is directly connected to the connection unit B53, whereas in the sample information processing apparatus B4 according to the present modification, the sample information detection is performed.
  • the unit B33 is different in that the unit B33 is connected to the connection portion B54 via the second plug B42 and the second jack B73.
  • FIG. 56 schematically shows the configuration of the sample information processing apparatus B4 according to this modification.
  • the sample information detection apparatus B14 includes a sample information detection unit B33 and a connection portion B54.
  • the connecting portion B54 is also referred to as an interface device B54.
  • the sample information detection unit B33 is a headphone that includes a headphone unit B35 for right ear (R headphone unit), a headphone unit B37 for left ear (L headphone unit), and a second plug B42.
  • the sample information detection unit B33 is configured in the same manner as the sample information detection unit B32 except that it is connected to the connection portion B54 via the second plug B42 and the second jack B73. Similar to the sample information detection unit B32, for example, the sample information detection unit B33 can use any of canal type inner ear type headphones, on-ear type headphones, or around-ear type headphones.
  • the second plug B42 has a ground terminal B43, an R headphone terminal B44, and an L headphone terminal B45 in this order from the root of the plug to the tip.
  • the ground terminal B43, the R headphone terminal B44, and the L headphone terminal B45 are formed by processing a conductive metal plate into a substantially cylindrical shape.
  • Insulating members B46a and B46b are provided between the ground terminal B43 and the R headphone terminal B44 and between the R headphone terminal B44 and the L headphone terminal B45, respectively.
  • the insulating members B46a and B46b are made of an insulating resin or rubber material, and are interposed between the conductive terminals so that the terminals are insulated from each other.
  • the signal line B36 of the R headphone unit B35 is connected to the R headphone terminal B44 provided in the second plug B42.
  • a signal line B38 of the L headphone unit B37 is connected to an L headphone terminal B45 provided on the second plug B42.
  • a ground line B41 obtained by joining the ground line B41a of the R headphone unit B35 and the ground line B41b of the L headphone unit B37 is connected to a ground terminal B43 provided in the second plug B42.
  • connection unit B54 includes a second jack B73, a switch circuit B68, a switch B69, a gain switching unit B95, a waveform equalization processing unit B271, and a frequency characteristic compensation unit B96 having a waveform determination unit B272, a power supply B71, and an FET B72. And a first plug B62.
  • the configuration of the connecting portion B54 will be described with reference to FIG.
  • connection portion B54 is connected to the sample information detection unit B33 and the connection portion B54 via the second plug B42 and the second jack B73 by inserting the second plug B42 of the sample information detection unit B33 into the second jack B73. And connected. Further, the connecting portion B54 inserts the first plug B62 into the first jack B81 of the information processing device B23, whereby the sample information detection device B14 and the information processing device are connected via the first plug B62 and the first jack B81. B23 is connected. The connection unit B54 is inserted into the jack (first jack B81) of the smartphone B23, and the sample information detection unit B33 as headphones is inserted into the second jack B73 of the connection unit B54, whereby the sample information detection unit B33. And an adapter inserted between the smartphone B23.
  • the second jack B73 includes an insertion hole B74 into which the second plug B42 is inserted.
  • a ground terminal B75, an R headphone terminal B76, and an L headphone terminal B77 are provided in this order from the front to the back of the insertion hole B74.
  • the ground terminal B75, the R headphone terminal B76, and the L headphone terminal B77 are formed by processing a conductive metal plate into a plate shape and providing it on the wall surface of the insertion hole B74 of the second jack B73.
  • the plate-like terminal B is bent toward the center of the insertion hole B74 to form a convex part having bending elasticity, and is provided so that the convex part of this terminal projects toward the center of the insertion hole B74. It has been.
  • FIG. 57 (a) is a view of the second jack B73 as viewed from the side, and shows the arrangement of the R headphone terminal B76 and the L headphone terminal B77.
  • FIG. 57B is a diagram showing the end surface of the second jack B73 as viewed from the direction of the arrow E-E ', and shows the arrangement of the ground terminal B75, the R headphone terminal B76, and the L headphone terminal B77.
  • FIG. 57 (c) is a diagram showing the end surface of the second jack B73 as viewed from the direction of the arrow F-F ', and shows the arrangement of the ground terminal B75 and the L headphone terminal B77.
  • the ground terminal B43 of the second plug B42 and the ground terminal B75 of the second jack B73 come into contact with each other.
  • the R headphone terminal B44 of the second plug B42 and the R headphone terminal B76 of the second jack B73 are in contact with each other, and the L headphone terminal B45 of the second plug B42 and the L headphone terminal B77 of the second jack B73 are in contact with each other.
  • the two plugs B42 and the second jack B73 are formed.
  • FIG. 58A is a diagram of the second jack B73 as viewed from the side, and shows the arrangement of the second plug B42, the R headphone terminal B76, and the L headphone terminal B77.
  • FIG. 58B is a diagram showing the end face of the second jack B73 as viewed from the arrow GG ′, and shows the arrangement of the second plug B42, the ground terminal B75, the R headphone terminal B76, and the L headphone terminal B77.
  • FIG. 58C is a diagram showing the end surface of the second jack B73 as viewed from the direction of the arrow H-H ′, and shows the arrangement of the second plug B42, the ground terminal B75, and the L headphone terminal B77.
  • the ground terminal B75, the R headphone terminal B76, and the L headphone terminal B77 are in contact with the respective terminals of the opposing second plug B42. Elastically deforms according to the shape of each terminal. At this time, a contact state is maintained by the bending elasticity in the convex part of each terminal. Thereby, the ground terminal B43 and the ground terminal B75 are connected, the R headphone terminal B44 and the R headphone terminal B76 are connected, and the L headphone terminal B45 and the L headphone terminal B77 are connected.
  • the ground terminal B84 of the first jack B81 is grounded, and the ground line B41 connected to the ground terminal B43 of the second plug B42 is connected to the second jack B73, the first plug B62, and the first plug B62. It is grounded through one jack B81.
  • the R headphone terminal B85 of the first jack B81 is connected to the DA converter B91 corresponding to the sound source B92 for the right ear, and the signal connected to the R headphone terminal B44 and the R headphone terminal B44 of the second plug B42.
  • a signal from the DA conversion unit B91 corresponding to the right ear sound source B92 is input to the line B36.
  • the L headphone terminal B86 of the first jack B81 is connected to the DA converter B91 corresponding to the sound source B92 for the left ear, and the signal connected to the L headphone terminal B45 and the L headphone terminal B45 of the first plug B62.
  • a signal from the DA conversion unit B91 corresponding to the sound source B92 for the left ear is input to the line B38.
  • the switch circuit B68 is switch means for switching whether the R headphone terminal B76 of the second jack B73 is connected to the gain switching unit B95 or the R headphone terminal B65 of the first plug B62.
  • the switch circuit B68 includes a connection from the sensor B212 to the microphone terminal B63 of the first plug B62 via the gain switching unit B95 and the frequency characteristic compensation unit B96, and a connection from the sensor B212 to the R headphone terminal B65. Is to switch.
  • the gain switching unit B95 is the gain switching according to the first embodiment except that the detection signal detected by the sample information detection unit B33 is input via the second plug B42 and the second jack B73.
  • the configuration is the same as that of the part B95.
  • the frequency characteristic compensator B96 is the frequency according to the first embodiment except that the detection signal detected by the specimen information detection unit B33 is input via the second plug B42 and the second jack B73.
  • the configuration is the same as that of the characteristic compensation unit B96.
  • the information processing apparatus B23 (smart phone B23) according to this modification is configured in the same manner as the information processing apparatus B23 according to the first embodiment.
  • the sample information processing device B4 When functionally representing the sample information processing device B4, the sample information processing device B4 includes a sample information detection device B14 and an information processing device B23 as shown in FIG.
  • the sample information detection apparatus B14 includes a sample information detection unit B33, and a connection unit B54 having a gain switching unit B95 and a frequency characteristic compensation unit B96.
  • the information processing apparatus B23 according to the present embodiment is configured similarly to the information processing apparatus B23 according to the first embodiment.
  • the frequency correction processing unit B90 functions as a frequency correction processing unit when the above-described application software is expanded on the memory and executed by the CPU.
  • the gain switching unit B95 and the frequency characteristic compensation unit B96 are processed by an analog circuit built in the connection unit B54.
  • the circuit configuration of the connecting portion B54 is shown in FIG.
  • the signal line B36 of the R headphone unit B35 is connected to the R headphone terminal B44 of the second plug B42.
  • the R headphone terminal B44 is connected to the R headphone terminal B76 of the second jack B73.
  • the R headphone terminal B76 is connected to the switch circuit B68.
  • the switch circuit B68 switches the connection between the signal line B36 and the gain switching unit B95 or the R headphone terminal B65 of the first plug B62.
  • the gain switching unit B95 is connected to the power source B71.
  • the gain switching unit B95 is connected to the frequency characteristic compensation unit B96. Since the frequency characteristic compensation unit B96 is connected to the gate terminal (G) of the FET B72, the signal processed by the gain switching unit B95 and the frequency characteristic compensation unit B96 is input to the gate terminal (G) of the FET B72.
  • the drain terminal (D) of the FET B72 is connected to the microphone terminal B63 provided in the first plug B62 of the connection portion B54.
  • the source terminal (S) of the FET B72 merges with the ground line B41 and is connected to the ground terminal B64 provided in the first plug B62.
  • the signal line B36 when the signal line B36 is connected to the gain switching unit B95 by the switch circuit B68, the signal detected by the sensor B212 is input to the gain switching unit B95. Further, the signal processed by the gain switching unit B95 and the frequency characteristic compensation unit B96 is input to the microphone terminal B63 and input to the AD conversion unit B89 of the information processing apparatus B23 via the microphone terminal B83 of the first jack B81. .
  • the sensor B212 functions as a microphone.
  • the signal line B36 is connected to the R headphone terminal B65 by the switch circuit B68, the sound signal from the sound source B92 is input to the sensor B212 of the R headphone unit B35. In this case, the sensor B212 functions as a speaker. In this way, the specimen information detection device B14 outputs the signal detected by the sensor B212 and processed by the gain switching unit B95 and the frequency characteristic compensation unit B96 to the information processing device B23.
  • sample information processing apparatus B4 The operation of the sample information processing apparatus B4 will be described with respect to an input process in which a signal detected from the sensor B212 is input to the information processing apparatus B23 and an output process in which a signal from the sound source B92 is output to the sample information detection apparatus B14. To do.
  • switch circuit B68 connects the R headphone terminal B76 of the second jack B73 and the gain switching unit B95, an input process is performed.
  • switch circuit B68 connects the R headphone terminal B76 of the second jack B73 and the R headphone terminal B65 of the first plug B62, output processing is performed.
  • the pulsation signal detected by the sample information detection unit B32 is input to the gain switching unit B95 via the switch circuit B68.
  • the pulsation signal detected by the sample information detection unit B33 is input to the gain switching unit B95 via the R headphone terminal B44, the R headphone terminal B76, and the switch circuit B68. Except for this, it is the same as the input process in the sample information processing apparatus B3.
  • the right ear sound signal output to the sample information detection apparatus B13 is the switch circuit B68.
  • the right ear sound signal output to the sample information detection apparatus B14 is input to the R headphone unit B35 via the switch circuit B68 and the R headphone terminal B76.
  • the input processing is the same as the input processing in the sample information processing apparatus B3 except that the signal is input to the R headphone unit B35 via the R headphone terminal B44.
  • the left ear sound signal output to the sample information detection apparatus B13 is L in the sample information processing apparatus B4.
  • the sound signal for the left ear output to the sample information detection apparatus B14 is transmitted via the L headphone terminal B77 and the L headphone terminal B45 to the L level. Except for being input to the headphone unit B37, the input processing is the same as in the sample information processing apparatus B3.
  • the sample information processing apparatus B4 is configured as described above.
  • the switch B69 is operated to connect the sensor B212 and the gain switching unit B95 by the switch circuit B68. To do. Thereby, the pulse wave can be detected by the sensor B212 of the R headphone unit B35 attached to the specimen B101.
  • the sample B101 is switched from a state in which music is being listened to when measuring pulse waves, for example, as in the sample information processing apparatus B3 according to the first embodiment. Suitable for measuring time pulse wave.
  • the sample information detection unit B33 and the information processing device B23 can be connected by the connection unit B54 (interface device B54). It can. Thereby, even in the specimen information detection unit B33 that does not include the gain switching unit B95 and the frequency characteristic compensation unit B96, the level adjustment process and the waveform equalization process are performed by connecting to the information processing apparatus B23 using the connection unit B54.
  • the pulse wave according to the first embodiment can be output.
  • the interface device B54 includes the gain switching unit B95 and the frequency characteristic compensation unit B96, and the sample information is obtained by the interface device B54.
  • the detection unit B33 and the information processing device B23 can be connected.
  • the sample information detection unit B33 connected to the interface device according to this modification is not particularly limited, and is connected to the second jack B73 if the headphone has the second plug B42 and can input the detected signal. Can be used.
  • a signal subjected to level adjustment processing and waveform equalization processing can be input to the smartphone B23 via the interface device B54.
  • a level adjustment process and a waveform equalization process can be performed to the signal input into smart phone B23, without changing smart phone B23.
  • sample information processing apparatus is partially configured in the same manner as the sample information processing apparatus B3 according to the first embodiment described above, and the sample according to the first embodiment described above.
  • a description of the same components as the information processing device B3 will be omitted, and description will be made using the same reference numerals.
  • the second embodiment is also simply referred to as this embodiment.
  • a gain switching unit B95, and a frequency characteristic compensation unit B96 having a waveform equalization processing unit B271 and a waveform determination unit B272 are provided in the connection unit B53.
  • the gain switching unit B95 and the frequency characteristic compensation unit B96 are provided in the information processing apparatus instead of the connection unit.
  • connection unit includes a switch circuit B68, a switch B69, an FET B72, and a first plug B62.
  • the signal line B36 of the R headphone unit B35 is switched to the gate terminal (G) of the FET B72 or the R headphone terminal B65 of the first plug B62 by the switch circuit B68.
  • the information processing apparatus includes a first jack B81, a gain switching unit B95, a frequency characteristic compensation unit B96, an AD conversion unit B89, a frequency correction processing unit B90, a DA conversion unit B91, and a sound source B92. ing.
  • the signal line B36 when the signal line B36 is connected to the FET B72 by the switch circuit B68, the signal detected by the sensor B212 is input to the FET B72. Further, the signal detected by the sensor B212 is input to the microphone terminal B63, and is input to the gain switching unit B95 of the information processing apparatus via the microphone terminal B83 of the first jack B81. In this case, the sensor B212 functions as a microphone, and the sample information processing apparatus performs input processing.
  • the signal line B36 is connected to the R headphone terminal B65 by the switch circuit B68, the sound signal from the sound source B92 is input to the sensor B212. In this case, the sensor B212 functions as a speaker, and the sample information processing apparatus performs output processing.
  • the sample information detection unit B32 detects a pulsation signal by the sensor B212.
  • the pulsation signal detected by the specimen information detection unit B32 is input to the connection unit.
  • the pulsation signal output from the specimen information detection unit B32 is input to the microphone terminal B63 of the first plug B62 via the switch circuit B68 and the FET B72, and further to the information via the microphone terminal B83 of the first jack B81. Input to the processing unit.
  • the pulsation signal input to the information processing apparatus is input to the gain switching unit B95.
  • the gain switching unit B95 performs level adjustment processing on the pulsation signal output from the specimen information detection unit B32 to adjust the signal level.
  • the signal processed by the gain switching unit B95 is input to the frequency characteristic compensation unit B96.
  • the frequency characteristic compensation unit B96 performs waveform equalization processing on the signal processed by the gain switching unit B95.
  • the signal processed by the frequency characteristic compensation unit B96 is sequentially input to the AD conversion unit B89 and the frequency correction processing unit B90 for processing, as in the sample information processing apparatus according to the first embodiment.
  • the sample information processing apparatus according to the modified example of the second embodiment of the present invention is partially configured in the sample information processing apparatus according to the second embodiment described above or the sample information processing apparatus according to the modified example of the first embodiment. Description is omitted for the sample information processing apparatus according to the second embodiment described above or the same as the sample information processing apparatus B4 according to the modification of the first embodiment. Will be described.
  • the modification of the second embodiment is also simply referred to as this modification.
  • sample information detection unit B32 is directly connected to the connection unit.
  • sample information detection unit B33 is connected to the connection unit (interface device) via the second plug B42 and the second jack B73.
  • connection unit includes a second jack B73, a switch circuit B68, a switch B69, an FET B72, and a first plug B62.
  • the signal line B36 of the R headphone unit B35 is switched to the gate terminal (G) of the FET B72 or the R headphone terminal B65 of the first plug B62 by the switch circuit B68.
  • the information processing apparatus according to this modification is configured in the same manner as the information processing apparatus according to the second embodiment.
  • the signal line B36 when the signal line B36 is connected to the FET B72 by the switch circuit B68, the signal detected by the sensor B212 is Input to the gain switching unit B95 of the information processing apparatus.
  • the signal line B36 is connected to the R headphone terminal B65 by the switch circuit B68, the sound signal from the sound source B92 is input to the sensor B212.
  • the right ear sound signal is output from the switch circuit B68, the R headphone terminal B76, and the R headphone terminal. Except for being input to the R headphone unit B35 via B44, the output processing in the sample information processing apparatus according to the second embodiment is the same.
  • the left ear sound signal is output through the L headphone terminal B77 and the L headphone terminal B45. Except for the input to the L headphone unit B37, the output processing in the sample information processing apparatus according to the second embodiment is the same.
  • the information processing apparatus includes the gain switching unit 95 and the waveform equalization processing unit 271, and the sample is connected by the connection unit (interface device).
  • An information detection unit and a smart phone can be connected.
  • the sample information detection unit connected to the connection portion is not particularly limited, and any headphone that has the second plug 42 and can input the detected signal can be connected to the second jack 73 and used. .
  • connection unit further includes an input processing unit
  • information processing apparatus further includes an output processing unit
  • the connection unit includes an input processing unit, a gain switching unit B95, a frequency equalization processing unit B271, and a frequency characteristic compensation unit B96 having a waveform determination unit B272, a power supply B71, an FET B72, and a first plug B62. Yes.
  • the signal line B36 of the R headphone unit B35 is connected to the R headphone terminal B65 provided in the first plug B62 of the connection portion, and is connected to the microphone terminal B63 provided in the first plug B62 via the FET B72. Also connected to the input processing unit.
  • the input processing unit attenuates a frequency component higher than a pulse wave information detection band, which is a frequency band in which blood vessel pulse wave information is detected, with respect to the detection signal detected by the specimen information detection unit B32 to thereby obtain pulse wave information.
  • LPF low pass filter
  • LPF low pass filter
  • the frequency band in which blood vessel pulse wave information is detected is a low frequency region of 0.1 to 10 Hz.
  • the corner frequency of the low-pass filter by the input processing unit is not particularly limited as long as it is higher than the pulse wave information detection band, but is preferably set to about 10 Hz in order to improve the S / N ratio. However, when looking at the fluctuation of the waveform, it may be extended from 10 Hz to 100 Hz.
  • the information processing apparatus includes a first jack B81, an AD conversion unit B89, a frequency correction processing unit B90, a DA conversion unit B91, a sound source B92, and an output processing unit.
  • the output processing unit attenuates the frequency component of the pulse wave information detection band, which is a frequency band in which blood vessel pulse wave information is detected, with respect to the right ear sound signal output from the sound source B92 to the specimen information detection apparatus.
  • HPF High Pass Filter
  • HPF This HPF process by the output processing unit is also referred to as an output process.
  • the frequency band in which the pulse wave information of the blood vessel is detected is a low frequency region of 0.1 to 10 Hz.
  • the influence of the sound generated according to the signal input to the sensor B 212 is affected.
  • the output processing unit according to the present embodiment attenuates frequency components of 100 Hz or less and allows frequency components higher than 100 Hz to pass.
  • the sound signal from the sound source B92 is input to the sensor B212 of the R headphone unit B35.
  • the signal detected by the sensor B212 is input to the input processing unit, gain switching unit B95, and frequency characteristic compensation unit B96, and further input to the information processing apparatus. That is, the sensor B 212 functions as both a speaker and a microphone at the same time, and the sample information processing apparatus performs input processing and output processing simultaneously.
  • the sound signal output from the sound source B92 includes the frequency component of the pulse wave information detection band
  • the sound output from the sound source B92 is The signal makes it difficult to detect the pulse wave.
  • the sound output from the sensor B212 as a speaker is fed back to the sensor B212 as a microphone.
  • the sound signal output from the sound source B92 to the sample information detection apparatus is fed back to the information processing apparatus.
  • the frequency component of the pulse wave information detection band output to the sensor B 212 is attenuated by the HPF in the output processing unit. Further, the LPF in the input processing unit attenuates a frequency component higher than the pulse wave information detection band with respect to the detection signal detected by the sensor B212.
  • the sound signal that suppresses the influence on the detection of the pulse wave is reduced so that the frequency component of the pulse wave information detection band of the sound emitted from the sensor B212 is reduced. It is possible to output to the specimen information detection apparatus. Moreover, only the frequency component required for the detection of a pulse wave can be input into the information processing apparatus from the detection signal detected by the sensor B212.
  • the sample information detection unit B32 detects a pulsating signal by the sensor B212 in the R headphone unit B35.
  • the pulsation signal detected by the specimen information detection unit B32 is input to the connection unit.
  • the pulsation signal input to the connection unit is input to the input processing unit.
  • the input processing unit applies LPF that attenuates the frequency component higher than the pulse wave information detection band and passes the frequency component of the pulse wave information detection band to the pulsating signal output from the specimen information detection unit B32.
  • the signal at this time is composed of the frequency component of the pulse wave information detection band by the LPF.
  • the signal processed by the input processing unit is sequentially input to the gain switching unit B95, the frequency characteristic compensation unit B96, the AD conversion unit B89, and the frequency correction processing unit B90, as in the sample information processing apparatus 3 according to the first embodiment. Then, processing is performed.
  • all the signals obtained by the frequency correction processing unit B90 are composed of frequency components in the pulse wave information detection band.
  • the sound signal for the right ear in the digital format is input from the sound source B92 to the output processing unit.
  • the output processing unit performs output processing (HPF) that attenuates the frequency component of the pulse wave information detection band and passes the frequency component higher than the pulse wave information detection band.
  • HPF output processing
  • the right ear sound signal processed by the output processing unit is input to the DA conversion unit B91.
  • the DA converter B91 converts the right ear sound signal processed by the output processor into an analog sound signal.
  • the sound signal for the right ear processed by the output processing unit and the DA conversion unit B91 is input to the R headphone terminal B85 of the first jack B81, and is output to the sample information detection apparatus via the first plug 62.
  • the right ear sound signal output to the sample information detection apparatus is input to the R headphone unit B35.
  • a sound having a frequency component higher than the pulse wave information detection band of the sound signal for the right ear of the sound source B92 is output from the sensor B212 as a headphone (speaker) of the R headphone unit B35.
  • the sample information processing apparatus according to the third embodiment has the following effects in addition to the effects obtained in the first embodiment.
  • the input processing unit attenuates a frequency component higher than the pulse wave information detection band with respect to the detection signal detected by the sensor B212, and the pulse signal is detected. LPF processing for passing the frequency component of the wave information detection band is performed. Further, the output processing unit performs output processing for attenuating the frequency component of the pulse wave information detection band and passing the frequency component higher than the pulse wave information detection band with respect to the signal output to the specimen information detection apparatus.
  • the sample information processing apparatus can detect the pulse wave while the sensor B212 is listening to music, for example, while the sensor B212 emits sound as a speaker and can simultaneously detect the pulse wave as a microphone.
  • the connection unit has the first plug B62, and the information processing apparatus has the first jack B81 to which the first plug B62 is connected. Then, the signals processed by the input processing unit, gain switching unit B95, and waveform equalization processing unit B271 are input to the information processing apparatus via the first jack B81. For this reason, when inputting information other than the pulsation signal, for example, an audio signal, to the information processing apparatus, the sample information detection apparatus connected to the first jack B81 is removed, and the input processing unit, the gain switching unit B95, and the waveform are removed. What is necessary is just to connect the normal headphone microphone which does not have the equalization process part B271.
  • the sample information processing apparatus according to the modified example of the third embodiment of the present invention has a partial configuration, the sample information processing apparatus according to the third embodiment described above, or the sample information processing apparatus according to the modified example of the first embodiment. Description is omitted for the sample information processing apparatus according to the third embodiment described above or the same as the sample information processing apparatus B4 according to the modification of the first embodiment. Will be described.
  • the modification of the third embodiment is also simply referred to as this modification.
  • sample information detection unit B32 is directly connected to the connection unit.
  • sample information detection unit B33 is connected to the connection unit (interface device) via the second plug B42 and the second jack B73.
  • the connection unit according to this modification includes a second jack B73, an input processing unit, a gain switching unit B95, a frequency equalization processing unit B271, and a frequency characteristic compensation unit B96 having a waveform determination unit B272, a power supply B71, an FET B72, and a first A plug B62 is provided.
  • the information processing apparatus according to this modification is configured in the same manner as the information processing apparatus according to the third embodiment.
  • the sound signal from the sound source B92 is input to the sensor B212, and at the same time, the signal detected by the sensor B212 is Input to the information processing apparatus.
  • the input processing in the sample information processing apparatus according to this modification is performed except that the pulsation signal detected by the sample information detection unit B33 is input to the input processing unit via the R headphone terminal B44 and the R headphone terminal B76. This is the same as the input process in the sample information processing apparatus according to the third embodiment.
  • the right ear sound signal is output through the R headphone terminal B76 and the R headphone terminal B44. Except for being input to the R headphone unit B35, the output processing is the same as in the sample information processing apparatus according to the third embodiment.
  • the left ear sound signal is output through the L headphone terminal B77 and the L headphone terminal B45. Except for the input to the L headphone unit B37, the output processing in the sample information processing apparatus according to the third embodiment is the same.
  • the connection unit includes the input processing unit, the gain switching unit B95, and the waveform equalization processing unit B271, and the interface.
  • the apparatus can connect the sample information detection unit B33 and the information processing apparatus (smartphone).
  • the sample information detection unit B33 connected to the interface device according to this modification is not particularly limited, and is connected to the second jack B73 if the headphone has the second plug B42 and can input the detected signal. Can be used.
  • a signal subjected to LPF, level adjustment processing, and waveform equalization processing can be input via the interface device.
  • sample information processing apparatus is configured in part in the same manner as the sample information processing apparatus according to the third embodiment described above or the sample information processing apparatus according to the second embodiment.
  • the description of the sample information processing apparatus according to the third embodiment described above or the same as the sample information processing apparatus according to the second embodiment will be omitted, and will be described using the same reference numerals.
  • the fourth embodiment is also simply referred to as this embodiment.
  • an input processing unit, a gain switching unit B95, and a frequency characteristic compensation unit B96 including a waveform equalization processing unit B271 and a waveform determination unit B272 are provided in the connection unit.
  • the input processing unit, the gain switching unit B95, and the frequency characteristic compensation unit B96 are provided in the information processing apparatus instead of the connection unit.
  • connection unit includes the FET B72 and the first plug B62.
  • the signal line B36 of the R headphone unit B35 is connected to the R headphone terminal B65 provided in the first plug B62 of the connection portion, and the gate of the FET B72 connected to the microphone terminal B63 provided in the first plug B62. Connected to terminal (G).
  • the information processing apparatus includes a first jack B81, an input processing unit, a gain switching unit B95, a frequency characteristic compensation unit B96, an AD conversion unit B89, a frequency correction processing unit B90, a DA conversion unit B91, a sound source B92, and An output processing unit is provided.
  • the sound signal from the sound source B92 is input to the sensor B212 and the signal detected by the sensor B212 is information. Input to the processing unit.
  • the sample information detection unit B32 detects a pulsation signal by the sensor B212 in the R headphone unit B35.
  • the pulsation signal detected by the specimen information detection unit B32 is input to the connection unit.
  • the pulsation signal input to the connection portion is input to the microphone terminal B63 of the first plug B62 via the FET B72, and further input to the information processing device via the microphone terminal B83 of the first jack B81. .
  • the pulsation signal input to the information processing apparatus is input to the input processing unit.
  • the input processing unit applies LPF that attenuates the frequency component higher than the pulse wave information detection band and passes the frequency component of the pulse wave information detection band to the pulsating signal output from the specimen information detection unit B32.
  • the signal at this time is composed of the frequency component of the pulse wave information detection band by the LPF.
  • the signal processed by the input processing unit is sequentially input to the gain switching unit B95, the frequency characteristic compensation unit B96, the AD conversion unit B89, and the frequency correction processing unit B90, as in the sample information processing apparatus according to the second embodiment. The process is performed.
  • all the signals obtained by the frequency correction processing unit B90 are composed of frequency components in the pulse wave information detection band.
  • the sample information processing apparatus according to the modification of the fourth embodiment of the present invention has a partial configuration, the sample information processing apparatus according to the fourth embodiment described above, or the sample information processing apparatus according to a modification of the second embodiment.
  • the same components as those of the sample information processing apparatus according to the fourth embodiment described above or the sample information processing apparatus according to the modification of the second embodiment are not described, and the same reference numerals are used. I will explain.
  • the modification of the fourth embodiment is also simply referred to as this modification.
  • sample information detection unit B32 is directly connected to the connection unit.
  • sample information detection unit B33 is connected to the connection unit (interface device) via the second plug B42 and the second jack B73.
  • the connection unit according to this modification includes a second jack B73, an FET B72, and a first plug B62.
  • the R headphone terminal B76 is connected to the R headphone terminal B65 provided in the first plug B62 of the connection portion and the FET B72, so that the signal line B36 of the R headphone unit B35 is connected to the R headphone terminal B65, the FET B72, and the FET B72. Connected to.
  • the sound signal from the sound source B92 is input to the sensor B212, and at the same time, the signal detected by the sensor B212 is the information Input to the processing unit.
  • the right ear sound signal is output through the R headphone terminal B76 and the R headphone terminal B44. Except for the input to the R headphone unit B35, the output processing is the same as in the sample information processing apparatus according to the fourth embodiment.
  • the left ear sound signal is output through the L headphone terminal B77 and the L headphone terminal B45. Except for the input to the L headphone unit B37, the input processing in the sample information processing apparatus according to the fourth embodiment is the same.
  • the sample information detection unit B33 and the information processing apparatus can be connected by the connection unit (interface device).
  • the sample information detection unit B33 connected to the interface device according to this modification is not particularly limited, and is connected to the second jack B73 if the headphone has the second plug B42 and can input the detected signal. Can be used.
  • the blood vessel pulsation signal is detected by the sensor B212 provided in the R headphone unit B35 has been described, but the blood vessel pulsation signal is provided by the sensor B212 provided in the L headphone unit B37. May be detected.
  • the first plug B62 having the microphone terminal B63, the ground terminal B64, the R headphone terminal B65, and the L headphone terminal B66 in this order from the root of the plug to the tip, and the ground terminal from the root of the plug to the tip.
  • the second plug B42 having the B43, the R headphone terminal B44, and the L headphone terminal B45 in this order has been described as an example.
  • the configuration of the plug is not limited to these, and the first plug B62 and the second plug B42 are connected to the terminals.
  • the order is arbitrary.
  • the first jack B81 and the second jack B73 are arbitrary as long as they match the order of the terminals of the first plug B62 and the second plug B42.
  • the configuration including the sample information detection units B31 and B32 including the R headphone unit B35 and the L headphone unit B37 has been described. However, either one of the R headphone unit B35 and the L headphone unit B37 is used. B may be detected by the sensor B212 of any one of the headphone units B.
  • the sound source B92 corresponding to the R headphone unit B35 and the L headphone unit B37 is stereo has been described, but the sound source B92 outputs the same sound signal to the R headphone unit B35 and the L headphone unit B37. It may be monaural.
  • the sound source B92 may be, for example, music data stored in a smartphone, or the received sound from a call may be the sound source B92. It is good.
  • connection parts B53 and B55 are provided with the first plug B62, and the sample information detection devices B13 and B14 and the information processing device B23 are connected by a plug and a jack to input and output signals.
  • the input / output of signals from the sensor B212 to the information processing apparatus B2 is not limited to these.
  • the sensor B212 and the information processing apparatus B23 may be connected via a USB (Universal Serial Bus) standard connector and cable.
  • signals may be input / output from the sensor B212 to the information processing apparatus B23 by wireless communication using WiFi (registered trademark) or Bluetooth (registered trademark).
  • a smartphone is exemplified as the information processing apparatus B23, but the information processing apparatus is not limited to this.
  • the present invention can be applied to a tablet-type terminal (tablet PC), a desktop personal computer, a notebook personal computer, or other measuring equipment or display equipment.
  • a digital circuit for example, a digital signal processor (hereinafter referred to as “DSP”).
  • a circuit including the digital circuit may be processed by combining a circuit including the digital circuit and an analog circuit, or combining an arithmetic processing unit (CPU) or a DSP.
  • the signal processing application software may be deployed on the memory included in the information processing apparatus B23 and executed by the CPU, thereby functioning as input processing means, gain switching means, and frequency characteristic compensation means. .
  • the frequency characteristic compensation unit B96 is connected to the gate terminal (G) of the FET B72 as shown in FIG. 23 and FIG. Although the configuration has been described, as shown in FIG. 59B, the frequency characteristic compensation unit B96 may be connected to the microphone terminal B63 of the first plug B62 via the capacitor B79. Alternatively, as shown in FIG. 59 (c), if direct current coupling is possible, the frequency characteristic compensation unit B96 may be directly connected to the microphone terminal B63.
  • 59 (b) and 59 (c) regarding the circuit configuration of the connecting portion B53 described above are the connecting portion B54, the connecting portions according to the second to fourth embodiments, and the first embodiment.
  • the configuration in which part of the signal processing is performed by the information processing apparatus connected to the sample information detection apparatus has been described, but the input signal is converted into a digital signal by the AD conversion unit B89.
  • the signal processing may be performed by another information processing apparatus.
  • the input signal information may be stored in a recording medium, and the signal information may be copied to another information processing apparatus using the recording medium.
  • the input signal information may be transmitted to the other information processing apparatus wirelessly or by wire. May be sent.
  • connection units B53 and B54 or the information processing device B23 include both the gain switching unit B95 and the frequency characteristic compensation unit B96, and the configuration in which processing is performed in order has been described.
  • the gain switching unit B95 and the frequency characteristic compensation unit B96 may be provided with any one of the connection units B53 and B54 and the information processing device B23.
  • level adjustment processing may be performed by the gain switching unit B95 provided in the connection units B53 and B54
  • waveform equalization processing and waveform comparison processing may be performed by the frequency characteristic compensation unit B96 provided in the information processing device B23.
  • the clock signal from the PLLB 263 is configured to be transmitted to the waveform determination unit B272.
  • the waveform equalization processing unit B271 performs integral type phase compensation and outputs the pulsation signal output from the specimen information detection unit B32.
  • the case where the differential response added to is compensated and output as a velocity pulse wave has been described.
  • the waveform equalization processing is not limited to this, and even if the waveform equalization processing unit B271 performs differential phase compensation and compensation of the integral response added to the pulsation signal output from the specimen information detection unit B32. Good.
  • a frequency component higher than the pulse wave information detection band is allowed to pass, and the gain of the frequency component of the pulse wave information detection band is gradually decreased as the frequency is decreased, so that the gain of the frequency component lower than the pulse wave information detection band is attenuated.
  • Differential phase compensation may be performed.
  • the waveform equalization processing unit B271 performs phase compensation to the extent that the differential element or the integral element added to the pulsation signal is excluded, and the differential element or the integral element added to the pulsation signal output from the specimen information detection unit B32. May be compensated.
  • the boost amount may be suppressed in integral type or differential type phase compensation.
  • the waveform determination unit B272 determines the waveform serving as a reference for determination as an acceleration pulse wave, compares this with the waveform that has undergone phase compensation by the waveform equalization processing unit B271, and repeats until the frequency characteristics of phase compensation become appropriate. Phase compensation and determination may be performed.
  • the differential response resulting from the electromagnetic system of the sensor B212 and the differential response due to air leakage from the on-ear type headphones are combined, so that the pulsation signal output from the specimen information detection unit B32 is a pulse wave (acceleration) of the acceleration response. Pulse wave).
  • the differential response due to the electromagnetic system of the sensor B212 or the differential response due to air leakage of the on-ear type headphones is not a stable differential response, the pulsation signal output from the specimen information detection unit B32 Is not a complete acceleration pulse wave.
  • the frequency characteristic compensator B96 removes a differential element or an integral element from the pulsation signal output from the specimen information detection unit B32 using the waveform serving as a reference for determination as an acceleration pulse wave. By performing the degree of phase compensation, an acceleration pulse wave with a compensated frequency response can be obtained.
  • the differential response caused by the electromagnetic system of the sensor B212 and the differential element due to air leakage of the canal type in-ear type headphones are combined, so that the pulsation signal output from the specimen information detection unit B32 has a speed response. It is output as a pulse wave with a differential element added to the pulse wave (velocity pulse wave).
  • the frequency characteristic compensator B96 performs a semi-differential type phase compensation on the pulsating signal output from the specimen information detection unit B32 with the waveform serving as a reference for determination being an acceleration pulsating wave. By performing, it can be obtained as an acceleration pulse wave in which a differential element due to air leakage is compensated.
  • the differential information resulting from the electromagnetic system of the sensor B212, the differential response due to air leakage of the on-ear type headphones, and the boost (integral element) by the DSP of the sample information detection unit B32 are combined, so that the sample information
  • the pulsation signal output from the detection unit B32 is output as a pulse wave obtained by adding an integral element to the pulse wave of acceleration response (acceleration pulse wave).
  • the frequency characteristic compensator B96 performs a semi-differential type phase compensation on the pulsating signal output from the specimen information detection unit B32 with the waveform serving as a reference for determination being an acceleration pulsating wave. By doing so, it can be obtained as an acceleration pulse wave in which the integral element by the DSP is compensated.
  • the gain switching unit B95 and the frequency characteristic compensation unit B96 have been described with respect to the case where the PLLB 263 outputs 128 clocks, but the clock is not limited to this and may be changed as appropriate.
  • the clock may be 256, 512, or 1024.
  • the loop gain that determines the characteristics of the PLL decreases accordingly, so that the so-called lock range tends to decrease.
  • this is preferable from the viewpoint of increasing the accuracy of waveform determination.
  • control tends to be required to stably oscillate a VCO (voltage controlled oscillator), which is one of the elements constituting the PLL, at a low frequency, but there is no decrease in loop gain. Is preferred.
  • VCO voltage controlled oscillator
  • the lock detection unit B264 detects whether the PLLB 263 has locked the pulsation signal by comparing the magnitude of the input phase difference signal with a predetermined set value.
  • the detection of whether or not the lock has occurred is not limited to the above configuration. For example, when the two signal inputs of the phase comparator constituting the PLL are in accordance with a predetermined sequence, it may be determined that the phase is locked. Further, it may be determined that the two signals are not locked when they do not follow a predetermined sequence.
  • FIG. 60 is a diagram illustrating a waveform in which signals detected by the R headphone unit B35 and the L headphone unit B37 are superimposed and displayed when the sample information detection unit B32 is a canal-type inner-ear type headphone.
  • the waveform of the signal detected by the R headphone unit B35 is indicated by a solid line
  • the waveform of the signal detected by the R headphone unit B35 is indicated by a broken line.
  • FIG. 60 it can be seen that the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37 show similar waveforms. Among them, the peak portions showing negative values are almost the same.
  • FIG. 61 is an enlarged view of a part of the peak portion showing a negative value in the waveform shown in FIG.
  • the waveform of the signal detected by the R headphone unit B35 is indicated by a solid line
  • the waveform of the signal detected by the R headphone unit B35 is indicated by a broken line.
  • the peak position of the waveform of the signal obtained by the R headphone unit B35 and the waveform of the signal obtained by the L headphone unit B37 are shifted by about 4 msec. This is considered to be due to the fact that the distance from the heart to the right and left ears is different.
  • the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37 although there is a deviation of about 4 msec, is not considered to be a big deviation when considered as a whole waveform. For this reason, it is possible to obtain a pulse wave waveform that is more useful than a single case by performing signal processing using the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37. .
  • FIGS. 62 (a) to 62 (c) are diagrams for explaining an example of signal processing by addition processing in which the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37 are added. It is. 62 (a) shows the waveform of the signal obtained by the R headphone unit B35, and FIG. 62 (b) shows the waveform of the signal obtained by the L headphone unit B37. FIG. 62 (c) shows a waveform obtained by adding the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37, which shows such a waveform. As shown in FIG. 62 (c), by adding the signals, noise seen in the waveforms shown in FIGS. 62 (a) and 62 (b) is reduced, and the S / S of the added signals is reduced. It can be seen that the N ratio is improved.
  • the pulsating signal detected at the site constituting the outer ear B107 includes noise (disturbance) due to various factors.
  • an external sound signal other than a signal based on blood vessel pulse wave information may be detected as noise by the sensor B212. This is effective because the signals obtained from the R headphone unit B35 and the signals obtained from the L headphone unit B37 can be reduced to reduce signals that have entered the left and right headphone units.
  • 63 (a) to 63 (c) are diagrams for explaining an example of signal processing by integration processing that integrates the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37. It is. 63A shows the waveform of the signal obtained by the R headphone unit B35, and FIG. 63B shows the waveform of the signal obtained by the L headphone unit B37. FIG. 63 (c) shows a waveform obtained by integrating the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37, which shows such a waveform. As shown in FIG. 63 (c), by integrating the signals, a large signal portion becomes large and a small signal portion becomes a small waveform according to the amplitude of the signal included in the pulse wave.
  • the signal line B36 of the R headphone unit B35 is connected to the switch circuit B68 of the connection unit B53b, and the signal line B38 of the L headphone unit B37 is connected.
  • the L headphone unit B37 is a headphone unit that is inserted into the ear canal of the left ear, and is configured in the same manner as the R headphone unit B35.
  • the switch circuit B68 is switch means for switching whether the signal line B36 is connected to the addition processing unit B241 or the R headphone terminal B65 of the first plug B62.
  • the switch circuit B80 is switch means for switching whether the signal line B38 is connected to the addition processing unit B241 or to the L headphone terminal B66 of the first plug B62.
  • the switch B69 is a switch provided so that the switch circuits B68 and B80 can be operated from the outside of the connection part B53b, and is configured so that the connection of the switch circuits B68 and B80 can be switched simultaneously by the operation of the switch B69.
  • the addition processing unit B241 performs addition processing for adding the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37.
  • the signal processed by the addition processing unit B241 is input to the gain switching unit B95.
  • the signal lines B36 and B38 are connected to the addition processing unit B241 by the switch circuits B68 and B80, the signals detected by the respective sensors B212 in the R headphone unit B35 and the L headphone unit B37 are added.
  • the data is input to the processing unit B241.
  • the signal processed by the addition processing unit B241 is input to the microphone terminal B63 via the gain switching unit B95, the frequency characteristic compensation unit B96, and the FET B72, and the information processing apparatus via the microphone terminal B83 of the first jack B81.
  • the data is input to the AD conversion unit B89 of B23.
  • the sensor B212 functions as a microphone.
  • the sound source B92 is sent to the sensor B212 of the R headphone unit B35 and the L headphone unit B37.
  • the sound signal from is input.
  • the sensor B212 functions as a speaker.
  • the sample information detection apparatus B13b outputs the signals detected by the sensors B212 in the R headphone unit B35 and the L headphone unit B37 and added by the addition processing unit B241 to the information processing apparatus B23. As a result, a signal with reduced noise and an improved S / N ratio can be output.
  • the modification of the first embodiment has been described with reference to FIG. 64.
  • the signals detected by the sample information detection units B32 and B33 are obtained by the R headphone unit B35.
  • the present invention is not limited to this as long as addition processing for adding the received signal and the signal obtained by the L headphone unit B37 is performed.
  • the second embodiment to the fourth embodiment, the modified examples thereof, and the modified example of the first embodiment can be performed in the same manner even if the addition processing unit B241 is provided.
  • the signal obtained by the R headphone unit B35 and the L headphone unit are provided so as to include waveform disturbance detection units B251 and B252, an addition / division processing unit B253, and a selector B254.
  • a modification will be described in which addition / division processing is performed for addition and division on the signal obtained in B37.
  • the sample information processing apparatus B3c according to the modification of the first embodiment has a part of the configuration similar to that of the sample information processing apparatus B3 according to the first embodiment described above. The description of the same sample information processing apparatus B3 as that described above will be omitted, and will be described using the same reference numerals.
  • the signal line B36 of the R headphone unit B35 is connected to the switch circuit B68 of the connecting portion B53b, and the signal line B38 of the L headphone unit B37 is connected.
  • the L headphone unit B37 is a headphone unit that is inserted into the ear canal of the left ear, and is configured in the same manner as the R headphone unit B35.
  • the switch circuit B68 is switch means for switching whether the signal line B36 is connected to the waveform disturbance detection unit B251 and the terminal B256 of the selector B254 or to the R headphone terminal B65 of the first plug B62.
  • the switch circuit B68 is connected to the side connected to the waveform disturbance detection unit B251 and the terminal B256 of the selector B254, the signal obtained by the R headphone unit B35 is input to the waveform disturbance detection unit B251 and the terminal B256 of the selector B254, respectively. Is done.
  • the switch circuit B80 is switch means for switching whether the signal line B38 is connected to the waveform disturbance detection unit B252 and the terminal B257 of the selector B254 or to the L headphone terminal B66 of the first plug B62.
  • the switch circuit B80 is connected to the side connected to the waveform disturbance detection unit B252 and the terminal B257 of the selector B254, the signal obtained by the L headphone unit B37 is input to the waveform disturbance detection unit B252 and the terminal B257 of the selector B254, respectively. Is done.
  • the switch B69 is a switch provided so that the switch circuits B68 and B80 can be operated from the outside of the connection portion B53c, and is configured so that the connection of the switch circuits B68 and B80 can be switched simultaneously by the operation of the switch B69.
  • Waveform disturbance detection units B251 and B252 output “waveform disturbance detection output” indicating the presence or absence of waveform disturbance to the selector B254 according to the level of the input signal. The operations of the waveform disturbance detection units B251 and B252 will be described with reference to FIG.
  • FIG. 66 (a) is a diagram showing an example of a pulse wave waveform input to the waveform disturbance detectors B251 and B252, and a large disturbance appears in the region of about one fifth on the right side in the figure.
  • the waveform disturbance detection units B251 and B252 output a signal 0 when no waveform disturbance is detected as the waveform disturbance detection output.
  • a signal 1 indicating that the waveform disturbance has been detected with a setting such as retrigger is output.
  • the output from the waveform disturbance detection unit B251 is used as the waveform disturbance detection output A
  • the output from the waveform disturbance detection unit B252 is used as the waveform disturbance detection output B, which are input to the terminals B259 and B260 of the selector B254, respectively.
  • the selector B254 outputs the input signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37 from the terminals B256 and B257 of the selector B254 to the addition / division processing unit B253, respectively. Note that the terminal B258 of the selector B254 is grounded.
  • the addition / division processing unit B253 performs a process of adding the two input signals and then dividing by two. That is, the addition / division processing unit B253 outputs a signal obtained by averaging the input signals. Specifically, the addition / division processing unit B253 receives the signal obtained from the R headphone unit B35 and the signal obtained from the L headphone unit B37 from the selector B254, and the signal obtained by averaging these signals is input to the selector B254. Output to terminal B255.
  • the process of dividing by 2 can be performed by one operational amplifier when performed by an analog circuit, and can be performed by 1-bit shift when performing digital processing.
  • the selector B254 outputs a signal to the gain switching unit B95 according to the waveform disturbance detection outputs A and B.
  • the waveform disturbance detection outputs A and B are both signals 0
  • the average of the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37 processed by the addition / division processing unit B253 is calculated.
  • the signal obtained by the R headphone unit B35 is output.
  • the selector B254 selects and outputs 0V.
  • the waveform disturbance detection units B251 and B252 detect the waveform disturbance and output the waveform disturbance detection outputs A and B to the selector B254.
  • the selector B254 receives signals detected in the R headphone unit B35 and the L headphone unit B37, respectively, and outputs these signals to the addition / division processing unit B253 to perform an average signal processing.
  • signals corresponding to the waveform disturbance detection outputs A and B are input to the microphone terminal B63 via the gain switching unit B95, the frequency characteristic compensation unit B96, and the FET B72, and the microphone terminal B83 of the first jack B81 is input.
  • the sensor B212 functions as a microphone.
  • the signal line B36 is connected to the R headphone terminal B65 and the signal line B38 is connected to the L headphone terminal B66 by the switch circuits B68 and B80
  • the sound source B92 is sent to the sensor B212 of the R headphone unit B35 and the L headphone unit B37.
  • the sound signal from is input.
  • the sensor B212 functions as a speaker.
  • the sample information detection apparatus B13c outputs, to the information processing apparatus B23, signals corresponding to the waveform disturbance detection outputs A and B for the signals detected by the respective sensors B212 in the R headphone unit B35 and the L headphone unit B37. To do. At this time, if there is no disturbance in both the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37, an averaging process is performed by the addition / division processing unit B253. Is reduced and a signal with an improved S / N ratio is output. Further, if there is no disturbance in either the signal obtained by the R headphone unit B35 or the signal obtained by the L headphone unit B37, the detected signal on the side without the disturbance can be output.
  • the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37 are added and then divided by 2 to obtain an average division process. And a signal with an improved S / N ratio can be obtained.
  • an appropriate signal can be output in accordance with the waveform disturbance between the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37.
  • the modified example of the first embodiment has been described with reference to FIG. 65.
  • the signals detected by the sample information detection units B32 and B33 are detected by the R headphone unit B35.
  • the present invention is not limited to this as long as addition / division processing is performed to average the obtained signal and the signal obtained by the L headphone unit B37.
  • the second to fourth embodiments and their modified examples, and the modified example of the first embodiment are provided with waveform disturbance detecting units B251 and B252, an addition / division processing unit B253, and a selector B254. Can be done in the same way.
  • such a driver unit can detect a pulse wave using hybrid headphones. At this time, from the viewpoint of suitability of the frequency characteristics of the driver unit, it is preferable to detect a pulse wave by using a driver unit (woofer) used for outputting a bass sound.
  • a driver unit woofer
  • the sample information detection unit B32a which is a canal-type inner-ear type headphone, has been described as being attached to the external ear B107 by inserting the earpiece B213 into the external opening B105 of the external ear canal B104.
  • the mounting site of the specimen information detection unit B32a is not limited to this, as long as the site constituting the outer ear B107 is isolated from the external space and the cavity B109 having a closed or almost closed space structure can be formed. It may be attached to other parts.
  • the opening B215 may be opposed to the tragus B111, and the earpiece B213 may be pressed and brought into contact with the tragus B111. Or you may mount
  • the vibration of the blood vessel in the tragus B111 or the earlobe B113 propagates in the cavity B109 and is transmitted to the sensor B212 through the opening B215, so that the sensor B212 has a pulsation signal of the blood vessel in the tragus B111 or the earlobe B113. Is detected as pressure information propagating in the cavity B109 due to the pulsation signal. [II-9-7.
  • sample information detection units B32b and B32c which are overhead headphones described above
  • use for a patient transported by an ambulance can be cited.
  • the sample information detection unit B32a which is a canal-type inner-ear type headphone
  • the housing part B211 may fall off from the ear canal B104 and come off.
  • the sample information detection units B32b and B32c since the space between the housing portions B612 and B622 can be widened so as to sandwich both ears of the patient, the sample information detection units B32b and B32c can be quickly mounted. .
  • the housing parts B612 and B622 are attached to the head B110 or the auricle B108 by the attaching members B615 and B625, the case parts B612 and B622 are attached to the head B110 or the auricle B108. In the state, a pulsating signal can be detected.
  • the housing parts B612 and B622 are usually provided with a pair of left and right ears, but may be provided with only one housing part B612 and B622.
  • the ear pads B614 and B624 of one casing B612 and B622 are mounted by being deformed by being pressed against the head B110 or the auricle B108 of the specimen B101 by the other end of the mounting members B615 and B625. .
  • the mounting members B615 and B625 may have a loop-like structure that connects the casing portions B612 and B622 and hooks on the auricle B108 together with a neckband having a shape that circulates around the neck when mounted. .
  • a headphone having such a mounting member is called a so-called neckband type.
  • a housing part that isolates a part constituting the outer ear of the specimen from the external space and forms a cavity that is a closed or almost closed space structure in a state of being attached to the specimen, and provided in the housing part
  • a specimen information detection unit provided with a sensor that detects a pulsation signal of a blood vessel in a part constituting the outer ear as pressure information that propagates in the cavity due to the pulsation signal;
  • a specimen information detection apparatus comprising: a gain switching unit that detects saturation of a signal output from the specimen information detection unit and attenuates the signal when saturation is detected.
  • the specimen information detection apparatus wherein the specimen information detection unit is a canal-type inner ear type, on-ear type, or around-ear type headphone. (Appendix 3)
  • the signal output from the specimen information detection unit performs phase compensation in a low frequency region including a pulse wave information detection band that is a frequency band in which blood vessel pulse wave information is detected, and the frequency in the low frequency region
  • the specimen information detection apparatus according to Supplementary Note 1 or Supplementary Note 2, further comprising a waveform equalization processing unit that compensates a response.
  • a sample information processing apparatus comprising the sample information detection apparatus according to any one of appendices 1 to 4 and an information processing apparatus,
  • the specimen information detection device attenuates a frequency component higher than the pulse wave information detection band, which is a frequency band in which the pulse wave information of the blood vessel is detected, and passes the frequency component of the pulse wave information detection band.
  • the signal processed by the output processing unit is input to the sensor,
  • the sample information processing apparatus wherein the sensor functions as a speaker that generates air vibration according to an input signal.
  • Appendix 6 By applying a frequency correction process for performing at least one of an amplification operation, an integration operation, and a differentiation operation on the signal processed by the waveform equalization processing unit in the frequency band of the pulse wave information, 6.
  • the specimen information processing apparatus according to appendix 5, further comprising a frequency correction processing unit that extracts at least one of a pulsating volume signal, a pulsating velocity signal, and a pulsating acceleration signal.
  • a housing part that isolates a part constituting the outer ear of the specimen from the external space and forms a cavity that is a closed or almost closed space structure in a state of being attached to the specimen, and provided in the housing part
  • a specimen information detection apparatus comprising a specimen information detection unit provided with a sensor that detects a pulsation signal of a blood vessel in a portion constituting the outer ear as pressure information that propagates in the cavity due to the pulsation signal.
  • An information processing apparatus to which a signal detected by the sensor is input An information processing apparatus comprising: a gain switching unit that detects saturation of a signal output from the specimen information detection unit and attenuates the signal when saturation is detected.
  • Appendix 8 The information processing apparatus according to appendix 7, wherein the specimen information detection unit is a canal type inner ear type, on-ear type, or around-ear type headphone.
  • Appendix 9 The signal output from the specimen information detection unit performs phase compensation in a low frequency region including a pulse wave information detection band that is a frequency band in which blood vessel pulse wave information is detected, and the frequency in the low frequency region.
  • the information processing apparatus according to appendix 7 or appendix 8 further comprising a waveform equalization processing unit that compensates a response.
  • the information processing apparatus attenuates a frequency component higher than a pulse wave information detection band, which is a frequency band in which the pulse wave information of the blood vessel is detected, with respect to a signal input from the specimen information detection apparatus, An input processing unit that performs processing for passing the frequency component of the pulse wave information detection band; An output processing unit that performs a process of attenuating the frequency component of the pulse wave information detection band and passing the frequency component higher than the pulse wave information detection band with respect to the signal output to the specimen information detection device; The signal processed by the output processing unit is input to the sensor, 11.
  • the information processing apparatus according to any one of appendices 7 to 10, wherein the sensor functions as a speaker that generates air vibration according to an input signal.
  • Appendix 12 By applying a frequency correction process for performing at least one of an amplification operation, an integration operation, and a differentiation operation on the signal processed by the waveform equalization processing unit in the frequency band of the pulse wave information,
  • the information processing apparatus according to any one of appendices 7 to 11, further comprising a frequency correction processing unit that extracts at least one of a pulsating volume signal, a pulsating velocity signal, and a pulsating acceleration signal.
  • a housing part that isolates a part constituting the outer ear of the specimen from the external space and forms a cavity that is a closed or almost closed space structure in a state of being attached to the specimen, and provided in the housing part
  • a specimen information detection unit provided with a sensor for detecting a pulsation signal of a blood vessel in a portion constituting the outer ear as pressure information propagating in the cavity due to the pulsation signal, and detected by the sensor
  • An interface device interposed between the information processing device for processing the received signal,
  • An interface apparatus comprising: a gain switching unit that detects saturation of a signal output from the specimen information detection unit and attenuates the signal when saturation is detected.
  • the signal output from the specimen information detection unit performs phase compensation in a low frequency region including a pulse wave information detection band that is a frequency band in which blood vessel pulse wave information is detected, and the frequency in the low frequency region 14.

Abstract

The invention is provided with: a subject information detection unit A101 that detects a pulsation signal based on vascular pulse wave information from a subject; and a signal processing section A16 that normalizes the pulsation signal.

