WO2016067665A1 - Inverter control device and inverter compressor - Google Patents

Inverter control device and inverter compressor Download PDF

Info

Publication number
WO2016067665A1
WO2016067665A1 PCT/JP2015/063909 JP2015063909W WO2016067665A1 WO 2016067665 A1 WO2016067665 A1 WO 2016067665A1 JP 2015063909 W JP2015063909 W JP 2015063909W WO 2016067665 A1 WO2016067665 A1 WO 2016067665A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
estimated
unit
command
operation mode
Prior art date
Application number
PCT/JP2015/063909
Other languages
French (fr)
Japanese (ja)
Inventor
アン ヴァン ホ
恵子 多田
哲英 横山
佐竹 彰
瀧口 隆一
将吾 諸江
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580037907.8A priority Critical patent/CN106537761B/en
Priority to JP2015549110A priority patent/JP5868564B1/en
Publication of WO2016067665A1 publication Critical patent/WO2016067665A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage

Definitions

  • the present invention relates to an inverter control device for controlling an electric motor and an inverter compressor using the same.
  • a rotary compressor has two compression chambers, and has a structure that switches between a single operation in which only one of the two compression chambers is compressed and a parallel operation in which both are compressed, thereby improving the compression efficiency.
  • a compressor has been developed. In this case, it is necessary to discriminate switching between parallel operation and single operation and to perform appropriate control according to the difference in the refrigerant circulation amount.
  • Patent Document 1 discloses a two-cylinder rolling piston type rotary compressor, in which a half-capacity operation is automatically selected when the load is small. A configuration for halving the circulation flow rate is disclosed. In this configuration, since the motor can be operated without reducing the rotation speed of the electric motor that rotates the piston of the rotary compressor, the compressor efficiency can be improved.
  • JP 2009-203861 A (0049 to 0052 stages, FIG. 1)
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to realize an inverter control device that can determine an operation mode of a machine to be driven such as a compressor.
  • An inverter control device is an inverter control device that controls an electric motor that drives a machine to be driven based on an AC voltage converted by an inverter, and the electric motor has electric power in a power fluctuation during one rotation of a mechanical angle or
  • the motor power or shaft torque is estimated from the current of the power line that applies the control voltage to the motor and is operated in the operation mode having the fluctuation component frequency of the shaft torque, and related to the estimated power or the fluctuation component frequency of the estimated torque.
  • an operation mode determination unit that determines the operation mode of the motor, a rotation speed command value generation unit that generates a rotation speed command according to the operation mode determined by the operation mode determination unit, a rotation speed command And an inverter output voltage control unit that generates a voltage command of a control voltage to be applied to the electric motor based on the value.
  • the inverter control device estimates the electric power or shaft torque of the electric motor, and calculates a frequency component related to the estimated component of fluctuation of the estimated electric power or estimated torque. Can be determined.
  • FIG. 1 It is a block diagram which shows the inverter control apparatus and inverter compressor by Embodiment 1 of this invention. It is a figure which shows the coordinate converter of FIG. It is a figure which shows the electric power estimation part of FIG. It is a figure which shows the electric power pulsation extraction part of FIG. It is a figure which shows the discrimination
  • Embodiment 2 of this invention It is a figure explaining the current vector by Embodiment 2 of this invention. It is a figure which shows the vibration suppression result by Embodiment 2 of this invention. It is a figure which shows the compressor by Embodiment 3 of this invention. It is a schematic cross-sectional view in the 1st compression part of FIG. It is a schematic cross-sectional view in the 2nd compression part of FIG. It is a block diagram which shows the inverter control apparatus and inverter compressor by Embodiment 3 of this invention. It is a figure which shows the driving
  • FIG. 32 is a Bode diagram of a leading phase filter in the phase adjustment unit of FIG. 31. It is a figure which shows the vibration suppression result in the case of no lead phase filter by Embodiment 4 of this invention. It is a figure which shows the vibration suppression result in the case of the advance phase filter presence by Embodiment 4 of this invention. It is a block diagram which shows the inverter control apparatus and inverter compressor by Embodiment 5 of this invention. It is a figure which shows the torque pulsation extraction part of FIG.
  • FIG. 43 is a diagram in which data is recorded in an angle storage unit and an estimated torque storage unit in FIG. 42. It is a figure which shows the flow chat of the learning algorithm process part of FIG. It is a figure which shows the flow chat of the recording mode execution process of FIG. It is a figure which shows the flow chat of the output mode execution process of FIG. It is a figure which shows the waveform of the load torque and output torque of an electric motor before learning by the learning algorithm process part of FIG. It is a figure which shows the waveform of the load torque and output torque of an electric motor after the learning by the learning algorithm process part of FIG. It is a figure which shows the rotational speed of the electric motor before and behind learning by the learning algorithm process part of FIG.
  • FIG. 1 is a block diagram showing an inverter control device and an inverter compressor according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing the coordinate converter of FIG. 1
  • FIG. 3 is a diagram showing the power estimation unit of FIG. 4 is a diagram illustrating the power pulsation extracting unit of FIG. 1
  • FIG. 5 is a diagram illustrating the discrimination signal generating unit of FIG.
  • FIG. 6 is a diagram illustrating the inverter output voltage control unit of FIG.
  • the inverter compressor 100 includes an inverter control device 17 and a compressor 80.
  • the inverter control device 17 controls the electric motor 1 of the compressor 80.
  • FIG. 1 is a block diagram showing an inverter control device and an inverter compressor according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing the coordinate converter of FIG. 1
  • an inverter control device 17 outputs and rotates a three-phase control voltage to an electric motor 1 used for a compressor 80 that circulates refrigerant in N (N is an integer of 1 or more) compressors. .
  • the electric motor 1 is a synchronous or brushless electric motor.
  • the inverter 16 outputs a three-phase AC PWM (Pulse Width Modulation) voltage with a predetermined frequency and amplitude to the electric motor 1 through the three-phase power line using the DC power source 15.
  • Current sensors 2, 3, and 4 detect a current flowing through electric motor 1, that is, a current flowing through a three-phase power line.
  • the current sensor 2 detects a current flowing through the u-phase three-phase power supply line.
  • the current sensors 3 and 4 detect currents flowing through the v-phase and w-phase three-phase power supply lines, respectively.
  • the u-phase three-phase power supply line, the v-phase three-phase power supply line, and the w-phase three-phase power supply line are referred to as a three-phase power supply line u, a three-phase power supply line v, and a three-phase power supply line w, respectively.
  • the current detection unit 5 calculates a three-phase current from the outputs of the current sensors 2, 3 and 4.
  • the inverter control device 17 includes a coordinate converter 6, an operation mode determination unit 7, a rotation speed command value generation unit 13, an inverter output voltage control unit 12, an inverter gate signal generation unit 14, an inverter 16, and a current detection unit 5. .
  • the coordinate converter 6 converts coordinates from the AC three-phase current detected by the current detector 5 to a two-phase DC current.
  • the rotational speed command value generation unit 13 generates a rotational speed command value of the electric motor 1.
  • the inverter output voltage control unit 12 generates a control voltage for driving the electric motor 1 at the commanded rotation speed.
  • the operation mode determination unit 7 generates the determination signal hnt based on the dq axis current vector Idq and the dq axis voltage command vector Vdq *.
  • the operation mode determination unit 7 includes a power estimation unit 8, a power pulsation extraction unit 9, and a determination signal generation unit 10.
  • the power estimation unit 8 converts the dq-axis voltage command vector Vdq * output from the inverter output voltage control unit 12 and the dq-axis current vector Idq converted based on the coordinate converter 6 from the current value calculated by the current detection unit 5. Based on this, the electric power of the motor 1 is estimated, and the estimated electric power P ⁇ is calculated.
  • the power pulsation extraction unit 9 extracts the amplitude
  • the discrimination signal generator 10 generates a discrimination signal hnt that discriminates the operation mode in which the compressor 80 is currently operating based on the dominant pulsation component in the extracted pulsation component.
  • the determination signal generation unit 10 determines a selection frequency that is a frequency of a dominant pulsation component in the extracted pulsation component, and determines an operation mode associated with the selection frequency.
  • the inverter control device 17 having the above configuration can control the input of the electric motor 1 so as to set a predetermined rotational speed in the operation mode of the compressor 80.
  • the inverter control device 17 will be described in detail.
  • 1 includes current sensors 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 and 3.
  • the detected current vector Idt (see FIG. 2) whose components are the three-phase currents iu, iv, and iw is measured from the four signals.
  • Idt whose components are the three-phase currents iu, iv, and iw is measured from the four signals.
  • the coordinate converter 6 includes a coordinate converter 85 and a coordinate converter 86.
  • the coordinate converter 85 converts the three-phase currents iu, iv, iw, which are components of the detected current vector Idt, into two-phase currents i ⁇ , i ⁇ , which are fixed two-phase currents.
  • the coordinate converter 86 converts the two-phase currents i ⁇ and i ⁇ into a dq-axis current vector Idq based on the estimated rotation angle ⁇ ⁇ e of the rotor of the electric motor 1.
  • the components of the dq axis current vector Idq are a d axis current id and a q axis current iq.
  • the coordinate converter 85 converts the three-phase currents iu, iv, iw of the detected current vector Idt into the two-phase currents i ⁇ , i ⁇ based on the equation (2).
  • Expression (2) is a conversion expression from three-phase coordinates (u, v, w) to fixed two-phase coordinates ( ⁇ , ⁇ ).
  • the coordinate converter 86 converts the two-phase currents i ⁇ and i ⁇ into a d-axis current id and a q-axis current iq based on Expression (3).
  • Expression (3) is a conversion expression from fixed two-phase coordinates ( ⁇ , ⁇ ) to rotating two-phase coordinates (d, q).
  • the estimated rotation angle ⁇ ⁇ e is calculated from a magnetic flux estimation unit 18 and an integrator 19 (see FIG. 6) described later.
  • the power estimation unit 8 is based on the current detection unit 5 and the coordinate converter 6 and converts the d-axis current id of the dq-axis current vector of the electric motor 1, the q-axis current iq, and the inverter output voltage.
  • the estimated power P ⁇ of the electric motor 1 is calculated from the d-axis command voltage vd * and the q-axis command voltage vq * of the dq-axis voltage command vector Vdq * output by the control unit 12.
  • the estimated power P ⁇ is calculated as in Expression (4).
  • the circuit that realizes the calculation of Expression (4) includes two multipliers 26 a and 26 b and an adder 27.
  • the inputs of the multiplier 26a are the d-axis command voltage vd * and the d-axis current id.
  • the inputs of the multiplier 26b are the q-axis command voltage vq * and the q-axis current iq.
  • the adder 27 adds the outputs of the multipliers 26a and 26b.
  • FIG. 7 is a diagram showing shaft torque fluctuation in one rotation in the electric motor of FIG.
  • FIG. 7 shows shaft torque fluctuations when k of the N compression units are operating.
  • the horizontal axis is the rotation angle
  • the vertical axis is the load torque.
  • FIG. 7 shows the case where the value of k is 1, 2, 3, 4. Note that k is an integer greater than 0 and less than or equal to N.
  • the torque characteristic 91a is a case where k is 1 and one compression unit is operating.
  • the torque characteristic 91b is when k is 2 and when two compression units are operating.
  • the torque characteristic 91c is a case where k is 3 and three compression units are operating.
  • the torque characteristic 91d is a case where k is 4 and four compression units are operating. As shown in FIG. 7, at one rotation of the electric motor 1 (0 to 360 degrees of mechanical angle), power pulsation due to fluctuations in the pressure inside the compressor 80 or fluctuations in the shaft torque of the electric motor 1 occurs.
  • the power pulsation extraction unit 9 uses the fact that the k compression units in operation are out of timing for compressing the refrigerant, so that the electric power pulsation extraction unit 9 performs one rotation of the motor 1 (mechanical angle 0 to 360 degrees).
  • the power pulsation caused by the fluctuation of the pressure inside the compressor 80 or the fluctuation of the shaft torque of the electric motor 1 is extracted.
  • the mechanical rotation frequency of the motor 1 hereinafter referred to as frequency f1f
  • frequency f1f the mechanical rotation frequency of the motor 1
  • pulsation having a frequency (fkf k ⁇ f1f) times as high as that of k.
  • a frequency k times the machine rotation frequency is defined as a frequency fkf.
  • the operation mode discriminating unit 7 extracts the magnitude of the pulsating component corresponding to the possible frequencies from the electric power of the motor 1, that is, N frequencies (f1f,..., Fkf,..., FNf). Based on the dominant pulsating component of these pulsating components, it is possible to determine the operation mode of the compressor 80, that is, the number of operating compression units.
  • the power pulsation extraction unit 9 includes N power pulsation component extractors. Each power pulsation component extractor calculates the magnitude of a pulsation component having a specific frequency.
  • three power pulsation component extractors 81a, 81b, 81c are specifically shown.
  • symbol of an electric power pulsation component extractor uses 81 generally, and 81a, 81b, 81c is used when distinguishing.
  • the power pulsation component extractor 81 performs a well-known discrete Fourier transform (DFT) operation on the estimated power P ⁇ estimated by the power estimation unit 8 at a predetermined frequency fkf, and the frequency component xkf Find the amplitude of.
  • DFT discrete Fourier transform
  • M is an integer of 1 or more in the number of intervals of one period T.
  • expression (5) becomes as follows by expansion of complex number e ⁇ (j ⁇ ktm) of expression (5).
  • Equation (8) Since the amplitudes of xkA and xkB on the right side of Equation (6) coincide with the integration of one period T, Equation (7) is obtained. Further, the amplitude of xkf is as shown in Expression (8).
  • the power pulsation extraction unit 9 includes N power pulsation component extractors.
  • the power pulsation component extractor 81a calculates the amplitude of the pulsation component having the frequency f1f.
  • the power pulsation component extractor 81b calculates the amplitude of the pulsation component of the frequency fkf, and the power pulsation component extractor 81c calculates the amplitude of the pulsation component of the frequency Nf.
  • the configuration of the power pulsation component extractor 81 will be described using the power pulsation component extractor 81b as an example.
  • the rotation angle ⁇ k based on the predetermined frequency fkf at time t is 2 * ⁇ * fkf * t.
  • the power pulsation component extractor 81b includes a sine wave generator 29b and a cosine wave generator 28b that generate a sine component (sin component) and a cosine component (cos component) at the rotation angle ⁇ k, and the respective components and the estimated power P ⁇ .
  • Multipliers 30c and 30d integrators 31c and 31d for integrating the values obtained from the multipliers as shown in equation (7), and integrated
  • ) Is provided with an amplitude calculator 32b for calculating the magnitude of the vibration component of the predetermined frequency, that is, the amplitude
  • the integrator 31c calculates
  • the integrator 31d calculates
  • the power pulsation component extractor 81a includes a cosine wave generator 28a, a sine wave generator 29a, multipliers 30a and 30b, integrators 31a and 31b, and an amplitude calculator 32a.
  • the power pulsation component extractor 81c includes a cosine wave generator 28c, a sine wave generator 29c, multipliers 30e and 30f, integrators 31e and 31f, and an amplitude calculator 32c.
  • the power pulsating component extractor 81a calculates the amplitude
  • is calculated.
  • FIG. 8 is a diagram illustrating an extraction result of the power pulsation extraction unit of FIG. 1 when one compression unit is operated
  • FIG. 9 is a diagram of the power pulsation extraction unit of FIG. 1 when two compression units are operated. It is a figure which shows an extraction result.
  • FIG. 10 is a diagram illustrating an extraction result of the power pulsation extraction unit of FIG. 1 when three compression units are operated
  • FIG. 11 is a diagram of the power pulsation extraction unit of FIG. 1 when four compression units are operated. It is a figure which shows an extraction result. 8 to 11, the horizontal axis is the frequency order, and the vertical axis is the power.
  • the power pulsation component having the frequency f1f is dominant.
  • the frequency f1f is set as the selected frequency.
  • the power pulsation component having the frequency f2f is large.
  • the frequency f2f is set as the selected frequency.
  • the power pulsation component having the frequency f3f is dominant. In this case, the frequency f3f is selected.
  • the power pulsation component having the frequency f4f is large. In this case, the frequency f4f is selected.
  • FIG. 5 shows a determination signal generator 10 that determines the operation mode based on the magnitude (amplitude) of the pulsation component.
  • the determination signal generation unit 10 includes a maximum amplitude detection unit 33 and a determination unit 34.
  • the maximum amplitude detection unit 33 compares the amplitudes
  • are shown.
  • the determination unit 34 determines the operation mode in which the compressor 80 operates, and generates a determination signal hnt.
  • the rotation speed command value generation unit 13 determines each operation mode based on the determination signal hnt output from the determination signal generation unit 10 and the optimum operation speed command value for each operation mode stored in advance.
  • Rotational speed command ⁇ e * according to is generated.
  • the rotation speed command ⁇ e * is set as follows.
  • hnt m
  • ⁇ e * ⁇ e0 / m.
  • m is an integer from 1 to N.
  • ⁇ e0 is a reference rotational speed command value, and is a rotational speed command value when one compression unit is performing compression operation.
  • Three cases are specifically shown below.
  • the inverter output voltage control unit 12 includes a magnetic flux estimation unit 18, an integrator 19, a subtracter 20, a speed control unit 21, a current control unit 22, and a voltage coordinate converter 23.
  • the inverter output voltage control unit 12 performs speed control for feeding back the estimated rotational speed ⁇ ⁇ e based on the estimation of the magnetic flux of the electric motor 1.
  • the electric motor 1 of the compressor 80 is in the refrigerant, and it is difficult to attach an encoder or the like that detects the position of the rotor of the electric motor 1. Therefore, the inverter output voltage control unit 12 employs the configuration shown in FIG.
  • the amplitude and fluctuation frequency of the electric power of the electric motor 1 are different even with the same differential pressure. Based on the above determination, it is preferable to generate a rotation speed command of the electric motor 1 in accordance with the operation mode so that the electric power is suitable for the differential pressure.
  • the speed controller 21 receives the value of the rotational speed command ⁇ e * generated by the rotational speed command value generator 13 and the speed difference ⁇ between the estimated rotational speed ⁇ ⁇ e estimated by the magnetic flux estimator 18 and inputs the estimated rotational speed ⁇ ⁇ .
  • a dq-axis current command vector Idq * is generated and output so that e matches the value of the rotational speed command ⁇ e *.
  • the speed difference ⁇ is ⁇ e * ⁇ ⁇ e.
  • the value of the rotational speed command ⁇ e * is appropriately expressed as a rotational speed command value ⁇ e *.
  • the components of the dq-axis current command vector Idq * are a d-axis current command id * and a q-axis current command iq *.
  • the current control unit 22 converts the dq axis current command vector Idq * input from the speed control unit 21 and the detected current vector Idt of the motor 1 detected by the current detection unit 5 into a dq axis current vector Idq by the coordinate converter 6. Based on this, the dq-axis voltage command vector Vdq * is output so that the dq-axis current vector Idq matches the dq-axis current command vector Idq *.
  • the voltage coordinate converter 23 reverses the input and output of the d-axis command voltage vd * and the q-axis command voltage vq * in the calculated dq-axis voltage command vector Vdq * from the relationship of the formulas (2) and (3). Based on the inverse transformation, the three-phase command voltages vu *, vv *, and vw * in the voltage command vector Vuvw * are converted. As described above, the inverter output voltage control unit 12 generates the voltage command vector Vuvw * so that the current of the motor 1 matches the dq-axis current command vector Idq *.
  • the inverter gate signal generation unit 14 (see FIG. 1) outputs a gate signal for controlling on / off (ON / OFF) of each switching element of the inverter 16 using the voltage command vector Vuvw *.
  • the dq-axis magnetic flux vector in the state space expression is expressed by the differential equation of Expression (10) using the dq-axis current vector Idq and the dq-axis voltage command vector Vdq *.
  • ⁇ ⁇ ds is a magnetic flux of d-axis electron reaction
  • ⁇ ⁇ qs is a magnetic flux of q-axis electron reaction
  • ⁇ ⁇ dr is the d-axis rotor magnetic flux.
  • R is the resistance of the armature
  • Ld and Lq are the d-axis inductance and the q-axis inductance in the armature, respectively.
  • h11, h12, h21, h22, h31, and h32 are set feedback gains.
  • the d-axis estimated current i ⁇ d and the q-axis estimated current i ⁇ q based on the magnetic flux vectors ( ⁇ ⁇ ds, ⁇ ⁇ qs, ⁇ ⁇ dr) can be expressed as in Expression (11). Further, the estimated rotational speed ⁇ ⁇ e of the electric motor 1 can be calculated based on the equation (12). However, i ⁇ d and i ⁇ q indicate the d-axis estimated current and the q-axis estimated current in the magnetic flux estimating unit 18.
  • kap is an acceleration estimated proportional gain
  • ⁇ api is an acceleration estimated integral gain
  • the inverter control device 17 is configured as described above so that the dq-axis current converted from the detected current vector Idt of the motor 1 of the compressor 80 that fluctuates according to the pressure fluctuation or the shaft torque fluctuation inside the compressor 80.
  • the output power of the motor 1 is estimated, and the amplitude of each frequency component calculated in real time from the estimated power P ⁇
  • the current compression operation mode in the compressor 80 can be determined.
  • the inverter control device 17 of the first embodiment does not use a position sensor that detects the position of the rotor of the electric motor 1, and the magnetic flux ⁇ ⁇ ds of the d-axis electron reaction that is the estimated magnetic flux, q-axis electric Based on the provision of the inverter output voltage control unit 12 that estimates the rotational speed of the electric motor 1 based on the magnetic flux ⁇ ⁇ qs of the child reaction and the d-axis rotor magnetic flux ⁇ ⁇ dr and calculates the estimated estimated rotational speed ⁇ ⁇ e.
  • the speed control of the electric motor 1 can be performed stably. Further, since the position sensor for detecting the position of the rotor of the electric motor 1 is not used, the cost of the position sensor of the compressor 80 controlled based on the inverter control device 17 and the inverter 16 can be reduced.
  • the determination method for determining the compression operation mode of the compressor 80 performed by the inverter control device 17 of the first embodiment is not only suitable for the compressor 80 having one or more compression units, but also has different pressure fluctuation patterns.
  • the compression operation mode of the compressor 80 can be determined. Even in the case of the compressor 80 having different pressure fluctuation patterns, the compression operation mode can be determined based on the amplitudes
  • the determination rule in the determination unit 34 of the determination signal generation unit 10 is changed from the rule described above to another.
  • the operation mode is a compression operation mode with a scroll compressor having a pair of spiral bodies or a compression operation mode with a single compressor having one compression unit.
  • the frequency of the dominant power pulsation component in both the scroll compressor having a pair of spiral bodies and the single compressor having one compression unit is f1f
  • the discrimination rule in the discrimination unit 34 described so far is It is difficult to discriminate whether it is a scroll machine or a single machine based on it.
  • FIG. 12 is a diagram illustrating an analysis result of the power pulsation component of the scroll machine and the single machine by the power pulsation extraction unit 9 of FIG.
  • the horizontal axis in FIG. 12 is the frequency order, and the vertical axis is power.
  • ) the ratio s of the scroll machine is larger than the ratio s of the single machine.
  • FIG. 13 is a diagram illustrating another determination signal generation unit in FIG. 1.
  • the discrimination signal generation unit 10 in FIG. 13 includes a ratio calculation unit 90 and a discrimination unit 34.
  • the ratio calculation unit 90 calculates a ratio s (
  • the discrimination rules in the discrimination unit 34 are set as follows.
  • the inverter control device 17 including the determination signal generation unit 10 shown in FIG. 13 can determine the operation of the scroll compressor and the operation of the single rotary compressor (single machine). Even when there are a plurality of models of the compressor 80, the rotation speed command value generation unit 13 is configured to determine the optimum operation speed for each operation mode stored in advance by configuring the determination signal generation unit 10 that determines the model of the compressor 80. Based on the command and the determination signal hnt output from the determination signal generation unit 10, it is possible to generate a rotation speed command value ⁇ e * according to the model of the compressor 80.
  • the inverter control device 17 sets the operation mode determination unit 7 even when performing the open loop control such as the magnetic flux vector control and the V / f control. Therefore, the compression operation mode of the compressor 80 can be determined.
  • the method for estimating the rotational speed of the electric motor 1 described above is an example of a method for estimating the rotational speed of the electric motor 1 without using a position sensor, and a rotational speed estimation method other than the above is used. Also good.
  • the operation mode of the compressor 80 can be determined. Moreover, the inverter compressor 100 of Embodiment 1 automatically detects the switching of the operation mode in the compressor 80 in which the number of compression units that compress the refrigerant changes, and changes the rotational speed ⁇ e of the electric motor 1 for each mode. By controlling to do so, the refrigerant circulation flow rate can be made constant.
  • the inverter control device 17 is an inverter control device that controls the electric motor 1 that drives the drive target machine (compressor 80) based on the AC voltage converted by the inverter 16.
  • the electric motor 1 is operated in an operation mode having a fluctuation component frequency of electric power or shaft torque in electric power fluctuation during one rotation of the mechanical angle, and a power supply line (three-phase power supply lines u, v, w) for applying a control voltage to the electric motor 1
  • An operation mode discriminating unit for estimating the operation mode of the electric motor 1 based on the frequency component related to the fluctuation component frequency of the estimated estimated power P ⁇ or the estimated torque ⁇ ⁇ .
  • a rotation speed command value generation unit 13 that generates a rotation speed command ⁇ e * according to the operation mode determined by the operation mode determination unit 7, and the value of the rotation speed command ⁇ e *.
  • the inverter output voltage control unit 12 that generates a voltage command of the control voltage applied to the motor 1 (* voltage command vector Vuvw), further comprising a Te.
  • the inverter control device 17 of the first embodiment estimates the electric power or shaft torque of the electric motor 1 and calculates a frequency component related to the fluctuation component frequency of the estimated electric power P ⁇ or the estimated torque ⁇ ⁇ . Therefore, the operation mode of the drive target machine (compressor 80) can be determined.
  • Inverter compressor 100 of the first embodiment includes a plurality of compression units, an electric motor 1 that drives all of the compression units with one rotating shaft, and an inverter control that controls the electric motor 1 based on an alternating voltage converted by an inverter 16.
  • a device 17 is provided.
  • the inverter control device 17 of the inverter compressor 100 is an inverter control device that controls the electric motor 1 that drives the drive target machine (compressor 80) based on the AC voltage converted by the inverter 16, and the electric motor 1 is a machine.
  • the motor 1 is operated from an electric current of a power supply line (three-phase power supply lines u, v, w) that is operated in an operation mode having a fluctuation component frequency of electric power or shaft torque in the electric power fluctuation during one rotation of the angle.
  • An operation mode discriminating unit 7 that discriminates an operation mode of the electric motor 1 based on a frequency component related to a fluctuation component frequency of the estimated estimated power P ⁇ or estimated torque ⁇ ⁇ .
  • a rotation speed command value generation unit 13 that generates a rotation speed command ⁇ e * according to the operation mode determined by the determination unit 7, and an electric power based on the value of the rotation speed command ⁇ e *.
  • An inverter output voltage control unit 12 that generates a voltage command of the control voltage applied to the machine 1 (* voltage command vector Vuvw), characterized by comprising a.
  • inverter compressor 100 of the first embodiment estimates the power or shaft torque of motor 1 and calculates a frequency component related to the estimated component P ⁇ or the fluctuation component frequency of estimated torque ⁇ ⁇ . Therefore, the operation mode of the drive target machine (compressor 80) can be determined.
  • the fluctuation component frequency is a frequency of one or more fluctuation components of the shaft torque or power resulting from the periodic fluctuation of the machine load during one rotation of the machine angle of the electric motor 1. Includes the frequency of the pulsating component.
  • FIG. 14 is a diagram illustrating a hardware configuration of the inverter control device and the inverter compressor according to the present embodiment.
  • the inverter control device 17 includes a processor 301, a storage device 302, a current detection unit 5, and an inverter 16.
  • the function program in each embodiment is stored in advance.
  • the processor 301 executes a function program stored in the storage device 302.
  • the processor 301 communicates with the host controller 300.
  • a plurality of processors 301 and a plurality of storage devices 302 may cooperate to execute the above function program. Furthermore, the processor 301 and the storage device 302 may not only execute the functions of the present invention but also simultaneously perform other functions such as control of a DC power supply and communication with a remote controller.
  • FIG. FIG. 15 is a block diagram showing an inverter control device and an inverter compressor according to the second embodiment of the present invention.
  • 16 is a diagram illustrating the power estimation unit and the output torque estimation unit of FIG. 15, and
  • FIG. 17 is a diagram illustrating the power pulsation extraction unit of FIG. 18 is a diagram showing the inverter output voltage control unit of FIG. 15, and
  • FIG. 19 is a diagram showing the torque control unit of FIG.
  • the configuration is the same as that of the first embodiment except for the configuration of the operation mode determination unit 7 and the inverter output voltage control unit 12.
  • the inverter control device 17 includes a coordinate converter 6, an operation mode determination unit 7, a rotation speed command value generation unit 13, an inverter output voltage control unit 12, and an inverter gate signal generation unit 14.
  • the operation mode determination unit 7 according to the second embodiment includes a power estimation unit 8, a torque compensation value generation unit 25, and a determination signal generation unit 10. That is, the operation mode determination unit 7 of the second embodiment includes a torque compensation value generation unit 25 instead of the power pulsation extraction unit 9 of the first embodiment.
  • the torque compensation value generation unit 25 includes an output torque estimation unit 35 and a torque pulsation extraction unit 36. As shown in FIG.
  • the inverter output voltage control unit 12 includes a current control unit 22, a voltage coordinate converter 23, a speed control unit 46, a torque command value compensation unit 47, a torque control unit 48, and magnetic flux estimation.
  • a unit 18, an integrator 19, and a subtracter 20 are provided.
  • FIG. 15 only the current control unit 22, the voltage coordinate converter 23, the speed control unit 46, the torque command value compensation unit 47, and the torque control unit 48 are shown as the configuration of the inverter output voltage control unit 12.
  • the output torque estimation unit 35 calculates the torque (estimated torque ⁇ ⁇ ) of the electric motor 1 based on the estimated power P ⁇ calculated by the power estimation unit 8.
  • the torque pulsation extraction unit 36 extracts a pulsation component of power (torque pulsation component ⁇ ⁇ kf) obtained by detecting the estimated torque ⁇ ⁇ estimated by the output torque estimation unit 35 at a specific frequency. Further, the torque pulsation extraction unit 36 extracts the amplitude
  • the speed control unit 46 of the inverter output voltage control unit 12 generates a torque command ⁇ * based on the rotation speed command ⁇ e *.
  • the torque command value compensation unit 47 receives a torque correction command ⁇ ref, which is a compensation value corrected based on the torque command ⁇ * generated by the speed control unit 46 and the torque pulsation component ⁇ ⁇ kf extracted by the torque pulsation extraction unit 36. Generate.
  • the torque control unit 48 generates a dq axis current command vector Idq * based on the corrected torque correction command ⁇ ref.
  • the voltage coordinate converter 23 calculates a voltage command vector Vuvw * for controlling the electric motor 1.
  • the determination signal generation unit 10 of the operation mode determination unit 7 determines a compression operation mode of the compressor 80 based on the dominant pulsation component of the torque pulsation component ⁇ ⁇ kf extracted by the torque pulsation extraction unit 36. Generate hnt.
  • the inverter control device 17 according to the second embodiment can cause the output torque of the electric motor 1 to follow the shaft torque, and can reduce fluctuations in the rotational speed of the electric motor 1.
  • the output torque estimation unit 35 includes a divider 38 and a multiplier 37, and calculates the estimated torque ⁇ ⁇ from the estimated power P ⁇ calculated by the power estimation unit 8. Based on the estimated power P ⁇ calculated by the power estimation unit 8, the number of pole pairs Pm of the electric motor 1, and the estimated rotational speed ⁇ ⁇ e of the electric motor 1, the output torque estimating unit 35 calculates the estimated torque ⁇ ⁇ by the equation (14). ).
  • the calculation formula for obtaining the estimated torque ⁇ ⁇ from the estimated power P ⁇ is not limited to the expression (14), but the current of the motor 1 (d-axis current id, q-axis current iq as shown in the following expression (15)). ).
  • (PHI) f is an armature linkage magnetic flux by a permanent magnet.
  • FIG. 17 shows the torque pulsation extraction unit 36 that calculates the torque pulsation component caused by the pressure fluctuation or the shaft torque fluctuation of the compressor 80 and the magnitude (amplitude) of the torque pulsation component. Similar to the power pulsation extraction unit 9 of the first embodiment, the torque pulsation extraction unit 36 extracts the amplitude
  • the torque pulsation extraction unit 36 is a torque pulsation component ⁇ ⁇ that is a temporal vibration component at a predetermined frequency (eg, fkf, k is an integer from 1 to N). kf is extracted as in the following equation (16). Torque pulsation components extracted by the torque pulsation extraction unit 36 exist from ⁇ ⁇ 1f to ⁇ ⁇ Nf.
  • the torque pulsation extraction unit 36 extracts torque pulsation components corresponding to the number of compression units in order to determine the operation mode of the compressor 80, that is, the number of compression units being operated. As shown in FIG. 17, the torque pulsation extraction unit 36 will be described using an example in which the compressor 80 includes N compression units.
  • the torque pulsation extraction unit 36 includes N torque pulsation component extractors. Each torque pulsation component extractor generates a torque pulsation component having a specific frequency and calculates the magnitude (amplitude) of the torque pulsation component. In FIG. 17, three torque pulsation component extractors 101a, 101b, and 101c are shown.
  • the code of the power pulsation component extractor uses 101 as a whole, and 101a, 101b, and 101c are used for distinction.
  • the specific configuration of the torque pulsation component extractor 101 is shown in the torque pulsation component extractor 101b.
  • the torque pulsation component extractor 101a calculates the torque pulsation component ⁇ ⁇ 1f at the frequency f1f and its amplitude
  • the torque pulsation component extractor 101b calculates the torque pulsation component ⁇ ⁇ kf and its amplitude
  • the torque pulsation component extractor 101c calculates the torque pulsation component ⁇ ⁇ Nf and its amplitude
  • the configuration of the torque pulsation component extractor 101 will be described using the torque pulsation component extractor 101b as an example.
  • the torque pulsation component extractor 101 includes a cosine wave generator 39, a sine wave generator 40, integrators 42a and 42b, multipliers 41a, 41b, 43a and 43b, an adder 44, and an amplitude calculator 102.
  • a torque cosine wave component ⁇ kA which is a cosine wave component of the estimated torque ⁇ ⁇ , is generated as follows. First, the cosine wave generation unit 39 and the multiplier 41a generate a cosine wave component of the estimated torque ⁇ ⁇ of the frequency fkf, that is, an initial cosine wave component including noise. The integrator 42a integrates this initial cosine wave component, and calculates the amplitude
  • the multiplier 43a multiplies the amplitude
  • the torque cosine wave component ⁇ kA is the first term (cos term) on the right side of Equation (16).
  • the torque sine wave component ⁇ kB which is the sine wave component of the estimated torque ⁇ ⁇ , is generated as follows. First, the sine wave generation unit 40 and the multiplier 41b generate a sine wave component of the estimated torque ⁇ ⁇ of the frequency fkf, that is, an initial sine wave component including noise. The integrator 42b integrates this initial sine wave component to calculate the amplitude
  • the torque cosine wave component ⁇ kA and the torque sine wave component ⁇ kB are integrated to generate a torque pulsation component ⁇ ⁇ kf that is a temporal vibration component of the estimated torque ⁇ ⁇ at a predetermined frequency fkf.
  • the torque pulsation component ⁇ ⁇ kf is a combined torque pulsation component.
  • the amplitude calculation unit 102 calculates the amplitude
  • is calculated.
  • FIG. 20 is a diagram for explaining a change in rotational speed due to torque pulsation
  • FIG. 21 is a diagram for explaining compensation for torque pulsation according to Embodiment 2 of the present invention.
  • the mechanical rotation speed ⁇ m output from the electric motor 1 can be calculated as shown in Expression (18).
  • Te and TL are the output torque and load torque of the electric motor 1, respectively.
  • J is the moment of inertia.
  • FIG. 20 shows a case where the output of the speed control unit 46 is not compensated
  • FIG. 21 shows a case where the output of the speed control unit 46 is compensated
  • the upper part of FIG. 20 shows a torque command waveform 92 of the torque command ⁇ *.
  • the middle part of FIG. 20 shows an output torque waveform 94a of the output torque Te and a load torque waveform 93a of the load torque TL.
  • the lower part of FIG. 20 shows a rotational speed waveform 95a of the mechanical rotational speed ⁇ m of the electric motor 1.
  • the horizontal axis represents time
  • the vertical axis represents torque and rotational speed.
  • 21 shows a torque command waveform 92 of the torque command ⁇ * and a torque vibration component waveform 96 of the torque vibration component.
  • 21 shows an output torque waveform 94b of the output torque Te and a load torque waveform 93b of the load torque TL.
  • the lower part of FIG. 21 shows a rotational speed waveform 95b of the mechanical rotational speed ⁇ m of the electric motor 1.
  • the horizontal axis represents time, and the vertical axis represents torque and rotational speed.
  • the estimated rotational speed ⁇ ⁇ e of the electric motor 1 based on the magnetic flux (d-axis rotor magnetic flux ⁇ ⁇ dr) calculated by the magnetic flux estimator 18 is the rotational speed set by the rotational speed command value generator 13.
  • the torque command ⁇ * is calculated so as to be balanced with (the value of the rotation speed command ⁇ e *). Therefore, if the rotational speed command ⁇ e * is constant, the torque command ⁇ * is constant.
  • the difference Te ⁇ TL (the load torque waveform 93a and the output torque) between the output torque Te of the electric motor 1 controlled with a constant torque command value and the load torque TL in the operation mode of the compressor 80.
  • the shaded area surrounded by the waveform 94a) changes periodically. For this reason, as shown in the lower rotation speed waveform 95a of FIG. 20, the pulsation of the rotation speed ⁇ e increases. Therefore, it is necessary to reduce the difference Te ⁇ TL so that the output torque Te can follow the load torque TL, thereby reducing the pulsation of the rotational speed ⁇ e. Therefore, as shown in FIG. 21, the output torque Te is balanced with the load torque TL based on the torque pulsation component ⁇ ⁇ kf extracted from the load torque TL being superimposed on the torque command ⁇ * as a compensation amount. The pulsation of the speed ⁇ e can be reduced.
  • the rotational speed amplitude of the rotational speed waveform 95a when the compensation is not performed is A1
  • the rotational speed amplitude of the rotational speed waveform 95b when the compensation is performed is A2
  • the rotational speed amplitude A2 is greater than the rotational speed amplitude A1. Is also getting smaller.
  • the torque pulsation component ⁇ ⁇ kf is a torque pulsation component having a frequency fkf, and the frequency is any one of f1f to fNf.
  • the optimum frequency may be selected as follows.
  • the frequency of the dominant pulsation component that is, the frequency at which the amplitude
  • the frequency fkf is the selected frequency.
  • the discrimination signal generator 10 has the same configuration as that shown in FIG. However, the maximum amplitude detection unit 33 of the determination signal generation unit 10 of the second embodiment uses the torque pulsation amplitudes (
  • m is an integer from 1 to N.
  • Rotational speed command value generation unit 13 is provided with an operating speed command ⁇ e * for each operating mode, as in the first embodiment.
  • the rotation speed command value generation unit 13 outputs a predetermined rotation speed command ⁇ e * in each operation mode based on the determination signal hnt output from the determination signal generation unit 10.
  • FIG. 18 shows a configuration of the inverter output voltage control unit 12 to which the principle of torque compensation shown in FIG. 21 is applied.
  • the inverter output voltage control unit 12 of the second embodiment includes a speed control unit 46, a torque command value compensation unit 47, and a torque control unit 48 instead of the speed control unit 21 of the first embodiment.
  • the speed controller 46 receives the value of the rotational speed command ⁇ e * generated by the rotational speed command value generator 13 and the speed difference ⁇ between the estimated rotational speed ⁇ ⁇ e estimated by the magnetic flux estimator 18 and inputs the estimated rotational speed ⁇ ⁇ .
  • a torque command ⁇ * is generated and output so that e matches the value of the rotational speed command ⁇ e *.
  • the speed difference ⁇ is ⁇ e * ⁇ ⁇ e.
  • the torque command value compensation unit 47 adds the torque pulsation component ⁇ ⁇ kf, which is the vibration component of the estimated torque ⁇ ⁇ of the electric motor 1 calculated by the torque pulsation extraction unit 36, and the torque command ⁇ * output by the speed control unit 46.
  • the corrected torque correction command ⁇ ref is output.
  • the torque correction command ⁇ ref can be expressed as Equation (19).
  • a general compensation method is to convert previously recorded load torque data into a torque command for the rotation angle of the electric motor 1. If this general compensation method is applied, the load torque fluctuates based on the rotation of the electric motor 1 of the compressor 80, so a lot of data on the load torque with respect to the rotation speed of the electric motor 1 must be stored. Further, in a general compensation method, since the load torque is different even at a constant rotational speed, it is difficult to accurately calculate the compensation amount. In the present invention, the pulsation of the load torque TL is estimated in real time, and the torque pulsation component ⁇ ⁇ kf that becomes the compensation amount even when the load torque TL fluctuates can be calculated in real time. Therefore, data on the load torque TL is not necessary, and torque compensation can be performed accurately.
  • the torque control unit 48 calculates the dq-axis current command vector Idq * of the electric motor 1 so that the corrected torque correction command ⁇ ref is input and the electric motor 1 outputs a torque having a value specified by the torque correction command ⁇ ref.
  • the d-axis current command id * and the q-axis current command iq * of the dq-axis current command vector Idq * can be calculated as shown in FIG.
  • the d-axis current command id * and the q-axis current command iq * are obtained from Expression (20).
  • the torque control unit 48 includes a current command value generation unit 49a, an angle command value generation unit 49b, a cosine calculation unit 50, a sine calculation unit 51, and multipliers 52a and 52b.
  • the current command value generation unit 49a has a current torque map describing the relationship between the torque ⁇ and the current vector Ia, and generates a current command vector Ia * from the torque correction command value ⁇ ref.
  • the angle command value generation unit 49b has an angle current map in which the relationship between the current vector Ia and the advance angle ⁇ from the q axis is described.
  • the current command vector Ia * is converted into a command value ⁇ * of the advance angle from the q axis.
  • a d-axis current command id * is generated based on the sine calculation unit 51 and the multiplier 52a, and a q-axis current command iq * is generated based on the cosine calculation unit 50 and the multiplier 52b.
  • the angle ⁇ is an advance angle from the q-axis of the current vector Ia constituting the d-axis current id and the q-axis current iq.
  • FIG. 22 is a diagram for explaining a current vector according to the second embodiment of the present invention.
  • the current torque map of the current command value generation unit 49a and the angle current map of the angle command value generation unit 49b may be obtained by simple analysis in advance based on the constants of the electric motor 1. Moreover, you may use the relationship calculated
  • FIG. 23 is a diagram showing a vibration suppression result according to the second embodiment of the present invention.
  • FIG. 23 shows the effect when the compressor 80 is controlled by the inverter output voltage control unit 12 and the inverter 16 using torque compensation, that is, the effect of reducing the vibration generated in the compressor 80.
  • the horizontal axis of FIG. 23 is the frequency of pulsation of the rotational speed of the electric motor 1, and the vertical axis is the vibration level, that is, the amplitude (mm / s ⁇ 2) of the rotational speed pulsation vibration component.
  • the vibration level of the compressor 80 was measured by attaching a uniaxial acceleration sensor to the main body of the compressor 80. In FIG.
  • the electric motor 1 is driven at a rotational speed command value of 2100 rpm (35 rps) when the compressor 80 is operated alone.
  • a rotational speed waveform having a pulsating component of the frequency f1f and a frequency f2f twice that in the single operation is subjected to Fourier transform (FFT) analysis, and the vibration level with compensation is compared with the vibration level without compensation.
  • FFT Fourier transform
  • the pulsation component characteristics 66 and 67 having a frequency of 35 Hz are the characteristics of the frequency f1f.
  • the pulsation component characteristic 66 is a measurement result without suppression (no torque compensation), and the pulsation component characteristic 67 is a measurement result with suppression (torque compensation).
  • Pulsating component characteristics 68 and 69 having a frequency of 70 Hz are characteristics of the frequency f2f.
  • the pulsation component characteristic 68 is a measurement result without suppression (no torque compensation), and the pulsation component characteristic 69 is a measurement result with suppression (torque compensation).
  • the pulsation component characteristic 66 of the frequency f1f can be set to about 1 ⁇ 4 of the pulsation component characteristic 67 by performing torque compensation.
  • the pulsation component characteristic 68 of the frequency f2f can be set to about 1 ⁇ 4 of the pulsation component characteristic 69 by performing torque compensation. Therefore, the inverter output voltage control unit 12 according to the second embodiment performs the torque compensation so that the pulsation having the main frequency f1f in the pulsation component of the estimated rotational speed ⁇ ⁇ e of the electric motor 1 as shown in FIG.
  • the component can be reduced to at least half or less based on no compensation.
  • the inverter output voltage control unit 12 adds the dominant shaft torque fluctuation (torque pulsation component ⁇ ⁇ kf) caused by the machine of the compressor 80 as a compensation amount to the torque command ⁇ *.
  • the torque correction command ⁇ ref which is generated based on the control torque, can follow the load torque TL, and the rotational speed fluctuation (vibration) of the electric motor 1 can be reduced.
  • the inverter output voltage control unit 12 according to the second embodiment calculates the torque compensation amount (torque pulsation component ⁇ ⁇ kf) in real time, thereby increasing or decreasing the load fluctuation of the compressor 80 based on the rotational speed ⁇ e of the electric motor 1.
  • the inverter output voltage control unit 12 can reduce the pulsation of the output power and improve the efficiency of the compressor when performing control so as to obtain the power required by the load. is there.
  • the inverter output voltage control unit 12 uses the pulsating component ⁇ ⁇ kf having the largest amplitude from the estimated torque ⁇ ⁇ obtained from the estimated power P ⁇ as a compensation amount to the torque command ⁇ *.