Description

検体情報処理装置、情報処理方法、情報処理プログラム、及び同プログラムを記録したコンピュータ読み取り可能な記録媒体SAMPLE INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD, INFORMATION PROCESSING PROGRAM, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING THE PROGRAM
 本発明は、脈動性信号を正規化する検体情報処理装置、脈動性信号を正規化する情報処理方法、脈動性信号を正規化する情報処理プログラム、及び同プログラムを記録したコンピュータ読み取り可能な記録媒体に関する。 The present invention relates to a specimen information processing apparatus for normalizing a pulsating signal, an information processing method for normalizing a pulsating signal, an information processing program for normalizing a pulsating signal, and a computer-readable recording medium storing the program About.
 光電式または圧電式の脈波計を利用した、検体からの脈波の検出が行われている。中でも、比較的太い血管が中に通っている腕や、毛細血管が網のように張り巡らされた指先などに対して、マイクロホンにより脈波を検出する試みがなされている。また、検体の耳内にセンサを配置して、外耳道に存在する血管から脈波を検出する試みがなされている。 Detecting pulse wave from specimen using photoelectric or piezoelectric pulse wave meter. In particular, an attempt has been made to detect a pulse wave with a microphone on an arm through which a relatively thick blood vessel passes, or a fingertip with a capillary vessel stretched like a net. In addition, an attempt has been made to detect a pulse wave from a blood vessel existing in the ear canal by arranging a sensor in the ear of the specimen.
 特許文献1(特開2010-115431)では、空洞を有する筐体が装着部材により皮膚表面に装着され、装着面の一部にある開口部が皮膚により密閉され、体内音による皮膚表面の振動が直接空洞内の空気に伝わり、これをマイクロホンにより取得できる体内音取得装置について開示されている。 In Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-115431), a casing having a cavity is attached to the skin surface by an attachment member, an opening in a part of the attachment surface is sealed by the skin, and vibration of the skin surface due to body sounds A body sound acquisition device is disclosed that is directly transmitted to air in a cavity and can be acquired by a microphone.
 特許文献2(特開2010-22572)では、外耳道挿入部が外耳道に挿入された際に外耳道を閉じて鼓膜との間に閉空間を形成し、その閉空間を介して生体振動である音を検出する生体情報検出装置が開示されている。またローパスフィルタにより生体情報を多く含んでいる低周波数帯域の信号成分だけを抽出することが開示されている。 In Patent Document 2 (Japanese Patent Application Laid-Open No. 2010-22572), when the ear canal insertion part is inserted into the ear canal, the ear canal is closed to form a closed space between the eardrum and sound that is biological vibration is transmitted through the closed space. A biological information detection device for detection is disclosed. Further, it is disclosed that only a low-frequency band signal component containing a large amount of biological information is extracted by a low-pass filter.
特開2010-115431JP 2010-115431 A 特開2010-22572JP 2010-22572
 上記特許文献1、2のように、検体の血管の脈動性信号に起因する圧力情報を受けて、検体における脈動性信号を検出し、この検出された検体情報の信号処理を行う試みがなされている。このような検出方法の場合、検出される信号の強度が低いために、外部からの音の影響を受けやすいことが課題としてあった。 As described in Patent Documents 1 and 2, an attempt is made to detect pressure signals in a sample by receiving pressure information resulting from a pulsation signal of a blood vessel of the sample, and to perform signal processing of the detected sample information. Yes. In the case of such a detection method, since the intensity of the detected signal is low, there is a problem that it is easily affected by external sound.
 さらに、脈動性信号を検出したとしても、検体が発声している際には、脈波の観察が困難となる。図16は検体の外耳道から検出した脈動性信号の波形を示すものであるが、3秒から12秒付近までは、検体が平常な状態であるときには脈波の波形が得られる。一方、13秒付近から43秒付近までは、アイウエヲとの発声により、外耳道から検出される脈波の波形に外乱が加わることによって、脈波の波形が変動している。また、図17も検体の外耳道から検出した脈動性信号の波形を示すものであるが、0秒から17秒付近までアウアウアウアウとの発生により、脈波の波形に外乱が表れることによって、外乱により脈波の波形が隠れている。これらの波形の変化は、検体が発声した際に外耳道の筋肉が動くことで、心拍に起因する血管の脈動に伴う皮膚の振動よりも大きな圧力変動が起きることによると考えられる。また、検体が運動をしていたり、または検出器の信号線からノイズがのったりすること等によっても、脈動性信号に突発性でバースト的な外乱が加わる。このような外乱によって脈動性信号が変動した場合には、脈波の観察が困難となる。 Furthermore, even if a pulsating signal is detected, it is difficult to observe the pulse wave when the specimen is speaking. FIG. 16 shows the waveform of the pulsating signal detected from the external auditory canal of the specimen. From 3 seconds to around 12 seconds, the waveform of the pulse wave is obtained when the specimen is in a normal state. On the other hand, from around 13 seconds to around 43 seconds, the waveform of the pulse wave fluctuates due to the addition of a disturbance to the waveform of the pulse wave detected from the ear canal due to the utterance of Aiweo. FIG. 17 also shows the waveform of the pulsating signal detected from the external auditory canal of the specimen. By the occurrence of an outau from the second to the vicinity of 17 seconds, a disturbance appears in the waveform of the pulse wave. The pulse wave waveform is hidden. These changes in the waveform are considered to be due to the fact that the muscles of the ear canal move when the specimen utters, resulting in a pressure fluctuation that is greater than the vibration of the skin due to the pulsation of the blood vessels caused by the heartbeat. Moreover, sudden and bursty disturbance is added to the pulsating signal due to the movement of the specimen or noise from the signal line of the detector. When the pulsation signal fluctuates due to such a disturbance, it is difficult to observe the pulse wave.
 この他にも、脈動性信号の変動分としては、いわゆる不整脈を含む生体そのものの不規則性に起因して、周期性の脈波のパターンが乱れることが挙げられる。また、脈拍数自体の変化も脈動性信号の変動分として挙げられる。
 上述した要因によって脈動性信号が変動した場合、脈拍数の異なる状況における波形どうしの間では、それぞれの時間軸が変化しているため、これらを同等に取り扱って信号処理を行うことができない。
In addition to this, as the fluctuation of the pulsating signal, the periodic pulse wave pattern is disturbed due to irregularity of the living body itself including so-called arrhythmia. A change in the pulse rate itself can also be cited as a fluctuation of the pulsation signal.
When the pulsation signal fluctuates due to the above-mentioned factors, since the respective time axes change between waveforms in different pulse rates, it is not possible to handle them equally and perform signal processing.
 本発明は、このような課題に鑑みて創案されたものであり、脈動性信号に変動が生じた場合に信号の取扱性を向上させた装置を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide an apparatus that improves signal handling when a fluctuation occurs in a pulsation signal.
(1)ここで開示する検体情報処理装置は、検体における血管の脈波情報に基づく脈動性信号を検出する検体情報検出ユニットと、該脈動性信号を正規化する信号処理部とを備える。
(2)該信号処理部は、該脈動性信号が入力されるPLL回路を備え、該PLL回路は、該脈動性信号と帰還信号との位相を比較して、位相差に対応する位相差信号を出力する位相比較器と、該位相差信号が入力されて、所定のカットオフ周波数より大きい周波数成分を除去した電圧制御信号を出力するローパスフィルタと、該電圧制御信号の電圧に対応する発振周波数を有するクロック信号を出力する電圧制御発振器と、該クロック信号が入力されて、所定の分周比で該クロック信号を分周した分周信号を出力する分周器とを有し、上記の分周信号が該帰還信号として該位相比較器に入力され、該脈動性信号と該帰還信号との位相が同期するように該電圧制御発振器の発振周波数が制御され、該クロック信号により該脈動性信号を正規化することが好ましい。
(1) A sample information processing apparatus disclosed herein includes a sample information detection unit that detects a pulsation signal based on blood vessel pulse wave information in a sample, and a signal processing unit that normalizes the pulsation signal.
(2) The signal processing unit includes a PLL circuit to which the pulsation signal is input. The PLL circuit compares the phases of the pulsation signal and the feedback signal, and a phase difference signal corresponding to the phase difference. A phase comparator that outputs a voltage control signal from which the phase difference signal is input and a frequency component higher than a predetermined cutoff frequency is removed, and an oscillation frequency corresponding to the voltage of the voltage control signal A voltage-controlled oscillator that outputs a clock signal having a frequency divider, and a frequency divider that receives the clock signal and outputs a divided signal obtained by dividing the clock signal by a predetermined frequency division ratio. A frequency signal is input to the phase comparator as the feedback signal, and the oscillation frequency of the voltage controlled oscillator is controlled so that the phases of the pulsating signal and the feedback signal are synchronized, and the pulsating signal is controlled by the clock signal. Normalize It is preferable.
(3)該信号処理部は、該脈動性信号の信号強度をデジタルデータとして取得するAD変換器と、該AD変換器で得られた該データを蓄積するメモリとを有する信号記録部と、該分周器から該分周信号が入力されて、該分周信号をカウントして脈波の順番を示す波形番号を出力するカウンタと、上記のメモリに記録した信号強度を読み出してフィルタ処理するフィードバックコムフィルタとを備え、該AD変換器は、該電圧制御発振器から該クロック信号が入力されたタイミングで該信号強度を取得して該メモリに出力し、該メモリは、該カウンタから入力される該波形番号を受けて、該脈動性信号を該波形番号と上記のクロック信号の入力されたタイミングに応じたクロック番号とに対応付けた信号強度として記録し、該フィードバックコムフィルタは、該電圧制御発振器から該クロック信号が入力されて、該脈動性信号の一周期あたりの総クロック数の整数倍の周波数成分を通過させることが好ましい。 (3) The signal processing unit includes a signal recording unit including an AD converter that acquires the signal strength of the pulsating signal as digital data, and a memory that stores the data obtained by the AD converter, A counter that receives the frequency-divided signal from the frequency divider, counts the frequency-divided signal, and outputs a waveform number indicating the order of pulse waves; and feedback that reads and filters the signal intensity recorded in the memory And a comb filter, wherein the AD converter acquires the signal strength at a timing when the clock signal is input from the voltage controlled oscillator and outputs the signal strength to the memory, and the memory is input from the counter. Upon receipt of the waveform number, the pulsation signal is recorded as a signal strength associated with the waveform number and a clock number corresponding to the input timing of the clock signal, and the feedback code is recorded. Filter, from the voltage controlled oscillator is the clock signal is input, it is preferable to pass the total number of clocks integral multiple frequency components per cycle of the pulsation of the signal.
(4)該信号処理部は、上記のメモリに記録した複数の波形番号の信号強度を読み出して、同じクロック番号の信号強度を加算して波形番号ごとに平均値を出力する平均化処理部を備えることが好ましい。
(5)該信号処理部は、上記のPLL回路に入力される脈動性信号と該帰還信号との位相が同期しているかを判定して、該PLL回路がロックしているか否かを検出するロック検出部を備えることが好ましい。
(6)該信号処理部は、該分周信号が入力されて、該分周信号の単位時間当たりのパルスをカウントする信号計数部を備えることが好ましい。
(4) The signal processing unit reads out the signal intensities of a plurality of waveform numbers recorded in the memory, adds the signal intensities of the same clock numbers, and outputs an average value for each waveform number. It is preferable to provide.
(5) The signal processing unit determines whether or not the phase of the pulsation signal input to the PLL circuit and the feedback signal are synchronized, and detects whether or not the PLL circuit is locked. It is preferable to provide a lock detection unit.
(6) It is preferable that the signal processing unit includes a signal counting unit that receives the divided signal and counts pulses per unit time of the divided signal.
(7)該脈動性信号に関連する情報を提示する表示器をさらに備え、該ロック検出部が、ロックしているか否かを該表示器に表示し、該信号計数部が、単位時間当たりの該分周信号のカウント値を該表示器に表示することが好ましい。
(8)該信号処理部は、上記の平均化処理部により処理された信号が入力されて、該クロック番号と該信号強度の平均値との関係を表す波形を生成して、波形番号ごとに複数の脈波を平均化した一周期の波形を該表示器に表示する波形表示部を備えることが好ましい。
(9)該信号処理部は、上記のメモリに記録した信号強度を読み出して数値微分する微分処理部を備えることが好ましい。
(10)該信号処理部は、上記のメモリに記録した信号強度を読み出して数値積分する積分処理部を備えることが好ましい。
(7) It further includes a display for presenting information related to the pulsation signal, the lock detection unit displays on the display whether or not it is locked, and the signal counting unit It is preferable to display the count value of the divided signal on the display.
(8) The signal processing unit receives the signal processed by the averaging processing unit, generates a waveform representing the relationship between the clock number and the average value of the signal intensity, and generates a waveform for each waveform number. It is preferable to provide a waveform display unit that displays a waveform of one cycle obtained by averaging a plurality of pulse waves on the display.
(9) It is preferable that the signal processing unit includes a differentiation processing unit that reads the signal strength recorded in the memory and numerically differentiates it.
(10) The signal processing unit preferably includes an integration processing unit that reads the signal intensity recorded in the memory and numerically integrates it.
(11)ここで開示する情報処理方法は、検体における血管の脈波情報に基づいて検出された脈動性信号を取得して、該脈動性信号を正規化する。
(12)ここで開示する情報処理プログラムは、コンピュータに、検体における血管の脈波情報に基づいて検出された脈動性信号を取得して、該脈動性信号を正規化する処理を実行させる。
(13)ここで開示するコンピュータ読み取り可能な記録媒体は、上述の情報処理プログラムを記録する。
(11) The information processing method disclosed here acquires a pulsation signal detected based on blood vessel pulse wave information in a specimen, and normalizes the pulsation signal.
(12) The information processing program disclosed herein causes a computer to execute processing for acquiring a pulsation signal detected based on blood vessel pulse wave information in a specimen and normalizing the pulsation signal.
(13) The computer-readable recording medium disclosed herein records the information processing program described above.
 本発明によれば、脈動性信号を正規化することより、脈拍数の異なる波形の間であっても、時間軸によらずに信号を取り扱うことが可能となる。 According to the present invention, by normalizing the pulsating signal, it is possible to handle the signal regardless of the time axis even between waveforms having different pulse rates.
図1は、第一の発明の第一実施形態に係るPLL回路及び情報処理装置の構成の例を示すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of a PLL circuit and an information processing apparatus according to the first embodiment of the first invention. 図2は、平常時の場合の波形を示す図であり、図2(a)は二値化処理部に入力される脈動性信号の波形を示し、図2(b)は二値化処理部で二値化された波形を示し、図2(c)はVCOから出力されるクロック信号の波形を示す。FIG. 2 is a diagram illustrating a waveform in a normal state, FIG. 2A illustrates a waveform of a pulsation signal input to the binarization processing unit, and FIG. 2B illustrates a binarization processing unit. FIG. 2C shows the waveform of the clock signal output from the VCO. 図3は、平常時または歩行時の場合の波形を示す図であり、図3(a)は、二値化処理部に入力される脈動性信号の波形を示し、図3(b)は、二値化処理部で二値化された脈動性信号の波形を示し、図3(c)は、VCOから出力されるクロック信号の波形を示す。FIG. 3 is a diagram illustrating a waveform in a normal state or during walking. FIG. 3A illustrates a waveform of a pulsation signal input to the binarization processing unit, and FIG. The waveform of the pulsating signal binarized by the binarization processing unit is shown, and FIG. 3C shows the waveform of the clock signal output from the VCO. 図4は、平常時または歩行時の場合の長期間の脈動性信号の波形を示す図であり、図4(a)の上段は二値化処理部に入力される脈動性信号の波形を示し、図4(b)の上段はLPFから出力される電圧制御信号の波形を示し、図4(c)の上段はVCOから出力されるクロック信号の波形を示し、図4(a)、図4(b)、及び図4(c)の下段は、VCOから出力されるクロック信号の波形を示す。FIG. 4 is a diagram showing the waveform of a long-term pulsation signal in normal or walking, and the upper part of FIG. 4A shows the waveform of the pulsation signal input to the binarization processing unit. 4 (b) shows the waveform of the voltage control signal output from the LPF, and the upper part of FIG. 4 (c) shows the waveform of the clock signal output from the VCO. The lower part of FIG. 4B and FIG. 4C shows the waveform of the clock signal output from the VCO. 図5は、脈波の波形のパターンのパルスとしての分類を説明するための模式的な図であり、(a)は全く時間変動が無い場合のパターンを示し、(b)は時間的にわずかな時間揺らぎがある場合のパターンを示し、(c)はグループ単位の周期があるパターンを示し、(d)は完全にランダムに近い場合のパターンを示し、(e)は不整脈がある場合の一例のパターンを示し、(f)は不整脈がある場合の別の例のパターンを示す。FIG. 5 is a schematic diagram for explaining the classification of pulse wave waveform patterns as pulses. FIG. 5A shows a pattern when there is no temporal variation, and FIG. (C) shows a pattern with a group unit period, (d) shows a pattern when it is almost completely random, and (e) shows an example with arrhythmia (F) shows the pattern of another example in the case where there is an arrhythmia. 図6は、第一の発明の第二実施形態に係るPLL回路及び情報処理装置の構成の例を示すブロック図である。FIG. 6 is a block diagram showing an example of the configuration of the PLL circuit and the information processing apparatus according to the second embodiment of the first invention. 図7は、メモリ及びメモリバンクの構成を説明するための模式的な図である。FIG. 7 is a schematic diagram for explaining the configuration of the memory and the memory bank. 図8は、脈波の波形とクロック番号及び波形番号との関係を説明するための模式的な図である。FIG. 8 is a schematic diagram for explaining the relationship between the waveform of the pulse wave, the clock number, and the waveform number. 図9は、フィードバックコムフィルタの周波数特性を説明するためのブロック図である。FIG. 9 is a block diagram for explaining the frequency characteristics of the feedback comb filter. 図10は、フィードバックコムフィルタの周波数特性を説明するためのグラフである。FIG. 10 is a graph for explaining the frequency characteristics of the feedback comb filter. 図11は、平常時の場合の容積脈波の周波数スペクトルの一例を示す図である。FIG. 11 is a diagram illustrating an example of a frequency spectrum of a volume pulse wave in a normal state. 図12は、脈波に変動がある場合の第二実施形態に係る表示器の表示の例を説明するための図である。FIG. 12 is a diagram for explaining an example of display on the display device according to the second embodiment when there is a variation in the pulse wave. 図13は、脈拍数が増えた場合の第二実施形態に係る表示器の表示の例を説明するための図である。FIG. 13 is a diagram for explaining an example of display on the display according to the second embodiment when the pulse rate has increased. 図14は、脈波に変動がある場合の脈波と脈拍数の表示の例を示す図である。FIG. 14 is a diagram illustrating an example of display of the pulse wave and the pulse rate when the pulse wave varies. 図15は、脈拍数が増えた場合の脈波と脈拍数の表示の例を示す図である。FIG. 15 is a diagram illustrating an example of display of a pulse wave and a pulse rate when the pulse rate increases. 図16は、平常な状態とアイウエオとの発声をした場合の外耳道から検出される脈動性信号の波形を示した図である。FIG. 16 is a diagram showing a waveform of a pulsating signal detected from the external auditory canal when a normal state and eyeway are uttered. 図17は、平常な状態とアウアウアウアウとの発声をした場合の外耳道から検出される脈動性信号の波形を示した図である。FIG. 17 is a diagram showing a waveform of a pulsating signal detected from the external auditory canal when a normal state and an out-of-out voice are produced. 図18は、第一の発明の第二実施形態に係る検体情報処理装置の処理の一例を説明するためのフローチャートである。FIG. 18 is a flowchart for explaining an example of processing of the sample information processing apparatus according to the second embodiment of the first invention. 図19は、第一の発明の第三実施形態に係る検体情報処理装置の構成の例を示すブロック図である。FIG. 19 is a block diagram showing an example of the configuration of the sample information processing apparatus according to the third embodiment of the first invention. 図20は、第一の発明の第三実施形態に係る検体情報処理装置の処理の一例を説明するためのフローチャートである。FIG. 20 is a flowchart for explaining an example of processing of the sample information processing apparatus according to the third embodiment of the first invention. 図21は、第一の発明の第四実施形態に係る検体情報処理装置の構成の例を示すブロック図である。FIG. 21 is a block diagram showing an example of the configuration of the sample information processing apparatus according to the fourth embodiment of the first invention. 図22は、第一の発明の第四実施形態に係る検体情報処理装置の処理の一例を説明するためのフローチャートである。FIG. 22 is a flowchart for explaining an example of processing of the sample information processing apparatus according to the fourth embodiment of the first invention.
図23は、第二の発明の第一実施形態に係る検体情報処理装置の構成を模式的に表わした図である。FIG. 23 is a diagram schematically showing the configuration of the sample information processing apparatus according to the first embodiment of the second invention. 図24は、第二の発明の第一実施形態に係る検体情報検出ユニットがカナル型のインナーイヤータイプのヘッドホンである場合の外耳との関係の一例を模式的に表す図である。FIG. 24 is a diagram schematically illustrating an example of a relationship with the outer ear when the sample information detection unit according to the first embodiment of the second invention is a canal-type inner-ear type headphone. 図25は、第二の発明の第一実施形態に係る検体情報検出ユニットがオンイヤータイプのヘッドホンである場合の外耳との関係の一例を模式的に表す図である。FIG. 25 is a diagram schematically illustrating an example of a relationship with the outer ear when the sample information detection unit according to the first embodiment of the second invention is an on-ear type headphone. 図26は、第二の発明の第一実施形態に係る検体情報検出ユニットがアラウンドイヤータイプのヘッドホンである場合の外耳との関係の一例を模式的に表す図である。FIG. 26 is a diagram schematically illustrating an example of a relationship with the outer ear when the sample information detection unit according to the first embodiment of the second invention is an around-ear type headphone. 図27は、耳介の構造とオンイヤータイプまたはアラウンドイヤータイプのヘッドホンの装着位置との関係の例を模式的に表す図である。FIG. 27 is a diagram schematically illustrating an example of the relationship between the structure of the auricle and the mounting position of an on-ear type or around-ear type headphone. 図28は、オンイヤータイプのヘッドホンの一例を示す外観図である。FIG. 28 is an external view showing an example of an on-ear type headphone. 図29は、アラウンドイヤータイプのヘッドホンの一例を示す外観図である。FIG. 29 is an external view showing an example of an around-ear type headphone. 図30は、第二の発明の第一実施形態に係るジャックの構造を模式的に示す図であり、図30(a)はジャックの横方向から見た図、図30(b)は別の方向から見た図、図30(c)はさらに別の方向から見た図である。FIG. 30 is a diagram schematically showing the structure of the jack according to the first embodiment of the second invention. FIG. 30 (a) is a view seen from the side of the jack, and FIG. 30 (b) is another diagram. FIG. 30C is a diagram seen from another direction, and FIG. 30C is a diagram seen from another direction. 図31は、第二の発明の第一実施形態に係るジャック及びプラグの構造を模式的に示す図であり、図31(a)はジャックの横方向から見た図、図31(b)は別の方向から見た図、図31(c)はさらに別の方向から見た図である。FIG. 31 is a diagram schematically showing the structure of a jack and a plug according to the first embodiment of the second invention. FIG. 31 (a) is a diagram seen from the side of the jack, and FIG. 31 (b) is a diagram. FIG. 31C is a view seen from another direction, and FIG. 31C is a view seen from another direction. 図32は、ゲイン切り替え部及び周波数特性補償部の機能構成の一例を説明するためのブロック図である。FIG. 32 is a block diagram for explaining an example of functional configurations of the gain switching unit and the frequency characteristic compensation unit. 図33は、第二の発明の第一実施形態に係る周波数特性の補償パターンの一例を表す図である。FIG. 33 is a diagram illustrating an example of a frequency characteristic compensation pattern according to the first embodiment of the second invention. 図34は、第二の発明の第一実施形態に係る周波数特性の補償を行う電気回路の一例を示す図である。FIG. 34 is a diagram illustrating an example of an electric circuit that performs frequency characteristic compensation according to the first embodiment of the second invention. 図35は、第二の発明の第一実施形態に係る周波数特性の補償を行う電気回路のボード線図の一例を表す図であるFIG. 35 is a diagram illustrating an example of a Bode diagram of an electric circuit that performs frequency characteristic compensation according to the first embodiment of the second invention. 図36は、周波数特性の補償の処理におけるクロックとサンプリング点を説明するための模式的な図である。FIG. 36 is a schematic diagram for explaining clocks and sampling points in frequency characteristic compensation processing. 図37は、周波数補正処理部の機能構成の一例を説明するためのブロック図である。FIG. 37 is a block diagram for explaining an example of a functional configuration of the frequency correction processing unit. 図38(a)はドライバユニットの周波数特性を表す図であり、図38(b)は補償回路の周波数応答の一例を表す図である。FIG. 38A is a diagram illustrating the frequency characteristics of the driver unit, and FIG. 38B is a diagram illustrating an example of the frequency response of the compensation circuit. 図39(a)は外耳道を完全に閉鎖できない場合の脈動性信号の周波数特性を表す図であり、図39(b)は脈波検出帯域の低周波数領域を上昇させるような位相補償の周波数特性を表す図である。FIG. 39A is a diagram showing the frequency characteristics of a pulsating signal when the ear canal cannot be completely closed, and FIG. 39B is a frequency characteristic of phase compensation that raises the low frequency region of the pulse wave detection band. FIG. 図40は、指先または腕においてクローズドキャビティを形成した状態で血管の脈動性信号を検出した際に得られる脈波の波形の一例を表す図であり、図40(a)は検出された信号を積分して得られる波形を表す図であり、図40(b)は検出された信号の波形を表す図であり、図40(c)は検出された信号を微分して得られる波形を表す図である。FIG. 40 is a diagram illustrating an example of a waveform of a pulse wave obtained when a pulsation signal of a blood vessel is detected in a state where a closed cavity is formed at a fingertip or an arm, and FIG. FIG. 40B is a diagram showing a waveform of a detected signal, and FIG. 40C is a diagram showing a waveform obtained by differentiating the detected signal. It is. 図41は、カナル型のインナーイヤータイプのヘッドホン検体情報検出ユニットを用いて検出される信号の波形の一例を表す図であり、図41(a)は検出された信号を積分して得られる波形を表す図であり、図41(b)は検出された信号の波形を表す図であり、図41(c)は検出された信号を微分して得られる波形を表す図である。FIG. 41 is a diagram illustrating an example of a waveform of a signal detected using a canal-type inner-ear type headphone sample information detection unit. FIG. 41A illustrates a waveform obtained by integrating the detected signal. FIG. 41B is a diagram illustrating a waveform of a detected signal, and FIG. 41C is a diagram illustrating a waveform obtained by differentiating the detected signal. 図42(a)はオーバーヘッドタイプのヘッドホンを使用した際に外耳を含む部位を完全に閉鎖できない場合の脈動性信号の周波数特性を表す図であり、図42(b)はオーバーヘッドタイプのヘッドホンを使用した際に脈波検出帯域の低周波数領域を上昇させるような位相補償の周波数特性を表す図である。Fig.42 (a) is a figure showing the frequency characteristic of the pulsation signal when the site | part containing an external ear cannot be closed completely when using overhead type headphones, FIG.42 (b) uses overhead type headphones It is a figure showing the frequency characteristic of the phase compensation which raises the low frequency area | region of a pulse wave detection zone | band when doing. 図43は、オンイヤータイプのヘッドホンである検体情報検出ユニットを用いて検出される信号の波形の一例を表す図であり、図43(a)は検出された信号の波形を表す図であり、図43(b)は検出された信号をさらに積分して得られる波形を表す図である。FIG. 43 is a diagram illustrating an example of a waveform of a signal detected using a specimen information detection unit that is an on-ear type headphone, and FIG. 43 (a) is a diagram illustrating a waveform of the detected signal. 43 (b) shows a waveform obtained by further integrating the detected signal. 図44は、アラウンドイヤータイプのヘッドホンである検体情報検出ユニットを用いて検出される信号の波形の一例を表す図であり、図44(a)は検出された信号の波形を表す図であり、図44(b)は検出された信号をさらに積分して得られる波形を表す図である。FIG. 44 is a diagram illustrating an example of a waveform of a signal detected using a specimen information detection unit that is an around-ear type headphone, and FIG. 44 (a) is a diagram illustrating a waveform of the detected signal, FIG. 44B shows a waveform obtained by further integrating the detected signal. 図45は、イヤーパッドが合成皮革製のオンイヤータイプのヘッドホンである検体情報検出ユニットを用いて検出される信号の波形の一例を表す図であり、図45(a)は検出された信号の波形を表す図であり、図45(b)は検出された信号をさらに積分して得られる波形を表す図である。FIG. 45 is a diagram illustrating an example of a waveform of a signal detected using a specimen information detection unit whose ear pad is an on-ear type headphone made of synthetic leather, and FIG. 45 (a) illustrates a waveform of the detected signal. FIG. 45B shows a waveform obtained by further integrating the detected signal. 図46は、DSPを備えたアラウンドイヤータイプのヘッドホンである検体情報検出ユニットを用いて検出される信号の波形の一例を表す図であり、図46(a)は検出された信号の波形を表す図であり、図46(b)は検出された信号をさらに積分して得られる波形を表す図である。FIG. 46 is a diagram illustrating an example of a waveform of a signal detected using a specimen information detection unit that is an around-ear type headphone equipped with a DSP, and FIG. 46A illustrates a waveform of the detected signal. FIG. 46B is a diagram showing a waveform obtained by further integrating the detected signal. 図47は、イヤーパッドが布製のアラウンドイヤータイプのヘッドホンである検体情報検出ユニットを用いて検出される信号の波形の一例を表す図であり、図47(a)は検出された信号の波形を表す図であり、図47(b)は検出された信号をさらに積分して得られる波形を表す図である。FIG. 47 is a diagram illustrating an example of a waveform of a signal detected using a sample information detection unit whose ear pad is a fabric around-ear type headphone, and FIG. 47A illustrates a waveform of the detected signal. FIG. 47B shows a waveform obtained by further integrating the detected signal. 図48は、オンイヤータイプのヘッドホンである検体情報検出ユニットを用いた際に、外耳道を開放した場合に検出される波形の一例を表す図である。FIG. 48 is a diagram illustrating an example of a waveform detected when the external auditory canal is opened when a sample information detection unit that is an on-ear type headphone is used. 図49は、オンイヤータイプのヘッドホンである検体情報検出ユニットを用いた際に、外耳道を閉鎖した場合に検出される波形の一例を表す図である。FIG. 49 is a diagram illustrating an example of a waveform detected when the external auditory canal is closed when a sample information detection unit that is an on-ear type headphone is used. 図50は、アラウンドイヤータイプのヘッドホンである検体情報検出ユニットを用いた際に、外耳道を開放した場合に検出される波形の一例を表す図である。FIG. 50 is a diagram illustrating an example of a waveform detected when the external auditory canal is opened when a specimen information detection unit that is an around-ear type headphone is used. 図51は、アラウンドイヤータイプのヘッドホンである検体情報検出ユニットを用いた際に、外耳道を閉鎖した場合に検出される波形の一例を表す図である。FIG. 51 is a diagram illustrating an example of a waveform detected when the ear canal is closed when a sample information detection unit that is an around-ear type headphone is used. 図52は、カナル型のインナーイヤータイプのヘッドホンである検体情報検出ユニットを耳珠に押し付けた際に検出される波形の一例を表す図である。FIG. 52 is a diagram illustrating an example of a waveform detected when a specimen information detection unit that is a canal-type inner-ear type headphone is pressed against a tragus. 図53は、カナル型のインナーイヤータイプのヘッドホンである検体情報検出ユニットを耳垂に押し付けた際に検出される波形の一例を表す図である。FIG. 53 is a diagram illustrating an example of a waveform detected when a specimen information detection unit that is a canal-type inner-ear type headphone is pressed against the earlobe. 図54は、脈動性信号出力の周波数補正処理の一例を説明するための図である。FIG. 54 is a diagram for explaining an example of a frequency correction process of pulsation signal output. 図55は、第二の発明の第一実施形態に係る検体情報検出装置及び検体情報処理装置の処理の一例を説明するためのフローチャートである。FIG. 55 is a flowchart for explaining an example of processing of the sample information detecting apparatus and the sample information processing apparatus according to the first embodiment of the second invention. 図56は、第二の発明の第一実施形態の変形例に係る検体情報検出装置及び検体情報処理装置の構成を模式的に表わした図である。FIG. 56 is a diagram schematically showing the configuration of a sample information detecting apparatus and a sample information processing apparatus according to a modification of the first embodiment of the second invention. 図57は、第二の発明の第一実施形態の変形例に係るジャックの構造を模式的に示す図であり、図57(a)はジャックの横方向から見た図であり、図57(b)は別の方向から見た図であり、図57(c)はさらに別の方向から見た図である。FIG. 57 is a view schematically showing the structure of a jack according to a modification of the first embodiment of the second invention. FIG. 57 (a) is a view seen from the side of the jack, and FIG. b) is a view from another direction, and FIG. 57 (c) is a view from another direction. 図58は、第二の発明の第一実施形態の変形例に係るジャック及びプラグの構造を模式的に示す図であり、図58(a)はジャックの横方向から見た図であり、図58(b)は別の方向から見た図であり、図58(c)はさらに別の方向から見た図である。FIG. 58 is a diagram schematically showing the structure of a jack and a plug according to a modification of the first embodiment of the second invention, and FIG. 58 (a) is a diagram seen from the lateral direction of the jack. 58 (b) is a view from another direction, and FIG. 58 (c) is a view from another direction. 図59は、接続部の回路構成の例を示すものであり、図59(a)はFETを備える場合の図であり、図59(b)はコンデンサを備える場合の図であり、図59(c)は直接接続する場合の図である。FIG. 59 shows an example of the circuit configuration of the connecting portion, FIG. 59 (a) is a diagram in the case where an FET is provided, FIG. 59 (b) is a diagram in the case where a capacitor is provided, and FIG. c) is a diagram in the case of direct connection. 図60は、Rヘッドホンユニットで得られた信号の波形とLヘッドホンユニットで得られた信号の波形とを重ね合わせて表示した波形の一例を表す図である。FIG. 60 is a diagram illustrating an example of a waveform displayed by superimposing the waveform of the signal obtained by the R headphone unit and the waveform of the signal obtained by the L headphone unit. 図61は、Rヘッドホンユニットで得られた信号の波形とLヘッドホンユニットで得られた信号の波形とを重ね合わせた波形の一例を拡大したものを表す図である。FIG. 61 is an enlarged view of an example of a waveform obtained by superimposing the waveform of the signal obtained by the R headphone unit and the waveform of the signal obtained by the L headphone unit. 図62は、Rヘッドホンユニットで得られた信号の波形とLヘッドホンユニットで得られた信号の波形との信号処理の一例を表す図であり、図62(a)はRヘッドホンユニットで得られた信号の波形を表す図であり、図62(b)はLヘッドホンユニットで得られた信号の波形を表す図であり、図62(c)はRヘッドホンユニットで得られた信号とLヘッドホンユニットで得られた信号とを加算した波形を表す図である。FIG. 62 is a diagram illustrating an example of signal processing of a signal waveform obtained by the R headphone unit and a signal waveform obtained by the L headphone unit, and FIG. 62 (a) is obtained by the R headphone unit. FIG. 62 (b) is a diagram showing the waveform of a signal obtained by the L headphone unit, and FIG. 62 (c) is a diagram showing the signal obtained by the R headphone unit and the L headphone unit. It is a figure showing the waveform which added the obtained signal. 図63は、Rヘッドホンユニットで得られた信号の波形とLヘッドホンユニットで得られた信号の波形との信号処理の一例を表す図であり、図63(a)はRヘッドホンユニットで得られた信号の波形を表す図であり、図63(b)はLヘッドホンユニットで得られた信号の波形を表す図であり、図63(c)はRヘッドホンユニットで得られた信号とLヘッドホンユニットで得られた信号とを積算した波形を表す図である。FIG. 63 is a diagram illustrating an example of signal processing of a signal waveform obtained by the R headphone unit and a signal waveform obtained by the L headphone unit, and FIG. 63A is obtained by the R headphone unit. FIG. 63B is a diagram illustrating the waveform of a signal obtained from the L headphone unit, and FIG. 63C is a diagram illustrating the signal obtained from the R headphone unit and the L headphone unit. It is a figure showing the waveform which integrated the obtained signal. 図64は、第二の発明の第一実施形態の変形例に係るRヘッドホンユニットで得られた信号とLヘッドホンユニットで得られた信号とを加算する検体情報処理装置の構成を模式的に表わした図である。FIG. 64 schematically shows a configuration of a sample information processing apparatus that adds a signal obtained by an R headphone unit and a signal obtained by an L headphone unit according to a modification of the first embodiment of the second invention. It is a figure. 図65は、第二の発明の第一実施形態の変形例に係るRヘッドホンユニットで得られた信号とLヘッドホンユニットで得られた信号とを加算及び除算する検体情報処理装置の構成を模式的に表わした図である。FIG. 65 schematically shows a configuration of a sample information processing apparatus that adds and divides a signal obtained by the R headphone unit and a signal obtained by the L headphone unit according to a modification of the first embodiment of the second invention. FIG. 図66は、波形乱れ検出の一例について説明するための図であり、(a)は脈波波形にパルス状の乱れが加わった時の波形を表す図であり、(b)は波形乱れ検出に伴う検出出力を表す図である。66A and 66B are diagrams for explaining an example of waveform disturbance detection. FIG. 66A is a diagram showing a waveform when a pulse-like disturbance is added to a pulse waveform, and FIG. 66B is a diagram for detecting the waveform disturbance. It is a figure showing the accompanying detection output.
 以下、図面を参照して第一の発明、及び第二の発明について、それぞれの実施の形態を説明する。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。 Hereinafter, embodiments of the first invention and the second invention will be described with reference to the drawings. Note that the embodiment described below is merely an example, and there is no intention to exclude various modifications and technical applications that are not explicitly described in the following embodiment. Each configuration of the present embodiment can be implemented with various modifications without departing from the spirit of the present embodiment, and can be selected or combined as necessary.
[I.脈動性信号を正規化する検体情報処理装置]
 第一の発明である、脈動性信号を正規化する検体情報処理装置、情報処理プログラム、及び同プログラムを記録したコンピュータ読み取り可能な記録媒体の実施形態について説明する。以下、第一の発明の説明においては、この第一の発明を本発明と称する。
[I. Specimen information processing device that normalizes pulsatile signals]
Embodiments of a specimen information processing apparatus that normalizes a pulsation signal, an information processing program, and a computer-readable recording medium that records the program according to the first invention will be described. Hereinafter, in the description of the first invention, the first invention is referred to as the present invention.
 ここで開示する検体情報処理装置A6,A7,A8は、図6,図19,図21に示すように、検体情報検出ユニットA101と、情報処理装置A2,A3,A4とを備える。検体情報検出ユニットA101は、検体における血管の脈波情報に基づく脈動性信号を検出する。情報処理装置A2,A3,A4は、脈動性信号を正規化する信号処理部A15,A16,A17を備える。信号処理部A15,A16,A17は、PLL回路A12(図6参照)、または脈拍周波数検出部A301,A302、及びクロックジェネレータA303(図19,図21参照)を備えている。初めに、入力される脈動性信号にロックするPLL回路A11を備える、第一実施形態に係る情報処理装置A1及び検体情報処理装置A5について説明する。次に、PLL回路A12によって脈動性信号の正規化を行う、第二実施形態に係る情報処理装置A2及び検体情報処理装置A6について説明する。さらに、脈拍周波数検出部A301,A302、及びクロックジェネレータA303によって脈動性信号の正規化を行う、第三実施形態に係る情報処理装置A3及び検体情報処理装置A7、並びに第四実施形態に係る情報処理装置A4及び検体情報処理装置A8について説明する。 Specimen information processing devices A6, A7, and A8 disclosed herein include a sample information detection unit A101 and information processing devices A2, A3, and A4 as shown in FIGS. The specimen information detection unit A101 detects a pulsation signal based on blood vessel pulse wave information in the specimen. The information processing devices A2, A3, and A4 include signal processing units A15, A16, and A17 that normalize the pulsating signal. The signal processing units A15, A16, A17 include a PLL circuit A12 (see FIG. 6), or a pulse frequency detection unit A301, A302, and a clock generator A303 (see FIGS. 19, 21). First, the information processing apparatus A1 and the sample information processing apparatus A5 according to the first embodiment including the PLL circuit A11 that locks to the input pulsation signal will be described. Next, the information processing apparatus A2 and the sample information processing apparatus A6 according to the second embodiment, in which the pulsation signal is normalized by the PLL circuit A12, will be described. Further, the information processing device A3 and the sample information processing device A7 according to the third embodiment, and the information processing according to the fourth embodiment, in which the pulsation signal is normalized by the pulse frequency detection units A301 and A302 and the clock generator A303. The apparatus A4 and the sample information processing apparatus A8 will be described.
[I-1.第一実施形態]
 本発明の第一実施形態に係るPLL(フェーズロックドループ)回路A11、PLL回路A11を備える情報処理装置A1、及び検体情報処理装置A5について、図1を参照して説明する。以下、第一実施形態の説明においては、第一実施形態を、単に本実施形態とも呼ぶ。
[I-1. First embodiment]
A PLL (phase locked loop) circuit A11, an information processing apparatus A1 including a PLL circuit A11, and a sample information processing apparatus A5 according to a first embodiment of the present invention will be described with reference to FIG. Hereinafter, in the description of the first embodiment, the first embodiment is also simply referred to as this embodiment.
[I-1-1.PLL回路の構成]
 本実施形態に係るPLL回路A11は、図1に示すように、位相比較器A21、LPF(ローパスフィルタ)A22、及びVCO(電圧制御発振器)A23aを備えて構成されている。
[I-1-1. Configuration of PLL circuit]
As shown in FIG. 1, the PLL circuit A11 according to the present embodiment includes a phase comparator A21, an LPF (low pass filter) A22, and a VCO (voltage controlled oscillator) A23a.
<位相比較器>
 位相比較器A21は、入力される脈動性信号と帰還信号との位相を比較して、その位相差に対応する幅のパルス信号を、位相差信号としてLPFA22に出力する。本実施形態に係る位相比較器A21は、XOR(エクスクルーシブオア)回路により構成されている。また、位相比較器A21は、脈動性信号及び帰還信号をロック検出部A41に出力する。
<Phase comparator>
The phase comparator A21 compares the phases of the input pulsation signal and the feedback signal, and outputs a pulse signal having a width corresponding to the phase difference to the LPFA 22 as a phase difference signal. The phase comparator A21 according to the present embodiment is configured by an XOR (exclusive OR) circuit. Further, the phase comparator A21 outputs the pulsation signal and the feedback signal to the lock detection unit A41.
<LPF>
 LPF A22は、位相差信号が入力されて、所定のカットオフ周波数より大きい周波数成分を除去した電圧制御信号として、VCOA23aに出力する。これにより、脈動性信号と帰還信号との位相差に対応した電圧が生成されて電圧制御発振器に入力される。LPFA22は、カットオフ周波数を有する一次以上のローパスフィルタであるため、PLL回路A11は2次系以上の高次のループとなる。以下、入力する脈波の位相の突然のシフトに対して一定時間内の位相差ゼロでロックすることを特徴とする2次系のPLLを前提として説明する。
<LPF>
The LPF A22 receives the phase difference signal and outputs it to the VCOA 23a as a voltage control signal from which a frequency component higher than a predetermined cutoff frequency has been removed. As a result, a voltage corresponding to the phase difference between the pulsation signal and the feedback signal is generated and input to the voltage controlled oscillator. Since the LPFA 22 is a first-order or higher-order low-pass filter having a cutoff frequency, the PLL circuit A11 becomes a higher-order loop of a second-order or higher system. The following description will be made on the premise of a second-order PLL, which is characterized by locking with a phase difference of zero within a certain time against a sudden shift of the phase of an input pulse wave.
<VCO>
 VCO A23aは、入力された電圧制御信号の電圧に対応する発振周波数を有するクロック信号を出力する。本実施形態に係るPLL回路A11では、クロック信号が、上述の帰還信号として位相比較器A21に入力される。本実施形態では、VCOA23aの発振周波数は、脈波の周波数と同程度の1Hzを中心として変動するよう設計されている。また、VCOA23aは、クロック信号を信号計数部A42に出力する。
<VCO>
The VCO A 23a outputs a clock signal having an oscillation frequency corresponding to the voltage of the input voltage control signal. In the PLL circuit A11 according to the present embodiment, the clock signal is input to the phase comparator A21 as the feedback signal described above. In this embodiment, the oscillation frequency of the VCOA 23a is designed to vary around 1 Hz, which is about the same as the frequency of the pulse wave. In addition, the VCOA 23a outputs a clock signal to the signal counting unit A42.
<PLL回路>
 PLL回路A11は上記の通り構成されており、PLL回路A11に入力される脈動性信号と、帰還信号としてのクロック信号との位相が同期するようにVCOA23aの発振周波数が制御される。これにより、PLL回路A11は、入力された脈動性信号にロック(同期)する。本実施形態に係るPLL回路A11は、自然周波数ωnが0.5、ダンピングファクターζが0.8、引き込み時間が10秒で5%誤差である、2次系のPLLとなっている。すなわち、PLL回路A11は、脈動性信号へのロック用のPLL回路である。
<PLL circuit>
The PLL circuit A11 is configured as described above, and the oscillation frequency of the VCOA 23a is controlled so that the phases of the pulsating signal input to the PLL circuit A11 and the clock signal as a feedback signal are synchronized. As a result, the PLL circuit A11 locks (synchronizes) with the input pulsation signal. The PLL circuit A11 according to the present embodiment is a secondary PLL having a natural frequency ω n of 0.5, a damping factor ζ of 0.8, a pull-in time of 10 seconds and a 5% error. That is, the PLL circuit A11 is a PLL circuit for locking to a pulsation signal.
 PLL回路A11に入力される脈動性信号は、信号自体の周波数変化に加えて、突発性でバースト的な外乱や、不正脈の発生による脈波のパターンの乱れ等が加わり変動が生じる場合がある。これらの脈動性信号の変動の要因を前提とし、これらの要因の特性をとらえて、PLLの次数やループゲインのタイプを合わせるように設計することが好ましい。 The pulsating signal input to the PLL circuit A11 may be fluctuated due to sudden burst burst disturbance or pulse wave pattern disturbance due to the occurrence of an irregular pulse in addition to the frequency change of the signal itself. . It is preferable to design such that the order of the PLL and the type of the loop gain are matched on the premise of the factors of fluctuation of these pulsation signals.
 PLLの設計には同じ2次系でも、そのフィルタの形状により、ループゲインのタイプをタイプ1~タイプ3の3種類に分けて考えることができる。それぞれについてループゲインG1~G3は、下記の式(1)~式(3)の計算式により求めることができる。 In the design of the PLL, even in the same secondary system, the loop gain types can be divided into three types, Type 1 to Type 3, depending on the shape of the filter. For each, the loop gains G 1 to G 3 can be obtained by the following formulas (1) to (3).
  タイプ1:
   G1=k/s(s+a)   (1)
  タイプ2:
   G2=k(s+a)/s2   (2)
  タイプ3:
   G3=k(s+a)(s+b)/s3   (3)
Type 1:
G 1 = k / s (s + a) (1)
Type 2:
G 2 = k (s + a) / s 2 (2)
Type 3:
G 3 = k (s + a) (s + b) / s 3 (3)
 なお、上記の式(1)~式(3)において、kは、フィルタのゲイン(利得)を表す定数である。aは、フィルタの特性を示すポールまたは零点を表す定数である。bは同じくフィルタの特性を示すゼロ点またはポールを表す定数である。sは、極座標での角周波数を表す複素数であって、フィルタの特性を記述するために用いるものである。 In the above formulas (1) to (3), k is a constant representing the gain of the filter. a is a constant representing a pole or zero indicating the characteristics of the filter. b is a constant representing a zero point or pole indicating the characteristics of the filter. s is a complex number representing the angular frequency in polar coordinates, and is used to describe the characteristics of the filter.
 上述した脈動性信号の変動の要因の性質に応じて、PLL回路A11に入力される脈動性信号の変動に追従するように、いずれかのタイプを選ぶ必要がある。脈波の位相の変化とPLLのループゲインのタイプには以下の(ア)~(ウ)の関係があり、これらはタイプの選択の指標となる。 It is necessary to select one of the types so as to follow the fluctuation of the pulsation signal input to the PLL circuit A11 according to the nature of the above-described fluctuation factor of the pulsation signal. There is the following relationship (a) to (c) between the change in the phase of the pulse wave and the type of the loop gain of the PLL, and these are indicators for selecting the type.
(ア)脈波の位相のステップ変化には、タイプ1~タイプ3の全てのタイプが設計上の時間で追従する。
(イ)脈波の位相の速度変化については、タイプ2及びタイプ3が設計上の時間で追従する。
(ウ)脈波の位相の加速度的変化については、タイプ3のみが設計上の時間で追従する。
(A) All types 1 to 3 follow the step change in the phase of the pulse wave in the design time.
(A) Regarding the speed change of the phase of the pulse wave, type 2 and type 3 follow in design time.
(C) Regarding the acceleration change in the phase of the pulse wave, only type 3 follows in the design time.
 なお、PLLのループゲインGは、PLL回路の自然周波数ωnとダンピングファクターζより、下記の式(4)の計算式により求めることができる。
   G=2×ζ×ωn   (4)
 式(4)より、本実施形態のPLL回路A11は、ループゲインG=0.8と算出される。
The loop gain G of the PLL can be obtained by the following equation (4) from the natural frequency ω n of the PLL circuit and the damping factor ζ.
G = 2 × ζ × ω n (4)
From the equation (4), the PLL circuit A11 of the present embodiment calculates the loop gain G = 0.8.
 また、本実施形態のPLL回路A11は、いったんロックした後に、ロック状態を維持できる範囲を広く取るため、2次系のPLLとしている。位相のステップ変化だけを考えて、上記のタイプ2のPLLを用いている。 Further, the PLL circuit A11 of the present embodiment is a secondary PLL in order to take a wide range in which the locked state can be maintained after being locked once. Considering only the phase step change, the above type 2 PLL is used.
[I-1-2.情報処理装置の構成]
 本実施形態に係る情報処理装置A1の構成について図1を参照して説明する。情報処理装置A1は、検出された信号を処理するためのモバイル端末機としての携帯情報端末(スマートフォン)である。情報処理装置A1としてのスマートフォンは、図示しない入出力装置、記憶装置(ROM、RAM、不揮発性RAM等のメモリ)、中央処理装置(CPU)、タイマカウンタ、及び無線送信部等を含んで構成される。
[I-1-2. Configuration of information processing apparatus]
A configuration of the information processing apparatus A1 according to the present embodiment will be described with reference to FIG. The information processing apparatus A1 is a portable information terminal (smart phone) as a mobile terminal for processing a detected signal. The smartphone as the information processing apparatus A1 includes an input / output device (not shown), a storage device (memory such as ROM, RAM, and nonvolatile RAM), a central processing unit (CPU), a timer counter, a wireless transmission unit, and the like. The
 情報処理装置A1は、ゲイン切り替え部A51、周波数特性補償部A61、周波数補正処理部A71、二値化処理部A31、PLL回路A11、ロック検出部A41、及び信号計数部A42を備えている。情報処理装置A1の上記構成部分をあわせて信号処理部A14という。さらに、情報処理装置A1は、表示器A81を備える。検体情報検出ユニットA101によって検出された脈動性信号が情報処理装置A1に出力されて、ゲイン切り替え部A51、周波数特性補償部A61、周波数補正処理部A71、及び二値化処理部A31を通じて、PLL回路A11に入力される。まず、検体情報検出ユニットA101について説明して、次に情報処理装置A1について説明する。 The information processing apparatus A1 includes a gain switching unit A51, a frequency characteristic compensation unit A61, a frequency correction processing unit A71, a binarization processing unit A31, a PLL circuit A11, a lock detection unit A41, and a signal counting unit A42. The above components of the information processing apparatus A1 are collectively referred to as a signal processing unit A14. Furthermore, the information processing apparatus A1 includes a display A81. The pulsation signal detected by the specimen information detection unit A101 is output to the information processing apparatus A1, and the PLL circuit is passed through the gain switching unit A51, the frequency characteristic compensation unit A61, the frequency correction processing unit A71, and the binarization processing unit A31. Input to A11. First, the sample information detection unit A101 will be described, and then the information processing apparatus A1 will be described.
<検体情報検出ユニット>
 検体情報検出ユニットA101は、検体における血管の脈波情報に基づく脈動性信号を検出できるセンサを有する測定装置である。本実施形態の検体情報検出ユニットA101は、ヘッドホンのダイナミック型のドライバユニットをセンサとして用いており、検体の外耳道を閉鎖またはほぼ閉鎖された空間構造となる空洞となるよう検体の外耳に装着して、外耳道から脈動性信号を検出する。検体情報検出ユニットA101及びセンサ並びに測定部位はこれに限定されず、例えば、発光部として発光ダイオードを用い、受光部としてフォトダイオードやフォトトランジスタを用いて、腕や指先において透過光または反射光から脈動性信号を検出する、光電式の測定器を利用することができる。または、腕の動脈上に圧電素子を押し付けて脈動性信号を検出する、圧電式の測定器を利用することができる。または、血管の脈動に伴う皮膚または鼓膜部分の振動によって生じる空気の振動を検出できるマイクロホンを用いて、マイクロホンと振動源とを閉じた状態にして脈動性信号を検出する測定器を利用してもよい。なお、上述した「血管の脈波情報」とは、血管を伝わる脈波情報のことであって、検体の心臓の拍動に伴って生じる血管内を伝わってくる振動を示す情報(信号)である。検体情報検出ユニットA101は、検出した脈動性信号を情報処理装置A1へ出力する。
<Sample information detection unit>
The specimen information detection unit A101 is a measuring apparatus having a sensor that can detect a pulsating signal based on blood vessel pulse wave information in a specimen. The sample information detection unit A101 of this embodiment uses a headphone dynamic type driver unit as a sensor, and is attached to the outer ear of the sample so as to form a cavity having a spatial structure in which the external ear canal of the sample is closed or substantially closed. Detect pulsatile signals from the ear canal. The specimen information detection unit A101, the sensor, and the measurement site are not limited to this. For example, a light emitting diode is used as the light emitting unit, and a photodiode or phototransistor is used as the light receiving unit. A photoelectric measuring device that detects the sex signal can be used. Alternatively, a piezoelectric measuring device that detects a pulsating signal by pressing a piezoelectric element on the artery of the arm can be used. Or, using a microphone that can detect the vibration of the air caused by the vibration of the skin or tympanic membrane part due to the pulsation of the blood vessel, the measuring device that detects the pulsation signal with the microphone and the vibration source closed is used. Good. The above-mentioned “blood vessel pulse wave information” is pulse wave information transmitted through the blood vessel, and is information (signal) indicating vibration transmitted through the blood vessel caused by the heartbeat of the specimen. is there. The specimen information detection unit A101 outputs the detected pulsation signal to the information processing apparatus A1.
<ゲイン切り替え部>
 情報処理装置A1に入力された脈動性信号は、ゲイン切り替え部A51に入力される。
 ゲイン切り替え部A51は、入力された信号のゲインを調節して信号の増幅または減衰を行い、信号のレベルを調整する電気回路である。中でも、ゲイン切り替え部A51は、検体情報検出ユニットA101により検出された信号の飽和を検出し、飽和が検出された際に信号のレベルを減少させる処理を施す。ゲイン切り替え部A51は、処理した信号を周波数特性補償部A61に出力する。
<Gain switching part>
The pulsation signal input to the information processing apparatus A1 is input to the gain switching unit A51.
The gain switching unit A51 is an electric circuit that adjusts the gain of an input signal to amplify or attenuate the signal and adjust the signal level. In particular, the gain switching unit A51 detects the saturation of the signal detected by the specimen information detection unit A101, and performs a process of reducing the signal level when the saturation is detected. The gain switching unit A51 outputs the processed signal to the frequency characteristic compensation unit A61.
<周波数特性補償部>
 周波数特性補償部A61は、入力された信号に位相補償を行い、周波数特性を補正する電気回路である。検体情報検出ユニットA101により検出されて情報処理装置A1に入力される脈動性信号には、センサの特性、信号の検出状況、及び検体情報検出ユニットA101または情報処理装置A1が備えるデジタルシグナルプロセッサ(DSP)による処理等に起因して信号特性に影響受けている場合がある。周波数特性補償部A61は、少なくとも血管の脈波情報が検出される周波数帯域の位相補償を行い、脈動性信号が示す周波数応答を補償して、本来の脈波波形を示す脈動性信号を得る波形等化処理を行う。周波数特性補償部A61による位相補償によって、脈動性容積信号、脈動性速度信号、または脈動性加速度信号を得る。周波数特性補償部A61は、処理した信号を周波数補正処理部A71に出力する。
<Frequency characteristics compensator>
The frequency characteristic compensation unit A61 is an electric circuit that performs phase compensation on an input signal and corrects the frequency characteristic. The pulsation signal detected by the specimen information detection unit A101 and input to the information processing apparatus A1 includes sensor characteristics, signal detection status, and a digital signal processor (DSP) included in the specimen information detection unit A101 or the information processing apparatus A1. ) May be affected by the signal characteristics. The frequency characteristic compensation unit A61 performs phase compensation at least in a frequency band in which blood vessel pulse wave information is detected, compensates for a frequency response indicated by the pulsation signal, and obtains a pulsation signal indicating the original pulse wave waveform. Perform equalization processing. A pulsating volume signal, a pulsating velocity signal, or a pulsating acceleration signal is obtained by phase compensation by the frequency characteristic compensator A61. The frequency characteristic compensation unit A61 outputs the processed signal to the frequency correction processing unit A71.
 一般に、脈波の周波数は通常時の0.8Hz付近から、激しい運動をした時の3Hz程度まで変化することがある。脈動性信号の周波数成分がこのような下限または上限の周波数であるときに、周波数特性補償部A61は、位相補償を行う補償回路のカットオフ周波数との関係で、波形等化処理が正しく動作しない場合がある。しかし、周波数特性補償部A61から出力される信号は、波形をモニタするためのものではなくPLL回路A11に供給されてクロック信号を発生させることが主務であるので、これらの上限、下限の周波数を考慮した設計を行っておけば使用できる。 In general, the frequency of the pulse wave may vary from around 0.8Hz during normal times to around 3Hz during intense exercise. When the frequency component of the pulsating signal is such a lower limit or upper limit frequency, the frequency characteristic compensator A61 does not operate the waveform equalization process correctly in relation to the cutoff frequency of the compensation circuit that performs phase compensation. There is a case. However, since the signal output from the frequency characteristic compensator A61 is not for monitoring the waveform but is supplied to the PLL circuit A11 to generate a clock signal, these upper and lower frequencies are set. It can be used if the design is taken into consideration.
<周波数補正処理部>
 周波数補正処理部A71は、入力された信号に対して、脈動性信号の有する周波数で少なくとも増幅動作、積分動作および微分動作のうちの1つの動作を行なうことにより、脈動性容積信号、脈動性速度信号、および脈動性加速度信号のうちの1つの信号を取り出す電気回路である。周波数補正処理部A71により脈動性容積信号、脈動性速度信号、及び脈動性加速度信号のうちの一つの信号を取り出す処理を、周波数補正処理ともいう。なお、脈動性容積信号、脈動性速度信号、および脈動性加速度信号が示す波形は、それぞれ容積脈波、速度脈波、加速度脈波ともいう。本実施形態に係る周波数補正処理部A71は、速度脈波の信号を二値化処理部A31に出力する。
<Frequency correction processing unit>
The frequency correction processing unit A71 performs at least one of an amplification operation, an integration operation, and a differentiation operation on the input signal at the frequency of the pulsating signal, thereby causing a pulsating volume signal and a pulsating velocity. It is an electric circuit for extracting one of the signal and the pulsating acceleration signal. Processing for extracting one of the pulsating volume signal, the pulsating velocity signal, and the pulsating acceleration signal by the frequency correction processing unit A71 is also referred to as frequency correction processing. The waveforms indicated by the pulsating volume signal, the pulsating velocity signal, and the pulsating acceleration signal are also referred to as volume pulsation wave, velocity pulsation wave, and acceleration pulsation wave, respectively. The frequency correction processing unit A71 according to the present embodiment outputs a velocity pulse wave signal to the binarization processing unit A31.
 周波数補正処理部A71は、周波数特性補償部A61と同様に、脈動性信号の周波数成分が下限の0.8Hzまたは上限の3Hz程度の周波数であるときに、積分動作または微分動作を行う補償回路のカットオフ周波数との関係で、周波数補正処理が正しく動作しない場合がある。しかし、周波数補正処理部A71から出力される信号についても、PLL回路A11に供給されてクロック信号を発生させることが主務であるので、これらの上限、下限の周波数を考慮した設計を行っておけば使用できる。 Similarly to the frequency characteristic compensation unit A61, the frequency correction processing unit A71 is a compensation circuit that performs an integration operation or a differentiation operation when the frequency component of the pulsation signal has a lower limit of about 0.8 Hz or an upper limit of about 3 Hz. The frequency correction process may not operate correctly due to the relationship with the cutoff frequency. However, the signal output from the frequency correction processing unit A71 is also supplied to the PLL circuit A11 to generate a clock signal, so if the design is performed in consideration of these upper and lower frequencies. Can be used.
<二値化処理部>
 二値化処理部A31は、入力された脈動性信号をオンとオフの二値の信号に変換処理する電気回路である。二値化処理部A31では、入力される脈波信号の立ち上がりまたは立下りを基準にオンの区間のデューティ比が概50%になるようなパルスに整形される。さらに、このオンの区間以降から次の立ち上がりまでをオフとするように変換する。本実施形態に係る二値化処理部A31では、位相比較器A21がXOR回路であるため、上述した方法で二値化をしているが、二値化の処理は、変換された脈動性信号が位相比較器A21で検出できるように処理するものであれば限定されない。二値化処理部A31は、処理した信号をPLL回路A11に出力する。
<Binarization processing unit>
The binarization processing unit A31 is an electric circuit that converts an input pulsation signal into an on / off binary signal. In the binarization processing unit A31, the pulses are shaped so that the duty ratio in the ON section is approximately 50% with reference to the rise or fall of the input pulse wave signal. Further, conversion is performed so as to turn off from the on section to the next rising edge. In the binarization processing unit A31 according to the present embodiment, since the phase comparator A21 is an XOR circuit, binarization is performed by the above-described method. However, the binarization processing is performed by using the converted pulsation signal. Is not limited as long as processing is performed so that the phase comparator A21 can detect the signal. The binarization processing unit A31 outputs the processed signal to the PLL circuit A11.
 なお、入力する脈波信号の周波数が変化した場合にはデューティ比50%の確保はできなくなる場合があるが、これはロック位相の変動をもたらすことにつながる。この場合には、位相比較器A21としてエッジトリガ型や鋸歯状波を用いる位相比較器を用い、DCゲインを無限大に設計しておけば、このようなロック位相の変動を無視できるような設計のPLLとすることができる。 Note that when the frequency of the input pulse wave signal changes, it may not be possible to ensure a duty ratio of 50%, but this leads to fluctuations in the lock phase. In this case, if a phase comparator using an edge trigger type or a sawtooth wave is used as the phase comparator A21 and the DC gain is designed to be infinite, such a design that the fluctuation of the lock phase can be ignored. PLL.
<ロック検出部>
 ロック検出部A41は、PLL回路A11に入力される脈動性信号と帰還信号との位相が同期しているかを判定して、PLL回路A11が脈動性信号にロックしているか否かを検出する電気回路である。本実施形態では、ロック検出部A41は、位相比較器A21から脈動性信号と帰還信号が入力されて、両信号の位相比較を行う。位相比較器A21の特性がXORの論理を用いていることから、脈動性信号と帰還信号との位相が90度ずれている場合に、両信号の位相が同期していると判定する。具体的には、脈動性信号の入力をI、帰還信号をRとすると、ロックしている時には、Iが0(オフ)となりRが1(オン)となる、Iが1となりRも1となる、Iが1となりRが0となる、Iが0となりRも0となる、との関係を繰り返す。ロック検出部A41は、このような関係を検出して、位相が同期しているかを判定する。
<Lock detection unit>
The lock detector A41 determines whether or not the phase of the pulsating signal input to the PLL circuit A11 and the feedback signal are synchronized, and detects whether the PLL circuit A11 is locked to the pulsating signal. Circuit. In the present embodiment, the lock detector A41 receives the pulsation signal and the feedback signal from the phase comparator A21 and compares the phases of the two signals. Since the characteristic of the phase comparator A21 uses XOR logic, when the phase of the pulsation signal and the feedback signal is shifted by 90 degrees, it is determined that the phases of both signals are synchronized. Specifically, if the input of the pulsating signal is I and the feedback signal is R, when locked, I is 0 (off) and R is 1 (on), I is 1 and R is 1 The relationship that I becomes 1 and R becomes 0, and I becomes 0 and R becomes 0 is repeated. The lock detection unit A41 detects such a relationship and determines whether the phases are synchronized.
 ロック検出部A41は、脈動性信号と帰還信号との位相が同期していると判定することで、PLL回路A11のロックを検出した場合には、表示器A81にロック検出信号を出力する。一方、ロック検出部A41は、位相が同期していないと判定することで、PLL回路A11のロックを検出しない場合には、表示器A81にアンロック検出信号を出力する。 The lock detection unit A41 determines that the phase of the pulsation signal and the feedback signal are synchronized, and outputs a lock detection signal to the display A81 when detecting the lock of the PLL circuit A11. On the other hand, the lock detection unit A41 outputs an unlock detection signal to the display unit A81 when determining that the phase is not synchronized, and thus detecting the lock of the PLL circuit A11.
 なお、後述の図12,図13のようにロック状態をモニタする際には、PLLのループゲインからなるフライホイール時間を考慮してロックしているか否かを確認することが好ましい。ロックをしている状態において、ロック外れの信号がフライホイール時間内で検出された場合には、このロック外れの信号は無視されて、PLL回路A11がロックしたままであると判断する。一方、ロック外れの状態がそのフライホイール時間より長く続いている場合に初めて、PLL回路A11のロックが外れていると判断するようにして行う。同様に図5(c)、図5(d)のように初めからPLLが入力する脈波にロックしない場合にも、この一定時間のロック状態の確認を行うことが好ましい。 When monitoring the locked state as shown in FIGS. 12 and 13 described later, it is preferable to confirm whether or not the lock is performed in consideration of the flywheel time composed of the loop gain of the PLL. In the locked state, if an unlock signal is detected within the flywheel time, the unlock signal is ignored and it is determined that the PLL circuit A11 remains locked. On the other hand, it is determined that the PLL circuit A11 is unlocked only when the unlocked state continues for longer than the flywheel time. Similarly, even when the PLL does not lock to the pulse wave input from the beginning as shown in FIGS. 5C and 5D, it is preferable to check the locked state for a certain period of time.
<信号計数部>
 信号計数部A42は、VCO A23aからクロック信号が入力されて、このクロック信号の単位時間当たりのパルスをカウントする。信号計数部A42は、入力されたクロック信号のパルスの数を、内部の高い周波数のクロックで計数するマイクロコンピュータによって実現される。本実施形態では、信号計数部A42は、1分当たりのクロック信号のパルスの数をカウントする。信号計数部A42は、信号のカウント値を表示器A81に出力する。
<Signal counting unit>
The signal counter A42 receives the clock signal from the VCO A 23a and counts pulses per unit time of the clock signal. The signal counting unit A42 is realized by a microcomputer that counts the number of pulses of the input clock signal with an internal high frequency clock. In the present embodiment, the signal counting unit A42 counts the number of pulses of the clock signal per minute. The signal counting unit A42 outputs the signal count value to the display A81.
<表示器>
 表示器A81は、脈動性信号に関連する情報を提示する表示装置である。表示器A81は、ロック検出部A41からロック検出信号またはアンロック検出信号が入力されて、PLL回路A11がロックしているか否かを表示する。また、表示器A81は、信号計数部A42からカウント値が入力されて、単位時間当たりのクロック信号のカウント値を表示する。本実施形態では、情報処理装置A1(スマートフォン)に備えられるディスプレイの表示画面が、表示器A81として機能する。ロック検出信号が入力された場合には、表示器A81はPLL回路A11がロックしていることを表す緑色のアイコンを点灯する。また、アンロック検出信号が入力された場合には、表示器A81はPLL回路A11がロックしていないことを表す赤色のアイコンを点灯する。さらに、表示器A81は、クロック信号のカウント値の数値を表示画面に表示する。
<Display>
The display device A81 is a display device that presents information related to the pulsation signal. The display A81 receives a lock detection signal or an unlock detection signal from the lock detection unit A41 and displays whether or not the PLL circuit A11 is locked. The display A 81 receives the count value from the signal counting unit A 42 and displays the count value of the clock signal per unit time. In the present embodiment, the display screen of the display provided in the information processing apparatus A1 (smart phone) functions as the display A81. When the lock detection signal is input, the display A81 lights a green icon indicating that the PLL circuit A11 is locked. In addition, when the unlock detection signal is input, the display A81 lights a red icon indicating that the PLL circuit A11 is not locked. Further, the display A81 displays the numerical value of the count value of the clock signal on the display screen.
<検体情報処理装置>
 検体情報処理装置A5は、上述の通り構成されており、検体情報検出ユニットA101によって検出されて、情報処理装置A1に入力された脈動性信号を、ゲイン切り替え部A51、周波数特性補償部A61、周波数補正処理部A71、及び二値化処理部A31を通じて、PLL回路A11に入力する。PLL回路A11は、VCOA23aからクロック信号を出力する。情報処理装置A1は、ロック検出部A41及び信号計数部A42からの出力を、表示器A81に表示にする。
<Sample information processing device>
The sample information processing apparatus A5 is configured as described above, and a pulsation signal detected by the sample information detection unit A101 and input to the information processing apparatus A1 is converted into a gain switching unit A51, a frequency characteristic compensation unit A61, a frequency The data is input to the PLL circuit A11 through the correction processing unit A71 and the binarization processing unit A31. The PLL circuit A11 outputs a clock signal from the VCOA 23a. The information processing apparatus A1 displays the outputs from the lock detection unit A41 and the signal counting unit A42 on the display A81.
[I-1-3.PLL回路の動作]
 PLL回路A11による、入力される脈動性信号へのロック動作の一例を説明する。
 二値化処理部A31は、情報処理装置A1に入力された脈動性信号を二値化して、PLL回路A11に入力する(ステップSA11)。
 位相比較器A21は、二値化された脈動性信号と帰還信号との位相を比較して、位相差に対応する位相差信号を出力する(ステップSA12)。
 LPF A22は、位相差信号から所定のカットオフ周波数より大きい周波数成分を除去した電圧制御信号を出力する(ステップSA13)。
 VCO A23aは、電圧制御信号の電圧に対応する発振周波数を有するクロック信号を出力する(ステップSA14)。このとき、ステップSA14では、脈動性信号と帰還信号との位相が同期するようにVCOA23aの発振周波数を制御する。VCO A23aは、クロック信号を帰還信号として位相比較器A21に入力するとともに、信号計数部A42に出力する。
[I-1-3. Operation of PLL circuit]
An example of the lock operation to the input pulsation signal by the PLL circuit A11 will be described.
The binarization processing unit A31 binarizes the pulsation signal input to the information processing apparatus A1 and inputs the binarized signal to the PLL circuit A11 (step SA11).
The phase comparator A21 compares the phase of the binarized pulsation signal and the feedback signal, and outputs a phase difference signal corresponding to the phase difference (step SA12).
The LPF A22 outputs a voltage control signal obtained by removing a frequency component greater than a predetermined cutoff frequency from the phase difference signal (step SA13).
The VCO A 23a outputs a clock signal having an oscillation frequency corresponding to the voltage of the voltage control signal (step SA14). At this time, in step SA14, the oscillation frequency of the VCOA 23a is controlled so that the phases of the pulsation signal and the feedback signal are synchronized. The VCO A 23a inputs the clock signal as a feedback signal to the phase comparator A21 and outputs it to the signal counting unit A42.
[I-1-4.PLL回路及び情報処理装置の作用]
<PLL回路と外乱について>
 PLL回路A11の外乱に対する作用を、図2~図4を参照して、PLL回路A11に入力される波形とPLL回路A11による処理を受けた波形の例を示して説明する。
[I-1-4. Operation of PLL circuit and information processing apparatus]
<PLL circuit and disturbance>
The action of the PLL circuit A11 against disturbance will be described with reference to FIGS. 2 to 4 showing examples of waveforms input to the PLL circuit A11 and waveforms processed by the PLL circuit A11.
 図2(a)~図2(c)は、検体が平常な状態で脈動性信号を検出して、これをPLL回路A11に入力した場合の波形を表すものである。図2では、横軸は時間(秒)を示しており、縦軸は信号の強度(V)を示している(以下の脈波の波形を示す図形でも同様。)。 2 (a) to 2 (c) show waveforms when a pulsating signal is detected and the sample is input to the PLL circuit A11 while the specimen is in a normal state. In FIG. 2, the horizontal axis represents time (seconds), and the vertical axis represents signal intensity (V) (the same applies to the following waveforms showing pulse wave waveforms).
 図2(a)に示すように、平常な状態では脈波がほぼ一定の強度で一様な間隔で検出されている。これを受けて、図2(b)に示すように、脈動性信号が二値化された波形も一定の間隔となっている。また、図2(c)に示すように、VCOA23aから出力されるクロック信号の波形も一定の間隔となっている。このように、変動が無い場合には図2(c)に示すように、PLL回路A11が脈動性信号にロックして、脈波の波形に同期したクロック信号が得られる。 As shown in FIG. 2A, in a normal state, pulse waves are detected at a uniform interval with a substantially constant intensity. In response to this, as shown in FIG. 2B, the waveform obtained by binarizing the pulsation signal is also at a constant interval. Further, as shown in FIG. 2C, the waveform of the clock signal output from the VCOA 23a is also at a constant interval. Thus, when there is no fluctuation, as shown in FIG. 2C, the PLL circuit A11 locks to the pulsation signal, and a clock signal synchronized with the waveform of the pulse wave is obtained.
 次に、図3(a)~図3(c)は、0秒~2秒の間は検体が平常な状態、2秒~7秒の間は検体が歩いた状態、7秒~10秒の間は検体が平常な状態での脈動性信号を検出した場合の波形を表すものである。図3(a)に示すように、2~7秒の間は、歩行の影響を受けて脈波に外乱が加わって、ピークの強度及びピークの間隔が乱れた状態で検出されている。このような状態では、図3(a)の波形ではノイズのために本来の脈波を観察することは困難である。また、図3(b)に示すように、脈動性信号が二値化された波形も、2~7秒の間では、二値化された波形のオン状態が長くまたは短くなり、波形の間隔が狭まっている。このように、二値化した信号の波形でも、外乱の影響から脈波本来の波形が隠れてしまっており、本来の脈波を観察することは困難である。一方、図3(c)に示すように、VCOA23aから出力されるクロック信号の波形は、外乱があったとしても大きな変化が現れずにほぼ一定の間隔となっている。これは、PLLによるフライホイール効果によって一定の慣性が働くことにより、PLL回路A11に入力された信号が変動した場合であっても、VCOA23aから出力されるクロック信号は大きく動かないことによる。 Next, FIG. 3 (a) to FIG. 3 (c) show that the specimen is in a normal state from 0 second to 2 seconds, the specimen is walking from 2 seconds to 7 seconds, and from 7 seconds to 10 seconds. The interval represents a waveform when a pulsating signal is detected in a normal state of the specimen. As shown in FIG. 3A, for 2 to 7 seconds, the pulse wave is affected by the influence of walking, and the peak intensity and the peak interval are disturbed. In such a state, it is difficult to observe the original pulse wave due to noise in the waveform of FIG. In addition, as shown in FIG. 3B, the waveform in which the pulsation signal is binarized also becomes long or short in the binarized waveform between 2 and 7 seconds, and the interval between the waveforms. Is narrowing. Thus, even in the binarized signal waveform, the original waveform of the pulse wave is hidden by the influence of disturbance, and it is difficult to observe the original pulse wave. On the other hand, as shown in FIG. 3 (c), the waveform of the clock signal output from the VCOA 23a is substantially constant without any significant change even if there is a disturbance. This is because the clock signal output from the VCOA 23a does not move greatly even when the signal input to the PLL circuit A11 fluctuates due to a certain inertia acting due to the flywheel effect by the PLL.
 さらに、図4(a)~図4(c)は、13秒~17秒、25秒~28秒、35秒~41秒、及び1分30秒~33秒の間は検体が歩いた状態、それ以外は検体が平常な状態での脈動性信号を検出した場合の波形を表したものである。図4(a)の上段に示すように、検体の運動に応じて脈波に外乱が加わっている。また、図4(b)の上段に示すように、図3(b)の場合と同様にして、二値化された信号も外乱の影響を受けて波形が変化している。また、図4(c)の上段に示すように、位相比較器A21から出力される位相差信号が変化するため、脈動性信号が外乱を受けている領域では、LPFA22から出力される電圧制御信号についても、波形の間隔が広がりまたは狭まるような変化を示している。一方、図4(a)~図4(c)の下段に示すように、VCOA23aから出力されるクロック信号の波形は、図3(c)と同様に、入力された信号に外乱があったとしても大きな変化が現れずにほぼ一定の間隔となって表れる。 Further, FIGS. 4 (a) to 4 (c) show the state in which the specimen walks for 13 seconds to 17 seconds, 25 seconds to 28 seconds, 35 seconds to 41 seconds, and 1 minute 30 seconds to 33 seconds, Other than that, it shows a waveform when a pulsation signal is detected in a normal state of the specimen. As shown in the upper part of FIG. 4A, a disturbance is added to the pulse wave according to the movement of the specimen. Further, as shown in the upper part of FIG. 4B, similarly to the case of FIG. 3B, the binarized signal also changes its waveform under the influence of disturbance. Further, as shown in the upper part of FIG. 4C, since the phase difference signal output from the phase comparator A21 changes, the voltage control signal output from the LPFA 22 in a region where the pulsation signal is disturbed. Also, the change of the waveform interval is widened or narrowed. On the other hand, as shown in the lower part of FIGS. 4 (a) to 4 (c), the waveform of the clock signal output from the VCOA 23a is assumed to have a disturbance in the input signal, as in FIG. 3 (c). However, no significant changes appear and appear at almost constant intervals.
 上述したように、本実施形態に係るPLL回路A11は、自然周波数ωnが0.5の二次系のPLLである。これにより、図3(a)~図3(c)及び図4(a)~図4(c)に示すように、検出される脈動性信号に外乱が生じて、PLL回路A11に入力される信号が変動した場合であっても、フライホイール効果によってVCOA23aから出力されるクロック信号が急変せずに、安定した本来の脈波の間隔を示す波形を出力することができる。 As described above, the PLL circuit A11 according to this embodiment is a secondary PLL having a natural frequency ω n of 0.5. As a result, as shown in FIGS. 3 (a) to 3 (c) and FIGS. 4 (a) to 4 (c), a disturbance is generated in the detected pulsation signal and is input to the PLL circuit A11. Even when the signal fluctuates, the clock signal output from the VCOA 23a does not change suddenly due to the flywheel effect, and a stable waveform indicating the original pulse wave interval can be output.
<PLL回路と脈拍数の変化について>
 検体が運動状態や興奮状態にある等して脈拍数が変化した場合には、PLL回路A11に入力される脈動性信号の変動が続くことになる。この場合には、PLL回路A11は、入力される信号の変動に応じて電圧制御信号が変化し、これに伴いクロック信号が追従するように構成されているため、次第にクロック信号が心臓の拍動と同期することになる。
<PLL circuit and pulse rate change>
When the pulse rate changes because the specimen is in an exercise state or an excitement state, the pulsation signal input to the PLL circuit A11 continues to change. In this case, the PLL circuit A11 is configured such that the voltage control signal changes in accordance with fluctuations in the input signal and the clock signal follows accordingly, so that the clock signal gradually becomes a heart beat. Will synchronize with.
<PLL回路と脈波のパターンの乱れについて>
 PLL回路A11の作用を、図5を参照してさらに説明する。図5(a)~(f)では、心拍が表す複数の脈波のパターン1~6におけるパルスの位置を示すとともに、一定の間隔でパルスが発生した場合のパルスの位置を縦の破線で示している。なお、これらのパターンは、Ken Grauer著、Daniel Cavallaro著、高尾信広訳、「不整脈判読トレーニング」、医学書院、2001年、第33頁~第34頁より引用している。
<Regulation of PLL circuit and pulse wave pattern>
The operation of the PLL circuit A11 will be further described with reference to FIG. 5 (a) to 5 (f) show the positions of the pulses in the plurality of pulse wave patterns 1 to 6 represented by the heartbeat, and the positions of the pulses when the pulses are generated at regular intervals are indicated by vertical broken lines. ing. These patterns are cited from Ken Grauer, Daniel Cavallaro, Nobuhiro Takao, “Arrhythmia Interpretation Training”, Medical School, 2001, pages 33-34.
 図5(a)は、パターン1を示す。パターン1は、全く時間変動が無い場合の心拍のパルスであって、規則正しく一定の間隔でパルスが生じている。通常であれば交感神経と副交感神経のせめぎあいが脈波信号の揺らぎをもたらすため、パターン1は臨終が近い人に見られるパターンである。通常は、健常人ではこのようなパターンは見られない。 FIG. 5A shows pattern 1. Pattern 1 is a pulse of a heartbeat when there is no time variation at all, and pulses are generated at regular intervals. Normally, the sympathetic nerve and parasympathetic nerve clash causes fluctuations in the pulse wave signal, so that pattern 1 is a pattern that is seen by people close to the end. Normally, such a pattern is not seen in healthy people.
 図5(b)は、パターン2を示す。パターン2は、時間的にわずかな時間揺らぎがある心拍のパルスであって、おおむね一定の間隔でパルスが生じている。パターン2は、健常者のほとんどにおいて見られるパターンである。 FIG. 5B shows pattern 2. The pattern 2 is a pulse of a heartbeat having a slight temporal fluctuation in time, and the pulses are generated at almost regular intervals. Pattern 2 is a pattern that is found in most healthy individuals.
 図5(c)は、パターン3を示す。パターン3はグループ単位の周期があるパターンであって、3つごとまたは4つごとのパルスからなるグループが示すパルスの発生パターンを、グループ単位で規則正しく繰りかえして生じている。しかしながら、パターン3では、全体として見た場合には不規則なパルスとなっている。また、パターン3では、脈波の振幅成分のレベル変動をグループごとに繰り返す場合がある。パターン3は、実際はパターン2に混在して生じることが多い。 FIG. 5C shows the pattern 3. Pattern 3 is a pattern having a period in units of groups, and is generated by regularly repeating a generation pattern of pulses indicated by a group of every third or fourth pulse in units of groups. However, the pattern 3 is an irregular pulse when viewed as a whole. In pattern 3, the level fluctuation of the amplitude component of the pulse wave may be repeated for each group. In practice, pattern 3 often occurs in combination with pattern 2.
 図5(d)は、パターン4を示す。パターン4は完全にランダムに近い場合のパターンを示し、パルスの間の間隔が通常の半分程度に短くなったり、または一周期分程度に長くなったりと規則性が見られない。
 なお、臨床的には、ほとんどの心拍リズムは上記のパターン1~4のどれかに当てはまるとされている。
FIG. 5D shows the pattern 4. Pattern 4 shows a pattern in the case of being almost completely random, and regularity is not seen when the interval between pulses is shortened to about half of the normal interval or increased to about one cycle.
Clinically, most heart rhythms are considered to apply to any of the above patterns 1 to 4.
 図5(e)は、パターン5を示す。これはパターン2に不整脈Aがある場合のパターンを示すものである。パターン5では、4つ目のパルスで不整脈が発生して、4つ目のパルスが通常の間隔よりも先んじて生じている。5つ目のパルスからは、パターン2と同様にしておおむね一定の間隔でパルスが生じている。パターン5は、premature beat(期外収縮)が出現する、心房(PAC)、房室結節(PJC)、心室(PVC)の3箇所に起因すると考えられる。 FIG. 5 (e) shows pattern 5. This shows a pattern when the arrhythmia A is present in the pattern 2. In pattern 5, an arrhythmia is generated by the fourth pulse, and the fourth pulse is generated before the normal interval. From the fifth pulse, pulses are generated at regular intervals in the same manner as in pattern 2. It is considered that pattern 5 is caused by three places, atria (PAC), atrioventricular node (PJC), and ventricle (PVC), in which premature beats (extrasystole) appear.
 図5(f)は、パターン6を示す。これはパターン2に不整脈Bがある場合のパターンを示すものである。パターン6では、4つ目のパルスで不整脈が発生して、4つ目のパルスの位相がシフトし、通常よりも約0.7拍分送れて、3つ目のパルスまでとは異なった位相でパルスが生じている。さらに5つ目のパルスからは、4つ目のパルスと同様に不整脈前の位相からシフトしたままで、おおむね一定の間隔でパルスが生じている。これはescape beat(補充収縮)といい、極端な徐脈になることを防いでいる。パターン6のように、不整脈の後で脈が復活する際には、不整脈が起こる前の脈波の位相に対してどのような位相からスタートするかは予測することができない。このとき、位相のステップ上の変化が生じているといえる。 FIG. 5 (f) shows pattern 6. This shows a pattern when the arrhythmia B is present in the pattern 2. In pattern 6, an arrhythmia occurs in the 4th pulse, the phase of the 4th pulse shifts, and it is sent about 0.7 beats than usual, and the phase is different from that up to the 3rd pulse. There is a pulse. Further, from the fifth pulse, pulses are generated at substantially regular intervals while being shifted from the phase before the arrhythmia as in the fourth pulse. This is called escape beat (replenishment contraction) and prevents extreme bradycardia. When the pulse is restored after the arrhythmia as in the pattern 6, it cannot be predicted from what phase the pulse wave starts before the arrhythmia occurs. At this time, it can be said that a change on the phase step occurs.
 パターン1またはパターン2を示す脈動性信号がPLL回路A11に入力された場合には、おおむね一定の間隔でパルスが生じている信号が入力されるため、PLL回路A11は入力された脈動性信号にロックすることができる。この場合には、ロック検出部A41はPLL回路A11がロックしていることを検出して、表示器A81はPLL回路A11がロックしていることを表す緑色のアイコンを点灯する。また、信号計数部A42は入力される脈動性信号と同期したクロック信号のパルスをカウントして、表示器A81はカウント値を検体の脈拍数として表示する。 When a pulsation signal indicating pattern 1 or pattern 2 is input to the PLL circuit A11, a signal in which pulses are generated at a regular interval is input, so the PLL circuit A11 Can be locked. In this case, the lock detection unit A41 detects that the PLL circuit A11 is locked, and the display A81 lights a green icon indicating that the PLL circuit A11 is locked. The signal counting unit A42 counts the pulses of the clock signal synchronized with the input pulsation signal, and the display A81 displays the count value as the pulse rate of the specimen.
 パターン5またはパターン6を示す脈動性信号がPLL回路A11に入力された場合には、不整脈が発生するまでは上記のパターン1またはパターン2と同様にPLL回路A11及び情報処理装置A1が動作する。不整脈が発生した際には入力される脈動性信号と帰還信号との位相が同期しなくなるためにそのパルスについてロックが外れたことが検出される。この状態がPLLの設定時間以上続いた場合にはロック検出部A41はPLL回路A11がロックしていないことを検出したとして、表示器A81はPLL回路A11がロックしていないことを表す赤色のアイコンを点灯する。不整脈が発生した後には、再びおおむね一定の間隔でパルスが生じている脈動性信号が入力されるため、入力してくる脈動性信号に対して帰還信号が追従することで、PLL回路A11は脈動性信号に再度ロックする。この場合も信号計数部A42はクロック信号のパルスをカウントして、表示器A81がカウント値を脈拍数として表示する。このとき、フライホイール効果によってクロック信号が急変しないため、不整脈が発生したタイミングでも、不整脈が無い場合と同程度の脈拍数が表示される。 When a pulsating signal indicating the pattern 5 or 6 is input to the PLL circuit A11, the PLL circuit A11 and the information processing apparatus A1 operate in the same manner as the pattern 1 or 2 described above until an arrhythmia occurs. When an arrhythmia occurs, the phase of the input pulsation signal and the feedback signal are not synchronized, so it is detected that the pulse has been unlocked. If this state continues for a set time of the PLL or longer, the lock detection unit A41 detects that the PLL circuit A11 is not locked, and the display A81 displays a red icon indicating that the PLL circuit A11 is not locked. Lights up. After the occurrence of arrhythmia, a pulsation signal in which pulses are generated at a regular interval is input again, so that the feedback signal follows the input pulsation signal, so that the PLL circuit A11 pulsates. Lock to sex signal again. Also in this case, the signal counting unit A42 counts the pulses of the clock signal, and the display A81 displays the count value as the pulse rate. At this time, since the clock signal does not change abruptly due to the flywheel effect, even when the arrhythmia occurs, the same pulse rate as when there is no arrhythmia is displayed.
 パターン3またはパターン4を示す脈動性信号がPLL回路A11に入力された場合には、PLL回路A11は入力された脈動性信号にロックすることができない。この場合、ロック検出部A41はPLL回路A11が一定時間以上ロックしていないことを検出して、表示器A81はPLL回路A11がロックしていないことを表す赤色のアイコンを点灯する。また、信号計数部A42はクロック信号のパルスをカウントして、表示器A81がカウント値を脈拍数として表示する。 When the pulsation signal indicating the pattern 3 or the pattern 4 is input to the PLL circuit A11, the PLL circuit A11 cannot be locked to the input pulsation signal. In this case, the lock detection unit A41 detects that the PLL circuit A11 is not locked for a certain period of time, and the display A81 lights a red icon indicating that the PLL circuit A11 is not locked. The signal counting unit A42 counts the pulses of the clock signal, and the display A81 displays the count value as the pulse rate.
 上述したように、PLL回路A11は、脈波が概周期性と考えられるものであれば、入力された脈動性信号にロックすることができる。これにより、PLL回路A11及び情報処理装置A1は、不整脈が発生して脈波のパターンに乱れが生じた場合であっても、時間の経過に伴い、再び脈動性信号にロックして、脈拍数を表示することができる。また、ランダムな脈波のパターンであり、PLL回路A11がロックできない場合であっても、情報処理装置A1は、フライホイール効果を担うPLL回路A11がロックしないことを表示したうえで、クロック信号のカウント値を表示することができる。 As described above, the PLL circuit A11 can lock to the input pulsation signal if the pulse wave is considered to be approximately periodic. As a result, even when the arrhythmia occurs and the pulse wave pattern is disturbed, the PLL circuit A11 and the information processing apparatus A1 are locked to the pulsation signal again over time, and the pulse rate Can be displayed. Further, even when the PLL circuit A11 cannot be locked even if the PLL circuit A11 cannot be locked, the information processing apparatus A1 displays that the PLL circuit A11 that bears the flywheel effect does not lock, and the clock signal The count value can be displayed.
[I-1-5.PLL回路及び情報処理装置の効果]
 第一実施形態に係るPLL回路A11は、LPF A22が一次であることにより2次系のPLLであって、入力される脈動性信号と帰還信号としてのクロック信号との位相が同期するように、VCOA23aから出力されるクロック信号の発振周波数が制御される。これにより、PLL回路A11は、入力された脈動性信号にロックして、心臓の拍動に同期したクロック信号を出力することができる。さらに、PLLがフライホイール効果をもたらすことによって、入力される脈動性信号に、突発性でバースト的な外乱や、不整脈による周期性の脈波のパターンの乱れによって変動が生じた場合であっても、出力されるクロック信号には直ちに大きな変動は生じず、本来の脈波と同様の間隔を示す信号を出力することができる。また、運動しているような状態であって、脈拍数自体が漸次変化する場合には、次第にクロック信号が心臓の拍動と同期する。このように、PLL回路A11は、変動に対するロバスト性を有する。すなわち、PLL回路A11によれば、脈波を変動によらず安定して観察することが可能である。
[I-1-5. Effects of PLL circuit and information processing apparatus]
The PLL circuit A11 according to the first embodiment is a secondary PLL because the LPF A22 is primary, and the phase of the input pulsation signal and the clock signal as the feedback signal is synchronized. The oscillation frequency of the clock signal output from the VCOA 23a is controlled. As a result, the PLL circuit A11 can lock the input pulsation signal and output a clock signal synchronized with the pulsation of the heart. Furthermore, even when the PLL brings about the flywheel effect, the input pulsation signal is fluctuated due to a sudden burst burst disturbance or a periodic pulse wave pattern disturbance due to arrhythmia. The output clock signal does not immediately change greatly, and a signal indicating the same interval as the original pulse wave can be output. When the pulse rate itself gradually changes in a state where it is exercising, the clock signal is gradually synchronized with the heart beat. Thus, the PLL circuit A11 has robustness against fluctuations. That is, according to the PLL circuit A11, it is possible to stably observe the pulse wave regardless of fluctuations.
 また、第一実施形態に係る情報処理装置A1は、ロック検出部A41を備えることで、PLL回路A11がロックしているか否かを検出することができる。これにより、情報処理装置A1は、PLL回路A11から出力されるクロック信号がロック状態のものであって、脈動性信号の変動により乱されていない状態の拍動を表していることを判別することができる。また、ランダム性の信号が入力した際には、PLL回路A11がロックしていないことを判別することができる。 Moreover, the information processing apparatus A1 according to the first embodiment can detect whether or not the PLL circuit A11 is locked by including the lock detection unit A41. As a result, the information processing apparatus A1 determines that the clock signal output from the PLL circuit A11 represents a pulsation in a locked state and is not disturbed by fluctuations in the pulsation signal. Can do. Further, when a random signal is input, it can be determined that the PLL circuit A11 is not locked.
 また、情報処理装置A1は、信号計数部A42を備えることで、クロック信号の単位時間当たりのパルスをカウントすることができる。これにより、情報処理装置A1は、脈動性信号に変動が生じたとしても、クロック信号を利用して心臓の拍動と同期した脈拍数を測定することができる。 In addition, the information processing apparatus A1 can count pulses per unit time of the clock signal by including the signal counting unit A42. As a result, the information processing apparatus A1 can measure the pulse rate synchronized with the pulsation of the heart using the clock signal even if the pulsation signal varies.
 また、情報処理装置A1は、表示器A81を備えることで、PLL回路A11がロックしているか否かを表示し、単位時間当たりのクロック信号のカウント値を表示することができる。これにより、情報処理装置A1は、PLL回路A11の同期状態を表示するとともに、脈拍数を表示することができる。したがって、情報処理装置A1によれば、検体は表示結果を確認して、実時間で運動の強度などを自分で調整することができる。さらに、入力する脈動性信号のうち、ランダム性の信号が入力した際には、PLL回路A11がロックしないことを表示したうえで、脈拍数を表示することができる。 Further, the information processing apparatus A1 includes the display A81, thereby displaying whether or not the PLL circuit A11 is locked and displaying the count value of the clock signal per unit time. As a result, the information processing apparatus A1 can display the synchronization state of the PLL circuit A11 and the pulse rate. Therefore, according to the information processing apparatus A1, the sample can confirm the display result and can adjust the intensity of the exercise by himself / herself in real time. Furthermore, when a random signal is input among the pulsating signals to be input, the pulse rate can be displayed after displaying that the PLL circuit A11 is not locked.
[I-2.第二実施形態]
 本発明の第二実施形態に係るPLL回路A12、PLL回路A12を備える情報処理装置A2、及び検体情報処理装置A6について、図6を参照して説明する。以下、第二実施形態の説明においては、第二実施形態を、本実施形態とも呼ぶ。本実施形態に係るPLL回路A12及び情報処理装置A2は、一部の構成を除いて上述の第一実施形態に係るPLL回路A11及び情報処理装置A1と同様に構成されており、PLL回路A11及び情報処理装置A1と同様のものについては説明を省略し、同符号を用いて説明する。
[I-2. Second embodiment]
The PLL circuit A12, the information processing apparatus A2 including the PLL circuit A12, and the sample information processing apparatus A6 according to the second embodiment of the present invention will be described with reference to FIG. Hereinafter, in the description of the second embodiment, the second embodiment is also referred to as this embodiment. The PLL circuit A12 and the information processing apparatus A2 according to the present embodiment are configured in the same manner as the PLL circuit A11 and the information processing apparatus A1 according to the first embodiment described above except for a part of the configuration. A description of the same components as the information processing device A1 will be omitted, and description will be made using the same reference numerals.
[I-2-1.PLL回路の構成]
 本実施形態に係るPLL回路A12は、図6に示すように、位相比較器A21、LPFA22、VCO A23b、及び分周器A24を備えて構成されている。
 位相比較器A21及びLPF A22は、第一実施形態に係るPLL回路A11と同様に構成されている。
[I-2-1. Configuration of PLL circuit]
As shown in FIG. 6, the PLL circuit A12 according to the present embodiment includes a phase comparator A21, an LPFA 22, a VCO A 23b, and a frequency divider A24.
The phase comparator A21 and the LPF A22 are configured similarly to the PLL circuit A11 according to the first embodiment.
<VCO>
 VCO A23bは、入力された電圧制御信号の電圧に対応する発振周波数を有するクロック信号を出力する。本実施形態に係るPLL回路A12では、クロック信号が分周器A24に入力される。本実施形態では、VCOA23bの発振周波数は、128Hzを中心として変動するよう設計されている。
<VCO>
The VCO A 23b outputs a clock signal having an oscillation frequency corresponding to the voltage of the input voltage control signal. In the PLL circuit A12 according to this embodiment, a clock signal is input to the frequency divider A24. In this embodiment, the oscillation frequency of the VCOA 23b is designed to vary around 128 Hz.
<分周器>
 分周器A24は、所定の分周比Nでクロック信号の周波数を分周して、分周した周波数を分周信号として出力する。分周信号は、帰還信号として位相比較器A21に入力される。本実施形態に係る分周器A24は、分周比Nを128としている。
<Divisor>
The frequency divider A24 divides the frequency of the clock signal by a predetermined frequency division ratio N and outputs the divided frequency as a divided signal. The frequency-divided signal is input to the phase comparator A21 as a feedback signal. In the frequency divider A24 according to this embodiment, the frequency division ratio N is 128.
<PLL回路>
 PLL回路A12は上記の通り構成されており、脈動性信号と、帰還信号としての分周信号との位相が同期するようにVCOA23bの発振周波数が制御される。これにより、PLL回路A12は、入力された脈動性信号にロックする。PLL回路A12が脈動性信号にロックした場合、VCOA23bは、1つの脈波の波形に128個のクロック数のクロック信号を発生させるようになっている。これにより、PLL回路A12は、脈動性信号をクロック信号により正規化する。すなわち、PLL回路A12は、脈動性信号の正規化用のPLL回路である。
<PLL circuit>
The PLL circuit A12 is configured as described above, and the oscillation frequency of the VCOA 23b is controlled so that the phases of the pulsation signal and the divided signal as the feedback signal are synchronized. As a result, the PLL circuit A12 locks to the input pulsation signal. When the PLL circuit A12 is locked to the pulsation signal, the VCOA 23b generates a clock signal having 128 clock numbers in one pulse wave waveform. Thereby, the PLL circuit A12 normalizes the pulsating signal with the clock signal. That is, the PLL circuit A12 is a PLL circuit for normalizing the pulsation signal.
[I-2-2.情報処理装置の構成]
 本実施形態に係る情報処理装置A2の構成について、図6を参照して説明する。情報処理装置A2は、情報処理装置A1と同様に、ゲイン切り替え部A51、周波数特性補償部A61、周波数補正処理部A71、二値化処理部A31、PLL回路A12、ロック検出部A41、及び信号計数部A42を備え、さらに、カウンタA25、AD変換器A32、第一メモリA33、フィードバックコムフィルタA34、第二メモリA35、平均化処理部A36、微分処理部A37、積分処理部A38、及び波形表示部A43を備えている。情報処理装置A2の上記構成部分をあわせて信号処理部A15という。さらに、情報処理装置A2は、表示器A81を備える。
[I-2-2. Configuration of information processing apparatus]
The configuration of the information processing apparatus A2 according to the present embodiment will be described with reference to FIG. Similar to the information processing apparatus A1, the information processing apparatus A2 includes a gain switching unit A51, a frequency characteristic compensation unit A61, a frequency correction processing unit A71, a binarization processing unit A31, a PLL circuit A12, a lock detection unit A41, and a signal count. Unit A42, counter A25, AD converter A32, first memory A33, feedback comb filter A34, second memory A35, averaging processing unit A36, differentiation processing unit A37, integration processing unit A38, and waveform display unit A43 is provided. The above components of the information processing apparatus A2 are collectively referred to as a signal processing unit A15. Furthermore, the information processing apparatus A2 includes a display A81.
 ゲイン切り替え部A51、周波数特性補償部A61、周波数補正処理部A71、二値化処理部A31、及びロック検出部A41は、第一実施形態に係る情報処理装置A1と同様に構成されている。情報処理装置A2では、ゲイン切り替え部A51から出力された脈動性信号が、周波数特性補償部A61とAD変換器A32とに出力される。AD変換器A32と第一メモリA33とをあわせて信号記録部13ともいう。なお、本実施形態に係る情報処理装置A2では、周波数特性補償部A61及びAD変換器A32に、速度脈波が入力される場合について説明する。 The gain switching unit A51, the frequency characteristic compensation unit A61, the frequency correction processing unit A71, the binarization processing unit A31, and the lock detection unit A41 are configured in the same manner as the information processing apparatus A1 according to the first embodiment. In the information processing device A2, the pulsation signal output from the gain switching unit A51 is output to the frequency characteristic compensation unit A61 and the AD converter A32. The AD converter A32 and the first memory A33 are also collectively referred to as a signal recording unit 13. In the information processing apparatus A2 according to the present embodiment, a case where a velocity pulse wave is input to the frequency characteristic compensation unit A61 and the AD converter A32 will be described.
<信号計数部>
 信号計数部A42は、VCO A23aからの信号入力に変えて、分周器A24から分周信号が入力されて、この分周信号の単位時間当たりのパルスをカウントして、単位時間当たりの分周信号のカウント値を表示器A81に表示する他は、第一実施形態の場合と同様に構成されている。
<Signal counting unit>
The signal counting unit A42 receives the frequency division signal from the frequency divider A24 instead of the signal input from the VCO A 23a, counts the pulses per unit time of the frequency division signal, and divides the frequency per unit time. Other than displaying the count value of the signal on the display A81, the configuration is the same as in the case of the first embodiment.
<カウンタ>
 カウンタA25は、分周器A24から分周信号が入力されてこれをカウントし、分周信号の番号によって脈波の順番を示す波形番号を出力する。波形番号は0、1、2・・・と、0から順に1ずつ増加する整数値によってカウントされる。カウンタA25は、第一メモリA33及び第二メモリA35の記憶容量に応じて波形番号を適宜リセットして再度0からカウントする。PLL回路A12にカウンタA25を加えたものを、クロックアドレス発生部ともいう。
<Counter>
The counter A25 receives the frequency-divided signal from the frequency divider A24, counts it, and outputs a waveform number indicating the order of the pulse waves according to the number of the frequency-divided signal. The waveform number is counted by an integer value that increases by 1 in order from 0, 1, 2,... The counter A25 resets the waveform number as appropriate according to the storage capacity of the first memory A33 and the second memory A35, and starts counting from 0 again. A circuit obtained by adding a counter A25 to the PLL circuit A12 is also referred to as a clock address generation unit.
<AD変換器>
 AD変換器A32は、アナログデータである脈動性信号が入力されて、脈動性信号の信号強度の値をデジタルデータに変換して取得する。AD変換器A32は、VCOA23bからクロック信号が入力されて、クロック信号が入力されたタイミングで信号強度を取得する。AD変換器A32は取得した信号強度のデジタルデータを第一メモリA33に出力する。
<AD converter>
The AD converter A32 receives a pulsation signal as analog data, converts the signal intensity value of the pulsation signal into digital data, and acquires the digital data. The AD converter A32 receives the clock signal from the VCOA 23b, and acquires the signal strength at the timing when the clock signal is input. The AD converter A32 outputs the acquired digital data of the signal strength to the first memory A33.
<第一メモリ>
 第一メモリA33は、AD変換器A32で得られた信号強度のデジタルデータが入力されて、このデータを記録する。第一メモリA33を、単にメモリともいう。第一メモリA33は、記憶領域を複数のバンクに分割してなるメモリバンクである。本実施形態に係る第一メモリA33は、64個のバンクを有している。第一メモリA33は、バンクに順次データが書き込まれ、容量の制限に応じて古いメモリが消去されるリングバッファである。第一メモリA33は、信号強度のデータを、クロック信号の入力されたタイミングに応じたクロック番号ごとに記録する。また、第一メモリA33は、信号強度のデータを、カウンタA25から入力される波形番号を受けて、波形番号毎に分けられたそれぞれのバンクに記録する。すなわち、第一メモリA33は、脈動性信号を脈波の一周期毎に、波形番号とクロック番号に対応付けた信号強度として記録する
<First memory>
The first memory A33 receives the digital data of the signal strength obtained by the AD converter A32 and records this data. The first memory A33 is also simply referred to as a memory. The first memory A33 is a memory bank obtained by dividing the storage area into a plurality of banks. The first memory A33 according to the present embodiment has 64 banks. The first memory A33 is a ring buffer in which data is sequentially written to the bank and old memory is erased according to capacity limitations. The first memory A33 records the signal strength data for each clock number corresponding to the input timing of the clock signal. Further, the first memory A33 receives the waveform number input from the counter A25 and records the signal strength data in each bank divided for each waveform number. That is, the first memory A33 records the pulsation signal as the signal intensity associated with the waveform number and the clock number for each period of the pulse wave.
 図7,図8を参照して、第一メモリA33の構成とクロック番号及び波形番号との関係について説明する。図7では第一メモリA33が有する64個のバンクのうち、波形番号0、1、2、9、10に対応するバンクを例示して説明する。 7 and 8, the relationship between the configuration of the first memory A33 and the clock number and waveform number will be described. FIG. 7 illustrates an example of the banks corresponding to the waveform numbers 0, 1, 2, 9, and 10 among the 64 banks included in the first memory A33.
 図7に示すように、第一メモリA33は、各々の波形番号0、1、2、・・・9、10に対応した複数のバンクA211,A212,A213,A214,A215を有している。各バンクにはクロック番号0~127に対応した信号強度のデータが記録される。このように、第一メモリA33では、取得された信号強度のデータが、どの波形番号のどのクロック番号というように、脈波の波形の一周期のどこの箇所を指すのかが指定された形でデータが格納されている。 As shown in FIG. 7, the first memory A33 has a plurality of banks A211, A212, A213, A214, A215 corresponding to the waveform numbers 0, 1, 2,. Data of signal strength corresponding to clock numbers 0 to 127 is recorded in each bank. In this way, in the first memory A33, it is specified in which form the data of the acquired signal strength indicates where in one cycle of the pulse wave waveform, such as which clock number of which waveform number. Data is stored.
 図8に示すように、VCO A23bによって、脈波において一つの波形の立ち上がりから次の波形の立ち上がりまでを一周期として、一波形を0~127までの計128のクロックにより脈波の1周期を等分割する。クロック数を定めた波形番号が0となる波形から順に、一つの波形ごとにクロック番号を0、1、2・・・125、126、127と順に振る。このとき、脈波の波形の立ち上がりのクロック番号を0としてこのタイミングで信号の強度a1がサンプリングされる。サンプリングされた波形番号0の波形のクロック番号0の信号強度は、図7に示すように、第一メモリA33のメモリバンクA211の先頭に記録される。次に、クロック番号1のタイミングで信号の強度a2がサンプリングされて、メモリバンクA211のクロック番号0の信号の次に記録される。このようにして、クロック番号127のタイミングでの信号の強度a128までサンプリングされて、メモリバンクA211にクロック番号0から順に127まで記録される。続いて、同様にして、波形番号1の波形のクロック番号0のタイミングで信号の強度b1から順にサンプリングされて、メモリバンクA212に保存される。 As shown in FIG. 8, VCO A 23b takes one period from the rise of one waveform to the rise of the next waveform as one period in the pulse wave, and one period of the pulse wave is counted by a total of 128 clocks from 0 to 127. Divide equally. The clock numbers are assigned in order of 0, 1, 2,..., 125, 126, and 127 for each waveform in order from the waveform having the waveform number defining the number of clocks to 0. At this time, the rising edge clock number of the pulse wave waveform is set to 0, and the signal intensity a1 is sampled at this timing. The signal strength of clock number 0 of the sampled waveform of waveform number 0 is recorded at the beginning of memory bank A211 of first memory A33 as shown in FIG. Next, the signal strength a2 is sampled at the timing of the clock number 1, and is recorded next to the signal of the clock number 0 in the memory bank A211. In this way, the signal strength a128 at the timing of the clock number 127 is sampled and recorded in the memory bank A211 from the clock number 0 to 127 in order. Subsequently, in the same manner, the signal is sampled sequentially from the signal strength b1 at the timing of the clock number 0 of the waveform of the waveform number 1, and stored in the memory bank A212.
 第一メモリA33から、一つの波形番号においてクロック番号の順に信号強度を読み出し、クロック番号127まで読み出したら次の波形番号のクロック番号0から順に信号強度を読み出すことで、脈動性信号の信号強度を本来の時系列の順序で読み出すことができる。このとき、脈動性信号は、128のクロック数のクロック信号により正規化された信号として得られる。 The signal strength is read from the first memory A33 in the order of the clock number in one waveform number, and after reading up to the clock number 127, the signal strength is read in order from the clock number 0 of the next waveform number. Data can be read out in the original time-series order. At this time, the pulsation signal is obtained as a signal normalized by a clock signal having 128 clocks.
<フィードバックコムフィルタ>
 フィードバックコムフィルタA34は、第一メモリA33に記録した信号強度を読み出して、特定の周波数成分を通過させるフィルタ処理を行うデジタルシグナルプロセッサ(DSP)で構成される。フィードバックコムフィルタA34は、フィルタ処理を施した信号を第二メモリA35に出力する。フィードバックコムフィルタA34は、DSPと第一メモリA33及び第二メモリA35の間の操作により実行される。
<Feedback comb filter>
The feedback comb filter A34 is configured by a digital signal processor (DSP) that reads out the signal intensity recorded in the first memory A33 and performs a filter process that passes a specific frequency component. The feedback comb filter A34 outputs the filtered signal to the second memory A35. The feedback comb filter A34 is executed by an operation between the DSP and the first memory A33 and the second memory A35.
 図9のブロック図に示すように、フィードバックコムフィルタA34は、所定の遅延時間Kにより信号を遅延させるディレイA201と、掛け算器A202と、加算器A203とを有する、フィードバック型のコムフィルタである。フィードバックコムフィルタA34に入力された信号は、一部がディレイA201によって遅延されて、遅延した信号が掛け算器A202によって増幅されて、さらに加算器A203に入力され、入力された信号にフィードバックされる。ディレイA201の遅延時間Kと、掛け算器A202のフィードバックゲインαによって、フィードバックコムフィルタA34の周波数特性が決定される。 As shown in the block diagram of FIG. 9, the feedback comb filter A34 is a feedback type comb filter having a delay A201 that delays a signal by a predetermined delay time K, a multiplier A202, and an adder A203. A part of the signal input to the feedback comb filter A34 is delayed by the delay A201, the delayed signal is amplified by the multiplier A202, further input to the adder A203, and fed back to the input signal. The frequency characteristic of the feedback comb filter A34 is determined by the delay time K of the delay A201 and the feedback gain α of the multiplier A202.
 図10のグラフにフィードバックコムフィルタA34の周波数特性を示す。図10では、横軸は周波数を示し、縦軸がゲインを示す。図10に示すように、フィードバックコムフィルタA34は、入力された信号に対して、遅延時間Kの逆数1/Kとなる所定の周波数の整数倍の周波数成分を、櫛歯状に通過させるフィルタとして機能する。また、フィードバックゲインαが0.5、0.75、0.9と増加するに従い、急峻な特性を示すフィルタが得られる。フィードバックコムフィルタA34は、VCOA23bからクロック信号が入力されて、脈動性信号の一周期(一波形)あたりの総クロック数をカウントする。フィードバックコムフィルタA34は、この総クロック数を遅延時間Kの逆数1/Kとして、総クロック数の整数倍の周波数成分を通過させる。PLL回路A12が脈動性信号にロックして、1周期あたりの総クロック数が128となった場合には、フィードバックコムフィルタA34は、128、256、384、512・・・の周波数成分を通過させる。フィードバックコムフィルタA34の急峻性は約20dBである。 10 shows the frequency characteristics of the feedback comb filter A34. In FIG. 10, the horizontal axis indicates the frequency, and the vertical axis indicates the gain. As shown in FIG. 10, the feedback comb filter A34 is a filter that allows an input signal to pass a frequency component that is an integral multiple of a predetermined frequency that is the reciprocal 1 / K of the delay time K in a comb shape. Function. Further, as the feedback gain α increases to 0.5, 0.75, and 0.9, a filter having a steep characteristic can be obtained. The feedback comb filter A34 receives the clock signal from the VCOA 23b and counts the total number of clocks per cycle (one waveform) of the pulsation signal. The feedback comb filter A34 uses the total clock number as an inverse 1 / K of the delay time K, and passes a frequency component that is an integral multiple of the total clock number. When the PLL circuit A12 locks to the pulsation signal and the total number of clocks per cycle becomes 128, the feedback comb filter A34 passes the frequency components 128, 256, 384, 512. . The steepness of the feedback comb filter A34 is about 20 dB.
 フィードバックコムフィルタA34によるフィルタ処理を行うに際して、まず、第一メモリA33から、波形番号0においてクロック番号0から127まで順に信号強度を読み出し、続いて波形番号1においてクロック番号0から127までに信号強度を読み出す。同様にして、順次波形番号2以降の信号強度を読み出す。このようにして、脈動性信号を本来の時系列の順序で、クロック信号により正規化された信号強度の離散データとして得ることができる。この離散データをフィードバックコムフィルタA34によりフィルタ処理を行い、フィルタ処理後の信号を第二メモリA35に出力する。 When performing the filtering process by the feedback comb filter A34, first, the signal strength is sequentially read from the first memory A33 from the clock number 0 to 127 at the waveform number 0, and then the signal strength from the clock number 0 to 127 at the waveform number 1. Is read. Similarly, signal intensities after waveform number 2 are read sequentially. In this way, the pulsating signal can be obtained as discrete data of signal strength normalized by the clock signal in the original time series order. The discrete data is filtered by the feedback comb filter A34, and the filtered signal is output to the second memory A35.
<第二メモリ>
 第二メモリA35は、フィードバックコムフィルタA34でフィルタ処理された信号の信号強度が入力されて、この信号強度のデータを記録する。第二メモリA35は、図7を参照して説明した第一メモリA33と同様に構成されており、フィルタ処理された信号の信号強度を、波形番号とクロック番号に対応付けて格納している。
<Second memory>
The second memory A35 receives the signal strength of the signal filtered by the feedback comb filter A34 and records data of this signal strength. The second memory A35 is configured in the same manner as the first memory A33 described with reference to FIG. 7, and stores the signal intensity of the filtered signal in association with the waveform number and the clock number.
<平均化処理部>
 平均化処理部A36は、第二メモリA35に記録した連続する複数の波形番号の信号強度のデータを読み出し、加算して、加算したデータの数で除算することで、波形番号ごとに各クロック番号の信号強度の平均値を出力する平均化処理をするものである。平均化処理部A36は、平均化処理の結果を波形表示部A43に出力する。本実施形態では、連続する10個の信号強度の値の平均を取る。具体的には、第二メモリA35の所望の波形番号から10個の連続した波形番号において、各々のバンクから同じタイミングのクロック信号、すなわち同じクロック番号の信号強度を読み出し、これを加算して10個の波形分のデータの平均値を出力する。次に、クロック番号を一つ後ろにずらし、同様にして順に平均値を算出していく。一つの波形番号の最後のクロック番号まで処理し終えたら、次の10個の連続した波形番号の最初のクロック番号から順に平均値の算出を行う。このようにして、波形番号ごとの各クロック番号に対応して、10個の信号強度の値の平均を得る。ここで、ある波形番号における信号強度の平均値とは、連続する複数の波形番号に対応する平均値を算出した場合において、最後の波形番号に対応する平均値をいうものとする。
<Average processing section>
The averaging processing unit A36 reads out the signal intensity data of a plurality of continuous waveform numbers recorded in the second memory A35, adds them, and divides them by the number of added data, thereby obtaining each clock number for each waveform number. An averaging process is performed to output an average value of the signal intensity. The averaging processing unit A36 outputs the result of the averaging process to the waveform display unit A43. In the present embodiment, an average of 10 consecutive signal intensity values is taken. Specifically, in 10 consecutive waveform numbers from the desired waveform number of the second memory A35, the clock signals of the same timing, that is, the signal strengths of the same clock numbers are read from the respective banks, and these are added to obtain 10 The average value of the data for the number of waveforms is output. Next, the clock number is shifted backward by one, and the average value is calculated in order in the same manner. When the processing is completed up to the last clock number of one waveform number, the average value is calculated sequentially from the first clock number of the next 10 consecutive waveform numbers. In this way, an average of 10 signal strength values is obtained corresponding to each clock number for each waveform number. Here, the average value of the signal intensity in a certain waveform number means the average value corresponding to the last waveform number when the average value corresponding to a plurality of continuous waveform numbers is calculated.
 図7を参照して、平均化処理部A36による平均化処理について説明する。初めに波形番号0~9において、クロック番号0のa1~j1の10個のデータを読み出して平均値を出力する。次に、クロック番号を一つずらして、波形番号0~9のクロック番号1のa2~j2の10個のデータの平均値を出力する。このようにして、波形番号0~9のクロック番号127までのa128~j128の10個のデータの平均値を出力する。このときの平均値は、それぞれ波形番号9における平均値となる。その後、波形番号を一つずらして、波形番号1~10において、クロック番号0のb1~k1までの10個のデータを読み出して平均値を出力する。このときの平均値は、それぞれ波形番号10における平均値となる。以降、同様にして順に平均値を出力する。 With reference to FIG. 7, the averaging process by the averaging processing unit A36 will be described. First, in waveform numbers 0 to 9, 10 data of a1 to j1 of clock number 0 are read and an average value is output. Next, the clock number is shifted by one, and the average value of 10 data a2 to j2 of clock number 1 of waveform numbers 0 to 9 is output. In this way, an average value of 10 data items a128 to j128 from the clock numbers 127 of the waveform numbers 0 to 9 is output. The average values at this time are the average values for waveform number 9 respectively. Thereafter, the waveform numbers are shifted by one, and in the waveform numbers 1 to 10, 10 data from b1 to k1 of the clock number 0 are read and the average value is output. The average value at this time is the average value in waveform number 10 respectively. Thereafter, the average value is sequentially output in the same manner.
<微分処理部>
 微分処理部A37は、第一メモリA33に記録した信号強度のデータを読み出して、数値微分をするものである。微分処理部A37は、数値微分の結果を波形表示部A43に出力する。数値微分は、128のクロックでサンプリングされた離散型データの傾きを出すだけであるので、公知の算出方法を適宜利用できる。一例として、最も単純な方法として前方差分をとるのであれば、注目する点とその後の点のサンプル値をf(xi),f(xi+1)とすると、下記の
   (f(xi+1)-f(xi))/Δx
の公式に乗っ取り、この例であれば1/128をΔxとして、隣接するサンプル値間での演算を行えばよい。
<積分処理部>
 積分処理部A38は、第一メモリA33に記録した信号強度のデータを読み出して、数値積分をするものである。積分処理部A38は、数値積分の結果を波形表示部A43に出力する。数値積分は、128のクロックでサンプリングされた離散型データの傾き面積を出すだけであるので、台形則、シンプソン則等の公知の算出方法を適宜利用できる。シンプソン則に従えば、1/128の刻みでこれをΔxとすれば注目する点の前後の点のサンプル値をf(xi-1),f(xi),f(xi+1)とすると、下記の
   Δx{f(xi-1)+4f(xi)+f(xi+1)}/3
の計算式で求めることができる。
<Differential processing part>
The differentiation processing unit A37 reads the signal strength data recorded in the first memory A33 and performs numerical differentiation. The differentiation processing unit A37 outputs the result of the numerical differentiation to the waveform display unit A43. Since the numerical differentiation only yields the slope of discrete data sampled with 128 clocks, a known calculation method can be used as appropriate. As an example, if the forward difference is taken as the simplest method, if the sample values of the point of interest and the subsequent point are f (x i ) and f (x i + 1 ), the following (f (x i +1 ) -f (x i )) / Δx
In this example, it is sufficient to calculate between adjacent sample values with 1/128 as Δx.
<Integration processing unit>
The integration processing unit A38 reads the signal strength data recorded in the first memory A33 and performs numerical integration. The integration processing unit A38 outputs the result of numerical integration to the waveform display unit A43. Since numerical integration only calculates the slope area of discrete data sampled with 128 clocks, a known calculation method such as trapezoidal rule or Simpson rule can be used as appropriate. According to the Simpson rule, if this is Δx in steps of 1/128, the sample values of points before and after the point of interest are f (x i-1 ), f (x i ), f (x i + 1 ). Then, the following Δx {f (x i-1 ) + 4f (x i ) + f (x i + 1 )} / 3
It can be calculated by the following formula.
<波形表示部>
 波形表示部A43は、第二メモリA35に記録した信号強度を読み出して、クロック番号と信号強度との関係を表す波形のデータを生成して、表示器A81に出力する。もしくは、波形表示部A43は、平均化処理部A36、微分処理部A37、または積分処理部A38で処理された結果が入力されて、クロック番号と信号強度との関係を表す波形のデータを生成して、表示器A81に出力する。波形表示部A43はいずれの場合でも同様に処理を行うことができるが、本実施形態では、平均化処理部A36で平均化処理された結果が波形表示部A43に入力される場合について説明する。
<Waveform display>
The waveform display unit A43 reads the signal intensity recorded in the second memory A35, generates waveform data representing the relationship between the clock number and the signal intensity, and outputs the waveform data to the display A81. Alternatively, the waveform display unit A43 receives the result processed by the averaging processing unit A36, the differentiation processing unit A37, or the integration processing unit A38, and generates waveform data representing the relationship between the clock number and the signal strength. Output to the display A81. The waveform display unit A43 can perform the same processing in any case, but in the present embodiment, a case will be described in which the result of the averaging process performed by the averaging processing unit A36 is input to the waveform display unit A43.
 波形表示部A43は、平均化処理部A36から、所望の波形番号における、クロック番号0から順にクロック番号127までのそれぞれの信号強度の平均値が入力されることで、各クロック番号の10個の波形分の信号強度の平均値を、本来の時系列の順序で取得する。さらに、波形表示部A43は、一脈波において時間軸を刻んだ計128のクロック番号を横軸にとり、入力された信号強度の平均値を縦軸にとることで、10個分の脈波を平均化した一周期分の波形を二次元に表示するデータを生成する。このようにして、波形表示部A43は、所望の波形番号における、クロック番号と信号強度の平均値との関係を表す波形のデータを生成する。さらに波形表示部A43は、次の波形番号における信号強度の平均値が入力されて、同様に波形のデータを生成し、順次出力を行う。 The waveform display unit A43 receives the average values of the signal intensities from the clock number 0 to the clock number 127 in order from the clock number 0 in the desired waveform number from the averaging processing unit A36, so that 10 waveform numbers of each clock number are input. The average value of the signal intensity for the waveform is acquired in the original time-series order. Further, the waveform display unit A43 takes a total of 128 clock numbers with the time axis in one pulse wave on the horizontal axis, and takes the average value of the input signal intensity on the vertical axis, thereby generating 10 pulse waves. Data that displays the averaged waveform for one period in two dimensions is generated. In this way, the waveform display unit A43 generates waveform data representing the relationship between the clock number and the average value of the signal strength in the desired waveform number. Further, the waveform display unit A43 receives the average value of the signal intensity at the next waveform number, similarly generates waveform data, and sequentially outputs them.
<表示器>
 表示器A81は、波形表示部A43から波形のデータが入力されて、脈動性信号を、波形番号ごとに脈波の一周期の波形として表示する他は、実施形態1の場合と同様に構成されている。なお、第二実施形態に係る表示器A81では、信号計数部A42からカウント値が入力されることで、単位時間当たりの分周信号のカウント値を表示する。表示器A81は、第二メモリA35、平均化処理部A36、微分処理部A37、または積分処理部A38からの信号を、波形表示部A43を介して表示する。表示器A81は、表示画面の波形の表示領域に、横軸に128のクロック番号をとり、縦軸に信号強度とった、脈波の一周期の波形の画像を表示する。表示器A81は、波形番号の順番に順次波形のデータが入力されることで、脈波の波形を本来の時系列の順序で表示する。本実施形態では、表示器A81は、波形表示部A43からクロック番号と信号強度の平均値との関係を表す波形のデータが入力されて、波形番号ごとに10個分の脈波を平均化した一周期毎の波形を表示する。
<Display>
The display unit A81 is configured in the same manner as in the first embodiment, except that the waveform data is input from the waveform display unit A43 and the pulsation signal is displayed as a waveform of one cycle of the pulse wave for each waveform number. ing. Note that the display A81 according to the second embodiment displays the count value of the divided signal per unit time by inputting the count value from the signal counting unit A42. The display A81 displays a signal from the second memory A35, the averaging processing unit A36, the differentiation processing unit A37, or the integration processing unit A38 via the waveform display unit A43. The display device A81 displays an image of a waveform of one pulse wave with the horizontal axis indicating the clock number of 128 and the vertical axis indicating the signal intensity in the waveform display area of the display screen. The display device A81 displays the waveform of the pulse wave in the original time-series order by sequentially inputting the waveform data in the order of the waveform numbers. In this embodiment, the display device A81 receives waveform data representing the relationship between the clock number and the average value of the signal intensity from the waveform display unit A43, and averages 10 pulse waves for each waveform number. Displays the waveform for each cycle.
<検体情報処理装置>
 検体情報処理装置A6は、上述の通り構成されており、検体情報検出ユニットA101によって検出されて、情報処理装置A2に入力された脈動性信号を、ゲイン切り替え部A51を通じて、周波数特性補償部A61とAD変換器A32に入力する。周波数特性補償部A61で処理された脈動性信号は、周波数補正処理部A71及び二値化処理部A31を通じて、PLL回路A12に入力される。PLL回路A12は、VCOA23bからクロック信号をAD変換器A32とフィードバックコムフィルタA34に出力する。また、分周器A24から分周信号をカウンタA25に出力する。AD変換器A32に入力された脈動性信号は、第一メモリA33に信号強度として記録され、フィードバックコムフィルタA34にフィルタ処理された信号が第二メモリA35に記録される。第二メモリA35に記録された信号は、平均化処理部A36、微分処理部A37、または積分処理部A38が読み出して、それぞれ処理を行って処理結果を出力する。情報処理装置A2は、ロック検出部A41、信号計数部A42、及び波形表示部A43からの出力を、表示器A81に表示にする。
<Sample information processing device>
The sample information processing device A6 is configured as described above, and the pulsation signal detected by the sample information detection unit A101 and input to the information processing device A2 is connected to the frequency characteristic compensation unit A61 through the gain switching unit A51. Input to AD converter A32. The pulsation signal processed by the frequency characteristic compensation unit A61 is input to the PLL circuit A12 through the frequency correction processing unit A71 and the binarization processing unit A31. The PLL circuit A12 outputs a clock signal from the VCOA 23b to the AD converter A32 and the feedback comb filter A34. Further, a frequency division signal is output from the frequency divider A24 to the counter A25. The pulsating signal input to the AD converter A32 is recorded as signal strength in the first memory A33, and the signal filtered by the feedback comb filter A34 is recorded in the second memory A35. The signal recorded in the second memory A35 is read out by the averaging processing unit A36, the differentiation processing unit A37, or the integration processing unit A38, and each is processed to output a processing result. The information processing device A2 displays the outputs from the lock detection unit A41, the signal counting unit A42, and the waveform display unit A43 on the display A81.
[I-2-3.PLL回路と情報処理装置の動作]
 図18に示すフローチャートを参照しながら、PLL回路A12による脈動性信号の正規化の動作と、情報処理装置A2による正規化された脈動性信号の平均化処理と出力の動作との一例を説明する。
[I-2-3. Operation of PLL circuit and information processing apparatus]
An example of the normalization operation of the pulsation signal by the PLL circuit A12 and the normalization processing and output operation of the normalized pulsation signal by the information processing device A2 will be described with reference to the flowchart shown in FIG. .
 検体情報処理装置A6は、検体情報検出ユニット101によって脈動性信号を検出し、脈動性信号を情報処理装置A2に入力することで、脈動性信号を取得する(ステップSA20)。
 二値化処理部A31は、情報処理装置A2に入力された脈動性信号を二値化して、PLL回路A12に入力する(ステップSA21)。
 位相比較器A21は、二値化された脈動性信号と帰還信号との位相を比較して、位相差に対応する位相差信号を出力する(ステップSA22)。
 LPF A22は、位相差信号から所定のカットオフ周波数より大きい周波数成分を除去した電圧制御信号を出力する(ステップSA23)。
 VCO A23bは、電圧制御信号の電圧に対応する発振周波数を有するクロック信号を出力する(ステップSA24)。このとき、ステップSA24では、脈動性信号と帰還信号との位相が同期するようにVCOA23bの発振周波数を制御する。VCO A23bは、クロック信号を、分周器A24とAD変換器A32とフィードバックコムフィルタA34に出力する。
 分周器A24は、所定の分周比でクロック信号の周波数を分周して、分周信号を出力する(ステップSA25)。分周器A24は、分周信号を帰還信号として位相比較器A21に入力するとともに、カウンタA25と信号計数部A42に出力する。
The sample information processing device A6 detects the pulsation signal by the sample information detection unit 101, and acquires the pulsation signal by inputting the pulsation signal to the information processing device A2 (step SA20).
The binarization processing unit A31 binarizes the pulsation signal input to the information processing apparatus A2, and inputs the binarized signal to the PLL circuit A12 (step SA21).
The phase comparator A21 compares the phase of the binarized pulsation signal and the feedback signal, and outputs a phase difference signal corresponding to the phase difference (step SA22).
The LPF A22 outputs a voltage control signal obtained by removing a frequency component greater than a predetermined cutoff frequency from the phase difference signal (step SA23).
The VCO A 23b outputs a clock signal having an oscillation frequency corresponding to the voltage of the voltage control signal (step SA24). At this time, in step SA24, the oscillation frequency of the VCOA 23b is controlled so that the phases of the pulsation signal and the feedback signal are synchronized. The VCO A 23b outputs the clock signal to the frequency divider A24, the AD converter A32, and the feedback comb filter A34.
The frequency divider A24 divides the frequency of the clock signal by a predetermined frequency dividing ratio and outputs a frequency divided signal (step SA25). The frequency divider A24 inputs the frequency-divided signal as a feedback signal to the phase comparator A21 and outputs it to the counter A25 and the signal counting unit A42.
 カウンタA25は、分周信号をカウントして、波形番号を出力する(ステップSA26)。
 AD変換器A32は、クロック信号を受けたタイミングで脈動性信号の信号強度をデジタルデータとして取得して、第一メモリA33に出力する(ステップSA27)。
 第一メモリA33は、各クロック番号の信号強度を波形番号毎のバンクに記録する(ステップSA28)。
 フィードバックコムフィルタA34は、総クロック数の整数倍の周波数成分を通過させるフィルタ処理を施す(ステップSA29)。
 第二メモリA35は、フィルタ処理された信号を記録する(ステップSA30)
 平均化処理部A36は、第二メモリA35に記録された信号強度のデータを読み出し、平均値を算出して、波形表示部A43に出力する(ステップSA31)。
 波形表示部A43は、クロック番号と信号強度の平均値との関係を表す波形のデータを生成して、表示器A81に出力する(ステップSA32)。
 表示器A81は、波形番号ごとに複数の脈波を平均化した一周期の波形を表示する(ステップSA33)
The counter A25 counts the frequency-divided signal and outputs a waveform number (Step SA26).
The AD converter A32 acquires the signal intensity of the pulsation signal as digital data at the timing of receiving the clock signal, and outputs it to the first memory A33 (step SA27).
The first memory A33 records the signal strength of each clock number in the bank for each waveform number (step SA28).
The feedback comb filter A34 performs a filter process that allows a frequency component that is an integral multiple of the total number of clocks to pass (step SA29).
The second memory A35 records the filtered signal (step SA30).
The averaging processing unit A36 reads the signal intensity data recorded in the second memory A35, calculates the average value, and outputs it to the waveform display unit A43 (step SA31).
The waveform display unit A43 generates waveform data representing the relationship between the clock number and the average value of the signal intensity, and outputs the waveform data to the display A81 (step SA32).
The display A81 displays a waveform of one cycle obtained by averaging a plurality of pulse waves for each waveform number (step SA33).
[I-2-4.PLL回路及び情報処理装置の作用]
<PLL回路について>
 PLL回路A12は、PLL回路A11と同様に、PLL回路A12に入力される信号が変動した場合であっても、フライホイール効果によってVCOA23bから出力されるクロック信号が急変せずに、安定した本来の脈波を示す波形を出力することができる。PLL回路A12の作用を、図2~図4を参照して説明すると、PLL回路A12では、VCOA23bが128Hzを中心として変動する発振周波数を有するクロック信号を出力して、分周器A24がこのクロック信号を分周比128で分周して分周信号として出力する。PLL回路A12では、分周信号が、図2(c),図3(c),図4(a)~図4(c)の下段に示す波形のように、入力された信号に外乱があったとしても大きな変化が現れずにほぼ一定の間隔となって出力される。
[I-2-4. Operation of PLL circuit and information processing apparatus]
<About PLL circuit>
As with the PLL circuit A11, the PLL circuit A12 is stable when the signal input to the PLL circuit A12 fluctuates without the sudden change of the clock signal output from the VCOA 23b due to the flywheel effect. A waveform indicating a pulse wave can be output. The operation of the PLL circuit A12 will be described with reference to FIGS. 2 to 4. In the PLL circuit A12, the VCOA 23b outputs a clock signal having an oscillation frequency that fluctuates around 128 Hz, and the frequency divider A24 outputs this clock signal. The signal is divided by a dividing ratio of 128 and output as a divided signal. In the PLL circuit A12, the input signal has a disturbance as shown in the waveforms shown in the lower part of FIGS. 2 (c), 3 (c), 4 (a) to 4 (c). Even if it does, a big change does not appear and it is output at almost constant intervals.
 また、PLL回路A12は、脈拍数が変化して入力される脈動性信号の変動が続く場合には、変動に応じて電圧制御信号が変化し、これに伴いこれに伴いクロック信号及び分周信号が追従するように構成されているため、次第に分周信号が心臓の拍動と同期することになる。 Further, when the pulse rate changes and the fluctuation of the input pulsation signal continues, the PLL circuit A12 changes the voltage control signal according to the fluctuation, and accordingly, the clock signal and the frequency dividing signal are changed. The frequency-divided signal is gradually synchronized with the heart beat.
 また、PLL回路A12及び情報処理装置A2は、PLL回路A11及び情報処理装置A1と同様に、不整脈が発生して脈波のパターンに乱れが生じた場合であっても、脈動性信号にロックして、脈拍数を表示することができる。 In addition, the PLL circuit A12 and the information processing apparatus A2 are locked to the pulsating signal even when the arrhythmia occurs and the pulse wave pattern is disturbed, similarly to the PLL circuit A11 and the information processing apparatus A1. The pulse rate can be displayed.
 さらに、脈動性信号をロックした際には、VCO A23bは脈波の一周期に128個のクロック数のクロック信号を発生させる。 Furthermore, when the pulsation signal is locked, the VCO A 23b generates a clock signal of 128 clocks in one cycle of the pulse wave.
<正規化について>
 図11は、検体が平常時の場合の脈波の周波数スペクトルを、横軸を周波数、縦軸を信号の強度で示したものである。図11に示すように、通常、1Hz,2Hz,3Hz・・・のようにして、脈波は基本周波数Tがおよそ1Hzであってその逆数1/Tとなる1Hz付近に信号を有しており、その整数倍となる2/T、3/T、4/T、・・・の周波数にも信号を有する。
<About normalization>
FIG. 11 shows the frequency spectrum of the pulse wave when the specimen is normal, with the horizontal axis representing frequency and the vertical axis representing signal intensity. As shown in FIG. 11, the pulse wave normally has a signal in the vicinity of 1 Hz where the fundamental frequency T is about 1 Hz and its reciprocal 1 / T, such as 1 Hz, 2 Hz, 3 Hz,. .., 2 / T, 3 / T, 4 / T,...
 情報処理装置A2では、PLL回路A12によって入力される脈動性信号にロックすることで、一脈波、すなわち脈波の一周期の間に128個のクロック数のクロック信号が存在するように、クロック信号により脈動性信号を正規化する。このとき、脈波の信号が表れる1/Tの周波数を、128のクロック信号により変換して定義することができる。言い換えれば、正規化によって、128のクロック信号ごとに一つの脈波の波形が存在して、脈動性信号がクロック軸で定義されている状態となっている。そもそも、脈波は静止時、活動時、または激しい運動時などの場合に応じて必要な酸素量を供給するために、その数を変動させるものであり、時間軸でこれらを扱うには困難であった。情報処理装置A2では、脈動性信号の正規化を行うことにより、脈波の取扱性を向上させたものである。 In the information processing apparatus A2, by locking to the pulsation signal input by the PLL circuit A12, the clock signal is generated so that there are 128 pulse signals in one pulse wave, that is, one cycle of the pulse wave. The signal normalizes the pulsating signal. At this time, the 1 / T frequency at which the pulse wave signal appears can be defined by converting it with 128 clock signals. In other words, by normalization, there is one pulse wave waveform for every 128 clock signals, and the pulsation signal is defined on the clock axis. In the first place, the pulse wave varies in order to supply the necessary amount of oxygen according to the case of stationary, active, intense exercise, etc., and it is difficult to handle these on the time axis. there were. In the information processing apparatus A2, the handling of the pulse wave is improved by normalizing the pulsation signal.
<フィードバックコムフィルタについて>
 脈動性信号が正規化された状態にあることで、フィードバックコムフィルタA34により、128、256、384・・・のように、1周期あたりの総クロック数の整数倍の周波数成分を通過させることによって、脈波に由来する成分を通過させることができる。またこのとき、フィードバックコムフィルタA34に入力された信号から、外乱に由来する成分を除くことができる。
<About feedback comb filter>
When the pulsation signal is in a normalized state, the feedback comb filter A34 allows frequency components that are an integral multiple of the total number of clocks per cycle, such as 128, 256, 384. The component derived from the pulse wave can be passed. At this time, components derived from disturbance can be removed from the signal input to the feedback comb filter A34.
 従来、脈動性信号は時間軸がゆれることがあるために、変動する基本周波数成分にあわせて図10に示すようなシャープな周波数特性を有するフィードバックコムフィルタをかけることは困難であった。情報処理装置A2では、PLL回路A12により脈動性信号にロックして、クロック信号により脈動性信号を正規化することで、脈動性信号がクロック軸で定義されている。ここで、図11を参照して説明したように、脈波の波形をフーリエ変換した周波数スペクトルは、約1Hzの基本波を中心にその2倍、3倍、4倍・・・の高調波から成り立っている。さらに、検体の運動状態等に応じて、この基本波及び高調波の周波数が変化する。なお、図11は実際の人の脈波の計測例であるため、さらに低域に向かってノイズが加わっている。このような脈波を示す脈動性信号についても、クロック軸は脈拍数が変化しても一定であるから、PLL回路A12がロックしている限り、時間軸が変動したとしてもフィードバックコムフィルタA34を適用することができる。情報処理装置A2は、この図11の櫛歯状のすべての高調波を図10のような急峻な通過特性を持つフィードバックコムフィルタA34を通過させるとともに、本来の脈動性信号のエネルギーが存在しない周波数成分を抑圧する。 Conventionally, since the time axis of a pulsating signal may fluctuate, it has been difficult to apply a feedback comb filter having a sharp frequency characteristic as shown in FIG. 10 in accordance with a changing fundamental frequency component. In the information processing apparatus A2, the pulsation signal is defined on the clock axis by locking the pulsation signal with the PLL circuit A12 and normalizing the pulsation signal with the clock signal. Here, as described with reference to FIG. 11, the frequency spectrum obtained by Fourier transforming the waveform of the pulse wave is 2 times, 3 times, 4 times, and so on, centered on the fundamental wave of about 1 Hz. It is made up. Further, the frequency of the fundamental wave and the harmonic wave changes according to the motion state of the specimen. Since FIG. 11 is an example of measurement of an actual person's pulse wave, noise is further added toward the low frequency range. Even for such a pulsating signal indicating a pulse wave, the clock axis is constant even if the pulse rate changes. Therefore, as long as the PLL circuit A12 is locked, the feedback comb filter A34 can be used even if the time axis fluctuates. Can be applied. The information processing apparatus A2 passes all the comb-shaped harmonics of FIG. 11 through the feedback comb filter A34 having a steep pass characteristic as shown in FIG. 10 and a frequency at which the energy of the original pulsating signal does not exist. Suppresses the component.
<平均化処理について>
 従来は、例えば運動をしていて脈拍数が変動している場合には、一つの波形の時間軸状の長さが変るために、そのまま複数の波形の平均をとることはできなかった。一方で、本実施形態に係る情報処理装置A2では、脈動性信号が正規化された状態にあることで、平均化処理部A36によって同じクロック番号の信号強度の平均値をとることによって、連続する複数の脈動性信号を平均化した波形を出力することができる。
<About the averaging process>
Conventionally, for example, when exercise is performed and the pulse rate is fluctuating, the time-axis length of one waveform is changed, so that it is not possible to directly average a plurality of waveforms. On the other hand, in the information processing apparatus A2 according to the present embodiment, since the pulsation signal is in a normalized state, the averaging processing unit A36 continuously takes the average value of the signal strength of the same clock number. A waveform obtained by averaging a plurality of pulsating signals can be output.
<微分処理について>
 従来の特定のカットオフ周波数を有する周波数特性の微分回路または微分回路を通すことによる処理では、脈動性信号の基本周波数との関係で、微分又は積分の動作を行うことができない場合があった。例えば、カットオフ周波数が2Hzの場合、脈動性信号の基本周波数が1Hz(60回/分)であれば、微分又は積分動作を行うことができる。一方で、例えばレーシングカーに搭乗するなどして基本周波数が3Hzとなった場合には、(不完全)微分回路のカットオフ周波数は変えられないことからすると、この場合にはカットオフ周波数以上の帯域に脈動性信号の成分が存在するために微分も積分も動作しない。このように、従来の時間軸で、同じ時定数で微分又は積分を行う場合には、基本周波数がカットオフ周波数に対して大きく変動した場合に、微分又は積分の処理ができない場合があった。一方で、本実施形態に係る情報処理装置A2によれば、PLL回路A12が脈動性信号にロックすることにより、常に一つの脈波の周期に一定数のクロック数があることで、カットオフ周波数と脈波の基本周波数の関係を保ったまま、安定な微分または積分の結果を得ることができる。
<About differential processing>
In the conventional processing by passing through a differentiating circuit or differentiating circuit having a frequency characteristic having a specific cut-off frequency, there is a case where the operation of differentiation or integration cannot be performed in relation to the fundamental frequency of the pulsating signal. For example, when the cutoff frequency is 2 Hz, differentiation or integration can be performed if the fundamental frequency of the pulsating signal is 1 Hz (60 times / min). On the other hand, when the basic frequency becomes 3 Hz, for example, when riding a racing car, the cutoff frequency of the (incomplete) differentiation circuit cannot be changed. Since the pulsating signal component exists in the band, neither differentiation nor integration is performed. As described above, when differentiation or integration is performed with the same time constant on the conventional time axis, there is a case where differentiation or integration processing cannot be performed when the fundamental frequency greatly fluctuates with respect to the cutoff frequency. On the other hand, according to the information processing apparatus A2 according to the present embodiment, the PLL circuit A12 locks to the pulsation signal, so that there is always a fixed number of clocks in one pulse wave cycle, so that the cutoff frequency A stable differential or integral result can be obtained while maintaining the relationship between the fundamental frequency of the pulse wave and the pulse wave.
<情報処理装置の動作と表示について>
 従来、検体から検出した脈波と脈拍数を表示する場合には、図14、図15のような表示が行われていた。なお、これらの図は、脈動性信号に外乱や不整脈等の変動がある場合の表示の例を示すものである。図14に示すように、速度脈波を示す波形は、本来の速度脈波に外乱に由来する成分が加わった状態で表示されていた。また、脈拍数を示す78の表示は、変動によって脈動性信号が乱れていることから、本来の脈拍数を示すものかは明らかではなかった。さらに、図15は、図14の状態から脈拍数が増えた場合の表示の例を示すものである。このとき、表示領域内の一定時間に表示されるパルス数が増加することによって、速度脈波を示す波形が時間軸で圧縮されており、観察を行うことが困難であった。また、脈拍数を示す150の表示は、図14と同様に、本来の脈拍数を示すものかは明らかではなかった。
<Operation and display of information processing device>
Conventionally, when displaying a pulse wave and a pulse rate detected from a specimen, displays as shown in FIGS. 14 and 15 are performed. These figures show examples of display when the pulsation signal has fluctuations such as disturbance and arrhythmia. As shown in FIG. 14, the waveform indicating the velocity pulse wave is displayed in a state where a component derived from a disturbance is added to the original velocity pulse wave. In addition, it is not clear whether the display of 78 indicating the pulse rate indicates the original pulse rate because the pulsation signal is disturbed due to fluctuation. Furthermore, FIG. 15 shows an example of display when the pulse rate has increased from the state of FIG. At this time, when the number of pulses displayed in a certain time within the display area increases, the waveform indicating the velocity pulse wave is compressed on the time axis, and it is difficult to observe. Also, it was not clear whether the display of 150 indicating the pulse rate indicates the original pulse rate, as in FIG.
 一方で、本実施形態に係る情報処理装置A2の表示器A81は、速度脈波とロック状態と脈拍数を図12、図13のようにして表示する。図12は、従来では図14のように表示されていた脈動性信号を、情報処理装置A2に入力した場合の表示を示すものである。情報処理装置A2では128のクロック数のクロック信号により脈動性信号を正規化したことで、図12に示すように、表示器A81は速度脈波を示す波形を、128のクロック番号からなるクロック軸で定義されている一定の領域に一脈波の表示をする。また、情報処理装置A2はフィードバックコムフィルタA34によって波形の乱れを除くとともに、フライホイール効果により脈動性信号に加わった変動を抑えた状態で波形を表示する。また、表示器A81は、PLL回路A12がロックしていることを示す緑色(G)のアイコンを点灯し、ロックしていないことを示す赤色(R)のアイコンを消灯して、ロック状態を表示する。また、表示器A81が脈拍数を示す75の表示は、PLL回路A12のロックによりほぼ正しい値を表すと推測される。 On the other hand, the display A81 of the information processing apparatus A2 according to the present embodiment displays the velocity pulse wave, the locked state, and the pulse rate as shown in FIGS. FIG. 12 shows a display when a pulsation signal that has been conventionally displayed as shown in FIG. 14 is input to the information processing apparatus A2. In the information processing apparatus A2, since the pulsation signal is normalized by the clock signal having the number of clocks of 128, as shown in FIG. 12, the display A81 displays the waveform indicating the velocity pulse wave on the clock axis composed of 128 clock numbers. A pulse wave is displayed in a certain area defined by. Further, the information processing apparatus A2 displays the waveform in a state in which the fluctuation of the waveform added to the pulsation signal by the flywheel effect is suppressed while the waveform disturbance is removed by the feedback comb filter A34. The display A81 turns on the green (G) icon indicating that the PLL circuit A12 is locked and turns off the red (R) icon indicating that the PLL circuit A12 is not locked. To do. In addition, it is estimated that the display of 75 indicating the pulse rate on the display A81 indicates a substantially correct value due to the lock of the PLL circuit A12.
 図13は、図12の状態から脈拍数が増えた場合の表示の例、すなわち、従来では図15のように表示されていたものを示すものである。情報処理装置A2ではクロック信号により脈動性信号を正規化したことで、図13に示すように、表示器A81は、図12の場合と同様に、脈拍数が増えた場合であっても速度脈波を示す波形を一定の領域に一脈波の表示をする。また、図12の場合と同様に、情報処理装置A2は波形の乱れを除くとともに、脈動性信号に加わった変動を抑えた状態で波形を表示する。また、表示器A81は、図12の場合と同様にロック状態を表示する。また、表示器A81が脈拍数を示す130の表示も、図12の場合と同様に、ほぼ正しい値を表すと推測される。 FIG. 13 shows an example of display when the pulse rate is increased from the state of FIG. 12, that is, what is conventionally displayed as shown in FIG. Since the information processing apparatus A2 normalizes the pulsation signal with the clock signal, as shown in FIG. 13, the display device A81 displays the velocity pulse even when the pulse rate increases, as in FIG. A waveform indicating a wave is displayed as a single pulse wave in a certain region. Further, as in the case of FIG. 12, the information processing apparatus A2 displays the waveform in a state in which the fluctuation of the waveform is suppressed and the fluctuation added to the pulsation signal is suppressed. Further, the display A 81 displays the locked state as in the case of FIG. In addition, it is presumed that the display of 130 indicating the pulse rate on the display A81 also represents a substantially correct value, as in the case of FIG.
[I-2-5.PLL回路、情報処理装置、及び検体情報処理装置の効果]
 第二実施形態に係るPLL回路A12は、第一実施形態に係るPLL回路A11と同様に、入力された脈動性信号にロックして、心臓の拍動に同期した分周信号を出力することができる。さらに、PLL回路A12は、変動に対するロバスト性を有し、脈波を変動によらず安定して観察することが可能である。
[I-2-5. Effects of PLL circuit, information processing apparatus, and sample information processing apparatus]
Similarly to the PLL circuit A11 according to the first embodiment, the PLL circuit A12 according to the second embodiment can lock the input pulsation signal and output a frequency-divided signal synchronized with the heartbeat. it can. Furthermore, the PLL circuit A12 has robustness against fluctuations, and can stably observe a pulse wave regardless of fluctuations.
 また、PLL回路A12によれば、クロック信号により脈動性信号を正規化することができる。すなわち、脈動性信号をロックした際に、脈波の一波形毎に同数のクロック数を割り当てて、時間軸によらずに信号を取り扱うことが可能となる。これにより、脈拍数の異なる波形の間であっても、同じクロック信号のタイミングで信号の強度を比較することが可能となる。 Further, according to the PLL circuit A12, the pulsation signal can be normalized by the clock signal. That is, when the pulsation signal is locked, the same number of clocks can be assigned to each waveform of the pulse wave, and the signal can be handled regardless of the time axis. This makes it possible to compare signal strengths at the same clock signal timing even between waveforms having different pulse rates.
 さらに、第二実施形態に係る情報処理装置A2は、AD変換器A32、第一メモリA33、及びカウンタA25を備えることで、脈動性信号を波形番号とクロック番号に対応付けた信号強度のデータとして記録することで、クロック信号で正規化された脈波を128のクロック数からなる一定の空間に定義することができる。 Furthermore, the information processing apparatus A2 according to the second embodiment includes the AD converter A32, the first memory A33, and the counter A25, so that the pulsation signal is signal strength data associated with the waveform number and the clock number. By recording, the pulse wave normalized by the clock signal can be defined in a certain space composed of 128 clocks.
 さらに、情報処理装置A2は、脈動性信号が所定の数のクロック信号により正規化されていることで、フィードバックコムフィルタA34を利用して、脈動性信号に由来する信号を通過させて、検体の体動や発声等に起因する外乱を効果的に除くことができる。これにより、情報処理装置A2は、検出信号のS/N比(信号とノイズの比)を向上させることができる。 Furthermore, the information processing apparatus A2 allows the signal derived from the pulsating signal to pass through using the feedback comb filter A34 because the pulsating signal is normalized by a predetermined number of clock signals. Disturbances caused by body movements and utterances can be effectively removed. As a result, the information processing apparatus A2 can improve the S / N ratio (signal to noise ratio) of the detection signal.
 また、情報処理装置A2は、信号強度のデータを平均化処理部A36により平均化する。平均化された脈波波形は大きく変化せずに、変動に対して徐々に変化する応答を示すことから、情報処理装置A2によればさらに安定した脈波の表示を示す脈動性信号を得ることができる。このため、平均化により、入力される脈動性信号の一脈波に不整脈のケースのようなドロップアウトが生じたタイミングでも、通常時と同様の脈波の波形を得ることができる。また、検体が運動を行っている場合等により、入力される脈動性信号に突発的な外乱が生じる状況においても安定した脈波の波形を得ることができる。 Also, the information processing apparatus A2 averages the signal strength data by the averaging processing unit A36. Since the averaged pulse wave waveform does not change greatly and shows a response that gradually changes with respect to fluctuations, the information processing apparatus A2 can obtain a pulsation signal that indicates a more stable display of pulse waves. Can do. For this reason, the waveform of the pulse wave similar to the normal time can be obtained by averaging even at the timing when a dropout such as an arrhythmia occurs in one pulse wave of the input pulsating signal. In addition, a stable pulse wave waveform can be obtained even in a situation where sudden disturbance occurs in the input pulsatile signal due to, for example, the movement of the specimen.
 また、情報処理装置A2は、ロック検出部A41を備えることで、PLL回路A12がロックしているか否かを検出することができる。これにより、情報処理装置A2は、PLL回路A12から出力されるクロック信号がロック状態のものであって、脈動性信号の変動により乱されていない状態の拍動を表していることを判別することができる。 In addition, the information processing apparatus A2 includes the lock detection unit A41, so that it can detect whether or not the PLL circuit A12 is locked. As a result, the information processing apparatus A2 determines that the clock signal output from the PLL circuit A12 represents a pulsation in a locked state and is not disturbed by fluctuations in the pulsation signal. Can do.
 また、情報処理装置A2は、信号計数部A42を備えることで、分周信号の単位時間当たりのパルスをカウントすることができる。これにより、情報処理装置A2は、脈動性信号に変動が生じたとしても、分周信号を利用して心臓の拍動と同期した脈拍数を測定することができる。 Further, the information processing apparatus A2 includes the signal counting unit A42, so that it can count pulses per unit time of the divided signal. As a result, the information processing apparatus A2 can measure the pulse rate synchronized with the pulsation of the heart using the frequency-divided signal even if the pulsation signal varies.
 また、情報処理装置A2は、表示器A81を備えることで、PLL回路A12がロックしているか否かを表示し、単位時間当たりの分周信号のカウント値を表示することができる。これにより、情報処理装置A2は、PLL回路A12の同期状態を表示するとともに、脈拍数を表示することができる。したがって、情報処理装置A2によれば、検体は表示結果を確認して、実時間で運動の強度などを自分で調整することができる。 Further, the information processing apparatus A2 includes the display A81, thereby displaying whether or not the PLL circuit A12 is locked and displaying the count value of the divided signal per unit time. Thereby, information processing apparatus A2 can display the pulse rate while displaying the synchronous state of PLL circuit A12. Therefore, according to the information processing apparatus A2, the sample can confirm the display result and can adjust the intensity of the exercise by himself / herself in real time.
 また、情報処理装置A2は、波形表示部A43を備えることで、クロック信号により正規化されるとともに、平均化処理部A36により平均化された、一周期の波形を表示器A81に表示することができる。これにより、体動などによる本来の脈波と無関係な波形は、波形のわずかな状態変化として表示される。また、例えば検体によってまたは運動状態によって、脈拍数が少ない場合と多い場合とがあるが、このような脈波のパルス幅(時間の長さ)が異なる場合であっても、正規化された一定の平面内に一波形を表示することができる。したがって、情報処理装置A2によれば、検体は、脈動性信号に変動が加わった場合であっても、本来の脈波と同様の波形を示す、常に一周期分が表示される波形を観察することができる。また、検体は、ロック状態及び脈拍数とともに一元的に表示された脈波の波形を確認して、実時間で運動の強度などを自分で調整することができる。 Further, the information processing apparatus A2 includes the waveform display unit A43, so that the waveform of one cycle normalized by the clock signal and averaged by the averaging processing unit A36 can be displayed on the display A81. it can. Thereby, a waveform unrelated to the original pulse wave due to body movement or the like is displayed as a slight state change of the waveform. Further, for example, there are cases where the pulse rate is small or large depending on the specimen or depending on the exercise state, but even when the pulse width (time length) of such a pulse wave is different, the normalized constant One waveform can be displayed in the plane. Therefore, according to the information processing apparatus A2, the specimen observes a waveform that is always displayed for one period and shows the same waveform as the original pulse wave, even when fluctuations are added to the pulsation signal. be able to. In addition, the specimen can confirm the pulse wave waveform displayed in a unified manner together with the lock state and the pulse rate, and can adjust the intensity of exercise in real time.
 また、情報処理装置A2は、微分処理部A37を備えることで、脈動性信号を時間軸ではなく、クロック軸で定義されている波形を数値微分で微分を行うことができ、脈動性信号の基本周波数に影響を受けずに微分の動作が可能となる。これにより、情報処理装置A2は、容積脈波、速度脈波、加速度脈波の変換を正しく行うことができる。 In addition, the information processing apparatus A2 includes the differentiation processing unit A37, so that the pulsation signal can be differentiated by numerical differentiation with respect to the waveform defined on the clock axis instead of the time axis. Differential operation is possible without being affected by the frequency. Thereby, the information processing apparatus A2 can correctly convert the volume pulse wave, velocity pulse wave, and acceleration pulse wave.
 また、情報処理装置A2は、積分処理部A38を備えることで、脈動性信号を時間軸ではなく、クロック軸で定義されている波形を数値積分で積分を行うことができ、脈動性信号の基本周波数に影響を受けずに積分の動作が可能となる。これにより、情報処理装置A2は、容積脈波、速度脈波、加速度脈波の変換を正しく行うことができる。 In addition, the information processing apparatus A2 includes the integration processing unit A38, so that the pulsation signal can be integrated by numerical integration of the waveform defined on the clock axis instead of the time axis. Integration can be performed without being affected by the frequency. Thereby, the information processing apparatus A2 can correctly convert the volume pulse wave, velocity pulse wave, and acceleration pulse wave.
[I-3.第三実施形態]
 本発明の第三実施形態に係る脈拍周波数検出部A301、及びクロックジェネレータA303を備える情報処理装置A3、並びに検体情報処理装置A7について、図19を参照して説明する。以下、第三実施形態の説明においては、第三実施形態を、本実施形態とも呼ぶ。なお、後述する情報処理装置A3が備える脈拍周波数検出部A302と区別するため、第三実施形態に係る脈拍周波数検出部A301を、第一脈拍周波数検出部A301とも称する。また、第四実施形態に係る脈拍周波数検出部A302を、第二脈拍周波数検出部A302とも称する。本実施形態に係る情報処理装置A3は、一部の構成を除いて上述の第二実施形態に係る情報処理装置A2と同様に構成されており、情報処理装置A2と同様のものについては説明を省略し、同符号を用いて説明する。
[I-3. Third embodiment]
An information processing device A3 including a pulse frequency detection unit A301, a clock generator A303, and a sample information processing device A7 according to a third embodiment of the present invention will be described with reference to FIG. Hereinafter, in the description of the third embodiment, the third embodiment is also referred to as this embodiment. In addition, in order to distinguish from the pulse frequency detection part A302 with which information processing apparatus A3 mentioned later is provided, the pulse frequency detection part A301 which concerns on 3rd embodiment is also called 1st pulse frequency detection part A301. The pulse frequency detection unit A302 according to the fourth embodiment is also referred to as a second pulse frequency detection unit A302. The information processing apparatus A3 according to the present embodiment is configured in the same manner as the information processing apparatus A2 according to the second embodiment described above except for a part of the configuration. The description is omitted using the same reference numerals.
[I-3-1.情報処理装置の構成]
 情報処理装置A3の信号処理部A16は、図19に示すように、情報処理装置A2が備える二値化処理部A31、位相比較器A21、LPFA22、VCO A23b、及びロック検出部A41に替えて、AD変換器A305、第一脈拍周波数検出部A301、クロックジェネレータA303を備えている。第一脈拍周波数検出部A301は、LPFA311、微分処理部A312、タイミング検出部A313、間隔取得部A314、周波数算出部A315、及び移動平均処理部A316を有している。
[I-3-1. Configuration of information processing apparatus]
As shown in FIG. 19, the signal processing unit A16 of the information processing device A3 is replaced with a binarization processing unit A31, a phase comparator A21, an LPFA 22, a VCO A23b, and a lock detection unit A41 included in the information processing device A2. An AD converter A305, a first pulse frequency detector A301, and a clock generator A303 are provided. The first pulse frequency detection unit A301 includes an LPFA 311, a differentiation processing unit A312, a timing detection unit A313, an interval acquisition unit A314, a frequency calculation unit A315, and a moving average processing unit A316.
<AD変換器>
 AD変換器A305は、周波数補正処理部A71から入力された脈動性信号の信号強度の値をデジタルデータに変換して、第一脈拍周波数検出部A301のLPFA311に出力する。
<AD converter>
The AD converter A305 converts the signal intensity value of the pulsation signal input from the frequency correction processing unit A71 into digital data, and outputs the digital data to the LPFA 311 of the first pulse frequency detection unit A301.
<LPF>
 LPF A311は、LPFA311に入力される脈動性信号に対して、LPF処理を施す。LPF A311では、血管の脈波情報の基本波が含まれる周波数帯域の基本周波数成分を通過させて、基本周波数の高調波が含まれる周波数帯域の高調波数成分を減衰させる処理を行う。LPFA311により、脈波情報の基本周波数部分からなる脈動性信号が得られる。また、LPFA311により、脈動性信号に含まれる脈波情報以外に由来するノイズ成分が軽減される。
<LPF>
The LPF A 311 performs LPF processing on the pulsating signal input to the LPFA 311. The LPF A 311 performs processing for passing the fundamental frequency component of the frequency band including the fundamental wave of the pulse wave information of the blood vessel and attenuating the harmonic number component of the frequency band including the harmonic of the fundamental frequency. With the LPFA 311, a pulsation signal composed of the fundamental frequency portion of the pulse wave information is obtained. Further, the LPFA 311 reduces noise components derived from other than the pulse wave information included in the pulsation signal.
 LPF A311によるローパスフィルタのカットオフ周波数は、上記作用を発揮するように適宜設定できるが、カットオフ周波数の下限は、通常1.5Hz以上、好ましくは2Hz以上、より好ましくは2.5Hz以上である。また、カットオフ周波数の上限は、通常5Hz以下、好ましくは4Hz以下、より好ましくは3.5Hz以下である。ローパスフィルタのカットオフ周波数は、上記の下限よりも大きいことで、例えば検体が運動して脈拍数が増加した場合でも、基本周波数成分を通過させることができる。また、ローパスフィルタのカットオフ周波数は、上記の上限よりも小さいことで、高調波数成分を減衰させるとともに、ノイズ成分を軽減することができる。本実施形態では、LPFA311によるローパスフィルタのカットオフ周波数は、3Hzである。 The cut-off frequency of the low-pass filter by the LPF A311 can be set as appropriate so as to exhibit the above-mentioned effect, but the lower limit of the cut-off frequency is usually 1.5 Hz or more, preferably 2 Hz or more, more preferably 2.5 Hz or more. . The upper limit of the cutoff frequency is usually 5 Hz or less, preferably 4 Hz or less, more preferably 3.5 Hz or less. Since the cut-off frequency of the low-pass filter is larger than the lower limit, for example, even when the sample moves and the pulse rate increases, the fundamental frequency component can be passed. Further, the cutoff frequency of the low-pass filter is smaller than the above upper limit, so that the harmonic component can be attenuated and the noise component can be reduced. In the present embodiment, the cutoff frequency of the low-pass filter by the LPFA 311 is 3 Hz.
<微分処理部>
 微分処理部A312は、LPF A311によってローパスフィルタ処理した脈動性信号に対して、数値微分を施す。微分処理部A312により、脈動性信号の強度の経時的な変化において、その時間変化に伴う数値変化の傾きが得られる。
<Differential processing part>
The differentiation processing unit A312 performs numerical differentiation on the pulsation signal subjected to low-pass filter processing by the LPF A311. The differential processing unit A312 obtains the gradient of the numerical change accompanying the time change in the change over time of the intensity of the pulsating signal.
<タイミング検出部>
 タイミング検出部A313は、微分処理部A312によって得られた信号が0となるタイミングを検出する。タイミング検出部A313により、脈動性信号の強度の時間変化におけるピーク位置のタイミングが得られる。タイミング検出部A313は、脈動性信号の経時変化にあわせて、信号が0となるタイミングを順次検出する。
<Timing detector>
The timing detection unit A313 detects the timing when the signal obtained by the differentiation processing unit A312 becomes zero. The timing detection unit A313 obtains the timing of the peak position in the time change of the intensity of the pulsation signal. The timing detection unit A313 sequentially detects the timing when the signal becomes 0 in accordance with the temporal change of the pulsation signal.
<間隔取得部>
 間隔取得部A314は、タイミング検出部A313で検出されたタイミングのうち、隣接するタイミングの間の時間間隔を取得する。間隔取得部A314により、隣接するタイミングの間隔が、脈動性信号の隣接するピークに挟まれた脈波の1周期分の長さとして得られる。
<Interval acquisition unit>
The interval acquisition unit A314 acquires a time interval between adjacent timings among the timings detected by the timing detection unit A313. The interval acquisition unit A314 obtains the interval between adjacent timings as the length of one cycle of the pulse wave sandwiched between adjacent peaks of the pulsating signal.
<周波数算出部>
 周波数算出部A315は、間隔取得部A314で取得されたタイミングの間隔、すなわち脈波の1周期分の長さの逆数をとって、脈拍周波数を算出する。周波数算出部A315は、脈動性信号の経時変化に合わせて、脈拍周波数を順次検出する。
<Frequency calculator>
The frequency calculation unit A315 calculates the pulse frequency by taking the interval of the timing acquired by the interval acquisition unit A314, that is, the reciprocal of the length of one cycle of the pulse wave. The frequency calculation unit A315 sequentially detects the pulse frequency in accordance with the change with time of the pulsation signal.
<移動平均処理部>
 移動平均処理部A316は、周波数算出部A315で算出された複数の脈拍周波数に対して、移動平均処理を行う。本実施形態では、直近の連続する10個の脈拍周波数の値に対して平均を取る。移動平均処理部A316により、連続する複数の脈拍周波数の間で生じている変化をなだらかにした周波数が得られる。
<Moving average processing section>
The moving average processor A316 performs a moving average process on the plurality of pulse frequencies calculated by the frequency calculator A315. In the present embodiment, an average is taken with respect to the values of the last 10 consecutive pulse frequencies. The moving average processing unit A316 obtains a frequency in which changes occurring between a plurality of continuous pulse frequencies are smoothed.
<第一脈拍周波数検出部>
 第一脈拍周波数検出部A301は、上述した各機能部を備えるDSPとして構成される。第一脈拍周波数検出部A301は、入力された脈動性信号の平均化された脈拍周波数を、クロックジェネレータA303に出力する。
<First pulse frequency detector>
The first pulse frequency detection unit A301 is configured as a DSP including the above-described functional units. The first pulse frequency detector A301 outputs the averaged pulse frequency of the input pulsation signal to the clock generator A303.
<クロックジェネレータ>
 クロックジェネレータA303は、移動平均処理部A316による移動平均処理によって得られた周波数の信号が入力されて、この信号に同期した周波数のクロック信号を発振する。本実施形態に係るクロックジェネレータA303は、第一脈拍周波数検出部A301から入力された脈拍周波数の値を128倍した周波数のクロック信号を発振する。これにより、クロックジェネレータA303は、1つの脈波の波形に128個のクロック数のクロック信号を発生させる。情報処理装置A3は、このクロック信号により脈動性信号を正規化する。
<Clock generator>
The clock generator A303 receives a signal having a frequency obtained by the moving average processing by the moving average processing unit A316, and oscillates a clock signal having a frequency synchronized with this signal. The clock generator A303 according to the present embodiment oscillates a clock signal having a frequency obtained by multiplying the value of the pulse frequency input from the first pulse frequency detector A301 by 128. As a result, the clock generator A303 generates 128 clock signals in the waveform of one pulse wave. The information processing apparatus A3 normalizes the pulsation signal with this clock signal.
<分周器>
 分周器A304は、所定の分周比NでクロックジェネレータA303から発振されたクロック信号の周波数を分周して、分周した周波数を分周信号として出力する。本実施形態に係る分周器A304は、第二実施形態に係る分周器A24と同様に、分周比Nを128としている。
<Divisor>
The frequency divider A304 divides the frequency of the clock signal oscillated from the clock generator A303 by a predetermined frequency division ratio N, and outputs the divided frequency as a frequency division signal. In the frequency divider A304 according to the present embodiment, the frequency division ratio N is set to 128, similarly to the frequency divider A24 according to the second embodiment.
<検体情報処理装置>
 検体情報処理装置A7は、上述の通り構成されており、検体情報検出ユニットA101によって検出されて、情報処理装置A3に入力された脈動性信号を、ゲイン切り替え部A51を通じて、周波数特性補償部A61とAD変換器A32に入力する。周波数特性補償部A61で処理された脈動性信号は、周波数補正処理部A71及びAD変換器A305を通じて、第一脈拍周波数検出部A301に入力される。第一脈拍周波数検出部A301は、移動平均処理部A316により移動平均処理された脈拍周波数を、クロックジェネレータA303に出力する。クロックジェネレータA303は、クロック信号を、AD変換器A32とフィードバックコムフィルタA34と分周器A304に出力する。分周器A304は、分周信号を、カウンタA25と信号係数部A42に出力する。
<Sample information processing device>
The sample information processing device A7 is configured as described above, and the pulsation signal detected by the sample information detection unit A101 and input to the information processing device A3 is connected to the frequency characteristic compensation unit A61 through the gain switching unit A51. Input to AD converter A32. The pulsation signal processed by the frequency characteristic compensation unit A61 is input to the first pulse frequency detection unit A301 through the frequency correction processing unit A71 and the AD converter A305. The first pulse frequency detector A301 outputs the pulse frequency subjected to the moving average processing by the moving average processor A316 to the clock generator A303. The clock generator A303 outputs the clock signal to the AD converter A32, the feedback comb filter A34, and the frequency divider A304. The frequency divider A304 outputs the frequency-divided signal to the counter A25 and the signal coefficient unit A42.
[I-3-2.第一脈拍周波数検出部と情報処理装置の動作]
 図20に示すフローチャートを参照しながら、第一脈拍周波数検出部A301による脈拍周波数の検出の動作と、情報処理装置A3による正規化処理の動作との一例を説明する。
[I-3-2. Operation of first pulse frequency detection unit and information processing apparatus]
An example of the pulse frequency detection operation by the first pulse frequency detection unit A301 and the normalization processing operation by the information processing apparatus A3 will be described with reference to the flowchart shown in FIG.
 検体情報処理装置A7は、検体情報検出ユニットA101によって脈動性信号を検出し、脈動性信号を情報処理装置A3に入力する。AD変換器A305は、信号処理部A16に入力された脈動性信号をデジタルデータに変換を行い、第一脈波周波数検出部A301に出力する。このようにして、検体情報処理装置A7は、正規化処理を行うための脈動性信号を取得する(ステップSA40)。
 LPF A311は、情報処理装置A3に入力された脈動性信号に対して、ローパスフィルタ処理を行い、脈波情報の基本周波数部分からなる信号を出力する(ステップSA41)。
 微分処理部A312は、ローパスフィルタ処理した信号を微分して脈動性信号の変化の傾きを得る(ステップSA42)。
 タイミング検出部A313は、微分した信号の値が0となるタイミングを検出する(ステップSA43)。
 間隔取得部A314は、検出された複数のタイミングのうち隣接するタイミングの間隔を取得する(ステップSA44)。
 周波数算出部A315は、取得されたタイミングの間隔から、脈拍周波数を算出する(ステップSA45)。
 移動平均処理部A316は、脈拍周波数に対して、移動平均処理を行う(ステップSA46)。
The sample information processing device A7 detects the pulsation signal by the sample information detection unit A101, and inputs the pulsation signal to the information processing device A3. The AD converter A305 converts the pulsation signal input to the signal processing unit A16 into digital data, and outputs the digital data to the first pulse wave frequency detection unit A301. In this way, the sample information processing apparatus A7 acquires a pulsation signal for performing the normalization process (step SA40).
The LPF A 311 performs a low-pass filter process on the pulsating signal input to the information processing apparatus A3, and outputs a signal composed of the fundamental frequency portion of the pulse wave information (step SA41).
The differentiation processor A 312 differentiates the low-pass filtered signal to obtain the slope of the change in the pulsation signal (step SA42).
The timing detector A313 detects the timing at which the differentiated signal value becomes 0 (step SA43).
The interval acquisition unit A314 acquires an interval between adjacent timings among the detected plurality of timings (step SA44).
The frequency calculation unit A315 calculates a pulse frequency from the acquired timing interval (step SA45).
The moving average processor A316 performs a moving average process on the pulse frequency (step SA46).
 クロックジェネレータA303は、移動平均処理した周波数の信号が入力されて、この周波数のクロック信号を発振する(ステップSA47)。クロックジェネレータA303は、クロック信号を、分周器A304とAD変換器A32とフィードバックコムフィルタA34に出力する。
 分周器A304は、所定の分周比でクロック信号の周波数を分周して、分周信号を出力する(ステップSA48)。分周器A304は、分周信号を、カウンタA25と信号計数部A42に出力する。
The clock generator A303 receives the signal of the frequency subjected to the moving average process, and oscillates the clock signal of this frequency (step SA47). The clock generator A303 outputs the clock signal to the frequency divider A304, the AD converter A32, and the feedback comb filter A34.
The frequency divider A304 divides the frequency of the clock signal by a predetermined frequency division ratio and outputs a frequency divided signal (step SA48). The frequency divider A304 outputs the frequency-divided signal to the counter A25 and the signal counting unit A42.
 上述したステップSA41~ステップSA46により、情報処理装置A3が取得した脈動性信号の脈拍周波数が出力される。さらに、ステップSA47によって、脈波の周波数に同期したクロック信号が出力される。
 以降の情報処理装置A3による、分周信号、及びクロック信号を用いた処理は、情報処理装置A2のステップSA26~ステップSA33による処理と同様に行うことができる。
Through steps SA41 to SA46 described above, the pulse frequency of the pulsation signal acquired by the information processing apparatus A3 is output. In step SA47, a clock signal synchronized with the pulse wave frequency is output.
Subsequent processing using the frequency-divided signal and the clock signal by the information processing device A3 can be performed in the same manner as the processing by Step SA26 to Step SA33 of the information processing device A2.
[I-3-3.情報処理装置、及び検体情報処理装置の作用および効果]
 第三実施形態に係る情報処理装置A3及び検体情報処理装置A7によれば、前記第二実施形態で得られる効果に加えて、以下に記載の効果を奏する。
 本実施形態に係る情報処理装置A3は、第一脈拍周波数検出部A301を備えることで、入力された脈動性信号の脈拍周波数を検出する。このとき、脈拍周波数は移動平均処理を受けていることから、入力される脈動性信号に変動が生じる状況においても、安定した脈波の周波数を得ることができる。さらに、情報処理装置A3は、クロックジェネレータA303を備えることで、脈拍周波数に応じたクロック信号が出力される。これにより、心臓の拍動に同期したクロック信号を出力することができる。さらに、クロック信号によって脈動性信号を正規化することで、脈波の一波形毎に同数のクロック数を割り当てて、時間軸によらずに信号を取り扱うことが可能となる。
[I-3-3. Action and effect of information processing apparatus and sample information processing apparatus]
According to the information processing device A3 and the sample information processing device A7 according to the third embodiment, in addition to the effects obtained in the second embodiment, the following effects can be obtained.
The information processing apparatus A3 according to the present embodiment includes the first pulse frequency detection unit A301 to detect the pulse frequency of the input pulsation signal. At this time, since the pulse frequency has been subjected to moving average processing, a stable pulse wave frequency can be obtained even in a situation in which fluctuation occurs in the input pulsation signal. Furthermore, the information processing apparatus A3 includes a clock generator A303, so that a clock signal corresponding to the pulse frequency is output. As a result, a clock signal synchronized with the heart beat can be output. Furthermore, by normalizing the pulsating signal with the clock signal, the same number of clocks can be assigned to each waveform of the pulse wave, and the signal can be handled regardless of the time axis.
[I-4.第四実施形態]
 本発明の第四実施形態に係る脈拍周波数検出部A302、及びクロックジェネレータA303を備える情報処理装置A4、並びに検体情報処理装置A8について、図21を参照して説明する。以下、第四実施形態の説明においては、第四実施形態を、本実施形態とも呼ぶ。本実施形態に係る情報処理装置A4は、一部の構成を除いて上述の第二実施形態に係る情報処理装置A2と同様に構成されており、情報処理装置A2と同様のものについては説明を省略し、同符号を用いて説明する。
[I-4. Fourth embodiment]
An information processing device A4 including a pulse frequency detection unit A302, a clock generator A303, and a sample information processing device A8 according to a fourth embodiment of the present invention will be described with reference to FIG. Hereinafter, in the description of the fourth embodiment, the fourth embodiment is also referred to as this embodiment. The information processing apparatus A4 according to the present embodiment is configured in the same manner as the information processing apparatus A2 according to the second embodiment described above except for a part of the configuration. The description is omitted using the same reference numerals.
[I-4-1.情報処理装置の構成]
 情報処理装置A4の信号処理部A17は、図21に示すように、情報処理装置A2が備える二値化処理部A31、位相比較器A21、LPFA22、VCO A23b、及びロック検出部A41に替えて、AD変換器A305、第二脈拍周波数検出部A302、クロックジェネレータA303を備えている。第二脈拍周波数検出部A302は、LPFA321、周波数解析部A322、ピーク検出部A323、周波数取得部A324、及び移動平均処理部A325を有している。
[I-4-1. Configuration of information processing apparatus]
As shown in FIG. 21, the signal processing unit A17 of the information processing device A4 is replaced with a binarization processing unit A31, a phase comparator A21, an LPFA 22, a VCO A23b, and a lock detection unit A41 included in the information processing device A2. An AD converter A305, a second pulse frequency detector A302, and a clock generator A303 are provided. The second pulse frequency detection unit A302 includes an LPFA 321, a frequency analysis unit A322, a peak detection unit A323, a frequency acquisition unit A324, and a moving average processing unit A325.
<AD変換器>
 AD変換器A305は、周波数補正処理部A71から入力された脈動性信号の信号強度の値をデジタルデータに変換して、第二脈拍周波数検出部A302のLPFA321に出力する。
<AD converter>
The AD converter A305 converts the signal intensity value of the pulsation signal input from the frequency correction processing unit A71 into digital data, and outputs the digital data to the LPFA 321 of the second pulse frequency detection unit A302.
<LPF>
 LPF A321は、第三実施形態に係るLPFA321と同様に、入力される脈動性信号に対してLPF処理を施し、脈波情報の基本周波数部分からなる信号を得る。
<LPF>
The LPF A 321 performs LPF processing on the input pulsation signal, similarly to the LPFA 321 according to the third embodiment, and obtains a signal composed of the fundamental frequency portion of the pulse wave information.
<周波数解析部>
 周波数解析部A322は、LPF A321によってローパスフィルタ処理した脈動性信号に対して、周波数解析を施す。周波数解析部A322により、脈動性信号は、周波数領域の脈波のスペクトルに変換される。周波数解析としては、例えば、FFT(Fast Fourier Transform;高速フーリエ解析)、MEM(Maximum Entropy Method;最大エントロピー法)、もしくは自己相関解析、中でもAR(Auto-regressive;自己回帰法)を用いることができる。または、広義にはWavelet法を用いることができる。周波数解析は、所定の長さの時間の脈動性信号に対して、所定の間隔分の時間をずらして行う。
<Frequency analysis unit>
The frequency analysis unit A322 performs frequency analysis on the pulsating signal subjected to the low-pass filter processing by the LPF A321. The frequency analysis unit A322 converts the pulsation signal into a spectrum of pulse waves in the frequency domain. As frequency analysis, for example, FFT (Fast Fourier Transform), MEM (Maximum Entropy Method), or autocorrelation analysis, especially AR (Auto-regressive) can be used. . Alternatively, the Wavelet method can be used in a broad sense. The frequency analysis is performed by shifting a time corresponding to a predetermined interval with respect to a pulsating signal having a predetermined length of time.
 周波数解析部A322による周波数解析を行う長さ及び間隔は適宜設定できるが、周波数解析の長さは、サンプリング数の確保と信号処理の負荷との関係から、通常8秒以上30秒以下、好ましくは12秒以上24秒以下、より好ましくは14秒以上18秒以下である。また、周波数解析の間隔は、第二脈拍周波数検出部A302によって脈拍周波数が得られる間隔に対応し、脈拍周波数の変動に追従する観点から、通常3秒以下、好ましくは2秒以下、より好ましくは1秒以下である。本実施形態では、16秒の長さの脈動性信号に対して周波数解析を行い、次に1秒の間隔を空けた後の16秒の長さの周波数解析を行う。以降、同様にして1秒の間隔ずつ時間をずらして周波数解析を行う。周波数解析部A322により、16秒の長さの脈波信号の1秒おきのパワースペクトル(脈波スペクトル)が得られる。 The length and interval for performing the frequency analysis by the frequency analysis unit A322 can be set as appropriate, but the length of the frequency analysis is usually from 8 seconds to 30 seconds, preferably from the relationship between securing the number of samplings and the load of signal processing, preferably It is 12 seconds or more and 24 seconds or less, more preferably 14 seconds or more and 18 seconds or less. The frequency analysis interval corresponds to the interval at which the pulse frequency is obtained by the second pulse frequency detection unit A302, and is normally 3 seconds or less, preferably 2 seconds or less, more preferably from the viewpoint of following the fluctuation of the pulse frequency. 1 second or less. In this embodiment, a frequency analysis is performed on a pulsating signal having a length of 16 seconds, and then a frequency analysis having a length of 16 seconds after an interval of 1 second is performed. Thereafter, similarly, frequency analysis is performed by shifting the time by 1 second intervals. The frequency analysis unit A322 obtains a power spectrum (pulse wave spectrum) every other second of a pulse wave signal having a length of 16 seconds.
<ピーク検出部>
 ピーク検出部A323は、周波数解析部A322で得られた脈波スペクトルから、スペクトル強度が最大のピークを検出する。上述したLPFA321により、脈動性信号は脈波情報の基本周波数部分からなる信号となっているため、ピーク検出部A323によって検出されるピークの周波数は、脈動性信号の脈拍周波数を表すことになる。ピーク検出部A323は、周波数解析部A322によって得られる1秒間隔の脈波スペクトルそれぞれについて、最大のピークを順次検出する。
<Peak detection unit>
The peak detector A323 detects the peak having the maximum spectrum intensity from the pulse wave spectrum obtained by the frequency analyzer A322. Since the pulsating signal is a signal composed of the fundamental frequency portion of the pulse wave information by the LPFA 321 described above, the peak frequency detected by the peak detecting unit A323 represents the pulsating frequency of the pulsating signal. The peak detector A323 sequentially detects the maximum peak for each one-second pulse wave spectrum obtained by the frequency analyzer A322.
<周波数取得部>
 周波数取得部A324は、ピーク検出部A323で検出された最大ピーク位置の周波数を読み込むことで、脈拍周波数を取得する。周波数取得部A324による脈拍周波数の取得も、1秒間隔の脈波スペクトルから検出されたそれぞれのピークについて行われる。
<Frequency acquisition unit>
The frequency acquisition unit A324 acquires the pulse frequency by reading the frequency at the maximum peak position detected by the peak detection unit A323. The acquisition of the pulse frequency by the frequency acquisition unit A324 is also performed for each peak detected from the pulse wave spectrum at intervals of 1 second.
<移動平均処理部>
 移動平均処理部A325は、周波数取得部A324で取得された複数の脈拍周波数に対して、移動平均処理を行う。本実施形態では、直近の連続する10個の脈拍周波数の値に対して平均を取る。移動平均処理部A325により、連続する複数の脈拍周波数の変化をなだらかにした周波数が、1秒間隔で得られる。
<Moving average processing section>
The moving average processing unit A325 performs a moving average process on the plurality of pulse frequencies acquired by the frequency acquisition unit A324. In the present embodiment, an average is taken with respect to the values of the last 10 consecutive pulse frequencies. The moving average processing unit A325 obtains a frequency in which changes in a plurality of continuous pulse frequencies are smoothed at intervals of 1 second.
<第二脈拍周波数検出部>
 第二脈拍周波数検出部A302は、上述した各機能部を備えるDSPとして構成される。第二脈拍周波数検出部A302は、入力された脈動性信号の平均化された脈拍周波数を、クロックジェネレータA303に出力する。
<Second pulse frequency detector>
The second pulse frequency detection unit A302 is configured as a DSP including the above-described functional units. The second pulse frequency detector A302 outputs an averaged pulse frequency of the input pulsation signal to the clock generator A303.
<クロックジェネレータ>
 クロックジェネレータA303は、移動平均処理部A325による移動平均処理によって得られた周波数の信号が入力されて、第三実施形態に係るクロックジェネレータA303と同様に、この信号に同期した周波数のクロック信号を発振する。情報処理装置A4は、このクロック信号により脈動性信号を正規化する。
<Clock generator>
The clock generator A303 receives a signal having a frequency obtained by the moving average processing by the moving average processing unit A325, and oscillates a clock signal having a frequency synchronized with this signal, similarly to the clock generator A303 according to the third embodiment. To do. The information processing apparatus A4 normalizes the pulsation signal based on this clock signal.
<検体情報処理装置>
 検体情報処理装置A8は、上述の通り構成されており、検体情報検出ユニットA101によって検出されて、情報処理装置A4に入力された脈動性信号を、ゲイン切り替え部A51を通じて、周波数特性補償部A61とAD変換器A32に入力する。周波数特性補償部A61で処理された脈動性信号は、周波数補正処理部A71及びAD変換器A305を通じて、第二脈拍周波数検出部A302に入力される。第二脈拍周波数検出部A302は、移動平均処理部A325により移動平均処理された脈拍周波数を、クロックジェネレータA303に出力する。クロックジェネレータA303は、クロック信号を、AD変換器A32とフィードバックコムフィルタA34と分周器A304に出力する。分周器A304は、分周信号を、カウンタA25と信号係数部A42に出力する。
<Sample information processing device>
The sample information processing device A8 is configured as described above, and the pulsation signal detected by the sample information detection unit A101 and input to the information processing device A4 is connected to the frequency characteristic compensation unit A61 through the gain switching unit A51. Input to AD converter A32. The pulsation signal processed by the frequency characteristic compensation unit A61 is input to the second pulse frequency detection unit A302 through the frequency correction processing unit A71 and the AD converter A305. The second pulse frequency detection unit A302 outputs the pulse frequency subjected to the moving average processing by the moving average processing unit A325 to the clock generator A303. The clock generator A303 outputs the clock signal to the AD converter A32, the feedback comb filter A34, and the frequency divider A304. The frequency divider A304 outputs the frequency-divided signal to the counter A25 and the signal coefficient unit A42.
[I-4-2.第二脈拍周波数検出部と情報処理装置の動作]
 図22に示すフローチャートを参照しながら、第二脈拍周波数検出部A302による脈拍周波数の検出の動作と、情報処理装置A4による正規化処理の動作との一例を説明する。
[I-4-2. Operation of second pulse frequency detection unit and information processing apparatus]
An example of the pulse frequency detection operation by the second pulse frequency detection unit A302 and the normalization processing operation by the information processing apparatus A4 will be described with reference to the flowchart shown in FIG.
 検体情報処理装置A8は、検体情報検出ユニットA101によって脈動性信号を検出し、脈動性信号を情報処理装置A4に入力する。AD変換器A305は、信号処理部A17に入力された脈動性信号をデジタルデータに変換を行い、第二脈波周波数検出部A302に出力する。このようにして、検体情報処理装置A8は、正規化処理を行うための脈動性信号を取得する(ステップSA60)。
 LPF A321は、情報処理装置A4に入力された脈動性信号に対して、ローパスフィルタ処理を行い、脈波情報の基本周波数部分からなる信号を出力する(ステップSA61)。
 周波数解析部A322は、ローパスフィルタ処理した信号に対して、周波数解析を行い、脈波のパワースペクトルを得る(ステップSA62)。
 ピーク検出部A323は、脈波のパワースペクトルから、スペクトル強度が最大のピークを検出する(ステップSA63)。
 周波数取得部A324は、検出された最大のピークから脈拍周波数を取得する(ステップSA64)。
 移動平均処理部A325は、脈拍周波数に対して、移動平均処理を行う(ステップSA65)。
The sample information processing device A8 detects the pulsation signal by the sample information detection unit A101, and inputs the pulsation signal to the information processing device A4. The AD converter A305 converts the pulsation signal input to the signal processing unit A17 into digital data, and outputs the digital data to the second pulse wave frequency detection unit A302. In this way, the sample information processing apparatus A8 acquires a pulsation signal for performing the normalization process (step SA60).
The LPF A321 performs a low-pass filter process on the pulsating signal input to the information processing apparatus A4, and outputs a signal composed of the fundamental frequency portion of the pulse wave information (step SA61).
The frequency analysis unit A322 performs frequency analysis on the low-pass filtered signal to obtain a pulse wave power spectrum (step SA62).
The peak detector A323 detects the peak having the maximum spectrum intensity from the power spectrum of the pulse wave (step SA63).
The frequency acquisition unit A324 acquires the pulse frequency from the detected maximum peak (step SA64).
The moving average processing unit A325 performs moving average processing on the pulse frequency (step SA65).
 クロックジェネレータA303は、移動平均処理した周波数の信号が入力されて、クロック信号を発振する(ステップSA66)。クロックジェネレータA303は、クロック信号を、分周器A304とAD変換器A32とフィードバックコムフィルタA34に出力する。
 分周器A304は、所定の分周比でクロック信号の周波数を分周して、分周信号を出力する(ステップSA67)。分周器A304は、分周信号を、カウンタA25と信号計数部A42に出力する。
The clock generator A303 receives the signal of the frequency subjected to the moving average process and oscillates the clock signal (step SA66). The clock generator A303 outputs the clock signal to the frequency divider A304, the AD converter A32, and the feedback comb filter A34.
The frequency divider A304 divides the frequency of the clock signal by a predetermined frequency dividing ratio and outputs a frequency divided signal (step SA67). The frequency divider A304 outputs the frequency-divided signal to the counter A25 and the signal counting unit A42.
 上述したステップSA61~ステップSA65により、情報処理装置A4が取得した脈動性信号の脈拍周波数が出力される。さらに、ステップSA66によって、脈波の周波数に同期したクロック信号が出力される。
 以降の情報処理装置A4による、分周信号、及びクロック信号を用いた処理は、情報処理装置A2のステップSA26~ステップSA33による処理と同様に行うことができる。
In steps SA61 to SA65 described above, the pulse frequency of the pulsation signal acquired by the information processing apparatus A4 is output. In step SA66, a clock signal synchronized with the pulse wave frequency is output.
Subsequent processing using the frequency-divided signal and the clock signal by the information processing device A4 can be performed in the same manner as the processing by Step SA26 to Step SA33 of the information processing device A2.
[I-4-3.情報処理装置、及び検体情報処理装置の作用および効果]
 第四実施形態に係る情報処理装置A4及び検体情報処理装置A8によれば、前記第二実施形態で得られる効果に加えて、以下に記載の効果を奏する。
 本実施形態に係る情報処理装置A4は、第二脈拍周波数検出部A302を備えることで、入力された脈動性信号の脈拍周波数を検出する。このとき、脈拍周波数は移動平均処理を受けていることから、入力される脈動性信号に変動が生じる状況においても、安定した脈波の周波数を得ることができる。さらに、情報処理装置A4は、クロックジェネレータA303を備えることで、脈拍周波数に応じたクロック信号が出力される。これにより、心臓の拍動に同期したクロック信号を出力することができる。またさらに、クロック信号によって脈動性信号を正規化することで、脈波の一波形毎に同数のクロック数を割り当てて、時間軸によらずに信号を取り扱うことが可能となる。
[I-4-3. Action and effect of information processing apparatus and sample information processing apparatus]
According to the information processing device A4 and the sample information processing device A8 according to the fourth embodiment, in addition to the effects obtained in the second embodiment, the following effects can be obtained.
The information processing apparatus A4 according to the present embodiment includes the second pulse frequency detection unit A302 to detect the pulse frequency of the input pulsation signal. At this time, since the pulse frequency has been subjected to moving average processing, a stable pulse wave frequency can be obtained even in a situation in which fluctuation occurs in the input pulsation signal. Furthermore, the information processing apparatus A4 includes a clock generator A303, so that a clock signal corresponding to the pulse frequency is output. As a result, a clock signal synchronized with the heart beat can be output. Furthermore, by normalizing the pulsating signal with the clock signal, the same number of clocks can be assigned to each waveform of the pulse wave, and the signal can be handled regardless of the time axis.
[I-5.その他]
[I-5-1.装置の構成について]
<情報処理装置について>
 上記の実施形態では、情報処理装置A1~A4としてスマートフォンを例示したが、情報処理装置A1~A4はこれに限るものではない。例えば、タブレット型の端末(タブレットPC)、デスクトップパソコン、ノートパソコン等、またはその他の測定機器、表示機器にも適用できる。
[I-5. Others]
[I-5-1. About device configuration]
<About information processing equipment>
In the above embodiment, smartphones are exemplified as the information processing apparatuses A1 to A4. However, the information processing apparatuses A1 to A4 are not limited thereto. For example, the present invention can be applied to a tablet-type terminal (tablet PC), a desktop personal computer, a notebook personal computer, or other measuring equipment or display equipment.
<信号の出力について>
 上記の実施形態では、VCO A23a、位相比較器A21、平均化処理部A36、微分処理部A37、及び積分処理部A38からの出力について、ロック検出部A41、信号計数部A42、及び波形表示部A43を介して、表示器A81に表示にする場合について説明した。VCOA23a、位相比較器A21、平均化処理部A36、微分処理部A37、及び積分処理部A38からの信号の出力はこれに限定されず、情報処理装置A1~A4の内部での信号処理に利用してもよく、または記録媒体に保存したり、もしくは無線又は有線を利用したりすることで、外部の情報処理装置に情報を送って信号処理に供してもよい。
<Signal output>
In the above embodiment, the lock detection unit A41, the signal counting unit A42, and the waveform display unit A43 for the outputs from the VCO A 23a, the phase comparator A21, the averaging processing unit A36, the differentiation processing unit A37, and the integration processing unit A38. The case where display is performed on the display A 81 has been described. The output of signals from the VCOA 23a, the phase comparator A21, the averaging processing unit A36, the differentiation processing unit A37, and the integration processing unit A38 is not limited to this, and is used for signal processing inside the information processing devices A1 to A4. Alternatively, the information may be sent to an external information processing apparatus for signal processing by being stored in a recording medium or using wireless or wired communication.
<表示器について>
 上記の実施形態においては、情報処理装置A1~A4に備えられるディスプレイの表示画面が表示器A81として機能する場合について説明した。表示器A81の構成はこれに限定されず、例えば、情報処理装置A1~A4に備えられる緑色と赤色のLEDランプであって、これらの点灯によって、PLL回路A11,A12のロック状態を表示してもよい。または、表示器A81は、情報処理装置A1~A4に備えられる複数の7セグメントディスプレイにより構成され、これらの点灯によりクロック信号のカウント値を表示してもよい。また、波形表示部A43からの出力を、液晶ディスプレイ、CRT、プリンタ、オシロスコープ、又はペンレコーダ等の外部の波形表示器に入力することで波形の表示を行ってもよい。
<About the display>
In the above embodiment, the case where the display screen of the display provided in the information processing devices A1 to A4 functions as the display A81 has been described. The configuration of the display A81 is not limited to this. For example, green and red LED lamps provided in the information processing apparatuses A1 to A4, which indicate the locked state of the PLL circuits A11 and A12 by lighting them. Also good. Alternatively, the display A81 may be composed of a plurality of 7-segment displays provided in the information processing apparatuses A1 to A4, and display the count value of the clock signal by lighting them. The waveform may be displayed by inputting the output from the waveform display unit A43 to an external waveform display device such as a liquid crystal display, a CRT, a printer, an oscilloscope, or a pen recorder.
[I-5-2.信号処理について]
<信号処理部の構成について>
 上記の実施形態においては、ゲイン切り替え部A51、周波数特性補償部A61、周波数補正処理部A71、PLL回路A11,A12による処理をアナログ回路による処理について説明したが、デジタル回路、例えばDSPを含む回路とアナログ回路とを組み合わせたり、演算処理装置(CPU)やDSPを組み合わせたりして、このデジタル回路を含む回路により信号を処理する構成としてもよい。または、情報処理装置A1~A4が備えるメモリ上に信号処理用のアプリケーションソフトが展開されてCPUにより実行されることで、ゲイン切り替え手段、周波数特性補償手段、周波数補正処理手段、PLLとして機能するようにしてもよい。
[I-5-2. About signal processing]
<Configuration of signal processing unit>
In the above-described embodiment, the processing by the gain switching unit A51, the frequency characteristic compensation unit A61, the frequency correction processing unit A71, and the PLL circuits A11 and A12 has been described as the processing by the analog circuit, but the digital circuit, for example, a circuit including a DSP A combination of an analog circuit or an arithmetic processing unit (CPU) or a DSP may be used to process a signal by a circuit including this digital circuit. Alternatively, the signal processing application software is developed on the memory included in the information processing apparatuses A1 to A4 and executed by the CPU, so that it functions as a gain switching unit, a frequency characteristic compensation unit, a frequency correction processing unit, and a PLL. It may be.
 また、上記の実施形態においては、DSPがフィードバックコムフィルタA34の処理を行う場合について説明したが、フィードバックコムフィルタA34は、マイクロコンピュータと第一メモリA33及び第二メモリA35の間の操作により実行されてもよい。 In the above embodiment, the case where the DSP performs the processing of the feedback comb filter A34 has been described. However, the feedback comb filter A34 is executed by an operation between the microcomputer and the first memory A33 and the second memory A35. May be.
 また、上記の実施形態においては、PLL回路A12、またはDSPである第一脈拍周波数検出部A301もしくは第二脈拍周波数検出部A302、及びクロックジェネレータA303によって脈動性信号を正規化する場合について説明した。これら脈動性信号の正規化を行う各手段(正規化手段)による処理は、情報処理装置A1~A4が備えるメモリ上に信号処理用のアプリケーションソフトが展開されてCPUにより実行されることで、正規化手段として機能するようにしてもよい。情報処理装置A1~A4は、脈動性信号をAD変換器によりデジタルデータに変換して、この脈動性信号のデジタルデータを取得して、脈動性信号を正規化する処理を実行する。 In the above embodiment, the case where the pulsation signal is normalized by the PLL circuit A12 or the first pulse frequency detection unit A301 or the second pulse frequency detection unit A302 which is a DSP and the clock generator A303 has been described. The processing by each means (normalizing means) for normalizing these pulsating signals is performed by developing application software for signal processing on the memory provided in the information processing apparatuses A1 to A4 and executing it by the CPU. It may be made to function as a conversion means. The information processing apparatuses A1 to A4 convert the pulsating signal into digital data using an AD converter, acquire the digital data of the pulsating signal, and execute processing for normalizing the pulsating signal.
 この場合、情報処理装置A1~A4内部の記憶装置は、CPUに実行させることで、PLL回路A12、または第一脈拍周波数検出部A301及び第二脈拍周波数検出部A302、及びクロックジェネレータA303としてそれぞれ機能させるプログラムを保存する。情報処理装置A1~A4のCPUは、記憶装置に格納されたプログラムを読み出して実行することにより、種々の機能を実現する。そして、CPUが、これらのプログラムを実行することにより、信号処理部A15~A17の正規化手段としてそれぞれ機能する。このようにして、プログラムは、コンピュータA2~A4に、脈動性信号を取得して、この脈動性信号を正規化する処理を実行させる。 In this case, the storage devices in the information processing devices A1 to A4 function as the PLL circuit A12, the first pulse frequency detection unit A301, the second pulse frequency detection unit A302, and the clock generator A303, respectively, by causing the CPU to execute them. Save the program to be executed. The CPUs of the information processing devices A1 to A4 realize various functions by reading out and executing programs stored in the storage device. The CPU functions as normalizing means of the signal processing units A15 to A17 by executing these programs. In this way, the program causes the computers A2 to A4 to execute processing for acquiring the pulsating signal and normalizing the pulsating signal.
 このとき、第一脈拍周波数検出部A301は、情報処理装置A3内部のCPUで演算処理される機能部位であって、各機能は個別のプログラムとして構成される。すなわち、第一脈拍周波数検出部A301は、LPF手段、微分処理手段、タイミング検出手段、間隔取得手段、周波数算出手段、及び移動平均処理手段として機能する。 At this time, the first pulse frequency detection unit A301 is a functional part that is arithmetically processed by the CPU inside the information processing apparatus A3, and each function is configured as an individual program. That is, the first pulse frequency detection unit A301 functions as LPF means, differentiation processing means, timing detection means, interval acquisition means, frequency calculation means, and moving average processing means.
 また、第二脈拍周波数検出部A302は、情報処理装置A4内部のCPUで演算処理される機能部位であって、各機能は個別のプログラムとして構成される。すなわち、第二脈拍周波数検出部A302は、LPF手段、周波数解析手段、ピーク検出手段、周波数取得手段、及び移動平均処理手段として機能する。 The second pulse frequency detection unit A302 is a functional part that is arithmetically processed by the CPU inside the information processing apparatus A4, and each function is configured as an individual program. That is, the second pulse frequency detection unit A302 functions as LPF means, frequency analysis means, peak detection means, frequency acquisition means, and moving average processing means.
 なお、これらの各機能手段としての機能を実現するためのプログラムは、例えばフレキシブルディスク,CD(CD-ROM,CD-R,CD-RW等),DVD(DVD-ROM,DVD-RAM,DVD-R,DVD+R,DVD-RW,DVD+RW,HD DVD等),ブルーレイディスク,磁気ディスク,光ディスク,光磁気ディスク等の、コンピュータ読取可能な記録媒体に記録された形態で提供される。そして、情報処理装置A1~A4はその記録媒体からプログラムを読み取って内部記憶装置または外部記憶装置に転送し格納して用いる。又、そのプログラムを、例えば磁気ディスク,光ディスク,光磁気ディスク等の図示しない記憶装置(記録媒体)に記録しておき、その記憶装置から通信経路を介して情報処理装置A1~A4に提供するようにしてもよい。 The programs for realizing the functions as these functional means are, for example, a flexible disk, CD (CD-ROM, CD-R, CD-RW, etc.), DVD (DVD-ROM, DVD-RAM, DVD-). R, DVD + R, DVD-RW, DVD + RW, HD DVD, etc.), Blu-ray disc, magnetic disc, optical disc, magneto-optical disc, and the like. The information processing devices A1 to A4 read the program from the recording medium, transfer it to the internal storage device or the external storage device, and use it. The program is recorded in a storage device (recording medium) (not shown) such as a magnetic disk, an optical disk, or a magneto-optical disk, and is provided to the information processing apparatuses A1 to A4 via the communication path. It may be.
 また、上記の実施形態において、情報処理装置A3,A4は、AD変換器A305、及びDSPとして構成された脈拍周波数検出部A301,A302を用いて、入力された脈動性信号をデジタル信号に変換して処理する場合について説明した。脈動性信号の処理はこれに限定されず、情報処理装置A3,A4がAD変換器A305を備えずに、脈拍周波数検出部A301,A302の各機能部位がアナログ回路により構成されていてもよい。このとき、情報処理装置A3,A4は、入力された脈動性信号をアナログ信号の形式で処理を行う。 In the above embodiment, the information processing apparatuses A3 and A4 convert the input pulsation signal into a digital signal using the AD converter A305 and the pulse frequency detection units A301 and A302 configured as a DSP. The case of processing is described. The processing of the pulsation signal is not limited to this, and the information processing devices A3 and A4 may not include the AD converter A305, and each functional part of the pulse frequency detection units A301 and A302 may be configured by an analog circuit. At this time, the information processing apparatuses A3 and A4 process the input pulsation signal in the form of an analog signal.
<PLLについて>
 上記の実施形態においては、PLL回路A11,A12が2次系のPLLである場合について説明したが、PLL回路A11,A12はこれに限定されず、2次系以上の高次のループであればよい。これによりPLL回路A11,A12は、入力する脈動性信号の脈波の位相が突然にシフトした場合であっても、一定時間内に位相差ゼロでロックすることができる。
<About PLL>
In the above-described embodiment, the case where the PLL circuits A11 and A12 are secondary system PLLs has been described. However, the PLL circuits A11 and A12 are not limited thereto, and may be any higher-order loop than the secondary system. Good. Thus, the PLL circuits A11 and A12 can lock with a phase difference of zero within a certain time even when the phase of the pulse wave of the input pulsating signal is suddenly shifted.
<VCOについて>
 上記の実施形態においては、VCO A23bの発振周波数が128Hzを中心として変動するよう設計されており、分周器A24の分周比Nが128である場合について説明したが、クロック信号の単位時間あたりのクロック数及び分周比はこれに限定されず適宜変更してもよい。例えば、クロック数及び分周比を256、512、または1024としてもよい。また、分周器A24は、VCOA23bの発振周波数にあわせて分周比Nを変更できるプログラマブル分周器であってもよい。このとき、クロック数が多いほど、PLLの特性を決めるループゲインがその分低下することになるためにいわゆるロックレンジが小さくなる傾向にあるが、波形判定の精度が高くなる点からは好ましい。また、クロックが小さいほど、低周波でのVCOを安定に発振させるよう制御が必要となる傾向にあるが、ループゲインの低下がない点からは好ましい。
<About VCO>
In the above embodiment, the case where the oscillation frequency of the VCO A 23b is designed to vary around 128 Hz and the frequency division ratio N of the frequency divider A24 is 128 has been described. The number of clocks and the frequency division ratio are not limited to this and may be changed as appropriate. For example, the number of clocks and the frequency division ratio may be 256, 512, or 1024. The frequency divider A24 may be a programmable frequency divider that can change the frequency division ratio N in accordance with the oscillation frequency of the VCOA 23b. At this time, as the number of clocks increases, the loop gain that determines the characteristics of the PLL decreases accordingly, so that the so-called lock range tends to decrease. However, this is preferable from the viewpoint of increasing the accuracy of waveform determination. Further, as the clock is smaller, control tends to be required to stably oscillate the VCO at a low frequency, but this is preferable from the viewpoint of no decrease in loop gain.
<PLL回路及びAD変換器に入力される信号について>
 上記の実施形態においては、速度脈波の信号を二値化処理部A31、AD変換器A32、またはAD変換器A305に出力する場合について説明したが、二値化処理部A31、AD変換器A32、またはAD変換器A305に入力される信号は、容積脈波、速度脈波、または加速度脈波のいずれの脈波の信号でもよい。
<Signals input to PLL circuit and AD converter>
In the above embodiment, the case where the velocity pulse wave signal is output to the binarization processing unit A31, the AD converter A32, or the AD converter A305 has been described. However, the binarization processing unit A31 and the AD converter A32 are output. Alternatively, the signal input to the AD converter A305 may be a pulse wave signal of a volume pulse wave, a velocity pulse wave, or an acceleration pulse wave.
 また、上記の実施形態においては、二値化処理部A31により二値化した信号をPLL回路A11,A12に入力した場合について説明したが、二値化を行わずに、脈波の波形そのままの信号を入力してもよい。 In the above-described embodiment, the case where the signal binarized by the binarization processing unit A31 is input to the PLL circuits A11 and A12 has been described. A signal may be input.
<平均化処理部について>
 上記の実施形態においては、平均化処理部A36が、10個の波形分の信号強度の平均値を出力する場合について説明したが、平均値を算出する個数はこれに限定されず、適宜変更してよい。平均化する信号の数が多い場合には、信号の変化に対して緩やかに応答する特性を示す信号を得ることができる。これは、検体が運動をしている状態など、信号に対して変動が大きい場合に適している。平均化する信号の数が少ない場合には、信号の変化に対して追従しやすい特性を示す信号を得ることができる。これは、検体が安静にしている状態など、脈波の変化を観察したい場合に適している。または、平均化処理部A36による平均化を行わずに、一つの波形分の信号の出力を行ってもよい。
<About the averaging processor>
In the above embodiment, the case has been described in which the averaging processing unit A36 outputs the average value of the signal intensity of 10 waveforms. However, the number of average values to be calculated is not limited to this, and may be changed as appropriate. It's okay. When the number of signals to be averaged is large, it is possible to obtain a signal having a characteristic that responds slowly to changes in the signal. This is suitable when there is a large variation with respect to the signal, such as when the specimen is moving. When the number of signals to be averaged is small, it is possible to obtain a signal that exhibits characteristics that easily follow changes in the signal. This is suitable when it is desired to observe changes in the pulse wave, such as when the specimen is at rest. Alternatively, a signal corresponding to one waveform may be output without performing averaging by the averaging processing unit A36.
<信号処理の順序及び内容について>
 上記の実施形態においては、第一メモリA33に記録された脈動性信号の信号強度を、フィードバックコムフィルタA34が読み出してフィルタ処理を行い、フィルタ処理後の信号強度のデータを第二メモリA35に記録する場合について説明した。さらに、第二メモリA35に記録された信号強度を、平均化処理部A36、微分処理部A37、及び積分処理部A38がそれぞれ読み出して処理する場合について説明した。脈動性信号の処理の順序及び内容はこれに限定されず、適宜変更して行ってよい。例えば、フィードバックコムフィルタA34によりフィルタ処理を行わずに、第一メモリA33に記録された脈動性信号の信号強度を、平均化処理部A36、微分処理部A37、及び積分処理部A38がそれぞれ読み出して処理してもよい。また、平均化処理部A36によって算出された平均値の信号強度について、微分処理部A37、及び積分処理部A38がそれぞれ処理してもよい。
<Signal processing sequence and contents>
In the above embodiment, the feedback comb filter A34 reads out the signal intensity of the pulsating signal recorded in the first memory A33, performs the filter process, and records the signal intensity data after the filter process in the second memory A35. Explained when to do. Further, a case has been described in which the signal strength recorded in the second memory A35 is read and processed by the averaging processing unit A36, the differentiation processing unit A37, and the integration processing unit A38. The order and contents of the processing of the pulsation signal are not limited to this, and may be changed as appropriate. For example, without performing the filtering process by the feedback comb filter A34, the averaging processing unit A36, the differentiation processing unit A37, and the integration processing unit A38 read the signal intensity of the pulsating signal recorded in the first memory A33, respectively. It may be processed. Further, the differential processing unit A37 and the integration processing unit A38 may process the average signal intensity calculated by the averaging processing unit A36.
 また、上記の実施形態においては、平均化処理部A36から波形表示部A43を介して表示器A81に波形を表示する場合について説明したが、第一メモリA33または第二メモリA35に記録された信号を波形表示部A43及び表示器A81に出力して波形を表示するようにしてもよい。例えば、第二メモリA35に記録された信号を表示する場合には、まず、波形表示部A43が、第二メモリA35から、所望の波形番号において、クロック番号0から順にクロック番号127まで信号強度を読み出す。次に、波形表示部A43は、クロック番号と信号強度との関係を表す一つの波形のデータを生成して、表示器A81に出力する。表示器A81は、波形表示部A43からのデータを受けて、脈動性信号を1個分の脈波の一周期毎の波形として表示する。 In the above embodiment, the case where the waveform is displayed on the display device A81 from the averaging processing unit A36 via the waveform display unit A43 has been described. However, the signal recorded in the first memory A33 or the second memory A35. May be output to the waveform display part A43 and the display A81 to display the waveform. For example, when displaying a signal recorded in the second memory A35, the waveform display unit A43 first increases the signal intensity from the second memory A35 to the clock number 127 in order from the clock number 0 to the desired waveform number. read out. Next, the waveform display unit A43 generates one waveform data representing the relationship between the clock number and the signal strength, and outputs it to the display A81. The display A81 receives the data from the waveform display unit A43 and displays the pulsation signal as a waveform for each cycle of one pulse wave.
<波形の表示について>
 上記の実施形態においては、波形表示部A43が一周期分の波形を表示するデータを生成し、表示器A81が脈動性信号を一周期の波形として表示場合について説明したが、一周期の一脈波だけではなく所望の数の脈波の波形を表示する様に構成してもよい。この場合、波形表示部A43が複数の波形番号における信号強度について、波形の数に応じた128の整数倍のクロック番号を横軸にとることで、複数の周期分の波形を二次元に表示するデータを生成すればよい。
<About waveform display>
In the above embodiment, the waveform display unit A43 generates data for displaying a waveform for one cycle, and the display A81 displays a pulsating signal as a waveform for one cycle. You may comprise so that not only a wave but the waveform of a desired number of pulse waves may be displayed. In this case, the waveform display unit A43 displays the waveform for a plurality of periods in a two-dimensional manner by taking a clock number that is an integer multiple of 128 corresponding to the number of waveforms on the horizontal axis for the signal intensity at a plurality of waveform numbers. Data can be generated.
<ロック検出部について>
 上記の実施形態においては、ロック検出部A41は、位相比較器A21から脈動性信号と帰還信号が入力されて、両信号の位相比較を行う場合について説明したが、脈動性信号と帰還信号との位相の同期の判定と、PLL回路A11,A12のロックの検出はこれに限定されない。ロック検出部A41は、位相比較器A21から位相差信号が入力されて、この入力された位相差信号の大きさを所定の設定値と比較して、PLL回路A11,A12が脈動性信号にロックしているか否かを判定してもよい。このとき、入力された位相差信号の大きさと所定の設定値とを比較して、入力された位相差信号の大きさが所定の設定値よりも小さいときに、ロックしていると判定する。また、入力された位相差信号の大きさが所定の設定値以上のときに、ロックしていないと判定する。また、ロック状態の表示は、一定時間の連続した状態でロックしている状態またはロックが外れている状態が継続した場合に、それぞれロック状態の変化を検出したとして表示器A81に表示するようにしてもよい。
<About lock detection unit>
In the above embodiment, the lock detection unit A41 has been described with respect to the case where the pulsation signal and the feedback signal are input from the phase comparator A21 and the phases of the two signals are compared. The determination of phase synchronization and the detection of the lock of the PLL circuits A11 and A12 are not limited to this. The lock detector A41 receives the phase difference signal from the phase comparator A21, compares the magnitude of the input phase difference signal with a predetermined set value, and the PLL circuits A11 and A12 lock the pulsation signal. It may be determined whether or not. At this time, the magnitude of the input phase difference signal is compared with a predetermined set value, and when the magnitude of the input phase difference signal is smaller than the predetermined set value, it is determined that the lock is established. Further, when the magnitude of the input phase difference signal is equal to or larger than a predetermined set value, it is determined that the lock is not established. In addition, the display of the lock state is displayed on the display A 81 as detecting that a change in the lock state is detected when the locked state or the unlocked state continues for a certain period of time. May be.
[I-5-3.平均値より大きく外れた脈動性信号の表示について]
 情報処理装置A2は、平均値より大きく外れた脈動性信号を表示する手段を有していてもよい。稀に生じる不整脈のように生体信号として意味のある外乱は、その部分だけを表示することが求められる場合がある。情報処理装置A2に入力される脈動性信号と、平均化処理部A36により得られた信号強度の平均値とを比較して、平均値より一定以上離れた波形を示す脈動性信号は、通常の脈波の波形とは別に表示器A81に表示することが好ましい。
[I-5-3. About the display of pulsatile signal far from the average value]
The information processing apparatus A2 may have means for displaying a pulsation signal that deviates more than the average value. A disturbance that is meaningful as a biological signal, such as a rare arrhythmia, may be required to display only that portion. By comparing the pulsation signal input to the information processing apparatus A2 with the average value of the signal intensity obtained by the averaging processing unit A36, the pulsation signal having a waveform that is more than a certain distance from the average value is It is preferable to display on the display A81 separately from the waveform of the pulse wave.
[I-5-4.脈動性信号の取得について]
 上記の実施形態では、検体情報検出ユニットA101が脈動性信号を検出して、この脈動性信号が情報処理装置A1~A4に入力されることで、情報処理装置A1~A4が脈動性信号を取得する場合について説明した。脈動性信号の取得は、情報処理装置A1~A4の内部または外部の記憶手段に保存された脈動性信号データを読み出すことで取得してもよい。
[I-5-4. Acquisition of pulsation signal]
In the above embodiment, the specimen information detection unit A101 detects a pulsation signal, and the pulsation signal is input to the information processing devices A1 to A4, whereby the information processing devices A1 to A4 acquire the pulsation signal. Explained when to do. The pulsation signal may be acquired by reading out the pulsation signal data stored in the storage means inside or outside the information processing apparatuses A1 to A4.
 また、脈動性信号の取得は、後述する第二の発明に係る検体情報検出装置、及び検体情報処理装置を利用してもよい。この場合、第一の発明に係る検体情報検出ユニットA101が、第二の発明に係る検体情報検出ユニットB32,B33に相当する。また、第一の発明に係る、ゲイン切り替え部A51、周波数特性補償部A61、周波数補正処理部A71、AD変換器A305は、第二の発明に係る、ゲイン切り替え部B95、周波数特性補償部B96、周波数補正処理部B90、AD変換部B89にそれぞれ相当する。このため、両者は各構成を適宜組み合せることができる。例えば、第二の発明に係るゲイン切り替え部B95、及び周波数特性補償部B96によって処理を受けた脈動性信号を、第一の発明に係る周波数補正処理部A71、またはAD変換器A305に入力するようにしてもよい。または、第二の発明に係る入力処理部、ゲイン切り替え部B95、及び周波数特性補償部B96によって処理を受けた信号を、第一の発明に係る周波数補正処理部A71、またはAD変換器A305に入力するようにしてもよい。 Further, the acquisition of the pulsation signal may use the sample information detecting device and the sample information processing device according to the second invention described later. In this case, the sample information detection unit A101 according to the first invention corresponds to the sample information detection units B32 and B33 according to the second invention. The gain switching unit A51, the frequency characteristic compensation unit A61, the frequency correction processing unit A71, and the AD converter A305 according to the first invention are the same as the gain switching unit B95, the frequency characteristic compensation unit B96, This corresponds to the frequency correction processing unit B90 and the AD conversion unit B89, respectively. For this reason, both can combine each structure suitably. For example, the pulsation signal processed by the gain switching unit B95 and the frequency characteristic compensation unit B96 according to the second invention is input to the frequency correction processing unit A71 or the AD converter A305 according to the first invention. It may be. Alternatively, the signals processed by the input processing unit, gain switching unit B95, and frequency characteristic compensation unit B96 according to the second invention are input to the frequency correction processing unit A71 or AD converter A305 according to the first invention. You may make it do.
[II.検体情報検出装置、検体情報処理装置、情報処理装置、及びインターフェース装置]
 第二の発明である、検体情報を検出する検体情報検出装置、この検体情報について処理を行う情報処理装置、検体情報処理装置、及びインターフェース装置の実施形態について説明する。以下、第二の発明の説明においては、この第二の発明を本発明と称する。
[II. Sample Information Detection Device, Sample Information Processing Device, Information Processing Device, and Interface Device]
Embodiments of a specimen information detection apparatus for detecting specimen information, an information processing apparatus for processing the specimen information, a specimen information processing apparatus, and an interface apparatus according to a second invention will be described. Hereinafter, in the description of the second invention, the second invention is referred to as the present invention.
 上記特許文献1、2のように、検体の表面とセンサとが閉ざされた空間となるような状態において、検体の血管の脈動性信号に起因する圧力情報を受けて、検体における脈動性信号を検出し、この検出された検体情報の信号処理を行う試みがなされている。 As described in Patent Documents 1 and 2, in a state where the surface of the specimen and the sensor are closed, the pressure information resulting from the pulsation signal of the blood vessel of the specimen is received, and the pulsation signal in the specimen is obtained. Attempts have been made to detect and perform signal processing of the detected sample information.
 従来の検体情報の検出では、検出に用いられるセンサの特性については触れていない。また、外耳道を物理的に閉鎖しようとしても、外耳道に存在する体毛等の存在により外耳道を完全に閉鎖することは困難であり、外耳道の閉鎖による検出感度の向上には制限があった。特許文献2では、検出された検体情報の信号処理について、特定の周波数領域を抽出する試みがなされているが、従来の処理方法では、外耳道が完全に閉鎖されていないことに着眼した信号処理は行われていなかった。 In the conventional detection of specimen information, the characteristics of the sensor used for detection are not mentioned. Further, even if the external auditory canal is physically closed, it is difficult to completely close the external auditory canal due to the presence of body hair or the like present in the external auditory canal, and the improvement in detection sensitivity due to the closure of the external auditory canal is limited. In Patent Document 2, an attempt is made to extract a specific frequency region for signal processing of detected specimen information. However, in the conventional processing method, signal processing focused on the fact that the ear canal is not completely closed is It was not done.
 また、検体の脈動性信号の検出を日常的に行って健康状態をモニタリングするためには、測定を手軽にできる仕組みが求められている。 Also, in order to monitor the health condition by routinely detecting the pulsation signal of the specimen, a mechanism that can easily perform the measurement is required.
 本発明は、このような課題に鑑みて創案されたものであり、測定に用いるためのユニットによらずに、観察に好適な脈動性信号を得ることができる装置を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide an apparatus capable of obtaining a pulsating signal suitable for observation regardless of a unit used for measurement. .
 本発明によれば、血管の脈動性信号を検出して、信号レベルが調整された適切な信号を情報処理装置に入力することができる。 According to the present invention, it is possible to detect a pulsation signal of a blood vessel and input an appropriate signal whose signal level is adjusted to the information processing apparatus.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the embodiment described below is merely an example, and there is no intention to exclude various modifications and technical applications that are not explicitly described in the following embodiment. Each configuration of the present embodiment can be implemented with various modifications without departing from the spirit of the present embodiment, and can be selected or combined as necessary.
[II-1.第一実施形態]
 本発明の第一実施形態に係る検体情報処理装置B3は、図23に示すように、検体情報検出装置B13と、情報処理装置B23とを備えて構成されている。以下、第一実施形態の説明においては、第一実施形態を、単に本実施形態とも呼ぶ。
[II-1. First embodiment]
As shown in FIG. 23, the sample information processing apparatus B3 according to the first embodiment of the present invention includes a sample information detection apparatus B13 and an information processing apparatus B23. Hereinafter, in the description of the first embodiment, the first embodiment is also simply referred to as this embodiment.
[II-1-1.検体情報処理装置の構成]
 本実施形態に係る検体情報処理装置B3、検体情報検出装置B13、及び情報処理装置B23の構成、並びに各部を構成する要素について説明する。図23は、本実施形態に係る検体情報処理装置B3の構成を模式的に表わしたものである。
[II-1-1. Configuration of specimen information processing apparatus]
The configurations of the sample information processing device B3, the sample information detection device B13, and the information processing device B23 according to the present embodiment, and the elements constituting each unit will be described. FIG. 23 schematically illustrates the configuration of the sample information processing apparatus B3 according to the present embodiment.
[II-1-1-1.検体情報検出装置の構成]
 検体情報検出装置B13は、図23に示すように、検体情報検出ユニットB32と、接続部B53とを備えて構成されている。
<検体情報検出ユニット>
 検体情報検出ユニットB32は、右耳用のヘッドホンユニットB35(Rヘッドホンユニット)と、左耳用のヘッドホンユニットB37(Lヘッドホンユニット)とを備えている、ヘッドホンである。RヘッドホンユニットB35とLヘッドホンユニットB37とは、左右の耳の構造にあわせて対称の形状に作られているが、その構成及び機能としては同等である。このため、本実施形態では主にRヘッドホンユニットB35を例に挙げて説明する。
[II-1-1-1. Configuration of specimen information detection apparatus]
As shown in FIG. 23, the sample information detection apparatus B13 includes a sample information detection unit B32 and a connection unit B53.
<Sample information detection unit>
The sample information detection unit B32 is a headphone provided with a right-ear headphone unit B35 (R headphone unit) and a left-ear headphone unit B37 (L headphone unit). The R headphone unit B35 and the L headphone unit B37 are formed in a symmetrical shape in accordance with the structure of the left and right ears, but the configuration and function are the same. For this reason, in this embodiment, the R headphone unit B35 will be mainly described as an example.
 図23に示すように、RヘッドホンユニットB35の信号線B36が、接続部B53のスイッチ回路B68と接続される。LヘッドホンユニットB37の信号線B38が、接続部B53の第一プラグB62に設けられたLヘッドホン端子B66と接続される。また、RヘッドホンユニットB35のグランド線B41a、及びLヘッドホンユニットB37のグランド線B41bが合流したグランド線B41が、接続部B53の第一プラグB62に設けられたグランド端子B64と接続される。 23, the signal line B36 of the R headphone unit B35 is connected to the switch circuit B68 of the connection portion B53. The signal line B38 of the L headphone unit B37 is connected to an L headphone terminal B66 provided in the first plug B62 of the connection portion B53. In addition, the ground line B41 obtained by joining the ground line B41a of the R headphone unit B35 and the ground line B41b of the L headphone unit B37 is connected to the ground terminal B64 provided in the first plug B62 of the connection portion B53.
 検体情報検出ユニットB32には、ヘッドホンのドライバユニットであって血管の脈動性信号を検出するセンサと、内部にセンサを備える筐体部とが設けられている。検体情報検出ユニットB32は、検体の外耳を構成する部位に向けて装着される。筐体部が検体に対向して、あるいは検体を含んで装着された際には、筐体部と検体とによって囲まれてセンサに連通する内部の空間と、内部の空間の外側にあって筐体部によって遮られる外部の空間とが形成される。このとき、筐体部は、検体に装着された状態で、外耳を構成する部位を外部の空間から隔離するとともに、閉鎖またはほぼ閉鎖された空間構造となる空洞を形成する。 The specimen information detection unit B32 is provided with a headphone driver unit that detects a pulsation signal of a blood vessel and a housing portion that includes the sensor inside. The sample information detection unit B32 is attached toward a part constituting the outer ear of the sample. When the casing is mounted facing the specimen or including the specimen, the housing is surrounded by the casing and the specimen and communicates with the sensor, and the casing is located outside the internal space. An external space that is blocked by the body part is formed. At this time, the housing part forms a cavity having a closed or substantially closed space structure while isolating a part constituting the outer ear from the external space while being attached to the specimen.
 筐体部が外耳を構成する部位を外部の空間から隔離する場合に、閉鎖またはほぼ閉鎖された空間構造となる空洞が形成される態様は、検体情報検出ユニットB32の検体への装着の仕方、筐体部の形状、及び筐体部と外耳を構成する部位との関係で変化する。一つの態様としては、筐体部は、外耳を構成する部位とともに閉鎖またはほぼ閉鎖された空間構造となる空洞を形成する。別の態様としては、筐体部は、外耳を構成する部位を含み閉鎖またはほぼ閉鎖された空間構造となる空洞を形成する。また、筐体部は、外耳を構成する部位の一部分とともに、外耳を構成する部位の他の部分を含み閉鎖またはほぼ閉鎖された空間構造となる空洞を形成してもよい。 When the housing part isolates the part constituting the outer ear from the external space, a mode in which a cavity having a closed or almost closed space structure is formed is a method of mounting the specimen information detection unit B32 on the specimen, It changes depending on the shape of the housing part and the relationship between the housing part and the parts constituting the outer ear. As one aspect, the housing portion forms a cavity that is a closed or substantially closed space structure together with a portion constituting the outer ear. As another aspect, the housing portion forms a cavity that includes a portion constituting the outer ear and forms a closed or substantially closed space structure. Further, the casing portion may form a cavity that is a closed or substantially closed space structure including a part of the part constituting the outer ear together with a part of the part constituting the outer ear.
 このような空洞を形成する検体情報検出ユニットB32としては、例えば、カナル型のインナーイヤータイプのヘッドホン、オンイヤータイプのヘッドホン、またはアラウンドイヤータイプのヘッドホンのいずれかを用いることができる。 As the specimen information detection unit B32 that forms such a cavity, for example, canal type inner ear type headphones, on-ear type headphones, or around ear type headphones can be used.
 検体情報検出ユニットB32の例として、図24に示すように、外耳道B104の外部開口部B105に筐体部B211を挿入した状態で使用する、カナル型のインナーイヤータイプのヘッドホンである、検体情報検出ユニットB32aを用いることができる。カナル型のインナーイヤータイプのヘッドホンは、カナル型のインナーイヤーイヤホンとも呼ばれることがある。 As an example of the sample information detection unit B32, as shown in FIG. 24, the sample information detection unit is a canal-type inner-ear type headphone that is used in a state where the housing portion B211 is inserted into the external opening B105 of the ear canal B104. B32a can be used. The canal-type earbud headphones are sometimes called canal-type earbud earphones.
 検体情報検出ユニットB32aは、図24に示すように、外耳B107を構成する部位である外耳道B104とともに、閉鎖またはほぼ閉鎖された空間構造となる空洞B109aを形成する筐体部B211を備える。すなわち、検体情報検出ユニットB32aは、検体B101に装着した際に形成される空洞B109aが、閉鎖またはほぼ閉鎖された空間構造を形成し、空洞B109a内の容積が一定に保たれるような構成を備える。 As shown in FIG. 24, the specimen information detection unit B32a includes a housing part B211 that forms a cavity B109a that forms a closed or almost closed space structure together with the external auditory canal B104 that is a part constituting the external ear B107. That is, the specimen information detection unit B32a is configured such that the cavity B109a formed when the specimen B101 is attached to the specimen B101 forms a closed or almost closed space structure, and the volume in the cavity B109a is kept constant. Prepare.
 または、図25、図27に示すように、外耳B107を構成する部位である耳介B108の上の位置B601に筐体部B612を装着した状態で使用する、オンイヤータイプのヘッドホンである、検体情報検出ユニットB32bを用いることができる(図28参照)。 Alternatively, as shown in FIGS. 25 and 27, sample information that is an on-ear type headphone that is used in a state in which a housing portion B612 is attached to a position B601 on the auricle B108 that is a part constituting the outer ear B107. The detection unit B32b can be used (see FIG. 28).
 検体情報検出ユニットB32bは、図25に示すように、外耳道B104及び耳介B108とともに閉鎖またはほぼ閉鎖された空間構造となる空洞B109bを形成する筐体部B612を備える。すなわち、検体情報検出ユニットB32bは、検体B101に装着した際に形成される空洞B109bが、閉鎖またはほぼ閉鎖された空間構造を形成し、空洞B109b内の容積が一定に保たれるような構成を備える。また、このとき、筐体部B612は、外耳B107の一部を覆うことで、耳介B108の一部を含み閉鎖またはほぼ閉鎖された空間構造となる空洞B109bを形成している。 As shown in FIG. 25, the specimen information detection unit B32b includes a housing portion B612 that forms a cavity B109b having a closed or almost closed space structure together with the external auditory canal B104 and the pinna B108. That is, the specimen information detection unit B32b has a configuration in which the cavity B109b formed when the specimen information detection unit B32 is mounted on the specimen B101 forms a closed or almost closed space structure, and the volume in the cavity B109b is kept constant. Prepare. At this time, the casing B612 covers a part of the outer ear B107 to form a cavity B109b that includes a part of the auricle B108 and has a closed or almost closed space structure.
 または、図26、図27に示すように、耳介B108の周囲を覆う、頭部B110の上の位置B602に筐体部B622を装着した状態で使用する、アラウンドイヤータイプのヘッドホンである、検体情報検出ユニットB32cを用いることができる(図29参照)。アラウンドイヤータイプのヘッドホンは、オーバーイヤータイプのヘッドホンとも呼ばれることがある。 Alternatively, as shown in FIG. 26 and FIG. 27, a sample that is an around-ear type headphone that is used in a state in which a housing portion B622 is attached to a position B602 on the head B110 that covers the periphery of the auricle B108. An information detection unit B32c can be used (see FIG. 29). Around-ear headphones are sometimes referred to as over-ear headphones.
 検体情報検出ユニットB32cは、図26に示すように、耳介B108を含み閉鎖またはほぼ閉鎖された空間構造となる空洞B109cを形成する筐体部B622を備える。また、このとき、筐体部B622は、外耳道B104及び耳介B108とともに、閉鎖またはほぼ閉鎖された空間構造となる空洞B109cを形成している。すなわち、検体情報検出ユニットB32cは、検体B101に装着した際に形成される空洞B109cが、閉鎖またはほぼ閉鎖された空間構造を形成し、空洞B109c内の容積が一定に保たれるような構成を備える。 As shown in FIG. 26, the specimen information detection unit B32c includes a housing portion B622 that includes a pinna B108 and forms a cavity B109c that has a closed or almost closed space structure. At this time, the housing portion B622 forms a cavity B109c having a closed or substantially closed space structure together with the external auditory canal B104 and the pinna B108. That is, the sample information detection unit B32c is configured such that the cavity B109c formed when the sample B101c is attached to the sample B101 forms a closed or almost closed space structure, and the volume in the cavity B109c is kept constant. Prepare.