  • the motor 1 of the compressor 80 is controlled based on the torque correction command ⁇ ref, so that the control is performed regardless of the magnitude and speed of the load torque TL. Torque can be followed. Further, the inverter output voltage control unit 12 according to the second embodiment feeds back and corrects the deviation between the dq axis of the control command and the dq axis of the electric motor 1, so that an accurate torque can be calculated.
  • the rotation speed command value generation unit 13 is provided with the operation speed command ⁇ e * for each operation mode as in the first embodiment. There is no need to set each operation mode.
  • the driving speed command ⁇ e * may be generated each time using the power fluctuation component P ⁇ kf having a torque pulsating component ⁇ ⁇ kf having the largest amplitude obtained by the discrimination signal generation unit of the second embodiment. .
  • the refrigerant pressure difference condition inside the compressor which is determined by the upper air conditioner control using the difference between the room temperature and the user set temperature, and the estimated power P ⁇ , the estimated torque ⁇ ⁇ or the power fluctuation component P ⁇
  • a driving power target value may be set from kf and the torque pulsation component ⁇ ⁇ kf, and the driving speed command, that is, the rotational speed command ⁇ e * may be determined so as to be the power.
  • the operation mode of the compressor 80 can be determined. Further, the inverter compressor 100 of the second embodiment automatically detects the switching of the operation mode in the compressor 80 in which the number of compression units for compressing the refrigerant changes, and the electric motor is matched with the mode-specific shaft torque variation pattern. By performing control so that the torque of 1 can be output, vibration suppression control that is not affected by the operation mode can be performed.
  • the present invention can also be applied to a compressor having only one operation mode (for example, the single compressor or the scroll compressor of the first embodiment).
  • FIG. FIG. 24 shows a compressor according to Embodiment 3 of the present invention.
  • 25 is a schematic cross-sectional view of the first compression portion of FIG. 24, and
  • FIG. 26 is a schematic cross-sectional view of the second compression portion of FIG. 27 is a block diagram showing an inverter control device and an inverter compressor according to Embodiment 3 of the present invention
  • FIG. 28 is a diagram showing an operation mode switching detection unit and a torque pulsation extraction unit of FIG.
  • the compressor 80 is a twin rotary compressor.
  • FIG. 24 shows a compressor 80 that is a two-cylinder compressor as a twin rotary compressor.
  • the compressor 80 includes the electric motor 1, a first compression unit 83 a, a second compression unit 83 b, and a shaft 84.
  • the drive modes for driving the electric motor 1 of the compressor 80 are a single operation mode and a parallel operation mode.
  • the single operation mode is an operation mode in which one of the two compression units (the first compression unit 83a and the second compression unit 83b) does not compress the refrigerant even when the shaft 84 of the electric motor 1 rotates. This is an operation mode in which the compression section of the compressor is compressed.
  • the parallel operation mode includes an operation mode in which two compression units (first compression unit 83a and second compression unit 83b) are simultaneously compressed by shifting the refrigerant compression timing by 180 degrees. Accordingly, in the single operation mode, since only one compression unit is moving, the frequency of the power pulsation component is the same as the mechanical rotation frequency of the electric motor 1, that is, the frequency f1f.
  • the frequency of the power pulsation component is twice the mechanical rotation frequency of the electric motor 1, that is, the frequency f2f (2 ⁇ f1f).
  • the twin rotary compressor automatically switches between single operation and parallel operation according to the internal differential pressure conditions.
  • the first compression portion 83a includes a piston 74a that moves as the shaft 84 rotates, a vane 76a, a spring 77a, a suction port 75a that sucks refrigerant, a discharge port 78a that discharges refrigerant, and an on-off valve 79a that opens and closes the discharge port 78a.
  • An arrow 88 a in FIG. 25 indicates the rotation direction of the shaft 84.
  • An arrow 89 in FIG. 25 indicates the flow of gas discharged from the discharge port 78a.
  • the second compression section 83b includes a piston 74b that moves with the rotation of the shaft 84, a vane 76b, a magnet 87 that applies an attractive magnetic force in a direction away from the piston 74b, a suction port 75b that sucks refrigerant, and a refrigerant. And an opening / closing valve 79b for opening and closing the discharge port 78b.
  • the position of the piston 74a of the first compression section 83a (contact position between the piston 74a and the shaft 84) is 180 degrees with respect to the position of the piston 74b of the second compression section 83b (contact position between the piston 74b and the shaft 84). It's off.
  • An arrow 88b in FIG. 26 indicates the rotation direction of the shaft 84.
  • the second compression unit 83b in FIG. 26 is in a state where compression is stopped.
  • the tip end side of the vane 76a is in contact with the piston 74a, and the rotation of the piston 74a is based on the inner wall of the first compression portion 83a, the piston 74a, and the vane 76a.
  • a compression chamber 82 is formed. The refrigerant sucked from the suction port 75a is compressed in the compression chamber 82 and then discharged from the discharge port 78a.
  • the rear end side of the vane 76b is attracted and fixed to the magnet 87, the tip of the vane 76b is separated from the piston 74b, the inner wall of the second compression portion 83b, the piston 74b.
  • the compression chamber is not formed based on the vane 76b, and the compression operation is not performed even if the piston 74b is rotated.
  • FIG. 27 shows the configuration of the inverter control device 17 that performs optimal control in the third embodiment.
  • the inverter control device 17 according to the third embodiment controls the electric motor 1 of the compressor 80, which is a two-cylinder compressor whose operation mode can be automatically switched, via the inverter 16.
  • the inverter control device 17 of the third embodiment is the same as that of the second embodiment except for the configuration of the operation mode determination unit 7.
  • the operation mode discriminating unit 7 of the third embodiment replaces the torque compensation value generating unit 25 and the discrimination signal generating unit 10 in the operation mode discriminating unit 7 of the second embodiment, and an operation mode switching detecting unit 53, a torque pulsation extracting unit. 70.
  • the operation mode switching detection unit 53 includes an operation mode determination unit 60 that generates a determination signal hnt, similar to the determination signal generation unit 10 of the second embodiment.
  • the operation mode switching detection unit 53 determines whether the operation mode is the single operation or the parallel operation when the compression operation mode operated by the compressor 80 is switched based on the magnitude of the power pulsation component as shown in the first embodiment. To do.
  • the torque pulsation extraction unit 70 extracts the torque pulsation component of the operation mode determined by the operation mode switching detection unit 53.
  • the inverter control device 17 according to the third embodiment is based on adding the extracted torque pulsation (torque pulsation component ⁇ ⁇ kf) as a compensation amount to the torque command ⁇ * output from the inverter output voltage control unit 12.
  • the output torque of the electric motor 1 can follow the shaft torque of the compressor 80, which is a two-cylinder compressor, and fluctuations in the rotational speed ⁇ e of the electric motor 1 can be reduced.
  • the operation mode switching detection unit 53 that determines the compression operation mode in which the compressor 80 operates and the torque pulsation extraction unit 70 that extracts the torque pulsation in the determined operation mode will be described in detail.
  • the operation mode switching detection unit 53 includes a power pulsation extraction unit 61 and an operation mode determination unit 60 that determines the operation mode based on the pulsation component amplitude calculated by the power pulsation extraction unit 61.
  • the power pulsation extraction unit 61 extracts a power pulsation component x1f and an amplitude
  • a discrete Fourier transform unit 63 that extracts the power pulsation component x2f and the amplitude
  • the frequency f1f is the motor machine frequency in the single operation, and the frequency f2f is the frequency of the pulsation component generated in the parallel operation.
  • Discrete Fourier transform unit 62 detects pulsation components as shown in equations (5) to (8), and extracts power pulsation component x1f and its amplitude
  • Discrete Fourier transform unit 63 detects pulsation components as shown in equations (5) to (8), and extracts power pulsation component x2f and its amplitude
  • the operation mode determination unit 60 determines the operation mode of the compressor 80 based on the dominant pulsation component in the pulsation component, and outputs a determination signal hnt.
  • the operation mode determination unit 60 includes a maximum amplitude detection unit 33 and a determination unit 34. A method for determining whether the operation mode of the compressor 80 is the single operation or the parallel operation in the operation mode determination unit 60 will be described later.
  • the torque pulsation extraction unit 70 includes a switching unit 57 that switches between power pulsation extraction components and a torque pulsation generation unit 65 that extracts torque pulsation in the operation mode.
  • the switching unit 57 switches the power pulsation component according to the operation mode of the compressor 80 based on the determination signal hnt.
  • the switching unit 57 outputs the power pulsation component x1f to the torque pulsation generation unit 65 when the operation mode is a single operation, and outputs the power pulsation component x2f to the torque pulsation generation unit 65 when the operation mode is parallel operation.
  • the power pulsation component x1f is connected to the terminal 54 of the switching unit 57, and the power pulsation component x2f is connected to the terminal 55.
  • the selected power pulsation component is output from the output terminal 56 of the switching unit 57 to the torque pulsation generation unit 65.
  • the torque pulsation generator 65 includes a divider 58 and a multiplier 59.
  • the divider 58 divides the input power pulsation component by the estimated rotational speed ⁇ ⁇ e calculated by the magnetic flux estimator 18 (see FIG. 18).
  • the multiplier 59 multiplies the input by Pm times that is the number of pole pairs of the electric motor 1.
  • the torque pulsation generator 65 generates a torque pulsation component ⁇ ⁇ kf corresponding to the operation mode.
  • k is 1 or 2.
  • the torque pulsation generator 65 generates a torque pulsation component ⁇ ⁇ 1f when the operation mode is a single operation, and generates a torque pulsation component ⁇ ⁇ 2f when the operation mode is a parallel operation.
  • the estimated rotational speed ⁇ ⁇ e output from the magnetic flux estimator 18 as the power pulsation component of the inverter output voltage controller 12 is omitted.
  • the operation mode discrimination unit 60 performs compression based on the amplitude
  • the operation mode in which the machine 80 is currently operating is determined.
  • the maximum amplitude detection unit 33 of the operation mode determination unit 60 is the same as the maximum amplitude detection unit 33 of the determination signal generation unit 10 of the first embodiment, and the two input amplitudes
  • the frequency having the maximum amplitude is detected from
  • the operation mode in which the compressor 80 operates is determined based on the determination unit 34 that determines based on the following language expression determination rule, and generates a determination signal hnt.
  • the operation mode is a single operation mode in which the refrigerant is circulated by one compression unit.
  • the operation mode is a parallel operation in which the refrigerant is circulated by the two compression units.
  • the terminal connection conditions in the switching unit 57 are shown below.
  • the determination signal hnt generated by the operation mode switching detection unit 53 is output to the torque pulsation extraction unit 70 and the rotation speed command value generation unit 13.
  • the switching unit 57 switches to the torque pulsation component in the compression operation mode according to the determination signal hnt.
  • the rotational speed command value generation unit 13 outputs a predetermined rotational speed command ⁇ e * in each operation mode based on the determination signal hnt.
  • the torque command value compensation unit 47 corrects based on the addition of the torque pulsation component ⁇ ⁇ kf based on the discrimination signal hnt as the compensation amount based on the discrimination signal hnt to the torque command ⁇ * generated by the speed control unit 46.
  • the torque correction command ⁇ ref is output.
  • the torque control unit 48 calculates a dq-axis current command vector Idq * of the electric motor 1 (see FIG. 18). Thereafter, the electric motor 1 of the compressor 80 is controlled via the current controller 22, the voltage coordinate converter 23, the inverter gate signal generator 14, and the inverter 16.
  • the inverter control device 17 can control the electric motor 1 so that the output torque Te is balanced with the load torque TL based on the correction command ⁇ ref, and can reduce the pulsation generated in the rotational speed ⁇ e of the electric motor 1.
  • the inverter control device 17 automatically determines the operation mode of the twin rotary compressor (compressor 80) so that a plurality of operation modes can be automatically switched, and loads the output torque Te based on the determination. Based on following the torque TL, pulsation of the rotational speed ⁇ e of the electric motor 1 can be reduced, and stable operation of the electric motor 1 can be realized. Further, the inverter control device 17 according to the third embodiment can reduce the pulsation of the rotational speed ⁇ e of the electric motor 1 and realize a stable operation of the electric motor 1. Therefore, the electric motor 1 can be operated with low noise and low vibration, and the compressor Optimal control at 80 can be achieved.
  • the inverter control device 17 immediately determines the compression operation mode and switches the pressure fluctuation when the compressor 80 having the function of automatically switching the compression operation mode is switched to the compression operation mode having a different pressure fluctuation. Is reflected in the electric power of the electric motor 1, so that optimal control can be performed according to the operation mode.
  • the compressor 80 As described above, if one of the two compression sections of the twin rotary compressor (compressor 80) performs a single operation in which the refrigerant is compressed, the refrigerant circulation rate is halved. Therefore, although the compressor 80 is normally operated in parallel, in order to output the refrigerant circulation amount equivalent to that in the parallel operation in the single operation of the compressor 80, the rotational speed ⁇ e of the electric motor 1 is set to 2 in the parallel operation. Need to double.
  • the inverter control device 17 according to the third embodiment doubles the rotational speed ⁇ e of the electric motor 1 when the compressor 80 is operated alone, so that the efficiency of the compressor 80 can be improved. .
  • the inverter control device 17 sets the rotational speed ⁇ e to 1 at the time of the single operation so that the electric power becomes constant when the single operation is switched to the parallel operation in which the refrigerant is compressed by the two compression units. Must be doubled.
  • FIGS. 29 and 30 are diagrams showing a control example of the compressor according to the third embodiment of the present invention.
  • FIG. 29 shows a case where the compressor 80 is switched from parallel operation to single operation
  • FIG. 30 is a case where the compressor 80 is switched from single operation to parallel operation.
  • the horizontal axis represents time
  • the vertical axis represents the signal value or the command frequency of the rotational speed command ⁇ e *.
  • a waveform 71 is a parallel operation signal
  • a waveform 72 is a single operation signal.
  • a waveform 73 is a command frequency of the rotation speed command ⁇ e *.
  • the parallel operation signal 71 and the individual operation signal 72 are not generated. It was described to distinguish between parallel and parallel operation.
  • the mode switching detection unit 53 determines the operation mode from the estimated power P ⁇ of the electric motor 1.
  • the operation mode switching detection unit 53 confirms the operation mode, it immediately outputs a determination signal hnt to the rotation speed command value generation unit 13.
  • the rotation speed command value generation unit 13 Upon receiving the determination signal hnt, the rotation speed command value generation unit 13 immediately outputs a command for doubling the rotation speed of the parallel operation to the speed control unit 46.
  • the rotational speed command value generation unit 13 receives the determination signal hnt, the rotational speed command value ⁇ e * is changed like the command frequency 73.
  • the command frequency 73 changes from the time t1, but in reality, some delay time occurs.
  • the compressor 80 automatically switches from single operation to parallel operation at time t1, that is, when the parallel operation signal 71 changes from 0 to 1 and the single operation signal 72 changes from 1 to 0, the operation is started.
  • the mode switching detection unit 53 determines the operation mode from the estimated power P ⁇ of the electric motor 1.
  • the operation mode switching detection unit 53 confirms the operation mode, it immediately outputs a determination signal hnt to the rotation speed command value generation unit 13.
  • the rotation speed command value generation unit 13 Upon receiving the determination signal hnt, the rotation speed command value generation unit 13 immediately outputs a command to halve the rotation speed during the single operation to the speed control unit 46.
  • the rotational speed command value generation unit 13 receives the determination signal hnt, the rotational speed command value ⁇ e * is changed like the command frequency 73.
  • the command frequency 73 changes from the time t1, but in reality, some delay time occurs.
  • the inverter control device 17 automatically determines the operation mode of the twin rotary compressor (compressor 80), and based on this, the rotational speed is set to 2 when switching from parallel operation to single operation.
  • the rotation speed command ⁇ e * to be doubled is set, and the rotation speed command ⁇ e * to set the rotation speed to 1 ⁇ 2 is set in the case of switching from single operation to parallel operation.
  • the amount of circulating refrigerant can be stabilized, the output power can be made constant, and the efficiency of the compressor 80 can be prevented from decreasing.
  • the operation mode of the compressor 80 can be determined. Further, the inverter compressor 100 according to the third embodiment automatically detects the switching of the operation mode in the compressor 80 in which the number of compression units for compressing the refrigerant is changed, and the electric motor is matched with the shaft torque variation pattern specific to the mode. By performing control so that the torque of 1 can be output, vibration suppression control that is not affected by the operation mode can be performed.
  • the inverter control device 17 has been described with reference to the example in which the compressor 80 is controlled.
  • the present invention can also be applied to a machine having an operation mode having a component frequency.
  • FIG. 31 is a block diagram showing an inverter control device and an inverter compressor according to the fourth embodiment of the present invention.
  • FIG. 32 is a Bode diagram of the advanced phase filter in the phase adjustment unit of FIG. The Bode diagram of FIG. 32 shows the transfer characteristics of the filter of the phase adjustment unit 190.
  • the inverter control device 17 according to the fourth embodiment differs from the inverter control device 17 according to the second embodiment in that the torque compensation value generation unit 25 includes a phase adjustment unit 190.
  • the configuration other than the phase adjustment unit 190 is the same as that of the inverter control device 17 of the second embodiment.
  • the output torque estimation unit 35 of FIG. 31 calculates the torque of the electric motor 1 based on the estimated power P ⁇ calculated by the power estimation unit 8 as in the second embodiment.
  • the torque pulsation extraction unit 36 extracts a pulsation component of electric power obtained by detecting the estimated torque ⁇ ⁇ estimated by the output torque estimation unit 35 at a specific frequency. Further, the torque pulsation extracting unit 36 extracts the pulsation component amplitude of the torque detected from the estimated torque ⁇ ⁇ or the phase-adjusted adjusted estimated torque ⁇ ⁇ u at a predetermined frequency.
  • the torque command value compensation unit 47 includes a torque pulsation component ⁇ ⁇ kf that is an amplitude component of the estimated torque ⁇ ⁇ of the electric motor 1 calculated by the torque pulsation extraction unit 36, and a torque command ⁇ * output by the speed control unit 46.
  • a torque correction command ⁇ ref corrected by adding the output torque of the electric motor 1 can be made to follow the shaft torque.
  • the inverter control device 17 according to the fourth embodiment can reduce the pulsation of the rotational speed of the electric motor 1 as shown in FIG. 23 according to the second embodiment.
  • the estimated torque ⁇ ⁇ of the motor 1 calculated by the output torque estimating unit 35 is a corrected torque command correction.
  • the phase of the estimated torque ⁇ is delayed from the load torque. Therefore, by suppressing the phase delay in the estimated torque, specifically, by using the adjusted estimated torque ⁇ ⁇ u adjusted so that the phase of the estimated torque ⁇ ⁇ advances, the output torque can be brought close to the load torque. Thus, it is possible to improve the effect of reducing fluctuations in the rotational speed of the electric motor 1.
  • the estimated torque ⁇ ⁇ is calculated by the output torque estimator 35 and input to the phase adjuster 190 as shown in FIG. Specifically, the phase adjustment unit 190 employs a leading phase filter as indicated by the transfer function of Expression (21). The phase adjustment unit 190 outputs the adjustment estimated torque ⁇ ⁇ u adjusted so that the phase advances as in Expression (22).
  • T1 and T2 are filter time constants, and are defined as in Expression (23).
  • ⁇ 1 and ⁇ 2 are angular frequencies [rad / s] specified by the filter, and are determined by the operating frequency range of the electric motor 1.
  • FIG. 32 shows the transmission characteristics (amplitude and phase) of the adjusted estimated torque ⁇ ⁇ u and the estimated torque ⁇ ⁇ with respect to the torque correction command ⁇ ref.
  • the upper part of FIG. 32 shows amplitude transfer characteristics
  • the lower part of FIG. 32 shows phase transfer characteristics.
  • the horizontal axis represents angular frequency [rad / s]
  • the vertical axis represents amplitude gain [dB].
  • the horizontal axis represents angular frequency [rad / s]
  • the vertical axis represents phase [deg].
  • the phase characteristic 191 and the amplitude characteristic 193 are characteristics when there is a filter, that is, the characteristics of the adjustment estimated torque ⁇ ⁇ u adjusted by the phase adjustment unit 190.
  • the phase characteristic 192 and the amplitude characteristic 194 are characteristics when there is no filter, that is, characteristics of the estimated torque ⁇ ⁇ not adjusted by the phase adjustment unit 190.
  • the output torque is made close to the load torque by using the adjusted estimated torque ⁇ ⁇ u adjusted so that the phase of the estimated torque ⁇ ⁇ advances, thereby changing the rotational speed of the electric motor 1. It is possible to improve the reduction effect.
  • FIG. 33 and 34 show the vibration suppression result according to the fourth embodiment of the present invention, that is, the effect of reducing the pulsation of the rotational speed of the electric motor 1.
  • FIG. 33 is a diagram showing a vibration suppression result when there is no leading phase filter according to the fourth embodiment of the present invention
  • FIG. 34 shows a vibration suppression result when there is a leading phase filter according to the fourth embodiment of the present invention.
  • FIG. The horizontal axis of FIGS. 33 and 34 is the frequency order of the pulsation of the rotational speed of the electric motor 1
  • the vertical axis of FIGS. 33 and 34 is the vibration level, that is, the amplitude [rpm] of the rotational speed pulsation vibration component.
  • FIG. 33 is an FFT of the rotational speed of the electric motor 1 when the torque command is compensated and the vibration is suppressed by using the estimated torque value ⁇ ⁇ without the leading phase filter.
  • pulsation component characteristics 195 and 196 are pulsation component characteristics when the frequency is 27.3 Hz, and are characteristics of the frequency f1f.
  • the pulsation component characteristic 195 is a result without suppression
  • the pulsation component characteristic 196 is a result with suppression.
  • the amplitude of the pulsation component of the frequency f1f can be reduced from 155 rpm to 41 rpm.
  • the pulsation component characteristics 197 and 198 are pulsation component characteristics at a frequency twice as high as the frequency f1f, and are characteristics of the frequency f2f.
  • the pulsation component characteristics 199 and 200 are pulsation component characteristics at a frequency three times the frequency f1f, and are the characteristics of the frequency f3f.
  • FIG. 34 is an FFT of the rotational speed of the electric motor 1 when the torque command is compensated by using the estimated adjustment torque ⁇ ⁇ u with a leading phase filter to suppress the vibration.
  • pulsation component characteristics 201 and 202 are pulsation component characteristics when the frequency is 27.3 Hz, and are characteristics of the frequency f1f.
  • the pulsation component characteristic 201 is a result without suppression, and the pulsation component characteristic 202 is a result with suppression.
  • the amplitude of the pulsation component of the frequency f1f can be reduced from 155 rpm to 20 rpm.
  • the pulsation component characteristics 203 and 204 are pulsation component characteristics at a frequency twice as high as the frequency f1f, and are characteristics of the frequency f2f.
  • the pulsation component characteristics 205 and 206 are pulsation component characteristics at a frequency three times the frequency f1f, and are the characteristics of the frequency f3f.
  • the adjusted estimated torque ⁇ ⁇ u adjusted by using a leading phase filter, that is, adjusted so that the phase of the estimated torque ⁇ ⁇ advances.
  • FIG. FIG. 35 is a block diagram showing an inverter control device and an inverter compressor according to the fifth embodiment of the present invention.
  • 36 is a diagram illustrating the torque pulsation extracting unit of FIG. 35
  • FIG. 37 is a diagram illustrating the cosine wave generating unit and the sine wave generating unit of FIG.
  • the inverter control device 17 according to the fifth embodiment is different from the inverter control device 17 according to the second embodiment in the configuration of the torque pulsation extraction unit 180 in the torque compensation value generation unit 25.
  • the configuration other than that of the torque pulsation extraction unit 180 is the same as that of the inverter control device 17 of the second embodiment.
  • the torque pulsation extraction unit 180 includes the learning unit 111, and the phase amount ⁇ c of the torque pulsation component ⁇ ⁇ kf is determined based on the phase amount (initial phase) ⁇ c output from the learning unit 111.
  • the phase amount ⁇ c of the torque pulsation component ⁇ ⁇ kf is determined based on the phase amount (initial phase) ⁇ c output from the learning unit 111.
  • the torque pulsation extraction unit 180 shown in FIG. 36 has a learning unit 111 added to the torque pulsation extraction unit 36 (see FIG. 17) of the second embodiment, and the phase amount ⁇ c is added to the cosine wave generation unit and the sine wave generation unit. Is configured to be input. 36, the torque pulsation component extractor 101b is one of the N torque pulsation component extractors 101 constituting the torque pulsation extraction unit 180, similarly to the torque pulsation component extractor 101b of FIG.
  • the torque pulsation extraction unit 180 includes a learning unit 111, and the phase amount ⁇ c output from the learning unit 111 is mainly used by the cosine wave generation unit 159 and the sine wave generation unit 160 in the N torque pulsation component extractors 101. .
  • FIG. 36 shows three torque pulsation component extractors 101a, 101b, and 101c as in FIG. The specific configuration of the torque pulsation component extractor 101 is shown in the torque pulsation component extractor 101b.
  • the torque pulsation component extractor 101 includes a cosine wave generator 159, a sine wave generator 160, integrators 42a and 42b, multipliers 41a, 41b, 43a and 43b, an adder 44, and an amplitude calculator 102.
  • a torque cosine wave component ⁇ kA which is a cosine wave component of the estimated torque ⁇ ⁇ , is generated as follows. First, the cosine wave generation unit 159 and the multiplier 41a generate a cosine wave component of the estimated torque ⁇ ⁇ of the frequency fkf, that is, an initial cosine wave component including noise. The integrator 42a integrates this initial cosine wave component, and calculates the amplitude
  • the multiplier 43a multiplies the amplitude
  • the torque cosine wave component ⁇ kA is the first term (cos term) on the right side of Equation (24).
  • the torque sine wave component ⁇ kB which is the sine wave component of the estimated torque ⁇ ⁇ , is generated as follows. First, the sine wave generation unit 160 and the multiplier 41b generate a sine wave component of the estimated torque ⁇ ⁇ of the frequency fkf, that is, an initial sine wave component including noise. The integrator 42b integrates this initial sine wave component to calculate the amplitude
  • the torque cosine wave component ⁇ kA and the torque sine wave component ⁇ kB are integrated to generate a torque pulsation component ⁇ ⁇ kf that is a temporal vibration component of the estimated torque ⁇ ⁇ at a predetermined frequency fkf.
  • the torque pulsation component ⁇ ⁇ kf is a combined torque pulsation component.
  • the expression (24) for generating the torque pulsation component ⁇ ⁇ kf in the fifth embodiment is different from the expression (16) for generating the torque pulsation component ⁇ ⁇ kf described in the second embodiment in terms of the cos function and the sin function. It is an equation that introduces the quantity ⁇ c.
  • the torque pulsation component extractor 101 integrates the generated torque cosine wave component ⁇ kA and torque sine wave component ⁇ kB by the adder 44 based on the cosine wave component ⁇ kA and sine wave component ⁇ kB of the estimated torque ⁇ ⁇ .
  • a pulsation component ⁇ ⁇ kf of the estimated torque ⁇ ⁇ at a predetermined frequency fkf is generated.
  • the cosine wave generation unit 159 includes a multiplier 105, an adder 109, and a cosine wave function 107.
  • the cosine wave generation unit 159 calculates an input angle to be input to the cosine wave function 107 based on the predetermined frequency fkf and the phase amount ⁇ c output from the learning unit 111, and passes the calculated input angle to the cosine wave function 107.
  • a cos component at a predetermined frequency fkf is generated.
  • the input angle is 2 ⁇ ⁇ ⁇ fkf ⁇ t + ⁇ c
  • the cos component is cos (2 ⁇ ⁇ ⁇ fkf ⁇ t + ⁇ c).
  • the sine wave generation unit 160 includes a multiplier 106, an adder 110, and a sine wave function 108.
  • the sine wave generation unit 160 calculates an input angle to be input to the sine wave function 108 based on the predetermined frequency fkf and the phase amount ⁇ c output from the learning unit 111, and passes the calculated input angle to the sine wave function 108.
  • a sin component at a predetermined frequency fkf is generated.
  • the input angle is 2 ⁇ ⁇ ⁇ fkf ⁇ t + ⁇ c
  • the sin component is sin (2 ⁇ ⁇ ⁇ fkf ⁇ t + ⁇ c).
  • FIG. 38 is a diagram showing a flow chat of the learning unit in FIG.
  • the initial value of the phase amount ⁇ c is set to 0 (step S001).
  • an estimated rotational speed ⁇ ⁇ e that is an estimated value of the rotational speed of the electric motor 1 calculated by the magnetic flux estimating unit 18 of the inverter output voltage control unit 12 shown in FIG. 18 is read.
  • a rotational speed difference ⁇ err which is a difference between the estimated rotational speed ⁇ ⁇ e of the electric motor 1 and the rotational speed command value ⁇ e * output from the rotational speed command value generation unit 13, is calculated by Expression (25).
  • 35, 36, and 37 the estimated rotational speed ⁇ ⁇ e and the rotational speed command value ⁇ e * input to the learning unit 111 of the torque pulsation extracting unit 180 are omitted.
  • the fluctuation amount ⁇ err of the rotational speed difference calculated by the equation (26) is affected by the magnitude of the pulsation of the rotational speed of the electric motor 1.
  • step S003 the absolute value
  • step S004 a new phase amount ⁇ c is generated by adding the positive increment ⁇ designated to the phase amount ⁇ c as shown in equation (27). However, the phase amount ⁇ c is limited with the predetermined phase amount ⁇ cmax as an upper limit.
  • step S003 If it is determined in step S003 that the absolute value
  • learning unit 111 outputs phase amount ⁇ c to adder 109 of cosine wave generation unit 159 and adder 110 of sine wave generation unit 160.
  • Torque pulsation component extractor 101 calculates torque pulsation component ⁇ ⁇ kf based on equation (24) using the output phase amount ⁇ c.
  • step S006 after outputting the torque pulsation component ⁇ ⁇ kf, if the sampling of the estimated rotational speed ⁇ ⁇ e is completed, the learning operation is terminated. If the sampling is continued, the process returns to step S002, and the next sampling is performed. Repeat the same process as above.
  • FIG. 39 is a diagram showing a waveform of the command ⁇ ⁇ e for the rotational speed of the electric motor.
  • the horizontal axis is time, and the vertical axis is amplitude.
  • a broken line 116 is a command value of the rotational speed command ⁇ e *, and a waveform 115 is a waveform of the estimated rotational speed ⁇ ⁇ e.
  • FIG. 39 it can be seen that the estimated rotation speed ⁇ ⁇ e of the electric motor 1 tends to decrease in amplitude fluctuation by the learning unit 111.
  • FIG. 39 it can be seen that the estimated rotation speed ⁇ ⁇ e of the electric motor 1 tends to decrease in amplitude fluctuation by the learning unit 111.
  • the fluctuation amount ⁇ err of four rotation speeds calculated for each sampling period ⁇ ts in the same phase in each cycle of the estimated rotational speed ⁇ ⁇ e that is, ⁇ err1, ⁇ err2, ⁇ err3, and ⁇ err4 are shown. If the fluctuation amounts ⁇ err1, ⁇ err2, ⁇ err3, and ⁇ err4 of the rotation speed difference for four times are observed, it can be seen that the fluctuation amount ⁇ err of the rotation speed difference tends to gradually decrease.
  • the inverter control device 17 adjusts the phase of the torque pulsation component so that the learning unit 111 adjusts the phase of the torque pulsation component so that the fluctuation amount ⁇ err of the rotational speed difference of the electric motor 1 falls below the specified threshold.
  • the delay can be eliminated.
  • the inverter 111 of the fifth embodiment causes the learning unit 111 to change the rotational speed command ⁇ ⁇ e according to the command value of the rotational speed command ⁇ ⁇ e.
  • Appropriate phase amount can be adjusted in real time.
  • inverter control device 17 of the fifth embodiment needs to set the phase amount in advance. In addition, it is possible to reduce the adjustment time in advance in the production of the inverter control device 17.
  • FIG. 40 is a block diagram showing an inverter control device and an inverter compressor according to the sixth embodiment of the present invention.
  • 41 is a diagram showing the torque command value switching unit of FIG. 40
  • FIG. 42 is a diagram showing the torque learning unit of FIG.
  • FIG. 43 is a diagram showing a configuration of the motor phase estimation unit of FIG.
  • the inverter control device 17 according to the sixth embodiment changes the torque command value compensation unit 47 in the inverter control device 17 according to the second embodiment to the torque command value switching unit 120, and performs the interface switch 122, the torque learning unit 121, and the motor phase estimation. It differs from inverter control device 17 of Embodiment 2 in that unit 150 is provided.
  • the configuration is the same as that of the inverter control device 17 of the second embodiment except for the configuration of the interface switch 122, the torque command value switching unit 120, the torque learning unit 121, and the motor phase estimation unit 150.
  • the motor phase estimation unit 150 includes a multiplier 151 and an integrator 152, and the rotor phase of the motor 1 is determined based on the estimated rotational speed ⁇ ⁇ e of the motor 1 calculated by the magnetic flux estimation unit 18. Estimate the rotation angle.
  • the estimated machine rotation speed ⁇ ⁇ m obtained by estimating the machine rotation speed ⁇ m of the electric motor 1 is calculated by the equation (28). However, Pm is the number of pole pairs of the electric motor 1.
  • the estimated mechanical rotational speed ⁇ ⁇ m obtained by multiplying the estimated rotational speed ⁇ ⁇ e by 1 / Pm by the multiplier 151 is input to the integrator 152.
  • the estimated rotation angle ⁇ ⁇ m of the rotor of the electric motor 1 is calculated as shown in Expression (29) based on the integrator 152.
  • the estimated rotation angle ⁇ ⁇ m is also referred to as an estimated machine rotation angle ⁇ ⁇ m as appropriate.
  • the interface switch 122 determines the timing for suppressing the pulsation of the rotation speed of the electric motor 1. Specifically, the interface switch 122 outputs 1 when the vibration suppression is performed, and the interface switch 122 outputs 0 when the vibration suppression is stopped.
  • the determination of whether to suppress or stop vibration may be performed automatically or manually. For example, in the following case, the operation for stopping the vibration suppression being performed and the operation for re-execution are automatically performed. Thereby, even when vibration suppression is difficult to work, the effect of vibration suppression can be increased by re-learning.
  • vibration suppression is performed when the user selects the “static” mode on the remote controller.
  • the torque command value switching unit 120 switches the torque command value in the electric motor 1 based on the switching signal swt. Specifically, when the switching signal swt generated by the torque learning unit 121 is 0, the torque command value switching unit 120 connects the terminal 124 and the output terminal 126. In this case, the torque correction command ⁇ ref is the torque command ⁇ * calculated by the speed control unit 46. That is, it becomes like Formula (30).
  • the torque command value switching unit 120 connects the terminal 125 and the output terminal 126.
  • the torque correction command ⁇ ref is the torque command (corrected torque command) ⁇ ** output from the torque learning unit 121. That is, the equation (31) is obtained.
  • the torque command ⁇ * calculated by the speed control unit 46 is input as a torque command value to the torque control unit 48 that performs feedback control. That is, when the switching signal swt is 0, the torque correction command ⁇ ref becomes the torque command ⁇ *, so that torque correction is not performed.
  • the switching signal swt is 1
  • the torque command value ⁇ ** whose phase is corrected by the torque learning unit 121 is input to the torque control unit 48. That is, when the switching signal swt is 1, torque correction is performed based on the torque command value ⁇ ** whose phase is corrected by the torque learning unit 121.
  • FIG. 42 shows a configuration of the torque learning unit 121.
  • the torque learning unit 121 includes a torque switch 128 and a learning algorithm processing unit 127 that control input of the estimated torque ⁇ ⁇ .
  • the learning algorithm processing unit 127 includes an angle storage unit 142 and an estimated torque storage unit 143.
  • the angle storage unit 142 stores the estimated mechanical rotation angle ⁇ ⁇ m of the electric motor 1
  • the estimated torque storage unit 143 stores the estimated torque ⁇ ⁇ corresponding to the estimated mechanical rotation angle ⁇ ⁇ m of the electric motor 1.
  • 44 is a diagram illustrating the angle storage unit and the estimated torque storage unit of FIG. 42
  • FIG. 45 is a diagram in which data is recorded in the angle storage unit and the estimated torque storage unit of FIG.
  • the torque learning unit 121 stores the estimated torque ⁇ ⁇ for the estimated mechanical rotation angle ⁇ ⁇ m of the motor 1 calculated by the motor phase estimation unit 150 according to the state of the interface switch 122, or adjusts the phase of the estimated torque based on learning After that, it is determined whether to output the estimated torque ⁇ ⁇ for ⁇ ⁇ m.
  • the learning algorithm processing unit 127 is performed according to the flowchart of FIG.
  • FIG. 46 is a diagram showing a flow chat of the learning algorithm processing unit of FIG. 47 is a diagram showing a flow chat of the recording mode execution process of FIG. 46
  • FIG. 48 is a diagram showing a flow chat of the output mode execution process of FIG.
  • the state of the interface switch (IF switch) 122 is monitored (step S101). If the interface switch is OFF, the process waits in step S101. If the interface switch is ON, the process proceeds to step S102, and recording mode execution processing is performed.
  • step S201 the torque switch (TQ switch) 128 is turned on and the index i is set to 1 as shown in FIG.
  • step S202 ⁇ ⁇ mi that is the estimated mechanical rotation angle ⁇ ⁇ m of the electric motor 1 at the index i and ⁇ ⁇ i that is the estimated torque ⁇ ⁇ at the index i corresponding to the estimated mechanical rotation angle ⁇ ⁇ mi. And stored in the angle storage unit 142 and the estimated torque storage unit 143 (estimated torque storage procedure).
  • the angle storage unit 142 includes N storage areas ⁇ (1) to ⁇ (N), and the estimated torque storage unit 143 includes N storage areas ⁇ (1) to ⁇ (N).
  • the estimated machine rotation angle information stored in the angle storage unit 142 is ⁇ [N]
  • the estimated torque information stored in the estimated torque storage unit 143 is ⁇ [N].
  • the estimated machine rotation angle information ⁇ [N] and the estimated torque information ⁇ [N] can be handled as an array as follows.
  • i is a positive index from 1 to N, and each element of the estimated machine rotation angle information ⁇ [N] and the estimated torque information ⁇ [N] is associated with the index i.
  • ⁇ (1) is related to ⁇ (1), and an estimated machine rotation angle value ⁇ ⁇ m1 that is a value of the estimated machine rotation angle ⁇ ⁇ m is stored in the storage area ⁇ (1), and the storage area ⁇ (1 ) Stores an estimated torque value ⁇ ⁇ m1 which is a value of the estimated torque ⁇ ⁇ corresponding to the estimated mechanical rotation angle value ⁇ ⁇ m1.
  • An estimated machine rotation angle value ⁇ ⁇ mi is stored in the storage area ⁇ (i) of the index i, and an estimated torque value ⁇ ⁇ mi is stored in the storage area ⁇ (i) of the index i.
  • FIG. 45 shows an example in which the constant machine rotation angle value ⁇ ⁇ mi and the estimated torque value ⁇ ⁇ mi are stored in the angle storage unit 142 and the estimated torque storage unit 143, respectively.
  • the estimated machine rotation angle value ⁇ ⁇ m1 when the index i is 1 is the stored rotation angle value ⁇ 1
  • the estimated torque value ⁇ ⁇ m1 when the index i is 1 is the stored estimated torque value ⁇ 1.
  • the estimated mechanical rotation angle value ⁇ ⁇ mi of the index i is the stored rotation angle value ⁇ i
  • the estimated torque value ⁇ ⁇ mi of the index i is the stored estimated torque value ⁇ i.
  • step S202 the estimated machine rotation angle value ⁇ ⁇ mi of the estimated machine rotation angle ⁇ ⁇ m of the electric motor 1 is stored in the storage area ⁇ (i) of the angle storage unit 142 at the index i, and the estimated torque of the estimated torque ⁇ ⁇
  • step S203 the index i is incremented by 1.
  • step S204 it is determined whether or not the index i exceeds the resolution N. If the index i is less than or equal to the resolution N, the process returns to step S202. On the other hand, if the index i exceeds the resolution N in step S204, step S102 of the recording mode execution process is terminated, and the process proceeds to step S103.
  • step S103 the torque switch (TQ switch) 128 is turned off and the switching signal swt is set to 1.
  • step S104 the initial value of the index k is set to 0, and the process proceeds to step S105 of the output mode execution process.
  • step S301 the estimated machine rotation angle ⁇ ⁇ m of the electric motor 1 is read, and the estimated machine rotation angle ⁇ ⁇ m is read from the stored rotation angle values ⁇ i stored in the angle storage unit 142.
  • the index i for the stored rotation angle value ⁇ i close to the value of is determined.
  • step S302 as in step S002 of the flow chat in FIG. 38, the absolute value
  • step S302 If it is determined in step S302 that the absolute value
  • step S302 If it is determined in step S302 that the absolute value
  • torque command ⁇ ** is output under the following conditions using the sum of index i and index k as an index of estimated torque storage unit 143.
  • the torque command ⁇ ** is set to ⁇ (i + k).
  • (i + k)> N the torque command ⁇ ** is set to ⁇ (i + k ⁇ N).
  • step S106 the state of the interface switch (IF switch) 122 is monitored. If the interface switch (IF switch) 122 is OFF (Yes in step S106), the process proceeds to step S107. On the other hand, if the interface switch (IF switch) 122 is ON (No in step S106), the process returns to step S105. In step S107, the switching signal swt is set to 0, and the output of the torque command ⁇ ** in the learning algorithm processing unit 127 is stopped.
  • FIG. 49 is a diagram showing waveforms of load torque and output torque of the motor before learning by the learning algorithm processing unit of FIG.
  • FIG. 50 is a diagram showing waveforms of load torque and output torque of the motor after learning by the learning algorithm processing unit of FIG.
  • FIG. 51 is a diagram showing the rotation speed of the electric motor before and after learning by the learning algorithm processing unit of FIG.
  • FIG. 52 is a diagram showing the FFT analysis result of the rotation speed of the motor before learning by the learning algorithm processing unit of FIG.
  • FIG. 53 is a diagram showing an FFT analysis result of the rotation speed of the electric motor after learning by the learning algorithm processing unit of FIG.
  • FIG. 49, FIG. 50, and FIG. 51 show the results when the motor 1 is driven at a rotational speed command value of 1638 rpm (that is, the mechanical frequency is 27.3 Hz) in the case of single operation.
  • the horizontal axis represents the machine rotation angle [rad]
  • the vertical axis represents the torque [Nm].
  • the horizontal axis represents time [s]
  • the vertical axis represents the rotation speed [rpm].
  • 52 and 53 the horizontal axis represents the frequency order
  • the vertical axis represents the vibration level [rpm].
  • FIG. 49 and 50 show the load torque and the output torque of the electric motor 1 with respect to the mechanical rotation angle of the electric motor 1 up to one mechanical angle.
  • FIG. 49 shows the load torque waveform 130 and the output torque waveform 131 when the learning process of the learning algorithm processing unit 127 is not performed (that is, before learning). As shown in FIG. 49, it was found that the output torque waveform 131 of the electric motor 1 is delayed in time from the load torque waveform 130.
  • FIG. 50 shows the load torque waveform 132 and the output torque waveform 133 when the learning process of the learning algorithm processing unit 127 is performed (that is, after learning). As shown in FIG. 50, it was confirmed that the output torque waveform 133 of the electric motor 1 almost overlaps with the load torque waveform 132.
  • FIG. 51 shows the actual rotational speed waveform 136 of the electric motor 1 before learning, during learning, and after learning.
  • FIG. 52 shows a pulsation component amplitude spectrum 134 which is a spectrum result of FFT analysis of the actual rotational speed waveform 136 of the electric motor 1 in the period TA1 of FIG.
  • FIG. 53 shows a pulsation component amplitude spectrum 135 which is a spectrum result of FFT analysis of the actual rotational speed waveform 136 of the electric motor 1 in the period TA2 of FIG.
  • the amplitude of the pulsating component of the rotational speed waveform 136 of the electric motor 1 after learning is significantly reduced from the amplitude of the pulsating component before learning.
  • pulsation component amplitude 1f characteristics 137 and 138 having a frequency order of 1f are amplitudes of pulsation components at a frequency of 27.3 Hz of the 1f component.
  • the pulsation component amplitude 1f characteristic 137 in FIG. 52 is the result before learning
  • the pulsation component amplitude 1f characteristic 138 in FIG. 53 is the result after learning.
  • the amplitude value of the pulsating component amplitude 1f characteristic 137 is 155 rpm
  • the amplitude value of the pulsating component amplitude 1f characteristic 138 is 18 rpm.
  • inverter control device 17 of the sixth embodiment includes torque command value switching unit 120 and torque learning unit 121, the output torque of motor 1 of compressor 80 substantially overlaps with the load torque, and the pulsation of the rotational speed of motor 1. Can be greatly reduced.
  • the torque learning unit 121 includes an angle storage unit 142 that stores the estimated machine rotation angle ⁇ ⁇ m of the electric motor 1, and an estimated torque storage unit 143 that stores the estimated torque ⁇ ⁇ corresponding to the estimated machine rotation angle ⁇ ⁇ m. Is provided.
  • the estimated torque information ⁇ [N] stored in the estimated torque storage unit 143 is a torque pattern in the estimated torque ⁇ ⁇ .
  • the torque learning unit 121 includes the angle storage unit 142 and the estimated torque storage unit 143, when the operating condition of the compressor 80 is changed, the learning algorithm processing unit 127 performs the learning process again so that the angle storage unit 142 and The estimated torque storage unit 143 is updated. Therefore, it is not necessary to store a large number of torque patterns in the operating conditions in advance. For this reason, the inverter control device 17 of the sixth embodiment can reduce the capacity of the storage device 302 shown in FIG.
  • the inverter control device 17 In the conventional inverter control device, a torque pattern is prepared in advance, a reference load torque pattern is stored in advance, and the stored torque pattern is adjusted every time the operating condition of the compressor 80 is different. A device to reduce the capacity of the storage device was required.
  • the estimated torque ⁇ ⁇ that is the estimated value of the output torque automatically learned by the learning algorithm processing unit 127 of the torque learning unit 121 is actually used.
  • the torque control unit 48 controls the load torque to approach. For this reason, even if the load torque of the compressor 80 fluctuates, the inverter control device 17 according to the sixth embodiment brings the output torque closer to the load torque without storing the load torque pattern prepared in advance. Can do. Furthermore, since the inverter control device 17 of the sixth embodiment only needs to store the automatically learned estimated torque ⁇ ⁇ , the capacity of the storage device (storage device 302 shown in FIG. 14) of the inverter control device 17 is reduced. can do.
  • the magnetic flux estimation unit 18 since the magnetic flux estimation unit 18 is provided, the mechanical rotation angle and the rotational speed of the electric motor 1 are estimated by the magnetic flux estimation unit 18 regardless of the state of the torque switch 128.
  • the stability of the learning process in the learning algorithm processing unit 127 of the torque learning unit 121 can be improved.
  • Inverter compressor 120 ... Torque command value switching unit, 142 ... Angle storage unit, 143 ... Estimated torque storage unit, 180 ... torque pulsation extraction unit, P ⁇ ... estimated power, ⁇ ⁇ ... estimated torque, ⁇ * ... torque command, ⁇ ** ... torque command (corrected torque command), ⁇ ref ... torque correction command, ⁇ ⁇ kf ... torque pulsation component ( Synthetic (Luc pulsation component), ⁇ ⁇ e ... estimated rotational speed, ⁇ e * ... rotational speed command, Idq * ... dq-axis current command vector (current command), Vdq * ... dq-axis voltage command vector (previous voltage command), Vuvw * ...
  • Voltage command vector (voltage command),