 以上のオンイヤータイプのヘッドホンとアラウンドイヤータイプのヘッドホンは、あわせてオーバーヘッドタイプのヘッドホンとも呼ばれることがある。
 以下に、各ヘッドホンの構造と、それぞれのヘッドホンに対応する検体情報検出ユニットB32の構成について詳細に説明する。検体情報検出ユニットB32a,B32b,B32cを特に区別しない場合には、「検体情報検出ユニットB32」として同じ符号を付して説明し、各検体情報検出ユニットに共通する部分についても同じ符号を付して説明する場合がある。また、空洞B109a,B109b,B109cについても特に区別しない場合には、「空洞B109」として同じ符号を付して説明する。
The above on-ear type headphones and around-ear type headphones may be collectively referred to as overhead type headphones.
Hereinafter, the structure of each headphone and the configuration of the sample information detection unit B32 corresponding to each headphone will be described in detail. In the case where the sample information detection units B32a, B32b, and B32c are not particularly distinguished from each other, the description will be given with the same reference numeral as the “sample information detection unit B32”, and the same reference numerals will be given to portions common to the respective sample information detection units. May be explained. Also, the cavities B109a, B109b, and B109c will be described with the same reference numerals as “cavity B109” unless otherwise distinguished.
 なお、図24、図25、図26は、第一実施形態に係る検体情報検出装置B13の検体情報検出ユニットB32と外耳B107との関係の一例を模式的に表す図である。図24、図25、図26では検体B101として人の頭部B110における耳の構造を模式的に示しており、蝸牛と三半規管とを有し前庭神経及び蝸牛神経に接続する内耳、耳小骨と耳菅とを有し鼓膜B106から奥の部分である中耳、外耳道B104と耳介B108を有する外耳B107が図示されている。 24, 25, and 26 are diagrams schematically illustrating an example of the relationship between the sample information detection unit B32 and the outer ear B107 of the sample information detection apparatus B13 according to the first embodiment. 24, 25, and 26 schematically show the structure of an ear in a human head B110 as a specimen B101, which has a cochlea and a semicircular canal and is connected to the vestibular nerve and the cochlear nerve, the inner ear, the ossicle, and the ear. An outer ear B107 having a heel and having a middle ear, an ear canal B104, and an auricle B108, which is a part from the eardrum B106, is illustrated.
 また、図27は、外耳B107の一部である耳介B108の構造を模式的に示すものである。耳介B108の各部位はそれぞれ、図27に示すように、外耳道B104を覆う位置にある耳珠B111、珠間切痕B112、耳垂B113、対珠B114、対輪B115、耳輪B116、舟状窩B117、上対輪脚B118、三角窩B119、下対輪脚B120、耳甲介B121と呼ばれる。 FIG. 27 schematically shows the structure of an auricle B108 which is a part of the outer ear B107. As shown in FIG. 27, each part of the auricle B108 is located at a position covering the external auditory canal B104. These are referred to as the upper opposite leg B118, the triangular fossa B119, the lower opposite leg B120, and the concha B121.
<カナル型のインナーイヤータイプのヘッドホンの構造>
 カナル型のインナーイヤータイプのヘッドホンである検体情報検出ユニットB32aは、図24に示すように、センサB212を内蔵する筐体部B211を有しており、これを左右一対備えている。これらがRヘッドホンユニットB35とLヘッドホンユニットB37にそれぞれ対応する。
<Structure of canal-type earbud headphones>
As shown in FIG. 24, the sample information detection unit B32a, which is a canal-type inner-ear type headphone, has a housing part B211 in which a sensor B212 is built, and includes a pair of right and left. These correspond to the R headphone unit B35 and the L headphone unit B37, respectively.
 RヘッドホンユニットB35は、筐体部B211をそなえ、筐体部B211は、内部にセンサB212が設けられている。センサB212は、入力された信号に応じて空気振動を生じさせるスピーカーとして機能するとともに、空気振動の圧力情報を検出して信号を入力するマイクロホンとしても機能する。以下、検体情報検出ユニットB32aの構成について、RヘッドホンユニットB35を例に挙げて、図24を参照して説明する。 The R headphone unit B35 includes a housing part B211 and the housing part B211 is provided with a sensor B212. The sensor B212 functions as a speaker that generates air vibration according to the input signal, and also functions as a microphone that detects pressure information of the air vibration and inputs a signal. Hereinafter, the configuration of the sample information detection unit B32a will be described with reference to FIG. 24 taking the R headphone unit B35 as an example.
(筐体部)
 筐体部B211は、図24に示すように、検体B101の外耳道B104における外部開口部B105を塞いで、外耳道B104を閉鎖またはほぼ閉鎖された空間構造となる空洞B109aとして形成可能に検体B101の外耳B107に装着することのできるものである。筐体部B211は内部にセンサB212を備え、センサB212を収納するハウジングB218と、ハウジングB218に取り付けられるイヤーピースB213を備えている。ハウジングB218は合成樹脂、金属、又は木材等の硬質の素材よりなり、内部に空間を有している。このハウジングB218の内部には、図24に示すように、センサB212が設けられている。
(Case)
As shown in FIG. 24, the casing B211 closes the external opening B105 in the external auditory canal B104 of the specimen B101, and can be formed as a cavity B109a having a spatial structure in which the external auditory canal B104 is closed or substantially closed. It can be attached to B107. The casing B211 includes a sensor B212 inside, a housing B218 that houses the sensor B212, and an earpiece B213 that is attached to the housing B218. The housing B218 is made of a hard material such as synthetic resin, metal, or wood, and has a space inside. Inside the housing B218, a sensor B212 is provided as shown in FIG.
 イヤーピースB213は、外部開口部B105を塞いで外耳道B104を閉鎖またはほぼ閉鎖された空間構造となる空洞B109aとして形成可能に装着するために、図24に示すように、円筒状、ドーム形状、砲弾形状又は釣鐘形状の外形を有することが好ましい。イヤーピースB213はこの外形を有することにより、円筒状、ドーム形状、砲弾形状、又は釣鐘形状の筐体部B211の頂部B216側を外耳道B104の奥方向に向けて挿入することができる。これにより、イヤーピースB213の頂部B216から端部B217への外径の広がりに合わせて外部開口部B105を好適に塞ぐことができる。 As shown in FIG. 24, the earpiece B213 has a cylindrical shape, a dome shape, a bullet shape, and the like so as to form a cavity B109a that closes the outer opening B105 and closes or substantially closes the outer ear canal B104. Or it is preferable to have a bell-shaped outer shape. By having the outer shape of the earpiece B213, it is possible to insert the top portion B216 side of the cylindrical, dome-shaped, shell-shaped, or bell-shaped housing portion B211 toward the depth direction of the ear canal B104. Thereby, according to the expansion of the outer diameter from the top part B216 of the earpiece B213 to the end part B217, the external opening B105 can be suitably closed.
 また、イヤーピースB213は、頂部B216側を外耳道B104に挿入した際に外部開口部B105を防ぐ大きさを有することが好ましく、イヤーピースB213の周方向の直径が、外耳道B104の外部開口部B105の内径と略同一か大きいサイズであることが好ましい。この構成により、筐体部B211は外部開口部B105を好適に塞ぐことができる。 The earpiece B213 preferably has a size that prevents the outer opening B105 when the top B216 side is inserted into the ear canal B104. The diameter of the earpiece B213 in the circumferential direction is equal to the inner diameter of the outer opening B105 of the ear canal B104. It is preferable that the sizes are substantially the same or larger. With this configuration, the casing B211 can suitably close the external opening B105.
 また、イヤーピースB213は、弾性素材で構成されていることが好ましく、例えばゴムやシリコンゴムが用いられる。イヤーピースB213が外耳道B104の外部開口部B105の内部形状に合わせて弾性変形するとともに、外部開口部B105を塞ぐように構成されていることが好ましい。この材質により、イヤーピースB213は外耳道B104の形状に合わせて外部開口部B105を塞ぐことができる。 Further, the earpiece B213 is preferably made of an elastic material, for example, rubber or silicon rubber is used. The earpiece B213 is preferably configured to be elastically deformed in accordance with the internal shape of the external opening B105 of the external auditory canal B104 and to close the external opening B105. With this material, the earpiece B213 can block the external opening B105 in accordance with the shape of the ear canal B104.
 このような構成を有するイヤーピースB213として、図24に示すように、例えばカナル型インナーイヤホンに用いられるイヤーピース(イヤーチップ、イヤーバッドとも呼ばれることがある。)を用いることができる。 As the earpiece B213 having such a configuration, as shown in FIG. 24, for example, an earpiece used for a canal-type inner earphone (sometimes referred to as an eartip or an earbud) can be used.
 イヤーピースB213は、図24に示すように、頂部B216の中心からイヤーピースB213の内部に向けて凹状に円筒形状の空間を有する凹状部B214が形成されている。凹状部B214にはイヤーピースB213の頂部B216側と端部B217側とを連通する開口部B215が設けられている。さらに、イヤーピースB213の開口部B215に向けてセンサB212が設けられることで、センサB212が開口部B215の端部B217側を塞ぐ。これにより、筐体部B211が外部開口部B105を塞いだ際に、センサB212が開口部B215を通じて血管の脈動性信号を検出するように構成されている。 As shown in FIG. 24, the earpiece B213 is formed with a concave portion B214 having a concave cylindrical space from the center of the top portion B216 toward the inside of the earpiece B213. The recessed portion B214 is provided with an opening B215 that communicates the top B216 side and the end B217 side of the earpiece B213. Furthermore, by providing the sensor B212 toward the opening B215 of the earpiece B213, the sensor B212 closes the end B217 side of the opening B215. Thus, when the housing part B211 closes the external opening B105, the sensor B212 is configured to detect a pulsation signal of the blood vessel through the opening B215.
(センサ)
 ハウジングB218の内部の空間にはドライバユニットが収納されている。検体情報検出ユニットB32aをヘッドホンとして利用して音楽等を聴く場合には、ドライバユニットはヘッドホンのスピーカーユニットとして機能する。検体情報検出ユニットB32aは、このドライバユニットを、センサB212として利用している。ドライバユニットとして、ダイナミック型、バランスドアーマチュア型、またはコンデンサ型のドライバユニットを用いることができる。
(Sensor)
A driver unit is housed in the space inside the housing B218. When listening to music using the sample information detection unit B32a as headphones, the driver unit functions as a speaker unit for headphones. The sample information detection unit B32a uses this driver unit as the sensor B212. As the driver unit, a dynamic type, balanced armature type, or capacitor type driver unit can be used.
 センサB212としては、血管の脈動性信号を検出するものであれば、上述のドライバユニットに限定されない。外耳B107を構成する部位における血管の脈動に起因する、外耳B107を構成する部位における皮膚または鼓膜B106部分の振動によって生じる空気の振動(音圧情報)を電気的に検出するマイクロホン、又は圧電素子のような感圧素子を好適に用いることができる。マイクロホンの中でも、指向性、S/N比、感度の点からコンデンサマイクロホン(コンデンサマイク)が好ましく、ECM(electret condenser microphone;エレクトレットコンデンサーマイクロホン、以下、単に「ECM」ともいう)を好適に用いることができる。また、MEMS(microelectromechanical system)技術を用いて作製したECMである、MEMS型ECM(以下、「MEMS-ECM」ともいう)を好適に用いることができる。圧電素子としては、高い圧電性を示すセラミックスとして、チタン酸ジルコン酸鉛(PZTともいう)を使用したPZT圧電素子を好適に用いることができる。 Sensor B212 is not limited to the above driver unit as long as it detects a pulsation signal of a blood vessel. Of a microphone or a piezoelectric element that electrically detects air vibration (sound pressure information) caused by vibration of the skin or tympanic membrane B106 part in the site constituting the outer ear B107, which is caused by blood vessel pulsation in the site constituting the outer ear B107 Such a pressure sensitive element can be suitably used. Among the microphones, a condenser microphone (condenser microphone) is preferable in terms of directivity, S / N ratio, and sensitivity, and an ECM (electret condenser condenser microphone; hereinafter, also simply referred to as “ECM”) is preferably used. it can. In addition, a MEMS type ECM (hereinafter also referred to as “MEMS-ECM”), which is an ECM manufactured using a microelectromechanical system (MEMS) technique, can be preferably used. As the piezoelectric element, a PZT piezoelectric element using lead zirconate titanate (also referred to as PZT) can be suitably used as a ceramic exhibiting high piezoelectricity.
 なお、外耳B107を構成する部位における血管という場合、外耳道B104、鼓膜B106、または耳介B108に存在する血管をいう。 It should be noted that the blood vessel in the part constituting the outer ear B107 means a blood vessel existing in the ear canal B104, the tympanic membrane B106, or the pinna B108.
 センサB212は、信号線B36及びグランド線B41aと接続されている。信号線B36は、接続部B53のスイッチ回路B68を介してゲイン切り替え部B95に接続されている(図23)。 The sensor B212 is connected to the signal line B36 and the ground line B41a. The signal line B36 is connected to the gain switching unit B95 via the switch circuit B68 of the connection unit B53 (FIG. 23).
(空洞)
 検体B101は、外部開口部B105にイヤーピースB213を挿入するようにして検体情報検出ユニットB32aを外耳B107に装着する。図24に示すように、検体B101が検体情報検出ユニットB32aを装着した際に、筐体部B211のイヤーピースB213と外部開口部B105とが気密をとるようにして接触することで、検体B101の外耳道B104における外部開口部B105が塞がれる。これにより、外耳道B104と、鼓膜B106と、筐体部B211とによって、外耳道B104が閉鎖またはほぼ閉鎖された空間構造となるよう空洞B109aが形成される。このように空洞B109aが形成する閉鎖された空間構造を、「Closed Cavity;クローズドキャビティ」ともいう。なお、イヤーピースB213の開口部B215にセンサB212が設けられた場合、外部開口部B105が筐体部B211及びセンサB212によって塞がれることで、外耳道B104と、鼓膜B106と、筐体部B211と、センサB212とによって空洞B109aが形成されるようになっている。
(cavity)
The sample B101 attaches the sample information detection unit B32a to the outer ear B107 so that the earpiece B213 is inserted into the external opening B105. As shown in FIG. 24, when the specimen B101 is mounted with the specimen information detection unit B32a, the earpiece B213 of the casing B211 and the external opening B105 come into contact with each other in an airtight manner, so that the external auditory canal of the specimen B101 is obtained. The external opening B105 in B104 is closed. Accordingly, the outer ear canal B104, the tympanic membrane B106, and the housing portion B211 form a cavity B109a so as to have a spatial structure in which the outer ear canal B104 is closed or substantially closed. The closed space structure formed by the cavity B109a is also referred to as “Closed Cavity”. When the sensor B212 is provided in the opening B215 of the earpiece B213, the external opening B105 is blocked by the casing B211 and the sensor B212, so that the ear canal B104, the eardrum B106, the casing B211, A cavity B109a is formed by the sensor B212.
 筐体部B211により外部開口部B105を塞ぐことで外耳道B104が閉鎖された空間構造となるようにすることができるが、実際には、例えば外耳道B104内に存在する体毛により筐体部B211と外耳道B104との間に空隙が生じて完全には閉鎖できない場合がある。このため、筐体部B211により外部開口部B105を塞ぐことで、外耳道B104が完全に閉じられた空間構造となる空洞として形成されている場合を、外耳道B104が閉鎖された空間構造をとるという。一方、筐体部B211により外部開口部B105を塞いだ際に、例えば上述したような体毛等の影響により、外部開口部B105が塞がれているものの外耳道B104が完全に閉じられた空間構造とはならない空洞として形成されている場合を、ほぼ閉鎖された空間構造という。 Although the external opening B105 is closed by the casing B211, a space structure in which the external auditory canal B104 is closed can be achieved, but actually, for example, the casing B211 and the external auditory canal are caused by body hairs present in the external auditory canal B104. There may be a case where a gap is formed between B104 and cannot be completely closed. For this reason, when the external auditory canal B104 is formed as a hollow space structure that is completely closed by closing the external opening B105 with the housing part B211, it is said that the external auditory canal B104 has a closed space structure. On the other hand, when the external opening B105 is closed by the housing part B211, for example, due to the influence of body hair as described above, the external opening B105 is closed, but the external auditory canal B104 is completely closed. When it is formed as a hollow that should not be called, it is called a substantially closed space structure.
 上述のような外耳道B104を完全には閉鎖できない要素が存在するために、筐体部B211により外耳道B104を塞いだ際には、外耳道B104を閉鎖またはほぼ閉鎖された空間構造となる空洞B109aとして形成することになる。 Since there is an element that cannot completely close the ear canal B104 as described above, when the ear canal B104 is closed by the housing portion B211, the ear canal B104 is formed as a cavity B109a that has a closed or almost closed space structure. Will do.
 このとき、外耳道B104における血管の脈動に伴う外耳道B104の皮膚または鼓膜B106部分の振動によって生じる空気の振動が、空洞B109a内を伝播して、開口部B215を通じてセンサB212に伝わる。センサB212は、この空気の振動を検出する。すなわち、センサB212は、外耳道B104における血管の脈動性信号を、脈動性信号に起因し空洞B109a内を伝播する圧力情報として検出する。これにより、外耳道B104の内部または鼓膜B106に存在する血管の脈動性信号に起因する圧力情報を受けて、センサB212が検体B101における血管の脈動性信号を検出することができる。言い換えれば、検体情報検出ユニットB32aは、検体B101の脈動性信号を、脈動性信号に起因し空洞B109a内を伝播する圧力情報として検出することができる。センサB212は検出された信号を、脈動性信号として信号線B36に出力する。この信号は、検体情報検出ユニットB32に接続される接続部B53のゲイン切り替え部B95に入力される。 At this time, the vibration of the air generated by the vibration of the skin of the ear canal B104 or the tympanic membrane B106 accompanying the pulsation of the blood vessel in the ear canal B104 propagates in the cavity B109a and is transmitted to the sensor B212 through the opening B215. The sensor B212 detects this vibration of air. That is, the sensor B212 detects the pulsation signal of the blood vessel in the ear canal B104 as pressure information propagating in the cavity B109a due to the pulsation signal. Thereby, the sensor B212 can detect the pulsation signal of the blood vessel in the specimen B101 by receiving the pressure information resulting from the pulsation signal of the blood vessel existing inside the ear canal B104 or in the eardrum B106. In other words, the specimen information detection unit B32a can detect the pulsating signal of the specimen B101 as pressure information that propagates through the cavity B109a due to the pulsating signal. The sensor B212 outputs the detected signal to the signal line B36 as a pulsation signal. This signal is input to the gain switching unit B95 of the connection unit B53 connected to the sample information detection unit B32.
<オンイヤータイプのヘッドホンの構造>
 オンイヤータイプのヘッドホンである検体情報検出ユニットB32bは、図28に示すように、センサB212を内蔵する左右一対の筐体部B612を備えており、これらがRヘッドホンユニットB35とLヘッドホンユニットB37にそれぞれ対応する。さらに、検体情報検出ユニットB32bは、筐体部B612に接続されて検体B101へ筐体部B612を装着するための装着部材B615を備えている。以下、検体情報検出ユニットB32bの構成について、RヘッドホンユニットB35を例に挙げて、図25、図28を参照して説明する。検体情報検出ユニットB32bは、一部の構成が上述の検体情報検出ユニットB32aと同様に構成されており、上述の検体情報検出ユニットB32aと同様のものについては説明を省略する。
<Structure of on-ear type headphones>
As shown in FIG. 28, the specimen information detection unit B32b, which is an on-ear type headphone, includes a pair of left and right housing parts B612 that incorporate a sensor B212, which are respectively provided to the R headphone unit B35 and the L headphone unit B37. Correspond. Furthermore, the sample information detection unit B32b includes an attachment member B615 that is connected to the case B612 and attaches the case B612 to the sample B101. Hereinafter, the configuration of the sample information detection unit B32b will be described with reference to FIGS. 25 and 28, taking the R headphone unit B35 as an example. The sample information detection unit B32b is partially configured in the same manner as the above-described sample information detection unit B32a, and the description of the same components as the above-described sample information detection unit B32a is omitted.
 筐体部B612は内部にセンサB212を備え、センサB212を収納するハウジングB613と、ハウジングB613に取り付けられるイヤーパッドB614を備えている。 The housing portion B612 includes a sensor B212 therein, and includes a housing B613 that houses the sensor B212, and an ear pad B614 that is attached to the housing B613.
 ハウジングB613は、合成樹脂、金属、又は木材等の硬質の素材よりなり、内部に空間を有する背の低い円筒状またはドーム状に形成されている。ハウジングB613は、イヤーパッドB614の形状及び大きさにあわせて、耳介B108の上の位置B601と同程度の大きさの長円状または楕円状に形成されている。 The housing B613 is made of a hard material such as synthetic resin, metal, or wood, and is formed into a short cylindrical or dome shape having a space inside. The housing B613 is formed in an oval shape or an elliptical shape having the same size as the position B601 on the auricle B108 in accordance with the shape and size of the ear pad B614.
 ハウジングB613の内部の空間にはドライバユニットが収納されている。検体情報検出ユニットB32bをヘッドホンとして利用して音楽等を聴く場合には、ドライバユニットはヘッドホンのスピーカーユニットとして機能する。検体情報検出ユニットB32bは、このドライバユニットを、センサB212として利用している。ドライバユニットとして、ダイナミック型、バランスドアーマチュア型、コンデンサ型のドライバユニットを用いることができるのは、上述のカナル型のインナーイヤータイプのヘッドホンの場合と同様である。 The driver unit is housed in the space inside the housing B613. When listening to music using the sample information detection unit B32b as headphones, the driver unit functions as a speaker unit for headphones. The sample information detection unit B32b uses this driver unit as the sensor B212. As the driver unit, a dynamic type, balanced armature type, or capacitor type driver unit can be used as in the case of the above-mentioned canal type inner ear type headphones.
 ハウジングB613には、検体B101が検体情報検出ユニットB32bを装着した際に検体B101と向き合う側の面に開口部B616を有しており、この開口部B616をイヤーパッドB614が塞ぐようにして設けられている。ハウジングB613の内部のドライバユニットには、この開口部B616とイヤーパッドB614を通じて外部の空気の振動が伝わるようになっている。 The housing B613 has an opening B616 on the surface facing the sample B101 when the sample B101 is mounted with the sample information detection unit B32b, and the opening B616 is provided so that the earpad B614 closes the opening B616. Yes. External driver vibration is transmitted to the driver unit in the housing B613 through the opening B616 and the ear pad B614.
 ハウジングB613には、上述した開口部B616以外の部分が密閉されている密閉型(クローズドタイプ)と、開口部B616以外の部分が開放されている開放型(オープンエアタイプ)と、密閉型と開放型との中間的に閉じられた半開放型(セミオープンタイプ)のものが存在する。密閉型の場合には、検体B101が検体情報検出ユニットB32bを装着した際に、クローズドキャビティの閉鎖レベルを高めることができるため、脈動性信号の検出には好ましい。半開放型の場合であっても、密閉型の場合よりもクローズドキャビティの閉鎖レベルは低下するものの、脈動性信号の検出は可能である。本実施形態では、ハウジングB613が密閉型の場合について説明する。 The housing B613 includes a sealed type (closed type) in which a portion other than the opening B616 described above is sealed, an open type (open air type) in which a portion other than the opening B616 is opened, and a sealed type and an open type. There is a semi-open type (semi-open type) which is closed in between the mold. In the case of the sealed type, the closed level of the closed cavity can be increased when the sample B101 is mounted with the sample information detection unit B32b, which is preferable for detecting a pulsating signal. Even in the case of the semi-open type, the closed level of the closed cavity is lower than in the case of the closed type, but the pulsation signal can be detected. In the present embodiment, a case where the housing B613 is a sealed type will be described.
 イヤーパッドB614は、略円盤状に形成されたクッション性のある内部材B617と、内部材B617を覆い検体B101と接触する外部材B618からなる。内部材B617は合成樹脂またはゴムを原料とし、弾力変形する多孔質の素材であり、中央部がやや窪んだ略円盤状に形成されている。内部材B617の素材は主にウレタンが用いられる。外部材B618は、合成皮革、人工皮革、布、または合成樹脂からなる、柔軟性を有する薄いシート状の部材である。イヤーパッドB614はハウジングB613の上述した開口部B616を覆うことで、検体B101が検体情報検出ユニットB32bを装着した際に、検体B101と接触する部分に取り付けられている。 The ear pad B 614 includes a cushioned inner member B 617 formed in a substantially disc shape, and an outer member B 618 that covers the inner member B 617 and contacts the specimen B 101. The inner member B617 is made of a synthetic resin or rubber as a raw material and is a porous material that is elastically deformed. The inner member B617 is formed in a substantially disk shape with a slightly depressed central portion. The material of the inner member B617 is mainly urethane. The external material B618 is a flexible thin sheet-like member made of synthetic leather, artificial leather, cloth, or synthetic resin. The ear pad B614 covers the above-described opening B616 of the housing B613 so that the sample B101 is attached to a portion that comes into contact with the sample B101 when the sample information detection unit B32b is mounted.
 装着部材B615は左右一対の筐体部B612の間を連結している。装着部材B615は略C字状に形成され、その両端部分に筐体部B612がイヤーパッドB614部分を内側に向け合うように取り付けられている。装着部材B615は略C字状の両端部分を内側部分に向けて張力を付勢するよう形成されている。装着部材B615は伸縮可能または折りたたみ可能に作られている。これにより、筐体部B612の間の長さを、所定の長さとなるようにして位置決めすることができる。このため、検体B101の頭部B110の大きさまたは耳介B108の位置に併せて装着部材B615の長さを伸長または短縮させることで、検体B101が検体情報検出ユニットB32bを装着する際に、筐体部B612がそれぞれ右耳と左耳の位置に来るようにして装着することができる。また、装着部材B615が折りたたみ可能な場合には、折りたたみ部分を使用時には延ばし、収納時または運搬時には折りたたむことで、省スペースな保存と容易な運搬が可能となる。 The mounting member B615 connects the pair of left and right housing parts B612. The mounting member B615 is formed in a substantially C shape, and a housing portion B612 is attached to both end portions thereof so that the ear pad B614 portion faces inward. The mounting member B615 is formed so as to urge the tension with the substantially C-shaped end portions directed toward the inner portion. The mounting member B615 is made to be extendable or foldable. Thereby, the length between the housing | casing part B612 can be positioned so that it may become predetermined length. Therefore, by extending or shortening the length of the mounting member B615 in accordance with the size of the head B110 of the sample B101 or the position of the auricle B108, when the sample B101 mounts the sample information detection unit B32b, The body part B612 can be worn so that it comes to the position of the right ear and the left ear, respectively. Further, when the mounting member B615 can be folded, the folding portion is extended during use, and folded during storage or transportation, so that space-saving storage and easy transportation are possible.
 検体B101は、耳介B108の上の位置B601にイヤーパッドB614をあてて、装着部材B615を頭の上に掛けるようにして検体情報検出ユニットB32bを頭に装着する。イヤーパッドB614は装着部材B615の張力によって頭部B110に押し付けられるようにして圧迫を受け、頭部B110及び耳介B108の形状にあわせて変形する。これにより、検体B101は、イヤーパッドB614と、頭部B110及び耳介B108との間に隙間が生じるのを防ぐようにして、検体情報検出ユニットB32bを装着することができる。このとき、イヤーパッドB614は、鼓膜B106とセンサB212の間に介在し、空気の振動を透過することができる。 The specimen B101 attaches the specimen information detection unit B32b to the head so that the ear pad B614 is applied to the position B601 above the pinna B108 and the mounting member B615 is placed on the head. The ear pad B 614 is pressed so as to be pressed against the head B 110 by the tension of the mounting member B 615, and deforms according to the shape of the head B 110 and the auricle B 108. Thus, the sample B101 can be mounted with the sample information detection unit B32b so as to prevent a gap from being generated between the ear pad B614 and the head B110 and the pinna B108. At this time, the ear pad B614 is interposed between the eardrum B106 and the sensor B212, and can transmit air vibrations.
 上述のようにして、筐体部B612により外耳B107を構成する部位を外部の空間から隔離することで、空洞B109bが閉鎖された空間構造となるようにすることができる。しかしながら、実際には、イヤーパッドB614の内部材B617の多孔質部分、または外部材B618の素材自体が有する空隙、またはハウジングB613が密閉型で無い場合にはハウジングB613に隙間が存在する場合がある。または、イヤーパッドB614と検体B101の頭部B110または耳介B108との間は、頭部B110または耳介B108の形状にあわせたイヤーパッドB614の変形が不十分であったり、もしくは毛髪や体毛が挟まったりするなどして、空隙が生じる場合がある。このような要素が存在するために、空洞B109bを完全には閉鎖できない場合がある。よって、筐体部B612により外耳B107を構成する部位を外部の空間から隔離した際には、外耳B107を構成する部位とともに、耳介B108の一部を含み閉鎖またはほぼ閉鎖された空間構造となる空洞B109bを形成することになる。 As described above, by isolating the part constituting the outer ear B107 from the external space by the housing part B612, it is possible to obtain a space structure in which the cavity B109b is closed. However, in reality, there may be a gap in the porous portion of the inner member B617 of the ear pad B614, the gap of the material itself of the outer member B618, or the housing B613 when the housing B613 is not a sealed type. Alternatively, between the ear pad B614 and the head B110 or the pinna B108 of the specimen B101, the deformation of the earpad B614 according to the shape of the head B110 or the pinna B108 is insufficient, or hair or body hair is caught. In some cases, voids may occur. Due to the presence of such elements, the cavity B109b may not be completely closed. Therefore, when the part constituting the outer ear B107 is isolated from the external space by the housing portion B612, the space structure including the part constituting the outer ear B107 and part of the auricle B108 is closed or substantially closed. The cavity B109b is formed.
 検体B101が検体情報検出ユニットB32bを装着した際に、筐体部B612のイヤーパッドB614と耳介B108とが気密をとるようにして接触することで、外耳B107を構成する部位が外部の空間から塞がれる。これにより、外耳道B104と、鼓膜B106と、耳介B108と、筐体部B612とによって、外耳B107を構成する部位とともに閉鎖またはほぼ閉鎖された空間構造となる空洞B109bが形成される。すなわち、外耳道B104の内部の空間と、外耳道B104及び耳介B108とイヤーパッドB614との間の空間と、筐体部B612の内部の空間とからなり、耳介B108の一部を含む空洞B109bが形成される。これにより、外耳道B104の内部、鼓膜B106、または耳介B108に存在する血管の脈動性信号に起因する圧力情報を受けて、センサB212が検体B101における血管の脈動性信号を検出することができる。 When the sample B101 mounts the sample information detection unit B32b, the ear pad B614 of the housing B612 and the auricle B108 come into contact with each other so as to be airtight, so that a part constituting the outer ear B107 is blocked from the external space. Can be removed. Accordingly, the external ear canal B104, the tympanic membrane B106, the auricle B108, and the housing portion B612 form a cavity B109b that has a spatial structure that is closed or substantially closed together with a portion that forms the outer ear B107. That is, a space B109b including a space inside the ear canal B104, a space between the ear canal B104 and the auricle B108 and the ear pad B614, and a space inside the housing portion B612 is formed and includes a part of the auricle B108. Is done. Thereby, the sensor B212 can detect the pulsation signal of the blood vessel in the specimen B101 in response to the pressure information resulting from the pulsation signal of the blood vessel existing inside the ear canal B104, the tympanic membrane B106, or the pinna B108.
<アラウンドイヤータイプのヘッドホンの構造>
 アラウンドイヤータイプのヘッドホンである検体情報検出ユニットB32cは、図29に示すように、センサB212を内蔵する左右一対の筐体部B622を備えており、これらがRヘッドホンユニットB35とLヘッドホンユニットB37にそれぞれ対応する。さらに、検体情報検出ユニットB32bは、筐体部B622に接続されて検体B101へ筐体部B622を装着するための装着部材B625を備えている。以下、検体情報検出ユニットB32cの構成について、RヘッドホンユニットB35を例に挙げて、図26、図29を参照して説明する。検体情報検出ユニットB32cは、一部の構成が上述の検体情報検出ユニットB32bと同様に構成されており、上述の検体情報検出ユニットB32bと同様のものについては説明を省略する。
<Structure of around-ear headphones>
As shown in FIG. 29, the specimen information detection unit B32c, which is an around-ear type headphone, includes a pair of left and right housing parts B622 that incorporate a sensor B212, which are provided in the R headphone unit B35 and the L headphone unit B37. Each corresponds. Furthermore, the sample information detection unit B32b includes an attachment member B625 that is connected to the case B622 and attaches the case B622 to the sample B101. Hereinafter, the configuration of the sample information detection unit B32c will be described with reference to FIGS. 26 and 29, taking the R headphone unit B35 as an example. The sample information detection unit B32c is partially configured in the same manner as the above-described sample information detection unit B32b, and the description of the same components as the above-described sample information detection unit B32b is omitted.
 筐体部B622は内部にセンサB212を備え、センサB212を収納するハウジングB623と、ハウジングB623に取り付けられるイヤーパッドB624を備えている。なお、図29では、一方のイヤーパッドB624が図示手前側を向き、他方のイヤーパッドB624が図示奥側を向けるようにして示しているが、使用時には一対の筐体部B622がイヤーパッドB624部分を内側に向けあうようにして装着する。 The housing portion B622 includes a sensor B212 therein, and includes a housing B623 that houses the sensor B212 and an ear pad B624 that is attached to the housing B623. In FIG. 29, one ear pad B624 faces the front side in the figure and the other ear pad B624 faces the back side in the figure, but in use, the pair of housing parts B622 has the ear pad B624 part inward. Wear them so that they face each other.
 ハウジングB623は、ハウジングB613と同様に構成されているが、イヤーパッドB624の形状及び大きさにあわせて、耳介B108の上の位置B601よりも一回り大きく、耳介B108を覆う位置B602と同程度の大きさの長円状または楕円状に形成されている。 The housing B623 is configured in the same manner as the housing B613, but is slightly larger than the position B601 on the auricle B108 and about the same as the position B602 covering the auricle B108 in accordance with the shape and size of the earpad B624. It is formed in the shape of an ellipse or ellipse.
 イヤーパッドB624は、イヤーパッドB614と同様に構成されているが、内部材B627が耳介B108を覆う位置B602と同程度の大きさとなる略円環状に形成された円環部B629を有し、これを外部材B628が覆っている。また、この円環部B629は、検体B101が検体情報検出ユニットB32cを装着した際に、円環部B629の内側部分B630が耳介B108を圧迫しない程度の厚みをもって形成されている。さらに、イヤーパッドB624は、円環部B629の内側部分B630において、ハウジングB623の開口部626を覆うように取り付けられている。 The ear pad B624 is configured in the same manner as the ear pad B614, but has an annular part B629 formed in a substantially annular shape having an inner member B627 having a size similar to that of the position B602 covering the auricle B108. External material B628 covers. In addition, the annular portion B629 is formed with such a thickness that the inner portion B630 of the annular portion B629 does not press the auricle B108 when the sample B101 mounts the sample information detection unit B32c. Further, the ear pad B624 is attached so as to cover the opening 626 of the housing B623 in the inner portion B630 of the annular portion B629.
 装着部材B625は、装着部材B615と同様に構成されている。 The mounting member B625 is configured in the same manner as the mounting member B615.
 検体B101は、耳介B108を覆う、頭部B110の上の位置B602にイヤーパッドB624をあてて、装着部材B625を頭の上に掛けるようにして検体情報検出ユニットB32cを頭に装着する。このとき、イヤーパッドB624の円環部B629の内側部分B630に耳介B108が収まるようにして装着する。イヤーパッドB624は装着部材B625の張力によって頭部B110に押し付けられるようにして圧迫を受け、頭部B110の形状にあわせて変形する。これにより、検体B101は、イヤーパッドB624と、頭部B110との間に隙間が生じるのを防ぐようにして、検体情報検出ユニットB32cを装着することができる。このとき、イヤーパッドB624は、円環部B629の内側部分B630が鼓膜B106とセンサB212の間に介在し、空気の振動を透過することができる。 The specimen B101 attaches the specimen information detection unit B32c to the head so that the ear pad B624 is applied to a position B602 on the head B110 that covers the pinna B108 and the mounting member B625 is placed on the head. At this time, the ear pad B624 is mounted so that the auricle B108 fits into the inner portion B630 of the annular portion B629 of the earpad B624. The ear pad B624 receives pressure so as to be pressed against the head B110 by the tension of the mounting member B625, and deforms in accordance with the shape of the head B110. Thus, the sample B101 can be mounted with the sample information detection unit B32c so as to prevent a gap from being generated between the ear pad B624 and the head B110. At this time, in the ear pad B624, the inner portion B630 of the annular portion B629 is interposed between the eardrum B106 and the sensor B212, and can transmit air vibrations.
 上述のようにして、筐体部B622により外耳B107を構成する部位を外部の空間から隔離することで、空洞B109cが閉鎖された空間構造となるようにすることができる。しかしながら、筐体部B612と同様に、実際には、空隙が生じて空洞B109cを完全には閉鎖できない場合がある。よって、筐体部B622により外耳B107を構成する部位を外部の空間から隔離した際には、外耳B107を構成する部位とともに、耳介B108を含み閉鎖またはほぼ閉鎖された空間構造となる空洞B109cを形成することになる。 As described above, by isolating the portion constituting the outer ear B107 from the external space by the housing portion B622, the space B109c can be closed. However, as in the case of the housing part B612, in reality, there is a case where a gap is generated and the cavity B109c cannot be completely closed. Therefore, when the part constituting the outer ear B107 is isolated from the external space by the housing portion B622, the cavity B109c including the auricle B108 and the closed or almost closed space structure is formed together with the part constituting the outer ear B107. Will form.
 検体B101が検体情報検出ユニットB32cを装着した際に、筐体部B622のイヤーパッドB624と頭部B110とが気密をとるようにして接触することで、外耳B107を構成する部位が外部の空間から塞がれる。これにより、外耳道B104と、鼓膜B106と、筐体部B622と、頭部B110とによって、外耳B107を構成する部位とともに閉鎖またはほぼ閉鎖された空間構造となるよう空洞B109cが形成される。すなわち、外耳道B104の内部の空間と、外耳道B104及び頭部B110とイヤーパッドB624に囲まれた部分の空間と、筐体部B622の内部の空間とからなり、耳介B108を含む空洞B109cが形成される。これにより、外耳道B104の内部、鼓膜B106、または耳介B108に存在する血管の脈動性信号に起因する圧力情報を受けて、センサB212が検体B101における血管の脈動性信号を検出することができる。 When the sample B101 mounts the sample information detection unit B32c, the ear pad B624 of the housing unit B622 and the head B110 come into contact with each other so as to be airtight, so that the part constituting the outer ear B107 is blocked from the external space. Can be removed. As a result, the external ear canal B104, the eardrum B106, the housing part B622, and the head part B110 form a cavity B109c so as to have a spatial structure that is closed or substantially closed together with the parts constituting the outer ear B107. That is, a cavity B109c including the auricle B108 is formed, which includes a space inside the ear canal B104, a space surrounded by the ear canal B104, the head B110, and the ear pad B624, and a space inside the housing portion B622. The Thereby, the sensor B212 can detect the pulsation signal of the blood vessel in the specimen B101 in response to the pressure information resulting from the pulsation signal of the blood vessel existing inside the ear canal B104, the tympanic membrane B106, or the pinna B108.
<接続部>
 本実施形態に係る接続部B53は、図23に示すように、スイッチ回路B68、スイッチB69、ゲイン切り替え部B95、波形等化処理部B271及び波形判定部B272を有する周波数特性補償部B96、電源B71、FETB72、並びに第一プラグB62を備えている。以下、接続部B53の構成について、図23を参照して説明する。
<Connection part>
As shown in FIG. 23, the connection unit B53 according to the present embodiment includes a switch circuit B68, a switch B69, a gain switching unit B95, a waveform equalization processing unit B271, and a frequency characteristic compensation unit B96 having a waveform determination unit B272, and a power supply B71. , FET B72, and first plug B62. Hereinafter, the configuration of the connecting portion B53 will be described with reference to FIG.
 接続部B53は、第一プラグB62を情報処理装置B23の第一ジャックB81に挿入することで、第一プラグB62及び第一ジャックB81を介して、検体情報検出装置B13と、情報処理装置B23とを接続している。接続部B53は、スマートフォンB23のジャックB(第一ジャックB81)に挿入される、ヘッドホンとしての検体情報検出ユニットB32のプラグ部分を構成する。 The connection unit B53 inserts the first plug B62 into the first jack B81 of the information processing device B23, thereby allowing the sample information detection device B13, the information processing device B23, and the like to pass through the first plug B62 and the first jack B81. Is connected. The connection portion B53 constitutes a plug portion of the sample information detection unit B32 as a headphone that is inserted into the jack B (first jack B81) of the smartphone B23.
(スイッチ回路及びスイッチ)
 スイッチ回路B68は、RヘッドホンユニットB35の信号線B36が、ゲイン切り替え部B95と接続するか、第一プラグB62のRヘッドホン端子B65と接続するかを切り替えるスイッチ手段である。言い換えれば、スイッチ回路B68は、センサB212からゲイン切り替え部B95及び周波数特性補償部B96を経由しての第一プラグB62のマイク端子B63への接続と、センサB212からRヘッドホン端子B65への接続とを切り替えるものである。
(Switch circuit and switch)
The switch circuit B68 is switch means for switching whether the signal line B36 of the R headphone unit B35 is connected to the gain switching unit B95 or to the R headphone terminal B65 of the first plug B62. In other words, the switch circuit B68 includes a connection from the sensor B212 to the microphone terminal B63 of the first plug B62 via the gain switching unit B95 and the frequency characteristic compensation unit B96, and a connection from the sensor B212 to the R headphone terminal B65. Is to switch.
 スイッチB69は、接続部B53の外部からスイッチ回路B68を操作可能に設けられたスイッチであり、例えば、プッシュスイッチ、スライドスイッチ、又はトグルスイッチ等が用いられる。スイッチB69の操作により、スイッチ回路B68の接続を切り替えられるように構成されている。 The switch B69 is a switch provided so that the switch circuit B68 can be operated from the outside of the connection portion B53. For example, a push switch, a slide switch, a toggle switch, or the like is used. The connection of the switch circuit B68 can be switched by operating the switch B69.
(ゲイン切り替え部)
 ゲイン切り替え部B95は、入力された信号のゲインを調節して増幅または減衰を行い、信号のレベルを調整する、レベル調整処理を施すものである。中でも、ゲイン切り替え部B95は、センサB212により検出された信号の飽和を検出し、飽和が検出された際に信号のレベルを減少させる処理を施す。ゲイン切り替え部B95により処理された信号は、周波数特性補償部B96に入力される。
(Gain switching part)
The gain switching unit B95 performs level adjustment processing that adjusts the gain of an input signal to perform amplification or attenuation and adjust the level of the signal. In particular, the gain switching unit B95 detects the saturation of the signal detected by the sensor B212, and performs a process of reducing the signal level when the saturation is detected. The signal processed by the gain switching unit B95 is input to the frequency characteristic compensation unit B96.
(周波数特性補償部)
 周波数特性補償部B96は、波形等化処理部B271及び波形判定部B272を有し、入力された信号の周波数特性を補正するものである。具体的には、波形等化処理部B271が、検体情報検出ユニットB32から出力された信号に対して、血管の脈波情報が検出される周波数帯域である脈波情報検出帯域を含む低周波数領域の位相補償を行うことで、この低周波数領域の周波数応答を補償する波形等化処理を施す。また、波形判定部B272は、波形等化処理部B271により位相補償をされた信号の脈波について、この脈波が示す信号のパターンと、速度脈波または加速度脈波が示す信号のパターンとを比較する波形比較処理を施す。周波数特性補償部B96により処理された信号は、FETB72のゲート端子に入力される。
(Frequency characteristics compensator)
The frequency characteristic compensation unit B96 includes a waveform equalization processing unit B271 and a waveform determination unit B272, and corrects the frequency characteristics of the input signal. Specifically, a low frequency region including a pulse wave information detection band that is a frequency band in which the waveform equalization processing unit B271 detects a pulse wave information of a blood vessel with respect to a signal output from the specimen information detection unit B32. By performing the phase compensation, waveform equalization processing for compensating the frequency response in the low frequency region is performed. In addition, the waveform determination unit B272 calculates a signal pattern indicated by the pulse wave and a signal pattern indicated by the velocity pulse wave or the acceleration pulse wave with respect to the pulse wave of the signal phase-compensated by the waveform equalization processing unit B271. A waveform comparison process for comparison is performed. The signal processed by the frequency characteristic compensation unit B96 is input to the gate terminal of the FET B72.
(第一プラグ)
 第一プラグB62は、図23に示すように、プラグの根元から先端へ、マイク端子B63、グランド端子B64、右耳用のヘッドホン端子B65(Rヘッドホン端子)、及び左耳用のヘッドホン端子B66(Lヘッドホン端子)を順に有する。マイク端子B63、グランド端子B64、Rヘッドホン端子B65、及びLヘッドホン端子B66は、導電性の金属板が略円筒状に加工されて形成されている。
(First plug)
As shown in FIG. 23, the first plug B62 includes a microphone terminal B63, a ground terminal B64, a right-ear headphone terminal B65 (R headphone terminal), and a left-ear headphone terminal B66 (from the root of the plug to the tip. L headphone terminal) in order. The microphone terminal B63, the ground terminal B64, the R headphone terminal B65, and the L headphone terminal B66 are formed by processing a conductive metal plate into a substantially cylindrical shape.
 マイク端子B63とグランド端子B64との間、グランド端子B64とRヘッドホン端子B65との間、Rヘッドホン端子B65とLヘッドホン端子B66との間には、絶縁部材B67a、B67b、B67cがそれぞれ設けられている。絶縁部材B67a、B67b、B67cは、絶縁性の樹脂又はゴム製の素材からなり、導電性の各端子の間に介設されることで、各端子が互いに絶縁されている。 Insulating members B67a, B67b, and B67c are provided between the microphone terminal B63 and the ground terminal B64, between the ground terminal B64 and the R headphone terminal B65, and between the R headphone terminal B65 and the L headphone terminal B66, respectively. Yes. The insulating members B67a, B67b, and B67c are made of an insulating resin or rubber material, and the terminals are insulated from each other by being interposed between the conductive terminals.
[II-1-1-2.情報処理装置の構成]
 情報処理装置B23の構成について、図23を参照して説明する。
 本実施形態に係る情報処理装置B23は、検出された信号を処理するためのモバイル端末機としての携帯情報端末(スマートフォン)である。
[II-1-1-2. Configuration of information processing apparatus]
The configuration of the information processing apparatus B23 will be described with reference to FIG.
Information processing apparatus B23 which concerns on this embodiment is a portable information terminal (smart phone) as a mobile terminal for processing the detected signal.
 情報処理装置B23としてのスマートフォンは、図示しない入出力装置、記憶装置(ROM、RAM、不揮発性RAM等のメモリ)、中央処理装置(CPU)、タイマカウンタ、及び無線送信部等を含んで構成される。 The smartphone as the information processing device B23 includes an input / output device (not shown), a storage device (memory such as ROM, RAM, and nonvolatile RAM), a central processing unit (CPU), a timer counter, a wireless transmission unit, and the like. The
 情報処理装置B23は、図23に示すように、第一ジャックB81、アナログ信号をデジタル信号に変換するAD変換部B89、周波数補正処理部B90、デジタル信号をアナログ信号に変換するDA変換部B91、及び音源B92を備えて構成されている。 As shown in FIG. 23, the information processing apparatus B23 includes a first jack B81, an AD conversion unit B89 that converts an analog signal into a digital signal, a frequency correction processing unit B90, a DA conversion unit B91 that converts a digital signal into an analog signal, And a sound source B92.
(第一ジャック)
 第一ジャックB81は、第一プラグB62が挿入される挿入孔B82を備える。図23に示すように、第一ジャックB81の挿入孔B82の内部には、挿入孔B82の手前から奥へ、マイク端子B83、グランド端子B84、Rヘッドホン端子B85、及びLヘッドホン端子B86を順に有する。マイク端子B83、グランド端子B84、Rヘッドホン端子B85、及びLヘッドホン端子B86は、導電性の金属板が板状に加工されて、第一ジャックB81の挿入孔B82の壁面に設けられることで形成されている。板状の端子が挿入孔B82の中心方向に向けて屈曲して、曲げ弾性を有する凸部を形成しており、この端子の凸部が挿入孔B82の中心方向に張り出すようにして設けられている。
(First Jack)
The first jack B81 includes an insertion hole B82 into which the first plug B62 is inserted. As shown in FIG. 23, inside the insertion hole B82 of the first jack B81, a microphone terminal B83, a ground terminal B84, an R headphone terminal B85, and an L headphone terminal B86 are provided in this order from the front to the back of the insertion hole B82. . The microphone terminal B83, the ground terminal B84, the R headphone terminal B85, and the L headphone terminal B86 are formed by processing a conductive metal plate into a plate shape and providing it on the wall surface of the insertion hole B82 of the first jack B81. ing. The plate-like terminal is bent toward the center direction of the insertion hole B82 to form a convex portion having bending elasticity, and the convex portion of this terminal is provided so as to protrude in the center direction of the insertion hole B82. ing.
 第一ジャックB81の構造を図30(a)~図30(c)を参照して説明する。図30(a)~図30(c)では、第一ジャックB81の輪郭形状を二点鎖線で示している。図30(a)は、第一ジャックB81を横方向から見た図であり、マイク端子B83の配置を示している。図30(b)は、第一ジャックB81のA-A’矢視端面を示す図であり、マイク端子B83、グランド端子B84、Rヘッドホン端子B85、及びLヘッドホン端子B86の配置を示している。図30(c)は、第一ジャックB81のB-B’矢視端面を示す図であり、グランド端子B84、Rヘッドホン端子B85、及びLヘッドホン端子B86の配置を示している。 The structure of the first jack B81 will be described with reference to FIGS. 30 (a) to 30 (c). In FIGS. 30A to 30C, the contour shape of the first jack B81 is indicated by a two-dot chain line. FIG. 30A is a view of the first jack B81 as viewed from the side, and shows the arrangement of the microphone terminal B83. FIG. 30B is a view showing the end surface of the first jack B81 as viewed from the direction of arrow A-A ′, and shows the arrangement of the microphone terminal B83, the ground terminal B84, the R headphone terminal B85, and the L headphone terminal B86. FIG. 30C is a diagram showing the end surface of the first jack B81 as viewed from the direction indicated by the arrow B-B ', and shows the arrangement of the ground terminal B84, the R headphone terminal B85, and the L headphone terminal B86.
 第一プラグB62が第一ジャックB81の挿入孔B82に挿入された場合に、図23に示すように、第一プラグB62のマイク端子B63と第一ジャックB81のマイク端子B83とが接触し、第一プラグB62のグランド端子B64と第一ジャックB81のグランド端子B84とが接触し、第一プラグB62のRヘッドホン端子B65と第一ジャックB81のRヘッドホン端子B85とが接触し、第一プラグB62のLヘッドホン端子B66と第一ジャックB81のLヘッドホン端子B86とが接触するように、第一プラグB62及び第一ジャックB81は形成されている。 When the first plug B62 is inserted into the insertion hole B82 of the first jack B81, as shown in FIG. 23, the microphone terminal B63 of the first plug B62 and the microphone terminal B83 of the first jack B81 come into contact with each other. The ground terminal B64 of one plug B62 contacts the ground terminal B84 of the first jack B81, the R headphone terminal B65 of the first plug B62 contacts the R headphone terminal B85 of the first jack B81, and the first plug B62 The first plug B62 and the first jack B81 are formed so that the L headphone terminal B66 and the L headphone terminal B86 of the first jack B81 are in contact with each other.
 第一プラグB62が第一ジャックB81に挿入された場合の構造を図31(a)~図31(c)を参照して説明する。図31(a)~図31(c)では、第一ジャックB81の輪郭形状を二点鎖線で示している。図31(a)は、第一ジャックB81を横方向から見た図であり、第一プラグB62及びマイク端子B83の配置を示している。図31(b)は、第一ジャックB81のC-C’矢視端面を示す図であり、第一プラグB62、マイク端子B83、グランド端子B84、Rヘッドホン端子B85、及びLヘッドホン端子B86の配置を示している。図31(c)は、第一ジャックB81のD-D’矢視端面を示す図であり、第一プラグB62、グランド端子B84、Rヘッドホン端子B85、及びLヘッドホン端子B86の配置を示している。 The structure when the first plug B62 is inserted into the first jack B81 will be described with reference to FIGS. 31 (a) to 31 (c). 31A to 31C, the outline shape of the first jack B81 is indicated by a two-dot chain line. FIG. 31A is a diagram of the first jack B81 viewed from the side, and shows the arrangement of the first plug B62 and the microphone terminal B83. FIG. 31 (b) is a view showing the end surface of the first jack B81 taken along the line CC ′, and the arrangement of the first plug B62, the microphone terminal B83, the ground terminal B84, the R headphone terminal B85, and the L headphone terminal B86. Is shown. FIG. 31 (c) is a view showing the end surface of the first jack B81 taken along the line DD ', and shows the arrangement of the first plug B62, the ground terminal B84, the R headphone terminal B85, and the L headphone terminal B86. .
 第一プラグB62が第一ジャックB81の挿入孔B82に挿入された場合には、図31(a)~図31(c)に示すように、マイク端子B83、グランド端子B84、Rヘッドホン端子B85、及びLヘッドホン端子B86は、対向する第一プラグB62の各々の端子と接触するとともに各々の端子の形状にあわせて弾性変形する。このとき、各々の端子の凸部における曲げ弾性により接触状態が維持される。これにより、マイク端子B63とマイク端子B83とが接続され、グランド端子B64とグランド端子B84とが接続され、Rヘッドホン端子B65とRヘッドホン端子B85とが接続され、Lヘッドホン端子B66とLヘッドホン端子B86とが接続される。 When the first plug B62 is inserted into the insertion hole B82 of the first jack B81, as shown in FIGS. 31 (a) to 31 (c), the microphone terminal B83, the ground terminal B84, the R headphone terminal B85, The L headphone terminal B86 is in contact with each terminal of the opposed first plug B62 and elastically deforms in accordance with the shape of each terminal. At this time, a contact state is maintained by the bending elasticity in the convex part of each terminal. Thereby, the microphone terminal B63 and the microphone terminal B83 are connected, the ground terminal B64 and the ground terminal B84 are connected, the R headphone terminal B65 and the R headphone terminal B85 are connected, and the L headphone terminal B66 and the L headphone terminal B86. And are connected.
 図23に示すように、第一ジャックB81のマイク端子B83は、AD変換部B89に接続されており、第一プラグB62のマイク端子B63に入力された信号が、第一ジャックB81を介してAD変換部B89に入力される。第一ジャックB81のグランド端子B84は接地されており、第一プラグB62のグランド端子B84に接続されたグランド線B41が、第一ジャックB81を介して接地される。第一ジャックB81のRヘッドホン端子B85は、右耳用の音源B92に対応するDA変換部B91に接続されており、第一プラグB62のRヘッドホン端子B65、及びRヘッドホン端子B65に接続される信号線B36に、右耳用の音源B92に対応するDA変換部B91からの信号が入力される。第一ジャックB81のLヘッドホン端子B86は、左耳用の音源B92に対応するDA変換部B91に接続されており、第一プラグB62のLヘッドホン端子B66、及びLヘッドホン端子B66に接続される信号線B38に、左耳用の音源B92に対応するDA変換部B91からの信号が入力される。 As shown in FIG. 23, the microphone terminal B83 of the first jack B81 is connected to the AD conversion unit B89, and the signal input to the microphone terminal B63 of the first plug B62 passes through the first jack B81. The data is input to the conversion unit B89. The ground terminal B84 of the first jack B81 is grounded, and the ground line B41 connected to the ground terminal B84 of the first plug B62 is grounded via the first jack B81. The R headphone terminal B85 of the first jack B81 is connected to the DA converter B91 corresponding to the sound source B92 for the right ear, and the signal connected to the R headphone terminal B65 and the R headphone terminal B65 of the first plug B62. A signal from the DA conversion unit B91 corresponding to the right ear sound source B92 is input to the line B36. The L headphone terminal B86 of the first jack B81 is connected to the DA converter B91 corresponding to the sound source B92 for the left ear, and the signal connected to the L headphone terminal B66 and the L headphone terminal B66 of the first plug B62. A signal from the DA conversion unit B91 corresponding to the sound source B92 for the left ear is input to the line B38.
(周波数補正処理部)
 周波数補正処理部B90は、入力された信号に対して、脈動性信号の有する周波数で少なくとも増幅動作、積分動作および微分動作のうちの1つの動作を行なうことにより、少なくとも脈動性容積信号、脈動性速度信号および脈動性加速度信号のうちの1つの信号を取り出す周波数補正処理を施すものである。周波数補正処理部B90により脈動性容積信号、脈動性速度信号、及び脈動性加速度信号のうちの一つの信号を取り出す処理を、補正処理ともいう。
(Frequency correction processing section)
The frequency correction processing unit B90 performs at least one of an amplification operation, an integration operation, and a differentiation operation on the input signal at a frequency of the pulsation signal, thereby at least pulsating volume signal, pulsation property. A frequency correction process for extracting one of the speed signal and the pulsation acceleration signal is performed. Processing for extracting one of the pulsating volume signal, the pulsating velocity signal, and the pulsating acceleration signal by the frequency correction processing unit B90 is also referred to as correction processing.
[II-1-1-3.検体情報処理装置の構成]
<検体情報処理装置の構成>
 本実施形態に係る検体情報処理装置B3は、図23に示すように、検体情報検出装置B13と、情報処理装置B23とを備えて構成されている。
[II-1-1-3. Configuration of specimen information processing apparatus]
<Configuration of specimen information processing apparatus>
As shown in FIG. 23, the sample information processing apparatus B3 according to the present embodiment includes a sample information detection apparatus B13 and an information processing apparatus B23.
<検体>
 検体情報検出装置B13及び検体情報処理装置B3を適用する検体B101としては、筐体部B211,B612,B622により、外耳B107を構成する部位を外部の空間から隔離して閉鎖またはほぼ閉鎖された空間構造となる空洞B109を形成するために、外耳B107を構成する部位に対向するように、または外耳B107を構成する部位を覆うように装着することが好ましい。
<Sample>
The sample B101 to which the sample information detection device B13 and the sample information processing device B3 are applied is a space that is closed or substantially closed by isolating a part constituting the outer ear B107 from the external space by the casing parts B211, B612, and B622. In order to form the cavity B109 to be a structure, it is preferable to wear so as to face a part constituting the outer ear B107 or to cover a part constituting the outer ear B107.
 外耳B107を構成する部位とは、外耳道B104、図27に示す耳介B108のいずれかの部位、及び図27に示した耳介B108の裏側の部位のうち、少なくとも一以上の部位をいう。検体B101には、検体情報検出ユニットB32が少なくとも外耳B107を構成する部位の一部を外部の空間から隔離して空洞B109を形成するように装着すればよい。外耳B107を構成する部位の一部を外部の空間から隔離して空洞B109を形成可能であれば、筐体部B211,B612,B622が外耳B107を構成する部位とは別の周辺部位も含めて空洞B109を形成するようにして検体情報検出ユニットB32を装着してもよい。例えば、頭部B110の耳介B108の周囲の部分とともに空洞B109を形成して、耳介B108を外部の空間から隔離してもよい。 The part constituting the external ear B107 means at least one or more of the external auditory canal B104, any part of the auricle B108 shown in FIG. 27, and the back side part of the auricle B108 shown in FIG. The specimen B101 may be mounted on the specimen B101 so that the specimen information detection unit B32 isolates at least a part of the outer ear B107 from the external space to form the cavity B109. If the cavity B109 can be formed by isolating a part of the part constituting the outer ear B107 from the external space, the casing parts B211, B612, and B622 also include peripheral parts other than the part constituting the outer ear B107. The specimen information detection unit B32 may be mounted so as to form the cavity B109. For example, the cavity B109 may be formed together with the portion around the auricle B108 of the head B110 to isolate the auricle B108 from the external space.
 外耳B107を構成する部位の中でも、検出される脈動性信号の強度が大きく、また鋭いピークが得られる点から、外耳道B104、耳珠B111、または耳垂B113を外部の空間から隔離して空洞B109を形成するよう検体B101に装着することが好ましい。検出される信号量の大きさから、外耳B107を構成する部位の中でも、外耳道B104、または耳珠B111がより好ましく、耳珠B111が特に好ましい。 Among the parts constituting the outer ear B107, the intensity of the detected pulsatile signal is large and a sharp peak is obtained, so that the external ear canal B104, tragus B111, or ear lobe B113 is isolated from the external space, and the cavity B109 is formed. It is preferable to attach to the specimen B101 so as to form. From the magnitude of the detected signal amount, among the parts constituting the outer ear B107, the external auditory canal B104 or the tragus B111 is more preferable, and the tragus B111 is particularly preferable.
 また、外耳B107を構成する複数の部位が外部の空間から隔離された場合、空洞B109内の複数の振動源に由来する信号が合わさることで、強度が大きい信号が得られる。このため、複数の振動源を外部の空間から隔離して空洞B109を形成してもよく、外耳B107または耳介B108について、全体を外部の空間から隔離して空洞B109を形成してもよい。中でも、外耳道B104、及び耳珠B111を外部の空間から隔離して空洞B109を形成してもよい。また、外耳道B104、耳珠B111、及び耳垂B113を外部の空間から隔離して空洞B109を形成してもよい。 Further, when a plurality of parts constituting the outer ear B107 are isolated from the external space, a signal having a high intensity can be obtained by combining signals derived from a plurality of vibration sources in the cavity B109. Therefore, a plurality of vibration sources may be isolated from the external space to form the cavity B109, or the outer ear B107 or the auricle B108 may be entirely isolated from the external space to form the cavity B109. Among them, the external auditory canal B104 and the tragus B111 may be isolated from the external space to form the cavity B109. Alternatively, the external ear canal B104, tragus B111, and ear lobe B113 may be isolated from the external space to form the cavity B109.
<検体情報検出装置及び検体情報処理装置について>
 本実施形態に係る検体情報検出装置B13及び検体情報処理装置B3は、上述のように構成されており、検体情報検出ユニットB32の筐体部B211,B612,B622により、外耳B107を構成する部位を外部の空間から隔離して閉鎖またはほぼ閉鎖された空間構造となる空洞B109を形成する。この状態で、検体B101における外耳道B104の内部、鼓膜B106、または耳介B108に存在する血管の脈動性信号に起因する圧力情報を受けて、検体B101における血管の脈波情報に基づく脈動性信号を検出するものである。なお、上述した「血管の脈波情報」とは、血管を伝わる脈波情報のことであって、検体B101の心臓の拍動に伴って生じる血管内を伝わってくる振動を示す情報(信号)である。以降、これを単に「血管の脈波情報」とも称する。
<About specimen information detection apparatus and specimen information processing apparatus>
The sample information detection apparatus B13 and the sample information processing apparatus B3 according to the present embodiment are configured as described above, and the parts constituting the outer ear B107 are configured by the casing portions B211, B612, and B622 of the sample information detection unit B32. A cavity B109 that forms a closed or almost closed space structure isolated from the external space is formed. In this state, pressure information resulting from the pulsation signal of the blood vessel existing inside the ear canal B104, the eardrum B106, or the pinna B108 in the specimen B101 is received, and the pulsation signal based on the pulsation information of the blood vessel in the specimen B101 It is to detect. The “blood vessel pulse wave information” mentioned above is pulse wave information transmitted through the blood vessel, and information (signal) indicating vibrations transmitted through the blood vessel caused by the heartbeat of the specimen B101. It is. Hereinafter, this is also simply referred to as “blood vessel pulse wave information”.
[II-1-2.検体情報処理装置の機能構成]
 検体情報処理装置B3を機能的に表すとき、検体情報処理装置B3は、図23に示すように、検体情報検出装置B13及び情報処理装置B23を備えている。検体情報検出装置B13は、検体情報検出ユニットB32と、ゲイン切り替え部B95及び周波数特性補償部B96を有する接続部B53とを備えている。情報処理装置B23は、AD変換部B89、周波数補正処理部B90、DA変換部B91、及び音源B92を備えている。
[II-1-2. Functional configuration of sample information processing apparatus]
When functionally representing the sample information processing device B3, the sample information processing device B3 includes a sample information detection device B13 and an information processing device B23 as shown in FIG. The sample information detection apparatus B13 includes a sample information detection unit B32, and a connection unit B53 including a gain switching unit B95 and a frequency characteristic compensation unit B96. The information processing apparatus B23 includes an AD conversion unit B89, a frequency correction processing unit B90, a DA conversion unit B91, and a sound source B92.
 本実施形態に係る情報処理装置B23としてのスマートフォンB23には、信号処理用のアプリケーションソフトがダウンロードされており、このアプリケーションソフトを起動させることで、スマートフォンB23によって信号処理を行うことができる。 The application software for signal processing is downloaded to the smartphone B23 as the information processing apparatus B23 according to the present embodiment, and the smartphone B23 can perform signal processing by starting the application software.
 本実施形態に係る情報処理装置B23では、周波数補正処理部B90は、上述したアプリケーションソフトがメモリ上に展開されてCPUにより実行されることで、周波数補正処理手段として機能する。また、ゲイン切り替え部B95及び周波数特性補償部B96は、接続部B53に内蔵されるアナログ回路により処理がなされる。 In the information processing apparatus B23 according to the present embodiment, the frequency correction processing unit B90 functions as a frequency correction processing unit when the above-described application software is expanded on the memory and executed by the CPU. The gain switching unit B95 and the frequency characteristic compensation unit B96 are processed by an analog circuit built in the connection unit B53.
<ゲイン切り替え部>
 ゲイン切り替え部B95を機能的に表すとき、ゲイン切り替え部B95は、図32に示すように、AGC(automatic gain control;自動利得制御)B261、飽和検出部B262、PLL(Phase-locked loop;位相同期回路)B263、ロック検出部B264を備えている。
<Gain switching part>
When the gain switching unit B95 is functionally represented, as shown in FIG. 32, the gain switching unit B95 includes an AGC (automatic gain control) B261, a saturation detection unit B262, and a PLL (phase-locked loop). Circuit) B263 and a lock detector B264.
 センサB212で検出された脈動性信号出力がゲイン切り替え部B95に入力されると、この信号は、まずAGCB261に入力される。AGC B261は、入力された信号に対して自動的に信号の増幅率(利得)を調節する自動利得制御を行い、入力された信号の増幅または減衰を行う。AGCB261は、処理した脈動性信号を飽和検出部B262に出力する When the pulsation signal output detected by the sensor B212 is input to the gain switching unit B95, this signal is first input to the AGCB 261. The AGC B 261 performs automatic gain control for automatically adjusting the amplification factor (gain) of the input signal, and amplifies or attenuates the input signal. The AGCB 261 outputs the processed pulsation signal to the saturation detection unit B262.
 飽和検出部B262は、入力された脈動性信号が飽和しているかどうかを判定することで、信号の飽和の検出を行う。特には、血管の脈波情報が検出される周波数帯域である脈波情報検出帯域(脈波検出帯域ともいう。)となる、0.1~10Hzの低周波数領域における飽和の検出を行う。飽和しているかどうかの判定は、入力された信号のレベルの絶対値を所定の閾値と比較して、入力された信号のレベルの絶対値が所定の閾値以上となる状態が一定時間以上続くときに、信号が飽和していると判定することにより行う。また、入力された信号のレベルの絶対値が所定の閾値より低いときに、信号が飽和していないと判定する。所定の閾値とは、入力された脈動性信号の脈波波形において、その波形、中でもピーク位置のレベルが大きくなった場合に、あるレベル以上のピークトップ部分の信号のカットが生じるときのレベルの値をいう。飽和検出部B262で飽和が検出された場合には、飽和検出部B262はAGCB261へ飽和検出信号を出力する。AGC B261は飽和検出信号が送られたときに、再度、信号の自動利得制御を行う。一方、飽和検出部B262で飽和が検出されなかった場合には、飽和検出部B262は脈動性信号をPLLB263に出力する。なお、この動作は、いつも行うものではなく、一種の校正作業である。 The saturation detection unit B262 detects signal saturation by determining whether or not the input pulsation signal is saturated. In particular, saturation is detected in a low frequency region of 0.1 to 10 Hz, which is a pulse wave information detection band (also referred to as a pulse wave detection band), which is a frequency band in which blood vessel pulse wave information is detected. Whether the signal is saturated is determined by comparing the absolute value of the level of the input signal with a predetermined threshold, and when the absolute value of the level of the input signal is equal to or higher than the predetermined threshold And determining that the signal is saturated. Further, when the absolute value of the level of the input signal is lower than a predetermined threshold, it is determined that the signal is not saturated. The predetermined threshold is the level at which the signal at the peak top portion above a certain level is cut when the waveform, especially the peak position level, increases in the pulse waveform of the input pulsation signal. Value. When saturation is detected by the saturation detection unit B262, the saturation detection unit B262 outputs a saturation detection signal to the AGCB 261. When the saturation detection signal is sent, the AGC B 261 again performs automatic gain control of the signal. On the other hand, when saturation is not detected by the saturation detection unit B262, the saturation detection unit B262 outputs a pulsation signal to the PLLB 263. This operation is not always performed, but is a kind of calibration work.
 PLL B263は、例えば、入力された脈動性信号の波形の立ち上がりを検出し、さらに脈動性信号の立ち上がりから次の脈動性信号の立ち上がりまでを1周期として検出して、信号にロックかける。このとき、PLLB263は、この1周期を例えば128のクロックにより分割して、0から127までの計128のロック位相(タイミングまたはクロックともいう。)を、周波数特性補償部B96の波形判定部B272に出力する。また、PLLB263は、入力信号と出力信号との位相差信号をロック検出部B264に出力する。 For example, the PLL B 263 detects the rising of the waveform of the input pulsating signal, and further detects the period from the rising of the pulsating signal to the rising of the next pulsating signal as one cycle, and locks the signal. At this time, the PLLB 263 divides this one period by, for example, 128 clocks, and sends a total of 128 lock phases (also referred to as timing or clock) from 0 to 127 to the waveform determination unit B272 of the frequency characteristic compensation unit B96. Output. Further, the PLLB 263 outputs a phase difference signal between the input signal and the output signal to the lock detection unit B 264.
 ロック検出部B264は、入力された位相差信号の大きさを所定の設定値と比較して、PLLB263が脈動性信号をロックしたかどうかを検出する。入力された位相差信号の大きさと所定の設定値とを比較して、入力された位相差信号の大きさが所定の設定値よりも小さいときに、ロックしていると判定する。また、入力された位相差信号の大きさが所定の設定値以上のときに、ロックしていないと判定する。ロック検出部B264でロックが検出された場合には、AGCB261にロック検出信号を出力する。ロック検出部B264でロックが検出されない場合には、AGCB261にアンロック検出信号を出力する。 The lock detection unit B264 compares the magnitude of the input phase difference signal with a predetermined set value and detects whether the PLLB 263 has locked the pulsation signal. The magnitude of the input phase difference signal is compared with a predetermined set value, and when the magnitude of the input phase difference signal is smaller than the predetermined set value, it is determined that the lock is established. Further, when the magnitude of the input phase difference signal is equal to or larger than a predetermined set value, it is determined that the lock is not established. When the lock is detected by the lock detection unit B264, a lock detection signal is output to the AGCB 261. When the lock is not detected by the lock detection unit B264, an unlock detection signal is output to the AGCB 261.
 AGC B261はロック検出信号が入力された場合には、自動利得制御による増幅率の調節を停止して、ゲインを動かさないようにした状態で増幅または減衰を行った脈動性信号を、周波数特性保証部96の波形等化処理部B271に出力する。一方、AGCB261はアンロック検出信号が入力された場合には、自動利得制御による増幅率を高めることでゲインを増加させて、ロック状態となるよう制御を行う。 When the lock detection signal is input, the AGC B 261 stops the adjustment of the amplification factor by the automatic gain control, and the frequency characteristic guarantees the pulsating signal amplified or attenuated in a state in which the gain is not moved. To the waveform equalization processing unit B271 of the unit 96. On the other hand, when an unlock detection signal is input, the AGCB 261 performs control to increase the gain by increasing the gain by automatic gain control and to enter the locked state.
 ゲイン切り替え部B95によれば、上述した構成により、AGC B261が入力された脈動性信号の増幅又は減衰を行い、一定の増幅率または減衰率によって信号のレベルが調整された脈動性信号を出力する。これにより、PLLB263でロックできる程度のピーク、ゲインを有する脈動性信号が出力される。またこのとき、ゲイン切り替え部B95は、センサB212により検出された信号が飽和している場合には信号のレベルを減少させて、飽和が解消された信号を出力する。 According to the gain switching unit B95, with the above-described configuration, the pulsating signal to which AGC B261 is input is amplified or attenuated, and a pulsating signal whose signal level is adjusted by a constant amplification factor or attenuation factor is output. . As a result, a pulsation signal having a peak and gain that can be locked by the PLLB 263 is output. At this time, when the signal detected by the sensor B212 is saturated, the gain switching unit B95 decreases the signal level and outputs a signal from which the saturation is eliminated.
<周波数特性補償部>
 周波数特性補償部B96を機能的に表すとき、周波数特性補償部B96は、図32に示すように、波形等化処理部B271と、波形判定部B272と、AGCB273とを備えている。ゲイン切り替え部B95のAGC B261で処理された脈動性信号は、波形等化処理部B271に入力される。
<Frequency characteristics compensator>
When functionally expressing the frequency characteristic compensation unit B96, the frequency characteristic compensation unit B96 includes a waveform equalization processing unit B271, a waveform determination unit B272, and an AGCB 273, as shown in FIG. The pulsation signal processed by the AGC B261 of the gain switching unit B95 is input to the waveform equalization processing unit B271.
(波形等化処理部)
 波形等化処理部B271は、検体情報検出ユニットB32から出力された信号に対して、低周波数領域の位相補償を行うことで、この低周波数領域の周波数応答を補償する波形等化処理を施す。波形等化処理部B271による波形等化処理とは、積分型または微分型の位相補償により、センサB212の電磁変換系、空洞B109の空気漏れ、もしくは検体情報検出ユニットB32が備えるDSPに起因する、微分応答または積分応答のいずれか、またはこれらがあわさった周波数応答を補償する処理である。本実施形態では、波形等化処理部B271が、積分型の位相補償を行い、検体情報検出ユニットB32から出力された脈動性信号に加わった微分応答の補償を行って、速度脈波として出力する場合について説明する。
(Waveform equalization processing unit)
The waveform equalization processing unit B271 performs waveform equalization processing for compensating the frequency response in the low frequency region by performing phase compensation in the low frequency region on the signal output from the specimen information detection unit B32. The waveform equalization processing by the waveform equalization processing unit B271 is caused by the electromagnetic conversion system of the sensor B212, the air leakage of the cavity B109, or the DSP included in the specimen information detection unit B32 by integral or differential phase compensation. This is a process of compensating for either the differential response or the integral response, or the frequency response generated by these. In the present embodiment, the waveform equalization processing unit B271 performs integral-type phase compensation, compensates for the differential response added to the pulsation signal output from the specimen information detection unit B32, and outputs it as a velocity pulse wave. The case will be described.
 波形等化処理部B271による積分型の位相補償は、入力された脈動性信号を、図33に示すように脈波検出帯域である0.1~10Hzの低周波数領域を上昇させるような周波数特性を持つ電気回路に入れることにより行う処理である。ここでいう低周波数領域とは、血管の脈波情報が検出される周波数帯域である脈波情報検出帯域を含む周波領域をいう。波形等化処理部B271は、脈動性信号をこのような電気回路に1段入れて処理してもよく、2段入れて処理してもよい。本実施形態では、1段入れて処理を行うことで、およそ1回の積分を行う。 The integral type phase compensation by the waveform equalization processing unit B271 is such that the input pulsation signal has a frequency characteristic that raises the low frequency region of 0.1 to 10 Hz, which is the pulse wave detection band, as shown in FIG. It is processing performed by putting in an electric circuit having Here, the low frequency region refers to a frequency region including a pulse wave information detection band that is a frequency band in which blood vessel pulse wave information is detected. The waveform equalization processing unit B271 may process the pulsating signal by putting it in one stage in such an electric circuit, or may process it by putting it in two stages. In the present embodiment, integration is performed approximately once by performing processing with one stage.
 なお、図33では、一例として、0.1Hzから0.68Hzまで、0.1Hzから7Hzまで、0.1Hzから10.6Hzまで、-20dB/decでその後はフラットなカーブを通過させる、3通りの周波数特性の補償パターンを示している。これらは、それぞれ0.1~10Hzの低周波数領域を上昇させる、積分型の位相補償のブースト量が異なる位相補償パターンを示すものである。すなわち、図33は、脈波情報検出帯域より高い周波数成分を通過させて、脈波情報検出帯域の周波数成分のゲインを周波数の減少とともに漸増させて、脈波情報検出帯域より低い周波数成分のゲインを増幅させる、積分型の位相補償の例を示すものである。 In FIG. 33, as an example, there are three ways of passing a flat curve at −20 dB / dec from 0.1 Hz to 0.68 Hz, from 0.1 Hz to 7 Hz, from 0.1 Hz to 10.6 Hz, and thereafter. The frequency characteristic compensation pattern is shown. These show phase compensation patterns with different boost amounts of integral type phase compensation, each raising the low frequency region of 0.1 to 10 Hz. That is, FIG. 33 shows that the frequency component higher than the pulse wave information detection band is passed, and the gain of the frequency component of the pulse wave information detection band is gradually increased as the frequency decreases, and the gain of the frequency component lower than the pulse wave information detection band is increased. An example of integral type phase compensation for amplifying the signal is shown.
 このような周波数特性の補償を実現できる電気回路として、例えば図34のような回路が挙げられる。図34の電気回路は、演算増幅器(以下、オペアンプという)B221、容量C1のコンデンサB222、抵抗値R1の抵抗B223、抵抗値R2の抵抗B224、抵抗値R3の抵抗B225からなる。
 図34の電気回路の伝達関数は下記式(1)のように表すことができる。
As an electric circuit that can realize such compensation of frequency characteristics, for example, a circuit as shown in FIG. Electrical circuit of Figure 34 includes an operational amplifier (hereinafter, referred to as an operational amplifier) B 221, capacitor B222 capacitance C 1, the resistance value of the resistor R 1 B 223, the resistance of the resistance value R 2 B 224, a resistor B225 of the resistance value R 3.
The transfer function of the electric circuit of FIG. 34 can be expressed as the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図34の回路構成に示されるように、波形等化処理部B271は、有限直流ゲインの不完全積分回路であり、入力された信号を、低周波数領域の減衰を増幅された信号として出力するものである。
 また、図34の電気回路をボード線図で表すと、図35のように表すことができる。
As shown in the circuit configuration of FIG. 34, the waveform equalization processing unit B271 is an incomplete integration circuit with a finite DC gain, and outputs an input signal as a signal in which attenuation in the low frequency region is amplified. It is.
Further, when the electric circuit of FIG. 34 is represented by a Bode diagram, it can be represented as shown in FIG.
 図34、図35のR1~R3及び/またはC1の値を変化させることで、図35に示す位相補償の周波数特性の横軸(周波数)の「1/(R2+R3)C1」または「1/R31」、縦軸(ゲイン)の「-(R2/R1)・R3/(R2+R3)」または「R2/R1」の値が変化する。これにより、図35に示す位相補償の周波数特性において、ゲインの漸増の程度(傾き)、ゲインの増幅の大きさ、ゲインを漸増させる周波数帯域(コーナー周波数、立ち上がり周波数)、ゲインを増幅させる周波数帯域、信号を通過させる周波数帯域等を所定の値に設定することで、位相補償の周波数特性を調節することができる。これにより、図33に示されるような3種類の周波数特性の補償パターンを実現することが出来る。中でも、R3を変化させることで、図33に示す3パターンのように位相補償パターンの周波数特性を変化させることができる。アナログ回路ではこのR3を連続的に変化させることが困難である場合があるため、何個かのR3の値を準備してそれらを切り替えて最適なものを選ぶことで、R3の値を変化させることができる。 By changing the values of R 1 to R 3 and / or C 1 in FIG. 34 and FIG. 35, “1 / (R 2 + R 3 ) C on the horizontal axis (frequency) of the frequency characteristic of the phase compensation shown in FIG. “ 1 ” or “1 / R 3 C 1 ”, the value of “− (R 2 / R 1 ) · R 3 / (R 2 + R 3 )” or “R 2 / R 1 ” on the vertical axis (gain) changes To do. Thus, in the frequency characteristics of the phase compensation shown in FIG. 35, the degree of increase of the gain (slope), the magnitude of gain amplification, the frequency band for gradually increasing the gain (corner frequency, rising frequency), and the frequency band for amplifying the gain. The frequency characteristics of the phase compensation can be adjusted by setting the frequency band through which the signal passes to a predetermined value. As a result, three types of frequency characteristic compensation patterns as shown in FIG. 33 can be realized. In particular, by changing R 3 , the frequency characteristics of the phase compensation pattern can be changed as in the three patterns shown in FIG. For an analog circuit that may be varied the R 3 continuously is difficult, by selecting the best one by switching them to prepare a value of some number of R 3, the value of R 3 Can be changed.
 波形等化処理においては、検体情報検出ユニットB32から出力される脈動性信号が示す周波数応答を補償するために、適正な周波数特性の位相補償を行うことが好ましい。波形等化処理部B271は、位相補償した信号を波形判定部B272へ出力する。波形判定部B272は、入力された信号につき、波形等化処理における位相補償(波形等化処理の条件)が適切かどうかを判定する。 In the waveform equalization process, it is preferable to perform phase compensation of an appropriate frequency characteristic in order to compensate the frequency response indicated by the pulsation signal output from the specimen information detection unit B32. The waveform equalization processing unit B271 outputs the phase-compensated signal to the waveform determination unit B272. The waveform determination unit B272 determines whether phase compensation (conditions for waveform equalization processing) in the waveform equalization processing is appropriate for the input signal.
(波形判定部)
 波形判定部B272は、波形等化処理部B271により位相補償をされた信号の脈波について、脈波の1周期を所定の数のクロックで等分割したときに特定のタイミングのクロックにおける信号の強度が示すパターンと、速度脈波または加速度脈波を示す場合の脈波を同数のクロックで等分割したときに同じタイミングのクロックにおける信号の強度が示すパターンとを比較する脈波比較処理を行う。
(Waveform judgment part)
The waveform determination unit B272, when the pulse wave of the signal that has been phase compensated by the waveform equalization processing unit B271, equally divides one cycle of the pulse wave by a predetermined number of clocks, the intensity of the signal in the clock at a specific timing And a pulse wave comparison process for comparing the pattern indicated by the signal strength of the clock at the same timing when the pulse wave when the velocity pulse wave or the acceleration pulse wave is equally divided by the same number of clocks.
 波形判定部B272は、まず、PLL B263から入力されたクロックにより、波形等化処理部B271から入力された脈動性信号を、1周期のクロックで等分割して、特定のタイミングのクロックにおいて複数のサンプリング点をとる。このときのクロック数は、PLLB263のクロック数により決まる。ここでは、例として、5つのサンプリング点a~eをとる場合について説明する。 First, the waveform determination unit B272 equally divides the pulsation signal input from the waveform equalization processing unit B271 by a clock of one cycle based on the clock input from the PLL B 263, and a plurality of clocks at a specific timing. Take a sampling point. The number of clocks at this time is determined by the number of clocks of the PLLB 263. Here, a case where five sampling points a to e are taken will be described as an example.
 速度脈波または加速度脈波は、その波形が特徴的な形状(ピーク)を示すことが知られている。また、波形等化処理部B271により位相補償を行った際に、処理後の波形が速度脈波として得られる場合には、当然にその波形も、速度脈波に特徴的な形状を示すことになる。そこで、脈波が速度脈波または加速度脈波を示す場合に、この脈波をPLLB263から入力されるクロックで等分割して、波形が特徴的な形状を示す特定のタイミングのクロックにサンプリング点を配置して、そのクロックにおける信号の強度(サンプル値)を得る。このように、信号の強度を波形が特徴的な形状を示す複数のポイントで得る、サンプリング動作を行うことにより、1周期の間に速度脈波または加速度脈波の信号の強度が示す特有のパターンを得ることができる。 It is known that the velocity pulse wave or acceleration pulse wave has a characteristic shape (peak). In addition, when the waveform equalization processing unit B271 performs phase compensation, if the processed waveform is obtained as a velocity pulse wave, the waveform naturally exhibits a shape characteristic of the velocity pulse wave. Become. Therefore, when the pulse wave indicates a velocity pulse wave or an acceleration pulse wave, the pulse wave is equally divided by a clock input from the PLLB 263, and a sampling point is set at a clock at a specific timing indicating a characteristic shape of the waveform. To obtain the signal strength (sample value) at that clock. In this way, the signal intensity is obtained at a plurality of points where the waveform has a characteristic shape, and by performing the sampling operation, a unique pattern indicating the intensity of the velocity pulse wave or acceleration pulse wave signal during one cycle Can be obtained.
 サンプリングについて、図36を参照して説明する。図36に示す波形は速度脈波を示すものである。PLLB263により得られた0~127までの計128のクロックにより、脈波の1周期を等分割する。そして、脈波波形がピークをとるPeak値をPLLの同期位相0として、このタイミングにサンプリング点bを配置する。このサンプリング点bの時間軸の前後のタイミングの特定のクロックにサンプリング点aとサンプリング点cを配置する。そして脈波の極性でマイナスに触れる点、すなわち容積脈波の偏曲点となる特定のタイミングのクロックにサンプリング点eを配置する。そしてサンプリング点cとサンプリング点eとの間の特定のタイミングのクロックにサンプリング点dを配置する。このようにして、速度脈波または加速度脈波の波形の特徴的なポイントとなる、特定のタイミングのクロックにサンプリング点を配置する。さらに、各サンプリング点a~eにおける信号の強度をサンプル値として得て、速度脈波または加速度脈波の信号の強度が示す特有のパターンを取得しておく。 Sampling will be described with reference to FIG. The waveform shown in FIG. 36 shows a velocity pulse wave. One cycle of the pulse wave is equally divided by a total of 128 clocks from 0 to 127 obtained by the PLLB 263. Then, the Peak value at which the pulse wave waveform has a peak is set as the PLL synchronization phase 0, and the sampling point b is arranged at this timing. Sampling point a and sampling point c are arranged at specific clocks at timings before and after the time axis of sampling point b. Then, the sampling point e is arranged at a clock at a specific timing which becomes a point where the pulse wave polarity is negative, that is, a deflection point of the volume pulse wave. Then, the sampling point d is arranged in a clock at a specific timing between the sampling point c and the sampling point e. In this way, sampling points are arranged in a clock at a specific timing, which is a characteristic point of the velocity pulse wave or acceleration pulse wave waveform. Further, the signal intensity at each sampling point a to e is obtained as a sample value, and a specific pattern indicated by the intensity of the velocity pulse wave or acceleration pulse wave signal is acquired.
 波形判定部B272は、波形等化処理部B271により位相補償をされた信号の脈波について、上述した速度脈波または加速度脈波についてサンプリングを行った場合と同数の計128のクロックとなるよう設定されたPLLB263により得られたクロックにより、脈波の1周期を等分割する。そして、波形判定部B272は、上述した速度脈波または加速度脈波の場合の各サンプリング点a~eに対応する特定のタイミングのクロックにおける信号の強度を、それぞれサンプル値A~Eとして得る。これによって、波形判定部B272は、入力された信号について、速度脈波または加速度脈波が特徴的な形状を示す特定のタイミングのクロックに対応した信号強度のサンプル値A~Eと、これらの信号の強度のサンプル値A~Eが示す波形のパターンを取得することができる。 The waveform determination unit B272 is set so that the pulse wave of the signal phase-compensated by the waveform equalization processing unit B271 has the same number of clocks as that in the case of sampling the velocity pulse wave or the acceleration pulse wave as described above. One cycle of the pulse wave is equally divided by the clock obtained by the PLLB 263. Then, the waveform determination unit B272 obtains, as sample values A to E, signal intensities at specific timing clocks corresponding to the sampling points a to e in the case of the above-described velocity pulse wave or acceleration pulse wave, respectively. Thus, the waveform determination unit B272, for the input signal, sample values A to E of signal intensity corresponding to a clock at a specific timing at which the velocity pulse wave or the acceleration pulse wave has a characteristic shape, and these signals. Waveform patterns indicated by the sample values A to E of the intensity can be acquired.
 さらに、波形判定部B272は、波形等化処理部B271により位相補償をされた信号の脈波の示すサンプル値A~Eのパターンと、速度脈波または加速度脈波が示すパターンとを比較して、これらが一致または近似する場合には、所望の速度脈波または加速度脈波が得られたと判定できる。このときは、適切な周波数特性の位相補償によって、入力された信号の周波数応答が補償された波形等化処理を行えたということができる。 Further, the waveform determination unit B272 compares the pattern of the sample values A to E indicated by the pulse wave of the signal phase-compensated by the waveform equalization processing unit B271 with the pattern indicated by the velocity pulse wave or the acceleration pulse wave. If they match or approximate, it can be determined that a desired velocity pulse wave or acceleration pulse wave has been obtained. At this time, it can be said that the waveform equalization processing in which the frequency response of the input signal is compensated can be performed by phase compensation with an appropriate frequency characteristic.
 例えば、位相補償のブースト量がほぼ最適となるような、適切な位相補償により波形等化処理を行った場合には、サンプリング点eのサンプル値Eが負の値となり、サンプリング点dのサンプル値Dが0に近い値となり、サンプリング点aとサンプリング点cのサンプル値AとCがサンプリング点bのサンプル値B(ピーク値)の約1/2付近となるというパターンを示す。 For example, when waveform equalization processing is performed by appropriate phase compensation so that the boost amount of phase compensation is almost optimal, the sample value E at the sampling point e becomes a negative value, and the sample value at the sampling point d D shows a pattern in which D is close to 0, and sample values A and C at sampling points a and c are about ½ of sample value B (peak value) at sampling point b.
 一方で、速度脈波に微分要素又は積分要素が残っている場合には、それに応じて波形が変化する。例えば、位相補償によるブースト量が不足する場合には、微分要素が残り、サンプリング点dのサンプル値Dが負の値になる傾向が強い。またサンプリング点bでのサンプル値Bが大きく、サンプリング点aとcでのサンプル値AとCが小さくなり、波形の形状としては本来の波形よりもピークがスリム(急峻)になるというパターンを示す。 On the other hand, when a differential element or an integral element remains in the velocity pulse wave, the waveform changes accordingly. For example, when the boost amount due to phase compensation is insufficient, the differential element remains, and the sample value D at the sampling point d tends to be a negative value. In addition, the sample value B at the sampling point b is large, the sample values A and C at the sampling points a and c are small, and the waveform has a pattern in which the peak is slim (steep) than the original waveform. .
 また、位相補償によるブースト量が過多となる場合には、積分要素が残り、サンプリング点bのサンプル値Bが、他の位相補償を行った場合に比べて低くなるというパターンを示す。 In addition, when the boost amount by phase compensation becomes excessive, an integration element remains, and a pattern in which the sample value B at the sampling point b becomes lower than when other phase compensation is performed is shown.
 このように、位相補償の周波数特性が異なることでブースト量が変わることにより、位相補償後に得られる波形が変化し、サンプリング点a~eにおけるサンプル値A~Eが変化する。波形判定部B272では各サンプリング点のサンプル値と、基準となる速度脈波または加速度脈波の波形に表れるパターンとを比較することにより、各サンプル値がこのパターンと十分に近い値となった場合には、波形等化処理部B271に波形等化適性信号を出力する。一方、各サンプル値が位相補償のブースト量が最適となる場合に表れるパターンから離れた値となった場合には、波形等化処理部B271に波形等化不適信号を出力する。 As described above, when the boost amount is changed due to different frequency characteristics of the phase compensation, the waveform obtained after the phase compensation is changed, and the sample values A to E at the sampling points a to e are changed. When the sample value at each sampling point is sufficiently close to this pattern by comparing the sample value at each sampling point with the pattern appearing in the waveform of the reference velocity pulse wave or acceleration pulse wave in the waveform determination unit B272 In this case, a waveform equalization suitability signal is output to the waveform equalization processing unit B271. On the other hand, when each sample value becomes a value away from the pattern that appears when the phase compensation boost amount is optimum, a waveform equalization inappropriate signal is output to the waveform equalization processing unit B271.
 波形等化処理部B271は、波形等化適性信号が入力された場合には、位相補償した信号をAGCB273に出力する。一方、波形等化処理部B271は波形等化不適信号が入力された場合には、周波数特性を変えて位相補償を行い、位相補償した信号を波形判定部B272に出力する。このようにして、位相補償による補償が十分となるまで、位相補償とその判定と繰り返し行うことで、適切な周波数特性により位相補償を行い、周波数応答が補償された信号を得ることができる。これにより、周波数特性補償部B96によれば、検体情報検出ユニットB32から出力された脈動性信号について、脈波検出帯域を含む低周波数領域の微分応答を補償して、速度脈波として得ることができる。 The waveform equalization processing unit B271 outputs a phase compensated signal to the AGCB 273 when the waveform equalization suitability signal is input. On the other hand, when a waveform equalization inappropriate signal is input, the waveform equalization processing unit B271 performs phase compensation by changing the frequency characteristics, and outputs the phase compensated signal to the waveform determination unit B272. In this manner, by performing phase compensation and its determination repeatedly until compensation by phase compensation is sufficient, phase compensation can be performed with appropriate frequency characteristics, and a signal with a compensated frequency response can be obtained. Thereby, according to the frequency characteristic compensation unit B96, the differential response in the low frequency region including the pulse wave detection band can be compensated for the pulsating signal output from the specimen information detection unit B32 to obtain a velocity pulse wave. it can.
(AGC)
 AGC B273は、入力された信号の増幅または減衰を行い、処理後の信号を周波数特性補償部B96の外部に出力する。これは、波形等化処理部B271による波形等化処理の結果、信号のピークレベルが変化する場合があるために、これを再調整するものである。
(AGC)
The AGC B273 amplifies or attenuates the input signal and outputs the processed signal to the outside of the frequency characteristic compensation unit B96. This is because the peak level of the signal may change as a result of the waveform equalization processing by the waveform equalization processing unit B271, and this is readjusted.
<接続部の機能構成>
 接続部B53の回路構成は、図23により示される。
 RヘッドホンユニットB35の信号線B36は、スイッチ回路B68と接続される。信号線B36は、スイッチ回路B68により、第一プラグB62のRヘッドホン端子B65、またはゲイン切り替え部B95との接続が切り替えられる。
<Functional configuration of connection part>
The circuit configuration of the connection part B53 is shown in FIG.
The signal line B36 of the R headphone unit B35 is connected to the switch circuit B68. The connection of the signal line B36 to the R headphone terminal B65 of the first plug B62 or the gain switching unit B95 is switched by the switch circuit B68.
 ゲイン切り替え部B95は、その電源B71と接続される。また、ゲイン切り替え部B95は、周波数特性補償部B96と接続される。周波数特性補償部B96が、FETB72のゲート端子(G)に接続されることで、ゲイン切り替え部B95及び周波数特性補償部B96によって処理された信号は、FETB72のゲート端子(G)に入力される。FET B72のドレイン端子(D)は、接続部B53の第一プラグB62に設けられたマイク端子B63と接続する。FET B72のソース端子(S)はグランド線B41と合流して、第一プラグB62に設けられたグランド端子B64と接続する。 The gain switching unit B95 is connected to the power source B71. The gain switching unit B95 is connected to the frequency characteristic compensation unit B96. Since the frequency characteristic compensation unit B96 is connected to the gate terminal (G) of the FET B72, the signal processed by the gain switching unit B95 and the frequency characteristic compensation unit B96 is input to the gate terminal (G) of the FET B72. The drain terminal (D) of the FET B72 is connected to the microphone terminal B63 provided in the first plug B62 of the connection portion B53. The source terminal (S) of the FET B72 merges with the ground line B41 and is connected to the ground terminal B64 provided in the first plug B62.
 上述した回路構成により、スイッチ回路B68によって信号線B36がゲイン切り替え部B95と接続した場合には、センサB212で検出された信号がゲイン切り替え部B95に入力される。さらに、ゲイン切り替え部B95及び周波数特性補償部B96により処理された信号が、マイク端子B63に入力され、第一ジャックB81のマイク端子B83を介して情報処理装置B23のAD変換部B89に入力される。この場合、センサB212はマイクロホンとして機能する。スイッチ回路B68によって信号線B36がRヘッドホン端子B65と接続した場合には、RヘッドホンユニットB35のセンサB212へ音源B92からの音信号が入力される。この場合、センサB212はスピーカーとして機能する。
 このようにして、検体情報検出装置B13は、センサB212により検出されてゲイン切り替え部B95及び周波数特性補償部B96により処理された信号を、情報処理装置B23に出力する。
With the circuit configuration described above, when the signal line B36 is connected to the gain switching unit B95 by the switch circuit B68, the signal detected by the sensor B212 is input to the gain switching unit B95. Further, the signal processed by the gain switching unit B95 and the frequency characteristic compensation unit B96 is input to the microphone terminal B63 and input to the AD conversion unit B89 of the information processing apparatus B23 via the microphone terminal B83 of the first jack B81. . In this case, the sensor B212 functions as a microphone. When the signal line B36 is connected to the R headphone terminal B65 by the switch circuit B68, the sound signal from the sound source B92 is input to the sensor B212 of the R headphone unit B35. In this case, the sensor B212 functions as a speaker.
In this way, the specimen information detection device B13 outputs the signal detected by the sensor B212 and processed by the gain switching unit B95 and the frequency characteristic compensation unit B96 to the information processing device B23.
<周波数補正処理部>
 周波数補正処理部B90は、前述のごとく、入力された信号について周波数補正処理を施すことで、少なくとも上記の脈動性容積信号、脈動性速度信号および脈動性加速度信号のうちの1つの信号を取り出すものである。
 周波数補正処理部B90を機能的に表すとき、周波数補正処理部B90は、図37に示すように、増幅器B131、積分補正部B132、微分補正部B133を備えている。
<Frequency correction processing unit>
As described above, the frequency correction processing unit B90 performs frequency correction processing on the input signal to extract at least one of the pulsating volume signal, the pulsating velocity signal, and the pulsating acceleration signal. It is.
When functionally representing the frequency correction processing unit B90, the frequency correction processing unit B90 includes an amplifier B131, an integral correction unit B132, and a differential correction unit B133, as shown in FIG.
 センサB212で得られた脈動性信号出力が、周波数補正処理部B90の増幅器B131に入力されると、増幅処理が行われる。波形等化処理部B271により脈動性信号を1段処理した場合、検体情報検出装置B13の出力信号は速度脈波が得られる。このような検体情報検出装置B13からの信号が入力された場合には、周波数補正処理部B90では増幅処理以外の周波数補正処理を行わずに、速度脈波を得ることができる。また、増幅器B131の出力信号を積分補正部B132に入力し、積分回路での補償を行うことにより、容積脈波を得ることができる。また、増幅器B131の出力信号を微分補正部B133に入力し、微分回路での補償を行うことにより、加速度脈波を得ることができる。 When the pulsation signal output obtained by the sensor B212 is input to the amplifier B131 of the frequency correction processing unit B90, amplification processing is performed. When the pulsation signal is processed in one stage by the waveform equalization processing unit B271, a velocity pulse wave is obtained as the output signal of the specimen information detection apparatus B13. When such a signal from the specimen information detection device B13 is input, the frequency correction processing unit B90 can obtain a velocity pulse wave without performing frequency correction processing other than amplification processing. Further, the volume pulse wave can be obtained by inputting the output signal of the amplifier B131 to the integration correction unit B132 and performing compensation by the integration circuit. Further, an acceleration pulse wave can be obtained by inputting the output signal of the amplifier B131 to the differential correction unit B133 and performing compensation by the differential circuit.
<音源>
 音源B92は、RヘッドホンユニットB35及びLヘッドホンユニットB37から音を出力するためのデジタル形式の音信号を出力するものである。
<Sound source>
The sound source B92 outputs a digital sound signal for outputting sound from the R headphone unit B35 and the L headphone unit B37.
[II-1-3.信号特性と信号処理]
 本実施形態において検体情報検出ユニットB32から出力される脈動性信号は、外耳B107を構成する部位を外部の空間から隔離して、閉鎖またはほぼ閉鎖されたクローズドキャビティを形成するようにした状態で、センサB212によって検出されるものである。ここで、心臓の収縮に伴う血管の脈動に起因する血管の容積変化を検出する場合、本来は容積脈波として検出されるとも考えられる。実際に、光学的方式により検出した場合には、脈動性信号は容積脈波として得られる。しかしながら、検体情報検出ユニットB32から出力される信号は、センサB212の周波数特性によって信号のレベルまたは周波数特性に影響を受ける。また、検体情報検出ユニットB32により検出される信号は、クローズドキャビティの閉鎖レベル、すなわち空洞B109の空気漏れによって信号のレベルまたは周波数特性に影響を受ける。さらには、検体情報検出ユニットB32がDSP備え、このDSPがセンサB212によって検出された信号に処理を加える場合には、これによっても信号のレベルまたは周波数特性に影響を受ける。また、検体情報検出ユニットB32によって検出される振動源によっても、検出される波形または信号のレベルは影響を受ける。
[II-1-3. Signal characteristics and signal processing]
In the present embodiment, the pulsation signal output from the specimen information detection unit B32 is a state in which a part constituting the outer ear B107 is isolated from the external space so as to form a closed cavity that is closed or substantially closed. This is detected by the sensor B212. Here, when detecting a change in the volume of a blood vessel due to the pulsation of the blood vessel accompanying the contraction of the heart, it is considered that it is originally detected as a volume pulse wave. Actually, when detected by an optical method, the pulsation signal is obtained as a volume pulse wave. However, the signal output from the specimen information detection unit B32 is affected by the signal level or the frequency characteristics due to the frequency characteristics of the sensor B212. The signal detected by the specimen information detection unit B32 is affected by the signal level or frequency characteristics due to the closed level of the closed cavity, that is, the air leakage of the cavity B109. Furthermore, when the sample information detection unit B32 includes a DSP and this DSP applies processing to the signal detected by the sensor B212, this also affects the level or frequency characteristics of the signal. The detected waveform or signal level is also affected by the vibration source detected by the specimen information detection unit B32.
 このため、検体情報処理装置B3における信号処理は、上述したような、センサB212の特性、クローズドキャビティの閉鎖レベル、及びDSPによる処理により受ける影響を軽減するようにして行うことが好ましい。すなわち、周波数特性補償部B96では、波形等化処理によって、これらの影響によって検体情報検出ユニットB32から出力される脈動性信号が示す周波数応答を補償する。また、ゲイン切り替え部B95では、レベル調整処理によって、これらの影響による検体情報検出ユニットB32から出力される脈動性信号のレベルの変化に応じて、信号のレベルの調整を行う。以下に、検体情報検出ユニットB32から出力される脈動性信号が受ける影響と信号処理との関係について、検体情報検出ユニットB32により検出される脈波波形の例を挙げて説明する。 For this reason, the signal processing in the sample information processing apparatus B3 is preferably performed so as to reduce the influence of the characteristics of the sensor B212, the closed level of the closed cavity, and the processing by the DSP as described above. That is, the frequency characteristic compensation unit B96 compensates the frequency response indicated by the pulsation signal output from the specimen information detection unit B32 due to these influences by the waveform equalization process. Further, the gain switching unit B95 adjusts the level of the signal according to the change in the level of the pulsation signal output from the specimen information detection unit B32 due to these effects by the level adjustment process. Hereinafter, the relationship between the influence of the pulsation signal output from the specimen information detection unit B32 and the signal processing will be described with an example of a pulse wave waveform detected by the specimen information detection unit B32.
[II-1-3-1.センサの周波数特性と周波数応答]
 センサB212として用いられるドライバユニットの100Hz以下の低周波数領域の周波数特性は、横軸に周波数(Hz)のスケールをLog(対数)としたものとり、縦軸にGain(dB)をとることで、図38(a)のように表わされる。図38(a)に示すように、ドライバユニットは、低周波数領域に向かって20dB/decの感度低下する応答を示す。これは、例えばダイナミック型のドライバユニットの場合であれば、ダイヤフラムの振動を電流に変換する際の電磁変換系が微分応答であることに起因していると考えられる。
[II-1-3-1. Sensor frequency characteristics and frequency response]
The frequency characteristic of the low frequency region of 100 Hz or less of the driver unit used as the sensor B212 is obtained by taking the frequency (Hz) scale as Log (logarithmic) on the horizontal axis and Gain (dB) on the vertical axis. It is represented as shown in FIG. As shown in FIG. 38A, the driver unit shows a response in which the sensitivity decreases by 20 dB / dec toward the low frequency region. For example, in the case of a dynamic driver unit, this is considered to be caused by the fact that the electromagnetic conversion system for converting the vibration of the diaphragm into a current has a differential response.
 センサB212が上述したような電磁変換系に起因する周波数特性を示すため、検体情報検出ユニットB32により検出される脈動性信号も同様の微分応答が加わった周波数特性を示す信号として検出される。この電磁変換系に起因する微分応答を補償するためには、図38(b)に示すような周波数特性を示す電気回路(補償回路)を通過させる、積分型の位相補償を適用すればよい。すなわち、センサB212の出力に対して、図38(b)に示すように超低周波数領域から100Hz付近まで-20dB/decでその後はフラットなカーブを通過させる位相補償を行えばよい。 Since the sensor B212 shows the frequency characteristics due to the electromagnetic conversion system as described above, the pulsation signal detected by the specimen information detection unit B32 is also detected as a signal showing the frequency characteristics to which a similar differential response is added. In order to compensate for the differential response caused by the electromagnetic conversion system, integral type phase compensation that passes through an electric circuit (compensation circuit) having frequency characteristics as shown in FIG. 38B may be applied. That is, as shown in FIG. 38 (b), phase compensation for passing through a flat curve at −20 dB / dec from the very low frequency region to around 100 Hz may be performed on the output of the sensor B212.
[II-1-3-2.クローズドキャビティの閉鎖レベルと周波数応答]
<クローズドキャビティの閉鎖レベル>
 検体B101が検体情報検出ユニットB32を装着した際に、筐体部B211,B612,B622が外耳B107を構成する部位を外部の空間から隔離して空洞B109を形成したとしても、上述のように空洞B109を完全には閉鎖できない要素が存在する。このために、筐体部B211,B612,B622により空洞B109を形成した際には、空洞B109を閉鎖またはほぼ閉鎖された空間構造として形成することになる。このとき、空洞B109が完全に閉じられた空間構造とはならないことにより、空気漏れが生じることによって、検体情報検出ユニットB32により検出される脈動性信号の周波数特性が影響を受ける。このように、空洞B109が完全に閉じられた空間構造とはならずに形成されている場合、すなわち完全なクローズドキャビティを形成できない場合を、クローズドキャビティの閉鎖レベルが「ほぼ閉鎖」であるという。
[II-1-3-3. Closed cavity closure level and frequency response]
<Closed cavity closing level>
Even when the specimen B101 is mounted with the specimen information detection unit B32, the case portions B211, B612, and B622 form the cavity B109 by isolating the part constituting the outer ear B107 from the external space as described above. There is an element that cannot completely close B109. For this reason, when the cavity B109 is formed by the housing parts B211, B612, and B622, the cavity B109 is formed as a closed or almost closed space structure. At this time, since the cavity B109 does not have a completely closed space structure, air leakage occurs, thereby affecting the frequency characteristics of the pulsating signal detected by the specimen information detection unit B32. Thus, when the cavity B109 is formed without a completely closed spatial structure, that is, when a complete closed cavity cannot be formed, the closed level of the closed cavity is said to be “substantially closed”.
 ここで、「クローズドキャビティの閉鎖レベル」とは、空洞B109の閉鎖の度合いを表すものであり、単に「閉鎖レベル」ともいう。検体情報検出ユニットB32が、カナル型のインナーイヤータイプ、オンイヤータイプ、またはアラウンドイヤータイプのヘッドホンのいずれかのヘッドホンであるかによって、クローズドキャビティの閉鎖レベルは変化する。また、イヤーピースB213、イヤーパッドB614,B624、筐体部B211,B612,B622の種類、形状、材質によっても閉鎖レベルは変化する。さらには、検体B101の頭部B110や耳介B108の形状、頭髪または体毛の有無によって、または検体B101が検体情報検出ユニットB32をどのように装着しているかによっても閉鎖レベルは変化する。そして、このクローズドキャビティの閉鎖レベルが、検体情報検出ユニットB32により検出される脈動性信号が示す周波数特性に影響を及ぼす。 Here, the “closed level of the closed cavity” represents the degree of closing of the cavity B109, and is also simply referred to as the “closed level”. The closed level of the closed cavity varies depending on whether the specimen information detection unit B32 is a canal-type inner ear type, on-ear type, or around-ear type headphone. The closing level also changes depending on the type, shape, and material of the earpiece B213, the ear pads B614, B624, and the housing parts B211, B612, B622. Furthermore, the closing level changes depending on the shape of the head B110 and the pinna B108 of the sample B101, the presence or absence of head hair or body hair, or how the sample B101 wears the sample information detection unit B32. The closed level of the closed cavity affects the frequency characteristics indicated by the pulsation signal detected by the specimen information detection unit B32.
 なお、オンイヤータイプのヘッドホン、またはアラウンドイヤータイプのヘッドホンを装着した場合には、カナル型のインナーイヤータイプのヘッドホンを装着した場合よりもクローズドキャビティの閉鎖レベルが低いと推測される。このため、検体情報検出ユニットB32b,B32cを用いた場合は、検体情報検出ユニットB32aを用いた場合よりも、空洞B109の空気漏れが大きく、空気漏れに起因する微分応答の度合いが大きいと推測される。 It should be noted that when the on-ear type headphones or the around ear type headphones are attached, it is estimated that the closed cavity closing level is lower than when the canal type inner ear type headphones are attached. For this reason, when the specimen information detection units B32b and B32c are used, it is presumed that the air leakage of the cavity B109 is larger and the degree of the differential response due to the air leakage is larger than when the specimen information detection unit B32a is used. The
<カナル型のインナーイヤータイプの場合のクローズドキャビティの閉鎖レベルと周波数応答の変化>
 検体情報検出ユニットB32aを用いた場合、すなわち検体情報検出ユニットB32がカナル型のインナーイヤータイプのヘッドホンである場合に検出される信号の周波数特性は、図39(a)のように表される。図39(a)に示されるように、高周波数領域から10Hz付近まではフラットな周波数特性となる。しかしながら、空洞B109aを完全に閉鎖できないことから、脈波情報検出帯域である0.1~10Hzの低周波数領域にコーナー周波数を有し、クローズドキャビティの閉鎖レベルに応じてコーナー周波数が変動するのに応じて減衰度合いが変化してGainが落ちる微分応答を示す。これにより、検出される脈波の波形が乱れることになる。
<Changes in closed cavity closure level and frequency response in case of canal type inner ear type>
When the sample information detection unit B32a is used, that is, when the sample information detection unit B32 is a canal-type inner-ear type headphone, the frequency characteristic of a signal detected is expressed as shown in FIG. As shown in FIG. 39A, a flat frequency characteristic is obtained from the high frequency region to around 10 Hz. However, since the cavity B109a cannot be completely closed, the corner frequency has a low frequency region of 0.1 to 10 Hz that is the pulse wave information detection band, and the corner frequency varies depending on the closed level of the closed cavity. Accordingly, a differential response in which the degree of attenuation changes and Gain falls is shown. Thereby, the waveform of the detected pulse wave is disturbed.
 このためクローズドキャビティの閉鎖レベルがほぼ閉鎖の場合には、図39(b)に示すように、脈波検出帯域である0.1~10Hzの低周波数領域にコーナー周波数を有するゲインの減衰にあわせて、信号のゲインを上昇させるような位相補償を行う必要がある。なお、クローズドキャビティの閉鎖レベルによって、微分応答のコーナー周波数が変化して、図39(a)に示すような低周波数領域の減衰は変化することになるため、変化に応じて補償を行うブースト量を変化させて位相補償を行う必要がある。 For this reason, when the closed level of the closed cavity is almost closed, as shown in FIG. 39 (b), in accordance with the attenuation of the gain having the corner frequency in the low frequency region of 0.1 to 10 Hz which is the pulse wave detection band. Thus, it is necessary to perform phase compensation that increases the gain of the signal. The corner frequency of the differential response changes depending on the closed cavity closing level, and the attenuation in the low frequency region as shown in FIG. 39A changes. Therefore, the boost amount to be compensated according to the change It is necessary to perform phase compensation by changing.
 参考として、指先または腕においてクローズドキャビティを形成、すなわち完全に閉鎖した状態で、血管の脈動性信号を検出した際に得られる脈波の波形の一例を表すのが図40(b)である。図40(b)に表される波形は、その波形の形状から、速度脈波であるといえる。図40(b)の波形を示す速度脈波の脈動性信号を積分することで、図40(a)の波形を示す容積脈波が得られる。また、図40(b)の波形を示す速度脈波の脈動性信号を微分することで、図40(c)に示す加速度脈波が得られる。
 なお、図40(a)~図40(c)において、図中横軸の単位[s]は秒を表す(以降、図中の単位[s]についても同様。)。
For reference, FIG. 40B shows an example of a waveform of a pulse wave obtained when a pulsation signal of a blood vessel is detected in a state where a closed cavity is formed in a fingertip or an arm, that is, completely closed. The waveform shown in FIG. 40B can be said to be a velocity pulse wave from the shape of the waveform. By integrating the pulsation signal of the velocity pulse wave showing the waveform of FIG. 40 (b), the volume pulse wave showing the waveform of FIG. 40 (a) is obtained. Moreover, the acceleration pulse wave shown in FIG. 40 (c) is obtained by differentiating the pulsation signal of the velocity pulse wave showing the waveform of FIG. 40 (b).
In FIGS. 40 (a) to 40 (c), the unit [s] on the horizontal axis in the figure represents the second (hereinafter, the same applies to the unit [s] in the figure).
 一方、検体情報検出ユニットB32aとして、カナル型のインナーイヤータイプのヘッドホンを用いて、外耳道B104を閉鎖またはほぼ閉鎖された空間構造となる空洞B109aとして形成するようにして、血管の脈動性信号を検出した際に得られる波形の一例を表すのが図41(b)である。図41(b)の波形を示す脈動性信号を積分することで、図41(a)の波形を示す脈波が得られる。また、図41(b)の波形を示す脈動性信号を微分することで、図41(c)に示す脈波が得られる。 On the other hand, as the specimen information detection unit B32a, a canal-type inner-ear type headphone was used to detect the pulsatile signal of the blood vessel by forming the external ear canal B104 as a cavity B109a having a closed or almost closed space structure. An example of the waveform obtained at this time is shown in FIG. By integrating the pulsating signal showing the waveform of FIG. 41 (b), the pulse wave showing the waveform of FIG. 41 (a) is obtained. Also, the pulsation signal shown in FIG. 41 (b) is obtained by differentiating the pulsating signal showing the waveform of FIG. 41 (b).
 このとき、図40(a)~図40(c)の各波形と、図41(a)~図41(c)の各波形とを比較すると、図41(a)の波形は図40(b)の速度脈波に近く、図41(b)の波形は図40(c)の加速度脈波に近く、図41(c)の波形は図40(b)の速度脈波の2重微分の波形、又は図40(c)の加速度脈波の微分波形に近いことが分かる。このことは、カナル型のインナーイヤータイプのヘッドホンを用いて脈動性信号を検出した場合の図41(a)~図41(c)に表される波形は、完全に閉鎖されたクローズドキャビティを形成して脈動性信号を検出した場合の図40(a)~図40(c)に表される波形と比較して、これら脈波成分の周波数で新たな微分要素が加わっていることを示す。 At this time, when the waveforms of FIGS. 40A to 40C are compared with the waveforms of FIGS. 41A to 41C, the waveforms of FIG. ), The waveform of FIG. 41 (b) is close to the acceleration pulse wave of FIG. 40 (c), and the waveform of FIG. 41 (c) is a double differential of the velocity pulse wave of FIG. 40 (b). It can be seen that the waveform is close to the differential waveform of the acceleration pulse wave of FIG. This is because the waveforms shown in FIGS. 41 (a) to 41 (c) when a pulsating signal is detected using a canal-type inner-ear type headphone form a completely closed closed cavity. Compared with the waveforms shown in FIGS. 40 (a) to 40 (c) when the pulsation signal is detected, it is shown that a new differential element is added at the frequency of these pulse wave components.