Abstract

The purpose of the present invention is to realize an inverter control device capable of determining the operation mode of a machine to be driven such as a compressor. The inverter control device (17) according to the present invention comprises: an operation mode determining unit (7) which estimates power or shaft torque of an electric motor (1) operated in an operation mode having a variation component frequency of power or shaft torque in power variation in one rotation in mechanical angle, from current in a power line through which control voltage is applied to the electric motor (1), and determines the operation mode of the electric motor (1) on the basis of a frequency component relevant to the variation component frequency of the estimated power or the estimated torque that has been estimated; a rotation speed command value generating unit (13) which generates a rotation speed command (ωe*) according to the operation mode determined by the operation mode determining unit (7); and an inverter output voltage control unit (12) which generates a voltage command (voltage command vector (Vuvw*)) for the control voltage applied to the electric motor (1), on the basis of the value of the rotation speed command (ωe*).

Description

インバータ制御装置及びインバータ圧縮機Inverter control device and inverter compressor
 本発明は、電動機を制御するインバータ制御装置とそれを用いたインバータ圧縮機に関する。 The present invention relates to an inverter control device for controlling an electric motor and an inverter compressor using the same.
 近年、地球温暖化防止のための温室効果ガスの排出削減目標を含む京都議定書が、2005年に採択されてから、各国でCO2排出量の削減規制が強化され、空調機でも省エネ規制基準が厳しくなっている。欧州では、国内の指標のように、定格時の効率を評価するものではなく、年間消費電力に基づいて省エネ性能を評価するものが指標とされており、冷房4条件、暖房4条件から、冷房、暖房それぞれの効率を算出する方法が採用されたため、低負荷時の効率改善が新たな技術課題となっている。 In recent years, since the Kyoto Protocol, which includes greenhouse gas emission reduction targets for the prevention of global warming, was adopted in 2005, CO2 emission reduction regulations have been strengthened in each country, and energy-saving regulation standards for air conditioners have become strict. It has become. In Europe, unlike domestic indicators, the efficiency at the rated time is not evaluated, but the one that evaluates the energy saving performance based on the annual power consumption is the index. Since the method of calculating the efficiency of each heating is adopted, the efficiency improvement at low load is a new technical issue.
 ロータリ圧縮機において、二つの圧縮室を備え、二つの圧縮室のうち、一方のみを圧縮運転する単独運転と、両者を圧縮運転する並列運転を切り替える構造をもつことにより、圧縮効率改善を図るロータリ圧縮機が開発されている。この場合並列運転と単独運転の切り替えを判別して、冷媒循環量の違いに応じた適切な制御を行う必要がある。 A rotary compressor has two compression chambers, and has a structure that switches between a single operation in which only one of the two compression chambers is compressed and a parallel operation in which both are compressed, thereby improving the compression efficiency. A compressor has been developed. In this case, it is necessary to discriminate switching between parallel operation and single operation and to perform appropriate control according to the difference in the refrigerant circulation amount.
 例えば、特許文献1には、二気筒ローリングピストン式ロータリ圧縮機が開示されており、負荷が小さい場合に自動的に能力半減運転が選択され、この際に一方の圧縮部を非圧縮状態として冷媒循環流量を半減させる構成が開示されている。この構成では、ロータリ圧縮機のピストンを回転する電動機の回転速度を落とさずに運転できるので、圧縮機効率を向上させることができる。 For example, Patent Document 1 discloses a two-cylinder rolling piston type rotary compressor, in which a half-capacity operation is automatically selected when the load is small. A configuration for halving the circulation flow rate is disclosed. In this configuration, since the motor can be operated without reducing the rotation speed of the electric motor that rotates the piston of the rotary compressor, the compressor efficiency can be improved.
特開2009-203861号公報(0049段~0052段、図1)JP 2009-203861 A (0049 to 0052 stages, FIG. 1)
 特許文献1の二気筒のロータリ圧縮機では、単独運転と並列運転との切り替える場合に、二気筒のロータリ圧縮機の能力が変化しない様にするには、すなわち冷媒循環流量を変化させないためには、電動機を制御するインバータの出力周波数を運転モードに合わせる必要がある。従って、各運転モードを安定に制御するには、圧縮機における現在の運転モードを正しく把握する必要がある。しかし、その方法は特許文献1のロータリ圧縮機には運転モードの判別について開示されておらず、運転モードの切り替えの際に、最適な運転が行われず、誤った制御で運転してしまう問題が発生する可能性があった。 In the two-cylinder rotary compressor of Patent Document 1, in order to prevent the ability of the two-cylinder rotary compressor from changing when switching between the single operation and the parallel operation, that is, to not change the refrigerant circulation flow rate. It is necessary to match the output frequency of the inverter that controls the motor to the operation mode. Therefore, in order to stably control each operation mode, it is necessary to correctly grasp the current operation mode in the compressor. However, the method is not disclosed in the rotary compressor of Patent Document 1 for determining the operation mode, and when the operation mode is switched, the optimum operation is not performed and the operation is performed with incorrect control. Could occur.
 本発明は、上述のような問題を解決するためになされたもので、圧縮機等の駆動対象機械の運転モードを判別できるインバータ制御装置の実現を目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to realize an inverter control device that can determine an operation mode of a machine to be driven such as a compressor.
 本発明に係るインバータ制御装置は、駆動対象機械を駆動する電動機を、インバータにて変換した交流電圧に基づき制御するインバータ制御装置であって、電動機は、機械角一回転中の電力変動における電力または軸トルクの変動成分周波数を有する運転モードで運転され、電動機に制御電圧を印加する電源線の電流から電動機の電力または軸トルクを推定し、推定した推定電力または推定トルクの変動成分周波数に関連した周波数成分に基づいて、電動機の運転モードを判別する運転モード判別部と、運転モード判別部にて判別した運転モードに応じた回転速度指令を生成する回転速度指令値生成部と、回転速度指令の値に基づいて電動機に印加する制御電圧の電圧指令を生成するインバータ出力電圧制御部と、を備えたことを特徴とする。 An inverter control device according to the present invention is an inverter control device that controls an electric motor that drives a machine to be driven based on an AC voltage converted by an inverter, and the electric motor has electric power in a power fluctuation during one rotation of a mechanical angle or The motor power or shaft torque is estimated from the current of the power line that applies the control voltage to the motor and is operated in the operation mode having the fluctuation component frequency of the shaft torque, and related to the estimated power or the fluctuation component frequency of the estimated torque. Based on the frequency component, an operation mode determination unit that determines the operation mode of the motor, a rotation speed command value generation unit that generates a rotation speed command according to the operation mode determined by the operation mode determination unit, a rotation speed command And an inverter output voltage control unit that generates a voltage command of a control voltage to be applied to the electric motor based on the value. .
 本発明に係るインバータ制御装置は、電動機の電力または軸トルクを推定し、推定した推定電力または推定トルクの変動成分周波数に関連した周波数成分を算出するので、圧縮機等の駆動対象機械の運転モードを判別することができる。 The inverter control device according to the present invention estimates the electric power or shaft torque of the electric motor, and calculates a frequency component related to the estimated component of fluctuation of the estimated electric power or estimated torque. Can be determined.
本発明の実施の形態1によるインバータ制御装置及びインバータ圧縮機を示すブロック図である。It is a block diagram which shows the inverter control apparatus and inverter compressor by Embodiment 1 of this invention. 図1の座標変換器を示す図である。It is a figure which shows the coordinate converter of FIG. 図1の電力推定部を示す図である。It is a figure which shows the electric power estimation part of FIG. 図1の電力脈動抽出部を示す図である。It is a figure which shows the electric power pulsation extraction part of FIG. 図1の判別信号生成部を示す図である。It is a figure which shows the discrimination | determination signal production | generation part of FIG. 図1のインバータ出力電圧制御部を示す図である。It is a figure which shows the inverter output voltage control part of FIG. 図1の電動機における一回転での軸トルク変動を示す図である。It is a figure which shows the axial torque fluctuation | variation in one rotation in the electric motor of FIG. 一つの圧縮部が動作した場合における、図1の電力脈動抽出部の抽出結果を示す図である。It is a figure which shows the extraction result of the electric power pulsation extraction part of FIG. 1 in case one compression part operate | moves. 二つの圧縮部が動作した場合における、図1の電力脈動抽出部の抽出結果を示す図である。It is a figure which shows the extraction result of the electric power pulsation extraction part of FIG. 1 in case two compression parts operate | move. 三つの圧縮部が動作した場合における、図1の電力脈動抽出部の抽出結果を示す図である。It is a figure which shows the extraction result of the electric power pulsation extraction part of FIG. 1 when three compression parts operate | move. 四つの圧縮部が動作した場合における、図1の電力脈動抽出部の抽出結果を示す図である。It is a figure which shows the extraction result of the electric power pulsation extraction part of FIG. 1 when four compression parts operate | move. 図1の電力脈動抽出部による、スクロール機とシングル機の電力の脈動成分の解析結果を示す図である。It is a figure which shows the analysis result of the pulsation component of the electric power of a scroll machine and a single machine by the electric power pulsation extraction part of FIG. 図1の他の判別信号生成部を示す図である。It is a figure which shows the other discrimination | determination signal production | generation part of FIG. 本発明の実施の形態1によるインバータ制御装置及びインバータ圧縮機のハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of the inverter control apparatus and inverter compressor by Embodiment 1 of this invention. 本発明の実施の形態2によるインバータ制御装置及びインバータ圧縮機を示すブロック図である。It is a block diagram which shows the inverter control apparatus and inverter compressor by Embodiment 2 of this invention. 図15の電力推定部と出力トルク推定部を示す図である。It is a figure which shows the electric power estimation part and output torque estimation part of FIG. 図15の電力脈動抽出部を示す図である。It is a figure which shows the electric power pulsation extraction part of FIG. 図15のインバータ出力電圧制御部を示す図である。It is a figure which shows the inverter output voltage control part of FIG. 図15のトルク制御部を示す図である。It is a figure which shows the torque control part of FIG. トルク脈動による回転速度変化を説明する図である。It is a figure explaining the rotational speed change by torque pulsation. 本発明の実施の形態2によるトルク脈動の補償を説明する図である。It is a figure explaining compensation of torque pulsation by Embodiment 2 of the present invention. 本発明の実施の形態2による電流ベクトルを説明する図である。It is a figure explaining the current vector by Embodiment 2 of this invention. 本発明の実施の形態2による振動抑制結果を示す図である。It is a figure which shows the vibration suppression result by Embodiment 2 of this invention. 本発明の実施の形態3による圧縮機を示す図である。It is a figure which shows the compressor by Embodiment 3 of this invention. 図24の第一圧縮部における概略横断面図である。It is a schematic cross-sectional view in the 1st compression part of FIG. 図24の第二圧縮部における概略横断面図である。It is a schematic cross-sectional view in the 2nd compression part of FIG. 本発明の実施の形態3によるインバータ制御装置及びインバータ圧縮機を示すブロック図である。It is a block diagram which shows the inverter control apparatus and inverter compressor by Embodiment 3 of this invention. 図27の運転モード切替検出部とトルク脈動抽出部を示す図である。It is a figure which shows the driving | operation mode switching detection part and torque pulsation extraction part of FIG. 本発明の実施の形態3による圧縮機の制御例を示す図である。It is a figure which shows the example of control of the compressor by Embodiment 3 of this invention. 本発明の実施の形態3による圧縮機の制御例を示す図である。It is a figure which shows the example of control of the compressor by Embodiment 3 of this invention. 本発明の実施の形態4によるインバータ制御装置及びインバータ圧縮機を示すブロック図である。It is a block diagram which shows the inverter control apparatus and inverter compressor by Embodiment 4 of this invention. 図31の位相調整部における進み相フィルタのボード線図である。FIG. 32 is a Bode diagram of a leading phase filter in the phase adjustment unit of FIG. 31. 本発明の実施の形態4による進み相フィルタ無の場合における振動抑制結果を示す図である。It is a figure which shows the vibration suppression result in the case of no lead phase filter by Embodiment 4 of this invention. 本発明の実施の形態4による進み相フィルタ有の場合における振動抑制結果を示す図である。It is a figure which shows the vibration suppression result in the case of the advance phase filter presence by Embodiment 4 of this invention. 本発明の実施の形態5によるインバータ制御装置及びインバータ圧縮機を示すブロック図である。It is a block diagram which shows the inverter control apparatus and inverter compressor by Embodiment 5 of this invention. 図35のトルク脈動抽出部を示す図である。It is a figure which shows the torque pulsation extraction part of FIG. 図36の余弦波生成部と正弦波生成部を示す図である。It is a figure which shows the cosine wave generation part and sine wave generation part of FIG. 図36の学習部のフローチャットを示す図である。It is a figure which shows the flow chat of the learning part of FIG. 電動機の回転速度の指令ω^eの波形を示す図である。It is a figure which shows the waveform of instruction | command (omega) e of the rotational speed of an electric motor. 本発明の実施の形態6によるインバータ制御装置及びインバータ圧縮機を示すブロック図である。It is a block diagram which shows the inverter control apparatus and inverter compressor by Embodiment 6 of this invention. 図40のトルク指令値切替部を示す図である。It is a figure which shows the torque command value switching part of FIG. 図40のトルク学習部を説明する図である。It is a figure explaining the torque learning part of FIG. 図40の電動機位相推定部の構成を示す図である。It is a figure which shows the structure of the electric motor phase estimation part of FIG. 図42の角度記憶部及び推定トルク記憶部を示す図である。It is a figure which shows the angle memory | storage part and estimated torque memory | storage part of FIG. 図42の角度記憶部及び推定トルク記憶部にデータが記録された図である。FIG. 43 is a diagram in which data is recorded in an angle storage unit and an estimated torque storage unit in FIG. 42. 図42の学習アルゴリズム処理部のフローチャットを示す図である。It is a figure which shows the flow chat of the learning algorithm process part of FIG. 図46の記録モード実行処理のフローチャットを示す図である。It is a figure which shows the flow chat of the recording mode execution process of FIG. 図46の出力モード実行処理のフローチャットを示す図である。It is a figure which shows the flow chat of the output mode execution process of FIG. 図42の学習アルゴリズム処理部による学習前における電動機の負荷トルク及び出力トルクの波形を示す図である。It is a figure which shows the waveform of the load torque and output torque of an electric motor before learning by the learning algorithm process part of FIG. 図42の学習アルゴリズム処理部による学習後における電動機の負荷トルク及び出力トルクの波形を示す図である。It is a figure which shows the waveform of the load torque and output torque of an electric motor after the learning by the learning algorithm process part of FIG. 図42の学習アルゴリズム処理部による学習前後における電動機の回転速度を示す図である。It is a figure which shows the rotational speed of the electric motor before and behind learning by the learning algorithm process part of FIG. 図42の学習アルゴリズム処理部による学習前における電動機の回転速度のFFT分析結果を示す図である。It is a figure which shows the FFT analysis result of the rotational speed of the electric motor before the learning by the learning algorithm process part of FIG. 図42の学習アルゴリズム処理部による学習後における電動機の回転速度のFFT分析結果を示す図である。It is a figure which shows the FFT analysis result of the rotational speed of the electric motor after the learning by the learning algorithm process part of FIG.
実施の形態1.
 図1は、本発明の実施の形態1によるインバータ制御装置及びインバータ圧縮機を示すブロック図である。図2は図1の座標変換器を示す図であり、図3は図1の電力推定部を示す図である。図4は図1の電力脈動抽出部を示す図であり、図5は図1の判別信号生成部を示す図である。図6は、図1のインバータ出力電圧制御部を示す図である。インバータ圧縮機100は、インバータ制御装置17、圧縮機80を備えている。インバータ制御装置17は、圧縮機80の電動機1の制御を行う。図1において、インバータ制御装置17は、N個(Nは1以上の整数)の圧縮部で冷媒の循環をさせる圧縮機80に用いる電動機1に三相制御電圧を出力して回転させるものである。電動機1は、同期またはブラシレスの電動機である。インバータ16は、直流電源15を用いて所定の周波数や振幅で三相交流のPWM(Pulse Width Modulation)電圧を、三相電源線を介して電動機1に出力する。電流センサ2、3、4は、電動機1に流れる電流、すなわち、三相電源線に流れる電流を検出する。電流センサ2は、u相の三相電源線に流れる電流を検出する。電流センサ3、4は、それぞれv相、w相の三相電源線に流れる電流を検出する。適宜、u相の三相電源線、v相の三相電源線、w相の三相電源線を、それぞれ三相電源線u、三相電源線v、三相電源線wと表記する。電流検出部5は、電流センサ2、3、4の出力から三相電流を算出する。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing an inverter control device and an inverter compressor according to Embodiment 1 of the present invention. FIG. 2 is a diagram showing the coordinate converter of FIG. 1, and FIG. 3 is a diagram showing the power estimation unit of FIG. 4 is a diagram illustrating the power pulsation extracting unit of FIG. 1, and FIG. 5 is a diagram illustrating the discrimination signal generating unit of FIG. FIG. 6 is a diagram illustrating the inverter output voltage control unit of FIG. The inverter compressor 100 includes an inverter control device 17 and a compressor 80. The inverter control device 17 controls the electric motor 1 of the compressor 80. In FIG. 1, an inverter control device 17 outputs and rotates a three-phase control voltage to an electric motor 1 used for a compressor 80 that circulates refrigerant in N (N is an integer of 1 or more) compressors. . The electric motor 1 is a synchronous or brushless electric motor. The inverter 16 outputs a three-phase AC PWM (Pulse Width Modulation) voltage with a predetermined frequency and amplitude to the electric motor 1 through the three-phase power line using the DC power source 15. Current sensors 2, 3, and 4 detect a current flowing through electric motor 1, that is, a current flowing through a three-phase power line. The current sensor 2 detects a current flowing through the u-phase three-phase power supply line. The current sensors 3 and 4 detect currents flowing through the v-phase and w-phase three-phase power supply lines, respectively. As appropriate, the u-phase three-phase power supply line, the v-phase three-phase power supply line, and the w-phase three-phase power supply line are referred to as a three-phase power supply line u, a three-phase power supply line v, and a three-phase power supply line w, respectively. The current detection unit 5 calculates a three-phase current from the outputs of the current sensors 2, 3 and 4.
 インバータ制御装置17は、座標変換器6、運転モード判別部7、回転速度指令値生成部13、インバータ出力電圧制御部12、インバータゲート信号生成部14、インバータ16、電流検出部5を備えている。座標変換器6は、電流検出部5で検出した交流三相電流から二相直流電流に座標変換する。回転速度指令値生成部13は、電動機1の回転速度の指令値を生成する。インバータ出力電圧制御部12は、指令された回転速度で電動機1を駆動する制御電圧を生成する。運転モード判別部7は、dq軸電流ベクトルIdqとdq軸電圧指令ベクトルVdq*とに基づいて判別信号hntを生成する。運転モード判別部7は、電力推定部8と、電力脈動抽出部9と、判別信号生成部10とを備えている。電力推定部8は、インバータ出力電圧制御部12から出力されたdq軸電圧指令ベクトルVdq*と、電流検出部5で計算した電流値から座標変換器6に基づき変換されたdq軸電流ベクトルIdqに基づいて電動機1の電力を推定し、推定電力P^を計算する。電力脈動抽出部9は、推定電力P^を所定の周波数で検波した電力の脈動成分(リプル成分)の振幅||xkf||を抽出する。kは1からNの整数であり、脈動成分の振幅は、||x1f||から||xNf||まで存在する。判別信号生成部10は、抽出した脈動成分における支配的な脈動成分に基づいて、圧縮機80が現在運転している運転モードを判別した判別信号hntを生成する。判別信号生成部10は、抽出した脈動成分における支配的な脈動成分の周波数である選択周波数を決定し、この選択周波数と関連付けされた運転モードを判別している。以上の構成のインバータ制御装置17は、圧縮機80の運転モードにおける所定の回転速度を設定するように、電動機1の入力を制御できる。 The inverter control device 17 includes a coordinate converter 6, an operation mode determination unit 7, a rotation speed command value generation unit 13, an inverter output voltage control unit 12, an inverter gate signal generation unit 14, an inverter 16, and a current detection unit 5. . The coordinate converter 6 converts coordinates from the AC three-phase current detected by the current detector 5 to a two-phase DC current. The rotational speed command value generation unit 13 generates a rotational speed command value of the electric motor 1. The inverter output voltage control unit 12 generates a control voltage for driving the electric motor 1 at the commanded rotation speed. The operation mode determination unit 7 generates the determination signal hnt based on the dq axis current vector Idq and the dq axis voltage command vector Vdq *. The operation mode determination unit 7 includes a power estimation unit 8, a power pulsation extraction unit 9, and a determination signal generation unit 10. The power estimation unit 8 converts the dq-axis voltage command vector Vdq * output from the inverter output voltage control unit 12 and the dq-axis current vector Idq converted based on the coordinate converter 6 from the current value calculated by the current detection unit 5. Based on this, the electric power of the motor 1 is estimated, and the estimated electric power P ^ is calculated. The power pulsation extraction unit 9 extracts the amplitude || xkf || of the pulsation component (ripple component) of the power detected from the estimated power P ^ at a predetermined frequency. k is an integer from 1 to N, and the amplitude of the pulsating component exists from || x1f || to || xNf ||. The discrimination signal generator 10 generates a discrimination signal hnt that discriminates the operation mode in which the compressor 80 is currently operating based on the dominant pulsation component in the extracted pulsation component. The determination signal generation unit 10 determines a selection frequency that is a frequency of a dominant pulsation component in the extracted pulsation component, and determines an operation mode associated with the selection frequency. The inverter control device 17 having the above configuration can control the input of the electric motor 1 so as to set a predetermined rotational speed in the operation mode of the compressor 80.
 インバータ制御装置17を詳しく説明する。図1の電流検出部5は、三相埋込永久磁石同期式の電動機1のu相、v相、w相からなる三相電源線u、v、wに設けられた電流センサ2、3、4の信号から、三相電流iu、iv、iwを成分とする検出電流ベクトルIdt(図2参照)を測定するように構成のものである。ただし、電動機1の三相のうち二相に電流センサ(例えば、電流センサ2、3)を設けて、以下の式(1)によって電動機1の三相の電流値を得る構成としても良い。 The inverter control device 17 will be described in detail. 1 includes current sensors 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 and 3. The detected current vector Idt (see FIG. 2) whose components are the three-phase currents iu, iv, and iw is measured from the four signals. However, it is good also as a structure which provides a current sensor (for example, current sensor 2, 3) in two phases among the three phases of the electric motor 1, and obtains the three-phase electric current value of the electric motor 1 by the following formula | equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図2に示すように、座標変換器6は、座標変換器85と座標変換器86を備える。座標変換器85は、検出電流ベクトルIdtの成分である三相電流iu、iv、iwを固定二相電流である二相電流iα、iβに変換する。座標変換器86は、電動機1の回転子の推定回転角度θ^eに基づいて、二相電流iα、iβを、dq軸電流ベクトルIdqに変換する。dq軸電流ベクトルIdqの成分は、d軸電流idとq軸電流iqである。座標変換器85は、検出電流ベクトルIdtの三相電流iu、iv、iwを、式(2)に基づき二相電流iα、iβに変換する。式(2)は、三相座標(u,v,w)から固定二相座標(α,β)への変換式である。また、座標変換器86は、二相電流iα、iβを、式(3)に基づきd軸電流idとq軸電流iqに変換する。式(3)は、固定二相座標(α,β)から回転二相座標(d,q)への変換式である。推定回転角度θ^eは後述する磁束推定部18及び積分器19(図6参照)から演算される。 As shown in FIG. 2, the coordinate converter 6 includes a coordinate converter 85 and a coordinate converter 86. The coordinate converter 85 converts the three-phase currents iu, iv, iw, which are components of the detected current vector Idt, into two-phase currents iα, iβ, which are fixed two-phase currents. The coordinate converter 86 converts the two-phase currents iα and iβ into a dq-axis current vector Idq based on the estimated rotation angle θ ^ e of the rotor of the electric motor 1. The components of the dq axis current vector Idq are a d axis current id and a q axis current iq. The coordinate converter 85 converts the three-phase currents iu, iv, iw of the detected current vector Idt into the two-phase currents iα, iβ based on the equation (2). Expression (2) is a conversion expression from three-phase coordinates (u, v, w) to fixed two-phase coordinates (α, β). In addition, the coordinate converter 86 converts the two-phase currents iα and iβ into a d-axis current id and a q-axis current iq based on Expression (3). Expression (3) is a conversion expression from fixed two-phase coordinates (α, β) to rotating two-phase coordinates (d, q). The estimated rotation angle θ ^ e is calculated from a magnetic flux estimation unit 18 and an integrator 19 (see FIG. 6) described later.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002

Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 図3に示すように、電力推定部8は、電流検出部5及び座標変換器6に基づき、変換された電動機1のdq軸電流ベクトルのd軸電流id、q軸電流iqと、インバータ出力電圧制御部12が出力したdq軸電圧指令ベクトルVdq*のd軸指令電圧vd*、q軸指令電圧vq*から電動機1の推定電力P^を演算するものである。すなわち、電動機1のd軸電流id、q軸電流iqとd軸指令電圧vd*、q軸指令電圧vq*に基づいて、式(4)のように推定電力P^を演算する。 As shown in FIG. 3, the power estimation unit 8 is based on the current detection unit 5 and the coordinate converter 6 and converts the d-axis current id of the dq-axis current vector of the electric motor 1, the q-axis current iq, and the inverter output voltage. The estimated power P ^ of the electric motor 1 is calculated from the d-axis command voltage vd * and the q-axis command voltage vq * of the dq-axis voltage command vector Vdq * output by the control unit 12. That is, based on the d-axis current id, the q-axis current iq, the d-axis command voltage vd *, and the q-axis command voltage vq * of the electric motor 1, the estimated power P ^ is calculated as in Expression (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)の演算を実現する回路は、図3に示すように、2つ乗算器26a、26bと加算器27を備えている。乗算器26aの入力は、d軸指令電圧vd*とd軸電流idである。乗算器26bの入力は、q軸指令電圧vq*とq軸電流iqである。加算器27は、乗算器26a、26bのそれぞれの出力を加算する。 As shown in FIG. 3, the circuit that realizes the calculation of Expression (4) includes two multipliers 26 a and 26 b and an adder 27. The inputs of the multiplier 26a are the d-axis command voltage vd * and the d-axis current id. The inputs of the multiplier 26b are the q-axis command voltage vq * and the q-axis current iq. The adder 27 adds the outputs of the multipliers 26a and 26b.
 図4に示すように、電力脈動抽出部9は、圧縮機80の運転モード、すなわち運転されている圧縮部の個数を判別するために、圧縮部の個数分の電力の脈動成分の振幅を生成する。圧縮機80がN個の圧縮部を備えている例で説明する。図7は、図1の電動機における一回転での軸トルク変動を示す図である。図7は、N個の圧縮部の内k個の圧縮部が動作している場合の軸トルク変動である。横軸は回転角度であり、縦軸は負荷トルクである。図7では、kの値が1、2、3、4の場合を示した。なお、kは0より大きくN以下の整数である。トルク特性91aは、kが1の場合であり、1個の圧縮部が動作している場合である。トルク特性91bは、kが2の場合であり、2個の圧縮部が動作している場合である。トルク特性91cは、kが3の場合であり、3個の圧縮部が動作している場合である。トルク特性91dは、kが4の場合であり、4個の圧縮部が動作している場合である。図7に示すように、電動機1の一回転(機械角の0~360度)において、圧縮機80の内部の圧力の変動または電動機1の軸トルクの変動に起因する電力脈動が生じている。 As shown in FIG. 4, the power pulsation extraction unit 9 generates the amplitude of the pulsation component of the power corresponding to the number of compression units in order to determine the operation mode of the compressor 80, that is, the number of compression units being operated. To do. An example in which the compressor 80 includes N compression units will be described. FIG. 7 is a diagram showing shaft torque fluctuation in one rotation in the electric motor of FIG. FIG. 7 shows shaft torque fluctuations when k of the N compression units are operating. The horizontal axis is the rotation angle, and the vertical axis is the load torque. FIG. 7 shows the case where the value of k is 1, 2, 3, 4. Note that k is an integer greater than 0 and less than or equal to N. The torque characteristic 91a is a case where k is 1 and one compression unit is operating. The torque characteristic 91b is when k is 2 and when two compression units are operating. The torque characteristic 91c is a case where k is 3 and three compression units are operating. The torque characteristic 91d is a case where k is 4 and four compression units are operating. As shown in FIG. 7, at one rotation of the electric motor 1 (0 to 360 degrees of mechanical angle), power pulsation due to fluctuations in the pressure inside the compressor 80 or fluctuations in the shaft torque of the electric motor 1 occurs.
 電力脈動抽出部9は、動作しているk個の圧縮部のそれぞれが、冷媒を圧縮させるタイミングがずれていることを利用して、電動機1の一回転(機械角の0~360度)において、圧縮機80の内部の圧力の変動または電動機1の軸トルクの変動に起因する電力脈動を抽出するものである。電動機1の一回転において、k個の圧縮部で冷媒をそれぞれの(360/k)度の位相をずらして圧縮させる圧縮機80の電動機1では、電力に電動機1の機械回転周波数(以下周波数f1fとする)のk倍の周波数(fkf=k×f1f)を有する脈動が発生する。機械回転周波数のk倍の周波数を、周波数fkfとする。その結果、ある時間でk個の圧縮部で冷媒を圧縮させる圧縮機80の場合には、電動機1の電力には周波数fkfの脈動成分が生じる。脈動成分の周波数fkfを判別することよって、運転モード判別部7は、圧縮機80の運転モード、すなわち運転されている圧縮部の個数を判別することが可能である。具体的には、運転モード判別部7は、電動機1の電力から可能な周波数、すなわちN個の周波数(f1f,~,fkf,~,fNf)に対応した脈動成分の大きさを抽出することにより、それら脈動成分の内支配的な脈動成分に基づいて、圧縮機80の運転モード、すなわち運転されている圧縮部の個数を判別することが可能である。 The power pulsation extraction unit 9 uses the fact that the k compression units in operation are out of timing for compressing the refrigerant, so that the electric power pulsation extraction unit 9 performs one rotation of the motor 1 (mechanical angle 0 to 360 degrees). The power pulsation caused by the fluctuation of the pressure inside the compressor 80 or the fluctuation of the shaft torque of the electric motor 1 is extracted. In the motor 1 of the compressor 80 that compresses the refrigerant by shifting the phase by (360 / k) degrees in k compression sections in one rotation of the motor 1, the mechanical rotation frequency of the motor 1 (hereinafter referred to as frequency f1f) is used as electric power. And pulsation having a frequency (fkf = k × f1f) times as high as that of k. A frequency k times the machine rotation frequency is defined as a frequency fkf. As a result, in the case of the compressor 80 that compresses the refrigerant with k compression units in a certain time, a pulsating component having a frequency fkf is generated in the electric power of the electric motor 1. By determining the frequency fkf of the pulsating component, the operation mode determination unit 7 can determine the operation mode of the compressor 80, that is, the number of compression units being operated. Specifically, the operation mode discriminating unit 7 extracts the magnitude of the pulsating component corresponding to the possible frequencies from the electric power of the motor 1, that is, N frequencies (f1f,..., Fkf,..., FNf). Based on the dominant pulsating component of these pulsating components, it is possible to determine the operation mode of the compressor 80, that is, the number of operating compression units.
 図4に示すように、電力脈動抽出部9は、N個の電力脈動成分抽出器を備えている。それぞれの電力脈動成分抽出器は、特定周波数を有する脈動成分の大きさを算出する。図4では、3つの電力脈動成分抽出器81a、81b、81cを具体的に示した。電力脈動成分抽出器の符号は、総括的に81を用い、区別する場合に81a、81b、81cを用いる。電力脈動成分抽出器81は、電力推定部8で推定した推定電力P^に、所定の周波数fkfで、周知の離散フーリエ変換(DFT:Discrete Fourier Transformation)の演算を実行して、その周波数成分xkfの振幅を求める。離散フーリエ変換は、式(5)のように行った。 As shown in FIG. 4, the power pulsation extraction unit 9 includes N power pulsation component extractors. Each power pulsation component extractor calculates the magnitude of a pulsation component having a specific frequency. In FIG. 4, three power pulsation component extractors 81a, 81b, 81c are specifically shown. The code | symbol of an electric power pulsation component extractor uses 81 generally, and 81a, 81b, 81c is used when distinguishing. The power pulsation component extractor 81 performs a well-known discrete Fourier transform (DFT) operation on the estimated power P ^ estimated by the power estimation unit 8 at a predetermined frequency fkf, and the frequency component xkf Find the amplitude of. The discrete Fourier transform was performed as shown in Equation (5).
Figure JPOXMLDOC01-appb-M000005

 ここで、Mは一周期Tの間隔数で1以上の整数である。また、式(5)の複素数e^(jωktm)の展開によって式(5)は以下のようになる。
Figure JPOXMLDOC01-appb-M000005

Here, M is an integer of 1 or more in the number of intervals of one period T. Further, expression (5) becomes as follows by expansion of complex number e ^ (jωktm) of expression (5).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(6)の右辺におけるxkA、xkBの振幅は、一周期Tの積分と一致するため、式(7)のようになる。また、xkfの振幅は式(8)のようになる。 Since the amplitudes of xkA and xkB on the right side of Equation (6) coincide with the integration of one period T, Equation (7) is obtained. Further, the amplitude of xkf is as shown in Expression (8).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007

Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(5)~式(8)に基づいて、N個の圧縮部を有する圧縮機80の電動機1において、動作中の圧縮部の数に応じて電力に周波数の異なる脈動成分が生じる可能性があるので、電力脈動抽出部9はN個の電力脈動成分抽出器を備えている。電力脈動成分抽出器81aは、周波数f1fの脈動成分の振幅を計算する。電力脈動成分抽出器81bは周波数fkfの脈動成分の振幅を計算し、電力脈動成分抽出器81cは周波数Nfの脈動成分の振幅を計算する。電力脈動成分抽出器81の構成を、電力脈動成分抽出器81bを例として説明する。 Based on the equations (5) to (8), in the electric motor 1 of the compressor 80 having N compression units, there is a possibility that pulsation components having different frequencies are generated in the electric power depending on the number of compression units in operation. Therefore, the power pulsation extraction unit 9 includes N power pulsation component extractors. The power pulsation component extractor 81a calculates the amplitude of the pulsation component having the frequency f1f. The power pulsation component extractor 81b calculates the amplitude of the pulsation component of the frequency fkf, and the power pulsation component extractor 81c calculates the amplitude of the pulsation component of the frequency Nf. The configuration of the power pulsation component extractor 81 will be described using the power pulsation component extractor 81b as an example.
 時刻tで所定の周波数fkfに基づいた回転角θkは、2*π*fkf*tである。電力脈動成分抽出器81bは、この回転角θkにおける正弦成分(sin成分)及び余弦成分(cos成分)を生成する正弦波生成部29b及び余弦波生成部28bと、それぞれの成分と推定電力P^とを乗算する乗算器30c、30dと、乗算器から求めた値を式(7)のように積分する積分器31c、31dと、積分した||xkA||及び||xkB||を(8)式によって所定周波数の振動成分の大きさ、すなわち振幅||xkf||を計算する振幅算出部32bを備えている。なお、積分器31cは||xkA||を計算し、積分器31dは||xkB||を計算する。 The rotation angle θk based on the predetermined frequency fkf at time t is 2 * π * fkf * t. The power pulsation component extractor 81b includes a sine wave generator 29b and a cosine wave generator 28b that generate a sine component (sin component) and a cosine component (cos component) at the rotation angle θk, and the respective components and the estimated power P ^. Multipliers 30c and 30d, integrators 31c and 31d for integrating the values obtained from the multipliers as shown in equation (7), and integrated || xkA || and || xkB || ) Is provided with an amplitude calculator 32b for calculating the magnitude of the vibration component of the predetermined frequency, that is, the amplitude || xkf ||. The integrator 31c calculates || xkA ||, and the integrator 31d calculates || xkB ||.
 他の周波数成分においても同様の構成に基づき計算する。電力脈動成分抽出器81aは、余弦波生成部28a、正弦波生成部29a、乗算器30a、30b、積分器31a、31b、振幅算出部32aを備えている。電力脈動成分抽出器81cは、余弦波生成部28c、正弦波生成部29c、乗算器30e、30f、積分器31e、31f、振幅算出部32cを備えている。電力脈動成分抽出器81aは時刻tで所定の周波数f1fの脈動成分の振幅||x1f||を計算し、電力脈動成分抽出器81cは時刻tで所定の周波数Nfの脈動成分の振幅||xNf||を計算する。 Calculating other frequency components based on the same configuration. The power pulsation component extractor 81a includes a cosine wave generator 28a, a sine wave generator 29a, multipliers 30a and 30b, integrators 31a and 31b, and an amplitude calculator 32a. The power pulsation component extractor 81c includes a cosine wave generator 28c, a sine wave generator 29c, multipliers 30e and 30f, integrators 31e and 31f, and an amplitude calculator 32c. The power pulsating component extractor 81a calculates the amplitude || x1f || of the pulsating component of the predetermined frequency f1f at time t, and the power pulsating component extractor 81c calculates the amplitude of the pulsating component of the predetermined frequency Nf || xNf at time t. || is calculated.
 図8~図11に、N=4の場合である4個の周波数f1f、f2f、f3f、f4fの脈動成分の振幅(大きさ)を示した。図8~図11において、周波数f1f、f2f、f3f、f4fの脈動成分は、それぞれ周波数次数が1f、2f、3f、4fの脈動成分である。図8は一つの圧縮部が動作した場合における、図1の電力脈動抽出部の抽出結果を示す図であり、図9は二つの圧縮部が動作した場合における、図1の電力脈動抽出部の抽出結果を示す図である。図10は三つの圧縮部が動作した場合における、図1の電力脈動抽出部の抽出結果を示す図であり、図11は四つの圧縮部が動作した場合における、図1の電力脈動抽出部の抽出結果を示す図である。図8~図11の横軸は周波数次数であり、縦軸は電力である。図8のように、1個の圧縮部(k=1)しか冷媒を循環させない圧縮機80の運転モードでは、周波数f1fを有する電力脈動成分が支配的である。この場合、周波数f1fを選択周波数とする。図9のように、2個の圧縮部(k=2)で冷媒を循環させる圧縮機80の運転モードでは、周波数f2fを有する電力脈動成分が大きい。この場合、周波数f2fを選択周波数とする。図10のように、3個の圧縮部(k=3)冷媒を循環させる圧縮機80の運転モードでは、周波数f3fを有する電力脈動成分が支配的になる。この場合、周波数f3fを選択周波数とする。図11のように、全ての圧縮部(k=4)冷媒を圧縮する圧縮機80の運転モードでは、周波数f4fを有する電力脈動成分が大きい。この場合、周波数f4fを選択周波数とする。 8 to 11 show the amplitudes (magnitudes) of the pulsating components of the four frequencies f1f, f2f, f3f, and f4f when N = 4. 8 to 11, pulsation components of frequencies f1f, f2f, f3f, and f4f are pulsation components of frequency orders 1f, 2f, 3f, and 4f, respectively. FIG. 8 is a diagram illustrating an extraction result of the power pulsation extraction unit of FIG. 1 when one compression unit is operated, and FIG. 9 is a diagram of the power pulsation extraction unit of FIG. 1 when two compression units are operated. It is a figure which shows an extraction result. FIG. 10 is a diagram illustrating an extraction result of the power pulsation extraction unit of FIG. 1 when three compression units are operated, and FIG. 11 is a diagram of the power pulsation extraction unit of FIG. 1 when four compression units are operated. It is a figure which shows an extraction result. 8 to 11, the horizontal axis is the frequency order, and the vertical axis is the power. As shown in FIG. 8, in the operation mode of the compressor 80 in which only one compressor (k = 1) circulates the refrigerant, the power pulsation component having the frequency f1f is dominant. In this case, the frequency f1f is set as the selected frequency. As shown in FIG. 9, in the operation mode of the compressor 80 in which the refrigerant is circulated by the two compression units (k = 2), the power pulsation component having the frequency f2f is large. In this case, the frequency f2f is set as the selected frequency. As shown in FIG. 10, in the operation mode of the compressor 80 that circulates three compressors (k = 3) refrigerant, the power pulsation component having the frequency f3f is dominant. In this case, the frequency f3f is selected. As shown in FIG. 11, in the operation mode of the compressor 80 that compresses all the compressors (k = 4) refrigerant, the power pulsation component having the frequency f4f is large. In this case, the frequency f4f is selected.
 図5に、脈動成分の大きさ(振幅)に基づいて運転モードを判別する判別信号生成部10を示した。判別信号生成部10は、最大振幅検出部33と判別部34を備える。最大振幅検出部33は、電力脈動抽出部9に出力した各脈動成分の振幅||x1f||~||xNf||を互いに比較しており、最大の振幅を持つ周波数を検出し、関数値Uとして出力する。すなわち、最大振幅を持つ周波数は、式(9)に示す関数argmaxで求められる。なお、図5では3つの振幅||x1f||、||xkf||、||xNf||のみ記載した。 FIG. 5 shows a determination signal generator 10 that determines the operation mode based on the magnitude (amplitude) of the pulsation component. The determination signal generation unit 10 includes a maximum amplitude detection unit 33 and a determination unit 34. The maximum amplitude detection unit 33 compares the amplitudes || x1f || to || xNf || of the pulsation components output to the power pulsation extraction unit 9 with each other, detects the frequency having the maximum amplitude, Output as U. That is, the frequency having the maximum amplitude is obtained by the function argmax shown in Expression (9). In FIG. 5, only three amplitudes || x1f ||, || xkf ||, and || xNf || are shown.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 関数値Uの値によって、以下のような言語表現の判別ルールに基づいて判別する判別部34により、圧縮機80が運転する運転モードを判別し、判別信号hntを生成する。
 U=mfの場合、hnt=mとする。この場合、m個の圧縮部で冷媒を循環させる運転モードと判別する。なお、mは1~Nの整数である。3つの場合を以下に具体的に示す。
 U=1fの場合、hnt=1とする。この場合、1個の圧縮部で冷媒を循環させる運転モードと判別する。
 U=kfの場合、hnt=kとする。この場合、k個の圧縮部で冷媒を循環させる運転モードと判別する。
 U=Nfの場合、hnt=Nとする。この場合、全ての圧縮部で冷媒を循環させる運転モードと判別する。
Based on the value of the function value U, the determination unit 34 that determines based on the following language expression determination rule determines the operation mode in which the compressor 80 operates, and generates a determination signal hnt.
When U = mf, hnt = m. In this case, it determines with the operation mode which circulates a refrigerant | coolant with m compression parts. Here, m is an integer from 1 to N. Three cases are specifically shown below.
When U = 1f, hnt = 1. In this case, it determines with the operation mode which circulates a refrigerant | coolant by one compression part.
When U = kf, hnt = k. In this case, it is determined as an operation mode in which the refrigerant is circulated by the k compression units.
When U = Nf, hnt = N. In this case, it determines with the operation mode which circulates a refrigerant | coolant in all the compression parts.
 図1に示すように、回転速度指令値生成部13では、判別信号生成部10が出力した判別信号hntと、あらかじめ記憶した各運転モードに対する最適な運転速度指令値とに基づいて、各運転モードに合わせた回転速度指令ωe*を生成する。例えば、電動機1に、圧縮機80の冷媒循環流量が一定になるようにする駆動する場合には、回転速度指令ωe*は、以下のような設定を行う。
 hnt=mの場合、ωe*=ωe0/mとする。なお、mは1~Nの整数である。ωe0は、基準回転速度指令値であり、1個の圧縮部が圧縮動作している場合の回転速度指令値である。3つの場合を以下に具体的に示す。
 hnt=1の場合、ωe*=ωe0とする。
 hnt=kの場合、ωe*=ωe0/kとする。
 hnt=Nの場合、ωe*=ωe0/Nとする。
As shown in FIG. 1, the rotation speed command value generation unit 13 determines each operation mode based on the determination signal hnt output from the determination signal generation unit 10 and the optimum operation speed command value for each operation mode stored in advance. Rotational speed command ωe * according to is generated. For example, when the electric motor 1 is driven so that the refrigerant circulation flow rate of the compressor 80 becomes constant, the rotation speed command ωe * is set as follows.
When hnt = m, ωe * = ωe0 / m. Here, m is an integer from 1 to N. ωe0 is a reference rotational speed command value, and is a rotational speed command value when one compression unit is performing compression operation. Three cases are specifically shown below.
When hnt = 1, ωe * = ωe0.
When hnt = k, ωe * = ωe0 / k.
When hnt = N, ωe * = ωe0 / N.
 図6に示すように、インバータ出力電圧制御部12は、磁束推定部18、積分器19、減算器20、速度制御部21、電流制御部22、電圧座標変換器23を備える。インバータ出力電圧制御部12は、電動機1の磁束の推定に基づいた推定回転速度ω^eをフィードバックする速度制御を行う。本実施の形態では、圧縮機80の電動機1が冷媒の中にあって、電動機1の回転子の位置を検出するエンコーダー等を取り付けるのは困難である。そのため、インバータ出力電圧制御部12は、図6に示した構成を採用した。 As shown in FIG. 6, the inverter output voltage control unit 12 includes a magnetic flux estimation unit 18, an integrator 19, a subtracter 20, a speed control unit 21, a current control unit 22, and a voltage coordinate converter 23. The inverter output voltage control unit 12 performs speed control for feeding back the estimated rotational speed ω ^ e based on the estimation of the magnetic flux of the electric motor 1. In the present embodiment, the electric motor 1 of the compressor 80 is in the refrigerant, and it is difficult to attach an encoder or the like that detects the position of the rotor of the electric motor 1. Therefore, the inverter output voltage control unit 12 employs the configuration shown in FIG.
 圧縮機80が運転する運転モードによって、同じ差圧であっても電動機1の電力の振幅と変動周波数は異なる。上記の判別に基づき、差圧に適した電力になるように、運転モードに合わせた電動機1の回転速度指令を生成すると良い。 Depending on the operation mode in which the compressor 80 is operated, the amplitude and fluctuation frequency of the electric power of the electric motor 1 are different even with the same differential pressure. Based on the above determination, it is preferable to generate a rotation speed command of the electric motor 1 in accordance with the operation mode so that the electric power is suitable for the differential pressure.
 速度制御部21は、回転速度指令値生成部13で生成する回転速度指令ωe*の値と磁束推定部18で推定した推定回転速度ω^eの速度差分Δωを入力として、推定回転速度ω^eが回転速度指令ωe*の値と一致するように、dq軸電流指令ベクトルIdq*を生成し、出力する。ここで、速度差分Δωは、ωe*-ω^eである。なお、回転速度指令ωe*の値は、適宜、回転速度指令値ωe*と表現する。dq軸電流指令ベクトルIdq*の成分は、d軸電流指令id*とq軸電流指令iq*である。 The speed controller 21 receives the value of the rotational speed command ωe * generated by the rotational speed command value generator 13 and the speed difference Δω between the estimated rotational speed ω ^ e estimated by the magnetic flux estimator 18 and inputs the estimated rotational speed ω ^. A dq-axis current command vector Idq * is generated and output so that e matches the value of the rotational speed command ωe *. Here, the speed difference Δω is ωe * −ω ^ e. The value of the rotational speed command ωe * is appropriately expressed as a rotational speed command value ωe *. The components of the dq-axis current command vector Idq * are a d-axis current command id * and a q-axis current command iq *.
 電流制御部22は、速度制御部21から入力されたdq軸電流指令ベクトルIdq*と、電流検出部5で検出した電動機1の検出電流ベクトルIdtを座標変換器6でdq軸電流ベクトルIdqとに基づいて、dq軸電流ベクトルIdqがdq軸電流指令ベクトルIdq*に一致するようにdq軸電圧指令ベクトルVdq*を出力する。 The current control unit 22 converts the dq axis current command vector Idq * input from the speed control unit 21 and the detected current vector Idt of the motor 1 detected by the current detection unit 5 into a dq axis current vector Idq by the coordinate converter 6. Based on this, the dq-axis voltage command vector Vdq * is output so that the dq-axis current vector Idq matches the dq-axis current command vector Idq *.
 電圧座標変換器23は、算出したdq軸電圧指令ベクトルVdq*におけるd軸指令電圧vd*、q軸指令電圧vq*を、式(2)、式(3)の関係から、入力と出力を逆にした逆変換に基づき、電圧指令ベクトルVuvw*における三相の指令電圧vu*、vv*、vw*に変換する。このように、インバータ出力電圧制御部12は、電動機1の電流がdq軸電流指令ベクトルIdq*と一致するように、電圧指令ベクトルVuvw*を生成する。インバータゲート信号生成部14(図1参照)は、電圧指令ベクトルVuvw*を用いてインバータ16の各スイッチング素子のオン及びオフ(ON/OFF)を制御するゲート信号を出力する。 The voltage coordinate converter 23 reverses the input and output of the d-axis command voltage vd * and the q-axis command voltage vq * in the calculated dq-axis voltage command vector Vdq * from the relationship of the formulas (2) and (3). Based on the inverse transformation, the three-phase command voltages vu *, vv *, and vw * in the voltage command vector Vuvw * are converted. As described above, the inverter output voltage control unit 12 generates the voltage command vector Vuvw * so that the current of the motor 1 matches the dq-axis current command vector Idq *. The inverter gate signal generation unit 14 (see FIG. 1) outputs a gate signal for controlling on / off (ON / OFF) of each switching element of the inverter 16 using the voltage command vector Vuvw *.
 図6の磁束推定部18は、dq軸電流ベクトルIdqとdq軸電圧指令ベクトルVdq*を用いて、推定回転速度ω^eを算出する。まず、状態空間表現でdq軸の磁束ベクトルは、dq軸電流ベクトルIdqとdq軸電圧指令ベクトルVdq*を用いて、式(10)の微分方程式で表される。 6 uses the dq-axis current vector Idq and the dq-axis voltage command vector Vdq * to calculate the estimated rotational speed ω ^ e. First, the dq-axis magnetic flux vector in the state space expression is expressed by the differential equation of Expression (10) using the dq-axis current vector Idq and the dq-axis voltage command vector Vdq *.
Figure JPOXMLDOC01-appb-M000010

 ただし、Φ^dsはd軸電気子反作用の磁束であり、Φ^qsはq軸電気子反作用の磁束である。Φ^drはd軸回転子磁束である。Rは電機子の抵抗であり、LdとLqはそれぞれ、電機子におけるd軸インダクタンス及びq軸インダクタンスである。h11、h12、h21、h22、h31、h32は設定したフィードバックゲインである。なお、磁束ベクトル(Φ^ds,Φ^qs,Φ^dr)に基づいたd軸推定電流i^d及びq軸推定電流i^qは、式(11)のように表せる。また、電動機1の推定回転速度ω^eは、式(12)に基づいて計算できる。ただし、i^d及びi^qは磁束推定部18内のd軸推定電流及びq軸推定電流を示す。
Figure JPOXMLDOC01-appb-M000010

However, Φ ^ ds is a magnetic flux of d-axis electron reaction, and Φ ^ qs is a magnetic flux of q-axis electron reaction. Φ ^ dr is the d-axis rotor magnetic flux. R is the resistance of the armature, and Ld and Lq are the d-axis inductance and the q-axis inductance in the armature, respectively. h11, h12, h21, h22, h31, and h32 are set feedback gains. Note that the d-axis estimated current i ^ d and the q-axis estimated current i ^ q based on the magnetic flux vectors (Φ ^ ds, Φ ^ qs, Φ ^ dr) can be expressed as in Expression (11). Further, the estimated rotational speed ω ^ e of the electric motor 1 can be calculated based on the equation (12). However, i ^ d and i ^ q indicate the d-axis estimated current and the q-axis estimated current in the magnetic flux estimating unit 18.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012