 上述の通り、検体情報検出ユニットB32としてカナル型のインナーイヤータイプのヘッドホンを用いて検出される脈動性信号は、微分要素が加わった周波数特性を示す信号として検出される。この空洞B109aの空気漏れに起因する微分応答を補償するためには、図39(b)に示すような周波数特性を有する電気回路(補償回路)を通過させる、積分型または半積分型の位相補償を適用すればよい。 As described above, the pulsation signal detected using the canal type inner ear type headphones as the specimen information detection unit B32 is detected as a signal indicating the frequency characteristics with the addition of the differential element. In order to compensate for the differential response due to the air leakage of the cavity B109a, an integral type or semi-integral type phase compensation is made to pass through an electric circuit (compensation circuit) having a frequency characteristic as shown in FIG. Should be applied.
<オンイヤータイプの場合のクローズドキャビティの閉鎖レベルと周波数応答の変化>
 検体情報検出ユニットB32bを用いた場合、すなわち、検体情報検出ユニットB32がオンイヤータイプのヘッドホンである場合に検出される信号の周波数特性は、図42(a)のように表される。空洞B109bを完全に閉鎖できないことから、高周波数領域ではフラットな周波数特性であるものの、脈波情報検出帯域である0.1~10Hzの低周波数領域を含む領域が、クローズドキャビティの閉鎖レベルに応じて減衰してGainが落ちることで、検出される脈波の波形が影響を受けることになる。
<Change in closed cavity closing level and frequency response for on-ear type>
When the sample information detection unit B32b is used, that is, when the sample information detection unit B32 is an on-ear type headphone, the frequency characteristic of the signal detected is expressed as shown in FIG. Since the cavity B109b cannot be completely closed, a region including a low frequency region of 0.1 to 10 Hz, which is a pulse wave information detection band, corresponds to the closed cavity closing level, although the frequency characteristic is flat in the high frequency region. When the gain is attenuated and the gain falls, the waveform of the detected pulse wave is affected.
 検体情報検出ユニットB32bを用いた場合には、図42(b)に示すように、脈波検出帯域である0.1~10Hzの低周波数領域を含む領域のゲインの減衰にあわせて、信号のゲインを上昇させるような位相補償を行う。すなわち、脈波検出帯域を含む低周波数領域のゲインの低下を補償するようにして、低周波数領域のゲインを増幅させるような位相補償を行えばよい。 When the specimen information detection unit B32b is used, as shown in FIG. 42 (b), in accordance with the attenuation of the gain of the region including the low frequency region of 0.1 to 10 Hz which is the pulse wave detection band, Perform phase compensation to increase the gain. That is, the phase compensation may be performed so as to amplify the gain in the low frequency region by compensating for the decrease in the gain in the low frequency region including the pulse wave detection band.
 なお、筐体部として、カナル型のインナーイヤーイヤホンに用いられるイヤーピースB213を用いた場合では、図39(a)に示すように、脈波検出帯域付近に微分応答のコーナー周波数を有して減衰することによりGainが落ちる。これに対して、オンイヤータイプ、アラウンドイヤータイプのイヤーパッドB614,B624を用いた場合では、脈波検出帯域付近よりも高い領域から減衰して、カナル型のインナーイヤーイヤホンに用いられるイヤーピースB213の場合よりも大きくGainが落ちる。このとき、減衰の落ち始めとなるコーナー周波数が脈波周波数より大きく離れているため、脈波検出帯域付近のゲインの低下が安定しているという特徴がある。このため、検体情報検出ユニットB32aでは、外耳道B104にイヤーピースB213を入れた際に隙間無くおさまった時に、空気漏れによる微分応答のコーナー周波数が脈波の周波数に近いかこれよりも小さくなる場合がある。このときには、上述した電磁変換系の微分応答の影響を受けて、信号の波形が速度応答に近い波形となって検出される。一方、検体情報検出ユニットB32b,B32cでは、通常、空気漏れによる微分応答のコーナー周波数が脈波の周波数より十分に高くなる。このため、上述した電磁変換系の微分応答と、空気漏れによる微分応答の影響を受けて、信号の波形が安定な加速度応答になって検出される。 When the earpiece B213 used for the canal-type inner earphone is used as the casing, as shown in FIG. 39A, it attenuates with a corner frequency of the differential response in the vicinity of the pulse wave detection band. As a result, Gain falls. On the other hand, in the case of using the ear pads B614 and B624 of the on-ear type and the around-ear type, it is attenuated from a region higher than the vicinity of the pulse wave detection band, and compared with the case of the earpiece B213 used for the canal type inner earphone. Gain greatly falls. At this time, since the corner frequency at which the attenuation begins to drop is far away from the pulse wave frequency, the gain reduction near the pulse wave detection band is stable. For this reason, in the specimen information detection unit B32a, when the earpiece B213 is inserted into the ear canal B104 without a gap, the corner frequency of the differential response due to air leakage may be close to or less than the pulse wave frequency. . At this time, under the influence of the differential response of the electromagnetic conversion system described above, the signal waveform is detected as a waveform close to the speed response. On the other hand, in the specimen information detection units B32b and B32c, the corner frequency of the differential response due to air leakage is usually sufficiently higher than the pulse wave frequency. For this reason, the signal waveform is detected as a stable acceleration response under the influence of the differential response of the electromagnetic conversion system described above and the differential response due to air leakage.
 例えば、オンイヤータイプのヘッドホンまたはアラウンドイヤータイプのヘッドホンを用いた場合には、脈波情報検出帯域を含む周波数領域の周波数成分のゲインを周波数の減少とともに20dB/decで漸増させる補償パターンにより周波数特性の補償を行えば、空気漏れに起因する微分応答を補償できると考えられる。一方、カナル型のインナーイヤータイプのヘッドホンを用いた場合には、オンイヤータイプのヘッドホンまたはアラウンドイヤータイプの場合よりも空気漏れが小さいため、位相補償のブースト量が少なくとも空気漏れに起因する微分応答を補償できると考えられる。 For example, when an on-ear type headphone or an around-ear type headphone is used, the frequency characteristic is increased by a compensation pattern that gradually increases the gain of the frequency component in the frequency region including the pulse wave information detection band at 20 dB / dec as the frequency decreases. If compensation is performed, it is considered that the differential response due to air leakage can be compensated. On the other hand, when using canal-type inner-ear headphones, air leakage is smaller than with on-ear headphones or around-ear headphones, so the amount of phase compensation boost compensates for at least the differential response due to air leakage. It is considered possible.
 ただし、オンイヤータイプのヘッドホンまたはアラウンドイヤータイプのヘッドホンを用いた場合であっても、クローズドキャビティの閉鎖レベルに影響を受けることがある。このとき、図42(a)に示すような周波数特性の減衰度合いは、クローズドキャビティの閉鎖レベルに応じて空隙の影響によりコーナー周波数が変動するのに応じて変化する。このような場合としては、検体情報検出ユニットB32bの装着の仕方や、イヤーパッドB614の耳介B108へのフィット具合、筐体部B612,B622の密閉度合等により、通常よりも閉鎖レベルが高くなる場合が挙げられる。このように、空気漏れによる微分応答のコーナー周波数が脈波の周波数に近づく場合には、この変化に応じて補償を行うブースト量を変化させて位相補償を行う必要がある。 However, even when using on-ear type headphones or around-ear type headphones, the closed level of the closed cavity may be affected. At this time, the degree of attenuation of the frequency characteristics as shown in FIG. 42A changes according to the change of the corner frequency due to the influence of the air gap according to the closed level of the closed cavity. In such a case, the closing level becomes higher than usual due to how the sample information detection unit B32b is attached, how the ear pad B614 fits into the auricle B108, the degree of sealing of the housing portions B612, B622, and the like. Is mentioned. As described above, when the corner frequency of the differential response due to air leakage approaches the frequency of the pulse wave, it is necessary to perform phase compensation by changing the boost amount for compensation according to this change.
 検体情報検出ユニットB32bとして、オンイヤータイプのヘッドホンを用いて、閉鎖またはほぼ閉鎖された空間構造となる空洞B109bを形成するようにして血管の脈動性信号を検出した際に得られる波形の一例を表すのが図43(a)である。さらに、図43(a)の波形を示す脈動性信号を積分することで、図43(b)の波形を示す脈波が得られる。 As the sample information detection unit B32b, an example of a waveform obtained when a pulsation signal of a blood vessel is detected using an on-ear type headphone so as to form a cavity B109b having a closed or almost closed space structure is shown. This is shown in FIG. 43 (a). Further, by integrating the pulsation signal showing the waveform of FIG. 43 (a), the pulse wave showing the waveform of FIG. 43 (b) is obtained.
 このとき、図43(a),図43(b)の波形と、図40(a)~図40(c)の各波形とを比較すると、図43(a)の波形は図40(c)の加速度脈波と同様の波形であり、図43(b)の波形は図40(b)の速度脈波と同様の波形であることが分かる。また、図41(a)~図41(c)の各波形と比較すると、図43(a)の波形は加速度脈波に近い図41(b)の波形よりもピークが明りょうであることが分かる。また、図43(b)の波形は速度脈波に近い図41(a)の波形よりもピークが明りょうであることが分かる。 At this time, when the waveforms of FIGS. 43A and 43B are compared with the waveforms of FIGS. 40A to 40C, the waveform of FIG. 43A is the same as that of FIG. It can be seen that the waveform of FIG. 43 (b) is the same waveform as the velocity pulse wave of FIG. 40 (b). Compared with the waveforms in FIGS. 41 (a) to 41 (c), the waveform in FIG. 43 (a) has a clearer peak than the waveform in FIG. 41 (b) close to the acceleration pulse wave. I understand. It can also be seen that the waveform in FIG. 43 (b) has a clearer peak than the waveform in FIG. 41 (a) which is close to the velocity pulse wave.
 このことから、検体情報検出ユニットB32bとしてオンイヤータイプのヘッドホンを用いた場合には、カナル型のインナーイヤーイヤホンを用いた場合よりも、ピークが明りょうでS/N比に優れた脈動性信号を検出できることがわかる。 Therefore, when on-ear type headphones are used as the specimen information detection unit B32b, a pulsation signal with a clear peak and an excellent S / N ratio can be detected compared to when a canal type inner ear earphone is used. I understand that I can do it.
 なお、カナル型のインナーイヤーイヤホンを用いて、クローズドキャビティを形成した状態で脈動性信号を検出した場合には、ダイナミック型の電磁変換系の微分応答の影響により速度脈波の波形が観測される。しかしながら、通常、カナル型のインナーイヤーイヤホンを用いた場合には、クローズドキャビティの閉鎖レベルが閉鎖またはほぼ閉鎖された状態であるため、ダイナミック型の電磁変換系の微分応答と、コーナー周波数が脈波周波数に近いことの影響を受ける。これにより、完全に閉鎖されたクローズドキャビティを形成して脈動性信号を検出した場合と比較して、脈波成分の周波数で新たな微分要素が加わったことにより、速度脈波よりやや加速度脈波の傾向が加わった波形が観測されることになる。これに対して、オンイヤータイプのヘッドホンを用いた場合には、完全に閉鎖されたクローズドキャビティを形成して脈動性信号を検出した場合と比較して、ほぼ1回微分が加わった状態で、完全な加速度脈波として脈動性信号が検出されたことが分かる。 When a pulsation signal is detected in a state where a closed cavity is formed using a canal type inner earphone, a velocity pulse wave waveform is observed due to the differential response of a dynamic type electromagnetic conversion system. However, normally, when a canal type earbud is used, the closed level of the closed cavity is closed or almost closed, so the differential response of the dynamic electromagnetic conversion system and the corner frequency are the pulse wave frequency. Affected by being close to As a result, compared to the case of forming a completely closed closed cavity and detecting the pulsation signal, a new differential element is added at the frequency of the pulse wave component, so that the acceleration pulse wave is slightly higher than the velocity pulse wave. A waveform with this tendency added will be observed. On the other hand, when using on-ear type headphones, compared with the case where a pulsation signal is detected by forming a closed cavity that is completely closed, It can be seen that a pulsation signal was detected as a simple acceleration pulse wave.
 これは、図42(a)に示したように、検体情報検出ユニットB32bとしてオンイヤータイプのヘッドホンを用いた場合には、脈波検出帯域付近よりも高い領域から減衰してGainが落ちる周波数特性であることが影響しているものと考えられる。また、オンイヤータイプの場合には、カナル型のインナーイヤーイヤホンの場合よりもクローズドキャビティの閉鎖レベルが低いため、空気の漏れによる微分要素が強くなることで、安定な加速度応答になって脈動性信号が検出されたと推測される。 As shown in FIG. 42 (a), when on-ear type headphones are used as the specimen information detection unit B32b, this is a frequency characteristic in which Gain is attenuated by attenuation from a region higher than the vicinity of the pulse wave detection band. It is thought that there is an influence. In the case of the on-ear type, since the closed level of the closed cavity is lower than in the case of the canal type inner ear earphone, the differential element due to air leakage becomes stronger, resulting in a stable acceleration response and a pulsating signal. Presumed to have been detected.
 上述の通り、検体情報検出ユニットB32としてオンイヤータイプのヘッドホンを用いて検出される脈動性信号は、速度応答に1回微分が加わった周波数特性を示す信号として検出される。この空洞B109bの空気漏れに起因する微分応答を補償するためには、図42(b)に示すような周波数特性を有する電気回路(補償回路)を通過させる、積分型の位相補償を適用すればよい。 As described above, a pulsation signal detected using an on-ear type headphone as the specimen information detection unit B32 is detected as a signal indicating frequency characteristics obtained by adding a differentiation to the speed response once. In order to compensate for the differential response due to the air leakage of the cavity B109b, an integral type phase compensation that passes an electric circuit (compensation circuit) having a frequency characteristic as shown in FIG. Good.
<アラウンドイヤータイプの場合のクローズドキャビティの閉鎖レベルと周波数応答の変化>
 検体情報検出ユニットB32cを用いた場合、すなわち、検体情報検出ユニットB32がアラウンドイヤータイプのヘッドホンである場合に検出される信号の周波数特性は、検体情報検出ユニットB32bと同様に、図42(a)のように表される。
<Change in closed cavity closing level and frequency response for around ear type>
When the sample information detection unit B32c is used, that is, when the sample information detection unit B32 is an around-ear type headphone, the frequency characteristic of the signal detected is the same as that of the sample information detection unit B32b. It is expressed as
 検体情報検出ユニットB32cを用いた場合には、図42(b)に示すように、脈波検出帯域である0.1~10Hzの低周波数領域を含む領域のゲインの減衰にあわせて、信号のゲインを上昇させるような位相補償を行う。すなわち、脈波検出帯域を含む低周波数領域のゲインの低下を補償するようにして、低周波数領域のゲインを増幅させるような位相補償を行えばよい。 When the specimen information detection unit B32c is used, as shown in FIG. 42 (b), in accordance with the attenuation of the gain in the region including the low frequency region of 0.1 to 10 Hz which is the pulse wave detection band, Perform phase compensation to increase the gain. That is, the phase compensation may be performed so as to amplify the gain in the low frequency region by compensating for the decrease in the gain in the low frequency region including the pulse wave detection band.
 アラウンドイヤータイプのヘッドホンを用いた場合のクローズドキャビティの閉鎖レベルは、オンイヤータイプのヘッドホンを用いた場合と同等と推測される。 ¡The closed cavity closure level when using around-ear headphones is estimated to be the same as when using on-ear headphones.
 検体情報検出ユニットB32cとして、アラウンドイヤータイプのヘッドホンを用いて、閉鎖またはほぼ閉鎖された空間構造となる空洞B109cを形成するようにして血管の脈動性信号を検出した際に得られる波形の一例を表すのが図44(a)である。さらに、図44(a)の波形を示す脈動性信号を積分することで、図44(b)の波形を示す脈波が得られる。 An example of a waveform obtained when a pulsation signal of a blood vessel is detected by using an around-ear type headphone as the specimen information detection unit B32c so as to form a cavity B109c having a closed or almost closed space structure. This is shown in FIG. 44 (a). Furthermore, by integrating the pulsation signal having the waveform of FIG. 44A, a pulse wave having the waveform of FIG. 44B is obtained.
 このとき、図44(a),図44(b)の波形は、図43(a),図43(b)の波形と同様の波形として得られている。このことから、検体情報検出ユニットB32cとしてアラウンドイヤータイプのヘッドホンを用いた場合にも、オンイヤータイプのヘッドホンを用いた場合と同様に、カナル型のインナーイヤーイヤホンを用いた場合よりも、ピークが明りょうでS/N比に優れた脈動性信号を検出できることがわかる。また、アラウンドイヤータイプのヘッドホンを用いた場合にも、完全に閉鎖されたクローズドキャビティを形成して脈動性信号を検出した場合と比較して、ほぼ1回微分が加わった状態で、安定な加速度応答になって脈動性信号が検出されたことが分かる。 At this time, the waveforms in FIGS. 44 (a) and 44 (b) are obtained as waveforms similar to the waveforms in FIGS. 43 (a) and 43 (b). Therefore, when the around-ear type headphones are used as the sample information detection unit B32c, the peak is clearer than when the canal type inner-ear earphones are used, as in the case of using the on-ear type headphones. It can be seen that a pulsating signal having an excellent S / N ratio can be detected. In addition, when using around-ear headphones, stable acceleration is achieved with a derivative applied almost once compared to the case of forming a completely closed closed cavity and detecting a pulsation signal. It turns out that a pulsating signal was detected in response.
 上述の通り、検体情報検出ユニットB32としてアラウンドイヤータイプのヘッドホンを用いて検出される脈動性信号は、速度応答に1回微分が加わった周波数特性を示す信号として検出される。この空洞B109cの空気漏れに起因する微分応答を補償するためには、オンイヤータイプのヘッドホンを用いた場合と同様に、図42(b)に示すような周波数特性を有する、積分型の電気回路(補償回路)を通過させる位相補償を適用すればよい。 As described above, a pulsation signal detected using an around-ear type headphone as the specimen information detection unit B32 is detected as a signal indicating a frequency characteristic obtained by adding a differentiation to the speed response once. In order to compensate for the differential response due to the air leakage of the cavity B109c, as in the case of using an on-ear type headphone, an integral type electric circuit having a frequency characteristic as shown in FIG. Compensation circuit) may be applied for phase compensation.
[II-1-3-3.DSPに起因する周波数応答の変化]
 ここで、検体情報検出ユニットB32として、オンイヤータイプのヘッドホンを用いて脈動性信号を検出した際に得られる波形の別の例を表すのが図45(a)である。さらに、図45(a)の波形を示す脈動性信号を積分することで、図45(b)の波形を示す脈波が得られる。なお、ここで用いたオンイヤータイプのヘッドホンは、イヤーパッドB614の外部材B618が合成皮革により形成されている。この場合、図45(a)の波形は、図42(a),図43(a)と同様に、加速度脈波になって検出されている。また、図45(b)の波形は、図42(b),図43(b)と同様に、速度脈波になって検出されている。
[II-1-3-3. Change in frequency response due to DSP]
Here, FIG. 45A shows another example of a waveform obtained when a pulsation signal is detected using an on-ear type headphone as the specimen information detection unit B32. Furthermore, by integrating the pulsation signal showing the waveform of FIG. 45A, a pulse wave showing the waveform of FIG. 45B is obtained. In the on-ear type headphones used here, the outer member B618 of the ear pad B614 is formed of synthetic leather. In this case, the waveform of FIG. 45 (a) is detected as an acceleration pulse wave as in FIGS. 42 (a) and 43 (a). In addition, the waveform of FIG. 45 (b) is detected as a velocity pulse wave as in FIGS. 42 (b) and 43 (b).
 一方、検体情報検出ユニットB32として、第二のアラウンドイヤータイプのヘッドホンを用いて脈動性信号を検出した際に得られる波形の別の例を表すのが図46(a)である。さらに、図46(a)の波形を示す脈動性信号を積分することで、図46(b)の波形を示す脈波が得られる。なお、ここで用いた第二のアラウンドイヤータイプのヘッドホンは、上述の図45(a),図45(b)を参照して説明したオンイヤータイプのヘッドホンと同様に、イヤーパッドB614の外部材B628が合成皮革により形成されている。さらに、第二のアラウンドイヤータイプのヘッドホンは、内部にDSPを備えており、このDSPが検出した信号に処理を加える。 On the other hand, FIG. 46A shows another example of a waveform obtained when a pulsating signal is detected using the second around-ear type headphone as the specimen information detection unit B32. Further, by integrating the pulsation signal showing the waveform of FIG. 46A, a pulse wave showing the waveform of FIG. 46B is obtained. Note that the second around-ear type headphone used here has an outer member B628 of the ear pad B614 similar to the on-ear type headphone described with reference to FIGS. 45 (a) and 45 (b). It is made of synthetic leather. Furthermore, the second around-ear type headphone has a DSP inside, and processes the signal detected by the DSP.
 この場合、図46(a)は、加速度脈波ではなく、微分応答に近い波形、すなわち加速度脈波よりも速度脈波に近い波形が観測されている。また、積分後に得られる図46(b)では、速度脈波ではなく、容積脈波に近い波形が観測されている。これは、第二のアラウンドイヤータイプのヘッドホンが備えるDSPにより、脈波検出帯域を含む周波数成分をブーストするように補正することで、検体情報検出ユニットB32により検出される脈動性信号に積分要素が加わっているためであると考えられる。 In this case, in FIG. 46A, not the acceleration pulse wave, but a waveform closer to the differential response, that is, a waveform closer to the velocity pulse wave than the acceleration pulse wave is observed. In FIG. 46B obtained after integration, a waveform close to the volume pulse wave is observed instead of the velocity pulse wave. This is because the DSP included in the second around-ear type headphones corrects the frequency component including the pulse wave detection band so as to be boosted, so that an integral element is included in the pulsation signal detected by the specimen information detection unit B32. This is thought to be due to the participation.
 上述の通り、検体情報検出ユニットB32として、DSPを備えるヘッドホンを用いて検出される脈動性信号は、積分要素または積分要素が加わった周波数特性を示す信号として検出される場合がある。このDSPに起因する微分応答を補償するためには、DSPの周波数特性が必ずしも明らかではないため、図35に示すような周波数特性を有する電気回路において、パラメーターを適宜調節してこれを通過させる、積分型または半積分型の位相補償を適用すればよい。 As described above, a pulsation signal detected using a headphone equipped with a DSP as the specimen information detection unit B32 may be detected as an integral element or a signal indicating frequency characteristics to which the integral element is added. In order to compensate for the differential response due to the DSP, the frequency characteristics of the DSP are not necessarily clear. Therefore, in an electric circuit having frequency characteristics as shown in FIG. Integral or semi-integral phase compensation may be applied.
[II-1-3-4.周波数応答と波形等化処理]
 検体情報検出ユニットB32から出力される脈動性信号は、上述したような、センサB212の特性、クローズドキャビティの閉鎖レベル、及びDSPによる処理等に起因して、周波数特性が変化している。検体情報検出装置B13によれば、周波数特性補償部B96(波形等化処理部B271)によって波形等化処理を行うことにより、検体情報検出ユニットB32から出力された脈動性信号の周波数応答を補償して、所望の波形に波形等化(Equalizing)された信号として出力する。
[II-1-3-4. Frequency response and waveform equalization processing]
The frequency characteristics of the pulsating signal output from the specimen information detection unit B32 change due to the characteristics of the sensor B212, the closed level of the closed cavity, the processing by the DSP, and the like as described above. According to the sample information detection apparatus B13, the frequency characteristic compensation processing is performed by the frequency characteristic compensation unit B96 (waveform equalization processing unit B271), thereby compensating the frequency response of the pulsation signal output from the sample information detection unit B32. And output as a signal equalized to a desired waveform.
 なお、上述した周波数応答の変化の説明では、個々の周波数応答について、それぞれ位相補償をする場合について説明を行ったが、実際には、複数の周波数応答が合わさった脈動性信号が検体情報検出ユニットB32から出力される。 In the above description of the change in frequency response, the case where phase compensation is performed for each frequency response has been described. However, in actuality, a pulsating signal in which a plurality of frequency responses are combined is a specimen information detection unit. Output from B32.
 周波数特性補償部B96では、波形等化処理部B271により位相補償された波形について、波形判定部B272によって判定の基準となる波形と比較して、位相補償の周波数特性が適正になるまで繰り返し位相補償と判定とを行う。また、位相補償の条件を、図35に示す周波数特性のゲインの漸増の程度、ゲインの増幅の大きさ、ゲインを漸増させる周波数帯域、ゲインを増幅させる周波数帯域、信号を通過させる周波数帯域等について、適宜変更して行う。このとき、判定の基準となる波形を、所望の特性を有する波形とすることにより、周波数応答が補償された所望の特性を有する波形として得ることができる。これによって、複数の周波数応答が合わさった脈動性信号についても周波数応答を補償して、所望の波形を得ることができる。 In the frequency characteristic compensation unit B96, the waveform phase-compensated by the waveform equalization processing unit B271 is compared with the waveform serving as a determination reference by the waveform determination unit B272, and the phase compensation is repeatedly performed until the frequency characteristic of the phase compensation becomes appropriate. And make a decision. In addition, the phase compensation conditions are as follows: the degree of gradual increase in gain of the frequency characteristics, the magnitude of gain amplification, the frequency band in which gain is gradually increased, the frequency band in which gain is amplified, the frequency band in which signals are passed, and the like. Change as appropriate. At this time, a waveform having a desired characteristic in which the frequency response is compensated can be obtained by setting the waveform serving as a reference for determination to a waveform having a desired characteristic. Accordingly, a desired waveform can be obtained by compensating the frequency response of a pulsating signal in which a plurality of frequency responses are combined.
 例えば、センサB212の電磁系に起因する微分応答と、オンイヤータイプのヘッドホンの空気漏れによる微分応答が合わさることで、検体情報検出ユニットB32から出力される脈動性信号は、加速度応答の脈波(加速度脈波)として出力される。このような脈動性信号に対して、周波数特性補償部B96では、判定の基準となる波形を速度脈波として、検体情報検出ユニットB32から出力される脈動性信号につき、積分型の位相補償を行うことで、1回分の微分応答が補償された速度脈波として得ることができる。 For example, the differential response resulting from the electromagnetic system of the sensor B212 and the differential response due to air leakage from the on-ear type headphones are combined, so that the pulsation signal output from the specimen information detection unit B32 is a pulse wave (acceleration) of the acceleration response. Pulse wave). For such a pulsating signal, the frequency characteristic compensation unit B96 performs integral type phase compensation on the pulsating signal output from the specimen information detection unit B32 using the waveform serving as a reference for determination as a velocity pulsating wave. Thus, it can be obtained as a velocity pulse wave in which the differential response for one time is compensated.
 また例えば、センサB212の電磁系に起因する微分応答と、カナル型のインイヤータイプのヘッドホンの空気漏れによる微分要素が合わさることで、検体情報検出ユニットB32から出力される脈動性信号は、速度応答の脈波(速度脈波)に微分要素が加わった脈波として出力される。このような脈動性信号に対して、周波数特性補償部B96では、判定の基準となる波形を速度脈波として、検体情報検出ユニットB32から出力される脈動性信号につき、半積分型の位相補償を行うことで、空気漏れによる微分要素が補償された速度脈波として得ることができる。 Further, for example, the differential response caused by the electromagnetic system of the sensor B212 and the differential element due to air leakage of the canal type in-ear type headphones are combined, so that the pulsation signal output from the specimen information detection unit B32 has a speed response. It is output as a pulse wave with a differential element added to the pulse wave (velocity pulse wave). For such a pulsating signal, the frequency characteristic compensator B96 performs a semi-integral type phase compensation on the pulsating signal output from the specimen information detection unit B32 with the waveform serving as a reference as a velocity pulsating wave. By performing, it can be obtained as a velocity pulse wave in which a differential element due to air leakage is compensated.
 また例えば、例えば、センサB212の電磁系に起因する微分応答と、オンイヤータイプのヘッドホンの空気漏れによる微分応答と、検体情報検出ユニットB32のDSPによるブースト(積分要素)とが合わさることで、検体情報検出ユニットB32から出力される脈動性信号は、加速度応答の脈波(加速度脈波)に積分要素が加わった脈波として出力される。このような脈動性信号に対して、周波数特性補償部B96では、判定の基準となる波形を速度脈波として、検体情報検出ユニットB32から出力される脈動性信号につき、半積分型の位相補償を行うことで、1回分の微分応答と積分要素とが補償された速度脈波として得ることができる。 In addition, for example, the differential information resulting from the electromagnetic system of the sensor B212, the differential response due to air leakage of the on-ear type headphones, and the boost (integral element) by the DSP of the sample information detection unit B32 are combined, so that the sample information The pulsation signal output from the detection unit B32 is output as a pulse wave obtained by adding an integral element to a pulse wave of acceleration response (acceleration pulse wave). For such a pulsating signal, the frequency characteristic compensator B96 performs a semi-integral type phase compensation on the pulsating signal output from the specimen information detection unit B32 with the waveform serving as a reference as a velocity pulsating wave. By performing, it can be obtained as a velocity pulse wave in which the differential response and integral element for one time are compensated.
 このようにして、検体情報検出装置B13によれば、検体情報検出ユニットB32から出力された脈動性信号に位相補償を行うことで、周波数応答が補償された所望の特性を有する波形を得ることができる。なお、閉鎖レベルに応じて必要なブースト量が変化する場合や、DSPの特性によって必要なブースト量が変化する場合についても、波形判定部B272によって判定を行うことで、基準となる波形と同様の所望の特性を有する波形を得ることができる。 In this way, according to the specimen information detection apparatus B13, by performing phase compensation on the pulsating signal output from the specimen information detection unit B32, it is possible to obtain a waveform having a desired characteristic with a compensated frequency response. it can. In addition, also when the required boost amount changes according to the closing level or when the required boost amount changes depending on the characteristics of the DSP, the same determination as that of the reference waveform can be made by performing the determination by the waveform determination unit B272. A waveform having desired characteristics can be obtained.
[II-1-3-5.信号レベルとゲイン切り替え]
<空気漏れと信号レベルの変化>
 検体情報検出ユニットB32として、第三のアラウンドイヤータイプのヘッドホンを用いて脈動性信号を検出した際に得られる波形の例を表すのが図47(a)である。さらに、図47(a)の波形を示す脈動性信号を積分することで、図47(b)の波形を示す脈波が得られる。なお、ここで用いた第三のアラウンドイヤータイプのヘッドホンは、イヤーパッドB614の外部材B628が布により形成されている。
[II-1-3-5. Signal level and gain switching]
<Air leakage and signal level change>
FIG. 47A shows an example of a waveform obtained when a pulsating signal is detected using a third around-ear type headphone as the sample information detection unit B32. Further, by integrating the pulsation signal showing the waveform of FIG. 47 (a), the pulse wave showing the waveform of FIG. 47 (b) is obtained. In the third around-ear type headphone used here, the outer member B628 of the ear pad B614 is formed of cloth.
 この場合、積分後に得られる図47(b)では、DC的に波形が上下している。これは、第三のアラウンドイヤータイプのヘッドホンでは、イヤーパッドB614が布製であることにより、測定時に空洞B109の空気の漏れが変動しているためと考えられる。これにより、検体情報検出ユニットB32により検出される脈動性信号は、空気漏れに起因して、信号のレベルが変化することが理解される。このような信号レベルの動的な変化についても、ゲイン切り替え部B95によって適切なゲインに自動的に補正することが好ましい。 In this case, in FIG. 47 (b) obtained after integration, the waveform rises and falls in a DC manner. This is probably because in the third around-ear type headphone, the ear pad B614 is made of cloth, so that air leakage in the cavity B109 fluctuates during measurement. Thereby, it is understood that the level of the pulsation signal detected by the specimen information detection unit B32 changes due to air leakage. It is preferable that such a dynamic change in the signal level is automatically corrected to an appropriate gain by the gain switching unit B95.
 検体情報検出装置B13によれば、ゲイン切り替え部B95が、検体情報検出ユニットB32から入力された信号に応じて信号のレベルを自動的に調整する。中でも、ゲイン切り替え部B95によって信号の飽和を解消することができるため、いかなるタイプのヘッドホンを使用した場合であっても、自動的にゲインを切り替えて適正なゲインの信号を得ることができる。また、インナーイヤータイプのヘッドホンの場合は、オンイヤータイプまたはアラウンドイヤータイプのヘッドホンの場合よりも検出される信号の強度が低い。このために、PLLによるロックをかけることができない等、情報処理装置B23に入力される信号が、信号処理に適さない場合がある。検体情報検出装置B13によれば、ゲイン切り替え部B95によって適切なゲインに増幅された信号を得ることができる。また、ゲイン切り替え部B95によれば、信号レベルの動的に変化した場合であっても、適切なゲインに自動的に補正することができる。 According to the sample information detection apparatus B13, the gain switching unit B95 automatically adjusts the signal level according to the signal input from the sample information detection unit B32. In particular, since the signal saturation can be eliminated by the gain switching unit B95, it is possible to automatically switch the gain and obtain a signal with an appropriate gain regardless of the type of headphones used. Further, in the case of the inner ear type headphones, the intensity of the detected signal is lower than in the case of the on-ear type or around ear type headphones. For this reason, the signal input to the information processing apparatus B23 may not be suitable for signal processing, such as being unable to lock by the PLL. According to the sample information detection apparatus B13, a signal amplified to an appropriate gain by the gain switching unit B95 can be obtained. Further, the gain switching unit B95 can automatically correct to an appropriate gain even when the signal level changes dynamically.
<検体情報検出ユニットと振動源と信号レベルの変化>
 検体情報検出ユニットB32としては、カナル型のインナーイヤータイプ、オンイヤータイプ、またはアラウンドイヤータイプのヘッドホンのいずれかのヘッドホンを用いることができる。通常、オンイヤータイプまたはアラウンドイヤータイプのヘッドホンの場合は、インナーイヤータイプのヘッドホンの場合よりも検出される信号が大きく、情報処理装置B23に入力される信号が飽和することがある。これは、例えばコンデンサ型のドライバユニットであれば、オンイヤータイプまたはアラウンドイヤータイプのヘッドホンの場合はダイヤフラムの径が大きいことが一因として考えられる。また、センサB212により得られる信号レベルは、センサB212として用いられるドライバユニットの特性により影響を受けることも一因として考えられる。
<Sample information detection unit, vibration source, and signal level change>
As the sample information detection unit B32, a headphone of a canal type inner ear type, on-ear type, or around ear type headphone can be used. Usually, in the case of an on-ear type or around-ear type headphone, the detected signal is larger than in the case of an inner-ear type headphone, and the signal input to the information processing apparatus B23 may be saturated. For example, in the case of a capacitor type driver unit, it is considered that the diameter of the diaphragm is large in the case of an on-ear type or around-ear type headphone. In addition, it is considered that the signal level obtained by the sensor B212 is influenced by the characteristics of the driver unit used as the sensor B212.
 なお、一般的にヘッドホンのダイヤフラムの直径は、データ上では、カナル型のインナーイヤーイヤホンの場合であれば、8.8mmφから12.5mmφとされている。一方、オンイヤータイプ又はアラウンドイヤータイプの場合であれば、30mmφから53mmφとされている。なお、これらの値はダイヤフラムの周りのフリンジを含めた外形であり、振動に寄与するダイヤフラムの有効径は上記の値よりも小さくなる。仮に、上記のこれらのデータ上のダイヤフラム径を利用してそのまま面積を求めてみると、8mmφと53mmφでは、面積比で約33倍の差がある。 In general, the diameter of the diaphragm of the headphone is 8.8 mmφ to 12.5 mmφ in the case of a canal type inner earphone. On the other hand, in the case of an on-ear type or an around-ear type, it is set to 30 mmφ to 53 mmφ. These values are external shapes including fringes around the diaphragm, and the effective diameter of the diaphragm contributing to vibration is smaller than the above value. If the area is obtained as it is by using the diaphragm diameter on the above data, there is a difference of about 33 times in area ratio between 8 mmφ and 53 mmφ.
 また、カナル型のインナーイヤーイヤホンを外耳道B104に挿入した時に形成される空洞B109の容積は2ccであるとされている。一方、オンイヤータイプ又はアラウンドイヤータイプの場合であれば、ヘッドホンの容積は約6ccとされている。これらの数値から、計算上は約一桁、オンイヤータイプ又はアラウンドイヤータイプのヘッドホンの方が検出される信号が大きくなるとも予測される。 Also, the volume of the cavity B109 formed when the canal-type inner earphone is inserted into the external ear canal B104 is 2 cc. On the other hand, in the case of the on-ear type or around-ear type, the volume of the headphones is about 6 cc. From these numerical values, it is predicted that the signal detected by the on-ear type or around-ear type headphones will be larger by about one digit in calculation.
 ここで、ダミーヘッドの外耳道B104にスピーカーを設けて0.1Hz~20Hzの信号を発生させた場合に、オンイヤータイプのヘッドホン、アラウンドイヤータイプのヘッドホン、及びカナル型のインナーイヤータイプのヘッドホンにより、それぞれ信号の検出を試みた。このとき、オンイヤータイプ及びアラウンドイヤータイプにより、外耳道B104の外部開口部B105を覆うように装着してクローズドキャビティを形成して測定を行なった。また、カナル型のインナーイヤータイプのヘッドホンにより、外耳道B104の外部開口部B105を塞いでクローズドキャビティを形成して測定を行なった。その結果、同じ強さの信号の入力に対して、オンイヤータイプのヘッドホンまたはアラウンドイヤータイプのヘッドホンから得られる信号の量は、カナル型のインナーイヤータイプのヘッドホンから得られる信号の数分の1程度となった。 Here, when a speaker is provided in the external ear canal B104 of the dummy head and a signal of 0.1 Hz to 20 Hz is generated, the signal is received by the on-ear type headphones, the around ear type headphones, and the canal type inner ear type headphones, respectively. Attempted to detect. At this time, by using an on-ear type and an around-ear type, measurement was performed with a closed cavity formed by covering the external opening B105 of the ear canal B104. Further, the measurement was performed by using a canal-type inner-ear type headphone to close the external opening B105 of the ear canal B104 to form a closed cavity. As a result, the amount of signal obtained from on-ear type headphones or around-ear type headphones is about a fraction of the signal obtained from canal-type inner-ear headphones for the same strength of signal input. became.
 この結果は、外耳道B104のみを振動源とする場合に、オンイヤータイプまたはアラウンドイヤータイプのヘッドホンを用いた場合に得られる信号の量は、カナル型のインナーイヤータイプのヘッドホンを用いた場合に得られる信号よりも、数分の1程度に少なくなることを示している。これは、オンイヤータイプまたはアラウンドイヤータイプのヘッドホンを用いた場合には、カナル型のインナーイヤータイプのヘッドホンの場合よりも、形成される空洞B109の容積が大きいこと、クローズドキャビティの閉鎖レベルが低いために空洞B109から空気が漏れること、またセンサB212と振動源である外耳道B104からの距離が遠いことが要因であると推測される。これにより、オンイヤータイプまたはアラウンドイヤータイプのヘッドホンを用いた場合には血管の脈動に起因して生じる空気の振動の検出が弱まることで、ダイヤフラムの有効径の大きさにも関わらず、得られる信号の量が少なくなると考えられる。 As a result, when only the ear canal B104 is used as a vibration source, the amount of signal obtained when using an on-ear type or around-ear type headphone is the signal obtained when using a canal type inner ear type headphone. It shows that it is reduced to about a fraction of that. This is because when the on-ear type or around-ear type headphones are used, the volume of the cavity B109 formed is larger than that of the canal type inner ear type headphones, and the closed level of the closed cavity is low. It is presumed that air leaks from the cavity B109 and that the distance from the sensor B212 and the ear canal B104 that is the vibration source is long. As a result, when on-ear or around-ear headphones are used, the detection of air vibrations caused by blood vessel pulsation is weakened, resulting in a signal that can be obtained regardless of the effective diameter of the diaphragm. It is thought that the amount of
 次に、検体B101にオンイヤータイプのヘッドホンとアラウンドイヤータイプのヘッドホンとを装着して脈動性信号の検出を行う際に、外耳道B104の外部開口部B105をパテで覆って閉鎖した場合と、パテで覆わずに外耳道B104を開放した場合との検出を試みた。検体情報検出ユニットB32としてオンイヤータイプのヘッドホンを用いて、外耳道B104を開放した場合に得られる波形の例を表すのが図48、外耳道B104を閉鎖した場合に得られる波形の例を表すのが図49である。また、検体情報検出ユニットB32としてアラウンドイヤータイプのヘッドホンを用いて、外耳道B104を開放した場合に得られる波形の例を表すのが図50、外耳道B104を閉鎖した場合に得られる波形の例を表すのが図51である。 Next, when detecting the pulsation signal by attaching on-ear type headphones and around-ear type headphones to the specimen B101, the external opening B105 of the ear canal B104 is covered with a putty and closed. An attempt was made to detect when the external auditory canal B104 was opened without being covered. FIG. 48 shows an example of a waveform obtained when the external ear canal B104 is opened using an on-ear type headphone as the specimen information detection unit B32. FIG. 48 shows an example of a waveform obtained when the external ear canal B104 is closed. 49. Further, FIG. 50 shows an example of a waveform obtained when the external ear canal B104 is opened using an around-ear type headphone as the specimen information detection unit B32, and an example of a waveform obtained when the external ear canal B104 is closed. This is shown in FIG.
 図48と図49とを比較すると、オンイヤータイプのヘッドホンを用いた際に、外耳道B104の閉鎖により、検出される信号の波形は大きく変化はしないものの、信号の強度が低下していることが分かる。また、図50と図51とを比較すると、アラウンドイヤータイプのヘッドホンを用いた際も同様に、外耳道B104の閉鎖により、検出される信号の波形は大きく変化はしないものの、信号の強度が低下していることが分かる。さらに、図48と図50、図49と図51を比較すると、外耳道B104を開放した場合と外耳道B104を閉鎖した場合とともに、アラウンドイヤータイプのヘッドホンにより検出される信号は、オンイヤータイプのヘッドホンにより検出される信号よりも大きいことが分かる。 Comparing FIG. 48 with FIG. 49, it can be seen that when on-ear headphones are used, the detected signal waveform does not change greatly due to the closure of the external ear canal B104, but the signal strength decreases. . In addition, when FIG. 50 is compared with FIG. 51, similarly, when the around-ear type headphones are used, the waveform of the detected signal does not change greatly due to the closure of the ear canal B104, but the signal strength decreases. I understand that 48 and FIG. 50, and FIG. 49 and FIG. 51, when the ear canal B104 is opened and when the ear canal B104 is closed, signals detected by the around ear type headphones are detected by the on ear type headphones. It can be seen that it is larger than the signal to be transmitted.
 より詳細に、検出された信号の波形それぞれにおいて、加速度脈波の5つのパルスのトップピークとボトムピークの信号の強度の差を求め、5パルス分の平均値を算出した。その結果、オンイヤータイプのヘッドホンで検出した脈動性信号のうち、外耳道B104を閉鎖した場合の信号の強度の平均値は、外耳道B104を開放した場合の約70%となった。また、アラウンドイヤータイプのヘッドホンで検出した脈動性信号のうち、外耳道B104を閉鎖した場合の信号の強度の平均値は、外耳道B104を開放した場合の約80%となった。 More specifically, in each detected signal waveform, the difference in the intensity of the top peak and bottom peak signals of the five pulses of the acceleration pulse wave was obtained, and the average value for the five pulses was calculated. As a result, of the pulsating signals detected by the on-ear type headphones, the average value of the signal intensity when the ear canal B104 is closed is about 70% when the ear canal B104 is opened. Further, among the pulsating signals detected by the around-ear type headphones, the average value of the signal intensity when the ear canal B104 is closed is about 80% when the ear canal B104 is opened.
 外耳道B104を開放した場合の信号の強度と、外耳道B104を閉鎖した場合の信号の強度の差は、外耳道B104に由来する信号の強度に相当すると考えられる。すなわち、この結果から、オンイヤータイプのヘッドホンで検出される脈動性信号のうち、約30%が外耳道B104に由来する信号であり、約70%が外耳道B104以外に由来する信号であることを示している。また、アラウンドイヤータイプのヘッドホンで検出される脈動性信号のうち、約20%が外耳道B104に由来する信号であり、約80%が外耳道B104以外に由来する信号であることを示している。 The difference between the signal intensity when the ear canal B104 is opened and the signal intensity when the ear canal B104 is closed is considered to correspond to the intensity of the signal derived from the ear canal B104. That is, from this result, it is shown that about 30% of the pulsating signals detected by the on-ear type headphones are signals derived from the external ear canal B104, and about 70% are signals derived from other than the external ear canal B104. Yes. In addition, about 20% of the pulsating signals detected by the around-ear type headphones are signals derived from the external ear canal B104, and about 80% are signals derived from other than the external ear canal B104.
 上述のダミーヘッドを用いた測定結果と、パテで外耳道B104を閉鎖した場合の測定結果とを考慮すると、外耳道B104以外を振動源として、複数の振動源に由来する脈動性信号を検出することが、オンイヤータイプまたはアラウンドイヤータイプのヘッドホンを用いた場合に検出される信号強度の大きさの主要因となっていることが推測される。 Considering the measurement result using the above-described dummy head and the measurement result when the external auditory canal B104 is closed with the putty, it is possible to detect pulsating signals derived from a plurality of vibration sources using vibration sources other than the external ear canal B104. It is presumed that this is the main factor of the magnitude of the signal intensity detected when using the on-ear type or around-ear type headphones.
 すなわち、検体情報検出ユニットB32としてオンイヤータイプまたはアラウンドイヤータイプのヘッドホンを用いた場合には、外耳道B104、耳珠B111、及び耳垂B113を含んだ空洞B109を形成することができる。このとき、カナル型のインナーイヤータイプのヘッドホンを用いて外耳道B104の外部開口部B105に挿入する場合と比較して、外耳道B104に加えて、耳珠B111及び耳垂B113に由来する血管の脈動性信号を検出することができる。中でも、耳珠B111から検出される信号は、強度が大きく、またピークが鋭い。これによって、オンイヤータイプまたはアラウンドイヤータイプのヘッドホンを用いた場合に、カナル型のインナーイヤータイプのヘッドホンの場合よりも、信号の強度が大きく、波形のピークが鋭い脈動性信号の検出を行うことができるものと考えられる。さらに、また、オンイヤータイプは耳介B108の一部を覆うのに対して、アラウンドイヤータイプのヘッドホンは耳介B108の全体を覆うことで、オンイヤータイプよりも大きな信号が得られていると考えられる。 That is, when an on-ear type or around-ear type headphone is used as the specimen information detection unit B32, the cavity B109 including the external ear canal B104, the tragus B111, and the ear lobe B113 can be formed. At this time, compared with the case where the canal-type inner-ear headphones are inserted into the external opening B105 of the external ear canal B104, in addition to the external ear canal B104, the pulsation signals of the blood vessels derived from the tragus B111 and the earlobe B113 are obtained. Can be detected. Among them, the signal detected from the tragus B111 has a high intensity and a sharp peak. As a result, when on-ear or around-ear headphones are used, it is possible to detect a pulsating signal having a higher signal intensity and sharper waveform peaks than in the case of canal-type inner-ear headphones. It is considered a thing. Furthermore, while the on-ear type covers a part of the auricle B108, the around-ear type headphones cover the entire auricle B108, so that a larger signal than that of the on-ear type is obtained. .
 このような検体情報検出ユニットB32から出力される信号のレベルの相違について、ゲイン切り替え部B95によって適切なゲインに自動的に補正することが好ましい。 It is preferable that the difference in the level of the signal output from the specimen information detection unit B32 is automatically corrected to an appropriate gain by the gain switching unit B95.
 なお、検体情報検出ユニットB32としてカナル型のインナーイヤータイプのヘッドホンを用いて、耳珠B111に開口部B215を向けて、イヤーピースB213を押し当てて接触させることで装着して、脈動性信号を検出した際に得られる波形の例を表すのが図52である。また、検体情報検出ユニットB32としてカナル型のインナーイヤータイプのヘッドホンを用いて、耳垂B113に開口部B215を向けて、イヤーピースB213を押し当てて接触させることで装着して、脈動性信号を検出した際に得られる波形の例を表すのが図53である。これらは、耳珠B111のみ、または耳垂B113のみを振動源として検出される信号の波形を表すものである。 In addition, using a canal-type inner-ear type headphone as the specimen information detection unit B32, the opening B215 is directed to the tragus B111, and the earpiece B213 is pressed and brought into contact therewith to detect a pulsating signal. An example of the waveform obtained at this time is shown in FIG. When a canal-type inner-ear type headphone is used as the specimen information detection unit B32, the opening B215 is directed to the earlobe B113, the earpiece B213 is pressed and brought into contact, and a pulsation signal is detected. FIG. 53 shows an example of the waveform obtained. These represent the waveforms of signals detected using only the tragus B111 or only the earlobe B113 as a vibration source.
 図52と図53との比較から、カナル型のインナーイヤータイプのヘッドホンの開口部B215の大きさという同一表面積あたりで比較すると、耳珠B111から得られる信号の強度は、耳垂B113から得られる信号よりも大きいことが分かる。なお、外耳道B104から得られる信号量を1とした場合、耳珠B111から得られる信号量はおよそ2.3、耳珠B111等の耳介B108の他の部位から得られる信号量はおよそ0.5と推測される。 From a comparison between FIG. 52 and FIG. 53, the intensity of the signal obtained from the tragus B111 is greater than the signal obtained from the earlobe B113 when compared with the same surface area as the size of the opening B215 of the canal-type inner-ear type headphones. Can be seen to be large. When the signal amount obtained from the external auditory canal B104 is 1, the signal amount obtained from the tragus B111 is approximately 2.3, and the signal amount obtained from other parts of the auricle B108 such as the tragus B111 is approximately 0.2. 5 is estimated.
[II-1-3-6.周波数補正処理]
 周波数補正処理は、図54に示すような周波数応答をする電気回路(補償回路)を通過させる処理として説明することができる。または、このような処理はハードウェア回路やソフトウェア、あるいはハードウェアとソフトウェアとを組み合わせたものによって実現してもよい。
[II-1-3-6. Frequency correction processing]
The frequency correction process can be described as a process of passing an electric circuit (compensation circuit) having a frequency response as shown in FIG. Alternatively, such processing may be realized by a hardware circuit or software, or a combination of hardware and software.
 検体情報検出ユニットB32の出力からされた脈動性信号が、波形等化処理により速度脈波となっている場合において、容積脈波、速度脈波、または加速度脈波を得るには、図54に示すような周波数応答をする電気回路を通過させる周波数補正処理を適用すればよい。 In order to obtain a volume pulse wave, velocity pulse wave, or acceleration pulse wave when the pulsation signal output from the output of the specimen information detection unit B32 is a velocity pulse wave by waveform equalization processing, FIG. What is necessary is just to apply the frequency correction process which passes the electric circuit which makes the frequency response shown.
 このとき、図54に示すように、波形等化処理後の脈動性信号に対して超低周波域から100Hzまで-20dB/decでその後はフラットなカーブの周波数特性を有する電気回路を通過させる積分動作により、(容積)脈波が得られることになる。容積脈波は、周波数の変化に伴うゲインの変化は0dB/decであり、脈波の周波数付近ではフラットな周波数特性となっている。 At this time, as shown in FIG. 54, with respect to the pulsating signal after the waveform equalization processing, the integration is made to pass through an electric circuit having a frequency characteristic of a flat curve at -20 dB / dec from an extremely low frequency range to 100 Hz. By operation, a (volume) pulse wave is obtained. The volume pulse wave has a gain change of 0 dB / dec accompanying a change in frequency, and has a flat frequency characteristic in the vicinity of the frequency of the pulse wave.
 また、図54に示すように、波形等化処理後の脈動性信号に対して超低域から100Hzまで20dB/decで上昇しその後フラットなカーブの周波数特性を有する電気回路を通過させる微分動作により、加速度脈波が得られることになる。加速度脈波は、周波数が高くなるにつれて40dB/decでゲインが上昇しており、脈波の周波数付近では速度応答を示す周波数特性となっている。 Also, as shown in FIG. 54, by the differential operation of passing the electric circuit having the frequency characteristic of the flat curve after increasing at 20 dB / dec from the ultra low frequency to 100 Hz with respect to the pulsating signal after the waveform equalization processing. Thus, an acceleration pulse wave is obtained. The acceleration pulse wave has a gain of 40 dB / dec as the frequency increases, and has a frequency characteristic indicating a speed response in the vicinity of the frequency of the pulse wave.
 また、図54に示すように、波形等化処理後の脈動性信号に対して積分動作または微分動作を行わずに通過させる場合には、速度脈波が得られる。速度脈波は、周波数が高くなるにつれて20dB/decでゲインが上昇しており、脈波の周波数付近では加速度応答を示す周波数特性となっている。 Further, as shown in FIG. 54, when the pulsation signal after the waveform equalization processing is passed without performing an integration operation or a differentiation operation, a velocity pulsation wave is obtained. The velocity pulse wave increases in gain at 20 dB / dec as the frequency increases, and has a frequency characteristic indicating an acceleration response near the frequency of the pulse wave.
 すなわち、周波数補正処理とは、波形等化処理によって得られた速度脈波について、脈波の周波数1Hzに対して、積分動作を行うことで容積脈波を得て、微分動作を行うことで加速度脈波を得て、増幅動作を行うことで速度脈波を得る処理であるということもできる。 In other words, the frequency correction processing refers to the acceleration of the velocity pulse wave obtained by the waveform equalization processing by performing an integration operation on the pulse wave frequency of 1 Hz to obtain a volume pulse wave and performing a differentiation operation. It can also be said that the processing is to obtain a velocity pulse wave by obtaining a pulse wave and performing an amplification operation.
[II-1-4.検体情報処理装置の動作]
 検体情報処理装置B3の動作を、センサB212から検出された信号が情報処理装置B23へ入力される入力処理と、音源B92からの信号が検体情報検出装置B13へ出力される出力処理とについてそれぞれ説明する。
 なお、スイッチ回路B68が、RヘッドホンユニットB35の信号線B36とゲイン切り替え部B95とを接続している場合には、入力処理が行われる。一方、スイッチ回路B68が、RヘッドホンユニットB35の信号線B36と第一プラグB62のRヘッドホン端子B65とを接続している場合には、出力処理が行われる。
[II-1-4. Operation of specimen information processing apparatus]
The operation of the sample information processing apparatus B3 will be described for an input process in which a signal detected from the sensor B212 is input to the information processing apparatus B23 and an output process in which a signal from the sound source B92 is output to the sample information detection apparatus B13. To do.
When the switch circuit B68 connects the signal line B36 of the R headphone unit B35 and the gain switching unit B95, input processing is performed. On the other hand, when the switch circuit B68 connects the signal line B36 of the R headphone unit B35 and the R headphone terminal B65 of the first plug B62, output processing is performed.
(入力処理)
 図55に示すフローチャートに従って、センサB212から検出された信号が情報処理装置B23へ入力される場合の検体情報処理装置B3の動作を説明する。
(Input processing)
The operation of the sample information processing apparatus B3 when the signal detected from the sensor B212 is input to the information processing apparatus B23 will be described with reference to the flowchart shown in FIG.
 検体情報処理装置B3では、図55に示すように、まず、検体情報検出ユニットB32が、RヘッドホンユニットB35におけるセンサB212によって脈動性信号を検出する(ステップSB11)。検体情報検出ユニットB32により検出された脈動性信号は、接続部B53に入力される。このとき、接続部B54に入力される信号は、センサB212の電磁変換系、空気漏れ、または検体情報検出ユニットB32がDSPを備える場合にはその特性に起因した周波数特性を示すものとなっている。 In the sample information processing apparatus B3, as shown in FIG. 55, the sample information detection unit B32 first detects a pulsation signal by the sensor B212 in the R headphone unit B35 (step SB11). The pulsation signal detected by the specimen information detection unit B32 is input to the connection part B53. At this time, the signal input to the connection part B54 shows the frequency characteristics resulting from the electromagnetic conversion system of the sensor B212, air leakage, or the specimen information detection unit B32 provided with a DSP. .
 接続部B53に入力された脈動性信号は、スイッチ回路B68を介して、ゲイン切り替え部B95に入力される。ゲイン切り替え部B95では、検体情報検出ユニットB32から出力された脈動性信号に対してレベル調整処理を施して、信号のレベルを調整する(ステップSB12)。ゲイン切り替え部B95により処理された信号は、周波数特性補償部B96に入力される。 The pulsation signal input to the connection unit B53 is input to the gain switching unit B95 via the switch circuit B68. The gain switching unit B95 performs level adjustment processing on the pulsating signal output from the specimen information detection unit B32 to adjust the signal level (step SB12). The signal processed by the gain switching unit B95 is input to the frequency characteristic compensation unit B96.
 周波数特性補償部B96では、ゲイン切り替え部B95で処理された信号に対して波形等化処理を施す(ステップSB13)。このとき信号は、波形等化処理により脈波検出帯域の周波数応答が補償されて、速度脈波となっている。周波数特性補償部B96により処理された信号は、FETB72を介して、第一プラグB62のマイク端子B63に入力され、第一ジャックB81のマイク端子B83を介して情報処理装置B23に入力される(ステップSB14)。 The frequency characteristic compensation unit B96 performs waveform equalization processing on the signal processed by the gain switching unit B95 (step SB13). At this time, the signal is a velocity pulse wave by compensating the frequency response of the pulse wave detection band by waveform equalization processing. The signal processed by the frequency characteristic compensator B96 is input to the microphone terminal B63 of the first plug B62 via the FET B72, and input to the information processing apparatus B23 via the microphone terminal B83 of the first jack B81 (step). SB14).
 情報処理装置B23に入力された信号は、AD変換部B89に入力されて、AD変換部B89によりデジタル信号に変換される(ステップSB15)。デジタル信号に変換された信号は、周波数補正処理部B90に入力される。 The signal input to the information processing apparatus B23 is input to the AD conversion unit B89 and converted into a digital signal by the AD conversion unit B89 (step SB15). The signal converted into the digital signal is input to the frequency correction processing unit B90.
 周波数補正処理部B90は、AD変換部B89により変換された信号に対して、周波数補正処理を施し、脈動性容積信号、脈動性速度信号、及び脈動性加速度信号のうちの一つの信号を取り出す(ステップSB16)。周波数補正処理部B90に入力される信号は速度脈波であるから、積分動作を行うことで容積脈波を得て、微分動作を行うことで加速度脈波を得て、増幅動作を行うことで速度脈波を得る。 The frequency correction processing unit B90 performs frequency correction processing on the signal converted by the AD conversion unit B89, and extracts one of the pulsating volume signal, the pulsating velocity signal, and the pulsating acceleration signal ( Step SB16). Since the signal input to the frequency correction processing unit B90 is a velocity pulse wave, a volume pulse wave is obtained by performing an integral operation, an acceleration pulse wave is obtained by performing a differential operation, and an amplification operation is performed. Get velocity pulse wave.
(出力処理)
 音源B92からのデジタル形式の音信号は、左耳用の音信号と右耳用の音信号とでそれぞれDA変換部B91に入力される。DA変換部B91により、左耳用の音信号と右耳用の音信号は、それぞれアナログ形式の音信号に変換される。
(Output processing)
The digital sound signal from the sound source B92 is input to the DA converter B91 as a left ear sound signal and a right ear sound signal, respectively. The DA converter B91 converts the left ear sound signal and the right ear sound signal into analog sound signals, respectively.
 DA変換部B91により処理された右耳用の音信号は、第一ジャックB81のRヘッドホン端子B85に入力されて、第1プラグB62を介して検体情報検出装置B13に出力される。また、DA変換部B91により処理された左耳用の音信号は、第一ジャックB81のLヘッドホン端子B73に入力されて、第1プラグB62を介して検体情報検出装置B13に出力される。 The sound signal for the right ear processed by the DA conversion unit B91 is input to the R headphone terminal B85 of the first jack B81, and is output to the specimen information detection apparatus B13 via the first plug B62. The sound signal for the left ear processed by the DA conversion unit B91 is input to the L headphone terminal B73 of the first jack B81, and is output to the sample information detection apparatus B13 via the first plug B62.
 検体情報検出装置B13に出力された右耳用の音信号は、スイッチ回路B68を介して、RヘッドホンユニットB35に入力され、音源B92の右耳用の音信号に対応する音が、RヘッドホンユニットB35のヘッドホン(スピーカー)から出力される。検体情報検出装置B13に出力された左耳用の音信号は、LヘッドホンユニットB37に入力され、音源B92の左耳用の音信号に対応する音が、LヘッドホンユニットB37のヘッドホン(スピーカー)としてのセンサB212から出力される。 The right ear sound signal output to the sample information detection apparatus B13 is input to the R headphone unit B35 via the switch circuit B68, and the sound corresponding to the sound signal for the right ear of the sound source B92 is output to the R headphone unit. Output from B35 headphones (speakers). The sound signal for the left ear output to the sample information detection apparatus B13 is input to the L headphone unit B37, and the sound corresponding to the sound signal for the left ear of the sound source B92 is used as the headphone (speaker) of the L headphone unit B37. Output from the sensor B212.
(脈波の検出)
 本実施形態に係る検体情報処理装置B3は上述したように構成されており、脈波を測定する際には、スイッチB69を操作してスイッチ回路B68により、センサB212とゲイン切り替え部B95とを接続する。これにより、検体B101に装着したRヘッドホンユニットB35のセンサB212により脈波を検出することができる。
(Pulse wave detection)
The sample information processing apparatus B3 according to the present embodiment is configured as described above. When measuring a pulse wave, the switch B69 is operated to connect the sensor B212 and the gain switching unit B95 by the switch circuit B68. To do. Thereby, the pulse wave can be detected by the sensor B212 of the R headphone unit B35 attached to the specimen B101.
 実施形態に係る検体情報処理装置B3によれば、センサB212として、ヘッドホンをマイクロホンとして利用しているため、RヘッドホンユニットB35を装着したまま、装着しているRヘッドホンユニットB35により脈波を検出可能である。この場合、検体B101が、例えば脈波の測定時には音楽を聴いている状態から切り替えて、長時間脈波を測定するのに適している。 According to the sample information processing apparatus B3 according to the embodiment, since the headphone is used as the microphone as the sensor B212, the pulse wave can be detected by the mounted R headphone unit B35 while the R headphone unit B35 is mounted. It is. In this case, the specimen B101 is suitable for measuring a pulse wave for a long time by switching from a state in which music is being listened to when measuring a pulse wave, for example.
[II-1-5.第一実施形態に係る検体情報検出装置及び検体情報処理装置の効果]
 第一実施形態に係る検体情報検出装置B13及び検体情報処理装置B3によれば、筐体部B211,B612,B622により検体B101の外耳B107を構成する部位を外部の空間から隔離して閉鎖またはほぼ閉鎖された空間構造となる空洞B109を形成する。この状態で、センサB212が外耳B107を構成する部位における血管の脈動性信号を、脈動性信号に起因し空洞B109内を伝播する圧力情報として検出することにより、外耳B107を構成する部位に存在する血管、中でも外耳道B104、耳珠B111、耳垂B113、または鼓膜B106に存在する血管を利用して、検体B101の脈動性信号を検出することが出来る。
[II-1-5. Effects of specimen information detection apparatus and specimen information processing apparatus according to first embodiment]
According to the sample information detecting apparatus B13 and the sample information processing apparatus B3 according to the first embodiment, the parts constituting the outer ear B107 of the sample B101 are closed or substantially closed by the casing parts B211, B612, B622 from the external space. A cavity B109 that forms a closed space structure is formed. In this state, the sensor B212 detects the pulsation signal of the blood vessel in the part constituting the outer ear B107 as pressure information propagating in the cavity B109 due to the pulsation signal, thereby existing in the part constituting the outer ear B107. A pulsating signal of the specimen B101 can be detected by using blood vessels, particularly blood vessels present in the ear canal B104, tragus B111, ear lobe B113, or tympanic membrane B106.
 また、第一実施形態に係る検体情報検出装置B13及び検体情報処理装置B3によれば、外耳B107を構成する部位と、筐体部B211,B612,B622と、センサB212とが閉鎖された空間構造(クロ-ズドキャビティ)を形成するようにして測定する。このように、センサB212と振動源との関係において、クローズの状態にして測定することによって、脈波が検出される低周波数領域の周波数応答を向上させることができる。したがって、センサをオープンの状態で脈動性信号を検出する従来の場合と比較して、低周波数領域における脈動性信号のS/N比及び感度が改善される。 In addition, according to the sample information detection apparatus B13 and the sample information processing apparatus B3 according to the first embodiment, the spatial structure in which the part constituting the outer ear B107, the housing parts B211, B612, B622, and the sensor B212 are closed. Measured to form (closed cavity). Thus, in the relationship between the sensor B 212 and the vibration source, the frequency response in the low frequency region where the pulse wave is detected can be improved by performing measurement in the closed state. Therefore, the S / N ratio and sensitivity of the pulsating signal in the low frequency region are improved as compared with the conventional case of detecting the pulsating signal with the sensor open.
 第一実施形態に係る検体情報検出装置B13及び検体情報処理装置B3によれば、ゲイン切り替え部B95により、検体情報検出ユニットB32から出力された信号が飽和する場合に信号を減衰させる。これにより、検体情報検出ユニットB32によって検出される信号のレベルが変化したとしても、自動的にゲインを切り替えて、信号レベルが調整された適切な信号を出力することができる。 According to the sample information detection device B13 and the sample information processing device B3 according to the first embodiment, the gain switching unit B95 attenuates the signal when the signal output from the sample information detection unit B32 is saturated. Thereby, even if the level of the signal detected by the specimen information detection unit B32 changes, it is possible to automatically switch the gain and output an appropriate signal with the signal level adjusted.
 これにより、外耳B107を構成する部位を外部の空間から隔離するとともに閉鎖またはほぼ閉鎖された空間構造となる空洞B109を形成可能に検体B101の外耳B107に装着することのできる、カナル型のインナーイヤータイプ、オンイヤータイプまたはアラウンドイヤータイプのヘッドホンであれば、その種類を問わずに脈動性信号の検出が可能である。また、このようなヘッドホンを検体情報検出ユニットB32として利用することで、手軽に、日常的な測定が可能となる。 As a result, the canal-type inner-ear type can be attached to the outer ear B107 of the specimen B101 so as to form a cavity B109 having a closed or substantially closed space structure while isolating a portion constituting the outer ear B107 from the external space. In the case of an on-ear type or around-ear type headphone, it is possible to detect a pulsating signal regardless of the type. Further, by using such headphones as the sample information detection unit B32, daily measurement can be easily performed.
 さらに、第一実施形態に係る検体情報検出装置B13及び検体情報処理装置B3によれば、波形等化処理部B271によって波形等化処理を行うことで、センサB212により検出されて検体情報検出ユニットB32から出力された信号が示す、脈波情報検出帯域の周波数応答を補償することができる。これにより、センサB212の電磁変換系、空洞B109の空気漏れ、もしくは検体情報検出ユニットB32が備えるDSPに起因する、微分応答または積分応答のいずれか、またはこれらがあわさった周波数応答を補償することができる。また、波形等化処理部B271によって、脈動性信号を、微分要素または積分要素が加わっていない速度脈波信号または加速度脈波信号として得ることができる。 Furthermore, according to the sample information detection apparatus B13 and the sample information processing apparatus B3 according to the first embodiment, the waveform equalization processing unit B271 performs the waveform equalization process, thereby detecting the sample information by the sensor B212 and the sample information detection unit B32. The frequency response of the pulse wave information detection band indicated by the signal output from can be compensated. Thereby, either the differential response or the integral response due to the electromagnetic conversion system of the sensor B212, the air leakage of the cavity B109, or the DSP provided in the specimen information detection unit B32, or the frequency response generated by these can be compensated. it can. Further, the waveform equalization processing unit B271 can obtain the pulsation signal as a velocity pulse wave signal or an acceleration pulse wave signal to which a differential element or an integral element is not added.
 また、周波数特性補償部B96において、波形等化処理部B271により波形等化処理を行うとともに、波形判定部B272により波形比較処理を施す。これにより、周波数特性補償部B96は、検体情報検出ユニットB32から出力された信号について、基準となる波形と同様のパターンを示すように周波数応答が補償された脈動性信号を得ることができる。また、波形判定部B272では、入力された脈波をクロックで分割して正規化した時間において、同数のクロックで分割した基準となる波形と比較する。これにより、検体情報検出ユニットB32から出力された信号の波形の時間軸が揺らいだ際にも、同じタイミングにより脈波の信号の強度が示すパターンを比較することができる。 In the frequency characteristic compensation unit B96, the waveform equalization processing unit B271 performs waveform equalization processing, and the waveform determination unit B272 performs waveform comparison processing. Thereby, the frequency characteristic compensation unit B96 can obtain a pulsation signal in which the frequency response is compensated so as to show the same pattern as the reference waveform for the signal output from the specimen information detection unit B32. The waveform determination unit B272 compares the input pulse wave with the reference waveform divided by the same number of clocks at the time normalized by dividing the pulse wave by the clock. Thereby, even when the time axis of the waveform of the signal output from the specimen information detection unit B32 fluctuates, the patterns indicated by the intensity of the pulse wave signal can be compared at the same timing.
 さらに、第一実施形態に係る検体情報処理装置B3によれば、周波数補正処理部B90により、速度脈波、積分動作により容積脈波、又は微分動作により加速度脈波を得ることができる。 Furthermore, according to the sample information processing apparatus B3 according to the first embodiment, the frequency correction processing unit B90 can obtain the velocity pulse wave, the volume pulse wave by the integration operation, or the acceleration pulse wave by the differential operation.
 また、第一実施形態に係る検体情報検出装置B13及び検体情報処理装置B3によれば、接続部B53がゲイン切り替え部B95及び波形等化処理部B271を有する。このため、情報処理装置B23(スマートフォンB23)に接続されるヘッドホンとして、本実施形態に係る検体情報検出装置B13を用いることで、スマートフォンB23にレベル調整処理及び波形等化処理を施した脈動性信号を入力することができる。すなわち、スマートフォンB23に変更を加えることなく、スマートフォンB23に入力される脈動性信号にレベル調整処理及び波形等化処理を施すことができる。 In addition, according to the sample information detection apparatus B13 and the sample information processing apparatus B3 according to the first embodiment, the connection unit B53 includes the gain switching unit B95 and the waveform equalization processing unit B271. For this reason, the pulsatile signal which performed level adjustment processing and waveform equalization processing to smart phone B23 by using sample information detection device B13 concerning this embodiment as headphones connected to information processor B23 (smart phone B23). Can be entered. That is, the level adjustment process and the waveform equalization process can be performed on the pulsation signal input to the smartphone B23 without changing the smartphone B23.
 また、第一実施形態に係る検体情報検出装置B13及び検体情報処理装置B3によれば、接続部B54が第一プラグB62を有し、情報処理装置B23は第一プラグB62が接続される第一ジャックB81を有し、ゲイン切り替え部B95及び波形等化処理部B271により処理された脈動性信号が、第一ジャックB81を介して情報処理装置B23に入力される。このため、情報処理装置B23に脈動性信号以外の情報、例えば音声信号を入力する際には、第一ジャックB81に接続される検体情報検出装置B13を取り外し、ゲイン切り替え部B95及び波形等化処理部B271を有さない通常のヘッドホンマイクを接続すればよい。 In addition, according to the sample information detection apparatus B13 and the sample information processing apparatus B3 according to the first embodiment, the connection unit B54 has the first plug B62, and the information processing apparatus B23 has the first plug B62 connected thereto. A pulsation signal having a jack B81 and processed by the gain switching unit B95 and the waveform equalization processing unit B271 is input to the information processing apparatus B23 via the first jack B81. For this reason, when inputting information other than the pulsation signal, for example, an audio signal, to the information processing apparatus B23, the sample information detection apparatus B13 connected to the first jack B81 is removed, and the gain switching unit B95 and the waveform equalization process are removed. What is necessary is just to connect the normal headphone microphone which does not have the part B271.
[II-2.第一実施形態の変形例]
 本発明の第一実施形態の変形例に係る検体情報処理装置B4は、一部の構成が上述の第一実施形態に係る検体情報処理装置B3と同様に構成されており、上述の第一実施形態に係る検体情報処理装置B3と同様のものについては説明を省略し、同符号を用いて説明する。以下、第一実施形態の変形例の説明においては、第一実施形態の変形例を、単に本変形例とも呼ぶ。
[II-2. Modification of First Embodiment]
The sample information processing apparatus B4 according to the modification of the first embodiment of the present invention is partially configured in the same manner as the sample information processing apparatus B3 according to the first embodiment described above, and the first embodiment described above. The description of the same components as the sample information processing apparatus B3 according to the embodiment will be omitted and will be described using the same reference numerals. Hereinafter, in the description of the modification of the first embodiment, the modification of the first embodiment is also simply referred to as this modification.
 本変形例に係る検体情報処理装置B4は、図56に示すように、検体情報検出装置B14と、情報処理装置B23とを備えて構成されている。ここで、第一実施形態に係る検体情報処理装置B3では、検体情報検出ユニットB32が接続部B53と直接接続されていたのに対し、本変形例に係る検体情報処理装置B4では、検体情報検出ユニットB33が第二プラグB42及び第二ジャックB73を介して接続部B54と接続されている点で相違している。 The sample information processing apparatus B4 according to the present modification includes a sample information detection apparatus B14 and an information processing apparatus B23, as shown in FIG. Here, in the sample information processing apparatus B3 according to the first embodiment, the sample information detection unit B32 is directly connected to the connection unit B53, whereas in the sample information processing apparatus B4 according to the present modification, the sample information detection is performed. The unit B33 is different in that the unit B33 is connected to the connection portion B54 via the second plug B42 and the second jack B73.
[II-2-1.検体情報処理装置の構成]
 本変形例に係る検体情報処理装置B4、検体情報検出装置B14、及び情報処理装置B23の構成、並びに各部を構成する要素について説明する。図56は、本変形例に係る検体情報処理装置B4の構成を模式的に表わしたものである。
[II-2-1. Configuration of specimen information processing apparatus]
The configurations of the sample information processing device B4, the sample information detection device B14, and the information processing device B23 according to the present modification and elements constituting each unit will be described. FIG. 56 schematically shows the configuration of the sample information processing apparatus B4 according to this modification.
[II-2-1-1.検体情報検出装置の構成]
 検体情報検出装置B14は、図56に示すように、検体情報検出ユニットB33と、接続部B54とを備えて構成されている。接続部B54のことをインターフェース装置B54ともいう。
[II-2-1-1. Configuration of specimen information detection apparatus]
As shown in FIG. 56, the sample information detection apparatus B14 includes a sample information detection unit B33 and a connection portion B54. The connecting portion B54 is also referred to as an interface device B54.
<検体情報検出ユニット>
 検体情報検出ユニットB33は、右耳用のヘッドホンユニットB35(Rヘッドホンユニット)と、左耳用のヘッドホンユニットB37(Lヘッドホンユニット)と、第二プラグB42とを備えている、ヘッドホンである。検体情報検出ユニットB33は、第二プラグB42及び第二ジャックB73を介して接続部B54と接続されている他は、検体情報検出ユニットB32と同様に構成されている。検体情報検出ユニットB33は、検体情報検出ユニットB32と同様に、例えば、カナル型のインナーイヤータイプのヘッドホン、オンイヤータイプのヘッドホン、またはアラウンドイヤータイプのヘッドホンのいずれかを用いることができる。
<Sample information detection unit>
The sample information detection unit B33 is a headphone that includes a headphone unit B35 for right ear (R headphone unit), a headphone unit B37 for left ear (L headphone unit), and a second plug B42. The sample information detection unit B33 is configured in the same manner as the sample information detection unit B32 except that it is connected to the connection portion B54 via the second plug B42 and the second jack B73. Similar to the sample information detection unit B32, for example, the sample information detection unit B33 can use any of canal type inner ear type headphones, on-ear type headphones, or around-ear type headphones.
(第二プラグ)
 第二プラグB42は、図56に示すように、プラグの根元から先端へ、グランド端子B43、Rヘッドホン端子B44、及びLヘッドホン端子B45を順に有する。グランド端子B43、Rヘッドホン端子B44、及びLヘッドホン端子B45は、導電性の金属板が略円筒状に加工されて形成されている。
(Second plug)
As shown in FIG. 56, the second plug B42 has a ground terminal B43, an R headphone terminal B44, and an L headphone terminal B45 in this order from the root of the plug to the tip. The ground terminal B43, the R headphone terminal B44, and the L headphone terminal B45 are formed by processing a conductive metal plate into a substantially cylindrical shape.
 グランド端子B43とRヘッドホン端子B44との間、Rヘッドホン端子B44とLヘッドホン端子B45との間には、絶縁部材B46a、B46bがそれぞれ設けられている。絶縁部材B46a、B46bは、絶縁性の樹脂又はゴム製の素材からなり、導電性の各端子の間に介設されることで、各端子が互いに絶縁されている。 Insulating members B46a and B46b are provided between the ground terminal B43 and the R headphone terminal B44 and between the R headphone terminal B44 and the L headphone terminal B45, respectively. The insulating members B46a and B46b are made of an insulating resin or rubber material, and are interposed between the conductive terminals so that the terminals are insulated from each other.
 図56に示すように、RヘッドホンユニットB35の信号線B36が、第二プラグB42に設けられたRヘッドホン端子B44と接続される。LヘッドホンユニットB37の信号線B38が、第二プラグB42に設けられたLヘッドホン端子B45と接続される。また、RヘッドホンユニットB35のグランド線B41a、及びLヘッドホンユニットB37のグランド線B41bが合流したグランド線B41が、第二プラグB42に設けられたグランド端子B43と接続している。 As shown in FIG. 56, the signal line B36 of the R headphone unit B35 is connected to the R headphone terminal B44 provided in the second plug B42. A signal line B38 of the L headphone unit B37 is connected to an L headphone terminal B45 provided on the second plug B42. In addition, a ground line B41 obtained by joining the ground line B41a of the R headphone unit B35 and the ground line B41b of the L headphone unit B37 is connected to a ground terminal B43 provided in the second plug B42.
<接続部>
 本変形例に係る接続部B54は、第二ジャックB73、スイッチ回路B68、スイッチB69、ゲイン切り替え部B95、波形等化処理部B271及び波形判定部B272を有する周波数特性補償部B96、電源B71、FETB72、並びに第一プラグB62を備えている。以下、接続部B54の構成について、図56を参照して説明する。
<Connection part>
The connection unit B54 according to the present modification includes a second jack B73, a switch circuit B68, a switch B69, a gain switching unit B95, a waveform equalization processing unit B271, and a frequency characteristic compensation unit B96 having a waveform determination unit B272, a power supply B71, and an FET B72. And a first plug B62. Hereinafter, the configuration of the connecting portion B54 will be described with reference to FIG.
 接続部B54は、第二ジャックB73に検体情報検出ユニットB33の第二プラグB42が挿入されることで、第二プラグB42及び第二ジャックB73を介して、検体情報検出ユニットB33と、接続部B54とを接続している。また、接続部B54は、第一プラグB62を情報処理装置B23の第一ジャックB81に挿入することで、第一プラグB62及び第一ジャックB81を介して、検体情報検出装置B14と、情報処理装置B23とを接続している。接続部B54は、スマートフォンB23のジャック(第一ジャックB81)に挿入されるとともに、接続部B54の第二ジャックB73にヘッドホンとしての検体情報検出ユニットB33が挿入されることで、検体情報検出ユニットB33とスマートフォンB23とに介挿されるアダプタを構成する。 The connection portion B54 is connected to the sample information detection unit B33 and the connection portion B54 via the second plug B42 and the second jack B73 by inserting the second plug B42 of the sample information detection unit B33 into the second jack B73. And connected. Further, the connecting portion B54 inserts the first plug B62 into the first jack B81 of the information processing device B23, whereby the sample information detection device B14 and the information processing device are connected via the first plug B62 and the first jack B81. B23 is connected. The connection unit B54 is inserted into the jack (first jack B81) of the smartphone B23, and the sample information detection unit B33 as headphones is inserted into the second jack B73 of the connection unit B54, whereby the sample information detection unit B33. And an adapter inserted between the smartphone B23.
(第二ジャック)
 第二ジャックB73は、第二プラグB42が挿入される挿入孔B74を備える。図56に示すように、第二ジャックB73の挿入孔B74の内部には、挿入孔B74の手前から奥へ、グランド端子B75、Rヘッドホン端子B76、及びLヘッドホン端子B77を順に有する。グランド端子B75、Rヘッドホン端子B76、及びLヘッドホン端子B77は、導電性の金属板が板状に加工されて、第二ジャックB73の挿入孔B74の壁面に設けられることで形成されている。板状の端子Bが挿入孔B74の中心方向に向けて屈曲して、曲げ弾性を有する凸部を形成しており、この端子の凸部が挿入孔B74の中心方向に張り出すようにして設けられている。
(Second jack)
The second jack B73 includes an insertion hole B74 into which the second plug B42 is inserted. As shown in FIG. 56, in the insertion hole B74 of the second jack B73, a ground terminal B75, an R headphone terminal B76, and an L headphone terminal B77 are provided in this order from the front to the back of the insertion hole B74. The ground terminal B75, the R headphone terminal B76, and the L headphone terminal B77 are formed by processing a conductive metal plate into a plate shape and providing it on the wall surface of the insertion hole B74 of the second jack B73. The plate-like terminal B is bent toward the center of the insertion hole B74 to form a convex part having bending elasticity, and is provided so that the convex part of this terminal projects toward the center of the insertion hole B74. It has been.
 第二ジャックB73の構造を図57(a)~図57(c)を参照して説明する。図57(a)~図57(c)では、第二ジャックB73の輪郭形状を二点鎖線で示している。図57(a)は、第二ジャックB73を横方向から見た図であり、Rヘッドホン端子B76、及びLヘッドホン端子B77の配置を示している。図57(b)は、第二ジャックB73のE-E’矢視端面を示す図であり、グランド端子B75、Rヘッドホン端子B76、及びLヘッドホン端子B77の配置を示している。図57(c)は、第二ジャックB73のF-F’矢視端面を示す図であり、グランド端子B75,及びLヘッドホン端子B77の配置を示している。 The structure of the second jack B73 will be described with reference to FIGS. 57 (a) to 57 (c). 57 (a) to 57 (c), the outline shape of the second jack B73 is indicated by a two-dot chain line. FIG. 57 (a) is a view of the second jack B73 as viewed from the side, and shows the arrangement of the R headphone terminal B76 and the L headphone terminal B77. FIG. 57B is a diagram showing the end surface of the second jack B73 as viewed from the direction of the arrow E-E ', and shows the arrangement of the ground terminal B75, the R headphone terminal B76, and the L headphone terminal B77. FIG. 57 (c) is a diagram showing the end surface of the second jack B73 as viewed from the direction of the arrow F-F ', and shows the arrangement of the ground terminal B75 and the L headphone terminal B77.
 第二プラグB42が第二ジャックB73の挿入孔B74に挿入された場合に、図56に示すように、第二プラグB42のグランド端子B43と第二ジャックB73のグランド端子B75とが接触し、第二プラグB42のRヘッドホン端子B44と第二ジャックB73のRヘッドホン端子B76とが接触し、第二プラグB42のLヘッドホン端子B45と第二ジャックB73のLヘッドホン端子B77とが接触するように、第二プラグB42及び第二ジャックB73は形成されている。 When the second plug B42 is inserted into the insertion hole B74 of the second jack B73, as shown in FIG. 56, the ground terminal B43 of the second plug B42 and the ground terminal B75 of the second jack B73 come into contact with each other. The R headphone terminal B44 of the second plug B42 and the R headphone terminal B76 of the second jack B73 are in contact with each other, and the L headphone terminal B45 of the second plug B42 and the L headphone terminal B77 of the second jack B73 are in contact with each other. The two plugs B42 and the second jack B73 are formed.
 第二プラグB42が第二ジャックB73に挿入された場合の構造を図58(a)~図58(c)を参照して説明する。図58(a)~図58(c)では、第二ジャックB73の輪郭形状を二点鎖線で示している。図58(a)は、第二ジャックB73を横方向から見た図であり、第二プラグB42、Rヘッドホン端子B76、及びLヘッドホン端子B77の配置を示している。図58(b)は、第二ジャックB73のG-G’矢視端面を示す図であり、第二プラグB42、グランド端子B75、Rヘッドホン端子B76、及びLヘッドホン端子B77の配置を示している。図58(c)は、第二ジャックB73のH-H’矢視端面を示す図であり、第二プラグB42、グランド端子B75,及びLヘッドホン端子B77の配置を示している。 The structure when the second plug B42 is inserted into the second jack B73 will be described with reference to FIGS. 58 (a) to 58 (c). 58 (a) to 58 (c), the outline shape of the second jack B73 is indicated by a two-dot chain line. FIG. 58A is a diagram of the second jack B73 as viewed from the side, and shows the arrangement of the second plug B42, the R headphone terminal B76, and the L headphone terminal B77. FIG. 58B is a diagram showing the end face of the second jack B73 as viewed from the arrow GG ′, and shows the arrangement of the second plug B42, the ground terminal B75, the R headphone terminal B76, and the L headphone terminal B77. . FIG. 58C is a diagram showing the end surface of the second jack B73 as viewed from the direction of the arrow H-H ′, and shows the arrangement of the second plug B42, the ground terminal B75, and the L headphone terminal B77.
 第二プラグB42が第二ジャックB73の挿入孔B74に挿入された場合に、グランド端子B75、Rヘッドホン端子B76、及びLヘッドホン端子B77は、対向する第二プラグB42の各々の端子と接触するとともに各々の端子の形状にあわせて弾性変形する。このとき、各々の端子の凸部における曲げ弾性により接触状態が維持される。これにより、グランド端子B43とグランド端子B75とが接続され、Rヘッドホン端子B44とRヘッドホン端子B76とが接続され、Lヘッドホン端子B45とLヘッドホン端子B77とが接続される。 When the second plug B42 is inserted into the insertion hole B74 of the second jack B73, the ground terminal B75, the R headphone terminal B76, and the L headphone terminal B77 are in contact with the respective terminals of the opposing second plug B42. Elastically deforms according to the shape of each terminal. At this time, a contact state is maintained by the bending elasticity in the convex part of each terminal. Thereby, the ground terminal B43 and the ground terminal B75 are connected, the R headphone terminal B44 and the R headphone terminal B76 are connected, and the L headphone terminal B45 and the L headphone terminal B77 are connected.
 図56に示すように、第一ジャックB81のグランド端子B84は接地されており、第二プラグB42のグランド端子B43に接続されたグランド線B41が、第二ジャックB73、第一プラグB62、及び第一ジャックB81を介して接地される。第一ジャックB81のRヘッドホン端子B85は、右耳用の音源B92に対応するDA変換部B91に接続されており、第二プラグB42のRヘッドホン端子B44、及びRヘッドホン端子B44に接続される信号線B36に、右耳用の音源B92に対応するDA変換部B91からの信号が入力される。第一ジャックB81のLヘッドホン端子B86は、左耳用の音源B92に対応するDA変換部B91に接続されており、第一プラグB62のLヘッドホン端子B45、及びLヘッドホン端子B45に接続される信号線B38に、左耳用の音源B92に対応するDA変換部B91からの信号が入力される。 As shown in FIG. 56, the ground terminal B84 of the first jack B81 is grounded, and the ground line B41 connected to the ground terminal B43 of the second plug B42 is connected to the second jack B73, the first plug B62, and the first plug B62. It is grounded through one jack B81. The R headphone terminal B85 of the first jack B81 is connected to the DA converter B91 corresponding to the sound source B92 for the right ear, and the signal connected to the R headphone terminal B44 and the R headphone terminal B44 of the second plug B42. A signal from the DA conversion unit B91 corresponding to the right ear sound source B92 is input to the line B36. The L headphone terminal B86 of the first jack B81 is connected to the DA converter B91 corresponding to the sound source B92 for the left ear, and the signal connected to the L headphone terminal B45 and the L headphone terminal B45 of the first plug B62. A signal from the DA conversion unit B91 corresponding to the sound source B92 for the left ear is input to the line B38.
(スイッチ回路及びスイッチ)
 スイッチ回路B68は、第二ジャックB73のRヘッドホン端子B76が、ゲイン切り替え部B95と接続するか、第一プラグB62のRヘッドホン端子B65と接続するかを切り替えるスイッチ手段である。言い換えれば、スイッチ回路B68は、センサB212からゲイン切り替え部B95及び周波数特性補償部B96を経由しての第一プラグB62のマイク端子B63への接続と、センサB212からRヘッドホン端子B65への接続とを切り替えるものである。
(Switch circuit and switch)
The switch circuit B68 is switch means for switching whether the R headphone terminal B76 of the second jack B73 is connected to the gain switching unit B95 or the R headphone terminal B65 of the first plug B62. In other words, the switch circuit B68 includes a connection from the sensor B212 to the microphone terminal B63 of the first plug B62 via the gain switching unit B95 and the frequency characteristic compensation unit B96, and a connection from the sensor B212 to the R headphone terminal B65. Is to switch.
(ゲイン切り替え部)
 本変形例に係るゲイン切り替え部B95は、検体情報検出ユニットB33により検出された検出信号が、第二プラグB42及び第二ジャックB73を介して入力される以外は、第一実施形態に係るゲイン切り替え部B95と同様に構成されている。
(Gain switching part)
The gain switching unit B95 according to this modification is the gain switching according to the first embodiment except that the detection signal detected by the sample information detection unit B33 is input via the second plug B42 and the second jack B73. The configuration is the same as that of the part B95.
(周波数特性補償部)
 本変形例に係る周波数特性補償部B96は、検体情報検出ユニットB33により検出された検出信号が、第二プラグB42及び第二ジャックB73を介して入力される以外は、第一実施形態に係る周波数特性補償部B96と同様に構成されている。
(Frequency characteristics compensator)
The frequency characteristic compensator B96 according to this modification is the frequency according to the first embodiment except that the detection signal detected by the specimen information detection unit B33 is input via the second plug B42 and the second jack B73. The configuration is the same as that of the characteristic compensation unit B96.
[II-2-1-2.情報処理装置の構成]
 本変形例に係る情報処理装置B23(スマートフォンB23)は、第一実施形態に係る情報処理装置B23と同様に構成されている。
[II-2-1-2. Configuration of information processing apparatus]
The information processing apparatus B23 (smart phone B23) according to this modification is configured in the same manner as the information processing apparatus B23 according to the first embodiment.
[II-2-2.検体情報処理装置の機能構成]
 検体情報処理装置B4を機能的に表すとき、検体情報処理装置B4は、図56に示すように、検体情報検出装置B14及び情報処理装置B23を備えている。検体情報検出装置B14は、検体情報検出ユニットB33と、ゲイン切り替え部B95及び周波数特性補償部B96を有する接続部B54とを備えている。本実施形態に係る情報処理装置B23は、第一実施形態に係る情報処理装置B23と同様に構成されている。
[II-2-2. Functional configuration of sample information processing apparatus]
When functionally representing the sample information processing device B4, the sample information processing device B4 includes a sample information detection device B14 and an information processing device B23 as shown in FIG. The sample information detection apparatus B14 includes a sample information detection unit B33, and a connection unit B54 having a gain switching unit B95 and a frequency characteristic compensation unit B96. The information processing apparatus B23 according to the present embodiment is configured similarly to the information processing apparatus B23 according to the first embodiment.
 本変形例に係る情報処理装置B23では、周波数補正処理部B90は、上述したアプリケーションソフトがメモリ上に展開されてCPUにより実行されることで、周波数補正処理手段として機能する。また、ゲイン切り替え部B95及び周波数特性補償部B96は、接続部B54に内蔵されるアナログ回路により処理がなされる。 In the information processing apparatus B23 according to the present modification, the frequency correction processing unit B90 functions as a frequency correction processing unit when the above-described application software is expanded on the memory and executed by the CPU. The gain switching unit B95 and the frequency characteristic compensation unit B96 are processed by an analog circuit built in the connection unit B54.
(接続部の機能構成)
 接続部B54の回路構成は、図56により示される。
 RヘッドホンユニットB35の信号線B36は、第二プラグB42のRヘッドホン端子B44と接続される。Rヘッドホン端子B44は、第二ジャックB73のRヘッドホン端子B76と接続される。Rヘッドホン端子B76は、スイッチ回路B68に接続される。スイッチ回路B68により、信号線B36と、ゲイン切り替え部B95、または第一プラグB62のRヘッドホン端子B65との接続が切り替えられる。
(Functional structure of connection part)
The circuit configuration of the connecting portion B54 is shown in FIG.
The signal line B36 of the R headphone unit B35 is connected to the R headphone terminal B44 of the second plug B42. The R headphone terminal B44 is connected to the R headphone terminal B76 of the second jack B73. The R headphone terminal B76 is connected to the switch circuit B68. The switch circuit B68 switches the connection between the signal line B36 and the gain switching unit B95 or the R headphone terminal B65 of the first plug B62.
 ゲイン切り替え部B95はその電源B71と接続される。また、ゲイン切り替え部B95は、周波数特性補償部B96と接続される。周波数特性補償部B96が、FETB72のゲート端子(G)に接続されることで、ゲイン切り替え部B95及び周波数特性補償部B96によって処理された信号は、FETB72のゲート端子(G)に入力される。FET B72のドレイン端子(D)は、接続部B54の第一プラグB62に設けられたマイク端子B63と接続する。FET B72のソース端子(S)はグランド線B41と合流して、第一プラグB62に設けられたグランド端子B64と接続する。 The gain switching unit B95 is connected to the power source B71. The gain switching unit B95 is connected to the frequency characteristic compensation unit B96. Since the frequency characteristic compensation unit B96 is connected to the gate terminal (G) of the FET B72, the signal processed by the gain switching unit B95 and the frequency characteristic compensation unit B96 is input to the gate terminal (G) of the FET B72. The drain terminal (D) of the FET B72 is connected to the microphone terminal B63 provided in the first plug B62 of the connection portion B54. The source terminal (S) of the FET B72 merges with the ground line B41 and is connected to the ground terminal B64 provided in the first plug B62.
 上述した回路構成により、スイッチ回路B68によって信号線B36がゲイン切り替え部B95と接続した場合には、センサB212で検出された信号がゲイン切り替え部B95に入力される。さらに、ゲイン切り替え部B95及び周波数特性補償部B96により処理された信号が、マイク端子B63に入力され、第一ジャックB81のマイク端子B83を介して情報処理装置B23のAD変換部B89に入力される。この場合、センサB212はマイクロホンとして機能する。スイッチ回路B68によって信号線B36がRヘッドホン端子B65と接続した場合には、RヘッドホンユニットB35のセンサB212へ音源B92からの音信号が入力される。この場合、センサB212はスピーカーとして機能する。
 このようにして、検体情報検出装置B14は、センサB212により検出されてゲイン切り替え部B95及び周波数特性補償部B96により処理された信号を、情報処理装置B23に出力する。
With the circuit configuration described above, when the signal line B36 is connected to the gain switching unit B95 by the switch circuit B68, the signal detected by the sensor B212 is input to the gain switching unit B95. Further, the signal processed by the gain switching unit B95 and the frequency characteristic compensation unit B96 is input to the microphone terminal B63 and input to the AD conversion unit B89 of the information processing apparatus B23 via the microphone terminal B83 of the first jack B81. . In this case, the sensor B212 functions as a microphone. When the signal line B36 is connected to the R headphone terminal B65 by the switch circuit B68, the sound signal from the sound source B92 is input to the sensor B212 of the R headphone unit B35. In this case, the sensor B212 functions as a speaker.
In this way, the specimen information detection device B14 outputs the signal detected by the sensor B212 and processed by the gain switching unit B95 and the frequency characteristic compensation unit B96 to the information processing device B23.
[II-2-3.信号特性と信号処理]
 本変形例の検体情報検出装置B14及び検体情報処理装置B4における、検体情報検出ユニットB33から出力される脈動性信号が信号特性に受ける影響と信号処理との関係は、上述した第一実施形態に係る検体情報検出装置B13及び検体情報処理装置B3と同様である。
[II-2-3. Signal characteristics and signal processing]
In the sample information detection apparatus B14 and the sample information processing apparatus B4 of this modification, the relationship between the influence of the pulsation signal output from the sample information detection unit B33 on the signal characteristics and the signal processing is the same as that in the first embodiment described above. This is the same as the sample information detection apparatus B13 and the sample information processing apparatus B3.
[II-2-4.検体情報処理装置の動作]
 検体情報処理装置B4の動作を、センサB212から検出された信号が情報処理装置B23へ入力される入力処理と、音源B92からの信号が検体情報検出装置B14へ出力される出力処理とについてそれぞれ説明する。
[II-2-4. Operation of specimen information processing apparatus]
The operation of the sample information processing apparatus B4 will be described with respect to an input process in which a signal detected from the sensor B212 is input to the information processing apparatus B23 and an output process in which a signal from the sound source B92 is output to the sample information detection apparatus B14. To do.
 なお、スイッチ回路B68が、第二ジャックB73のRヘッドホン端子B76とゲイン切り替え部B95とを接続している場合には、入力処理が行われる。一方、スイッチ回路B68が、第二ジャックB73のRヘッドホン端子B76と第一プラグB62のRヘッドホン端子B65とを接続している場合には、出力処理が行われる。 Note that when the switch circuit B68 connects the R headphone terminal B76 of the second jack B73 and the gain switching unit B95, an input process is performed. On the other hand, when the switch circuit B68 connects the R headphone terminal B76 of the second jack B73 and the R headphone terminal B65 of the first plug B62, output processing is performed.
(入力処理)
 検体情報処理装置B4における入力処理は、第一実施形態に係る検体情報処理装置B3では、検体情報検出ユニットB32により検出された脈動性信号が、スイッチ回路B68を介してゲイン切り替え部B95に入力されるのに対して、検体情報処理装置B4では、検体情報検出ユニットB33により検出された脈動性信号が、Rヘッドホン端子B44及びRヘッドホン端子B76、並びにスイッチ回路B68を介してゲイン切り替え部B95に入力される以外は、検体情報処理装置B3における入力処理と同様になっている。
(Input processing)
In the input processing in the sample information processing apparatus B4, in the sample information processing apparatus B3 according to the first embodiment, the pulsation signal detected by the sample information detection unit B32 is input to the gain switching unit B95 via the switch circuit B68. On the other hand, in the sample information processing apparatus B4, the pulsation signal detected by the sample information detection unit B33 is input to the gain switching unit B95 via the R headphone terminal B44, the R headphone terminal B76, and the switch circuit B68. Except for this, it is the same as the input process in the sample information processing apparatus B3.
(出力処理)
 検体情報処理装置B4における右耳用の音信号の出力処理は、第一実施形態に係る検体情報処理装置B3では、検体情報検出装置B13に出力された右耳用の音信号は、スイッチ回路B68を介して、RヘッドホンユニットB35に入力されるのに対して、検体情報処理装置B4では、検体情報検出装置B14に出力された右耳用の音信号が、スイッチ回路B68、並びにRヘッドホン端子B76及びRヘッドホン端子B44を介して、RヘッドホンユニットB35に入力される以外は、検体情報処理装置B3における入力処理と同様になっている。
(Output processing)
In the sample information processing apparatus B3 according to the first embodiment, the right ear sound signal output to the sample information detection apparatus B13 is the switch circuit B68. In contrast, in the sample information processing apparatus B4, the right ear sound signal output to the sample information detection apparatus B14 is input to the R headphone unit B35 via the switch circuit B68 and the R headphone terminal B76. The input processing is the same as the input processing in the sample information processing apparatus B3 except that the signal is input to the R headphone unit B35 via the R headphone terminal B44.
 また、検体情報処理装置B4における左耳用の音信号の出力処理は、第一実施形態に係る検体情報処理装置B3では、検体情報検出装置B13に出力された左耳用の音信号は、LヘッドホンユニットB37に入力されるのに対して、検体情報処理装置B4では、検体情報検出装置B14に出力された左耳用の音信号が、Lヘッドホン端子B77及びLヘッドホン端子B45を介して、LヘッドホンユニットB37に入力される以外は、検体情報処理装置B3における入力処理と同様になっている。 In addition, in the sample information processing apparatus B3 according to the first embodiment, the left ear sound signal output to the sample information detection apparatus B13 is L in the sample information processing apparatus B4. In contrast to the input to the headphone unit B37, in the sample information processing apparatus B4, the sound signal for the left ear output to the sample information detection apparatus B14 is transmitted via the L headphone terminal B77 and the L headphone terminal B45 to the L level. Except for being input to the headphone unit B37, the input processing is the same as in the sample information processing apparatus B3.
(脈波の検出)
 本変形例に係る検体情報処理装置B4は上述したように構成されており、脈波を測定する際には、スイッチB69を操作してスイッチ回路B68により、センサB212とゲイン切り替え部B95とを接続する。これにより、検体B101に装着したRヘッドホンユニットB35のセンサB212により脈波を検出することができる。
(Pulse wave detection)
The sample information processing apparatus B4 according to this modification is configured as described above. When measuring a pulse wave, the switch B69 is operated to connect the sensor B212 and the gain switching unit B95 by the switch circuit B68. To do. Thereby, the pulse wave can be detected by the sensor B212 of the R headphone unit B35 attached to the specimen B101.
 本変形例に係る検体情報処理装置B4によれば、第一実施形態に係る検体情報処理装置B3と同様に、検体B101が、例えば脈波の測定時には音楽を聴いている状態から切り替えて、長時間脈波を測定するのに適している。 According to the sample information processing apparatus B4 according to the present modification, the sample B101 is switched from a state in which music is being listened to when measuring pulse waves, for example, as in the sample information processing apparatus B3 according to the first embodiment. Suitable for measuring time pulse wave.
[II-2-5.第一実施形態の変形例に係る検体情報検出装置及び検体情報処理装置の効果]
 第一実施形態の変形例に係る検体情報検出装置B14、及び検体情報処理装置B4によれば、前記第一実施形態で得られる効果に加えて、以下に記載の効果を奏する。
[II-2-5. Effects of sample information detection apparatus and sample information processing apparatus according to modification of first embodiment]
According to the sample information detection apparatus B14 and the sample information processing apparatus B4 according to the modification of the first embodiment, the following effects can be obtained in addition to the effects obtained in the first embodiment.
 第一実施形態の変形例に係る検体情報検出装置B14及び検体情報処理装置B4によれば、接続部B54(インターフェース装置B54)により、検体情報検出ユニットB33と情報処理装置B23とを接続することができる。これにより、ゲイン切り替え部B95及び周波数特性補償部B96を備えない検体情報検出ユニットB33であっても、接続部B54を用いて情報処理装置B23に接続することで、レベル調整処理及び波形等化処理を行う、第一実施形態に係る脈波を出力することができる。 According to the sample information detection device B14 and the sample information processing device B4 according to the modification of the first embodiment, the sample information detection unit B33 and the information processing device B23 can be connected by the connection unit B54 (interface device B54). it can. Thereby, even in the specimen information detection unit B33 that does not include the gain switching unit B95 and the frequency characteristic compensation unit B96, the level adjustment process and the waveform equalization process are performed by connecting to the information processing apparatus B23 using the connection unit B54. The pulse wave according to the first embodiment can be output.
 また、第一実施形態の変形例に係る情報処理装置B14及び検体情報処理装置B4によれば、インターフェース装置B54がゲイン切り替え部B95及び周波数特性補償部B96を有するとともに、インターフェース装置B54により、検体情報検出ユニットB33と情報処理装置B23(スマートフォンB23)とを接続することができる。このため、本変形例に係るインターフェース装置に接続される検体情報検出ユニットB33は特に制限されず、第二プラグB42を有し検出された信号を入力可能なヘッドホンであれば第二ジャックB73に接続して用いることができる。このとき、インターフェース装置B54を介して、スマートフォンB23にレベル調整処理及び波形等化処理を施した信号を入力することができる。また、スマートフォンB23に変更を加えることなく、スマートフォンB23に入力される信号にレベル調整処理及び波形等化処理を施すことができる。 Further, according to the information processing device B14 and the sample information processing device B4 according to the modification of the first embodiment, the interface device B54 includes the gain switching unit B95 and the frequency characteristic compensation unit B96, and the sample information is obtained by the interface device B54. The detection unit B33 and the information processing device B23 (smart phone B23) can be connected. For this reason, the sample information detection unit B33 connected to the interface device according to this modification is not particularly limited, and is connected to the second jack B73 if the headphone has the second plug B42 and can input the detected signal. Can be used. At this time, a signal subjected to level adjustment processing and waveform equalization processing can be input to the smartphone B23 via the interface device B54. Moreover, a level adjustment process and a waveform equalization process can be performed to the signal input into smart phone B23, without changing smart phone B23.
[II-3.第二実施形態]
 本発明の第二実施形態に係る検体情報処理装置は、一部の構成が上述の第一実施形態に係る検体情報処理装置B3と同様に構成されており、上述の第一実施形態に係る検体情報処理装置B3と同様のものについては説明を省略し、同符号を用いて説明する。以下、第二実施形態の説明においては、第二実施形態を、単に本実施形態とも呼ぶ。
[II-3. Second embodiment]
The sample information processing apparatus according to the second embodiment of the present invention is partially configured in the same manner as the sample information processing apparatus B3 according to the first embodiment described above, and the sample according to the first embodiment described above. A description of the same components as the information processing device B3 will be omitted, and description will be made using the same reference numerals. Hereinafter, in the description of the second embodiment, the second embodiment is also simply referred to as this embodiment.
[II-3-1.検体情報処理装置の構成]
 第一実施形態に係る検体情報処理装置B3では、ゲイン切り替え部B95、並びに波形等化処理部B271及び波形判定部B272を有する周波数特性補償部B96が、接続部B53に備えられている。これに対して、本実施形態に係る検体情報処理装置では、ゲイン切り替え部B95、並びに周波数特性補償部B96が、接続部でなく情報処理装置に備えられている。
[II-3-1. Configuration of specimen information processing apparatus]
In the sample information processing apparatus B3 according to the first embodiment, a gain switching unit B95, and a frequency characteristic compensation unit B96 having a waveform equalization processing unit B271 and a waveform determination unit B272 are provided in the connection unit B53. On the other hand, in the sample information processing apparatus according to the present embodiment, the gain switching unit B95 and the frequency characteristic compensation unit B96 are provided in the information processing apparatus instead of the connection unit.
 すなわち、本実施形態に係る接続部は、スイッチ回路B68、スイッチB69、FETB72、及び第一プラグB62を備えている。RヘッドホンユニットB35の信号線B36は、スイッチ回路B68により、FETB72のゲート端子(G)、または第一プラグB62のRヘッドホン端子B65との接続が切り替えられる。 That is, the connection unit according to this embodiment includes a switch circuit B68, a switch B69, an FET B72, and a first plug B62. The signal line B36 of the R headphone unit B35 is switched to the gate terminal (G) of the FET B72 or the R headphone terminal B65 of the first plug B62 by the switch circuit B68.
 本実施形態に係る情報処理装置は、第一ジャックB81、ゲイン切り替え部B95、周波数特性補償部B96、AD変換部B89、周波数補正処理部B90、DA変換部B91、及び音源B92を備えて構成されている。 The information processing apparatus according to the present embodiment includes a first jack B81, a gain switching unit B95, a frequency characteristic compensation unit B96, an AD conversion unit B89, a frequency correction processing unit B90, a DA conversion unit B91, and a sound source B92. ing.
 本実施形態に係る検体情報処理装置では、スイッチ回路B68によって信号線B36がFETB72と接続した場合には、センサB212で検出された信号がFET B72に入力される。さらに、センサB212で検出された信号が、マイク端子B63に入力され、第一ジャックB81のマイク端子B83を介して情報処理装置のゲイン切り替え部B95に入力される。この場合、センサB212がマイクロホンとして機能して、検体情報処理装置は入力処理を行う。スイッチ回路B68によって信号線B36がRヘッドホン端子B65と接続した場合には、センサB212へ音源B92からの音信号が入力される。この場合、センサB212がスピーカーとして機能して、検体情報処理装置は出力処理を行う。 In the sample information processing apparatus according to the present embodiment, when the signal line B36 is connected to the FET B72 by the switch circuit B68, the signal detected by the sensor B212 is input to the FET B72. Further, the signal detected by the sensor B212 is input to the microphone terminal B63, and is input to the gain switching unit B95 of the information processing apparatus via the microphone terminal B83 of the first jack B81. In this case, the sensor B212 functions as a microphone, and the sample information processing apparatus performs input processing. When the signal line B36 is connected to the R headphone terminal B65 by the switch circuit B68, the sound signal from the sound source B92 is input to the sensor B212. In this case, the sensor B212 functions as a speaker, and the sample information processing apparatus performs output processing.
[II-3-2.検体情報処理装置の動作]
 音源B92からの信号が検体情報検出装置へ出力される出力処理については、第一実施形態に係る検体情報処理装置B3における出力処理と同様の処理となっている。
[II-3-2. Operation of specimen information processing apparatus]
The output process for outputting the signal from the sound source B92 to the sample information detection apparatus is the same as the output process in the sample information processing apparatus B3 according to the first embodiment.
(入力処理)
 本実施形態に係る検体情報処理装置では、まず、検体情報検出ユニットB32が、センサB212によって脈動性信号を検出する。検体情報検出ユニットB32により検出された脈動性信号は、接続部に入力される。
(Input processing)
In the sample information processing apparatus according to the present embodiment, first, the sample information detection unit B32 detects a pulsation signal by the sensor B212. The pulsation signal detected by the specimen information detection unit B32 is input to the connection unit.
 検体情報検出ユニットB32から出力された脈動性信号は、スイッチ回路B68及びFETB72を介して、第一プラグB62のマイク端子B63に入力され、さらに、第一ジャックB81のマイク端子B83を介して、情報処理装置に入力される。 The pulsation signal output from the specimen information detection unit B32 is input to the microphone terminal B63 of the first plug B62 via the switch circuit B68 and the FET B72, and further to the information via the microphone terminal B83 of the first jack B81. Input to the processing unit.
 情報処理装置に入力された脈動性信号は、ゲイン切り替え部B95に入力される。ゲイン切り替え部B95では、検体情報検出ユニットB32から出力された脈動性信号に対してレベル調整処理を施して、信号のレベルを調整する。ゲイン切り替え部B95により処理された信号は、周波数特性補償部B96に入力される。 The pulsation signal input to the information processing apparatus is input to the gain switching unit B95. The gain switching unit B95 performs level adjustment processing on the pulsation signal output from the specimen information detection unit B32 to adjust the signal level. The signal processed by the gain switching unit B95 is input to the frequency characteristic compensation unit B96.
 周波数特性補償部B96では、ゲイン切り替え部B95で処理された信号に対して波形等化処理を施す。周波数特性補償部B96により処理された信号は、第一実施形態に係る検体情報処理装置と同様に、AD変換部B89、及び周波数補正処理部B90に順次入力されて、処理が行われる。 The frequency characteristic compensation unit B96 performs waveform equalization processing on the signal processed by the gain switching unit B95. The signal processed by the frequency characteristic compensation unit B96 is sequentially input to the AD conversion unit B89 and the frequency correction processing unit B90 for processing, as in the sample information processing apparatus according to the first embodiment.
[II-3-3.第二実施形態に係る検体情報処理装置の効果]
 第二実施形態に係る情報処理装置及び検体情報処理装置によれば、情報処理装置に備えられているゲイン切り替え部B95、並びに波形等化処理部B271及び波形判定部B272を有する周波数特性補償部B96により、前記第一実施形態で得られる効果と同様の効果が得られる。
[II-3-3. Effect of specimen information processing apparatus according to second embodiment]
According to the information processing apparatus and the sample information processing apparatus according to the second embodiment, the frequency characteristic compensation unit B96 including the gain switching unit B95 and the waveform equalization processing unit B271 and the waveform determination unit B272 provided in the information processing device. Thus, the same effect as that obtained in the first embodiment can be obtained.
[II-4.第二実施形態の変形例]
 本発明の第二実施形態の変形例に係る検体情報処理装置は、一部の構成が上述の第二実施形態に係る検体情報処理装置、または第一実施形態の変形例に係る検体情報処理装置B4と同様に構成されており、上述の第二実施形態に係る検体情報処理装置、または第一実施形態の変形例に係る検体情報処理装置B4と同様のものについては説明を省略し、同符号を用いて説明する。以下、第二実施形態の変形例の説明においては、第二実施形態の変形例を、単に本変形例とも呼ぶ。
[II-4. Modification of Second Embodiment]
The sample information processing apparatus according to the modified example of the second embodiment of the present invention is partially configured in the sample information processing apparatus according to the second embodiment described above or the sample information processing apparatus according to the modified example of the first embodiment. Description is omitted for the sample information processing apparatus according to the second embodiment described above or the same as the sample information processing apparatus B4 according to the modification of the first embodiment. Will be described. Hereinafter, in the description of the modification of the second embodiment, the modification of the second embodiment is also simply referred to as this modification.
[II-4-1.検体情報処理装置の構成]
 第二実施形態に係る検体情報処理装置では、検体情報検出ユニットB32が接続部と直接接続されている。これに対して、本変形例に係る検体情報処理装置では、検体情報検出ユニットB33が第二プラグB42及び第二ジャックB73を介して接続部(インターフェース装置)と接続されている。
[II-4-1. Configuration of specimen information processing apparatus]
In the sample information processing apparatus according to the second embodiment, the sample information detection unit B32 is directly connected to the connection unit. On the other hand, in the sample information processing apparatus according to the present modification, the sample information detection unit B33 is connected to the connection unit (interface device) via the second plug B42 and the second jack B73.
 すなわち、本実施形態に係る接続部は、第二ジャックB73、スイッチ回路B68、スイッチB69、FETB72、及び第一プラグB62を備えている。RヘッドホンユニットB35の信号線B36は、スイッチ回路B68により、FETB72のゲート端子(G)、または第一プラグB62のRヘッドホン端子B65との接続が切り替えられる。 That is, the connection unit according to this embodiment includes a second jack B73, a switch circuit B68, a switch B69, an FET B72, and a first plug B62. The signal line B36 of the R headphone unit B35 is switched to the gate terminal (G) of the FET B72 or the R headphone terminal B65 of the first plug B62 by the switch circuit B68.
 本変形例に係る情報処理装置は、第二実施形態に係る情報処理装置と同様に構成されている。 The information processing apparatus according to this modification is configured in the same manner as the information processing apparatus according to the second embodiment.
 本変形例に係る検体情報処理装置では、第二実施形態に係る検体情報処理装置と同様に、スイッチ回路B68によって信号線B36がFETB72と接続した場合には、センサB212で検出された信号が、情報処理装置のゲイン切り替え部B95に入力される。スイッチ回路B68によって信号線B36がRヘッドホン端子B65と接続した場合には、センサB212へ音源B92からの音信号が入力される。 In the sample information processing apparatus according to this modification, as in the sample information processing apparatus according to the second embodiment, when the signal line B36 is connected to the FET B72 by the switch circuit B68, the signal detected by the sensor B212 is Input to the gain switching unit B95 of the information processing apparatus. When the signal line B36 is connected to the R headphone terminal B65 by the switch circuit B68, the sound signal from the sound source B92 is input to the sensor B212.
[II-4-2.検体情報処理装置の動作]
(入力処理)