 ただし、kapは加速度推定比例ゲインであり、ωapiは加速度推定積分ゲインである。
Figure JPOXMLDOC01-appb-M000012

However, kap is an acceleration estimated proportional gain, and ωapi is an acceleration estimated integral gain.
 その結果、電動機1の回転子の推定回転角度θ^eは、図6の積分器19に基づき式(13)のように算出される。
Figure JPOXMLDOC01-appb-M000013
As a result, the estimated rotation angle θ ^ e of the rotor of the electric motor 1 is calculated as shown in Expression (13) based on the integrator 19 in FIG.
Figure JPOXMLDOC01-appb-M000013
 実施の形態1のインバータ制御装置17は、この様な構成によって、圧縮機80内部の圧力変動または軸トルク変動に応じて変動する圧縮機80の電動機1の検出電流ベクトルIdtから変換したdq軸電流ベクトルIdqと、電動機1の回転を駆動するdq軸電圧指令ベクトルVdq*に基づいて、電動機1の出力電力を推定し、推定した推定電力P^からリアルタイムに算出した各周波数成分の振幅||x1f||、||xkf||、||xNf||を比較することで、圧縮機80における現在の圧縮運転モードを判別することができる。 The inverter control device 17 according to the first embodiment is configured as described above so that the dq-axis current converted from the detected current vector Idt of the motor 1 of the compressor 80 that fluctuates according to the pressure fluctuation or the shaft torque fluctuation inside the compressor 80. Based on the vector Idq and the dq axis voltage command vector Vdq * that drives the rotation of the motor 1, the output power of the motor 1 is estimated, and the amplitude of each frequency component calculated in real time from the estimated power P ^ || x1f By comparing ||, || xkf ||, and || xNf ||, the current compression operation mode in the compressor 80 can be determined.
 また、実施の形態1のインバータ制御装置17は、電動機1の回転子の位置を検出する位置センサを使用しなくても、推定磁束であるd軸電気子反作用の磁束Φ^ds、q軸電気子反作用の磁束Φ^qs、d軸回転子磁束Φ^drに基づいて電動機1の回転速度を推定し、推定した推定回転速度ω^eを計算するインバータ出力電圧制御部12を備えることに基づき、電動機1の速度制御を安定に行うことができる。また、電動機1の回転子の位置を検出する位置センサを使用しないので、インバータ制御装置17とインバータ16に基づき制御される圧縮機80の位置センサのコストの低減が図れる。 Further, the inverter control device 17 of the first embodiment does not use a position sensor that detects the position of the rotor of the electric motor 1, and the magnetic flux Φ ^ ds of the d-axis electron reaction that is the estimated magnetic flux, q-axis electric Based on the provision of the inverter output voltage control unit 12 that estimates the rotational speed of the electric motor 1 based on the magnetic flux Φ ^ qs of the child reaction and the d-axis rotor magnetic flux Φ ^ dr and calculates the estimated estimated rotational speed ω ^ e. The speed control of the electric motor 1 can be performed stably. Further, since the position sensor for detecting the position of the rotor of the electric motor 1 is not used, the cost of the position sensor of the compressor 80 controlled based on the inverter control device 17 and the inverter 16 can be reduced.
 さらに、実施の形態1のインバータ制御装置17が行う圧縮機80の圧縮運転モードを判別する判別方法は、一個以上の圧縮部を有する圧縮機80に適合するだけでなく、異なる圧力変動パターンを持つ圧縮機80の圧縮運転モードを判別することができる。異なる圧力変動パターンを持つ圧縮機80の場合でも、電動機1の電力における脈動成分の各振幅||x1f||、||xkf||、||xNf||に基づいて圧縮運転モードを判別できる。なお、一個の圧力運動パターンを持つ圧縮機80の場合でも圧縮運転モードを判別できるのは言うまでもない。 Furthermore, the determination method for determining the compression operation mode of the compressor 80 performed by the inverter control device 17 of the first embodiment is not only suitable for the compressor 80 having one or more compression units, but also has different pressure fluctuation patterns. The compression operation mode of the compressor 80 can be determined. Even in the case of the compressor 80 having different pressure fluctuation patterns, the compression operation mode can be determined based on the amplitudes || x1f ||, || xkf ||, || xNf || Needless to say, the compression operation mode can be determined even in the case of the compressor 80 having one pressure motion pattern.
 この場合、判別信号生成部10の判別部34における判別ルールは、上記で説明したルールから、他のものに変更する。例えば、一対の渦巻き体を有するスクロール圧縮機による圧縮運転モードか、一個の圧縮部を有するシングル圧縮機における圧縮運転モードかを判別する例を説明する。一対の渦巻き体を有するスクロール圧縮機と、一個の圧縮部を有するシングル圧縮機における支配的な電力脈動成分の周波数は両方でf1fとなっており、今まで説明してきた判別部34における判別ルールに基づいてスクロール機なのかシングル機なのかを判別するのは困難である。 In this case, the determination rule in the determination unit 34 of the determination signal generation unit 10 is changed from the rule described above to another. For example, an example will be described in which it is determined whether the operation mode is a compression operation mode with a scroll compressor having a pair of spiral bodies or a compression operation mode with a single compressor having one compression unit. The frequency of the dominant power pulsation component in both the scroll compressor having a pair of spiral bodies and the single compressor having one compression unit is f1f, and the discrimination rule in the discrimination unit 34 described so far is It is difficult to discriminate whether it is a scroll machine or a single machine based on it.
 スクロール機なのかシングル機なのかを判別する判別ルールを以下に示す。図12は、図1の電力脈動抽出部9による、スクロール機とシングル機の電力の脈動成分の解析結果を示す図である。図12の横軸は周波数次数であり、縦軸は電力である。図12に示すように、電力の0f成分(平均値)の強さ(振幅||x0f||)と、1f成分の強さ(振幅||x1f||)との比率s(||x0f||/||x1f||)を比較すると、スクロール機の比率sはシングル機の比率sより大きくなる。よって、この特徴を用いて、図13に示す判別信号生成部10のように構成する。図13は、図1の他の判別信号生成部を示す図である。図13の判別信号生成部10は、比率算出部90と判別部34を備える。比率算出部90は、電力の0f成分(平均値)の強さと1f成分の強さとの比率s(||x0f||/||x1f||)を算出する。判別部34における判別ルールは以下のように設定する。 The discrimination rules for discriminating whether a scroll machine or a single machine is shown below. FIG. 12 is a diagram illustrating an analysis result of the power pulsation component of the scroll machine and the single machine by the power pulsation extraction unit 9 of FIG. The horizontal axis in FIG. 12 is the frequency order, and the vertical axis is power. As shown in FIG. 12, the ratio s (|| x0f |) of the strength (amplitude || x0f ||) of the 0f component (average value) of power and the strength (amplitude || x1f ||) of the 1f component | / || x1f ||), the ratio s of the scroll machine is larger than the ratio s of the single machine. Therefore, this feature is used to configure the discrimination signal generator 10 shown in FIG. FIG. 13 is a diagram illustrating another determination signal generation unit in FIG. 1. The discrimination signal generation unit 10 in FIG. 13 includes a ratio calculation unit 90 and a discrimination unit 34. The ratio calculation unit 90 calculates a ratio s (|| x0f || / | x1f ||) between the strength of the 0f component (average value) and the strength of the 1f component of the electric power. The discrimination rules in the discrimination unit 34 are set as follows.
 s>5の場合に、スクロール機と判別し、判別信号hntの値を例えば10とする。
 s<3の場合に、シングル機と判別し、判別信号hntの値を例えば1とする。
When s> 5, it is determined as a scroll machine, and the value of the determination signal hnt is set to 10, for example.
When s <3, it is determined as a single machine, and the value of the determination signal hnt is set to 1, for example.
 よって、図13に示す判別信号生成部10を備えたインバータ制御装置17は、スクロール圧縮機の運転とシングルロータリ圧縮機(シングル機)の運転とを判別できる。圧縮機80の機種が複数ある場合にも、圧縮機80の機種を判別する判別信号生成部10を構成することで、回転速度指令値生成部13ではあらかじめ記憶した各運転モードに対する最適な運転速度指令と、判別信号生成部10から出力された判別信号hntによって、圧縮機80の機種に合わせた回転速度指令値ωe*を生成することができる。 Therefore, the inverter control device 17 including the determination signal generation unit 10 shown in FIG. 13 can determine the operation of the scroll compressor and the operation of the single rotary compressor (single machine). Even when there are a plurality of models of the compressor 80, the rotation speed command value generation unit 13 is configured to determine the optimum operation speed for each operation mode stored in advance by configuring the determination signal generation unit 10 that determines the model of the compressor 80. Based on the command and the determination signal hnt output from the determination signal generation unit 10, it is possible to generate a rotation speed command value ωe * according to the model of the compressor 80.
 なお、本発明の実施の形態1において閉ループ制御を行う例で説明したが、磁束ベクトル制御やV/f制御のような開ループ制御を行う場合でも、インバータ制御装置17が運転モード判別部7を有するため、圧縮機80の圧縮運転モードを判別できる。 Although the example in which the closed loop control is performed in the first embodiment of the present invention has been described, the inverter control device 17 sets the operation mode determination unit 7 even when performing the open loop control such as the magnetic flux vector control and the V / f control. Therefore, the compression operation mode of the compressor 80 can be determined.
 また、上記に示した電動機1の回転速度を推定する方法は、位置センサを使用せずに、電動機1の回転速度を推定する方法の一例であり、上記以外の回転速度の推定方法を用いてもよい。 Moreover, the method for estimating the rotational speed of the electric motor 1 described above is an example of a method for estimating the rotational speed of the electric motor 1 without using a position sensor, and a rotational speed estimation method other than the above is used. Also good.
 実施の形態1のインバータ圧縮機100は、実施の形態1のインバータ制御装置17を備えるので、圧縮機80の運転モードを判別することができる。また、実施の形態1のインバータ圧縮機100は、冷媒を圧縮させる圧縮部の数が変わる圧縮機80における運転モードの切り替わりを自動的に検出し、そのモード毎に電動機1の回転速度ωeを変更するように制御することによって、冷媒循環流量が一定になるようにすることができる。 Since the inverter compressor 100 according to the first embodiment includes the inverter control device 17 according to the first embodiment, the operation mode of the compressor 80 can be determined. Moreover, the inverter compressor 100 of Embodiment 1 automatically detects the switching of the operation mode in the compressor 80 in which the number of compression units that compress the refrigerant changes, and changes the rotational speed ωe of the electric motor 1 for each mode. By controlling to do so, the refrigerant circulation flow rate can be made constant.
 以上のように、実施の形態1のインバータ制御装置17は、駆動対象機械(圧縮機80)を駆動する電動機1を、インバータ16にて変換した交流電圧に基づき制御するインバータ制御装置であって、電動機1は、機械角一回転中の電力変動における電力または軸トルクの変動成分周波数を有する運転モードで運転され、電動機1に制御電圧を印加する電源線(三相電源線u、v、w)の電流から電動機1の電力または軸トルクを推定し、推定した推定電力P^または推定トルクτ^の変動成分周波数に関連した周波数成分に基づいて、電動機1の運転モードを判別する運転モード判別部7と、運転モード判別部7にて判別した運転モードに応じた回転速度指令ωe*を生成する回転速度指令値生成部13と、回転速度指令ωe*の値に基づいて電動機1に印加する制御電圧の電圧指令(電圧指令ベクトルVuvw*)を生成するインバータ出力電圧制御部12と、を備えたことを特徴とする。この構成に基づき、実施の形態1のインバータ制御装置17は、電動機1の電力または軸トルクを推定し、推定した推定電力P^または推定トルクτ^の変動成分周波数に関連した周波数成分を算出するので、駆動対象機械(圧縮機80)の運転モードを判別することができる。 As described above, the inverter control device 17 according to the first embodiment is an inverter control device that controls the electric motor 1 that drives the drive target machine (compressor 80) based on the AC voltage converted by the inverter 16. The electric motor 1 is operated in an operation mode having a fluctuation component frequency of electric power or shaft torque in electric power fluctuation during one rotation of the mechanical angle, and a power supply line (three-phase power supply lines u, v, w) for applying a control voltage to the electric motor 1 An operation mode discriminating unit for estimating the operation mode of the electric motor 1 based on the frequency component related to the fluctuation component frequency of the estimated estimated power P ^ or the estimated torque τ ^. 7, a rotation speed command value generation unit 13 that generates a rotation speed command ωe * according to the operation mode determined by the operation mode determination unit 7, and the value of the rotation speed command ωe *. Wherein the inverter output voltage control unit 12 that generates a voltage command of the control voltage applied to the motor 1 (* voltage command vector Vuvw), further comprising a Te. Based on this configuration, the inverter control device 17 of the first embodiment estimates the electric power or shaft torque of the electric motor 1 and calculates a frequency component related to the fluctuation component frequency of the estimated electric power P ^ or the estimated torque τ ^. Therefore, the operation mode of the drive target machine (compressor 80) can be determined.
 実施の形態1のインバータ圧縮機100は、複数の圧縮部と、圧縮部の全てを一つの回転軸で駆動する電動機1と、電動機1をインバータ16にて変換した交流電圧に基づき制御するインバータ制御装置17を備える。インバータ圧縮機100のインバータ制御装置17は、駆動対象機械(圧縮機80)を駆動する電動機1を、インバータ16にて変換した交流電圧に基づき制御するインバータ制御装置であって、電動機1は、機械角一回転中の電力変動における電力または軸トルクの変動成分周波数を有する運転モードで運転され、電動機1に制御電圧を印加する電源線(三相電源線u、v、w)の電流から電動機1の電力または軸トルクを推定し、推定した推定電力P^または推定トルクτ^の変動成分周波数に関連した周波数成分に基づいて、電動機1の運転モードを判別する運転モード判別部7と、運転モード判別部7にて判別した運転モードに応じた回転速度指令ωe*を生成する回転速度指令値生成部13と、回転速度指令ωe*の値に基づいて電動機1に印加する制御電圧の電圧指令(電圧指令ベクトルVuvw*)を生成するインバータ出力電圧制御部12と、を備えたことを特徴とする。この構成に基づき、実施の形態1のインバータ圧縮機100は、電動機1の電力または軸トルクを推定し、推定した推定電力P^または推定トルクτ^の変動成分周波数に関連した周波数成分を算出するので、駆動対象機械(圧縮機80)の運転モードを判別することができる。 Inverter compressor 100 of the first embodiment includes a plurality of compression units, an electric motor 1 that drives all of the compression units with one rotating shaft, and an inverter control that controls the electric motor 1 based on an alternating voltage converted by an inverter 16. A device 17 is provided. The inverter control device 17 of the inverter compressor 100 is an inverter control device that controls the electric motor 1 that drives the drive target machine (compressor 80) based on the AC voltage converted by the inverter 16, and the electric motor 1 is a machine. The motor 1 is operated from an electric current of a power supply line (three-phase power supply lines u, v, w) that is operated in an operation mode having a fluctuation component frequency of electric power or shaft torque in the electric power fluctuation during one rotation of the angle. An operation mode discriminating unit 7 that discriminates an operation mode of the electric motor 1 based on a frequency component related to a fluctuation component frequency of the estimated estimated power P ^ or estimated torque τ ^. A rotation speed command value generation unit 13 that generates a rotation speed command ωe * according to the operation mode determined by the determination unit 7, and an electric power based on the value of the rotation speed command ωe *. An inverter output voltage control unit 12 that generates a voltage command of the control voltage applied to the machine 1 (* voltage command vector Vuvw), characterized by comprising a. Based on this configuration, inverter compressor 100 of the first embodiment estimates the power or shaft torque of motor 1 and calculates a frequency component related to the estimated component P ^ or the fluctuation component frequency of estimated torque τ ^. Therefore, the operation mode of the drive target machine (compressor 80) can be determined.
 なお、上記変動成分周波数は、電動機1の機械角一回転中、機械の負荷が周期的に変動することに起因した軸トルクまたは電力の一つ以上の変動成分の周波数であり、上記の電力の脈動成分の周波数を含む。 The fluctuation component frequency is a frequency of one or more fluctuation components of the shaft torque or power resulting from the periodic fluctuation of the machine load during one rotation of the machine angle of the electric motor 1. Includes the frequency of the pulsating component.
 なお、図1の機能ブロック図の回転速度指令値生成部13、座標変換器6、運転モード判別部7、インバータ出力電圧制御部12及びインバータゲート信号生成部14は、図14に示す記憶装置302に記憶されたプログラムを実行するプロセッサ301により実現される。図14は本実施の形態によるインバータ制御装置及びインバータ圧縮機のハードウェア構成を示す図である。インバータ制御装置17はプロセッサ301、記憶装置302、電流検出部5、インバータ16を備えている。記憶装置302では各実施の形態における機能プログラムが予め記憶される。プロセッサ301は記憶装置302で記憶される機能プログラムを実施するものである。プロセッサ301は上位のコントローラ300と通信を行う。また、複数のプロセッサ301及び複数の記憶装置302が連携して上記の機能プログラムを実行しても良い。さらに、プロセッサ301及び記憶装置302は、本発明の機能を実行するだけでなく、直流電源の制御やリモートコントローラとの通信等の他の機能を同時に実施しても良い。 The rotational speed command value generation unit 13, the coordinate converter 6, the operation mode determination unit 7, the inverter output voltage control unit 12, and the inverter gate signal generation unit 14 in the functional block diagram of FIG. This is realized by the processor 301 that executes the program stored in the memory. FIG. 14 is a diagram illustrating a hardware configuration of the inverter control device and the inverter compressor according to the present embodiment. The inverter control device 17 includes a processor 301, a storage device 302, a current detection unit 5, and an inverter 16. In the storage device 302, the function program in each embodiment is stored in advance. The processor 301 executes a function program stored in the storage device 302. The processor 301 communicates with the host controller 300. In addition, a plurality of processors 301 and a plurality of storage devices 302 may cooperate to execute the above function program. Furthermore, the processor 301 and the storage device 302 may not only execute the functions of the present invention but also simultaneously perform other functions such as control of a DC power supply and communication with a remote controller.
実施の形態2.
 図15は、本発明の実施の形態2によるインバータ制御装置及びインバータ圧縮機を示すブロック図である。図16は図15の電力推定部と出力トルク推定部を示す図であり、図17は図15の電力脈動抽出部を示す図である。図18は図15のインバータ出力電圧制御部を示す図であり、図19は図15のトルク制御部を示す図である。図15において、運転モード判別部7、インバータ出力電圧制御部12の構成以外は実施の形態1と同様である。実施の形態2のインバータ制御装置17は、座標変換器6、運転モード判別部7、回転速度指令値生成部13、インバータ出力電圧制御部12、インバータゲート信号生成部14を備えている。実施の形態2の運転モード判別部7は、電力推定部8、トルク補償値生成部25、判別信号生成部10を備えている。すなわち、実施の形態2の運転モード判別部7は、実施の形態1の電力脈動抽出部9の代わりにトルク補償値生成部25を備えている。トルク補償値生成部25は、出力トルク推定部35、トルク脈動抽出部36を備えている。実施の形態2のインバータ出力電圧制御部12は、図18に示すように、電流制御部22、電圧座標変換器23、速度制御部46、トルク指令値補償部47、トルク制御部48、磁束推定部18、積分器19、減算器20を備えている。なお、図15では、インバータ出力電圧制御部12の構成として、電流制御部22、電圧座標変換器23、速度制御部46、トルク指令値補償部47、トルク制御部48のみを示した。
Embodiment 2. FIG.
FIG. 15 is a block diagram showing an inverter control device and an inverter compressor according to the second embodiment of the present invention. 16 is a diagram illustrating the power estimation unit and the output torque estimation unit of FIG. 15, and FIG. 17 is a diagram illustrating the power pulsation extraction unit of FIG. 18 is a diagram showing the inverter output voltage control unit of FIG. 15, and FIG. 19 is a diagram showing the torque control unit of FIG. In FIG. 15, the configuration is the same as that of the first embodiment except for the configuration of the operation mode determination unit 7 and the inverter output voltage control unit 12. The inverter control device 17 according to the second embodiment includes a coordinate converter 6, an operation mode determination unit 7, a rotation speed command value generation unit 13, an inverter output voltage control unit 12, and an inverter gate signal generation unit 14. The operation mode determination unit 7 according to the second embodiment includes a power estimation unit 8, a torque compensation value generation unit 25, and a determination signal generation unit 10. That is, the operation mode determination unit 7 of the second embodiment includes a torque compensation value generation unit 25 instead of the power pulsation extraction unit 9 of the first embodiment. The torque compensation value generation unit 25 includes an output torque estimation unit 35 and a torque pulsation extraction unit 36. As shown in FIG. 18, the inverter output voltage control unit 12 according to the second embodiment includes a current control unit 22, a voltage coordinate converter 23, a speed control unit 46, a torque command value compensation unit 47, a torque control unit 48, and magnetic flux estimation. A unit 18, an integrator 19, and a subtracter 20 are provided. In FIG. 15, only the current control unit 22, the voltage coordinate converter 23, the speed control unit 46, the torque command value compensation unit 47, and the torque control unit 48 are shown as the configuration of the inverter output voltage control unit 12.
 出力トルク推定部35は、電力推定部8が演算した推定電力P^に基づいて電動機1のトルク(推定トルクτ^)を計算する。トルク脈動抽出部36は、出力トルク推定部35が推定した推定トルクτ^を特定の周波数で検波した電力の脈動成分(トルク脈動成分τ^kf)を抽出する。また、トルク脈動抽出部36は、推定トルクτ^を所定の周波数で検波したトルクの脈動成分(リプル成分)の振幅||τkf||を抽出する。インバータ出力電圧制御部12の速度制御部46は、回転速度指令ωe*に基づいたトルク指令τ*を生成する。トルク指令値補償部47は、速度制御部46が生成したトルク指令τ*と、トルク脈動抽出部36が抽出したトルク脈動成分τ^kfに基づいて補正された補償値であるトルク補正指令τrefを生成する。トルク制御部48は、補正されたトルク補正指令τrefに基づいて、dq軸電流指令ベクトルIdq*を生成する。電圧座標変換器23は、電動機1を制御するための電圧指令ベクトルVuvw*を算出する。運転モード判別部7の判別信号生成部10は、トルク脈動抽出部36で抽出したトルク脈動成分τ^kfの内、支配的な脈動成分に基づいて圧縮機80の圧縮運転モードを判別する判別信号hntを生成する。以上の構成において、実施の形態2のインバータ制御装置17は、電動機1の出力トルクを軸トルクに追従させることができて、電動機1の回転速度の変動を低減できる。 The output torque estimation unit 35 calculates the torque (estimated torque τ ^) of the electric motor 1 based on the estimated power P ^ calculated by the power estimation unit 8. The torque pulsation extraction unit 36 extracts a pulsation component of power (torque pulsation component τ ^ kf) obtained by detecting the estimated torque τ ^ estimated by the output torque estimation unit 35 at a specific frequency. Further, the torque pulsation extraction unit 36 extracts the amplitude || τkf || of the pulsation component (ripple component) of torque obtained by detecting the estimated torque τ ^ at a predetermined frequency. The speed control unit 46 of the inverter output voltage control unit 12 generates a torque command τ * based on the rotation speed command ωe *. The torque command value compensation unit 47 receives a torque correction command τref, which is a compensation value corrected based on the torque command τ * generated by the speed control unit 46 and the torque pulsation component τ ^ kf extracted by the torque pulsation extraction unit 36. Generate. The torque control unit 48 generates a dq axis current command vector Idq * based on the corrected torque correction command τref. The voltage coordinate converter 23 calculates a voltage command vector Vuvw * for controlling the electric motor 1. The determination signal generation unit 10 of the operation mode determination unit 7 determines a compression operation mode of the compressor 80 based on the dominant pulsation component of the torque pulsation component τ ^ kf extracted by the torque pulsation extraction unit 36. Generate hnt. In the above configuration, the inverter control device 17 according to the second embodiment can cause the output torque of the electric motor 1 to follow the shaft torque, and can reduce fluctuations in the rotational speed of the electric motor 1.
 図16のように、出力トルク推定部35は、除算器38と乗算器37を備え、電力推定部8が算出した推定電力P^から推定トルクτ^を算出する。出力トルク推定部35は、電力推定部8が算出した推定電力P^と、電動機1の極対数Pmと、電動機1の推定回転速度ω^eとに基づいて、推定トルクτ^を式(14)のように演算する。 As shown in FIG. 16, the output torque estimation unit 35 includes a divider 38 and a multiplier 37, and calculates the estimated torque τ ^ from the estimated power P ^ calculated by the power estimation unit 8. Based on the estimated power P ^ calculated by the power estimation unit 8, the number of pole pairs Pm of the electric motor 1, and the estimated rotational speed ω ^ e of the electric motor 1, the output torque estimating unit 35 calculates the estimated torque τ ^ by the equation (14). ).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 なお、推定電力P^から推定トルクτ^を求める計算式は、式(14)に限定されず、次の式(15)に示すように電動機1の電流(d軸電流id、q軸電流iq)に基づいて算出しても良い。ただし、Φfは永久磁石による電機子鎖交磁束である。
Figure JPOXMLDOC01-appb-M000015
The calculation formula for obtaining the estimated torque τ ^ from the estimated power P ^ is not limited to the expression (14), but the current of the motor 1 (d-axis current id, q-axis current iq as shown in the following expression (15)). ). However, (PHI) f is an armature linkage magnetic flux by a permanent magnet.
Figure JPOXMLDOC01-appb-M000015
 図17に、圧縮機80の圧力変動または軸トルク変動に起因するトルク脈動成分及びそのトルク脈動成分の大きさ(振幅)を算出するトルク脈動抽出部36を示した。トルク脈動抽出部36は、実施の形態1の電力脈動抽出部9と同様に、推定トルクτ^を所定の周波数で検波したトルクの脈動成分(リプル成分)の振幅||τkf||を抽出する。kは1からNの整数であり、脈動成分の振幅は、||τ1f||から||τNf||まで存在する。しかし、トルク脈動抽出部36は、実施の形態1の電力脈動抽出部9と異なり、所定の周波数(例えばfkf、kは1~Nの整数)における時間的な振動成分であるトルク脈動成分τ^kfを以下の式(16)のように抽出する。トルク脈動抽出部36が抽出するトルク脈動成分は、τ^1fからτ^Nfまで存在する。 FIG. 17 shows the torque pulsation extraction unit 36 that calculates the torque pulsation component caused by the pressure fluctuation or the shaft torque fluctuation of the compressor 80 and the magnitude (amplitude) of the torque pulsation component. Similar to the power pulsation extraction unit 9 of the first embodiment, the torque pulsation extraction unit 36 extracts the amplitude || τkf || of the torque pulsation component (ripple component) obtained by detecting the estimated torque τ ^ at a predetermined frequency. . k is an integer from 1 to N, and the amplitude of the pulsating component exists from || τ1f || to || τNf ||. However, unlike the power pulsation extraction unit 9 of the first embodiment, the torque pulsation extraction unit 36 is a torque pulsation component τ ^ that is a temporal vibration component at a predetermined frequency (eg, fkf, k is an integer from 1 to N). kf is extracted as in the following equation (16). Torque pulsation components extracted by the torque pulsation extraction unit 36 exist from τ ^ 1f to τ ^ Nf.
 トルク脈動抽出部36は、実施の形態1と同様に、圧縮機80の運転モード、すなわち運転されている圧縮部の個数を判別するために、圧縮部の個数分のトルク脈動成分を抽出する。図17に示すように、トルク脈動抽出部36は、圧縮機80がN個の圧縮部を備えている例で説明する。トルク脈動抽出部36は、N個のトルク脈動成分抽出器を備えている。それぞれのトルク脈動成分抽出器は、特定周波数を有するトルク脈動成分を生成すると共に、このトルク脈動成分の大きさ(振幅)を算出する。図17では、3つのトルク脈動成分抽出器101a、101b、101cを示した。電力脈動成分抽出器の符号は、総括的に101を用い、区別する場合に101a、101b、101cを用いる。トルク脈動成分抽出器101の具体的な構成は、トルク脈動成分抽出器101bに示した。トルク脈動成分抽出器101aは、周波数f1fにおけるトルク脈動成分τ^1f及びその振幅||τ1f||を計算する。トルク脈動成分抽出器101bは、周波数fkfにおけるトルク脈動成分τ^kf及びその振幅||τkf||を計算する。トルク脈動成分抽出器101cは、周波数fNfにおけるトルク脈動成分τ^Nf及びその振幅||τNf||を計算する。トルク脈動成分抽出器101の構成を、トルク脈動成分抽出器101bを例として説明する。 As in the first embodiment, the torque pulsation extraction unit 36 extracts torque pulsation components corresponding to the number of compression units in order to determine the operation mode of the compressor 80, that is, the number of compression units being operated. As shown in FIG. 17, the torque pulsation extraction unit 36 will be described using an example in which the compressor 80 includes N compression units. The torque pulsation extraction unit 36 includes N torque pulsation component extractors. Each torque pulsation component extractor generates a torque pulsation component having a specific frequency and calculates the magnitude (amplitude) of the torque pulsation component. In FIG. 17, three torque pulsation component extractors 101a, 101b, and 101c are shown. The code of the power pulsation component extractor uses 101 as a whole, and 101a, 101b, and 101c are used for distinction. The specific configuration of the torque pulsation component extractor 101 is shown in the torque pulsation component extractor 101b. The torque pulsation component extractor 101a calculates the torque pulsation component τ ^ 1f at the frequency f1f and its amplitude || τ1f ||. The torque pulsation component extractor 101b calculates the torque pulsation component τ ^ kf and its amplitude || τkf || at the frequency fkf. The torque pulsation component extractor 101c calculates the torque pulsation component τ ^ Nf and its amplitude || τNf || at the frequency fNf. The configuration of the torque pulsation component extractor 101 will be described using the torque pulsation component extractor 101b as an example.
 トルク脈動成分抽出器101は、余弦波生成部39、正弦波生成部40、積分器42a、42b、乗算器41a、41b、43a、43b、加算器44、振幅算出部102を備える。推定トルクτ^の余弦波成分であるトルク余弦波成分τkAは、次のように生成する。まず、余弦波生成部39及び乗算器41aで、周波数fkfの推定トルクτ^の余弦波成分、すなわちノイズを含む初期余弦波成分を生成する。積分器42aでこの初期余弦波成分を積分し、余弦波成分の振幅||τkA||を算出する。乗算器43aで振幅||τkA||と周波数fkfの余弦波とを乗算することで、ノイズが除去されたトルク余弦波成分τkAが生成される。トルク余弦波成分τkAは、式(16)の右辺における第一項(cosの項)である。 The torque pulsation component extractor 101 includes a cosine wave generator 39, a sine wave generator 40, integrators 42a and 42b, multipliers 41a, 41b, 43a and 43b, an adder 44, and an amplitude calculator 102. A torque cosine wave component τkA, which is a cosine wave component of the estimated torque τ ^, is generated as follows. First, the cosine wave generation unit 39 and the multiplier 41a generate a cosine wave component of the estimated torque τ ^ of the frequency fkf, that is, an initial cosine wave component including noise. The integrator 42a integrates this initial cosine wave component, and calculates the amplitude || τkA || of the cosine wave component. The multiplier 43a multiplies the amplitude || τkA || by the cosine wave having the frequency fkf to generate a torque cosine wave component τkA from which noise has been removed. The torque cosine wave component τkA is the first term (cos term) on the right side of Equation (16).
 推定トルクτ^の正弦波成分であるトルク正弦波成分τkBは、次のように生成する。まず、正弦波生成部40及び乗算器41bで、周波数fkfの推定トルクτ^の正弦波成分、すなわちノイズを含む初期正弦波成分を生成する。積分器42bでこの初期正弦波成分を積分し、正弦波成分の振幅||τkB||を算出する。乗算器43bで振幅||τkB||と周波数fkfの正弦波を乗算することで、ノイズが除去されたトルク正弦波成分τkBが生成される。トルク正弦波成分τkBは、式(16)の右辺における第二項(sinの項)である。加算器44に基づき、トルク余弦波成分τkAとトルク正弦波成分τkBとを統合することで、所定の周波数fkfにおける推定トルクτ^の時間的な振動成分であるトルク脈動成分τ^kfが生成される。トルク脈動成分τ^kfは合成トルク脈動成分である。 The torque sine wave component τkB, which is the sine wave component of the estimated torque τ ^, is generated as follows. First, the sine wave generation unit 40 and the multiplier 41b generate a sine wave component of the estimated torque τ ^ of the frequency fkf, that is, an initial sine wave component including noise. The integrator 42b integrates this initial sine wave component to calculate the amplitude || τkB || of the sine wave component. The multiplier 43b multiplies the sine wave of amplitude || τkB || and frequency fkf to generate a torque sine wave component τkB from which noise has been removed. The torque sine wave component τkB is the second term (sin term) on the right side of Equation (16). Based on the adder 44, the torque cosine wave component τkA and the torque sine wave component τkB are integrated to generate a torque pulsation component τ ^ kf that is a temporal vibration component of the estimated torque τ ^ at a predetermined frequency fkf. The The torque pulsation component τ ^ kf is a combined torque pulsation component.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 振幅算出部102は、余弦波成分の振幅||τkA||と正弦波成分の振幅||τkB||から、式(17)のように、周波数fkfにおけるトルク脈動成分τ^kfの振幅||τkf||を計算する。
Figure JPOXMLDOC01-appb-M000017
The amplitude calculation unit 102 calculates the amplitude || of the torque pulsation component τ ^ kf at the frequency fkf from the amplitude || τkA || of the cosine wave component and the amplitude || τkB || τkf || is calculated.
Figure JPOXMLDOC01-appb-M000017
 図20、図21を用いてトルク補償の原理を説明する。図20はトルク脈動による回転速度変化を説明する図であり、図21は本発明の実施の形態2によるトルク脈動の補償を説明する図である。まず、電動機1が出力する機械回転速度ωmは、式(18)のように算出できる。 The principle of torque compensation will be described with reference to FIGS. FIG. 20 is a diagram for explaining a change in rotational speed due to torque pulsation, and FIG. 21 is a diagram for explaining compensation for torque pulsation according to Embodiment 2 of the present invention. First, the mechanical rotation speed ωm output from the electric motor 1 can be calculated as shown in Expression (18).
Figure JPOXMLDOC01-appb-M000018

 ここで、pは微分数子であり、TeとTLはそれぞれ電動機1の出力トルクと負荷トルクである。Jは慣性モーメントである。
Figure JPOXMLDOC01-appb-M000018

Here, p is a differential number, Te and TL are the output torque and load torque of the electric motor 1, respectively. J is the moment of inertia.
 図20は速度制御部46の出力に補償がない場合を示すものであり、図21は速度制御部46の出力に補償がある場合を示すものである。図20の上段には、トルク指令τ*のトルク指令波形92を示した。図20の中段には、出力トルクTeの出力トルク波形94a及び負荷トルクTLの負荷トルク波形93aを示した。図20の下段には、電動機1の機械回転速度ωmの回転速度波形95aを示した。図20の横軸は時間であり、縦軸はトルク及び回転速度である。図21の上段には、トルク指令τ*のトルク指令波形92と、トルク振動成分のトルク振動成分波形96を示した。図21の中段には、出力トルクTeの出力トルク波形94b及び負荷トルクTLの負荷トルク波形93bを示した。図21の下段には、電動機1の機械回転速度ωmの回転速度波形95bを示した。図21の横軸は時間であり、縦軸はトルク及び回転速度である。 FIG. 20 shows a case where the output of the speed control unit 46 is not compensated, and FIG. 21 shows a case where the output of the speed control unit 46 is compensated. The upper part of FIG. 20 shows a torque command waveform 92 of the torque command τ *. The middle part of FIG. 20 shows an output torque waveform 94a of the output torque Te and a load torque waveform 93a of the load torque TL. The lower part of FIG. 20 shows a rotational speed waveform 95a of the mechanical rotational speed ωm of the electric motor 1. In FIG. 20, the horizontal axis represents time, and the vertical axis represents torque and rotational speed. 21 shows a torque command waveform 92 of the torque command τ * and a torque vibration component waveform 96 of the torque vibration component. 21 shows an output torque waveform 94b of the output torque Te and a load torque waveform 93b of the load torque TL. The lower part of FIG. 21 shows a rotational speed waveform 95b of the mechanical rotational speed ωm of the electric motor 1. In FIG. 21, the horizontal axis represents time, and the vertical axis represents torque and rotational speed.
 速度制御部46では、磁束推定部18で算出した磁束(d軸回転子磁束Φ^dr)に基づいた電動機1の推定回転速度ω^eが回転速度指令値生成部13から設定された回転速度(回転速度指令ωe*の値)に釣り合うように、トルク指令τ*を演算する。そのため、回転速度指令ωe*が一定であればトルク指令τ*は一定となる。しかし、図20の中段に示すように、一定のトルク指令値で制御される電動機1の出力トルクTeと圧縮機80の運転モードにおける負荷トルクTLの差分Te-TL(負荷トルク波形93aと出力トルク波形94aとで囲まれた斜線部分)は、周期的に変っている。このため、図20の下段の回転速度波形95aに示すように、回転速度ωeの脈動は大きくなる。従って、出力トルクTeを負荷トルクTLに追従できるように差分Te-TLを小さくして、回転速度ωeの脈動を低減する必要がある。そのため、図21に示すように、負荷トルクTLから抽出したトルク脈動成分τ^kfを補償量としてトルク指令τ*に重畳させることに基づき、出力トルクTeは負荷トルクTLに釣り合い、その結果として回転速度ωeの脈動を低減できる。補償がされていない場合における回転速度波形95aの回転速度振幅はA1であり、補償がされている場合における回転速度波形95bの回転速度振幅はA2であり、回転速度振幅A2は回転速度振幅A1よりも小さくなっている。 In the speed controller 46, the estimated rotational speed ω ^ e of the electric motor 1 based on the magnetic flux (d-axis rotor magnetic flux Φ ^ dr) calculated by the magnetic flux estimator 18 is the rotational speed set by the rotational speed command value generator 13. The torque command τ * is calculated so as to be balanced with (the value of the rotation speed command ωe *). Therefore, if the rotational speed command ωe * is constant, the torque command τ * is constant. However, as shown in the middle part of FIG. 20, the difference Te−TL (the load torque waveform 93a and the output torque) between the output torque Te of the electric motor 1 controlled with a constant torque command value and the load torque TL in the operation mode of the compressor 80. The shaded area surrounded by the waveform 94a) changes periodically. For this reason, as shown in the lower rotation speed waveform 95a of FIG. 20, the pulsation of the rotation speed ωe increases. Therefore, it is necessary to reduce the difference Te−TL so that the output torque Te can follow the load torque TL, thereby reducing the pulsation of the rotational speed ωe. Therefore, as shown in FIG. 21, the output torque Te is balanced with the load torque TL based on the torque pulsation component τ ^ kf extracted from the load torque TL being superimposed on the torque command τ * as a compensation amount. The pulsation of the speed ωe can be reduced. The rotational speed amplitude of the rotational speed waveform 95a when the compensation is not performed is A1, the rotational speed amplitude of the rotational speed waveform 95b when the compensation is performed is A2, and the rotational speed amplitude A2 is greater than the rotational speed amplitude A1. Is also getting smaller.
 トルク脈動成分τ^kfは、周波数fkfのトルク脈動成分であり、周波数はf1fからfNfまでいずれかである。最適な周波数は次のように選べばよい。例えば、支配的な脈動成分の周波数、すなわち脈動成分の振幅||τkf||が最大となる周波数を選ぶ。この場合、周波数fkfが選択周波数である。 The torque pulsation component τ ^ kf is a torque pulsation component having a frequency fkf, and the frequency is any one of f1f to fNf. The optimum frequency may be selected as follows. For example, the frequency of the dominant pulsation component, that is, the frequency at which the amplitude || τkf || In this case, the frequency fkf is the selected frequency.
 判別信号生成部10は、図5に示す構成と同様である。ただし、実施の形態2の判別信号生成部10の最大振幅検出部33は、トルク脈動抽出部36で算出した複数の周波数(f1f~fNf)のトルク脈動の振幅(||τ1f||~||τNf||)を入力とし、最大の振幅を持つ周波数を検出し、式(9)の入力を||τ1f||か~||τNf||に変えて演算した関数値Uを出力する。関数値Uの値によって、以下のような言語表現の判別ルールに基づいて判別する判別部34に基づき、圧縮機80が運転する運転モードを判別し、判別信号hntを生成する。 The discrimination signal generator 10 has the same configuration as that shown in FIG. However, the maximum amplitude detection unit 33 of the determination signal generation unit 10 of the second embodiment uses the torque pulsation amplitudes (|| τ1f || ˜ ||) of the plurality of frequencies (f1f to fNf) calculated by the torque pulsation extraction unit 36. τNf || is input, the frequency having the maximum amplitude is detected, and the function value U calculated by changing the input of Equation (9) to || τ1f || Based on the function value U, the operation mode in which the compressor 80 operates is determined based on the determination unit 34 that determines based on the following language expression determination rule, and generates a determination signal hnt.
 U=mfの場合、hnt=mとする。この場合、m個の圧縮部で冷媒を循環させる運転モードと判別する。なお、mは1~Nの整数である。3つの場合を以下に具体的に示す。
 U=1fの場合、hnt=1とする。この場合、1個の圧縮部で冷媒を循環させる運転モードと判別する。
 U=kfの場合、hnt=kとする。この場合、k個の圧縮部で冷媒を循環させる運転モードと判別する。
 U=Nfの場合、hnt=Nとする。この場合、全ての圧縮部で冷媒を循環させる運転モードと判別する。
When U = mf, hnt = m. In this case, it determines with the operation mode which circulates a refrigerant | coolant with m compression parts. Here, m is an integer from 1 to N. Three cases are specifically shown below.
When U = 1f, hnt = 1. In this case, it determines with the operation mode which circulates a refrigerant | coolant by one compression part.
When U = kf, hnt = k. In this case, it is determined as an operation mode in which the refrigerant is circulated by the k compression units.
When U = Nf, hnt = N. In this case, it determines with the operation mode which circulates a refrigerant | coolant in all the compression parts.
 回転速度指令値生成部13は、実施の形態1と同様に、各運転モードに対する運転速度指令ωe*が用意されている。回転速度指令値生成部13は、判別信号生成部10で出力した判別信号hntに基づき、各運転モードにおける所定の回転速度指令ωe*を出力する。 Rotational speed command value generation unit 13 is provided with an operating speed command ωe * for each operating mode, as in the first embodiment. The rotation speed command value generation unit 13 outputs a predetermined rotation speed command ωe * in each operation mode based on the determination signal hnt output from the determination signal generation unit 10.
 図18は、図21のトルク補償の原理を適用したインバータ出力電圧制御部12の構成を示すものである。図18において、実施の形態2のインバータ出力電圧制御部12は、実施の形態1の速度制御部21に代えて、速度制御部46、トルク指令値補償部47、トルク制御部48を備えている。速度制御部46は、回転速度指令値生成部13で生成する回転速度指令ωe*の値と磁束推定部18で推定した推定回転速度ω^eの速度差分Δωを入力として、推定回転速度ω^eが回転速度指令ωe*の値と一致するように、トルク指令τ*を生成し、出力する。ここで、速度差分Δωは、ωe*-ω^eである。 FIG. 18 shows a configuration of the inverter output voltage control unit 12 to which the principle of torque compensation shown in FIG. 21 is applied. In FIG. 18, the inverter output voltage control unit 12 of the second embodiment includes a speed control unit 46, a torque command value compensation unit 47, and a torque control unit 48 instead of the speed control unit 21 of the first embodiment. . The speed controller 46 receives the value of the rotational speed command ωe * generated by the rotational speed command value generator 13 and the speed difference Δω between the estimated rotational speed ω ^ e estimated by the magnetic flux estimator 18 and inputs the estimated rotational speed ω ^. A torque command τ * is generated and output so that e matches the value of the rotational speed command ωe *. Here, the speed difference Δω is ωe * −ω ^ e.
 トルク指令値補償部47は、トルク脈動抽出部36で計算した電動機1の推定トルクτ^の振動成分であるトルク脈動成分τ^kfと、速度制御部46で出力したトルク指令τ*とを足して補正したトルク補正指令τrefを出力する。トルク補正指令τrefは、式(19)のように表せる。 The torque command value compensation unit 47 adds the torque pulsation component τ ^ kf, which is the vibration component of the estimated torque τ ^ of the electric motor 1 calculated by the torque pulsation extraction unit 36, and the torque command τ * output by the speed control unit 46. The corrected torque correction command τref is output. The torque correction command τref can be expressed as Equation (19).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 一般的な補償方法は、予め記録した負荷トルクデータを電動機1の回転角に対するトルク指令に変換するものである。この一般的な補償方法を適用しようとすると、圧縮機80の電動機1の回転に基づき負荷トルクは変動するため、電動機1の回転速度に対する負荷トルクの多くのデータを保存しなければならない。また、一般的な補償方法は、一定の回転速度でも負荷トルクが異なるので、正確な補償量の算出は困難である。本発明では、負荷トルクTLの脈動をリアルタイムに推定しており、負荷トルクTLが変動しても補償量となるトルク脈動成分τ^kfをリアルタイムで算出できる。よって、負荷トルクTLのデータが不要となり、トルク補償も正確に行うことができる。 A general compensation method is to convert previously recorded load torque data into a torque command for the rotation angle of the electric motor 1. If this general compensation method is applied, the load torque fluctuates based on the rotation of the electric motor 1 of the compressor 80, so a lot of data on the load torque with respect to the rotation speed of the electric motor 1 must be stored. Further, in a general compensation method, since the load torque is different even at a constant rotational speed, it is difficult to accurately calculate the compensation amount. In the present invention, the pulsation of the load torque TL is estimated in real time, and the torque pulsation component τ ^ kf that becomes the compensation amount even when the load torque TL fluctuates can be calculated in real time. Therefore, data on the load torque TL is not necessary, and torque compensation can be performed accurately.
 トルク制御部48は、補正したトルク補正指令τrefが入力され、電動機1がトルク補正指令τrefで指定された値のトルクを出力するように、電動機1のdq軸電流指令ベクトルIdq*を算出する。例えば、既存の最大トルク制御を使用する場合は、図19に示すように、dq軸電流指令ベクトルIdq*のd軸電流指令id*及びq軸電流指令iq*を計算できる。そして、d軸電流指令id*及びq軸電流指令iq*を、式(20)から求める。トルク制御部48は、図19に示すように、電流指令値生成部49a、角度指令値生成部49b、余弦演算部50、正弦演算部51、乗算器52a、52bを備える。 The torque control unit 48 calculates the dq-axis current command vector Idq * of the electric motor 1 so that the corrected torque correction command τref is input and the electric motor 1 outputs a torque having a value specified by the torque correction command τref. For example, when the existing maximum torque control is used, the d-axis current command id * and the q-axis current command iq * of the dq-axis current command vector Idq * can be calculated as shown in FIG. Then, the d-axis current command id * and the q-axis current command iq * are obtained from Expression (20). As shown in FIG. 19, the torque control unit 48 includes a current command value generation unit 49a, an angle command value generation unit 49b, a cosine calculation unit 50, a sine calculation unit 51, and multipliers 52a and 52b.
 電流指令値生成部49aは、トルクτと電流ベクトルIaの関係を記載した電流トルクマップを有しており、トルク補正指令値τrefから電流指令ベクトルIa*を生成する。角度指令値生成部49bは、電流ベクトルIaとq軸からの進み角度βの関係を記載した角度電流マップを有しており、電流指令ベクトルIa*をq軸からの進み角度の指令値β*を求める。正弦演算部51及び乗算器52aに基づき、d軸電流指令id*が生成され、余弦演算部50及び乗算器52bに基づき、q軸電流指令iq*が生成される。ただし、角度βは、図22に示すように、d軸電流idとq軸電流iqを構成する電流ベクトルIaのq軸からの進み角度である。図22は、本発明の実施の形態2による電流ベクトルを説明する図である。 The current command value generation unit 49a has a current torque map describing the relationship between the torque τ and the current vector Ia, and generates a current command vector Ia * from the torque correction command value τref. The angle command value generation unit 49b has an angle current map in which the relationship between the current vector Ia and the advance angle β from the q axis is described. The current command vector Ia * is converted into a command value β * of the advance angle from the q axis. Ask for. A d-axis current command id * is generated based on the sine calculation unit 51 and the multiplier 52a, and a q-axis current command iq * is generated based on the cosine calculation unit 50 and the multiplier 52b. However, as shown in FIG. 22, the angle β is an advance angle from the q-axis of the current vector Ia constituting the d-axis current id and the q-axis current iq. FIG. 22 is a diagram for explaining a current vector according to the second embodiment of the present invention.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 なお、電流指令値生成部49aの電流トルクマップと、角度指令値生成部49bの角度電流マップは、電動機1の定数に基づいて事前に簡単に解析したものを用いても良い。また、電流トルクマップと角度電流マップとして、実測定値から求めた関係を使用してもよい。 It should be noted that the current torque map of the current command value generation unit 49a and the angle current map of the angle command value generation unit 49b may be obtained by simple analysis in advance based on the constants of the electric motor 1. Moreover, you may use the relationship calculated | required from the actual measurement value as an electric current torque map and an angle electric current map.
 図23は、本発明の実施の形態2による振動抑制結果を示す図である。図23は、トルク補償を用いたインバータ出力電圧制御部12及びインバータ16で圧縮機80を制御した場合の効果、すなわち圧縮機80に生じる振動を低減する効果を示すものである。図23の横軸は電動機1の回転速度の脈動の周波数であり、縦軸は振動レベル、すなわち回転速度脈動振動成分の振幅(mm/s^2)である。圧縮機80の振動レベルは、一軸加速度センサを圧縮機80の本体に取り付けて測定した。図23において、圧縮機80の単独運転時に2100rpm(35rps)の回転速度指令値で電動機1を駆動している。単独運転における周波数f1fとその2倍の周波数f2fの脈動成分を有する回転速度波形をフーリエ変換(FFT)分析し、補償有りの場合の振動レベルを補償無しの場合の振動レベルと比べている。 FIG. 23 is a diagram showing a vibration suppression result according to the second embodiment of the present invention. FIG. 23 shows the effect when the compressor 80 is controlled by the inverter output voltage control unit 12 and the inverter 16 using torque compensation, that is, the effect of reducing the vibration generated in the compressor 80. The horizontal axis of FIG. 23 is the frequency of pulsation of the rotational speed of the electric motor 1, and the vertical axis is the vibration level, that is, the amplitude (mm / s ^ 2) of the rotational speed pulsation vibration component. The vibration level of the compressor 80 was measured by attaching a uniaxial acceleration sensor to the main body of the compressor 80. In FIG. 23, the electric motor 1 is driven at a rotational speed command value of 2100 rpm (35 rps) when the compressor 80 is operated alone. A rotational speed waveform having a pulsating component of the frequency f1f and a frequency f2f twice that in the single operation is subjected to Fourier transform (FFT) analysis, and the vibration level with compensation is compared with the vibration level without compensation.
 周波数が35Hzの脈動成分特性66、67は周波数f1fの特性である。脈動成分特性66が抑制なし(トルク補償なし)の測定結果であり、脈動成分特性67が抑制あり(トルク補償なり)の測定結果である。周波数が70Hzの脈動成分特性68、69は周波数f2fの特性である。脈動成分特性68が抑制なし(トルク補償なし)の測定結果であり、脈動成分特性69が抑制あり(トルク補償なり)の測定結果である。周波数f1fの脈動成分特性66はトルク補償を行いことで、約1/4の脈動成分特性67にすることができる。周波数f2fの脈動成分特性68はトルク補償を行いことで、約1/4の脈動成分特性69にすることができる。したがって、実施の形態2のインバータ出力電圧制御部12は、トルク補償を行いことで、図23のように、電動機1の推定回転速度ω^eの脈動成分の内、主な周波数f1fを有する脈動成分を、補償無しの場合に基づき少なくとも半分以下に低減できる。 The pulsation component characteristics 66 and 67 having a frequency of 35 Hz are the characteristics of the frequency f1f. The pulsation component characteristic 66 is a measurement result without suppression (no torque compensation), and the pulsation component characteristic 67 is a measurement result with suppression (torque compensation). Pulsating component characteristics 68 and 69 having a frequency of 70 Hz are characteristics of the frequency f2f. The pulsation component characteristic 68 is a measurement result without suppression (no torque compensation), and the pulsation component characteristic 69 is a measurement result with suppression (torque compensation). The pulsation component characteristic 66 of the frequency f1f can be set to about ¼ of the pulsation component characteristic 67 by performing torque compensation. The pulsation component characteristic 68 of the frequency f2f can be set to about ¼ of the pulsation component characteristic 69 by performing torque compensation. Therefore, the inverter output voltage control unit 12 according to the second embodiment performs the torque compensation so that the pulsation having the main frequency f1f in the pulsation component of the estimated rotational speed ω ^ e of the electric motor 1 as shown in FIG. The component can be reduced to at least half or less based on no compensation.
 さらに、実施の形態2のインバータ出力電圧制御部12は、圧縮機80の機械に起因する支配的な軸トルク変動(トルク脈動成分τ^kf)を補償量として、トルク指令τ*に足すことに基づき生成された、制御トルクであるトルク補正指令τrefが、負荷トルクTLに追従できており、生じる電動機1の回転速度変動(振動)を低減できる。さらに、実施の形態2のインバータ出力電圧制御部12は、トルク補償量(トルク脈動成分τ^kf)をリアルタイムで算出することで、電動機1の回転速度ωeに基づき圧縮機80の負荷変動が増減しても、トルクパターンを用意することなく負荷トルクTLに追従できる。さらに、実施の形態2のインバータ出力電圧制御部12は、負荷が必要とする電力になるように制御する際に、出力電力の脈動を低減して、圧縮機の効率を改善することが可能である。 Furthermore, the inverter output voltage control unit 12 according to the second embodiment adds the dominant shaft torque fluctuation (torque pulsation component τ ^ kf) caused by the machine of the compressor 80 as a compensation amount to the torque command τ *. The torque correction command τref, which is generated based on the control torque, can follow the load torque TL, and the rotational speed fluctuation (vibration) of the electric motor 1 can be reduced. Furthermore, the inverter output voltage control unit 12 according to the second embodiment calculates the torque compensation amount (torque pulsation component τ ^ kf) in real time, thereby increasing or decreasing the load fluctuation of the compressor 80 based on the rotational speed ωe of the electric motor 1. Even so, it is possible to follow the load torque TL without preparing a torque pattern. Furthermore, the inverter output voltage control unit 12 according to the second embodiment can reduce the pulsation of the output power and improve the efficiency of the compressor when performing control so as to obtain the power required by the load. is there.
 また、従来のトルク外乱の推定では、大半がq軸電流の変動に基づいて計算したものなので、圧縮機80の圧力または電動機1の軸トルクが大幅に変動すると、q軸電流とd軸電流の両方が変動するため、正しく算出できない。これに対して、実施の形態2のインバータ出力電圧制御部12は、推定電力P^から求めた推定トルクτ^から最も大きな振幅を有する脈動成分τ^kfを補償量として、トルク指令τ*に加算して、制御トルクであるトルク補正指令τrefを生成するので、トルク補正指令τrefに基づいて圧縮機80の電動機1を制御することで、負荷トルクTLの変動の大きさと速さに関係なく制御トルクを追従させることができる。また、実施の形態2のインバータ出力電圧制御部12は、制御指令のdq軸と電動機1のdq軸のずれをフィードバックして補正するので、正確なトルクを算出できる。 In addition, since most of the conventional torque disturbances are calculated based on the fluctuation of the q-axis current, if the pressure of the compressor 80 or the shaft torque of the motor 1 fluctuates significantly, the q-axis current and the d-axis current Since both fluctuate, it cannot be calculated correctly. On the other hand, the inverter output voltage control unit 12 according to the second embodiment uses the pulsating component τ ^ kf having the largest amplitude from the estimated torque τ ^ obtained from the estimated power P ^ as a compensation amount to the torque command τ *. Since the torque correction command τref, which is a control torque, is generated by addition, the motor 1 of the compressor 80 is controlled based on the torque correction command τref, so that the control is performed regardless of the magnitude and speed of the load torque TL. Torque can be followed. Further, the inverter output voltage control unit 12 according to the second embodiment feeds back and corrects the deviation between the dq axis of the control command and the dq axis of the electric motor 1, so that an accurate torque can be calculated.
 なお、本実施の形態2において、回転速度指令値生成部13は実施の形態1と同様に、各運転モードに対する運転速度指令ωe*が用意されているとしたが、必ずしも運転速度指令ωe*を運転モード別に設定する必要はない。例えば、電力推定部8で求めた推定電力P^と出力トルク推定部35で求めた推定トルクτ^もしくは、実施の形態1の判別信号生成部10の最大振幅検出部33で求めた最も大きな振幅を有する電力変動成分P^kfと実施の形態2の判別信号生成部で求めた最も大きな振幅を有すトルク脈動成分τ^kfを用いて、運転速度指令ωe*をその都度生成してもよい。また、上位の空調機制御が室内温度とユーザ設定温度の差等を用いて決定する圧縮機内部の冷媒の差圧条件と、上記の推定電力P^、推定トルクτ^もしくは電力変動成分P^kfとトルク脈動成分τ^kfから運転電力目標値を設定し、その電力となるように運転速度指令すなわち回転速度指令ωe*を決定してもよい。 In the second embodiment, the rotation speed command value generation unit 13 is provided with the operation speed command ωe * for each operation mode as in the first embodiment. There is no need to set each operation mode. For example, the estimated power P ^ obtained by the power estimator 8 and the estimated torque τ ^ obtained by the output torque estimator 35, or the largest amplitude obtained by the maximum amplitude detector 33 of the discrimination signal generator 10 of the first embodiment. The driving speed command ωe * may be generated each time using the power fluctuation component P ^ kf having a torque pulsating component τ ^ kf having the largest amplitude obtained by the discrimination signal generation unit of the second embodiment. . Further, the refrigerant pressure difference condition inside the compressor, which is determined by the upper air conditioner control using the difference between the room temperature and the user set temperature, and the estimated power P ^, the estimated torque τ ^ or the power fluctuation component P ^ A driving power target value may be set from kf and the torque pulsation component τ ^ kf, and the driving speed command, that is, the rotational speed command ωe * may be determined so as to be the power.
 実施の形態2のインバータ圧縮機100は、実施の形態2のインバータ制御装置17を備えるので、圧縮機80の運転モードを判別することができる。また、実施の形態2のインバータ圧縮機100は、冷媒を圧縮させる圧縮部の数が変わる圧縮機80における運転モードの切り替わりを自動的に検出し、そのモード特有の軸トルク変動パターンに合わせて電動機1のトルクを出力できるように制御することによって、運転モードに左右されない振動抑制制御を行うことができる。ただし、運転モードが一つのみである圧縮機(例えば実施の形態1のシングル圧縮機またはスクロール圧縮機)にも適用できる。 Since the inverter compressor 100 according to the second embodiment includes the inverter control device 17 according to the second embodiment, the operation mode of the compressor 80 can be determined. Further, the inverter compressor 100 of the second embodiment automatically detects the switching of the operation mode in the compressor 80 in which the number of compression units for compressing the refrigerant changes, and the electric motor is matched with the mode-specific shaft torque variation pattern. By performing control so that the torque of 1 can be output, vibration suppression control that is not affected by the operation mode can be performed. However, the present invention can also be applied to a compressor having only one operation mode (for example, the single compressor or the scroll compressor of the first embodiment).
実施の形態3.
 図24は本発明の実施の形態3による圧縮機を示す図である。図25は図24の第一圧縮部における概略横断面図であり、図26は図24の第二圧縮部における概略横断面図である。図27は本発明の実施の形態3によるインバータ制御装置及びインバータ圧縮機を示すブロック図であり、図28は図27の運転モード切替検出部とトルク脈動抽出部を示す図である。本発明の実施の形態3では、圧縮機80がツインロータリ圧縮機の場合である。図24に、ツインロータリ圧縮機として二気筒圧縮機である圧縮機80を示した。圧縮機80は、電動機1、第一圧縮部83a、第二圧縮部83b、シャフト84を備えている。
Embodiment 3 FIG.
FIG. 24 shows a compressor according to Embodiment 3 of the present invention. 25 is a schematic cross-sectional view of the first compression portion of FIG. 24, and FIG. 26 is a schematic cross-sectional view of the second compression portion of FIG. 27 is a block diagram showing an inverter control device and an inverter compressor according to Embodiment 3 of the present invention, and FIG. 28 is a diagram showing an operation mode switching detection unit and a torque pulsation extraction unit of FIG. In the third embodiment of the present invention, the compressor 80 is a twin rotary compressor. FIG. 24 shows a compressor 80 that is a two-cylinder compressor as a twin rotary compressor. The compressor 80 includes the electric motor 1, a first compression unit 83 a, a second compression unit 83 b, and a shaft 84.
 圧縮機80の電動機1を駆動する駆動モードは、単独運転モードと並列運転モードである。単独運転モードは、二つの圧縮部(第一圧縮部83a、第二圧縮部83b)のうち一方の圧縮部が電動機1のシャフト84が回転しても冷媒を圧縮しない運転モードであり、すなわち単独の圧縮部が圧縮運転される運転モードである。並列運転モードは、冷媒を圧縮させるタイミングを180度ずらして二つの圧縮部(第一圧縮部83a、第二圧縮部83b)が同時に圧縮運転される運転モードがある。従って、単独運転モードは、一つ圧縮部のみが動いているので、電力脈動成分の周波数が電動機1の機械回転周波数と同じであり、すなわち周波数f1fである。一方、並列運転は、二つ圧縮部が二つ動いているので、電力脈動成分の周波数が電動機1の機械回転周波数の2倍であり、すなわち周波数f2f(2×f1f)である。ツインロータリ圧縮機は単独運転と並列運転を内部の差圧条件によって自動で切り替える。 The drive modes for driving the electric motor 1 of the compressor 80 are a single operation mode and a parallel operation mode. The single operation mode is an operation mode in which one of the two compression units (the first compression unit 83a and the second compression unit 83b) does not compress the refrigerant even when the shaft 84 of the electric motor 1 rotates. This is an operation mode in which the compression section of the compressor is compressed. The parallel operation mode includes an operation mode in which two compression units (first compression unit 83a and second compression unit 83b) are simultaneously compressed by shifting the refrigerant compression timing by 180 degrees. Accordingly, in the single operation mode, since only one compression unit is moving, the frequency of the power pulsation component is the same as the mechanical rotation frequency of the electric motor 1, that is, the frequency f1f. On the other hand, in the parallel operation, since the two compression parts are moving, the frequency of the power pulsation component is twice the mechanical rotation frequency of the electric motor 1, that is, the frequency f2f (2 × f1f). The twin rotary compressor automatically switches between single operation and parallel operation according to the internal differential pressure conditions.
 第一圧縮部83aは、シャフト84の回転に伴って動くピストン74a、ベーン76a、バネ77a、冷媒を吸入する吸入口75a、冷媒を吐出する吐出口78a、吐出口78aを開閉する開閉弁79aを備える。図25の矢印88aは、シャフト84の回転方向を示している。図25の矢印89は、吐出口78aから吐出されるガスの流れを示している。第二圧縮部83bは、シャフト84の回転に伴って動くピストン74b、ベーン76b、ベーン76bの先端をピストン74bから離間する方向へ吸引磁力を付与する磁石87、冷媒を吸入する吸入口75b、冷媒を吐出する吐出口78b、吐出口78bを開閉する開閉弁79bを備える。第一圧縮部83aのピストン74aの位置(ピストン74aとシャフト84との接触位置)は、第二圧縮部83bのピストン74bの位置(ピストン74bとシャフト84との接触位置)に対して、180度ずれている。図26の矢印88bは、シャフト84の回転方向を示している。 The first compression portion 83a includes a piston 74a that moves as the shaft 84 rotates, a vane 76a, a spring 77a, a suction port 75a that sucks refrigerant, a discharge port 78a that discharges refrigerant, and an on-off valve 79a that opens and closes the discharge port 78a. Prepare. An arrow 88 a in FIG. 25 indicates the rotation direction of the shaft 84. An arrow 89 in FIG. 25 indicates the flow of gas discharged from the discharge port 78a. The second compression section 83b includes a piston 74b that moves with the rotation of the shaft 84, a vane 76b, a magnet 87 that applies an attractive magnetic force in a direction away from the piston 74b, a suction port 75b that sucks refrigerant, and a refrigerant. And an opening / closing valve 79b for opening and closing the discharge port 78b. The position of the piston 74a of the first compression section 83a (contact position between the piston 74a and the shaft 84) is 180 degrees with respect to the position of the piston 74b of the second compression section 83b (contact position between the piston 74b and the shaft 84). It's off. An arrow 88b in FIG. 26 indicates the rotation direction of the shaft 84.
 図25の第一圧縮部83aは圧縮運転中の状態であり、図26の第二圧縮部83bは圧縮停止中の状態である。図25の圧縮運転中の第一圧縮部83aは、ベーン76aの先端側がピストン74aに接触しており、ピストン74aの回転に伴って、第一圧縮部83aの内壁、ピストン74a、ベーン76aに基づき圧縮室82が形成される。吸入口75aから吸入された冷媒は、圧縮室82で圧縮された後に、吐出口78aから吐出される。図26の圧縮停止中の第二圧縮部83bでは、ベーン76bの後端側が磁石87に吸着固定され、ベーン76bの先端がピストン74bから離間しており、第二圧縮部83bの内壁、ピストン74b、ベーン76bに基づき圧縮室を形成せず、ピストン74bを回転しても圧縮運転しない。 25 is in a state during compression operation, and the second compression unit 83b in FIG. 26 is in a state where compression is stopped. In the first compression portion 83a during the compression operation of FIG. 25, the tip end side of the vane 76a is in contact with the piston 74a, and the rotation of the piston 74a is based on the inner wall of the first compression portion 83a, the piston 74a, and the vane 76a. A compression chamber 82 is formed. The refrigerant sucked from the suction port 75a is compressed in the compression chamber 82 and then discharged from the discharge port 78a. 26, the rear end side of the vane 76b is attracted and fixed to the magnet 87, the tip of the vane 76b is separated from the piston 74b, the inner wall of the second compression portion 83b, the piston 74b. The compression chamber is not formed based on the vane 76b, and the compression operation is not performed even if the piston 74b is rotated.
 図27では、実施の形態3における最適な制御を行うインバータ制御装置17の構成を示した。実施の形態3のインバータ制御装置17は、運転モードを自動で切り替えられる二気筒圧縮機である圧縮機80の電動機1を、インバータ16を介して制御する。実施の形態3のインバータ制御装置17は、運転モード判別部7の構成以外は実施の形態2と同様である。実施の形態3の運転モード判別部7は、実施の形態2の運転モード判別部7におけるトルク補償値生成部25、判別信号生成部10に代えて、運転モード切替検出部53、トルク脈動抽出部70を備えている。図28に示すように、運転モード切替検出部53は、実施の形態2の判別信号生成部10と同様に判別信号hntを生成する運転モード判別部60を備えている。 FIG. 27 shows the configuration of the inverter control device 17 that performs optimal control in the third embodiment. The inverter control device 17 according to the third embodiment controls the electric motor 1 of the compressor 80, which is a two-cylinder compressor whose operation mode can be automatically switched, via the inverter 16. The inverter control device 17 of the third embodiment is the same as that of the second embodiment except for the configuration of the operation mode determination unit 7. The operation mode discriminating unit 7 of the third embodiment replaces the torque compensation value generating unit 25 and the discrimination signal generating unit 10 in the operation mode discriminating unit 7 of the second embodiment, and an operation mode switching detecting unit 53, a torque pulsation extracting unit. 70. As illustrated in FIG. 28, the operation mode switching detection unit 53 includes an operation mode determination unit 60 that generates a determination signal hnt, similar to the determination signal generation unit 10 of the second embodiment.
 運転モード切替検出部53は、圧縮機80が運転する圧縮運転モードが切り替わったときに単独運転なのか並列運転なのかを、実施の形態1に示すような電力脈動成分の大きさに基づいて判別する。トルク脈動抽出部70は、運転モード切替検出部53で判別した運転モードのトルク脈動成分を抽出する。以上の構成によって、実施の形態3のインバータ制御装置17は、抽出したトルク脈動(トルク脈動成分τ^kf)を補償量としてインバータ出力電圧制御部12で出力したトルク指令τ*に足すことに基づき、電動機1の出力トルクが、二気筒圧縮機である圧縮機80の軸トルクに追従でき、電動機1の回転速度ωeの変動を低減できる。 The operation mode switching detection unit 53 determines whether the operation mode is the single operation or the parallel operation when the compression operation mode operated by the compressor 80 is switched based on the magnitude of the power pulsation component as shown in the first embodiment. To do. The torque pulsation extraction unit 70 extracts the torque pulsation component of the operation mode determined by the operation mode switching detection unit 53. With the above configuration, the inverter control device 17 according to the third embodiment is based on adding the extracted torque pulsation (torque pulsation component τ ^ kf) as a compensation amount to the torque command τ * output from the inverter output voltage control unit 12. The output torque of the electric motor 1 can follow the shaft torque of the compressor 80, which is a two-cylinder compressor, and fluctuations in the rotational speed ωe of the electric motor 1 can be reduced.
 図28を用いて、圧縮機80が運転する圧縮運転モードを判別する運転モード切替検出部53と、判別した運転モードにおけるトルク脈動で抽出するトルク脈動抽出部70を詳しく説明する。運転モード切替検出部53は、電力脈動抽出部61と、電力脈動抽出部61で算出した脈動成分振幅によって運転モードを判別する運転モード判別部60を備えている。電力脈動抽出部61は、電力推定部8で算出した推定電力P^から電動機機械周波数と同じ周波数f1fの電力脈動成分x1f及び振幅||x1f||を抽出する離散フーリエ変換部62と、電動機機械周波数の2倍の周波数f2fの電力脈動成分x2f及び振幅||x2f||を抽出する離散フーリエ変換部63を備えている。周波数f1fは、単独運転における電動機機械周波数であり、周波数f2fは、並列運転において発生する脈動成分の周波数である。離散フーリエ変換部62、式(5)~式(8)のように脈動成分を検波し、電力脈動成分x1fとその振幅||x1f||を抽出する。離散フーリエ変換部63、式(5)~式(8)のように脈動成分を検波し、電力脈動成分x2fとその振幅||x2f||を抽出する。 28, the operation mode switching detection unit 53 that determines the compression operation mode in which the compressor 80 operates and the torque pulsation extraction unit 70 that extracts the torque pulsation in the determined operation mode will be described in detail. The operation mode switching detection unit 53 includes a power pulsation extraction unit 61 and an operation mode determination unit 60 that determines the operation mode based on the pulsation component amplitude calculated by the power pulsation extraction unit 61. The power pulsation extraction unit 61 extracts a power pulsation component x1f and an amplitude || x1f || of the same frequency f1f as the motor machine frequency from the estimated power P ^ calculated by the power estimation unit 8; A discrete Fourier transform unit 63 that extracts the power pulsation component x2f and the amplitude || x2f || of the frequency f2f that is twice the frequency is provided. The frequency f1f is the motor machine frequency in the single operation, and the frequency f2f is the frequency of the pulsation component generated in the parallel operation. Discrete Fourier transform unit 62 detects pulsation components as shown in equations (5) to (8), and extracts power pulsation component x1f and its amplitude || x1f ||. Discrete Fourier transform unit 63 detects pulsation components as shown in equations (5) to (8), and extracts power pulsation component x2f and its amplitude || x2f ||.
 運転モード判別部60は、脈動成分における支配的な脈動成分に基づいて圧縮機80の運転モードを判別し、判別信号hntを出力する。運転モード判別部60は、最大振幅検出部33と判別部34を備える。運転モード判別部60において、圧縮機80の運転モードが単独運転か並列運転かを判別する方法は後述する。 The operation mode determination unit 60 determines the operation mode of the compressor 80 based on the dominant pulsation component in the pulsation component, and outputs a determination signal hnt. The operation mode determination unit 60 includes a maximum amplitude detection unit 33 and a determination unit 34. A method for determining whether the operation mode of the compressor 80 is the single operation or the parallel operation in the operation mode determination unit 60 will be described later.
 トルク脈動抽出部70は、電力脈動抽出成分を切り替える切替部57、運転モードにおけるトルク脈動を抽出するトルク脈動生成部65を備えている。切替部57は、判別信号hntに基づいて、圧縮機80の運転モードに応じた電力脈動成分を切り替える。切替部57は、運転モードが単独運転の場合に電力脈動成分x1fをトルク脈動生成部65に出力し、運転モードが並列運転の場合に電力脈動成分x2fをトルク脈動生成部65に出力する。切替部57の端子54に電力脈動成分x1fが接続され、端子55に電力脈動成分x2fが接続される。選択された電力脈動成分は、切替部57の出力端子56からトルク脈動生成部65に出力される。 The torque pulsation extraction unit 70 includes a switching unit 57 that switches between power pulsation extraction components and a torque pulsation generation unit 65 that extracts torque pulsation in the operation mode. The switching unit 57 switches the power pulsation component according to the operation mode of the compressor 80 based on the determination signal hnt. The switching unit 57 outputs the power pulsation component x1f to the torque pulsation generation unit 65 when the operation mode is a single operation, and outputs the power pulsation component x2f to the torque pulsation generation unit 65 when the operation mode is parallel operation. The power pulsation component x1f is connected to the terminal 54 of the switching unit 57, and the power pulsation component x2f is connected to the terminal 55. The selected power pulsation component is output from the output terminal 56 of the switching unit 57 to the torque pulsation generation unit 65.
 トルク脈動生成部65は、除算器58、乗算器59を備えている。除算器58は、入力された電力脈動成分を磁束推定部18(図18参照)で算出した推定回転速度ω^eで除算する。乗算器59は、入力を電動機1の極対数であるPm倍にする。トルク脈動生成部65は、運転モードに応じたトルク脈動成分τ^kfを生成する。ここでは、kは1または2である。したがって、トルク脈動生成部65は、運転モードが単独運転の場合にトルク脈動成分τ^1fを生成し、運転モードが並列運転の場合にトルク脈動成分τ^2fを生成する。なお、図27において、インバータ出力電圧制御部12の電力脈動成分を磁束推定部18から出力される推定回転速度ω^eは省略した。 The torque pulsation generator 65 includes a divider 58 and a multiplier 59. The divider 58 divides the input power pulsation component by the estimated rotational speed ω ^ e calculated by the magnetic flux estimator 18 (see FIG. 18). The multiplier 59 multiplies the input by Pm times that is the number of pole pairs of the electric motor 1. The torque pulsation generator 65 generates a torque pulsation component τ ^ kf corresponding to the operation mode. Here, k is 1 or 2. Therefore, the torque pulsation generator 65 generates a torque pulsation component τ ^ 1f when the operation mode is a single operation, and generates a torque pulsation component τ ^ 2f when the operation mode is a parallel operation. In FIG. 27, the estimated rotational speed ω ^ e output from the magnetic flux estimator 18 as the power pulsation component of the inverter output voltage controller 12 is omitted.
 運転モード判別部60の判別方法を説明する。運転モード判別部60は、実施の形態1の判別信号生成部10と同様に、電力脈動成分x1fの振幅||x1f||と電力脈動成分x2fの振幅||x2f||とに基づいて、圧縮機80が現在運転する運転モードを判別する。運転モード判別部60で出力される判別信号hntは様々なパターンがあるが、以下のような表現としてもよい。
 運転モードが単独運転の場合、hnt=1
 運転モードが並列運転の場合、hnt=2
A determination method of the operation mode determination unit 60 will be described. Similar to the discrimination signal generation unit 10 of the first embodiment, the operation mode discrimination unit 60 performs compression based on the amplitude || x1f || of the power pulsation component x1f and the amplitude || x2f || of the power pulsation component x2f. The operation mode in which the machine 80 is currently operating is determined. The determination signal hnt output from the operation mode determination unit 60 has various patterns, but may be expressed as follows.
When the operation mode is single operation, hnt = 1
When the operation mode is parallel operation, hnt = 2
 運転モード判別部60の最大振幅検出部33は、実施の形態1の判別信号生成部10の最大振幅検出部33と同様であり、入力された2つの振幅||x1f||、||x2f||から最大の振幅を持つ周波数を検出し、関数値Uとして出力する。関数値Uの値によって、以下のような言語表現の判別ルールに基づいて判別する判別部34に基づき、圧縮機80が運転する運転モードを判別し、判別信号hntを生成する。
 U=1fの場合、hnt=1とする。この場合、1個の圧縮部で冷媒を循環させる単独運転の運転モードと判別する。
 U=2fの場合、hnt=2とする。この場合、2個の圧縮部で冷媒を循環させる並列運転の運転モードと判別する。
The maximum amplitude detection unit 33 of the operation mode determination unit 60 is the same as the maximum amplitude detection unit 33 of the determination signal generation unit 10 of the first embodiment, and the two input amplitudes || x1f || and || x2f | The frequency having the maximum amplitude is detected from | and output as a function value U. Based on the function value U, the operation mode in which the compressor 80 operates is determined based on the determination unit 34 that determines based on the following language expression determination rule, and generates a determination signal hnt.
When U = 1f, hnt = 1. In this case, it is determined that the operation mode is a single operation mode in which the refrigerant is circulated by one compression unit.
When U = 2f, hnt = 2 is set. In this case, it is determined that the operation mode is a parallel operation in which the refrigerant is circulated by the two compression units.
 切替部57において端子の接続条件を以下に示す。
 hnt=1の場合、出力端子56が端子54と接続
 hnt=2の場合、出力端子56が端子55と接続
The terminal connection conditions in the switching unit 57 are shown below.
When hnt = 1, the output terminal 56 is connected to the terminal 54. When hnt = 2, the output terminal 56 is connected to the terminal 55.
 運転モード切替検出部53で生成された判別信号hntは、トルク脈動抽出部70と回転速度指令値生成部13に出力される。運転モード切替検出部53では、判別信号hntに応じて切替部57で圧縮運転モードにおけるトルク脈動成分に切り替えられる。そして、回転速度指令値生成部13は、判別信号hntに基づいて各運転モードにおける所定の回転速度指令ωe*を出力する。 The determination signal hnt generated by the operation mode switching detection unit 53 is output to the torque pulsation extraction unit 70 and the rotation speed command value generation unit 13. In the operation mode switching detection unit 53, the switching unit 57 switches to the torque pulsation component in the compression operation mode according to the determination signal hnt. Then, the rotational speed command value generation unit 13 outputs a predetermined rotational speed command ωe * in each operation mode based on the determination signal hnt.
 さらに、トルク指令値補償部47において、判別信号hntに基づく補償量として判別信号hntに基づくトルク脈動成分τ^kfを、速度制御部46で生成されたトルク指令τ*に足すことに基づき、補正したトルク補正指令τrefを出力する。この補正指令τrefに基づいて、トルク制御部48が電動機1のdq軸電流指令ベクトルIdq*を算出する(図18参照)。その後、電流制御部22、電圧座標変換器23、インバータゲート信号生成部14、インバータ16を経由して、圧縮機80の電動機1が制御される。実施の形態3のインバータ制御装置17は、補正指令τrefに基づいて、出力トルクTeが負荷トルクTLに釣り合うように電動機1を制御でき、かつ電動機1の回転速度ωeに生じる脈動を低減できる。 Further, the torque command value compensation unit 47 corrects based on the addition of the torque pulsation component τ ^ kf based on the discrimination signal hnt as the compensation amount based on the discrimination signal hnt to the torque command τ * generated by the speed control unit 46. The torque correction command τref is output. Based on the correction command τref, the torque control unit 48 calculates a dq-axis current command vector Idq * of the electric motor 1 (see FIG. 18). Thereafter, the electric motor 1 of the compressor 80 is controlled via the current controller 22, the voltage coordinate converter 23, the inverter gate signal generator 14, and the inverter 16. The inverter control device 17 according to the third embodiment can control the electric motor 1 so that the output torque Te is balanced with the load torque TL based on the correction command τref, and can reduce the pulsation generated in the rotational speed ωe of the electric motor 1.
 したがって、実施の形態3のインバータ制御装置17は、複数の運転モードが自動で切り替えられるようなツインロータリ圧縮機(圧縮機80)の運転モード判定を自動で行い、それに基づいて出力トルクTeを負荷トルクTLに追従させることに基づき、電動機1の回転速度ωeの脈動を低減し、電動機1の安定な運転を実現できる。また、実施の形態3のインバータ制御装置17は、電動機1の回転速度ωeの脈動を低減し、電動機1の安定な運転を実現できるので、電動機1を低騒音かつ低振動で運転でき、圧縮機80における最適な制御を達成することができる。 Therefore, the inverter control device 17 according to the third embodiment automatically determines the operation mode of the twin rotary compressor (compressor 80) so that a plurality of operation modes can be automatically switched, and loads the output torque Te based on the determination. Based on following the torque TL, pulsation of the rotational speed ωe of the electric motor 1 can be reduced, and stable operation of the electric motor 1 can be realized. Further, the inverter control device 17 according to the third embodiment can reduce the pulsation of the rotational speed ωe of the electric motor 1 and realize a stable operation of the electric motor 1. Therefore, the electric motor 1 can be operated with low noise and low vibration, and the compressor Optimal control at 80 can be achieved.
 また、実施の形態3のインバータ制御装置17は、圧縮運転モードを自動で切り替える機能を持つ圧縮機80において異なる圧力変動を持つ圧縮運転モードに切り替わると、すぐに圧縮運転モードを判別して圧力変動が電動機1の電力に反映されるため、運転モードに応じて最適な制御を行うことができる。 Further, the inverter control device 17 according to the third embodiment immediately determines the compression operation mode and switches the pressure fluctuation when the compressor 80 having the function of automatically switching the compression operation mode is switched to the compression operation mode having a different pressure fluctuation. Is reflected in the electric power of the electric motor 1, so that optimal control can be performed according to the operation mode.
 上記のように、ツインロータリ圧縮機(圧縮機80)の2個の圧縮部のうち、一つの圧縮部が冷媒を圧縮する単独運転をすれば、冷媒循環量は半減する。従って、圧縮機80は通常並列運転されているが、圧縮機80の単独運転で並列運転のときと同等の冷媒循環量を出力するためには、電動機1の回転速度ωeを並列運転時の2倍にする必要がある。実施の形態3のインバータ制御装置17は、圧縮機80が単独運転になる場合に、電動機1の回転速度ωeを並列運転時の2倍にするので、圧縮機80の効率改善を図ることができる。また、実施の形態3のインバータ制御装置17は、単独運転から2個の圧縮部で冷媒を圧縮させる並列運転に切り替えた場合の電力が一定になるように、回転速度ωeを単独運転時の1/2倍にする必要がある。 As described above, if one of the two compression sections of the twin rotary compressor (compressor 80) performs a single operation in which the refrigerant is compressed, the refrigerant circulation rate is halved. Therefore, although the compressor 80 is normally operated in parallel, in order to output the refrigerant circulation amount equivalent to that in the parallel operation in the single operation of the compressor 80, the rotational speed ωe of the electric motor 1 is set to 2 in the parallel operation. Need to double. The inverter control device 17 according to the third embodiment doubles the rotational speed ωe of the electric motor 1 when the compressor 80 is operated alone, so that the efficiency of the compressor 80 can be improved. . Further, the inverter control device 17 according to the third embodiment sets the rotational speed ωe to 1 at the time of the single operation so that the electric power becomes constant when the single operation is switched to the parallel operation in which the refrigerant is compressed by the two compression units. Must be doubled.
 回転速度指令ωe*を上記のように、単独運転と並列運転とで切り替える例を、図29、図30に示す。図29及び図30は本発明の実施の形態3による圧縮機の制御例を示す図である。図29は圧縮機80が並列運転から単独運転に切り替わる場合であり、図30は圧縮機80が単独運転から並列運転に切り替わる場合である。図29及び図30の横軸は時間であり、縦軸は信号値または回転速度指令ωe*の指令周波数である。波形71は並列運転信号であり、波形72は単独運転信号である。波形73は、回転速度指令ωe*の指令周波数である。本実施の形態では、運転モード切替検出部53にて電動機1の推定電力P^から運転モードを判別しているので、並列運転信号71及び単独運転信号72を生成してはいないが、単独運転か並列運転か区別するために記載した。 Examples of switching the rotational speed command ωe * between the single operation and the parallel operation as described above are shown in FIGS. FIGS. 29 and 30 are diagrams showing a control example of the compressor according to the third embodiment of the present invention. FIG. 29 shows a case where the compressor 80 is switched from parallel operation to single operation, and FIG. 30 is a case where the compressor 80 is switched from single operation to parallel operation. 29 and 30, the horizontal axis represents time, and the vertical axis represents the signal value or the command frequency of the rotational speed command ωe *. A waveform 71 is a parallel operation signal, and a waveform 72 is a single operation signal. A waveform 73 is a command frequency of the rotation speed command ωe *. In the present embodiment, since the operation mode is detected from the estimated power P ^ of the electric motor 1 by the operation mode switching detection unit 53, the parallel operation signal 71 and the individual operation signal 72 are not generated. It was described to distinguish between parallel and parallel operation.
 図29に示すように、圧縮機80が時刻t1において自動で並列運転から単独運転に切り替わると、すなわち、並列運転信号71が1から0になると同時に単独運転信号72が0から1になると、運転モード切替検出部53は電動機1の推定電力P^から運転モードを判別する。運転モード切替検出部53は運転モードを確認すると、すぐに判別信号hntを回転速度指令値生成部13に出力する。回転速度指令値生成部13は判別信号hntを受けると、直ちに並列運転の回転速度を2倍にする命令を速度制御部46に出力する。すなわち、回転速度指令値生成部13は、判別信号hntを受けると、指令周波数73のように回転速度指令ωe*を変化させる。図29では、時刻t1から指令周波数73が変化するように記載しているが、実際は多少の遅れ時間が発生する。 As shown in FIG. 29, when the compressor 80 automatically switches from parallel operation to single operation at time t1, that is, when the parallel operation signal 71 changes from 1 to 0 and the single operation signal 72 changes from 0 to 1, The mode switching detection unit 53 determines the operation mode from the estimated power P ^ of the electric motor 1. When the operation mode switching detection unit 53 confirms the operation mode, it immediately outputs a determination signal hnt to the rotation speed command value generation unit 13. Upon receiving the determination signal hnt, the rotation speed command value generation unit 13 immediately outputs a command for doubling the rotation speed of the parallel operation to the speed control unit 46. That is, when the rotational speed command value generation unit 13 receives the determination signal hnt, the rotational speed command value ωe * is changed like the command frequency 73. In FIG. 29, it is described that the command frequency 73 changes from the time t1, but in reality, some delay time occurs.
 図30に示すように、圧縮機80が時刻t1において自動で単独運転から並列運転に切り替わると、すなわち、並列運転信号71が0から1になると同時に単独運転信号72が1から0になると、運転モード切替検出部53は電動機1の推定電力P^から運転モードを判別する。運転モード切替検出部53は運転モードを確認すると、すぐに判別信号hntを回転速度指令値生成部13に出力する。回転速度指令値生成部13は判別信号hntを受けると、直ちに単独運転時の回転速度を半分にする命令を速度制御部46に出力する。すなわち、回転速度指令値生成部13は、判別信号hntを受けると、指令周波数73のように回転速度指令ωe*を変化させる。図30では、時刻t1から指令周波数73が変化するように記載しているが、実際は多少の遅れ時間が発生する。 As shown in FIG. 30, when the compressor 80 automatically switches from single operation to parallel operation at time t1, that is, when the parallel operation signal 71 changes from 0 to 1 and the single operation signal 72 changes from 1 to 0, the operation is started. The mode switching detection unit 53 determines the operation mode from the estimated power P ^ of the electric motor 1. When the operation mode switching detection unit 53 confirms the operation mode, it immediately outputs a determination signal hnt to the rotation speed command value generation unit 13. Upon receiving the determination signal hnt, the rotation speed command value generation unit 13 immediately outputs a command to halve the rotation speed during the single operation to the speed control unit 46. That is, when the rotational speed command value generation unit 13 receives the determination signal hnt, the rotational speed command value ωe * is changed like the command frequency 73. In FIG. 30, it is described that the command frequency 73 changes from the time t1, but in reality, some delay time occurs.
 したがって、実施の形態3のインバータ制御装置17は、ツインロータリ圧縮機(圧縮機80)の運転モード判定を自動で行い、それに基づいて、並列運転から単独運転への切り替わりの場合に回転速度を2倍にする回転速度指令ωe*を設定し、単独運転から並列運転への切り替わりの場合に回転速度を1/2倍にする回転速度指令ωe*を設定するので、圧縮機80内の圧縮される冷媒循環量を安定させることができ、出力の電力が一定になるようにでき、圧縮機80の効率が低下するのを回避できる。 Therefore, the inverter control device 17 according to the third embodiment automatically determines the operation mode of the twin rotary compressor (compressor 80), and based on this, the rotational speed is set to 2 when switching from parallel operation to single operation. The rotation speed command ωe * to be doubled is set, and the rotation speed command ωe * to set the rotation speed to ½ is set in the case of switching from single operation to parallel operation. The amount of circulating refrigerant can be stabilized, the output power can be made constant, and the efficiency of the compressor 80 can be prevented from decreasing.
 実施の形態3のインバータ圧縮機100は、インバータ制御装置17を備えるので、圧縮機80の運転モードを判別することができる。また、実施の形態3のインバータ圧縮機100は、冷媒を圧縮させる圧縮部の数が変わる圧縮機80における運転モードの切り替わりを自動的に検出し、そのモード特有の軸トルク変動パターンに合わせて電動機1のトルクを出力できるように制御することによって、運転モードに左右されない振動抑制制御を行うことができる。 Since the inverter compressor 100 of the third embodiment includes the inverter control device 17, the operation mode of the compressor 80 can be determined. Further, the inverter compressor 100 according to the third embodiment automatically detects the switching of the operation mode in the compressor 80 in which the number of compression units for compressing the refrigerant is changed, and the electric motor is matched with the shaft torque variation pattern specific to the mode. By performing control so that the torque of 1 can be output, vibration suppression control that is not affected by the operation mode can be performed.
 なお、実施の形態1~3のインバータ制御装置17は、圧縮機80を制御する例で説明したが、制御対象は圧縮機に限らず、電動機1の一回転で変動する電力または軸トルクの変動成分周波数を有する運転モードを備えた機械にも適用できる。 The inverter control device 17 according to the first to third embodiments has been described with reference to the example in which the compressor 80 is controlled. The present invention can also be applied to a machine having an operation mode having a component frequency.
実施の形態4.
 図31は、本発明の実施の形態4によるインバータ制御装置及びインバータ圧縮機を示すブロック図である。図32は、図31の位相調整部における進み相フィルタのボード線図である。図32のボード線図は、位相調整部190のフィルタの伝達特性を示す。実施の形態4のインバータ制御装置17は、トルク補償値生成部25において位相調整部190を備える点で、実施の形態2のインバータ制御装置17と異なる。図31において、位相調整部190の構成以外は実施の形態2のインバータ制御装置17と同様である。
Embodiment 4 FIG.
FIG. 31 is a block diagram showing an inverter control device and an inverter compressor according to the fourth embodiment of the present invention. FIG. 32 is a Bode diagram of the advanced phase filter in the phase adjustment unit of FIG. The Bode diagram of FIG. 32 shows the transfer characteristics of the filter of the phase adjustment unit 190. The inverter control device 17 according to the fourth embodiment differs from the inverter control device 17 according to the second embodiment in that the torque compensation value generation unit 25 includes a phase adjustment unit 190. In FIG. 31, the configuration other than the phase adjustment unit 190 is the same as that of the inverter control device 17 of the second embodiment.
 図31の出力トルク推定部35は、実施の形態2と同様に、電力推定部8が演算した推定電力P^に基づいて電動機1のトルクを計算する。トルク脈動抽出部36は、出力トルク推定部35が推定した推定トルクτ^を特定の周波数で検波した電力の脈動成分を抽出する。また、トルク脈動抽出部36は、推定トルクτ^又は位相調整された調整推定トルクτ^uを所定の周波数で検波したトルクの脈動成分振幅を抽出する。さらに、トルク指令値補償部47は、トルク脈動抽出部36で計算した電動機1の推定トルクτ^の振幅成分であるトルク脈動成分τ^kfと、速度制御部46で出力したトルク指令τ*とを足して補正したトルク補正指令τrefを出力することで、電動機1の出力トルクを軸トルクに追従させることができる。実施の形態4のインバータ制御装置17は、実施の形態2の図23が示すように、電動機1の回転速度の脈動を低減できる。 31, the output torque estimation unit 35 of FIG. 31 calculates the torque of the electric motor 1 based on the estimated power P ^ calculated by the power estimation unit 8 as in the second embodiment. The torque pulsation extraction unit 36 extracts a pulsation component of electric power obtained by detecting the estimated torque τ ^ estimated by the output torque estimation unit 35 at a specific frequency. Further, the torque pulsation extracting unit 36 extracts the pulsation component amplitude of the torque detected from the estimated torque τ ^ or the phase-adjusted adjusted estimated torque τ ^ u at a predetermined frequency. Further, the torque command value compensation unit 47 includes a torque pulsation component τ ^ kf that is an amplitude component of the estimated torque τ ^ of the electric motor 1 calculated by the torque pulsation extraction unit 36, and a torque command τ * output by the speed control unit 46. By outputting a torque correction command τref corrected by adding, the output torque of the electric motor 1 can be made to follow the shaft torque. The inverter control device 17 according to the fourth embodiment can reduce the pulsation of the rotational speed of the electric motor 1 as shown in FIG. 23 according to the second embodiment.
 しかし、速度制御や磁束オブザーバ等を行う時に、制御応答や制御装置の処理遅延が発生するため、出力トルク推定部35で計算した電動機1の推定トルクτ^は補正したトルク指令補正であるのに、推定トルクτ^は負荷トルクより位相が遅延する。したがって、推定トルクにおける位相遅延を抑制することにより、具体的には推定トルクτ^の位相が進むように調整された調整推定トルクτ^uを用いることにより、出力トルクを負荷トルクに近づけることで、電動機1の回転速度の変動の低減効果の改良を図れる。 However, when performing speed control, magnetic flux observer, or the like, control response or processing delay of the control device occurs, so the estimated torque τ ^ of the motor 1 calculated by the output torque estimating unit 35 is a corrected torque command correction. The phase of the estimated torque τ is delayed from the load torque. Therefore, by suppressing the phase delay in the estimated torque, specifically, by using the adjusted estimated torque τ ^ u adjusted so that the phase of the estimated torque τ ^ advances, the output torque can be brought close to the load torque. Thus, it is possible to improve the effect of reducing fluctuations in the rotational speed of the electric motor 1.
 推定トルクτ^の位相遅延を抑制するため、図31が示すように、出力トルク推定部35で算出して推定トルクτ^を位相調整部190に入力する。具体的には、位相調整部190で、式(21)の伝達関数が示すような進み相フィルタを採用する。位相調整部190は、式(22)のように、位相が進むように調整された調整推定トルクτ^uを出力する。
Figure JPOXMLDOC01-appb-M000021