 本変形例に係る検体情報処理装置における入力処理は、検体情報検出ユニットB33により検出された脈動性信号が、Rヘッドホン端子B44及びRヘッドホン端子B76、並びにスイッチ回路B68を介してFETB72に入力される以外は、第二実施形態に係る検体情報処理装置における入力処理と同様になっている。
[II-4-2. Operation of specimen information processing apparatus]
(Input processing)
In the input processing in the sample information processing apparatus according to this modification, the pulsation signal detected by the sample information detection unit B33 is input to the FET B72 via the R headphone terminal B44, the R headphone terminal B76, and the switch circuit B68. Except for this, the input processing in the sample information processing apparatus according to the second embodiment is the same.
(出力処理)
 本変形例に係る検体情報処理装置における右耳用の音信号の出力処理は、検体情報検出装置に出力された右耳用の音信号が、スイッチ回路B68、並びにRヘッドホン端子B76及びRヘッドホン端子B44を介して、RヘッドホンユニットB35に入力される以外は、第二実施形態に係る検体情報処理装置における出力処理と同様になっている。
(Output processing)
In the sample information processing apparatus according to the present modification, the right ear sound signal is output from the switch circuit B68, the R headphone terminal B76, and the R headphone terminal. Except for being input to the R headphone unit B35 via B44, the output processing in the sample information processing apparatus according to the second embodiment is the same.
 また、本変形例に係る検体情報処理装置における左耳用の音信号の出力処理は、検体情報検出装置に出力された左耳用の音信号が、Lヘッドホン端子B77及びLヘッドホン端子B45を介して、LヘッドホンユニットB37に入力される以外は、第二実施形態に係る検体情報処理装置における出力処理と同様になっている。 Further, in the sample information processing apparatus according to the present modification, the left ear sound signal is output through the L headphone terminal B77 and the L headphone terminal B45. Except for the input to the L headphone unit B37, the output processing in the sample information processing apparatus according to the second embodiment is the same.
[II-4-3.第二実施形態の変形例に係る検体情報処理装置の効果]
 第二実施形態の変形例に係る情報処理装置及び検体情報処理装置によれば、前記第二実施形態で得られる効果に加えて、以下に記載の効果を奏する。
[II-4-3. Effect of specimen information processing apparatus according to modification of second embodiment]
According to the information processing apparatus and the sample information processing apparatus according to the modification of the second embodiment, in addition to the effects obtained in the second embodiment, the following effects can be obtained.
 第二実施形態の変形例に係る情報処理装置及び検体情報処理装置では、情報処理装置(スマートフォン)がゲイン切り替え部95及び波形等化処理部271を有し、接続部(インターフェース装置)により、検体情報検出ユニットとスマートフォンとを接続することができる。このため、接続部に接続される検体情報検出ユニットは特に制限されず、第二プラグ42を有し検出された信号を入力可能なヘッドホンであれば第二ジャック73に接続して用いることができる。 In the information processing apparatus and the sample information processing apparatus according to the modification of the second embodiment, the information processing apparatus (smartphone) includes the gain switching unit 95 and the waveform equalization processing unit 271, and the sample is connected by the connection unit (interface device). An information detection unit and a smart phone can be connected. For this reason, the sample information detection unit connected to the connection portion is not particularly limited, and any headphone that has the second plug 42 and can input the detected signal can be connected to the second jack 73 and used. .
[II-5.第三実施形態]
 本発明の第三実施形態に係る検体情報処理装置は、一部の構成が上述の第一実施形態に係る検体情報処理装置B3と同様に構成されており、上述の第一実施形態に係る検体情報処理装置B3と同様のものについては説明を省略し、同符号を用いて説明する。以下、第三実施形態の説明においては、第三実施形態を、単に本実施形態とも呼ぶ。
[II-5-1.検体情報処理装置の構成]
 本実施形態に係る検体情報処理装置では、接続部が入力処理部をさらに備え、情報処理装置が出力処理部をさらに備えている。
[II-5. Third embodiment]
The sample information processing apparatus according to the third embodiment of the present invention is partially configured in the same manner as the sample information processing apparatus B3 according to the first embodiment described above, and the sample according to the first embodiment described above. A description of the same components as the information processing device B3 will be omitted, and description will be made using the same reference numerals. Hereinafter, in the description of the third embodiment, the third embodiment is also simply referred to as this embodiment.
[II-5-1. Configuration of specimen information processing apparatus]
In the sample information processing apparatus according to the present embodiment, the connection unit further includes an input processing unit, and the information processing apparatus further includes an output processing unit.
 本実施形態に係る接続部は、入力処理部、ゲイン切り替え部B95、波形等化処理部B271及び波形判定部B272を有する周波数特性補償部B96、電源B71、FETB72、並びに第一プラグB62を備えている。RヘッドホンユニットB35の信号線B36は、接続部の第一プラグB62に設けられたRヘッドホン端子B65と接続しているともに、第一プラグB62に設けられたマイク端子B63にFETB72を介して接続される入力処理部とも接続している。 The connection unit according to the present embodiment includes an input processing unit, a gain switching unit B95, a frequency equalization processing unit B271, and a frequency characteristic compensation unit B96 having a waveform determination unit B272, a power supply B71, an FET B72, and a first plug B62. Yes. The signal line B36 of the R headphone unit B35 is connected to the R headphone terminal B65 provided in the first plug B62 of the connection portion, and is connected to the microphone terminal B63 provided in the first plug B62 via the FET B72. Also connected to the input processing unit.
 入力処理部は、検体情報検出ユニットB32により検出された検出信号に対して、血管の脈波情報が検出される周波数帯域である脈波情報検出帯域より高い周波数成分を減衰させて、脈波情報検出帯域の周波数成分を通過させるLPF(ローパスフィルタ)処理(単に、LPFともいう)施すものである。入力処理部により処理された信号は、ゲイン切り替え部B95に入力される。 The input processing unit attenuates a frequency component higher than a pulse wave information detection band, which is a frequency band in which blood vessel pulse wave information is detected, with respect to the detection signal detected by the specimen information detection unit B32 to thereby obtain pulse wave information. LPF (low pass filter) processing (also simply referred to as LPF) for passing the frequency component of the detection band is performed. The signal processed by the input processing unit is input to the gain switching unit B95.
 血管の脈波情報が検出される周波数帯域とは、0.1~10Hzの低周波数領域である。入力処理部によるローパスフィルタのコーナー周波数は、脈波情報検出帯域よりも高い周波数であれば特に限定されないが、S/N比を向上させるためには10Hz程度に設定するのがよい。但し、波形の揺らぎなどを見る場合には10Hz以上で100Hz程度まで伸ばしてもよい。 The frequency band in which blood vessel pulse wave information is detected is a low frequency region of 0.1 to 10 Hz. The corner frequency of the low-pass filter by the input processing unit is not particularly limited as long as it is higher than the pulse wave information detection band, but is preferably set to about 10 Hz in order to improve the S / N ratio. However, when looking at the fluctuation of the waveform, it may be extended from 10 Hz to 100 Hz.
 本実施形態に係る情報処理装置は、第一ジャックB81、AD変換部B89、周波数補正処理部B90、DA変換部B91、音源B92、及び出力処理部を備えて構成されている。 The information processing apparatus according to this embodiment includes a first jack B81, an AD conversion unit B89, a frequency correction processing unit B90, a DA conversion unit B91, a sound source B92, and an output processing unit.
 出力処理部は、音源B92からの検体情報検出装置に出力する右耳用の音信号に対して、血管の脈波情報が検出される周波数帯域である脈波情報検出帯域の周波数成分を減衰させて、脈波情報検出帯域より高い周波数成分を通過させるHPF(ハイパスフィルタ)処理(単に、HPFともいう)を施すものである。この出力処理部によるHPF処理を出力処理ともいう。 The output processing unit attenuates the frequency component of the pulse wave information detection band, which is a frequency band in which blood vessel pulse wave information is detected, with respect to the right ear sound signal output from the sound source B92 to the specimen information detection apparatus. Thus, HPF (High Pass Filter) processing (also simply referred to as HPF) for passing a frequency component higher than the pulse wave information detection band is performed. This HPF process by the output processing unit is also referred to as an output process.
 血管の脈波情報が検出される周波数帯域とは0.1~10Hzの低周波数領域であるが、脈波を検出する際に、センサB212に入力される信号に応じて発せられる音の影響を低減するためには、より広い周波数帯域の周波数成分を低減させることが好ましい。ただし、過度に広い周波数帯域の周波数成分を低減させると、センサB212から発せられる音の品質が損なわれる場合がある。このため、本実施形態に係る出力処理部は、100Hz以下の周波数成分を減衰させて、100Hzより高い周波数成分を通過させる。 The frequency band in which the pulse wave information of the blood vessel is detected is a low frequency region of 0.1 to 10 Hz. However, when detecting the pulse wave, the influence of the sound generated according to the signal input to the sensor B 212 is affected. In order to reduce, it is preferable to reduce frequency components in a wider frequency band. However, if the frequency component of an excessively wide frequency band is reduced, the quality of the sound emitted from the sensor B 212 may be impaired. For this reason, the output processing unit according to the present embodiment attenuates frequency components of 100 Hz or less and allows frequency components higher than 100 Hz to pass.
 本実施形態に係る検体情報処理装置では、RヘッドホンユニットB35のセンサB212へ、音源B92からの音信号が入力される。これとともに、センサB212で検出された信号が、入力処理部、ゲイン切り替え部B95、周波数特性補償部B96に入力され、さらに情報処理装置に入力される。すなわち、センサB212はスピーカーとしてもマイクロホンとしても同時に機能して、検体情報処理装置は、入力処理と出力処理とを同時に行う。 In the sample information processing apparatus according to the present embodiment, the sound signal from the sound source B92 is input to the sensor B212 of the R headphone unit B35. At the same time, the signal detected by the sensor B212 is input to the input processing unit, gain switching unit B95, and frequency characteristic compensation unit B96, and further input to the information processing apparatus. That is, the sensor B 212 functions as both a speaker and a microphone at the same time, and the sample information processing apparatus performs input processing and output processing simultaneously.
[II-5-2.周波数特性と信号処理] [II-5-2. Frequency characteristics and signal processing]
 音源B92から出力される音信号には、脈波情報検出帯域の周波数成分も含まれるため、音源B92から出力される音信号をそのままセンサB212へ入力した場合には、音源B92から出力される音信号により脈波の検出が困難となる。また、スピーカーとしてのセンサB212から出力された音が、マイクとしてのセンサB212に帰還されることになる。また、音源B92から検体情報検出装置に出力された音信号が、情報処理装置に帰還される。 Since the sound signal output from the sound source B92 includes the frequency component of the pulse wave information detection band, when the sound signal output from the sound source B92 is directly input to the sensor B212, the sound output from the sound source B92 is The signal makes it difficult to detect the pulse wave. Further, the sound output from the sensor B212 as a speaker is fed back to the sensor B212 as a microphone. Further, the sound signal output from the sound source B92 to the sample information detection apparatus is fed back to the information processing apparatus.
 上記の問題を解決するため、本実施形態に係る検体情報処理装置では、出力処理部におけるHPFにより、センサB212に出力される脈波情報検出帯域の周波数成分を減衰させている。また、入力処理部におけるLPFにより、センサB212により検出された検出信号に対して、脈波情報検出帯域よりも高い周波数成分を減衰させている。 In order to solve the above problem, in the sample information processing apparatus according to the present embodiment, the frequency component of the pulse wave information detection band output to the sensor B 212 is attenuated by the HPF in the output processing unit. Further, the LPF in the input processing unit attenuates a frequency component higher than the pulse wave information detection band with respect to the detection signal detected by the sensor B212.
 これにより、本実施形態に係る検体情報処理装置によれば、センサB212から発せられる音が脈波情報検出帯域の周波数成分が低減されるよう、脈波の検出への影響を抑えた音信号を検体情報検出装置に出力することができる。また、センサB212により検出された検出信号は、脈波の検出に必要な周波数成分のみを、情報処理装置に入力することができる。 Thereby, according to the sample information processing apparatus according to the present embodiment, the sound signal that suppresses the influence on the detection of the pulse wave is reduced so that the frequency component of the pulse wave information detection band of the sound emitted from the sensor B212 is reduced. It is possible to output to the specimen information detection apparatus. Moreover, only the frequency component required for the detection of a pulse wave can be input into the information processing apparatus from the detection signal detected by the sensor B212.
[II-5-3.検体情報処理装置の動作]
 検体情報処理装置の動作を、センサB212から検出された信号が情報処理装置へ入力される入力処理と、音源B92からの信号が検体情報検出装置へ出力される出力処理とについてそれぞれ説明する。
[II-5-3. Operation of specimen information processing apparatus]
The operation of the sample information processing apparatus will be described for an input process in which a signal detected from the sensor B212 is input to the information processing apparatus and an output process in which a signal from the sound source B92 is output to the sample information detection apparatus.
(入力処理)
 本実施形態に係る検体情報処理装置では、まず、検体情報検出ユニットB32が、RヘッドホンユニットB35におけるセンサB212によって脈動性信号を検出する。検体情報検出ユニットB32により検出された脈動性信号は、接続部に入力される。
(Input processing)
In the sample information processing apparatus according to the present embodiment, first, the sample information detection unit B32 detects a pulsating signal by the sensor B212 in the R headphone unit B35. The pulsation signal detected by the specimen information detection unit B32 is input to the connection unit.
 接続部に入力された脈動性信号は、入力処理部に入力される。入力処理部は、検体情報検出ユニットB32から出力された脈動性信号に対して、脈波情報検出帯域より高い周波数成分を減衰させて、脈波情報検出帯域の周波数成分を通過させるLPFを施す。このときの信号は、LPFにより、脈波情報検出帯域の周波数成分からなるものとなっている。入力処理部により処理された信号は、第一実施形態に係る検体情報処理装置3と同様に、ゲイン切り替え部B95、周波数特性補償部B96、AD変換部B89、及び周波数補正処理部B90に順次入力されて、処理が行われる。なお、周波数補正処理部B90で得られる信号はいずれも、脈波情報検出帯域の周波数成分からなるものとなっている。 The pulsation signal input to the connection unit is input to the input processing unit. The input processing unit applies LPF that attenuates the frequency component higher than the pulse wave information detection band and passes the frequency component of the pulse wave information detection band to the pulsating signal output from the specimen information detection unit B32. The signal at this time is composed of the frequency component of the pulse wave information detection band by the LPF. The signal processed by the input processing unit is sequentially input to the gain switching unit B95, the frequency characteristic compensation unit B96, the AD conversion unit B89, and the frequency correction processing unit B90, as in the sample information processing apparatus 3 according to the first embodiment. Then, processing is performed. In addition, all the signals obtained by the frequency correction processing unit B90 are composed of frequency components in the pulse wave information detection band.
(出力処理)
 デジタル形式の右耳用の音信号は、音源B92から出力処理部に入力される。出力処理部は、脈波情報検出帯域の周波数成分を減衰させて、脈波情報検出帯域より高い周波数成分を通過させる出力処理(HPF)を施す。出力処理部により処理された右耳用の音信号は、DA変換部B91に入力される。DA変換部B91により、出力処理部により処理された右耳用の音信号は、アナログ形式の音信号に変換される。
(Output processing)
The sound signal for the right ear in the digital format is input from the sound source B92 to the output processing unit. The output processing unit performs output processing (HPF) that attenuates the frequency component of the pulse wave information detection band and passes the frequency component higher than the pulse wave information detection band. The right ear sound signal processed by the output processing unit is input to the DA conversion unit B91. The DA converter B91 converts the right ear sound signal processed by the output processor into an analog sound signal.
 出力処理部及びDA変換部B91により処理された右耳用の音信号は、第一ジャックB81のRヘッドホン端子B85に入力されて、第1プラグ62を介して検体情報検出装置に出力される。検体情報検出装置に出力された右耳用の音信号は、RヘッドホンユニットB35に入力される。このとき、音源B92の右耳用の音信号の脈波情報検出帯域より高い周波数成分からなる音が、RヘッドホンユニットB35のヘッドホン(スピーカー)としてのセンサB212から出力される。 The sound signal for the right ear processed by the output processing unit and the DA conversion unit B91 is input to the R headphone terminal B85 of the first jack B81, and is output to the sample information detection apparatus via the first plug 62. The right ear sound signal output to the sample information detection apparatus is input to the R headphone unit B35. At this time, a sound having a frequency component higher than the pulse wave information detection band of the sound signal for the right ear of the sound source B92 is output from the sensor B212 as a headphone (speaker) of the R headphone unit B35.
[II-5-4.第三実施形態に係る検体情報処理装置の効果]
 第三実施形態に係る検体情報処理装置によれば、前記第一実施形態で得られる効果に加えて、以下に記載の効果を奏する。
[II-5-4. Effects of the sample information processing apparatus according to the third embodiment]
The sample information processing apparatus according to the third embodiment has the following effects in addition to the effects obtained in the first embodiment.
 本実施形態に係る検体情報検出装置及び検体情報処理装置によれば、入力処理部により、センサB212により検出された検出信号に対して、脈波情報検出帯域より高い周波数成分を減衰させて、脈波情報検出帯域の周波数成分を通過させるLPF処理を施す。また、出力処理部により、検体情報検出装置に出力する信号に対して、脈波情報検出帯域の周波数成分を減衰させて、脈波情報検出帯域より高い周波数成分を通過させる出力処理を施す。これにより、検体情報処理装置は、センサB212がスピーカーとして音を発するとともに、同時にマイクロホンとして脈波を検出ことができることで、検体B101が、例えば音楽を聴きながら、常時脈波を測定することができる。 According to the sample information detection apparatus and the sample information processing apparatus according to the present embodiment, the input processing unit attenuates a frequency component higher than the pulse wave information detection band with respect to the detection signal detected by the sensor B212, and the pulse signal is detected. LPF processing for passing the frequency component of the wave information detection band is performed. Further, the output processing unit performs output processing for attenuating the frequency component of the pulse wave information detection band and passing the frequency component higher than the pulse wave information detection band with respect to the signal output to the specimen information detection apparatus. As a result, the sample information processing apparatus can detect the pulse wave while the sensor B212 is listening to music, for example, while the sensor B212 emits sound as a speaker and can simultaneously detect the pulse wave as a microphone. .
 また、第三実施形態に係る検体情報検出装置及び検体情報処理装置によれば、接続部が第一プラグB62を有し、情報処理装置は第一プラグB62が接続される第一ジャックB81を有し、入力処理部、ゲイン切り替え部B95、及び波形等化処理部B271により処理された信号が、第一ジャックB81を介して情報処理装置に入力される。このため、情報処理装置に脈動性信号以外の情報、例えば音声信号を入力する際には、第一ジャックB81に接続される検体情報検出装置を取り外し、入力処理部、ゲイン切り替え部B95、及び波形等化処理部B271を有さない通常のヘッドホンマイクを接続すればよい。 In addition, according to the sample information detection apparatus and the sample information processing apparatus according to the third embodiment, the connection unit has the first plug B62, and the information processing apparatus has the first jack B81 to which the first plug B62 is connected. Then, the signals processed by the input processing unit, gain switching unit B95, and waveform equalization processing unit B271 are input to the information processing apparatus via the first jack B81. For this reason, when inputting information other than the pulsation signal, for example, an audio signal, to the information processing apparatus, the sample information detection apparatus connected to the first jack B81 is removed, and the input processing unit, the gain switching unit B95, and the waveform are removed. What is necessary is just to connect the normal headphone microphone which does not have the equalization process part B271.
[II-6.第三実施形態の変形例]
 本発明の第三実施形態の変形例に係る検体情報処理装置は、一部の構成が上述の第三実施形態に係る検体情報処理装置、または第一実施形態の変形例に係る検体情報処理装置B4と同様に構成されており、上述の第三実施形態に係る検体情報処理装置、または第一実施形態の変形例に係る検体情報処理装置B4と同様のものについては説明を省略し、同符号を用いて説明する。以下、第三実施形態の変形例の説明においては、第三実施形態の変形例を、単に本変形例とも呼ぶ。
[II-6. Modified example of the third embodiment]
The sample information processing apparatus according to the modified example of the third embodiment of the present invention has a partial configuration, the sample information processing apparatus according to the third embodiment described above, or the sample information processing apparatus according to the modified example of the first embodiment. Description is omitted for the sample information processing apparatus according to the third embodiment described above or the same as the sample information processing apparatus B4 according to the modification of the first embodiment. Will be described. Hereinafter, in the description of the modification of the third embodiment, the modification of the third embodiment is also simply referred to as this modification.
[II-6-1.検体情報処理装置の構成]
 第三実施形態に係る検体情報処理装置では、検体情報検出ユニットB32が接続部と直接接続されている。これに対して、本変形例に係る検体情報処理装置では、検体情報検出ユニットB33が第二プラグB42及び第二ジャックB73を介して接続部(インターフェース装置)と接続されている。
[II-6-1. Configuration of specimen information processing apparatus]
In the sample information processing apparatus according to the third embodiment, the sample information detection unit B32 is directly connected to the connection unit. On the other hand, in the sample information processing apparatus according to the present modification, the sample information detection unit B33 is connected to the connection unit (interface device) via the second plug B42 and the second jack B73.
 本変形例に係る接続部は、第二ジャックB73、入力処理部、ゲイン切り替え部B95、波形等化処理部B271及び波形判定部B272を有する周波数特性補償部B96、電源B71、FETB72、並びに第一プラグB62を備えている。Rヘッドホン端子B76が、接続部の第一プラグB62に設けられたRヘッドホン端子B65と、入力処理部とに接続されることで、RヘッドホンユニットB35の信号線B36は、Rヘッドホン端子B65と、入力処理部とに接続される。 The connection unit according to this modification includes a second jack B73, an input processing unit, a gain switching unit B95, a frequency equalization processing unit B271, and a frequency characteristic compensation unit B96 having a waveform determination unit B272, a power supply B71, an FET B72, and a first A plug B62 is provided. By connecting the R headphone terminal B76 to the R headphone terminal B65 provided in the first plug B62 of the connection portion and the input processing portion, the signal line B36 of the R headphone unit B35 is connected to the R headphone terminal B65, Connected to the input processing unit.
 本変形例に係る情報処理装置は、第三実施形態に係る情報処理装置と同様に構成されている。 The information processing apparatus according to this modification is configured in the same manner as the information processing apparatus according to the third embodiment.
 本変形例に係る検体情報処理装置では、第三実施形態に係る検体情報処理装置と同様に、センサB212へ音源B92からの音信号が入力されると同時に、センサB212で検出された信号が、情報処理装置に入力される。 In the sample information processing apparatus according to this modification, as in the sample information processing apparatus according to the third embodiment, the sound signal from the sound source B92 is input to the sensor B212, and at the same time, the signal detected by the sensor B212 is Input to the information processing apparatus.
[II-6-2.検体情報処理装置の動作] [II-6-2. Operation of specimen information processing apparatus]
(入力処理)
 本変形例に係る検体情報処理装置における入力処理は、検体情報検出ユニットB33により検出された脈動性信号が、Rヘッドホン端子B44及びRヘッドホン端子B76を介して入力処理部に入力される以外は、第三実施形態に係る検体情報処理装置における入力処理と同様になっている。
(Input processing)
The input processing in the sample information processing apparatus according to this modification is performed except that the pulsation signal detected by the sample information detection unit B33 is input to the input processing unit via the R headphone terminal B44 and the R headphone terminal B76. This is the same as the input process in the sample information processing apparatus according to the third embodiment.
(出力処理)
 本変形例に係る検体情報処理装置における右耳用の音信号の出力処理は、検体情報検出装置に出力された右耳用の音信号が、Rヘッドホン端子B76及びRヘッドホン端子B44を介して、RヘッドホンユニットB35に入力される以外は、第三実施形態に係る検体情報処理装置における出力処理と同様になっている。
(Output processing)
In the sample information processing apparatus according to this modification, the right ear sound signal is output through the R headphone terminal B76 and the R headphone terminal B44. Except for being input to the R headphone unit B35, the output processing is the same as in the sample information processing apparatus according to the third embodiment.
 また、本変形例に係る検体情報処理装置における左耳用の音信号の出力処理は、検体情報検出装置に出力された左耳用の音信号が、Lヘッドホン端子B77及びLヘッドホン端子B45を介して、LヘッドホンユニットB37に入力される以外は、第三実施形態に係る検体情報処理装置における出力処理と同様になっている。 Further, in the sample information processing apparatus according to the present modification, the left ear sound signal is output through the L headphone terminal B77 and the L headphone terminal B45. Except for the input to the L headphone unit B37, the output processing in the sample information processing apparatus according to the third embodiment is the same.
[II-6-3.第三実施形態の変形例に係る検体情報処理装置の効果]
 第三実施形態の変形例に係る検体情報処理装置によれば、前記第三実施形態で得られる効果に加えて、以下に記載の効果を奏する。
[II-6-3. Effect of specimen information processing apparatus according to modification of third embodiment]
According to the sample information processing apparatus according to the modification of the third embodiment, in addition to the effects obtained in the third embodiment, the following effects can be obtained.
 第三実施形態の変形例に係る検体情報検出装置及び検体情報処理装置によれば、接続部(インターフェース装置)が入力処理部、ゲイン切り替え部B95、及び波形等化処理部B271を有するとともに、インターフェース装置により、検体情報検出ユニットB33と情報処理装置(スマートフォン)とを接続することができる。このため、本変形例に係るインターフェース装置に接続される検体情報検出ユニットB33は特に制限されず、第二プラグB42を有し検出された信号を入力可能なヘッドホンであれば第二ジャックB73に接続して用いることができる。このとき、インターフェース装置を介して、LPF、レベル調整処理、及び波形等化処理を施した信号を入力することができる。 According to the sample information detection apparatus and the sample information processing apparatus according to the modification of the third embodiment, the connection unit (interface device) includes the input processing unit, the gain switching unit B95, and the waveform equalization processing unit B271, and the interface. The apparatus can connect the sample information detection unit B33 and the information processing apparatus (smartphone). For this reason, the sample information detection unit B33 connected to the interface device according to this modification is not particularly limited, and is connected to the second jack B73 if the headphone has the second plug B42 and can input the detected signal. Can be used. At this time, a signal subjected to LPF, level adjustment processing, and waveform equalization processing can be input via the interface device.
[II-7.第四実施形態]
 本発明の第四実施形態に係る検体情報処理装置は、一部の構成が上述の第三実施形態に係る検体情報処理装置、または第二実施形態に係る検体情報処理装置と同様に構成されており、上述の第三実施形態に係る検体情報処理装置、または第二実施形態に係る検体情報処理装置と同様のものについては説明を省略し、同符号を用いて説明する。以下、第四実施形態の説明においては、第四実施形態を、単に本実施形態とも呼ぶ。
[II-7. Fourth embodiment]
The sample information processing apparatus according to the fourth embodiment of the present invention is configured in part in the same manner as the sample information processing apparatus according to the third embodiment described above or the sample information processing apparatus according to the second embodiment. Thus, the description of the sample information processing apparatus according to the third embodiment described above or the same as the sample information processing apparatus according to the second embodiment will be omitted, and will be described using the same reference numerals. Hereinafter, in the description of the fourth embodiment, the fourth embodiment is also simply referred to as this embodiment.
[II-7-1.検体情報処理装置の構成]
 第三実施形態に係る検体情報処理装置では、入力処理部、ゲイン切り替え部B95、並びに波形等化処理部B271及び波形判定部B272を有する周波数特性補償部B96が、接続部に備えられている。これに対して、本実施形態に係る検体情報処理装置では、入力処理部、ゲイン切り替え部B95、及び周波数特性補償部B96が、接続部でなく情報処理装置に備えられている。
[II-7-1. Configuration of specimen information processing apparatus]
In the sample information processing apparatus according to the third embodiment, an input processing unit, a gain switching unit B95, and a frequency characteristic compensation unit B96 including a waveform equalization processing unit B271 and a waveform determination unit B272 are provided in the connection unit. In contrast, in the sample information processing apparatus according to the present embodiment, the input processing unit, the gain switching unit B95, and the frequency characteristic compensation unit B96 are provided in the information processing apparatus instead of the connection unit.
 すなわち、本実施形態に係る接続部は、FET B72、及び第一プラグB62を備えている。RヘッドホンユニットB35の信号線B36は、接続部の第一プラグB62に設けられたRヘッドホン端子B65と接続しているともに、第一プラグB62に設けられたマイク端子B63に接続されるFETB72のゲート端子(G)と接続している。 That is, the connection unit according to the present embodiment includes the FET B72 and the first plug B62. The signal line B36 of the R headphone unit B35 is connected to the R headphone terminal B65 provided in the first plug B62 of the connection portion, and the gate of the FET B72 connected to the microphone terminal B63 provided in the first plug B62. Connected to terminal (G).
 本実施形態に係る情報処理装置は、第一ジャックB81、入力処理部、ゲイン切り替え部B95、周波数特性補償部B96、AD変換部B89、周波数補正処理部B90、DA変換部B91、音源B92、及び出力処理部を備えて構成されている。 The information processing apparatus according to the present embodiment includes a first jack B81, an input processing unit, a gain switching unit B95, a frequency characteristic compensation unit B96, an AD conversion unit B89, a frequency correction processing unit B90, a DA conversion unit B91, a sound source B92, and An output processing unit is provided.
 本変形例に係る検体情報処理装置では、第三実施形態に係る検体情報処理装置と同様に、センサB212へ音源B92からの音信号が入力されると同時に、センサB212で検出された信号が情報処理装置に入力される。 In the sample information processing apparatus according to this modification, as in the sample information processing apparatus according to the third embodiment, the sound signal from the sound source B92 is input to the sensor B212 and the signal detected by the sensor B212 is information. Input to the processing unit.
[II-7-2.検体情報処理装置の動作]
 音源B92からの信号が検体情報検出装置へ出力される出力処理については、第三実施形態に係る検体情報処理装置における出力処理と同様の処理となっている。
[II-7-2. Operation of specimen information processing apparatus]
The output process in which the signal from the sound source B92 is output to the sample information detection apparatus is the same process as the output process in the sample information processing apparatus according to the third embodiment.
(入力処理) (Input processing)
 本実施形態に係る検体情報処理装置では、まず、検体情報検出ユニットB32が、RヘッドホンユニットB35におけるセンサB212によって脈動性信号を検出する。検体情報検出ユニットB32により検出された脈動性信号は、接続部に入力される。 In the sample information processing apparatus according to the present embodiment, first, the sample information detection unit B32 detects a pulsation signal by the sensor B212 in the R headphone unit B35. The pulsation signal detected by the specimen information detection unit B32 is input to the connection unit.
 接続部に入力された脈動性信号は、FET B72を介して、第一プラグB62のマイク端子B63に入力され、さらに、第一ジャックB81のマイク端子B83を介して、情報処理装置に入力される。 The pulsation signal input to the connection portion is input to the microphone terminal B63 of the first plug B62 via the FET B72, and further input to the information processing device via the microphone terminal B83 of the first jack B81. .
 情報処理装置に入力された脈動性信号は、入力処理部に入力される。入力処理部は、検体情報検出ユニットB32から出力された脈動性信号に対して、脈波情報検出帯域より高い周波数成分を減衰させて、脈波情報検出帯域の周波数成分を通過させるLPFを施す。このときの信号は、LPFにより、脈波情報検出帯域の周波数成分からなるものとなっている。入力処理部により処理された信号は、第二実施形態に係る検体情報処理装置と同様に、ゲイン切り替え部B95、周波数特性補償部B96、AD変換部B89、及び周波数補正処理部B90に順次入力されて、処理が行われる。なお、周波数補正処理部B90で得られる信号はいずれも、脈波情報検出帯域の周波数成分からなるものとなっている。 The pulsation signal input to the information processing apparatus is input to the input processing unit. The input processing unit applies LPF that attenuates the frequency component higher than the pulse wave information detection band and passes the frequency component of the pulse wave information detection band to the pulsating signal output from the specimen information detection unit B32. The signal at this time is composed of the frequency component of the pulse wave information detection band by the LPF. The signal processed by the input processing unit is sequentially input to the gain switching unit B95, the frequency characteristic compensation unit B96, the AD conversion unit B89, and the frequency correction processing unit B90, as in the sample information processing apparatus according to the second embodiment. The process is performed. In addition, all the signals obtained by the frequency correction processing unit B90 are composed of frequency components in the pulse wave information detection band.
[II-7-5.第四実施形態に係る検体情報処理装置の効果]
 第四実施形態に係る検体情報処理装置によれば、情報処理装置に備えられている入力処理部、出力処理部、ゲイン切り替え部B95、及び周波数特性補償部B96により、前記第三実施形態で得られる効果と同様の効果が得られる。
[II-7-5. Effect of specimen information processing apparatus according to fourth embodiment]
According to the sample information processing apparatus according to the fourth embodiment, the input processing unit, the output processing unit, the gain switching unit B95, and the frequency characteristic compensation unit B96 provided in the information processing device are obtained in the third embodiment. The same effect as that obtained can be obtained.
[II-8.第四実施形態の変形例]
 本発明の第四実施形態の変形例に係る検体情報処理装置は、一部の構成が上述の第四実施形態に係る検体情報処理装置、または第二実施形態の変形例に係る検体情報処理装置と同様に構成されており、上述の第四実施形態に係る検体情報処理装置、または第二実施形態の変形例に係る検体情報処理装置と同様のものについては説明を省略し、同符号を用いて説明する。以下、第四実施形態の変形例の説明においては、第四実施形態の変形例を、単に本変形例とも呼ぶ。
[II-8. Modification of Fourth Embodiment]
The sample information processing apparatus according to the modification of the fourth embodiment of the present invention has a partial configuration, the sample information processing apparatus according to the fourth embodiment described above, or the sample information processing apparatus according to a modification of the second embodiment. The same components as those of the sample information processing apparatus according to the fourth embodiment described above or the sample information processing apparatus according to the modification of the second embodiment are not described, and the same reference numerals are used. I will explain. Hereinafter, in the description of the modification of the fourth embodiment, the modification of the fourth embodiment is also simply referred to as this modification.
[II-8-1.検体情報処理装置の構成]
 第四実施形態に係る検体情報処理装置では、検体情報検出ユニットB32が接続部と直接接続されている。これに対して、本変形例に係る検体情報処理装置では、検体情報検出ユニットB33が第二プラグB42及び第二ジャックB73を介して接続部(インターフェース装置)と接続されている。
[II-8-1. Configuration of specimen information processing apparatus]
In the sample information processing apparatus according to the fourth embodiment, the sample information detection unit B32 is directly connected to the connection unit. On the other hand, in the sample information processing apparatus according to the present modification, the sample information detection unit B33 is connected to the connection unit (interface device) via the second plug B42 and the second jack B73.
 本変形例に係る接続部は、第二ジャックB73、FET B72、及び第一プラグB62を備えている。Rヘッドホン端子B76が、接続部の第一プラグB62に設けられたRヘッドホン端子B65と、FETB72とに接続されることで、RヘッドホンユニットB35の信号線B36は、Rヘッドホン端子B65と、FETB72とに接続される。 The connection unit according to this modification includes a second jack B73, an FET B72, and a first plug B62. The R headphone terminal B76 is connected to the R headphone terminal B65 provided in the first plug B62 of the connection portion and the FET B72, so that the signal line B36 of the R headphone unit B35 is connected to the R headphone terminal B65, the FET B72, and the FET B72. Connected to.
 本実施形態に係る検体情報処理装置では、第四実施形態に係る検体情報処理装置と同様に、センサB212へ音源B92からの音信号が入力されると同時に、センサB212で検出された信号が情報処理装置に入力される。 In the sample information processing apparatus according to this embodiment, as in the sample information processing apparatus according to the fourth embodiment, the sound signal from the sound source B92 is input to the sensor B212, and at the same time, the signal detected by the sensor B212 is the information Input to the processing unit.
[II-8-2.検体情報処理装置の動作]
(入力処理)
 本変形例に係る検体情報処理装置における入力処理は、検体情報検出ユニットB33により検出された脈動性信号が、Rヘッドホン端子B44及びRヘッドホン端子B76を介してFETB72に入力される以外は、第四実施形態に係る検体情報処理装置における入力処理と同様になっている。
[II-8-2. Operation of specimen information processing apparatus]
(Input processing)
The input process in the sample information processing apparatus according to the present modification is the fourth except that the pulsation signal detected by the sample information detection unit B33 is input to the FET B72 via the R headphone terminal B44 and the R headphone terminal B76. This is the same as the input process in the sample information processing apparatus according to the embodiment.
(出力処理)
 本変形例に係る検体情報処理装置における右耳用の音信号の出力処理は、検体情報検出装置に出力された右耳用の音信号が、Rヘッドホン端子B76及びRヘッドホン端子B44を介して、RヘッドホンユニットB35に入力される以外は、第四実施形態に係る検体情報処理装置における出力処理と同様になっている。
(Output processing)
In the sample information processing apparatus according to this modification, the right ear sound signal is output through the R headphone terminal B76 and the R headphone terminal B44. Except for the input to the R headphone unit B35, the output processing is the same as in the sample information processing apparatus according to the fourth embodiment.
 また、本変形例に係る検体情報処理装置における左耳用の音信号の出力処理は、検体情報検出装置に出力された左耳用の音信号が、Lヘッドホン端子B77及びLヘッドホン端子B45を介して、LヘッドホンユニットB37に入力される以外は、第四実施形態に係る検体情報処理装置における入力処理と同様になっている。 Further, in the sample information processing apparatus according to the present modification, the left ear sound signal is output through the L headphone terminal B77 and the L headphone terminal B45. Except for the input to the L headphone unit B37, the input processing in the sample information processing apparatus according to the fourth embodiment is the same.
[II-8-3.第四実施形態の変形例に係る検体情報処理装置の効果]
 第四実施形態の変形例に係る検体情報処理装置によれば、前記第四実施形態で得られる効果に加えて、以下に記載の効果を奏する。
[II-8-3. Effect of specimen information processing apparatus according to modification of fourth embodiment]
According to the sample information processing apparatus according to the modification of the fourth embodiment, in addition to the effects obtained in the fourth embodiment, the following effects can be obtained.
 第四実施形態の変形例に係る情報処理装置及び検体情報処理装置によれば、接続部(インターフェース装置)により、検体情報検出ユニットB33と情報処理装置(スマートフォン)とを接続することができる。このため、本変形例に係るインターフェース装置に接続される検体情報検出ユニットB33は特に制限されず、第二プラグB42を有し検出された信号を入力可能なヘッドホンであれば第二ジャックB73に接続して用いることができる。 According to the information processing apparatus and the sample information processing apparatus according to the modification of the fourth embodiment, the sample information detection unit B33 and the information processing apparatus (smartphone) can be connected by the connection unit (interface device). For this reason, the sample information detection unit B33 connected to the interface device according to this modification is not particularly limited, and is connected to the second jack B73 if the headphone has the second plug B42 and can input the detected signal. Can be used.
[II-9.その他]
[II-9-1.装置の構成について]
[II-9. Others]
[II-9-1. About device configuration]
 上記の実施形態においては、RヘッドホンユニットB35に設けられたセンサB212により、血管の脈動性信号を検出する場合について説明したが、LヘッドホンユニットB37に設けられたセンサB212により、血管の脈動性信号を検出してもよい。 In the above embodiment, the case where the blood vessel pulsation signal is detected by the sensor B212 provided in the R headphone unit B35 has been described, but the blood vessel pulsation signal is provided by the sensor B212 provided in the L headphone unit B37. May be detected.
 上記の実施形態においては、プラグの根元から先端へ、マイク端子B63、グランド端子B64、Rヘッドホン端子B65、及びLヘッドホン端子B66を順に有する第一プラグB62、及びプラグの根元から先端へ、グランド端子B43、Rヘッドホン端子B44、及びLヘッドホン端子B45を順に有する第二プラグB42を例に挙げて説明したが、プラグの構成はこれらに限定されず、第一プラグB62及び第二プラグB42の端子の順序は任意である。また、第一ジャックB81及び第二ジャックB73についても、第一プラグB62及び第二プラグB42の端子の順序と適合するものであれば任意である。 In the above embodiment, the first plug B62 having the microphone terminal B63, the ground terminal B64, the R headphone terminal B65, and the L headphone terminal B66 in this order from the root of the plug to the tip, and the ground terminal from the root of the plug to the tip. The second plug B42 having the B43, the R headphone terminal B44, and the L headphone terminal B45 in this order has been described as an example. However, the configuration of the plug is not limited to these, and the first plug B62 and the second plug B42 are connected to the terminals. The order is arbitrary. Further, the first jack B81 and the second jack B73 are arbitrary as long as they match the order of the terminals of the first plug B62 and the second plug B42.
 上記の実施形態においては、RヘッドホンユニットB35及びLヘッドホンユニットB37を備える検体情報検出ユニットB31,B32を備える構成について説明したが、RヘッドホンユニットB35又はLヘッドホンユニットB37のいずれか1方のヘッドホンユニットBを備え、いずれか一方のヘッドホンユニットBのセンサB212により、血管の脈動性信号を検出してもよい。 In the above embodiment, the configuration including the sample information detection units B31 and B32 including the R headphone unit B35 and the L headphone unit B37 has been described. However, either one of the R headphone unit B35 and the L headphone unit B37 is used. B may be detected by the sensor B212 of any one of the headphone units B.
 上記の実施形態においては、RヘッドホンユニットB35及びLヘッドホンユニットB37に対応する音源B92がステレオである場合について説明したが、音源B92が、RヘッドホンユニットB35及びLヘッドホンユニットB37に同じ音信号を出力するモノラルであってもよい。 In the above embodiment, the case where the sound source B92 corresponding to the R headphone unit B35 and the L headphone unit B37 is stereo has been described, but the sound source B92 outputs the same sound signal to the R headphone unit B35 and the L headphone unit B37. It may be monaural.
 上記の実施形態においては、音源B92から音信号が出力される構成について説明したが、音源B92としては、例えばスマートフォンに保存される音楽のデータであってもよく、または通話による受話音声を音源B92としてもよい。 In the above-described embodiment, the configuration in which the sound signal is output from the sound source B92 has been described. However, the sound source B92 may be, for example, music data stored in a smartphone, or the received sound from a call may be the sound source B92. It is good.
 上記の実施形態においては、接続部B53,B55が第一プラグB62を備え、検体情報検出装置B13,B14と、情報処理装置B23とが、プラグとジャックにより接続されて信号を入出力する構成について説明したが、センサB212から、情報処理装置B2への信号の入出力はこれらに限定されない。例えば、センサB212と、情報処理装置B23とを、USB(Universal Serial Bus)規格のコネクタ及びケーブルを介して接続してもよい。または、Wifi(登録商標)又はBluetooth(登録商標)を利用した無線通信によって、センサB212から、情報処理装置B23への信号の入出力を行ってもよい。 In the above embodiment, the connection parts B53 and B55 are provided with the first plug B62, and the sample information detection devices B13 and B14 and the information processing device B23 are connected by a plug and a jack to input and output signals. Although described, the input / output of signals from the sensor B212 to the information processing apparatus B2 is not limited to these. For example, the sensor B212 and the information processing apparatus B23 may be connected via a USB (Universal Serial Bus) standard connector and cable. Alternatively, signals may be input / output from the sensor B212 to the information processing apparatus B23 by wireless communication using WiFi (registered trademark) or Bluetooth (registered trademark).
 また、上記の実施形態では、情報処理装置B23としてスマートフォンを例示したが、情報処理装置はこれに限るものではない。例えば、タブレット型の端末(タブレットPC)、デスクトップパソコン、ノートパソコン等、またはその他の測定機器、表示機器にも適用できる。 In the above embodiment, a smartphone is exemplified as the information processing apparatus B23, but the information processing apparatus is not limited to this. For example, the present invention can be applied to a tablet-type terminal (tablet PC), a desktop personal computer, a notebook personal computer, or other measuring equipment or display equipment.
[II-9-2.信号処理について]
 上記の実施形態及び変形例においては、入力処理部、ゲイン切り替え部B95、及び周波数特性補償部B96による処理をアナログ回路による処理について説明したが、デジタル回路、例えばデジタルシグナルプロセッサ(以下、「DSP」ともいう)を含む回路とアナログ回路とを組み合わせたり、演算処理装置(CPU)やDSPを組み合わせたりして、このデジタル回路を含む回路により信号を処理する構成としてもよい。または、情報処理装置B23が備えるメモリ上に信号処理用のアプリケーションソフトが展開されてCPUにより実行されることで、入力処理手段、ゲイン切り替え手段、及び周波数特性補償手段として機能するようにしてもよい。
[II-9-2. About signal processing]
In the above embodiment and modification, the processing by the input processing unit, the gain switching unit B95, and the frequency characteristic compensation unit B96 has been described with respect to the processing by the analog circuit, but a digital circuit, for example, a digital signal processor (hereinafter referred to as “DSP”). A circuit including the digital circuit may be processed by combining a circuit including the digital circuit and an analog circuit, or combining an arithmetic processing unit (CPU) or a DSP. Alternatively, the signal processing application software may be deployed on the memory included in the information processing apparatus B23 and executed by the CPU, thereby functioning as input processing means, gain switching means, and frequency characteristic compensation means. .
 また、上記の第一実施形態においては、接続部B53の回路構成について、図23、図59(a)により示されるように、周波数特性補償部B96がFETB72のゲート端子(G)に接続される構成について説明したが、図59(b)に示すように、周波数特性補償部B96がコンデンサB79を介して第一プラグB62のマイク端子B63に接続される構成にしてもよい。または、図59(c)に示すように、直流結合が可能であれば、周波数特性補償部B96がマイク端子B63に直接接続される構成にしてもよい。 In the first embodiment, the frequency characteristic compensation unit B96 is connected to the gate terminal (G) of the FET B72 as shown in FIG. 23 and FIG. Although the configuration has been described, as shown in FIG. 59B, the frequency characteristic compensation unit B96 may be connected to the microphone terminal B63 of the first plug B62 via the capacitor B79. Alternatively, as shown in FIG. 59 (c), if direct current coupling is possible, the frequency characteristic compensation unit B96 may be directly connected to the microphone terminal B63.
 また、上述した接続部B53の回路構成についての図59(b)、図59(c)についての変形例は、接続部B54、並びに第二実施形態~第四実施形態に係る接続部、及び第二実施形態~第四実施形態の変形例に係る接続部に適用してもよい。すなわち、RヘッドホンユニットB35の信号線B36と、第一プラグB62のマイク端子B63との接続は、図59(a)により示されるように、FETB72のゲート端子(G)とドレイン端子(D)を介して接続してもよい。または、図59(b)により示されるように、コンデンサB79を介して接続してもよい。または、図59(c)により示されるように、直接接続してもよい。 59 (b) and 59 (c) regarding the circuit configuration of the connecting portion B53 described above are the connecting portion B54, the connecting portions according to the second to fourth embodiments, and the first embodiment. You may apply to the connection part which concerns on the modification of 2nd embodiment-4th embodiment. That is, the signal line B36 of the R headphone unit B35 and the microphone terminal B63 of the first plug B62 are connected to each other by connecting the gate terminal (G) and drain terminal (D) of the FET B72 as shown in FIG. You may connect via. Or as shown by FIG.59 (b), you may connect via the capacitor | condenser B79. Or as shown by FIG.59 (c), you may connect directly.
 また、上記の実施形態及び変形例においては、検体情報検出装置に接続される情報処理装置によって信号の処理の一部を行う構成について説明したが、入力された信号をAD変換部B89によりデジタル信号に変換した後、他の情報処理装置によって信号処理を行ってもよい。例えば入力された信号情報を記録媒体に保存して、その記録媒体により他の情報処理装置に信号情報を写してもよく、入力された信号情報を無線又は有線により他の情報処理装置に信号情報を送ってもよい。 In the above-described embodiment and modification, the configuration in which part of the signal processing is performed by the information processing apparatus connected to the sample information detection apparatus has been described, but the input signal is converted into a digital signal by the AD conversion unit B89. After the conversion, the signal processing may be performed by another information processing apparatus. For example, the input signal information may be stored in a recording medium, and the signal information may be copied to another information processing apparatus using the recording medium. The input signal information may be transmitted to the other information processing apparatus wirelessly or by wire. May be sent.
 上記の実施形態及び変形例においては、接続部B53,B54または情報処理装置B23が、ゲイン切り替え部B95と周波数特性補償部B96とを共に備え、順に処理を行う構成について説明した。ゲイン切り替え部B95と周波数特性補償部B96とは、接続部B53,B54と情報処理装置B23とのいずれかが備えていればよい。例えば、接続部B53,B54に備えられたゲイン切り替え部B95によりレベル調整処理を行い、情報処理装置B23に備えられた周波数特性補償部B96により波形等化処理及び波形比較処理を行うようにしてもよい。ただし、この場合、PLLB263からのクロック信号を、波形判定部B272に送信するよう構成されていることが好ましい。 In the embodiment and the modification described above, the connection units B53 and B54 or the information processing device B23 include both the gain switching unit B95 and the frequency characteristic compensation unit B96, and the configuration in which processing is performed in order has been described. The gain switching unit B95 and the frequency characteristic compensation unit B96 may be provided with any one of the connection units B53 and B54 and the information processing device B23. For example, level adjustment processing may be performed by the gain switching unit B95 provided in the connection units B53 and B54, and waveform equalization processing and waveform comparison processing may be performed by the frequency characteristic compensation unit B96 provided in the information processing device B23. Good. However, in this case, it is preferable that the clock signal from the PLLB 263 is configured to be transmitted to the waveform determination unit B272.
[II-9-3.波形等化処理について]
 上記の実施形態及び変形例の波形等化処理においては、図33を参照して、波形等化処理部B271が、積分型の位相補償を行い、検体情報検出ユニットB32から出力された脈動性信号に加わった微分応答の補償を行って、速度脈波として出力する場合について説明した。波形等化処理はこれに限定されず、波形等化処理部B271が、微分型の位相補償を行い、検体情報検出ユニットB32から出力された脈動性信号に加わった積分応答の補償を行ってもよい。この場合、脈波情報検出帯域より高い周波数成分を通過させて、脈波情報検出帯域の周波数成分のゲインを周波数の減少とともに漸減させて、脈波情報検出帯域より低い周波数成分のゲインを減衰させる、微分型の位相補償を行えばよい。
[II-9-3. About waveform equalization processing]
In the waveform equalization processing of the above embodiment and the modification, referring to FIG. 33, the waveform equalization processing unit B271 performs integral type phase compensation and outputs the pulsation signal output from the specimen information detection unit B32. The case where the differential response added to is compensated and output as a velocity pulse wave has been described. The waveform equalization processing is not limited to this, and even if the waveform equalization processing unit B271 performs differential phase compensation and compensation of the integral response added to the pulsation signal output from the specimen information detection unit B32. Good. In this case, a frequency component higher than the pulse wave information detection band is allowed to pass, and the gain of the frequency component of the pulse wave information detection band is gradually decreased as the frequency is decreased, so that the gain of the frequency component lower than the pulse wave information detection band is attenuated. Differential phase compensation may be performed.
 または、波形等化処理部B271が、脈動性信号に加わった微分要素または積分要素を除く程度の位相補償を行い、検体情報検出ユニットB32から出力された脈動性信号に加わった微分要素または積分要素の補償を行ってもよい。この場合、積分型または微分型の位相補償において、ブースト量を抑えたものとすればよい。 Alternatively, the waveform equalization processing unit B271 performs phase compensation to the extent that the differential element or the integral element added to the pulsation signal is excluded, and the differential element or the integral element added to the pulsation signal output from the specimen information detection unit B32. May be compensated. In this case, the boost amount may be suppressed in integral type or differential type phase compensation.
 または、波形判定部B272によって判定の基準となる波形を加速度脈波として、これと波形等化処理部B271により位相補償された波形とを比較して、位相補償の周波数特性が適正になるまで繰り返し位相補償と判定とを行ってもよい。 Alternatively, the waveform determination unit B272 determines the waveform serving as a reference for determination as an acceleration pulse wave, compares this with the waveform that has undergone phase compensation by the waveform equalization processing unit B271, and repeats until the frequency characteristics of phase compensation become appropriate. Phase compensation and determination may be performed.
 例えば、センサB212の電磁系に起因する微分応答と、オンイヤータイプのヘッドホンの空気漏れによる微分応答が合わさることで、検体情報検出ユニットB32から出力される脈動性信号は、加速度応答の脈波(加速度脈波)として出力される。このとき、センサB212の電磁系に起因する微分応答、またはオンイヤータイプのヘッドホンの空気漏れによる微分応答が安定な微分応答となっていない場合には、検体情報検出ユニットB32から出力される脈動性信号は、完全な加速度脈波となっていない。このような脈動性信号に対して、周波数特性補償部B96では、判定の基準となる波形を加速度脈波として、検体情報検出ユニットB32から出力される脈動性信号につき、微分要素または積分要素を除く程度の位相補償を行うことで、周波数応答が補償された加速度脈波として得ることができる。 For example, the differential response resulting from the electromagnetic system of the sensor B212 and the differential response due to air leakage from the on-ear type headphones are combined, so that the pulsation signal output from the specimen information detection unit B32 is a pulse wave (acceleration) of the acceleration response. Pulse wave). At this time, if the differential response due to the electromagnetic system of the sensor B212 or the differential response due to air leakage of the on-ear type headphones is not a stable differential response, the pulsation signal output from the specimen information detection unit B32 Is not a complete acceleration pulse wave. For such a pulsation signal, the frequency characteristic compensator B96 removes a differential element or an integral element from the pulsation signal output from the specimen information detection unit B32 using the waveform serving as a reference for determination as an acceleration pulse wave. By performing the degree of phase compensation, an acceleration pulse wave with a compensated frequency response can be obtained.
 また例えば、センサB212の電磁系に起因する微分応答と、カナル型のインイヤータイプのヘッドホンの空気漏れによる微分要素が合わさることで、検体情報検出ユニットB32から出力される脈動性信号は、速度応答の脈波(速度脈波)に微分要素が加わった脈波として出力される。このような脈動性信号に対して、周波数特性補償部B96では、判定の基準となる波形を加速度脈波として、検体情報検出ユニットB32から出力される脈動性信号につき、半微分型の位相補償を行うことで、空気漏れによる微分要素が補償された加速度脈波として得ることができる。 Further, for example, the differential response caused by the electromagnetic system of the sensor B212 and the differential element due to air leakage of the canal type in-ear type headphones are combined, so that the pulsation signal output from the specimen information detection unit B32 has a speed response. It is output as a pulse wave with a differential element added to the pulse wave (velocity pulse wave). For such a pulsating signal, the frequency characteristic compensator B96 performs a semi-differential type phase compensation on the pulsating signal output from the specimen information detection unit B32 with the waveform serving as a reference for determination being an acceleration pulsating wave. By performing, it can be obtained as an acceleration pulse wave in which a differential element due to air leakage is compensated.
 また例えば、例えば、センサB212の電磁系に起因する微分応答と、オンイヤータイプのヘッドホンの空気漏れによる微分応答と、検体情報検出ユニットB32のDSPによるブースト(積分要素)とが合わさることで、検体情報検出ユニットB32から出力される脈動性信号は、加速度応答の脈波(加速度脈波)に積分要素が加わった脈波として出力される。このような脈動性信号に対して、周波数特性補償部B96では、判定の基準となる波形を加速度脈波として、検体情報検出ユニットB32から出力される脈動性信号につき、半微分型の位相補償を行うことで、DSPによる積分要素が補償された加速度脈波として得ることができる。 In addition, for example, the differential information resulting from the electromagnetic system of the sensor B212, the differential response due to air leakage of the on-ear type headphones, and the boost (integral element) by the DSP of the sample information detection unit B32 are combined, so that the sample information The pulsation signal output from the detection unit B32 is output as a pulse wave obtained by adding an integral element to the pulse wave of acceleration response (acceleration pulse wave). For such a pulsating signal, the frequency characteristic compensator B96 performs a semi-differential type phase compensation on the pulsating signal output from the specimen information detection unit B32 with the waveform serving as a reference for determination being an acceleration pulsating wave. By doing so, it can be obtained as an acceleration pulse wave in which the integral element by the DSP is compensated.
 上記の実施形態及び変形例のゲイン切り替え部B95及び周波数特性補償部B96においては、PLLB263が128のクロックを出力する場合について説明したが、クロックはこれに限定されず適宜変更してもよい。例えば、クロックを256、512、または1024としてもよい。このとき、クロックが多いほど、PLLの特性を決めるループゲインがその分低下することになるためにいわゆるロックレンジが小さくなる傾向にあるが、波形判定の精度が高くなる点からは好ましい。また、クロックが小さいほど、PLLを構成する要素の一つであるVCO(電圧制御発振器)を低周波において安定に発振させるよう制御が必要となる傾向にあるが、ループゲインの低下はない点からは好ましい。 In the above-described embodiment and the modification, the gain switching unit B95 and the frequency characteristic compensation unit B96 have been described with respect to the case where the PLLB 263 outputs 128 clocks, but the clock is not limited to this and may be changed as appropriate. For example, the clock may be 256, 512, or 1024. At this time, as the number of clocks increases, the loop gain that determines the characteristics of the PLL decreases accordingly, so that the so-called lock range tends to decrease. However, this is preferable from the viewpoint of increasing the accuracy of waveform determination. Further, as the clock is smaller, control tends to be required to stably oscillate a VCO (voltage controlled oscillator), which is one of the elements constituting the PLL, at a low frequency, but there is no decrease in loop gain. Is preferred.
 上記の実施形態及び変形例では、ロック検出部B264が入力された位相差信号の大きさを所定の設定値と比較して、PLLB263が脈動性信号をロックしたかどうかを検出する場合について説明したが、ロックしたかどうかの検出は上記構成に限定されない。例えばPLLを構成する位相比較器の二つの信号入力が所定のシーケンスに従っているときに、ロックしていると判定してもよい。また、上記二つの信号が所定のシーケンスに従っていない時に、ロックしていないと判定してもよい。 In the above embodiment and the modification, the case where the lock detection unit B264 detects whether the PLLB 263 has locked the pulsation signal by comparing the magnitude of the input phase difference signal with a predetermined set value has been described. However, the detection of whether or not the lock has occurred is not limited to the above configuration. For example, when the two signal inputs of the phase comparator constituting the PLL are in accordance with a predetermined sequence, it may be determined that the phase is locked. Further, it may be determined that the two signals are not locked when they do not follow a predetermined sequence.
[II-9-4.両耳で脈動性信号を検出する場合について]
 上記の実施形態では、検体情報検出ユニットB32,B33のRヘッドホンユニットB35におけるセンサB212によって脈動性信号を検出する場合について説明した。脈動性信号の検出は、RヘッドホンユニットB35に限られず、RヘッドホンユニットB35及びLヘッドホンユニットB37によって検出した信号の両方を用いて信号処理を行ってもよい。
[II-9-4. When detecting pulsatile signals with both ears]
In the above embodiment, the case where the pulsation signal is detected by the sensor B212 in the R headphone unit B35 of the sample information detection units B32 and B33 has been described. The detection of the pulsating signal is not limited to the R headphone unit B35, and signal processing may be performed using both signals detected by the R headphone unit B35 and the L headphone unit B37.
 図60は、検体情報検出ユニットB32がカナル型のインナーイヤータイプのヘッドホンの場合に、RヘッドホンユニットB35及びLヘッドホンユニットB37によってそれぞれ検出した信号を重ね合わせて表示した波形を表す図である。ここでは、RヘッドホンユニットB35によって検出された信号の波形を実線で、RヘッドホンユニットB35によって検出された信号の波形を破線で示している。図60に示すように、RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号とは、同様の波形を示すことが分かる。中でも、負の値を示すピーク部分はおおむね一致している。 FIG. 60 is a diagram illustrating a waveform in which signals detected by the R headphone unit B35 and the L headphone unit B37 are superimposed and displayed when the sample information detection unit B32 is a canal-type inner-ear type headphone. Here, the waveform of the signal detected by the R headphone unit B35 is indicated by a solid line, and the waveform of the signal detected by the R headphone unit B35 is indicated by a broken line. As shown in FIG. 60, it can be seen that the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37 show similar waveforms. Among them, the peak portions showing negative values are almost the same.
 図61は、図60に示した波形について、負の値を示すピーク部分の一部を拡大して示すものである。図61では、図60と同様に、RヘッドホンユニットB35によって検出された信号の波形を実線で、RヘッドホンユニットB35によって検出された信号の波形を破線で示している。図61に示すように、RヘッドホンユニットB35で得られた信号の波形とLヘッドホンユニットB37で得られた信号の波形とは、ピーク位置が約4msec程ずれている。これは、心臓から右耳と左耳までの距離がそれぞれ異なることが一因であると考えられる。 FIG. 61 is an enlarged view of a part of the peak portion showing a negative value in the waveform shown in FIG. In FIG. 61, similarly to FIG. 60, the waveform of the signal detected by the R headphone unit B35 is indicated by a solid line, and the waveform of the signal detected by the R headphone unit B35 is indicated by a broken line. As shown in FIG. 61, the peak position of the waveform of the signal obtained by the R headphone unit B35 and the waveform of the signal obtained by the L headphone unit B37 are shifted by about 4 msec. This is considered to be due to the fact that the distance from the heart to the right and left ears is different.
 RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号とでは、約4msec程のずれがあるとはいえ、波形全体として考えた場合には大きなずれではないと考えられる。このため、RヘッドホンユニットB35で得られた信号と、LヘッドホンユニットB37で得られた信号とを利用して信号処理を行うことで、単独の場合よりも有用な脈波波形を得ることができる。 The signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37, although there is a deviation of about 4 msec, is not considered to be a big deviation when considered as a whole waveform. For this reason, it is possible to obtain a pulse wave waveform that is more useful than a single case by performing signal processing using the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37. .
 図62(a)~図62(c)は、RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号とを加算する、加算処理による信号処理の例を説明するための図である。図62(a)は、RヘッドホンユニットB35で得られた信号の波形を表し、図62(b)はLヘッドホンユニットB37で得られた信号の波形を表す。このような波形を示す、RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号とを加算した波形を示したのが図62(c)である。図62(c)に示すように、信号を加算することで、図62(a)及び図62(b)に示す波形においてそれぞれ見られていたノイズが軽減されて、加算された信号のS/N比が向上していることが分かる。 62 (a) to 62 (c) are diagrams for explaining an example of signal processing by addition processing in which the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37 are added. It is. 62 (a) shows the waveform of the signal obtained by the R headphone unit B35, and FIG. 62 (b) shows the waveform of the signal obtained by the L headphone unit B37. FIG. 62 (c) shows a waveform obtained by adding the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37, which shows such a waveform. As shown in FIG. 62 (c), by adding the signals, noise seen in the waveforms shown in FIGS. 62 (a) and 62 (b) is reduced, and the S / S of the added signals is reduced. It can be seen that the N ratio is improved.
 外耳B107を構成する部位において検出される脈動性信号には、様々な要因によりノイズ(外乱)が含まれる。例えば、RヘッドホンユニットB35及びLヘッドホンユニットB37で検出された信号が、信号線B36,B38を介して情報処理装置B22,B23,25,27,29に入力されるまでに、信号線B36,B38が検体B101の体や衣服等に触れることで、脈動性信号にノイズが発生することがある。また、血管の脈波情報に基づく信号以外の外来の音の信号が、センサB212によってノイズとして検出される場合がある。RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号とを加算処理することによって、左右のヘッドホンユニットにおいてそれぞれ別に入ってきた信号を軽減することが出来るために有効である。 The pulsating signal detected at the site constituting the outer ear B107 includes noise (disturbance) due to various factors. For example, the signal lines B36, B38 until the signals detected by the R headphone unit B35 and the L headphone unit B37 are input to the information processing devices B22, B23, 25, 27, 29 via the signal lines B36, B38. May touch the body, clothes, etc. of the specimen B101 to generate noise in the pulsating signal. In addition, an external sound signal other than a signal based on blood vessel pulse wave information may be detected as noise by the sensor B212. This is effective because the signals obtained from the R headphone unit B35 and the signals obtained from the L headphone unit B37 can be reduced to reduce signals that have entered the left and right headphone units.
 図63(a)~図63(c)は、RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号とを積算する、積算処理による信号処理の例を説明するための図である。図63(a)は、RヘッドホンユニットB35で得られた信号の波形を表し、図63(b)はLヘッドホンユニットB37で得られた信号の波形を表す。このような波形を示す、RヘッドホンユニットB35で得られた信号と、LヘッドホンユニットB37で得られた信号とを積算した波形を示したのが図63(c)である。図63(c)に示すように、信号を積算することで、脈波に含まれている信号の振幅に応じて、大きい信号部分が大きくなり、小さい信号部分が小さくなる波形として得られる。 63 (a) to 63 (c) are diagrams for explaining an example of signal processing by integration processing that integrates the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37. It is. 63A shows the waveform of the signal obtained by the R headphone unit B35, and FIG. 63B shows the waveform of the signal obtained by the L headphone unit B37. FIG. 63 (c) shows a waveform obtained by integrating the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37, which shows such a waveform. As shown in FIG. 63 (c), by integrating the signals, a large signal portion becomes large and a small signal portion becomes a small waveform according to the amplitude of the signal included in the pulse wave.
 以下に、加算処理を行う検体情報検出装置及び検体情報処理装置の変形例の構成について説明する。また、加算除算処理を行う検体情報検出装置及び検体情報処理装置の変形例の構成についても説明する。 Hereinafter, a configuration of a modified example of the sample information detection apparatus and the sample information processing apparatus that perform the addition process will be described. A configuration of a modified example of the sample information detection apparatus and the sample information processing apparatus that performs addition division processing will also be described.
<加算処理を行う検体情報処理装置の変形例>
 図23を参照して説明した第一実施形態について、加算処理部B241を備えるようにして、RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号とを加算する加算処理を行う変形例を説明する。この第一実施形態の変形例に係る検体情報処理装置B3bは、一部の構成が上述の第一実施形態に係る検体情報処理装置B3と同様に構成されており、上述の第一実施形態に係る検体情報処理装置B3と同様のものについては説明を省略し、同符号を用いて説明する。
<Modification of Sample Information Processing Apparatus that Performs Addition Processing>
In the first embodiment described with reference to FIG. 23, an addition process for adding the signal obtained by the R headphone unit B <b> 35 and the signal obtained by the L headphone unit B <b> 37 so as to include the addition processing unit B <b> 241 is performed. A modification to be performed will be described. The sample information processing apparatus B3b according to the modification of the first embodiment has a part of the configuration similar to that of the sample information processing apparatus B3 according to the first embodiment described above. The description of the same sample information processing apparatus B3 as that described above will be omitted, and will be described using the same reference numerals.
 検体情報処理装置B3bの検体情報検出装置B13bでは、図64に示すように、RヘッドホンユニットB35の信号線B36が、接続部B53bのスイッチ回路B68と接続され、LヘッドホンユニットB37の信号線B38が、接続部B53bのスイッチ回路B80と接続される。
 LヘッドホンユニットB37は左耳の外耳道に挿入されるヘッドホンユニットであって、RヘッドホンユニットB35と同様に構成されている。
In the sample information detecting device B13b of the sample information processing device B3b, as shown in FIG. 64, the signal line B36 of the R headphone unit B35 is connected to the switch circuit B68 of the connection unit B53b, and the signal line B38 of the L headphone unit B37 is connected. Are connected to the switch circuit B80 of the connection portion B53b.
The L headphone unit B37 is a headphone unit that is inserted into the ear canal of the left ear, and is configured in the same manner as the R headphone unit B35.
 スイッチ回路B68は、信号線B36が、加算処理部B241と接続するか、第一プラグB62のRヘッドホン端子B65と接続するかを切り替えるスイッチ手段である。スイッチ回路B80は、信号線B38が、加算処理部B241と接続するか、第一プラグB62のLヘッドホン端子B66と接続するかを切り替えるスイッチ手段である。 The switch circuit B68 is switch means for switching whether the signal line B36 is connected to the addition processing unit B241 or the R headphone terminal B65 of the first plug B62. The switch circuit B80 is switch means for switching whether the signal line B38 is connected to the addition processing unit B241 or to the L headphone terminal B66 of the first plug B62.
 スイッチB69は、接続部B53bの外部からスイッチ回路B68,B80を操作可能に設けられたスイッチであり、スイッチB69の操作により、スイッチ回路B68,B80の接続を同時に切り替えられるように構成されている。 The switch B69 is a switch provided so that the switch circuits B68 and B80 can be operated from the outside of the connection part B53b, and is configured so that the connection of the switch circuits B68 and B80 can be switched simultaneously by the operation of the switch B69.
 加算処理部B241は、RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号とを加算する、加算処理を施すものである。加算処理部B241により処理された信号は、ゲイン切り替え部B95に入力される。 The addition processing unit B241 performs addition processing for adding the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37. The signal processed by the addition processing unit B241 is input to the gain switching unit B95.
 上述した構成により、スイッチ回路B68,B80によって信号線B36,B38が加算処理部B241と接続した場合には、RヘッドホンユニットB35及びLヘッドホンユニットB37におけるそれぞれのセンサB212で検出された信号が、加算処理部B241に入力される。さらに、加算処理部B241により処理された信号が、ゲイン切り替え部B95、周波数特性補償部B96、FETB72を介して、マイク端子B63に入力され、第一ジャックB81のマイク端子B83を介して情報処理装置B23のAD変換部B89に入力される。この場合、センサB212はマイクロホンとして機能する。一方、スイッチ回路B68,B80によって信号線B36がRヘッドホン端子B65と接続し、信号線B38がLヘッドホン端子B66と接続した場合には、RヘッドホンユニットB35及びLヘッドホンユニットB37のセンサB212へ音源B92からの音信号が入力される。この場合、センサB212はスピーカーとして機能する。 With the configuration described above, when the signal lines B36 and B38 are connected to the addition processing unit B241 by the switch circuits B68 and B80, the signals detected by the respective sensors B212 in the R headphone unit B35 and the L headphone unit B37 are added. The data is input to the processing unit B241. Further, the signal processed by the addition processing unit B241 is input to the microphone terminal B63 via the gain switching unit B95, the frequency characteristic compensation unit B96, and the FET B72, and the information processing apparatus via the microphone terminal B83 of the first jack B81. The data is input to the AD conversion unit B89 of B23. In this case, the sensor B212 functions as a microphone. On the other hand, when the signal line B36 is connected to the R headphone terminal B65 and the signal line B38 is connected to the L headphone terminal B66 by the switch circuits B68 and B80, the sound source B92 is sent to the sensor B212 of the R headphone unit B35 and the L headphone unit B37. The sound signal from is input. In this case, the sensor B212 functions as a speaker.
 このように、検体情報検出装置B13bは、RヘッドホンユニットB35及びLヘッドホンユニットB37におけるそれぞれのセンサB212により検出され、加算処理部B241により加算された信号を、情報処理装置B23に出力する。これにより、ノイズが軽減されて、S/N比が向上した信号を出力することができる。 Thus, the sample information detection apparatus B13b outputs the signals detected by the sensors B212 in the R headphone unit B35 and the L headphone unit B37 and added by the addition processing unit B241 to the information processing apparatus B23. As a result, a signal with reduced noise and an improved S / N ratio can be output.
 上述した加算処理を行う変形例の説明では、図64を参照して第一実施形態の変形例について説明したが、検体情報検出ユニットB32,B33により検出された信号について、RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号とを加算する加算処理を行うものであれば、これに限定されない。例えば、第二実施形態~第四実施形態及びこれらの変形例、並びに第一実施形態の変形例について、加算処理部B241を備えるものであっても同様に行うことができる。 In the description of the modification for performing the addition processing described above, the modification of the first embodiment has been described with reference to FIG. 64. However, the signals detected by the sample information detection units B32 and B33 are obtained by the R headphone unit B35. However, the present invention is not limited to this as long as addition processing for adding the received signal and the signal obtained by the L headphone unit B37 is performed. For example, the second embodiment to the fourth embodiment, the modified examples thereof, and the modified example of the first embodiment can be performed in the same manner even if the addition processing unit B241 is provided.
<加算除算処理を行う検体情報処理装置の変形例>
 図23を参照して説明した第一実施形態について、波形乱れ検出部B251,B252、加算除算処理部B253、及びセレクタB254を備えるようにして、RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号とについて加算と除算をする加算除算処理を行う変形例を説明する。この第一実施形態の変形例に係る検体情報処理装置B3cは、一部の構成が上述の第一実施形態に係る検体情報処理装置B3と同様に構成されており、上述の第一実施形態に係る検体情報処理装置B3と同様のものについては説明を省略し、同符号を用いて説明する。
<Modification of Sample Information Processing Apparatus that Performs Addition Division Processing>
In the first embodiment described with reference to FIG. 23, the signal obtained by the R headphone unit B35 and the L headphone unit are provided so as to include waveform disturbance detection units B251 and B252, an addition / division processing unit B253, and a selector B254. A modification will be described in which addition / division processing is performed for addition and division on the signal obtained in B37. The sample information processing apparatus B3c according to the modification of the first embodiment has a part of the configuration similar to that of the sample information processing apparatus B3 according to the first embodiment described above. The description of the same sample information processing apparatus B3 as that described above will be omitted, and will be described using the same reference numerals.
 検体情報処理装置B3cの検体情報検出装置B13cでは、図65に示すように、RヘッドホンユニットB35の信号線B36が、接続部B53bのスイッチ回路B68と接続され、LヘッドホンユニットB37の信号線B38が、接続部B53bのスイッチ回路B80と接続される。
 LヘッドホンユニットB37は左耳の外耳道に挿入されるヘッドホンユニットであって、RヘッドホンユニットB35と同様に構成されている。
In the sample information detecting device B13c of the sample information processing device B3c, as shown in FIG. 65, the signal line B36 of the R headphone unit B35 is connected to the switch circuit B68 of the connecting portion B53b, and the signal line B38 of the L headphone unit B37 is connected. Are connected to the switch circuit B80 of the connection portion B53b.
The L headphone unit B37 is a headphone unit that is inserted into the ear canal of the left ear, and is configured in the same manner as the R headphone unit B35.
 スイッチ回路B68は、信号線B36が、波形乱れ検出部B251及びセレクタB254の端子B256と接続するか、第一プラグB62のRヘッドホン端子B65と接続するかを切り替えるスイッチ手段である。スイッチ回路B68が、波形乱れ検出部B251及びセレクタB254の端子B256と接続する側に接続した場合、RヘッドホンユニットB35で得られた信号は、波形乱れ検出部B251とセレクタB254の端子B256にそれぞれ入力される。 The switch circuit B68 is switch means for switching whether the signal line B36 is connected to the waveform disturbance detection unit B251 and the terminal B256 of the selector B254 or to the R headphone terminal B65 of the first plug B62. When the switch circuit B68 is connected to the side connected to the waveform disturbance detection unit B251 and the terminal B256 of the selector B254, the signal obtained by the R headphone unit B35 is input to the waveform disturbance detection unit B251 and the terminal B256 of the selector B254, respectively. Is done.
 スイッチ回路B80は、信号線B38が、波形乱れ検出部B252及びセレクタB254の端子B257と接続するか、第一プラグB62のLヘッドホン端子B66と接続するかを切り替えるスイッチ手段である。スイッチ回路B80が、波形乱れ検出部B252及びセレクタB254の端子B257と接続する側に接続した場合、LヘッドホンユニットB37で得られた信号は、波形乱れ検出部B252とセレクタB254の端子B257にそれぞれ入力される。 The switch circuit B80 is switch means for switching whether the signal line B38 is connected to the waveform disturbance detection unit B252 and the terminal B257 of the selector B254 or to the L headphone terminal B66 of the first plug B62. When the switch circuit B80 is connected to the side connected to the waveform disturbance detection unit B252 and the terminal B257 of the selector B254, the signal obtained by the L headphone unit B37 is input to the waveform disturbance detection unit B252 and the terminal B257 of the selector B254, respectively. Is done.
 スイッチB69は、接続部B53cの外部からスイッチ回路B68,B80を操作可能に設けられたスイッチであり、スイッチB69の操作により、スイッチ回路B68,B80の接続を同時に切り替えられるように構成されている。 The switch B69 is a switch provided so that the switch circuits B68 and B80 can be operated from the outside of the connection portion B53c, and is configured so that the connection of the switch circuits B68 and B80 can be switched simultaneously by the operation of the switch B69.
 波形乱れ検出部B251,B252は、入力された信号のレベルに応じて、波形の乱れの有無を表す「波形乱れ検出出力」をセレクタB254に出力するものである。波形乱れ検出部B251,B252の動作を、図66を参照して説明する。 Waveform disturbance detection units B251 and B252 output “waveform disturbance detection output” indicating the presence or absence of waveform disturbance to the selector B254 according to the level of the input signal. The operations of the waveform disturbance detection units B251 and B252 will be described with reference to FIG.
 図66(a)は、波形乱れ検出部B251,B252に入力された脈波波形の一例を示す図であり、図中右側の5分の1程の領域において大きな外乱が表れている。このような波形の乱れは、電源電圧一杯に脈波の振幅を大きくして脈動性信号の検出を行っている際に、例えば、ヘッドホンリードとしての信号線B36,B38のいずれかが検体B101の身体又は衣服等に触れた場合の結果として、脈波波形にパルス状の乱れが加わったことにより生じる。ここでは、波形乱れ検出部B251,B252は、図66(b)に示すように、波形乱れ検出出力として、波形の乱れを検出していない場合には信号0を出力する。一方で、脈波の波形がプラス側に振り切る程の一定以上のレベルを検出した場合には、リトリガブルのような設定で波形乱れを検出したことを表す信号1を出力する。 FIG. 66 (a) is a diagram showing an example of a pulse wave waveform input to the waveform disturbance detectors B251 and B252, and a large disturbance appears in the region of about one fifth on the right side in the figure. For example, when the pulsation signal is detected by increasing the amplitude of the pulse wave to the full power supply voltage, for example, one of the signal lines B36 and B38 as a headphone lead is connected to the sample B101. As a result of touching the body or clothes, it is caused by the addition of pulse-like disturbance to the pulse wave waveform. Here, as shown in FIG. 66B, the waveform disturbance detection units B251 and B252 output a signal 0 when no waveform disturbance is detected as the waveform disturbance detection output. On the other hand, when a level exceeding a certain level is detected such that the waveform of the pulse wave swings to the plus side, a signal 1 indicating that the waveform disturbance has been detected with a setting such as retrigger is output.
 このとき、波形乱れ検出部B251からの出力を波形乱れ検出出力Aとし、波形乱れ検出部B252からの出力を波形乱れ検出出力Bとして、これらがそれぞれセレクタB254の端子B259,B260に入力される。 At this time, the output from the waveform disturbance detection unit B251 is used as the waveform disturbance detection output A, and the output from the waveform disturbance detection unit B252 is used as the waveform disturbance detection output B, which are input to the terminals B259 and B260 of the selector B254, respectively.
 セレクタB254は、入力されたRヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号とを、それぞれセレクタB254の端子B256,B257から加算除算処理部B253に出力する。なお、セレクタB254は、端子B258が接地されている。 The selector B254 outputs the input signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37 from the terminals B256 and B257 of the selector B254 to the addition / division processing unit B253, respectively. Note that the terminal B258 of the selector B254 is grounded.
 加算除算処理部B253は、入力された二つの信号の加算を行い、次に2で除算する処理を行うものである。すなわち、加算除算処理部B253は、入力された信号の平均を取った信号を出力する。具体的には、加算除算処理部B253は、セレクタB254からRヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号が入力され、これらの信号が平均された信号をセレクタB254の端子B255に出力する。加算除算処理部B253では、2で除算する処理について、例えば、アナログ回路で行う場合にはオペアンプ1個で行うことができ、デジタル処理する場合にはでは1ビットシフトで行うことができる。 The addition / division processing unit B253 performs a process of adding the two input signals and then dividing by two. That is, the addition / division processing unit B253 outputs a signal obtained by averaging the input signals. Specifically, the addition / division processing unit B253 receives the signal obtained from the R headphone unit B35 and the signal obtained from the L headphone unit B37 from the selector B254, and the signal obtained by averaging these signals is input to the selector B254. Output to terminal B255. In the addition / division processing unit B253, for example, the process of dividing by 2 can be performed by one operational amplifier when performed by an analog circuit, and can be performed by 1-bit shift when performing digital processing.
 セレクタB254では、波形乱れ検出出力A,Bに応じて、ゲイン切り替え部B95に信号を出力する。波形乱れ検出出力A,Bがともに信号0である場合には、加算除算処理部B253により処理された、RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号との平均を取った結果を出力する。波形乱れ検出出力Aが0で波形乱れ検出出力Bが1である場合には、RヘッドホンユニットB35で得られた信号を出力する。波形乱れ検出出力Aが1で波形乱れ検出出力Bが0ある場合には、LヘッドホンユニットB37で得られた信号を出力する。さらに、波形乱れ検出出力A,Bがともに信号1である場合には、0VをセレクタB254が選んで出力する。 The selector B254 outputs a signal to the gain switching unit B95 according to the waveform disturbance detection outputs A and B. When the waveform disturbance detection outputs A and B are both signals 0, the average of the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37 processed by the addition / division processing unit B253 is calculated. Output the result. When the waveform disturbance detection output A is 0 and the waveform disturbance detection output B is 1, the signal obtained by the R headphone unit B35 is output. When the waveform disturbance detection output A is 1 and the waveform disturbance detection output B is 0, the signal obtained by the L headphone unit B37 is output. Further, when the waveform disturbance detection outputs A and B are both signals 1, the selector B254 selects and outputs 0V.
 上述した構成により、スイッチ回路B68,B80によって信号線B36,B38がそれぞれ波形乱れ検出部B251,B252とセクレタ254とに接続した場合には、RヘッドホンユニットB35及びLヘッドホンユニットB37におけるそれぞれのセンサB212で検出された信号について、波形乱れ検出部B251,B252が波形の乱れを検出して波形乱れ検出出力A,BをセレクタB254に出力する。また、セレクタB254には、RヘッドホンユニットB35及びLヘッドホンユニットB37においてそれぞれ検出された信号が入力されて、これらの信号が加算除算処理部B253に出力されて信号の平均をとる処理がなされる。セレクタB254からは、波形乱れ検出出力A,Bに応じた信号が、ゲイン切り替え部B95、周波数特性補償部B96、FETB72を介して、マイク端子B63に入力され、第一ジャックB81のマイク端子B83を介して情報処理装置B23のAD変換部B89に入力される。この場合、センサB212はマイクロホンとして機能する。一方、スイッチ回路B68,B80によって信号線B36がRヘッドホン端子B65と接続し、信号線B38がLヘッドホン端子B66と接続した場合には、RヘッドホンユニットB35及びLヘッドホンユニットB37のセンサB212へ音源B92からの音信号が入力される。この場合、センサB212はスピーカーとして機能する。 With the configuration described above, when the signal lines B36 and B38 are connected to the waveform disturbance detectors B251 and B252 and the secretor 254 by the switch circuits B68 and B80, respectively, the respective sensors B212 in the R headphone unit B35 and the L headphone unit B37. As for the signal detected in step 1, the waveform disturbance detection units B251 and B252 detect the waveform disturbance and output the waveform disturbance detection outputs A and B to the selector B254. The selector B254 receives signals detected in the R headphone unit B35 and the L headphone unit B37, respectively, and outputs these signals to the addition / division processing unit B253 to perform an average signal processing. From the selector B254, signals corresponding to the waveform disturbance detection outputs A and B are input to the microphone terminal B63 via the gain switching unit B95, the frequency characteristic compensation unit B96, and the FET B72, and the microphone terminal B83 of the first jack B81 is input. Via the AD converter B89 of the information processing apparatus B23. In this case, the sensor B212 functions as a microphone. On the other hand, when the signal line B36 is connected to the R headphone terminal B65 and the signal line B38 is connected to the L headphone terminal B66 by the switch circuits B68 and B80, the sound source B92 is sent to the sensor B212 of the R headphone unit B35 and the L headphone unit B37. The sound signal from is input. In this case, the sensor B212 functions as a speaker.
 このように、検体情報検出装置B13cは、RヘッドホンユニットB35及びLヘッドホンユニットB37におけるそれぞれのセンサB212により検出された信号について、波形乱れ検出出力A,Bに応じた信号を情報処理装置B23に出力する。このとき、RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号との双方に乱れが無いのであれば、加算除算処理部B253により平均を取る処理がなされることで、ノイズが軽減されてS/N比の向上した信号が出力される。また、RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号とのいずれかに乱れが無いのであれば、乱れが無い側の検出された信号を出力することができる。 As described above, the sample information detection apparatus B13c outputs, to the information processing apparatus B23, signals corresponding to the waveform disturbance detection outputs A and B for the signals detected by the respective sensors B212 in the R headphone unit B35 and the L headphone unit B37. To do. At this time, if there is no disturbance in both the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37, an averaging process is performed by the addition / division processing unit B253. Is reduced and a signal with an improved S / N ratio is output. Further, if there is no disturbance in either the signal obtained by the R headphone unit B35 or the signal obtained by the L headphone unit B37, the detected signal on the side without the disturbance can be output.
 本変形例に係る検体情報処理装置B3cによれば、RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号とを加算してから2で除算して平均を取る加算除算処理を行い、S/N比が向上した信号を得ることができる。また、RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号との波形の乱れに応じて、適切な信号を出力することができる。 According to the sample information processing apparatus B3c according to this modification, the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37 are added and then divided by 2 to obtain an average division process. And a signal with an improved S / N ratio can be obtained. In addition, an appropriate signal can be output in accordance with the waveform disturbance between the signal obtained by the R headphone unit B35 and the signal obtained by the L headphone unit B37.
 上述した加算除算処理を行う変形例の説明では、図65を参照して第一実施形態の変形例について説明したが、検体情報検出ユニットB32,B33により検出された信号について、RヘッドホンユニットB35で得られた信号とLヘッドホンユニットB37で得られた信号とについて平均を取る加算除算処理を行うものであれば、これに限定されない。例えば、第二実施形態~第四実施形態及びこれらの変形例、並びに第一実施形態の変形例について、波形乱れ検出部B251,B252、加算除算処理部B253、及びセレクタB254を備えるものであっても同様に行うことができる。 In the description of the modified example in which the addition / division process is performed, the modified example of the first embodiment has been described with reference to FIG. 65. However, the signals detected by the sample information detection units B32 and B33 are detected by the R headphone unit B35. The present invention is not limited to this as long as addition / division processing is performed to average the obtained signal and the signal obtained by the L headphone unit B37. For example, the second to fourth embodiments and their modified examples, and the modified example of the first embodiment are provided with waveform disturbance detecting units B251 and B252, an addition / division processing unit B253, and a selector B254. Can be done in the same way.
[II-9-5.ヘッドホンのドライバユニットについて]
 上記の実施形態においては、センサB212として、ヘッドホンのドライバユニットにより脈波を検出することについて説明した。ここで、ヘッドホンにはドライバユニットが複数設けられている、ドライバユニットがハイブリッドのヘッドホンが知られている。例えば、主に低音を出力するウーハーと、高音を出力するツイーターとの2種類のドライバユニットを備えるものがある。また、さらに中間の領域をカバーするドライバユニットを備えるものについても知られている。
[II-9-5. About the headphone driver unit]
In the above embodiment, the detection of the pulse wave using the headphone driver unit as the sensor B212 has been described. Here, a headphone in which a plurality of driver units are provided in the headphones and the driver unit is hybrid is known. For example, there is a type that includes two types of driver units, a woofer that mainly outputs low sounds and a tweeter that outputs high sounds. Moreover, what is provided with the driver unit which covers a further intermediate | middle area | region is also known.
 本発明のセンサB212としては、このようなドライバユニットがハイブリッドのヘッドホンを用いて脈波を検出することができる。このとき、ドライバユニットの周波数特性の適性の観点から、低音の出力に用いられるドライバユニット(ウーハー)を用いて脈波の検出を行うことが好ましい。 As the sensor B212 of the present invention, such a driver unit can detect a pulse wave using hybrid headphones. At this time, from the viewpoint of suitability of the frequency characteristics of the driver unit, it is preferable to detect a pulse wave by using a driver unit (woofer) used for outputting a bass sound.
[II-9-6.カナル型のインナーイヤータイプのヘッドホンの装着部位の変形例]
 上記の実施形態においては、カナル型のインナーイヤータイプのヘッドホンである検体情報検出ユニットB32aについて、外耳道B104の外部開口部B105にイヤーピースB213を挿入することで外耳B107に装着する場合について説明した。検体情報検出ユニットB32aの装着部位はこれには限定されず、外耳B107を構成する部位を外部の空間から隔離して、閉鎖またはほぼ閉鎖された空間構造となる空洞B109を形成可能であれば、他の部位に装着してもよい。
[II-9-6. Modified example of wearing part of canal type inner ear type headphones]
In the above embodiment, the sample information detection unit B32a, which is a canal-type inner-ear type headphone, has been described as being attached to the external ear B107 by inserting the earpiece B213 into the external opening B105 of the external ear canal B104. The mounting site of the specimen information detection unit B32a is not limited to this, as long as the site constituting the outer ear B107 is isolated from the external space and the cavity B109 having a closed or almost closed space structure can be formed. It may be attached to other parts.
 例えば、耳珠B111に開口部B215を対向させて、イヤーピースB213を押し当てて接触させることで装着してもよい。または、耳垂B113に開口部B215を対向させて、イヤーピースB213を押し当てて接触させることで装着してもよい。このとき、耳珠B111または耳垂B113における血管の振動が、空洞B109内を伝播して、開口部B215を通じてセンサB212に伝わることにより、センサB212は、耳珠B111または耳垂B113における血管の脈動性信号を、脈動性信号に起因し空洞B109内を伝播する圧力情報として検出する。
[II-9-7.オーバーヘッドタイプのヘッドホンの適用例]
 上述したオーバーヘッドタイプのヘッドホンである検体情報検出ユニットB32b,B32cの適用例としては、例えば、救急車で搬送される患者への利用が挙げられる。カナル型のインナーイヤータイプのヘッドホンである検体情報検出ユニットB32aの場合には、装着時に、検体情報検出ユニットB32aを患者の外耳道B104に向けて挿入して、外部開口部B105を塞ぐように押し込む必要があった。また、検体情報検出ユニットB32aでは、患者が動いた際に筐体部B211が外耳道B104から抜け落ちて、外れてしまうことがあった。一方、検体情報検出ユニットB32b,B32cによれば、筐体部B612,B622の間を広げて、患者の両耳を挟み込むようにして装着できるため、インナーイヤータイプの場合よりも手早く装着することができる。また、筐体部B612,B622を装着部材B615,B625によって頭部B110または耳介B108に押し付けるようにして装着することから、患者が動いても外れにくく、さらにはクローズドキャビティの閉鎖レベルを保った状態で、脈動性信号を検出することができる。
For example, the opening B215 may be opposed to the tragus B111, and the earpiece B213 may be pressed and brought into contact with the tragus B111. Or you may mount | wear by making the opening part B215 oppose to the earlobe B113, and pressing and contacting the earpiece B213. At this time, the vibration of the blood vessel in the tragus B111 or the earlobe B113 propagates in the cavity B109 and is transmitted to the sensor B212 through the opening B215, so that the sensor B212 has a pulsation signal of the blood vessel in the tragus B111 or the earlobe B113. Is detected as pressure information propagating in the cavity B109 due to the pulsation signal.
[II-9-7. Application example of overhead type headphones]
As an application example of the sample information detection units B32b and B32c, which are overhead headphones described above, for example, use for a patient transported by an ambulance can be cited. In the case of the sample information detection unit B32a which is a canal-type inner-ear type headphone, it is necessary to insert the sample information detection unit B32a toward the patient's external auditory canal B104 and push it so as to close the external opening B105 at the time of wearing. there were. Further, in the sample information detection unit B32a, when the patient moves, the housing part B211 may fall off from the ear canal B104 and come off. On the other hand, according to the specimen information detection units B32b and B32c, since the space between the housing portions B612 and B622 can be widened so as to sandwich both ears of the patient, the sample information detection units B32b and B32c can be quickly mounted. . In addition, since the housing parts B612 and B622 are attached to the head B110 or the auricle B108 by the attaching members B615 and B625, the case parts B612 and B622 are attached to the head B110 or the auricle B108. In the state, a pulsating signal can be detected.
[II-9-8.その他ヘッドホンの変形例]
 上述の検体情報検出ユニットB32b,B32cは、筐体部B612,B622が密閉型の場合について説明したが、半密閉型の場合でも脈動性信号の検出を行うことができる。このとき、クローズドキャビティの閉鎖レベルがさらに低下すると考えられるため、閉鎖レベルの低下に応じて位相補償を行うことで、波形等化処理を施せばよい。
[II-9-8. Other variations of headphones]
In the above-described sample information detection units B32b and B32c, the case where the casing portions B612 and B622 are sealed is described, but a pulsating signal can be detected even in the case of a semi-sealed type. At this time, since it is considered that the closed level of the closed cavity is further lowered, the waveform equalization processing may be performed by performing phase compensation in accordance with the reduction of the closed level.
 筐体部B612,B622は通常、左耳用と右耳用との一対を備えるが、筐体部B612,B622を1個だけ備えるものであってもよい。この場合、1個の筐体部B612,B622のイヤーパッドB614,B624が、装着部材B615,B625の他端部によって検体B101の頭部B110または耳介B108に圧迫されて変形することにより装着される。 The housing parts B612 and B622 are usually provided with a pair of left and right ears, but may be provided with only one housing part B612 and B622. In this case, the ear pads B614 and B624 of one casing B612 and B622 are mounted by being deformed by being pressed against the head B110 or the auricle B108 of the specimen B101 by the other end of the mounting members B615 and B625. .
 装着部材B615,B625が、筐体部B612,B622を連結して、装着時に首の周りを周回する形状を有するネックバンドとともに、耳介B108に引っ掛けるループ状の構造を有するものであってもよい。このような装着部材を有するヘッドホンは、いわゆるネックバンドタイプと呼ばれる。この場合、ネックバンド部分の張力により筐体部B612,B622を耳介B108に押し付けて、クローズドキャビティの閉鎖レベルが脈動性信号の検出に十分な程度となるよう圧迫することが好ましい。 The mounting members B615 and B625 may have a loop-like structure that connects the casing portions B612 and B622 and hooks on the auricle B108 together with a neckband having a shape that circulates around the neck when mounted. . A headphone having such a mounting member is called a so-called neckband type. In this case, it is preferable to press the housing portions B612 and B622 against the auricle B108 by the tension of the neckband portion so that the closed level of the closed cavity is sufficient to detect the pulsation signal.
[II-10.付記]
 以上の実施形態に関し、さらに以下の付記を開示する。
[II-10. Addendum]
Regarding the above embodiment, the following additional notes are disclosed.
(付記1)
 検体に装着された状態で、該検体の外耳を構成する部位を外部の空間から隔離するとともに閉鎖またはほぼ閉鎖された空間構造となる空洞を形成する筐体部と、該筐体部に設けられ、該外耳を構成する部位における血管の脈動性信号を、該脈動性信号に起因し該空洞内を伝播する圧力情報として検出するセンサとが設けられた検体情報検出ユニットと、
 該検体情報検出ユニットから出力された信号の飽和を検出し、飽和が検出された際に信号を減衰させるゲイン切り替え部を備える
ことを特徴とする、検体情報検出装置。
(付記2)
 該検体情報検出ユニットが、カナル型のインナーイヤータイプ、オンイヤータイプ、またはアラウンドイヤータイプいずれかのヘッドホンである
ことを特徴とする、付記1に記載の検体情報検出装置。
(付記3)
 上記の検体情報検出ユニットから出力された信号に対して、血管の脈波情報が検出される周波数帯域である脈波情報検出帯域を含む低周波数領域の位相補償を行い、該低周波数領域の周波数応答を補償する波形等化処理部を備える
ことを特徴とする、付記1または付記2に記載の検体情報検出装置。
(付記4)
 上記の波形等化処理部により位相補償をされた信号の脈波について、該脈波の1周期を所定の数のクロックで等分割したときに特定のタイミングのクロックにおける信号の強度が示すパターンと、速度脈波または加速度脈波を示す場合の脈波を同数のクロックで等分割したときに同じタイミングのクロックにおける信号の強度が示すパターンとを比較する波形判定部を備える
ことを特徴とする、付記3に記載の検体情報検出装置。
(付記5)
 付記1~4のいずれか1項に記載の検体情報検出装置と、情報処理装置とを備える検体情報処理装置であって、
 該検体情報検出装置が、上記の血管の脈波情報が検出される周波数帯域である脈波情報検出帯域より高い周波数成分を減衰させて、該脈波情報検出帯域の周波数成分を通過させる処理を施す入力処理部を備え、
 該情報処理装置が、該検体情報検出装置に出力する信号に対して、該脈波情報検出帯域の周波数成分を減衰させて、該脈波情報検出帯域より高い周波数成分を通過させる処理を施す出力処理部を備え、
 該出力処理部により処理された信号が、該センサに入力され、
 該センサは、入力された信号に応じて空気振動を生じさせるスピーカーとして機能することを特徴とする、検体情報処理装置。
(付記6)
 上記の波形等化処理部により処理された信号に対して、該脈波情報の有する周波数帯域で少なくとも増幅動作、積分動作および微分動作のうちの1つの動作を行なう周波数補正処理を施すことにより、少なくとも脈動性容積信号、脈動性速度信号および脈動性加速度信号のうちの1つの信号を取り出す周波数補正処理部を備える
ことを特徴とする、付記5に記載の検体情報処理装置。
(Appendix 1)
A housing part that isolates a part constituting the outer ear of the specimen from the external space and forms a cavity that is a closed or almost closed space structure in a state of being attached to the specimen, and provided in the housing part A specimen information detection unit provided with a sensor that detects a pulsation signal of a blood vessel in a part constituting the outer ear as pressure information that propagates in the cavity due to the pulsation signal;
A specimen information detection apparatus comprising: a gain switching unit that detects saturation of a signal output from the specimen information detection unit and attenuates the signal when saturation is detected.
(Appendix 2)
2. The specimen information detection apparatus according to appendix 1, wherein the specimen information detection unit is a canal-type inner ear type, on-ear type, or around-ear type headphone.
(Appendix 3)
The signal output from the specimen information detection unit performs phase compensation in a low frequency region including a pulse wave information detection band that is a frequency band in which blood vessel pulse wave information is detected, and the frequency in the low frequency region The specimen information detection apparatus according to Supplementary Note 1 or Supplementary Note 2, further comprising a waveform equalization processing unit that compensates a response.
(Appendix 4)
With respect to the pulse wave of the signal phase-compensated by the above waveform equalization processing unit, when the period of the pulse wave is equally divided by a predetermined number of clocks, the pattern indicates the signal intensity in the clock at a specific timing In addition, when the pulse wave when the velocity pulse wave or the acceleration pulse wave is shown, the pulse wave is equally divided by the same number of clocks, and includes a waveform determination unit that compares the pattern indicated by the signal intensity in the clock at the same timing, The specimen information detection apparatus according to attachment 3.
(Appendix 5)
A sample information processing apparatus comprising the sample information detection apparatus according to any one of appendices 1 to 4 and an information processing apparatus,
The specimen information detection device attenuates a frequency component higher than the pulse wave information detection band, which is a frequency band in which the pulse wave information of the blood vessel is detected, and passes the frequency component of the pulse wave information detection band. An input processing unit to perform,
An output in which the information processing apparatus attenuates the frequency component of the pulse wave information detection band and passes the frequency component higher than the pulse wave information detection band with respect to the signal output to the specimen information detection apparatus With a processing unit,
The signal processed by the output processing unit is input to the sensor,
The sample information processing apparatus, wherein the sensor functions as a speaker that generates air vibration according to an input signal.
(Appendix 6)
By applying a frequency correction process for performing at least one of an amplification operation, an integration operation, and a differentiation operation on the signal processed by the waveform equalization processing unit in the frequency band of the pulse wave information, 6. The specimen information processing apparatus according to appendix 5, further comprising a frequency correction processing unit that extracts at least one of a pulsating volume signal, a pulsating velocity signal, and a pulsating acceleration signal.
(付記7)
 検体に装着された状態で、該検体の外耳を構成する部位を外部の空間から隔離するとともに閉鎖またはほぼ閉鎖された空間構造となる空洞を形成する筐体部と、該筐体部に設けられ、該外耳を構成する部位における血管の脈動性信号を、該脈動性信号に起因し該空洞内を伝播する圧力情報として検出するセンサとが設けられた検体情報検出ユニットを備える検体情報検出装置から、該センサにより検出された信号が入力される情報処理装置であって、
 該検体情報検出ユニットから出力された信号の飽和を検出し、飽和が検出された際に信号を減衰させるゲイン切り替え部を備える
ことを特徴とする、情報処理装置。
(付記8)
 該検体情報検出ユニットが、カナル型のインナーイヤータイプ、オンイヤータイプ、またはアラウンドイヤータイプいずれかのヘッドホンである
ことを特徴とする、付記7に記載の情報処理装置。
(付記9)
 上記の検体情報検出ユニットから出力された信号に対して、血管の脈波情報が検出される周波数帯域である脈波情報検出帯域を含む低周波数領域の位相補償を行い、該低周波数領域の周波数応答を補償する波形等化処理部を備える
ことを特徴とする、付記7または付記8に記載の情報処理装置。
(付記10)
 上記の波形等化処理部により位相補償をされた信号の脈波について、該脈波の1周期を所定の数のクロックで等分割したときに特定のタイミングのクロックにおける信号の強度が示すパターンと、速度脈波または加速度脈波を示す場合の脈波を同数のクロックで等分割したときに同じタイミングのクロックにおける信号の強度が示すパターンとを比較する波形判定部を備える
ことを特徴とする、付記9に記載の情報処理装置。
(付記11)
 該情報処理装置が、該検体情報検出装置から入力された信号に対して、上記の血管の脈波情報が検出される周波数帯域である脈波情報検出帯域より高い周波数成分を減衰させて、該脈波情報検出帯域の周波数成分を通過させる処理を施す入力処理部と、
該検体情報検出装置に出力する信号に対して、該脈波情報検出帯域の周波数成分を減衰させて、該脈波情報検出帯域より高い周波数成分を通過させる処理を施す出力処理部と備え、
 該出力処理部により処理された信号が、該センサに入力され、
 該センサは、入力された信号に応じて空気振動を生じさせるスピーカーとして機能することを特徴とする、付記7~10のいずれか1項に記載の情報処理装置。
(付記12)
 上記の波形等化処理部により処理された信号に対して、該脈波情報の有する周波数帯域で少なくとも増幅動作、積分動作および微分動作のうちの1つの動作を行なう周波数補正処理を施すことにより、少なくとも脈動性容積信号、脈動性速度信号および脈動性加速度信号のうちの1つの信号を取り出す周波数補正処理部を備える
ことを特徴とする、付記7~11のいずれか1項に記載の情報処理装置。
(Appendix 7)
A housing part that isolates a part constituting the outer ear of the specimen from the external space and forms a cavity that is a closed or almost closed space structure in a state of being attached to the specimen, and provided in the housing part A specimen information detection apparatus comprising a specimen information detection unit provided with a sensor that detects a pulsation signal of a blood vessel in a portion constituting the outer ear as pressure information that propagates in the cavity due to the pulsation signal. An information processing apparatus to which a signal detected by the sensor is input,
An information processing apparatus comprising: a gain switching unit that detects saturation of a signal output from the specimen information detection unit and attenuates the signal when saturation is detected.
(Appendix 8)
The information processing apparatus according to appendix 7, wherein the specimen information detection unit is a canal type inner ear type, on-ear type, or around-ear type headphone.
(Appendix 9)
The signal output from the specimen information detection unit performs phase compensation in a low frequency region including a pulse wave information detection band that is a frequency band in which blood vessel pulse wave information is detected, and the frequency in the low frequency region The information processing apparatus according to appendix 7 or appendix 8, further comprising a waveform equalization processing unit that compensates a response.
(Appendix 10)
With respect to the pulse wave of the signal phase-compensated by the above waveform equalization processing unit, when the period of the pulse wave is equally divided by a predetermined number of clocks, the pattern indicates the signal intensity in the clock at a specific timing In addition, when the pulse wave when the velocity pulse wave or the acceleration pulse wave is shown, the pulse wave is equally divided by the same number of clocks, and includes a waveform determination unit that compares the pattern indicated by the signal intensity in the clock at the same timing, The information processing apparatus according to appendix 9.
(Appendix 11)
The information processing apparatus attenuates a frequency component higher than a pulse wave information detection band, which is a frequency band in which the pulse wave information of the blood vessel is detected, with respect to a signal input from the specimen information detection apparatus, An input processing unit that performs processing for passing the frequency component of the pulse wave information detection band;
An output processing unit that performs a process of attenuating the frequency component of the pulse wave information detection band and passing the frequency component higher than the pulse wave information detection band with respect to the signal output to the specimen information detection device;
The signal processed by the output processing unit is input to the sensor,
11. The information processing apparatus according to any one of appendices 7 to 10, wherein the sensor functions as a speaker that generates air vibration according to an input signal.
(Appendix 12)
By applying a frequency correction process for performing at least one of an amplification operation, an integration operation, and a differentiation operation on the signal processed by the waveform equalization processing unit in the frequency band of the pulse wave information, The information processing apparatus according to any one of appendices 7 to 11, further comprising a frequency correction processing unit that extracts at least one of a pulsating volume signal, a pulsating velocity signal, and a pulsating acceleration signal. .
(付記13)
 検体に装着された状態で、該検体の外耳を構成する部位を外部の空間から隔離するとともに閉鎖またはほぼ閉鎖された空間構造となる空洞を形成する筐体部と、該筐体部に設けられ、該外耳を構成する部位における血管の脈動性信号を、該脈動性信号に起因し該空洞内を伝播する圧力情報として検出するセンサとが設けられた該検体情報検出ユニットと、該センサにより検出された信号の処理を行う情報処理装置との間に介装されるインターフェース装置であって、
 該検体情報検出ユニットから出力された信号の飽和を検出し、飽和が検出された際に信号を減衰させるゲイン切り替え部を備える
ことを特徴とする、インターフェース装置。
(付記14)
 上記の検体情報検出ユニットから出力された信号に対して、血管の脈波情報が検出される周波数帯域である脈波情報検出帯域を含む低周波数領域の位相補償を行い、該低周波数領域の周波数応答を補償する波形等化処理部を備える
ことを特徴とする、付記13に記載のインターフェース装置。
(付記15)
 上記の波形等化処理部により位相補償をされた信号の脈波について、該脈波の1周期を所定の数のクロックで等分割したときに特定のタイミングのクロックにおける信号の強度が示すパターンと、速度脈波または加速度脈波を示す場合の脈波を同数のクロックで等分割したときに同じタイミングのクロックにおける信号の強度が示すパターンとを比較する波形判定部を備える
ことを特徴とする、付記14に記載のインターフェース装置。
(Appendix 13)
A housing part that isolates a part constituting the outer ear of the specimen from the external space and forms a cavity that is a closed or almost closed space structure in a state of being attached to the specimen, and provided in the housing part A specimen information detection unit provided with a sensor for detecting a pulsation signal of a blood vessel in a portion constituting the outer ear as pressure information propagating in the cavity due to the pulsation signal, and detected by the sensor An interface device interposed between the information processing device for processing the received signal,
An interface apparatus comprising: a gain switching unit that detects saturation of a signal output from the specimen information detection unit and attenuates the signal when saturation is detected.
(Appendix 14)
The signal output from the specimen information detection unit performs phase compensation in a low frequency region including a pulse wave information detection band that is a frequency band in which blood vessel pulse wave information is detected, and the frequency in the low frequency region 14. The interface device according to appendix 13, further comprising a waveform equalization processing unit that compensates for a response.
(Appendix 15)
With respect to the pulse wave of the signal phase-compensated by the above waveform equalization processing unit, when the period of the pulse wave is equally divided by a predetermined number of clocks, the pattern indicates the signal intensity in the clock at a specific timing In addition, when the pulse wave when the velocity pulse wave or the acceleration pulse wave is shown, the pulse wave is equally divided by the same number of clocks, and includes a waveform determination unit that compares the pattern indicated by the signal intensity in the clock at the same timing, The interface device according to appendix 14.
 A1,A2,A3,A4 情報処理装置
 A5,A6,A7,A8 検体情報処理装置
 A11,A12 PLL回路
 A13 信号記録部
 A14,A15 信号処理部
 A21 位相比較器
 A22 LPF(ローパスフィルタ)
 A23a,A23b VCO(電圧制御発振器)
 A24 分周器
 A25 カウンタ
 A31 二値化処理部
 A32 AD変換器
 A33 第一メモリ
 A34 フィードバックコムフィルタ
 A35 第二メモリ
 A36 平均化処理部
 A37 微分処理部
 A38 積分処理部
 A41 ロック検出部
 A42 信号計数部
 A43 波形表示部
 A81 表示器
 A301,A302 脈拍周波数検出部
 A303 クロックジェネレータ
 B3,B4 検体情報処理装置
 B13,B14 検体情報検出装置
 B23 情報処理装置
 B32,B33 検体情報検出ユニット
 B35 Rヘッドホンユニット(ヘッドホン)
 B37 Lヘッドホンユニット(ヘッドホン)
 B42 第二プラグ
 B43 第二プラグのグランド端子
 B44 第二プラグのRヘッドホン端子(ヘッドホン端子)
 B45 第二プラグのLヘッドホン端子(ヘッドホン端子)
 B53,B54 接続部(インターフェース装置)
 B62 第一プラグ
 B63 第一プラグのマイク端子(マイク端子)
 B65 第一プラグのRヘッドホン端子(ヘッドホン端子)
 B66 第一プラグのLヘッドホン端子(ヘッドホン端子)
 B68 スイッチ回路
 B73 第二ジャック
 B81 第一ジャック
 B90 周波数補正処理部
 B95 ゲイン切り替え部
 B96 周波数特性補償部
 B97 入力処理部
 B101 検体
 B104 外耳道
 B105 外部開口部
 B107 外耳
 B109 空洞
 B211,B612,B622 筐体部
 B212 センサ
 B241 加算処理部
 B271 波形等化処理部
 B272 波形判定部
 