Figure JPOXMLDOC01-appb-M000022
In order to suppress the phase delay of the estimated torque τ ^, the estimated torque τ ^ is calculated by the output torque estimator 35 and input to the phase adjuster 190 as shown in FIG. Specifically, the phase adjustment unit 190 employs a leading phase filter as indicated by the transfer function of Expression (21). The phase adjustment unit 190 outputs the adjustment estimated torque τ ^ u adjusted so that the phase advances as in Expression (22).
Figure JPOXMLDOC01-appb-M000021

Figure JPOXMLDOC01-appb-M000022
 ただし、sは複素数である。T1とT2はフィルタの時間定数であり、式(23)のように定義される。
Figure JPOXMLDOC01-appb-M000023

 ω1とω2はフィルタの指定した角周波数[rad/s]であり、電動機1の運転周波数範囲によって決められる。
Here, s is a complex number. T1 and T2 are filter time constants, and are defined as in Expression (23).
Figure JPOXMLDOC01-appb-M000023

ω1 and ω2 are angular frequencies [rad / s] specified by the filter, and are determined by the operating frequency range of the electric motor 1.
 図32のボード線図では、トルク補正指令τrefに対する調整推定トルクτ^uと推定トルクτ^とのそれぞれの伝達特性(振幅と位相)を示している。図32の上段は振幅の伝達特性であり、図32の下段は位相の伝達特性である。図32の上段において、横軸は角周波数[rad/s]であり、縦軸は振幅のゲイン[dB]である。図32の下段において、横軸は角周波数[rad/s]であり、縦軸は位相[deg]である。位相特性191及び振幅特性193は、フィルタ有の場合の特性であり、すなわち位相調整部190で調整された調整推定トルクτ^uの特性である。位相特性192及び振幅特性194は、フィルタ無の場合の特性であり、すなわち位相調整部190で調整されていない推定トルクτ^の特性である。 32 shows the transmission characteristics (amplitude and phase) of the adjusted estimated torque τ ^ u and the estimated torque τ ^ with respect to the torque correction command τref. The upper part of FIG. 32 shows amplitude transfer characteristics, and the lower part of FIG. 32 shows phase transfer characteristics. In the upper part of FIG. 32, the horizontal axis represents angular frequency [rad / s], and the vertical axis represents amplitude gain [dB]. In the lower part of FIG. 32, the horizontal axis represents angular frequency [rad / s], and the vertical axis represents phase [deg]. The phase characteristic 191 and the amplitude characteristic 193 are characteristics when there is a filter, that is, the characteristics of the adjustment estimated torque τ ^ u adjusted by the phase adjustment unit 190. The phase characteristic 192 and the amplitude characteristic 194 are characteristics when there is no filter, that is, characteristics of the estimated torque τ ^ not adjusted by the phase adjustment unit 190.
 図32に示すように、フィルタ無の場合には、電動機1の指定した運転周波数範囲であるω1~ω2の範囲、例えば機械回転角周波数60rad/sから300rad/sまでにおいて、推定トルクτ^の位相特性192は遅延することが分かった。一方、フィルタ有の場合には、位相調整部190で調整された調整推定トルクτ^uの位相特性191は遅延が抑制されている。従って、位相調整部190の進み相フィルタにおける角周波数ω1と角周波数ω2を適切に設計することにより、電動機1の運転周波数範囲において、推定トルクの遅延を抑制できる。すなわち、電動機1の運転周波数範囲において、推定トルクτ^の位相が進むように調整された調整推定トルクτ^uを用いて、出力トルクを負荷トルクに近づけることで、電動機1の回転速度の変動の低減効果の改良を図れることができる。 As shown in FIG. 32, in the case of no filter, the estimated torque τ ^ in the range of ω1 to ω2, which is the specified operating frequency range of the motor 1, for example, from the mechanical rotation angular frequency of 60 rad / s to 300 rad / s. It was found that the phase characteristic 192 is delayed. On the other hand, when there is a filter, the phase characteristic 191 of the adjustment estimated torque τ ^ u adjusted by the phase adjustment unit 190 has a suppressed delay. Therefore, by appropriately designing the angular frequency ω1 and the angular frequency ω2 in the leading phase filter of the phase adjusting unit 190, the delay of the estimated torque can be suppressed in the operating frequency range of the electric motor 1. That is, in the operating frequency range of the electric motor 1, the output torque is made close to the load torque by using the adjusted estimated torque τ ^ u adjusted so that the phase of the estimated torque τ ^ advances, thereby changing the rotational speed of the electric motor 1. It is possible to improve the reduction effect.
 図33及び図34に、本発明の実施の形態4による振動抑制結果、すなわち電動機1の回転速度の脈動を低減する効果を示した。図33は本発明の実施の形態4による進み相フィルタ無の場合における振動抑制結果を示す図であり、図34は本発明の実施の形態4による進み相フィルタ有の場合における振動抑制結果を示す図である。図33及び図34の横軸は電動機1の回転速度の脈動の周波数次数であり、図33及び図34の縦軸は振動レベル、すなわち回転速度脈動振動成分の振幅[rpm]である。図33及び図34は、圧縮機80の単独運転時に1638rpm(27.3rps)の回転速度指令値で電動機1を駆動した場合における脈動成分を有する電動機1の回転速度波形をフーリエ変換(FFT)し、振動抑制効果を比較した結果である。 33 and 34 show the vibration suppression result according to the fourth embodiment of the present invention, that is, the effect of reducing the pulsation of the rotational speed of the electric motor 1. FIG. 33 is a diagram showing a vibration suppression result when there is no leading phase filter according to the fourth embodiment of the present invention, and FIG. 34 shows a vibration suppression result when there is a leading phase filter according to the fourth embodiment of the present invention. FIG. The horizontal axis of FIGS. 33 and 34 is the frequency order of the pulsation of the rotational speed of the electric motor 1, and the vertical axis of FIGS. 33 and 34 is the vibration level, that is, the amplitude [rpm] of the rotational speed pulsation vibration component. 33 and 34 show a Fourier transform (FFT) of the rotational speed waveform of the electric motor 1 having a pulsating component when the electric motor 1 is driven at a rotational speed command value of 1638 rpm (27.3 rps) when the compressor 80 is operated independently. It is the result of having compared the vibration suppression effect.
 図33は進み相フィルタ無のトルク推定値τ^を用いてトルク指令を補償し振動抑制した場合の電動機1の回転速度のFFTである。図33において、脈動成分特性195、196は、周波数が27.3Hzの場合における脈動成分特性であり、周波数f1fの特性である。脈動成分特性195が抑制なしの結果であり、脈動成分特性196が抑制ありの結果である。図33において、周波数f1fの脈動成分特性195にトルク補正を行うことで、周波数f1fの脈動成分の振幅を155rpmから41rpmに低減することができる。脈動成分特性197、198は、周波数f1fの2倍の周波数における脈動成分特性であり、周波数f2fの特性である。脈動成分特性199、200は、周波数f1fの3倍の周波数における脈動成分特性であり、周波数f3fの特性である。 FIG. 33 is an FFT of the rotational speed of the electric motor 1 when the torque command is compensated and the vibration is suppressed by using the estimated torque value τ ^ without the leading phase filter. In FIG. 33, pulsation component characteristics 195 and 196 are pulsation component characteristics when the frequency is 27.3 Hz, and are characteristics of the frequency f1f. The pulsation component characteristic 195 is a result without suppression, and the pulsation component characteristic 196 is a result with suppression. In FIG. 33, by performing torque correction on the pulsation component characteristic 195 of the frequency f1f, the amplitude of the pulsation component of the frequency f1f can be reduced from 155 rpm to 41 rpm. The pulsation component characteristics 197 and 198 are pulsation component characteristics at a frequency twice as high as the frequency f1f, and are characteristics of the frequency f2f. The pulsation component characteristics 199 and 200 are pulsation component characteristics at a frequency three times the frequency f1f, and are the characteristics of the frequency f3f.
 図34は進み相フィルタ有の調整推定トルクτ^uを用いてトルク指令を補償し振動抑制した場合の電動機1の回転速度のFFTである。図34において、脈動成分特性201、202は、周波数が27.3Hzの場合における脈動成分特性であり、周波数f1fの特性である。脈動成分特性201が抑制なしの結果であり、脈動成分特性202が抑制ありの結果である。図34において、周波数f1fの脈動成分特性201にトルク補正を行うことで、周波数f1fの脈動成分の振幅を155rpmから20rpmに低減することができる。脈動成分特性203、204は、周波数f1fの2倍の周波数における脈動成分特性であり、周波数f2fの特性である。脈動成分特性205、206は、周波数f1fの3倍の周波数における脈動成分特性であり、周波数f3fの特性である。 FIG. 34 is an FFT of the rotational speed of the electric motor 1 when the torque command is compensated by using the estimated adjustment torque τ ^ u with a leading phase filter to suppress the vibration. In FIG. 34, pulsation component characteristics 201 and 202 are pulsation component characteristics when the frequency is 27.3 Hz, and are characteristics of the frequency f1f. The pulsation component characteristic 201 is a result without suppression, and the pulsation component characteristic 202 is a result with suppression. In FIG. 34, by performing torque correction on the pulsation component characteristic 201 of the frequency f1f, the amplitude of the pulsation component of the frequency f1f can be reduced from 155 rpm to 20 rpm. The pulsation component characteristics 203 and 204 are pulsation component characteristics at a frequency twice as high as the frequency f1f, and are characteristics of the frequency f2f. The pulsation component characteristics 205 and 206 are pulsation component characteristics at a frequency three times the frequency f1f, and are the characteristics of the frequency f3f.
 実施の形態4のインバータ制御装置17では、図33と図34に示すように、進み相フィルタを使用することで、すなわち推定トルクτ^の位相が進むように調整された調整推定トルクτ^uを用いることで、推定トルクτ^の推定遅れによる補正ずれを避けることができ、圧縮機80における負荷トルク変動に起因する電動機1の回転速度脈動成分の振幅を更に低減することができる。 In the inverter control device 17 of the fourth embodiment, as shown in FIGS. 33 and 34, the adjusted estimated torque τ ^ u adjusted by using a leading phase filter, that is, adjusted so that the phase of the estimated torque τ ^ advances. By using, it is possible to avoid a correction deviation due to an estimated delay of the estimated torque τ ^, and to further reduce the amplitude of the rotational speed pulsation component of the electric motor 1 due to the load torque fluctuation in the compressor 80.
実施の形態5.
 図35は、本発明の実施の形態5によるインバータ制御装置及びインバータ圧縮機を示すブロック図である。図36は図35のトルク脈動抽出部を示す図であり、図37は図36の余弦波生成部と正弦波生成部を示す図である。実施の形態5のインバータ制御装置17は、トルク補償値生成部25においてトルク脈動抽出部180の構成が、実施の形態2のインバータ制御装置17と異なる。図35において、トルク脈動抽出部180の構成以外は実施の形態2のインバータ制御装置17と同様である。
Embodiment 5 FIG.
FIG. 35 is a block diagram showing an inverter control device and an inverter compressor according to the fifth embodiment of the present invention. 36 is a diagram illustrating the torque pulsation extracting unit of FIG. 35, and FIG. 37 is a diagram illustrating the cosine wave generating unit and the sine wave generating unit of FIG. The inverter control device 17 according to the fifth embodiment is different from the inverter control device 17 according to the second embodiment in the configuration of the torque pulsation extraction unit 180 in the torque compensation value generation unit 25. In FIG. 35, the configuration other than that of the torque pulsation extraction unit 180 is the same as that of the inverter control device 17 of the second embodiment.
 本実施の形態5の目的は、実施の形態4の目的と同様であり、インバータ制御における推定トルクの遅延を回避することである。ただし、実施の形態4のインバータ制御装置17では、採用された進み位相フィルタにおいて、推定トルクの位相を調整するとともに、推定トルクの振幅(ゲイン)が変動してしまう可能性がある。従って、本実施の形態5では、トルク脈動抽出部180に学習部111を備え、学習部111が出力する位相量(初期位相)θcに基づいてトルク脈動成分τ^kfの位相量θcを確定することで、トルク脈動成分τ^kfの推定遅れの回避を図ることができる。 The purpose of the fifth embodiment is the same as that of the fourth embodiment, and is to avoid the delay of the estimated torque in the inverter control. However, in the inverter control device 17 of the fourth embodiment, there is a possibility that the phase of the estimated torque is adjusted and the amplitude (gain) of the estimated torque varies in the adopted advanced phase filter. Therefore, in the fifth embodiment, the torque pulsation extraction unit 180 includes the learning unit 111, and the phase amount θc of the torque pulsation component τ ^ kf is determined based on the phase amount (initial phase) θc output from the learning unit 111. Thus, it is possible to avoid the estimation delay of the torque pulsation component τ ^ kf.
 図36に示したトルク脈動抽出部180は、実施の形態2のトルク脈動抽出部36(図17参照)に学習部111が追加されており、余弦波生成部、正弦波生成部に位相量θcが入力されるように構成したものである。図36においてトルク脈動成分抽出器101bは、図17のトルク脈動成分抽出器101bと同様に、トルク脈動抽出部180を構成するN個のトルク脈動成分抽出器101の内の一つである。トルク脈動抽出部180は、学習部111を備えており、学習部111が出力する位相量θcがN個のトルク脈動成分抽出器101における余弦波生成部159と正弦波生成部160に主力される。図36では、図17と同様に3つのトルク脈動成分抽出器101a、101b、101cを示した。トルク脈動成分抽出器101の具体的な構成は、トルク脈動成分抽出器101bに示した。 The torque pulsation extraction unit 180 shown in FIG. 36 has a learning unit 111 added to the torque pulsation extraction unit 36 (see FIG. 17) of the second embodiment, and the phase amount θc is added to the cosine wave generation unit and the sine wave generation unit. Is configured to be input. 36, the torque pulsation component extractor 101b is one of the N torque pulsation component extractors 101 constituting the torque pulsation extraction unit 180, similarly to the torque pulsation component extractor 101b of FIG. The torque pulsation extraction unit 180 includes a learning unit 111, and the phase amount θc output from the learning unit 111 is mainly used by the cosine wave generation unit 159 and the sine wave generation unit 160 in the N torque pulsation component extractors 101. . FIG. 36 shows three torque pulsation component extractors 101a, 101b, and 101c as in FIG. The specific configuration of the torque pulsation component extractor 101 is shown in the torque pulsation component extractor 101b.
 トルク脈動成分抽出器101は、余弦波生成部159、正弦波生成部160、積分器42a、42b、乗算器41a、41b、43a、43b、加算器44、振幅算出部102を備える。推定トルクτ^の余弦波成分であるトルク余弦波成分τkAは、次のように生成する。まず、余弦波生成部159及び乗算器41aで、周波数fkfの推定トルクτ^の余弦波成分、すなわちノイズを含む初期余弦波成分を生成する。積分器42aでこの初期余弦波成分を積分し、余弦波成分の振幅||τkA||を算出する。乗算器43aで振幅||τkA||と周波数fkfの余弦波とを乗算することで、ノイズが除去されたトルク余弦波成分τkAが生成される。トルク余弦波成分τkAは、式(24)の右辺における第一項(cosの項)である。 The torque pulsation component extractor 101 includes a cosine wave generator 159, a sine wave generator 160, integrators 42a and 42b, multipliers 41a, 41b, 43a and 43b, an adder 44, and an amplitude calculator 102. A torque cosine wave component τkA, which is a cosine wave component of the estimated torque τ ^, is generated as follows. First, the cosine wave generation unit 159 and the multiplier 41a generate a cosine wave component of the estimated torque τ ^ of the frequency fkf, that is, an initial cosine wave component including noise. The integrator 42a integrates this initial cosine wave component, and calculates the amplitude || τkA || of the cosine wave component. The multiplier 43a multiplies the amplitude || τkA || by the cosine wave having the frequency fkf to generate a torque cosine wave component τkA from which noise has been removed. The torque cosine wave component τkA is the first term (cos term) on the right side of Equation (24).
 推定トルクτ^の正弦波成分であるトルク正弦波成分τkBは、次のように生成する。まず、正弦波生成部160及び乗算器41bで、周波数fkfの推定トルクτ^の正弦波成分、すなわちノイズを含む初期正弦波成分を生成する。積分器42bでこの初期正弦波成分を積分し、正弦波成分の振幅||τkB||を算出する。乗算器43bで振幅||τkB||と周波数fkfの正弦波を乗算することで、ノイズが除去されたトルク正弦波成分τkBが生成される。トルク正弦波成分τkBは、式(24)の右辺における第二項(sinの項)である。加算器44に基づき、トルク余弦波成分τkAとトルク正弦波成分τkBとを統合することで、所定の周波数fkfにおける推定トルクτ^の時間的な振動成分であるトルク脈動成分τ^kfが生成される。トルク脈動成分τ^kfは合成トルク脈動成分である。 The torque sine wave component τkB, which is the sine wave component of the estimated torque τ ^, is generated as follows. First, the sine wave generation unit 160 and the multiplier 41b generate a sine wave component of the estimated torque τ ^ of the frequency fkf, that is, an initial sine wave component including noise. The integrator 42b integrates this initial sine wave component to calculate the amplitude || τkB || of the sine wave component. The multiplier 43b multiplies the sine wave of amplitude || τkB || and frequency fkf to generate a torque sine wave component τkB from which noise has been removed. The torque sine wave component τkB is the second term (sin term) on the right side of Equation (24). Based on the adder 44, the torque cosine wave component τkA and the torque sine wave component τkB are integrated to generate a torque pulsation component τ ^ kf that is a temporal vibration component of the estimated torque τ ^ at a predetermined frequency fkf. The The torque pulsation component τ ^ kf is a combined torque pulsation component.
 本実施の形態5におけるトルク脈動成分τ^kfを生成する式(24)は、実施の形態2で述べたトルク脈動成分τ^kfを生成する式(16)に、cos関数及びsin関数に位相量θcを導入した方程式になっている。トルク脈動成分抽出器101は、推定トルクτ^の余弦波成分τkAと正弦波成分τkBに基づいて、生成したトルク余弦波成分τkAとトルク正弦波成分τkBとを加算器44で統合することで、所定の周波数fkfにおける推定トルクτ^の脈動成分τ^kfが生成される。 The expression (24) for generating the torque pulsation component τ ^ kf in the fifth embodiment is different from the expression (16) for generating the torque pulsation component τ ^ kf described in the second embodiment in terms of the cos function and the sin function. It is an equation that introduces the quantity θc. The torque pulsation component extractor 101 integrates the generated torque cosine wave component τkA and torque sine wave component τkB by the adder 44 based on the cosine wave component τkA and sine wave component τkB of the estimated torque τ ^. A pulsation component τ ^ kf of the estimated torque τ ^ at a predetermined frequency fkf is generated.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 余弦波生成部159及び正弦波生成部160の具体的な構成は以下のようになる。図37に示すように、余弦波生成部159は、乗算器105、加算器109、余弦波関数107を備える。余弦波生成部159は、所定の周波数fkf及び学習部111が出力する位相量θcに基づいて、余弦波関数107に入力する入力角度を算出し、算出した入力角度を余弦波関数107に通すことで、所定の周波数fkfにおけるcos成分を生成する。ここで、入力角度は2×π×fkf×t+θcであり、cos成分はcos(2×π×fkf×t+θc)である。 Specific configurations of the cosine wave generation unit 159 and the sine wave generation unit 160 are as follows. As illustrated in FIG. 37, the cosine wave generation unit 159 includes a multiplier 105, an adder 109, and a cosine wave function 107. The cosine wave generation unit 159 calculates an input angle to be input to the cosine wave function 107 based on the predetermined frequency fkf and the phase amount θc output from the learning unit 111, and passes the calculated input angle to the cosine wave function 107. Thus, a cos component at a predetermined frequency fkf is generated. Here, the input angle is 2 × π × fkf × t + θc, and the cos component is cos (2 × π × fkf × t + θc).
 同様に、図37に示すように、正弦波生成部160は、乗算器106、加算器110、正弦波関数108を備える。正弦波生成部160は、所定の周波数fkf及び学習部111が出力する位相量θcに基づいて、正弦波関数108に入力する入力角度を算出し、算出した入力角度を正弦波関数108に通すことで、所定の周波数fkfにおけるsin成分を生成する。ここで、入力角度は2×π×fkf×t+θcであり、sin成分はsin(2×π×fkf×t+θc)である。 Similarly, as shown in FIG. 37, the sine wave generation unit 160 includes a multiplier 106, an adder 110, and a sine wave function 108. The sine wave generation unit 160 calculates an input angle to be input to the sine wave function 108 based on the predetermined frequency fkf and the phase amount θc output from the learning unit 111, and passes the calculated input angle to the sine wave function 108. Thus, a sin component at a predetermined frequency fkf is generated. Here, the input angle is 2 × π × fkf × t + θc, and the sin component is sin (2 × π × fkf × t + θc).
 図38を用いて、学習部111が位相量θcを出力する動作を説明する。図38は、図36の学習部のフローチャットを示す図である。先ず、位相量θcの初期値を0に設定する(ステップS001)。次に、ステップS002にて、図18に示したインバータ出力電圧制御部12の磁束推定部18で算出した電動機1の回転速度の推定値である推定回転速度ω^eを読込む。電動機1の推定回転速度ω^eと回転速度指令値生成部13から出力された回転速度指令値ωe*の差である回転速度差異ωerrを式(25)により算出する。図35、図36、図37において、トルク脈動抽出部180の学習部111に入力される推定回転速度ω^e及び回転速度指令値ωe*は省略した。 The operation of the learning unit 111 outputting the phase amount θc will be described with reference to FIG. FIG. 38 is a diagram showing a flow chat of the learning unit in FIG. First, the initial value of the phase amount θc is set to 0 (step S001). Next, in step S002, an estimated rotational speed ω ^ e that is an estimated value of the rotational speed of the electric motor 1 calculated by the magnetic flux estimating unit 18 of the inverter output voltage control unit 12 shown in FIG. 18 is read. A rotational speed difference ωerr, which is a difference between the estimated rotational speed ω ^ e of the electric motor 1 and the rotational speed command value ωe * output from the rotational speed command value generation unit 13, is calculated by Expression (25). 35, 36, and 37, the estimated rotational speed ω ^ e and the rotational speed command value ωe * input to the learning unit 111 of the torque pulsation extracting unit 180 are omitted.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 次に、算出した現在のサンプリングの回転速度差異ωerrと記憶された前回のサンプリングの回転速度差異ωerrpとに基づき、回転速度差異の変動量Δωerrを式(26)により計算する。また、変動量Δωerrの絶対値|Δωerr|を計算する。
Figure JPOXMLDOC01-appb-M000026
Next, based on the calculated current rotational speed difference ωerr of the sampling and the stored rotational speed difference ωerrrp of the previous sampling, a fluctuation amount Δωerr of the rotational speed difference is calculated by Expression (26). Also, the absolute value | Δωerr | of the fluctuation amount Δωerr is calculated.
Figure JPOXMLDOC01-appb-M000026
 式(26)で計算された回転速度差異の変動量Δωerrは、電動機1の回転速度の脈動の大きさの影響を受ける。 The fluctuation amount Δωerr of the rotational speed difference calculated by the equation (26) is affected by the magnitude of the pulsation of the rotational speed of the electric motor 1.
 次に、ステップS003にて、ステップS002で計算した回転速度差異の変動量の絶対値|Δωerr|と指定した閾値ε1とを比較する。ステップS003で回転速度差異の変動量の絶対値|Δωerr|がε1以上であると判断すれば(判定結果がNoの場合)ステップS004に進む。ステップS004では、式(27)のように、位相量θcに指定した正の数のインクリメントδθを足して、新たな位相量θcを生成する。
Figure JPOXMLDOC01-appb-M000027

 ただし、位相量θcは所定の位相量θcmaxを上限として制限されている。
Next, in step S003, the absolute value | Δωerr | of the fluctuation amount of the rotational speed difference calculated in step S002 is compared with the designated threshold value ε1. If it is determined in step S003 that the absolute value | Δωerr | of the fluctuation amount of the rotational speed difference is ε1 or more (when the determination result is No), the process proceeds to step S004. In step S004, a new phase amount θc is generated by adding the positive increment δθ designated to the phase amount θc as shown in equation (27).
Figure JPOXMLDOC01-appb-M000027

However, the phase amount θc is limited with the predetermined phase amount θcmax as an upper limit.
 ステップS003で回転速度差異の変動量Δωerrの絶対値|Δωerr|がε1より小さいと判断すれば(判定結果がYesの場合)、位相量θcを調整する必要はなく、ステップS005に進む。ステップS005にて、学習部111は、位相量θcを余弦波生成部159の加算器109と正弦波生成部160の加算器110に出力する。トルク脈動成分抽出器101は、出力された位相量θcを用いて、式(24)に基づいたトルク脈動成分τ^kfを算出する。ステップS006にて、トルク脈動成分τ^kfを出力した後に、推定回転速度ω^eのサンプリングが終了の場合は学習動作を終了し、サンプリングを継続する場合はステップS002に戻り、次のサンプリングについて上述と同じ処理を繰り返す。 If it is determined in step S003 that the absolute value | Δωerr | of the fluctuation amount Δωerr of the rotational speed difference is smaller than ε1 (when the determination result is Yes), it is not necessary to adjust the phase amount θc, and the process proceeds to step S005. In step S005, learning unit 111 outputs phase amount θc to adder 109 of cosine wave generation unit 159 and adder 110 of sine wave generation unit 160. Torque pulsation component extractor 101 calculates torque pulsation component τ ^ kf based on equation (24) using the output phase amount θc. In step S006, after outputting the torque pulsation component τ ^ kf, if the sampling of the estimated rotational speed ω ^ e is completed, the learning operation is terminated. If the sampling is continued, the process returns to step S002, and the next sampling is performed. Repeat the same process as above.
 図39は、電動機の回転速度の指令ω^eの波形を示す図である。横軸は時間であり、縦軸は振幅である。破線116は回転速度指令ωe*の指令値であり、波形115は推定回転速度ω^eの波形である。図39に示すように、電動機1の推定回転速度ω^eは、学習部111により、振幅変動が減少する傾向になることが分かる。図39では、推定回転速度ω^eの脈動の各周期における同じ位相でのサンプリング周期Δts毎に計算した4回分の回転速度差異の変動量Δωerr、すなわちΔωerr1、Δωerr2、Δωerr3、Δωerr4を示した。4回分の回転速度差異の変動量Δωerr1、Δωerr2、Δωerr3、Δωerr4を見れば、回転速度差異の変動量Δωerrも除々に小さくなる傾向であることが分かる。 FIG. 39 is a diagram showing a waveform of the command ω ^ e for the rotational speed of the electric motor. The horizontal axis is time, and the vertical axis is amplitude. A broken line 116 is a command value of the rotational speed command ωe *, and a waveform 115 is a waveform of the estimated rotational speed ω ^ e. As shown in FIG. 39, it can be seen that the estimated rotation speed ω ^ e of the electric motor 1 tends to decrease in amplitude fluctuation by the learning unit 111. In FIG. 39, the fluctuation amount Δωerr of four rotation speeds calculated for each sampling period Δts in the same phase in each cycle of the estimated rotational speed ω ^ e, that is, Δωerr1, Δωerr2, Δωerr3, and Δωerr4 are shown. If the fluctuation amounts Δωerr1, Δωerr2, Δωerr3, and Δωerr4 of the rotation speed difference for four times are observed, it can be seen that the fluctuation amount Δωerr of the rotation speed difference tends to gradually decrease.
 実施の形態5のインバータ制御装置17は、学習部111により、電動機1の回転速度差異の変動量Δωerrが指定した閾値を下回るようにトルク脈動成分の位相を調整することで、トルク脈動成分の位相の遅延をなくすことができる。また、実施の形態5のインバータ制御装置17は、電動機1の回転速度指令ω^eの指令値が変われば、その回転速度指令ω^eの指令値に応じて、学習部111が回転速度における適切な位相量をリアルタイムに調整できる。また、学習部111は推定回転速度ω^eを読込む度にリアルタイムで調整された位相量θcを出力するので、実施の形態5のインバータ制御装置17は、事前に位相量を設定する必要がなく、インバータ制御装置17の生産における事前の調整時間の低減を図れる。 The inverter control device 17 according to the fifth embodiment adjusts the phase of the torque pulsation component so that the learning unit 111 adjusts the phase of the torque pulsation component so that the fluctuation amount Δωerr of the rotational speed difference of the electric motor 1 falls below the specified threshold. The delay can be eliminated. Further, when the command value of the rotational speed command ω ^ e of the electric motor 1 is changed, the inverter 111 of the fifth embodiment causes the learning unit 111 to change the rotational speed command ω ^ e according to the command value of the rotational speed command ω ^ e. Appropriate phase amount can be adjusted in real time. Moreover, since learning unit 111 outputs phase amount θc adjusted in real time every time estimated rotation speed ω ^ e is read, inverter control device 17 of the fifth embodiment needs to set the phase amount in advance. In addition, it is possible to reduce the adjustment time in advance in the production of the inverter control device 17.
実施の形態6.
 図40は、本発明の実施の形態6によるインバータ制御装置及びインバータ圧縮機を示すブロック図である。図41は図40のトルク指令値切替部を示す図であり、図42は図40のトルク学習部を示す図である。また、図43は図40の電動機位相推定部の構成を示す図である。実施の形態6のインバータ制御装置17は、実施の形態2のインバータ制御装置17におけるトルク指令値補償部47をトルク指令値切替部120に変更し、インタフェーススイッチ122、トルク学習部121、電動機位相推定部150を備える点で、実施の形態2のインバータ制御装置17と異なる。図40において、インタフェーススイッチ122、トルク指令値切替部120、トルク学習部121、電動機位相推定部150の構成以外は実施の形態2のインバータ制御装置17と同様である。
Embodiment 6 FIG.
FIG. 40 is a block diagram showing an inverter control device and an inverter compressor according to the sixth embodiment of the present invention. 41 is a diagram showing the torque command value switching unit of FIG. 40, and FIG. 42 is a diagram showing the torque learning unit of FIG. FIG. 43 is a diagram showing a configuration of the motor phase estimation unit of FIG. The inverter control device 17 according to the sixth embodiment changes the torque command value compensation unit 47 in the inverter control device 17 according to the second embodiment to the torque command value switching unit 120, and performs the interface switch 122, the torque learning unit 121, and the motor phase estimation. It differs from inverter control device 17 of Embodiment 2 in that unit 150 is provided. In FIG. 40, the configuration is the same as that of the inverter control device 17 of the second embodiment except for the configuration of the interface switch 122, the torque command value switching unit 120, the torque learning unit 121, and the motor phase estimation unit 150.
 電動機位相推定部150は、図43に示すように、乗算器151と積分器152とを備え、磁束推定部18で計算した電動機1の推定回転速度ω^eに基づいて電動機1の回転子の回転角度を推定する。電動機1の機械回転速度ωmを推定した推定機械回転速度ω^mは式(28)によって算出される。
Figure JPOXMLDOC01-appb-M000028