A1, A2, A3, A4 Information processing device A5, A6, A7, A8 Sample information processing device A11, A12 PLL circuit A13 Signal recording unit A14, A15 Signal processing unit A21 Phase comparator A22 LPF (low pass filter)
A23a, A23b VCO (voltage controlled oscillator)
A24 frequency divider A25 counter A31 binarization processing unit A32 AD converter A33 first memory A34 feedback comb filter A35 second memory A36 averaging processing unit A37 differentiation processing unit A38 integration processing unit A41 lock detection unit A42 signal counting unit A43 Waveform display unit A81 Display unit A301, A302 Pulse frequency detection unit A303 Clock generator B3, B4 Sample information processing device B13, B14 Sample information detection device B23 Information processing device B32, B33 Sample information detection unit B35 R headphone unit (headphone)
B37 L Headphone Unit (Headphone)
B42 Second plug B43 Second plug ground terminal B44 Second plug R headphone terminal (headphone terminal)
B45 2nd plug L headphone terminal (headphone terminal)
B53, B54 connection part (interface device)
B62 1st plug B63 1st plug microphone terminal (microphone terminal)
B65 First plug R headphone jack (headphone jack)
B66 1st plug L headphone terminal (headphone terminal)
B68 Switch circuit B73 Second jack B81 First jack B90 Frequency correction processing section B95 Gain switching section B96 Frequency characteristic compensation section B97 Input processing section B101 Sample B104 External auditory canal B105 External opening B107 Outer ear B109 Cavity B211, B612, B622 Housing section B212 Sensor B241 Addition processing unit B271 Waveform equalization processing unit B272 Waveform determination unit

Claims (13)

  1.  検体における血管の脈波情報に基づく脈動性信号を検出する検体情報検出ユニットと、
     該脈動性信号を正規化する信号処理部とを備える
    ことを特徴とする検体情報処理装置。
    A specimen information detection unit for detecting a pulsation signal based on blood vessel pulse wave information in the specimen;
    A sample information processing apparatus comprising: a signal processing unit that normalizes the pulsating signal.
  2.  該信号処理部は、該脈動性信号が入力されるPLL回路を備え、
     該PLL回路は、
     該脈動性信号と帰還信号との位相を比較して、位相差に対応する位相差信号を出力する位相比較器と、
     該位相差信号が入力されて、所定のカットオフ周波数より大きい周波数成分を除去した電圧制御信号を出力するローパスフィルタと、
     該電圧制御信号の電圧に対応する発振周波数を有するクロック信号を出力する電圧制御発振器と、
     該クロック信号が入力されて、所定の分周比で該クロック信号を分周した分周信号を出力する分周器とを有し、
     上記の分周信号が該帰還信号として該位相比較器に入力され、
     該脈動性信号と該帰還信号との位相が同期するように該電圧制御発振器の発振周波数が制御され、
     該クロック信号により該脈動性信号を正規化する
    ことを特徴とする請求項1に記載の検体情報処理装置。
    The signal processing unit includes a PLL circuit to which the pulsation signal is input,
    The PLL circuit
    A phase comparator that compares the phase of the pulsating signal and the feedback signal and outputs a phase difference signal corresponding to the phase difference;
    A low-pass filter that receives the phase difference signal and outputs a voltage control signal from which a frequency component greater than a predetermined cutoff frequency has been removed;
    A voltage controlled oscillator that outputs a clock signal having an oscillation frequency corresponding to the voltage of the voltage control signal;
    A frequency divider that receives the clock signal and outputs a frequency-divided signal obtained by dividing the clock signal by a predetermined frequency division ratio;
    The divided signal is input to the phase comparator as the feedback signal,
    The oscillation frequency of the voltage controlled oscillator is controlled so that the phases of the pulsation signal and the feedback signal are synchronized,
    The sample information processing apparatus according to claim 1, wherein the pulsation signal is normalized by the clock signal.
  3.  該信号処理部は、
     該脈動性信号の信号強度をデジタルデータとして取得するAD変換器と、該AD変換器で得られた該データを蓄積するメモリとを有する信号記録部と、
     該分周器から該分周信号が入力されて、該分周信号をカウントして脈波の順番を示す波形番号を出力するカウンタと、
     上記のメモリに記録した信号強度を読み出してフィルタ処理するフィードバックコムフィルタとを備え、
     該AD変換器は、該電圧制御発振器から該クロック信号が入力されたタイミングで該信号強度を取得して該メモリに出力し、
     該メモリは、該カウンタから入力される該波形番号を受けて、該脈動性信号を該波形番号と上記のクロック信号の入力されたタイミングに応じたクロック番号とに対応付けた信号強度として記録し、
     該フィードバックコムフィルタは、該電圧制御発振器から該クロック信号が入力されて、該脈動性信号の一周期あたりの総クロック数の整数倍の周波数成分を通過させる
    ことを特徴とする請求項2に記載の検体情報処理装置。
    The signal processing unit
    A signal recording unit having an AD converter that acquires the signal intensity of the pulsating signal as digital data, and a memory that stores the data obtained by the AD converter;
    A counter that receives the frequency-divided signal from the frequency divider, counts the frequency-divided signal, and outputs a waveform number indicating the order of pulse waves;
    A feedback comb filter that reads and filters the signal intensity recorded in the memory,
    The AD converter acquires the signal strength at a timing when the clock signal is input from the voltage controlled oscillator and outputs the signal strength to the memory.
    The memory receives the waveform number input from the counter, and records the pulsation signal as a signal strength associated with the waveform number and a clock number corresponding to the input timing of the clock signal. ,
    3. The feedback comb filter according to claim 2, wherein the clock signal is input from the voltage controlled oscillator and a frequency component that is an integral multiple of the total number of clocks per cycle of the pulsating signal is passed. Specimen information processing equipment.
  4.  該信号処理部は、上記のメモリに記録した複数の波形番号の信号強度を読み出して、同じクロック番号の信号強度を加算して波形番号ごとに平均値を出力する平均化処理部を備える
    ことを特徴とする請求項3に記載の検体情報処理装置。
    The signal processing unit includes an averaging processing unit that reads out signal intensities of a plurality of waveform numbers recorded in the memory, adds the signal intensities of the same clock numbers, and outputs an average value for each waveform number. The sample information processing apparatus according to claim 3, wherein:
  5.  該信号処理部は、上記のPLL回路に入力される脈動性信号と該帰還信号との位相が同期しているかを判定して、該PLL回路がロックしているか否かを検出するロック検出部を備える
    ことを特徴とする請求項4に記載の検体情報処理装置。
    The signal processing unit determines whether or not the phase of the pulsation signal input to the PLL circuit and the feedback signal are synchronized, and detects whether or not the PLL circuit is locked The sample information processing apparatus according to claim 4, further comprising:
  6.  該信号処理部は、該分周信号が入力されて、該分周信号の単位時間当たりのパルスをカウントする信号計数部を備える
    ことを特徴とする請求項5に記載の検体情報処理装置。
    The sample information processing apparatus according to claim 5, wherein the signal processing unit includes a signal counting unit that receives the divided signal and counts pulses per unit time of the divided signal.
  7.  該脈動性信号に関連する情報を提示する表示器をさらに備え、
     該ロック検出部が、ロックしているか否かを該表示器に表示し、
     該信号計数部が、単位時間当たりの該分周信号のカウント値を該表示器に表示する
    ことを特徴とする請求項6に記載の検体情報処理装置。
    Further comprising a display for presenting information related to the pulsatile signal;
    Whether the lock detector is locked or not is displayed on the display,
    The sample information processing apparatus according to claim 6, wherein the signal counting unit displays a count value of the divided signal per unit time on the display.
  8.  該信号処理部は、上記の平均化処理部により処理された信号が入力されて、該クロック番号と該信号強度の平均値との関係を表す波形を生成して、波形番号ごとに複数の脈波を平均化した一周期の波形を該表示器に表示する波形表示部を備える
    ことを特徴とする請求項7に記載の検体情報処理装置。
    The signal processing unit receives the signal processed by the averaging processing unit, generates a waveform representing the relationship between the clock number and the average value of the signal intensity, and generates a plurality of pulses for each waveform number. The sample information processing apparatus according to claim 7, further comprising a waveform display unit configured to display a waveform of one cycle obtained by averaging waves on the display.
  9.  該信号処理部は、上記のメモリに記録した信号強度を読み出して数値微分する微分処理部を備える
    ことを特徴とする請求項3に記載の検体情報処理装置。
    The sample information processing apparatus according to claim 3, wherein the signal processing unit includes a differentiation processing unit that reads the signal strength recorded in the memory and numerically differentiates the signal intensity.
  10.  該信号処理部は、上記のメモリに記録した信号強度を読み出して数値積分する積分処理部を備える
    ことを特徴とする請求項3に記載の検体情報処理装置。
    The sample information processing apparatus according to claim 3, wherein the signal processing unit includes an integration processing unit that reads the signal intensity recorded in the memory and numerically integrates the signal intensity.
  11.  検体における血管の脈波情報に基づいて検出された脈動性信号を取得して、
     該脈動性信号を正規化する
    ことを特徴とする情報処理方法。
    Obtain a pulsatile signal detected based on blood vessel pulse wave information in the specimen,
    An information processing method characterized by normalizing the pulsation signal.
  12.  コンピュータに、
     検体における血管の脈波情報に基づいて検出された脈動性信号を取得して、
     該脈動性信号を正規化する処理を実行させる
    ことを特徴とする情報処理プログラム。
    On the computer,
    Obtain a pulsatile signal detected based on blood vessel pulse wave information in the specimen,
    An information processing program for executing a process of normalizing the pulsation signal.
  13.  請求項12に記載の情報処理プログラムを記録したコンピュータ読み取り可能な記録媒体。
     
     
    A computer-readable recording medium on which the information processing program according to claim 12 is recorded.

PCT/JP2015/079404 2014-10-28 2015-10-19 Subject information processing device, information processing method, information processing program, and computer readable recording medium with same program recorded thereon WO2016067942A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-219232 2014-10-28
JP2014219232 2014-10-28
JP2014-219233 2014-10-28
JP2014219233 2014-10-28
JP2015049258A JP6537854B2 (en) 2014-10-28 2015-03-12 Specimen Information Detection Device, Specimen Information Processing Device, Information Processing Device, and Interface Device
JP2015-049258 2015-03-12

Publications (1)

Publication Number Publication Date
WO2016067942A1 true WO2016067942A1 (en) 2016-05-06

Family

ID=55857283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079404 WO2016067942A1 (en) 2014-10-28 2015-10-19 Subject information processing device, information processing method, information processing program, and computer readable recording medium with same program recorded thereon

Country Status (1)

Country Link
WO (1) WO2016067942A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9973870B2 (en) 2014-05-20 2018-05-15 Bugatone Ltd. Aural measurements from earphone output speakers
US10097914B2 (en) 2016-05-27 2018-10-09 Bugatone Ltd. Determining earpiece presence at a user ear
US10187719B2 (en) 2014-05-01 2019-01-22 Bugatone Ltd. Methods and devices for operating an audio processing integrated circuit to record an audio signal via a headphone port
WO2019230234A1 (en) * 2018-05-28 2019-12-05 株式会社 資生堂 Information processing device, program, and sensing device
US20210196136A1 (en) * 2019-08-08 2021-07-01 Kyocera Corporation Electronic device, control method, and control program
US11178478B2 (en) 2014-05-20 2021-11-16 Mobile Physics Ltd. Determining a temperature value by analyzing audio

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518822A (en) * 1997-03-21 2001-10-16 ネルコー・ピューリタン・ベネット・インコーポレイテッド Method and apparatus for measuring pulse rate and saturation
WO2014021335A1 (en) * 2012-07-30 2014-02-06 株式会社三菱ケミカルホールディングス Subject information detection unit, subject information processing device, electric toothbrush device, electric shaver device, subject information detection device, aging degree evaluation method, and aging degree evaluation device
JP2014042579A (en) * 2012-08-24 2014-03-13 Bifristec Kk Analyte information detection unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518822A (en) * 1997-03-21 2001-10-16 ネルコー・ピューリタン・ベネット・インコーポレイテッド Method and apparatus for measuring pulse rate and saturation
WO2014021335A1 (en) * 2012-07-30 2014-02-06 株式会社三菱ケミカルホールディングス Subject information detection unit, subject information processing device, electric toothbrush device, electric shaver device, subject information detection device, aging degree evaluation method, and aging degree evaluation device
JP2014042579A (en) * 2012-08-24 2014-03-13 Bifristec Kk Analyte information detection unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10187719B2 (en) 2014-05-01 2019-01-22 Bugatone Ltd. Methods and devices for operating an audio processing integrated circuit to record an audio signal via a headphone port
US9973870B2 (en) 2014-05-20 2018-05-15 Bugatone Ltd. Aural measurements from earphone output speakers
US11178478B2 (en) 2014-05-20 2021-11-16 Mobile Physics Ltd. Determining a temperature value by analyzing audio
US10097914B2 (en) 2016-05-27 2018-10-09 Bugatone Ltd. Determining earpiece presence at a user ear
US10334350B2 (en) 2016-05-27 2019-06-25 Bugatone Ltd. Identifying an acoustic signal for a user based on a feature of an aural signal
US10659867B2 (en) 2016-05-27 2020-05-19 Bugatone Ltd. Identifying an acoustic signal for a user based on a feature of an aural signal
WO2019230234A1 (en) * 2018-05-28 2019-12-05 株式会社 資生堂 Information processing device, program, and sensing device
JPWO2019230234A1 (en) * 2018-05-28 2021-07-01 株式会社 資生堂 Information processing equipment, programs, and sensing devices
JP7216084B2 (en) 2018-05-28 2023-01-31 株式会社 資生堂 Information processing device, program, and sensing device
US20210196136A1 (en) * 2019-08-08 2021-07-01 Kyocera Corporation Electronic device, control method, and control program

Similar Documents

Publication Publication Date Title
WO2016067942A1 (en) Subject information processing device, information processing method, information processing program, and computer readable recording medium with same program recorded thereon
JP6082131B2 (en) Heart rate detection method applied to earphone and earphone capable of detecting heart rate
US20210251494A1 (en) Measuring Respiration with an In-Ear Accelerometer
EP2661910B1 (en) Seal-quality estimation for a seal for an ear canal
KR101660671B1 (en) Heart rate detection method used in earphone and earphone capable of detecting heart rate
JPWO2012063423A1 (en) Sound pressure evaluation system, method and program
WO2019079948A1 (en) Earphone and method for performing an adaptively self-tuning for an earphone
JP2018196141A (en) Earpiece and earphone
CN106851459A (en) In-Ear Headphones
CN113691917A (en) Hearing aid comprising a physiological sensor
CN112055278B (en) Deep learning noise reduction device integrated with in-ear microphone and out-of-ear microphone
JP2011188334A (en) Hearing aid
JP6059937B2 (en) Specimen information detection apparatus, specimen information processing apparatus, specimen information detection method, and apparatus for detecting specimen information
JP2009188638A (en) Microphone device
KR20130036867A (en) Bone conductive type user interface method, apparatus and system using it
US8948429B2 (en) Amplification of a speech signal in dependence on the input level
JP6018025B2 (en) Sample information processing device
JP6537854B2 (en) Specimen Information Detection Device, Specimen Information Processing Device, Information Processing Device, and Interface Device
CN207369229U (en) A kind of earphone
JP6649037B2 (en) Specimen information processing apparatus, information processing method, information processing program, and computer-readable recording medium storing the program
US20230009936A1 (en) Hearing aid determining listening effort
CN107172516A (en) A kind of earphone and heart rate detection method
US20070106530A1 (en) Oscillation suppression
CN116744170A (en) Determination of sealing quality

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855425

Country of ref document: EP

Kind code of ref document: A1