 ただし、Pmは電動機1の極対数である。
As shown in FIG. 43, the motor phase estimation unit 150 includes a multiplier 151 and an integrator 152, and the rotor phase of the motor 1 is determined based on the estimated rotational speed ω ^ e of the motor 1 calculated by the magnetic flux estimation unit 18. Estimate the rotation angle. The estimated machine rotation speed ω ^ m obtained by estimating the machine rotation speed ωm of the electric motor 1 is calculated by the equation (28).
Figure JPOXMLDOC01-appb-M000028

However, Pm is the number of pole pairs of the electric motor 1.
 乗算器151により推定回転速度ω^eが1/Pm倍された推定機械回転速度ω^mは、積分器152に入力される。電動機1の回転子の推定回転角度θ^mは、積分器152に基づき式(29)のように算出される。なお、推定回転角度θ^mは、適宜、推定機械回転角度θ^mとも呼ぶ。
Figure JPOXMLDOC01-appb-M000029
The estimated mechanical rotational speed ω ^ m obtained by multiplying the estimated rotational speed ω ^ e by 1 / Pm by the multiplier 151 is input to the integrator 152. The estimated rotation angle θ ^ m of the rotor of the electric motor 1 is calculated as shown in Expression (29) based on the integrator 152. The estimated rotation angle θ ^ m is also referred to as an estimated machine rotation angle θ ^ m as appropriate.
Figure JPOXMLDOC01-appb-M000029
 インタフェーススイッチ122は、電動機1の回転速度の脈動を抑制するタイミングを判断する。具体的には、振動抑制を実施する時に、インタフェーススイッチ122は1を出力し、振動抑制を停止する時に、インタフェーススイッチ122は0を出力する。振動抑制を実施するか停止するかの判断を自動で行っても、手動で行っても良い。例えば、以下に示す場合は、実施している振動抑制を停止させる動作と、再び実施する動作を自動で行う。これにより振動抑制が働きにくい場合でも、学習をやり直すことで振動抑制の効果を大きくすることができる。 The interface switch 122 determines the timing for suppressing the pulsation of the rotation speed of the electric motor 1. Specifically, the interface switch 122 outputs 1 when the vibration suppression is performed, and the interface switch 122 outputs 0 when the vibration suppression is stopped. The determination of whether to suppress or stop vibration may be performed automatically or manually. For example, in the following case, the operation for stopping the vibration suppression being performed and the operation for re-execution are automatically performed. Thereby, even when vibration suppression is difficult to work, the effect of vibration suppression can be increased by re-learning.
 自動で振動抑制を停止する判断を行う判断条件は、以下の2通りの場合がある。
(1)電動機1の推定回転速度ω^eの脈動振幅が指定した閾値を超えた場合には、振動抑制を停止する判断を出す。
(2)圧縮機80の運転切り替えにおける判別信号hntの変動に基づいて、振動抑制を停止する判断を出す。
There are the following two conditions for determining whether to stop vibration suppression automatically.
(1) When the pulsation amplitude of the estimated rotational speed ω ^ e of the electric motor 1 exceeds a specified threshold value, a determination is made to stop vibration suppression.
(2) Based on the fluctuation of the determination signal hnt in the operation switching of the compressor 80, a determination is made to stop the vibration suppression.
 一方、手動で振動抑制を停止する判断する場合は、例えば、ユーザがリモートコントローラにおいて「静」のモードを選んだ時に振動抑制を実施する。 On the other hand, when it is determined to manually stop vibration suppression, for example, vibration suppression is performed when the user selects the “static” mode on the remote controller.
 図41において、トルク指令値切替部120は、スイッチング信号swtに基づいて、電動機1におけるトルク指令値を切り替える。具体的には、トルク学習部121で生成されるスイッチング信号swtが0の場合に、トルク指令値切替部120は、端子124と出力端子126を接続する。この場合には、トルク補正指令τrefは速度制御部46で算出したトルク指令τ*となる。すなわち、式(30)のようになる。
Figure JPOXMLDOC01-appb-M000030
In FIG. 41, the torque command value switching unit 120 switches the torque command value in the electric motor 1 based on the switching signal swt. Specifically, when the switching signal swt generated by the torque learning unit 121 is 0, the torque command value switching unit 120 connects the terminal 124 and the output terminal 126. In this case, the torque correction command τref is the torque command τ * calculated by the speed control unit 46. That is, it becomes like Formula (30).
Figure JPOXMLDOC01-appb-M000030
 一方、スイッチング信号swtが1の場合に、トルク指令値切替部120は、端子125と出力端子126を接続する。この場合には、トルク補正指令τrefはトルク学習部121で出力されたトルク指令(補正トルク指令)τ**となる。すなわち、式(31)のようになる。
Figure JPOXMLDOC01-appb-M000031
On the other hand, when the switching signal swt is 1, the torque command value switching unit 120 connects the terminal 125 and the output terminal 126. In this case, the torque correction command τref is the torque command (corrected torque command) τ ** output from the torque learning unit 121. That is, the equation (31) is obtained.
Figure JPOXMLDOC01-appb-M000031
 つまり、スイッチング信号swtが0の場合にはフィードバック制御を行うトルク制御部48に、速度制御部46で算出したトルク指令τ*がトルク指令値として入力される。すなわち、スイッチング信号swtが0の場合には、トルク補正指令τrefがトルク指令τ*になるので、トルク補正を行わないことになる。一方、スイッチング信号swtが1の場合にはトルク学習部121で位相を補正したトルク指令値τ**がトルク制御部48に入力される。すなわち、スイッチング信号swtが1の場合には、トルク学習部121で位相を補正したトルク指令値τ**に基づいてトルク補正を行うことになる。 That is, when the switching signal swt is 0, the torque command τ * calculated by the speed control unit 46 is input as a torque command value to the torque control unit 48 that performs feedback control. That is, when the switching signal swt is 0, the torque correction command τref becomes the torque command τ *, so that torque correction is not performed. On the other hand, when the switching signal swt is 1, the torque command value τ ** whose phase is corrected by the torque learning unit 121 is input to the torque control unit 48. That is, when the switching signal swt is 1, torque correction is performed based on the torque command value τ ** whose phase is corrected by the torque learning unit 121.
 図42はトルク学習部121の構成を示したものである。図42では、トルク学習部121は、推定トルクτ^の入力を制御するトルクスイッチ128と学習アルゴリズム処理部127とを備えている。学習アルゴリズム処理部127は、角度記憶部142と推定トルク記憶部143を備えている。角度記憶部142は、電動機1の推定機械回転角度θ^mを記憶し、推定トルク記憶部143は、電動機1の推定機械回転角度θ^mに対応する推定トルクτ^を記憶する。図44は図42の角度記憶部及び推定トルク記憶部を示す図であり、図45は図42の角度記憶部及び推定トルク記憶部にデータが記録された図である。 FIG. 42 shows a configuration of the torque learning unit 121. 42, the torque learning unit 121 includes a torque switch 128 and a learning algorithm processing unit 127 that control input of the estimated torque τ ^. The learning algorithm processing unit 127 includes an angle storage unit 142 and an estimated torque storage unit 143. The angle storage unit 142 stores the estimated mechanical rotation angle θ ^ m of the electric motor 1, and the estimated torque storage unit 143 stores the estimated torque τ ^ corresponding to the estimated mechanical rotation angle θ ^ m of the electric motor 1. 44 is a diagram illustrating the angle storage unit and the estimated torque storage unit of FIG. 42, and FIG. 45 is a diagram in which data is recorded in the angle storage unit and the estimated torque storage unit of FIG.
 トルク学習部121は、インタフェーススイッチ122の状態によって電動機位相推定部150で算出した電動機1の推定機械回転角度θ^mに対する推定トルクτ^を記憶するのか、学習に基づいて推定トルクの位相を調整した後のθ^mに対する推定トルクτ^を出力するのかを決める。 Whether the torque learning unit 121 stores the estimated torque τ ^ for the estimated mechanical rotation angle θ ^ m of the motor 1 calculated by the motor phase estimation unit 150 according to the state of the interface switch 122, or adjusts the phase of the estimated torque based on learning After that, it is determined whether to output the estimated torque τ ^ for θ ^ m.
 学習アルゴリズム処理部127は、図46のフローチャートの流れによって行われる。図46は、図42の学習アルゴリズム処理部のフローチャットを示す図である。図47は図46の記録モード実行処理のフローチャットを示す図であり、図48は図46の出力モード実行処理のフローチャットを示す図である。先ず、インタフェーススイッチ(IFスイッチ)122の状態をモニタリングする(ステップS101)。インタフェーススイッチがOFFの場合は、ステップS101に待機する。インタフェーススイッチがONの場合は、ステップS102に進み、記録モード実行処理を行う。 The learning algorithm processing unit 127 is performed according to the flowchart of FIG. FIG. 46 is a diagram showing a flow chat of the learning algorithm processing unit of FIG. 47 is a diagram showing a flow chat of the recording mode execution process of FIG. 46, and FIG. 48 is a diagram showing a flow chat of the output mode execution process of FIG. First, the state of the interface switch (IF switch) 122 is monitored (step S101). If the interface switch is OFF, the process waits in step S101. If the interface switch is ON, the process proceeds to step S102, and recording mode execution processing is performed.
 図47に示すように、ステップS201にて、トルクスイッチ(TQスイッチ)128をON状態にし、インデックスiを1にする。ステップS202にて、インデックスiにおける電動機1の推定機械回転角度θ^mであるθ^miと、この推定機械回転角度θ^miに対応するインデックスiにおける推定トルクτ^であるτ^iとを、角度記憶部142及び推定トルク記憶部143に記憶する(推定トルク記憶手順)。 47. In step S201, the torque switch (TQ switch) 128 is turned on and the index i is set to 1 as shown in FIG. In step S202, θ ^ mi that is the estimated mechanical rotation angle θ ^ m of the electric motor 1 at the index i and τ ^ i that is the estimated torque τ ^ at the index i corresponding to the estimated mechanical rotation angle θ ^ mi. And stored in the angle storage unit 142 and the estimated torque storage unit 143 (estimated torque storage procedure).
 角度記憶部142及び推定トルク記憶部143は、電動機1の機械角一回転の0°から360°までを所定の分解能N(例えば、N=360)に対応するN個の記憶領域をそれぞれ備える。角度記憶部142はN個の記憶領域θ(1)からθ(N)を備え、推定トルク記憶部143はN個の記憶領域τ(1)からτ(N)を備える。角度記憶部142に記憶された推定機械回転角度情報をθ[N]とし、推定トルク記憶部143に記憶された推定トルク情報をτ[N]とする。推定機械回転角度情報θ[N]、推定トルク情報τ[N]は、以下のように、配列として扱うことができる。 The angle storage unit 142 and the estimated torque storage unit 143 respectively include N storage areas corresponding to a predetermined resolution N (for example, N = 360) from 0 ° to 360 ° of one rotation of the motor 1. The angle storage unit 142 includes N storage areas θ (1) to θ (N), and the estimated torque storage unit 143 includes N storage areas τ (1) to τ (N). The estimated machine rotation angle information stored in the angle storage unit 142 is θ [N], and the estimated torque information stored in the estimated torque storage unit 143 is τ [N]. The estimated machine rotation angle information θ [N] and the estimated torque information τ [N] can be handled as an array as follows.
Figure JPOXMLDOC01-appb-M000032

 ただし、iは1からNまでの正数のインデックスであり、推定機械回転角度情報θ[N]と推定トルク情報τ[N]の各要素はインデックスiによって関連付けされている。
Figure JPOXMLDOC01-appb-M000032

However, i is a positive index from 1 to N, and each element of the estimated machine rotation angle information θ [N] and the estimated torque information τ [N] is associated with the index i.
 θ(1)はτ(1)と関連しており、記憶領域θ(1)に推定機械回転角度θ^mの値である推定機械回転角度値θ^m1が記憶され、記憶領域τ(1)に推定機械回転角度値θ^m1に対応した推定トルクτ^の値である推定トルク値τ^m1が記憶される。インデックスiの記憶領域θ(i)には推定機械回転角度値θ^miが記憶され、インデックスiの記憶領域τ(i)には推定トルク値τ^miが記憶される。インデックスiがNの場合の記憶領域θ(N)には推定機械回転角度値θ^mNが記憶され、インデックスiがNの場合の記憶領域τ(N)には推定トルク値τ^mNが記憶される。すなわち、以下の式(33)の様になる。
 θ(i)=θ^mi
 τ(i)=τ^mi    ・・・(33)
 ただし、インデックスiは1からNまでの正数である。
θ (1) is related to τ (1), and an estimated machine rotation angle value θ ^ m1 that is a value of the estimated machine rotation angle θ ^ m is stored in the storage area θ (1), and the storage area τ (1 ) Stores an estimated torque value τ ^ m1 which is a value of the estimated torque τ ^ corresponding to the estimated mechanical rotation angle value θ ^ m1. An estimated machine rotation angle value θ ^ mi is stored in the storage area θ (i) of the index i, and an estimated torque value τ ^ mi is stored in the storage area τ (i) of the index i. The estimated mechanical rotation angle value θ ^ mN is stored in the storage area θ (N) when the index i is N, and the estimated torque value τ ^ mN is stored in the storage area τ (N) when the index i is N. Is done. That is, the following equation (33) is obtained.
θ (i) = θ ^ mi
τ (i) = τ ^ mi (33)
However, the index i is a positive number from 1 to N.
 図45には、角度記憶部142及び推定トルク記憶部143に、それぞれ定機械回転角度値θ^mi及び推定トルク値τ^miが記憶された例を示した。図45において、インデックスiが1の場合の推定機械回転角度値θ^m1は記憶回転角度値θ1であり、インデックスiが1の場合の推定トルク値τ^m1は記憶推定トルク値τ1である。インデックスiの推定機械回転角度値θ^miは記憶回転角度値θiであり、インデックスiの推定トルク値τ^miは記憶推定トルク値τiである。 FIG. 45 shows an example in which the constant machine rotation angle value θ ^ mi and the estimated torque value τ ^ mi are stored in the angle storage unit 142 and the estimated torque storage unit 143, respectively. In FIG. 45, the estimated machine rotation angle value θ ^ m1 when the index i is 1 is the stored rotation angle value θ1, and the estimated torque value τ ^ m1 when the index i is 1 is the stored estimated torque value τ1. The estimated mechanical rotation angle value θ ^ mi of the index i is the stored rotation angle value θi, and the estimated torque value τ ^ mi of the index i is the stored estimated torque value τi.
 ステップS202で、インデックスiにおいて、電動機1の推定機械回転角度θ^mの推定機械回転角度値θ^miを角度記憶部142の記憶領域θ(i)に記憶し、推定トルクτ^の推定トルク値τ^miを推定トルク記憶部143の記憶領域τ(i)に記憶することを完了したら、ステップS203に進む。ステップS203で、インデックスiだけ1でインクリメントさせる。ステップS204にて、インデックスiが分解能Nを超えるどうかを判断する。インデックスiが分解能N以下の場合はステップS202に戻る。一方、ステップS204にて、インデックスiが分解能Nを超えた場合は、記録モード実行処理のステップS102を終了し、ステップS103に進む。 In step S202, the estimated machine rotation angle value θ ^ mi of the estimated machine rotation angle θ ^ m of the electric motor 1 is stored in the storage area θ (i) of the angle storage unit 142 at the index i, and the estimated torque of the estimated torque τ ^ When the storage of the value τ ^ mi in the storage area τ (i) of the estimated torque storage unit 143 is completed, the process proceeds to step S203. In step S203, the index i is incremented by 1. In step S204, it is determined whether or not the index i exceeds the resolution N. If the index i is less than or equal to the resolution N, the process returns to step S202. On the other hand, if the index i exceeds the resolution N in step S204, step S102 of the recording mode execution process is terminated, and the process proceeds to step S103.
 ステップS103にて、トルクスイッチ(TQスイッチ)128をOFF状態にして、スイッチング信号swtを1に設定する。そして、ステップS104にて、インデックスkの初期値を0に設定して、出力モード実行処理のステップS105に進む。 In step S103, the torque switch (TQ switch) 128 is turned off and the switching signal swt is set to 1. In step S104, the initial value of the index k is set to 0, and the process proceeds to step S105 of the output mode execution process.
 図48に示すように、ステップS301にて、電動機1の推定機械回転角度θ^mを読み込んで、角度記憶部142に記憶された記憶回転角度値θiの中から、推定機械回転角度θ^mの値に近い記憶回転角度値θiに対するインデックスiを確定する。次に、ステップS302にて、図38のフローチャットのステップS002と同様に、回転速度差異の変動量Δωerrの絶対値|Δωerr|を計算して、計算した回転速度差異の変動量Δωerrの絶対値|Δωerr|と、指定した閾値ε1とを比較する。ステップS302で回転速度差異の変動量Δωerrの絶対値|Δωerr|がε1以上であることを判断すれば(判定結果がNoの場合)ステップS303に進む。ステップS303では、インデックスkを1でインクリメントし、式(34)のように新たなインデックスkを生成する。
 k=k+1    ・・・(34)
 ただし、インデックスkは指定したインデックスkの最大値kmaxに上限されている。
As shown in FIG. 48, in step S301, the estimated machine rotation angle θ ^ m of the electric motor 1 is read, and the estimated machine rotation angle θ ^ m is read from the stored rotation angle values θi stored in the angle storage unit 142. The index i for the stored rotation angle value θi close to the value of is determined. Next, in step S302, as in step S002 of the flow chat in FIG. 38, the absolute value | Δωerr | of the rotational speed difference variation Δωerr | is calculated, and the calculated absolute value of the rotational speed difference variation Δωerr is calculated. | Δωerr | is compared with the specified threshold value ε1. If it is determined in step S302 that the absolute value | Δωerr | of the fluctuation amount Δωerr of the rotational speed difference is equal to or larger than ε1 (when the determination result is No), the process proceeds to step S303. In step S303, the index k is incremented by 1, and a new index k is generated as shown in Expression (34).
k = k + 1 (34)
However, the index k is limited to the maximum value kmax of the designated index k.
 ステップS302で回転速度差異の変動量Δωerrの絶対値|Δωerr|がε1より小さいと判断すれば(判定結果がYesの場合)、インデックスkを調整することなく、ステップS304に進む。ステップS304にて、インデックスiとインデックスkとの和を推定トルク記憶部143のインデックスとして用いて、以下の条件の様にトルク指令τ**を出力する。
 (i+k)≦Nの場合は、トルク指令τ**をτ(i+k)とする。
 (i+k)>Nの場合は、トルク指令τ**をτ(i+k-N)とする。
If it is determined in step S302 that the absolute value | Δωerr | of the fluctuation amount Δωerr of the rotational speed difference is smaller than ε1 (when the determination result is Yes), the process proceeds to step S304 without adjusting the index k. In step S304, torque command τ ** is output under the following conditions using the sum of index i and index k as an index of estimated torque storage unit 143.
When (i + k) ≦ N, the torque command τ ** is set to τ (i + k).
When (i + k)> N, the torque command τ ** is set to τ (i + k−N).
 ステップS304でトルク指令τ**を出力したら、出力モード実行処理を終了してステップS106に進む。ステップS106にて、インタフェーススイッチ(IFスイッチ)122の状態をモニタリングする。インタフェーススイッチ(IFスイッチ)122がOFFの場合(ステップS106でYesの場合)にステップS107に進む。一方、インタフェーススイッチ(IFスイッチ)122がONの場合(ステップS106でNoの場合)はステップS105に戻る。ステップS107では、スイッチング信号swtを0に設定して、学習アルゴリズム処理部127におけるトルク指令τ**の出力を停止する。 If the torque command τ ** is output in step S304, the output mode execution process is terminated and the process proceeds to step S106. In step S106, the state of the interface switch (IF switch) 122 is monitored. If the interface switch (IF switch) 122 is OFF (Yes in step S106), the process proceeds to step S107. On the other hand, if the interface switch (IF switch) 122 is ON (No in step S106), the process returns to step S105. In step S107, the switching signal swt is set to 0, and the output of the torque command τ ** in the learning algorithm processing unit 127 is stopped.
 図49~図53を用いて、学習アルゴリズム処理部127の動作によって、電動機1の回転速度脈動が低減することができることを説明する。図49は、図42の学習アルゴリズム処理部による学習前における電動機の負荷トルク及び出力トルクの波形を示す図である。図50は、図42の学習アルゴリズム処理部による学習後における電動機の負荷トルク及び出力トルクの波形を示す図である。図51は、図42の学習アルゴリズム処理部による学習前後における電動機の回転速度を示す図である。図52は、図42の学習アルゴリズム処理部による学習前における電動機の回転速度のFFT分析結果を示す図である。図53は、図42の学習アルゴリズム処理部による学習後における電動機の回転速度のFFT分析結果を示す図である。 49 to 53, it will be described that the rotational speed pulsation of the electric motor 1 can be reduced by the operation of the learning algorithm processing unit 127. FIG. FIG. 49 is a diagram showing waveforms of load torque and output torque of the motor before learning by the learning algorithm processing unit of FIG. FIG. 50 is a diagram showing waveforms of load torque and output torque of the motor after learning by the learning algorithm processing unit of FIG. FIG. 51 is a diagram showing the rotation speed of the electric motor before and after learning by the learning algorithm processing unit of FIG. FIG. 52 is a diagram showing the FFT analysis result of the rotation speed of the motor before learning by the learning algorithm processing unit of FIG. FIG. 53 is a diagram showing an FFT analysis result of the rotation speed of the electric motor after learning by the learning algorithm processing unit of FIG.
 図49、図50、図51において、電動機1が単独運転の場合による1638rpm(すなわち、機械周波数は27.3Hzである)の回転速度指令値で駆動している場合の結果を示した。図49、図50において、横軸は機械回転角度[rad]であり、縦軸はトルク[Nm]である。図51において、横軸は時間[s]であり、縦軸は回転速度[rpm]である。図52、図53において、横軸は周波数次数であり、縦軸は振動レベル[rpm]である。 49, FIG. 50, and FIG. 51 show the results when the motor 1 is driven at a rotational speed command value of 1638 rpm (that is, the mechanical frequency is 27.3 Hz) in the case of single operation. 49 and 50, the horizontal axis represents the machine rotation angle [rad], and the vertical axis represents the torque [Nm]. In FIG. 51, the horizontal axis represents time [s], and the vertical axis represents the rotation speed [rpm]. 52 and 53, the horizontal axis represents the frequency order, and the vertical axis represents the vibration level [rpm].
 図49、図50には、電動機1の機械角一回転までの機械回転角度に対する負荷トルクと電動機1の出力トルクを示す。図49では、学習アルゴリズム処理部127の学習処理を実施しない場合(すなわち、学習前)における負荷トルク波形130及び出力トルク波形131を示した。図49に示すように、電動機1の出力トルク波形131は負荷トルク波形130より時間的に遅延することが分かった。図50では、学習アルゴリズム処理部127の学習処理を実施した場合(すなわち、学習後)おける負荷トルク波形132及び出力トルク波形133を示した。図50に示すように、電動機1の出力トルク波形133は負荷トルク波形132とほぼ重なることを確認できた。 49 and 50 show the load torque and the output torque of the electric motor 1 with respect to the mechanical rotation angle of the electric motor 1 up to one mechanical angle. FIG. 49 shows the load torque waveform 130 and the output torque waveform 131 when the learning process of the learning algorithm processing unit 127 is not performed (that is, before learning). As shown in FIG. 49, it was found that the output torque waveform 131 of the electric motor 1 is delayed in time from the load torque waveform 130. FIG. 50 shows the load torque waveform 132 and the output torque waveform 133 when the learning process of the learning algorithm processing unit 127 is performed (that is, after learning). As shown in FIG. 50, it was confirmed that the output torque waveform 133 of the electric motor 1 almost overlaps with the load torque waveform 132.
 図51では、学習前と学習中と学習後における電動機1の実際の回転速度波形136を示した。図52では、図51の期間TA1における電動機1の実際の回転速度波形136のFFT分析のスペクトル結果である脈動成分振幅スペクトル134を示した。図53では、図51の期間TA2における電動機1の実際の回転速度波形136のFFT分析のスペクトル結果である脈動成分振幅スペクトル135を示した。図51において、学習をした後の電動機1の回転速度波形136の脈動成分の振幅は、学習前の脈動成分の振幅より大幅に減少する。具体的には、図52、図53において、周波数次数が1fの脈動成分振幅1f特性137、138は、1f成分の周波数27.3Hzにおける脈動成分の振幅である。図52における脈動成分振幅1f特性137が学習前の結果であり、図53における脈動成分振幅1f特性138が学習後の結果である。脈動成分振幅1f特性137の振幅値は155rpmであり、脈動成分振幅1f特性138の振幅値は18rpmである。このように、学習アルゴリズム処理部127の学習処理を行うことで、周波数次数1fに対応する周波数f1fにおける脈動成分の振幅を155rpmから18rpmに低減できることを確認できた。 FIG. 51 shows the actual rotational speed waveform 136 of the electric motor 1 before learning, during learning, and after learning. FIG. 52 shows a pulsation component amplitude spectrum 134 which is a spectrum result of FFT analysis of the actual rotational speed waveform 136 of the electric motor 1 in the period TA1 of FIG. FIG. 53 shows a pulsation component amplitude spectrum 135 which is a spectrum result of FFT analysis of the actual rotational speed waveform 136 of the electric motor 1 in the period TA2 of FIG. In FIG. 51, the amplitude of the pulsating component of the rotational speed waveform 136 of the electric motor 1 after learning is significantly reduced from the amplitude of the pulsating component before learning. Specifically, in FIGS. 52 and 53, pulsation component amplitude 1f characteristics 137 and 138 having a frequency order of 1f are amplitudes of pulsation components at a frequency of 27.3 Hz of the 1f component. The pulsation component amplitude 1f characteristic 137 in FIG. 52 is the result before learning, and the pulsation component amplitude 1f characteristic 138 in FIG. 53 is the result after learning. The amplitude value of the pulsating component amplitude 1f characteristic 137 is 155 rpm, and the amplitude value of the pulsating component amplitude 1f characteristic 138 is 18 rpm. As described above, it was confirmed that the amplitude of the pulsating component at the frequency f1f corresponding to the frequency order 1f can be reduced from 155 rpm to 18 rpm by performing the learning process of the learning algorithm processing unit 127.
 実施の形態6のインバータ制御装置17は、トルク指令値切替部120とトルク学習部121とを備えるため、圧縮機80の電動機1の出力トルクは負荷トルクにほぼ重なり、電動機1の回転速度の脈動を大幅に低減できる。また、トルク学習部121は、電動機1の推定機械回転角度θ^mを記憶する角度記憶部142と、推定機械回転角度θ^mに対応する推定トルクτ^を記憶する推定トルク記憶部143とを備える。推定トルク記憶部143に記憶された推定トルク情報τ[N]は、推定トルクτ^におけるトルクパターンである。トルク学習部121は、角度記憶部142と推定トルク記憶部143とを備えるため、圧縮機80の運転条件が変わると、学習アルゴリズム処理部127が再び学習処理を実施することで角度記憶部142と推定トルク記憶部143とが更新される。したがって、運転条件におけるトルクパターンを予め多数に記憶する必要がない。このため、実施の形態6のインバータ制御装置17は、図14に示した記憶装置302の容量を低減できる。 Since inverter control device 17 of the sixth embodiment includes torque command value switching unit 120 and torque learning unit 121, the output torque of motor 1 of compressor 80 substantially overlaps with the load torque, and the pulsation of the rotational speed of motor 1. Can be greatly reduced. Further, the torque learning unit 121 includes an angle storage unit 142 that stores the estimated machine rotation angle θ ^ m of the electric motor 1, and an estimated torque storage unit 143 that stores the estimated torque τ ^ corresponding to the estimated machine rotation angle θ ^ m. Is provided. The estimated torque information τ [N] stored in the estimated torque storage unit 143 is a torque pattern in the estimated torque τ ^. Since the torque learning unit 121 includes the angle storage unit 142 and the estimated torque storage unit 143, when the operating condition of the compressor 80 is changed, the learning algorithm processing unit 127 performs the learning process again so that the angle storage unit 142 and The estimated torque storage unit 143 is updated. Therefore, it is not necessary to store a large number of torque patterns in the operating conditions in advance. For this reason, the inverter control device 17 of the sixth embodiment can reduce the capacity of the storage device 302 shown in FIG.
 従来のインバータ制御装置では、トルクパターンが事前に用意されて、基準となる負荷トルクパターンを事前に記憶し、圧縮機80の運転条件が異なる毎に記憶したトルクパターンを調整するなどインバータ制御装置の記憶装置の容量を低減する工夫が必要であった。これに対して、本発明の実施の形態6のインバータ制御装置17では、トルク学習部121の学習アルゴリズム処理部127が自動的に学習した出力トルクの推定値である推定トルクτ^と、実際にかかる負荷トルクとを、トルク制御部48で近づける制御をする。このため、実施の形態6のインバータ制御装置17は、圧縮機80の負荷トルクが変動しても、事前に用意された負荷トルクパターンを事前に記憶することなく、出力トルクを負荷トルクに近づけることができる。さらに、実施の形態6のインバータ制御装置17は、自動的に学習した推定トルクτ^だけを記憶できればよいため、インバータ制御装置17の記憶装置(図14に示した記憶装置302)の容量を低減することができる。 In the conventional inverter control device, a torque pattern is prepared in advance, a reference load torque pattern is stored in advance, and the stored torque pattern is adjusted every time the operating condition of the compressor 80 is different. A device to reduce the capacity of the storage device was required. On the other hand, in the inverter control device 17 according to the sixth embodiment of the present invention, the estimated torque τ ^ that is the estimated value of the output torque automatically learned by the learning algorithm processing unit 127 of the torque learning unit 121 is actually used. The torque control unit 48 controls the load torque to approach. For this reason, even if the load torque of the compressor 80 fluctuates, the inverter control device 17 according to the sixth embodiment brings the output torque closer to the load torque without storing the load torque pattern prepared in advance. Can do. Furthermore, since the inverter control device 17 of the sixth embodiment only needs to store the automatically learned estimated torque τ ^, the capacity of the storage device (storage device 302 shown in FIG. 14) of the inverter control device 17 is reduced. can do.
 また、実施の形態6のインバータ制御装置17では、磁束推定部18を備えるため、トルクスイッチ128の状態に関係なく、磁束推定部18で電動機1の機械回転角度と回転速度が推定されるため、トルク学習部121の学習アルゴリズム処理部127における学習処理の安定性を高めることができる。 Further, in the inverter control device 17 of the sixth embodiment, since the magnetic flux estimation unit 18 is provided, the mechanical rotation angle and the rotational speed of the electric motor 1 are estimated by the magnetic flux estimation unit 18 regardless of the state of the torque switch 128. The stability of the learning process in the learning algorithm processing unit 127 of the torque learning unit 121 can be improved.
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.
1…電動機、7…運転モード判別部、8…電力推定部、9…電力脈動抽出部、12…インバータ出力電圧制御部、13…回転速度指令値生成部、16…インバータ、17…インバータ制御装置、18…磁束推定部、36…トルク脈動抽出部、46…速度制御部、48…トルク制御部、60…運転モード判別部、61…電力脈動抽出部、80…圧縮機(駆動対象機械)、83a…第一圧縮部、83b…第二圧縮部、84…シャフト(回転軸)、100…インバータ圧縮機、120…トルク指令値切替部、142…角度記憶部、143…推定トルク記憶部、180…トルク脈動抽出部、P^…推定電力、τ^…推定トルク、τ*…トルク指令、τ**…トルク指令(補正トルク指令)、τref…トルク補正指令、τ^kf…トルク脈動成分(合成トルク脈動成分)、ω^e…推定回転速度、ωe*…回転速度指令、Idq*…dq軸電流指令ベクトル(電流指令)、Vdq*…dq軸電圧指令ベクトル(前段電圧指令)、Vuvw*…電圧指令ベクトル(電圧指令)、||xkf||、||x1f||、||x2f||、||xNf||…振幅(電力脈動の振幅)、||τkf||、||τ1f||、|τNf||…振幅(トルク脈動の振幅)、ωe0…基準回転速度指令値、θ^m…推定回転角度(推定機械回転角度)、θi…記憶回転角度値、θc…位相量(初期位相)、ωerr…回転速度差異、τi…記憶推定トルク値、τ^u…調整推定トルク。 DESCRIPTION OF SYMBOLS 1 ... Electric motor, 7 ... Operation mode discrimination | determination part, 8 ... Electric power estimation part, 9 ... Electric power pulsation extraction part, 12 ... Inverter output voltage control part, 13 ... Rotational speed command value generation part, 16 ... Inverter, 17 ... Inverter control apparatus , 18 ... Magnetic flux estimation part, 36 ... Torque pulsation extraction part, 46 ... Speed control part, 48 ... Torque control part, 60 ... Operation mode discrimination part, 61 ... Electric power pulsation extraction part, 80 ... Compressor (machine to be driven), 83a ... First compression unit, 83b ... Second compression unit, 84 ... Shaft (rotary shaft), 100 ... Inverter compressor, 120 ... Torque command value switching unit, 142 ... Angle storage unit, 143 ... Estimated torque storage unit, 180 ... torque pulsation extraction unit, P ^ ... estimated power, τ ^ ... estimated torque, τ * ... torque command, τ ** ... torque command (corrected torque command), τref ... torque correction command, τ ^ kf ... torque pulsation component ( Synthetic (Luc pulsation component), ω ^ e ... estimated rotational speed, ωe * ... rotational speed command, Idq * ... dq-axis current command vector (current command), Vdq * ... dq-axis voltage command vector (previous voltage command), Vuvw * ... Voltage command vector (voltage command), || xkf ||, || x2f ||, || xNf || ... Amplitude (amplitude of power pulsation), || τkf ||, || τ1f | |, | ΤNf ||: Amplitude (amplitude of torque pulsation), ωe0: Reference rotational speed command value, θ ^ m: Estimated rotational angle (estimated mechanical rotational angle), θi: Stored rotational angle value, θc: Phase amount (initial) Phase), ωerr ... rotational speed difference, τi ... stored estimated torque value, τ ^ u ... adjusted estimated torque.

Claims (13)

  1.  駆動対象機械を駆動する電動機を、インバータにて変換した交流電圧に基づき制御するインバータ制御装置であって、
    前記電動機は、機械角一回転中の電力変動における電力または軸トルクの変動成分周波数を有する運転モードで運転され、
    前記電動機に制御電圧を印加する電源線の電流から前記電動機の電力または軸トルクを推定し、推定した推定電力または推定トルクの変動成分周波数に関連した周波数成分に基づいて、前記電動機の前記運転モードを判別する運転モード判別部と、
    前記運転モード判別部にて判別した前記運転モードに応じた回転速度指令を生成する回転速度指令値生成部と、
    前記回転速度指令の値に基づいて前記電動機に印加する前記制御電圧の電圧指令を生成するインバータ出力電圧制御部と、を備えたことを特徴とするインバータ制御装置。
    An inverter control device that controls an electric motor that drives a machine to be driven based on an AC voltage converted by an inverter,
    The electric motor is operated in an operation mode having a fluctuation component frequency of electric power or shaft torque in electric power fluctuation during one rotation of the mechanical angle,
    The operation mode of the motor is estimated based on the frequency component related to the estimated component of the estimated power or the estimated torque and the variation component frequency of the estimated torque from the current of the power line that applies the control voltage to the motor. An operation mode determination unit for determining
    A rotation speed command value generation unit that generates a rotation speed command according to the operation mode determined by the operation mode determination unit;
    And an inverter output voltage control unit that generates a voltage command of the control voltage to be applied to the electric motor based on the value of the rotation speed command.
  2.  駆動対象機械を駆動する電動機を、インバータにて変換した交流電圧に基づき制御するインバータ制御装置であって、
    前記電動機は、機械角一回転中の電力変動における電力または軸トルクの変動成分周波数を有する運転モードで運転され、
    前記電動機に制御電圧を印加する電源線の電流から推定された前記電動機の電力である推定電力または推定された前記電動機の軸トルクである推定トルクにおける変動成分周波数に関連した周波数成分に基づいて、回転速度指令を生成する回転速度指令値生成部と、
    前記回転速度指令の値に基づいて前記電動機に印加する前記制御電圧の電圧指令を生成するインバータ出力電圧制御部と、を備えたことを特徴とするインバータ制御装置。
    An inverter control device that controls an electric motor that drives a machine to be driven based on an AC voltage converted by an inverter,
    The electric motor is operated in an operation mode having a fluctuation component frequency of electric power or shaft torque in electric power fluctuation during one rotation of the mechanical angle,
    Based on the frequency component related to the fluctuation component frequency in the estimated power that is the estimated power that is the power of the motor estimated from the current of the power line that applies the control voltage to the motor or the estimated shaft torque of the motor, A rotation speed command value generation unit for generating a rotation speed command;
    And an inverter output voltage control unit that generates a voltage command of the control voltage to be applied to the electric motor based on the value of the rotation speed command.
  3.  前記推定電力または前記推定トルクの前記変動成分周波数に関連した前記周波数成分に基づいて、前記電動機の前記運転モードを判別する運転モード判別部を備え、
    前記回転速度指令値生成部は、前記運転モード判別部にて判別した前記運転モードに応じた前記回転速度指令を生成することを特徴とする請求項2に記載のインバータ制御装置。
    An operation mode determination unit that determines the operation mode of the electric motor based on the frequency component related to the fluctuation component frequency of the estimated power or the estimated torque;
    The inverter control device according to claim 2, wherein the rotation speed command value generation unit generates the rotation speed command according to the operation mode determined by the operation mode determination unit.
  4.  前記運転モード判別部は、
    前記推定電力を算出する電力推定部と、
    前記推定電力における前記電動機の機械回転周波数の1以上の整数倍の値である変動成分周波数を有する電力脈動の振幅を抽出する電力脈動抽出部と、を備え、
    前記電力脈動の振幅に基づいて前記運転モードを判別することを特徴とする請求項1または3に記載のインバータ制御装置。
    The operation mode determination unit
    A power estimation unit for calculating the estimated power;
    A power pulsation extracting unit that extracts an amplitude of a power pulsation having a fluctuation component frequency that is a value that is an integer multiple of one or more of the mechanical rotation frequency of the electric motor in the estimated power,
    The inverter control device according to claim 1, wherein the operation mode is determined based on an amplitude of the power pulsation.
  5.  前記運転モード判別部は、
    前記推定電力を算出する電力推定部と、
    前記推定電力から算出した推定トルクにおける変動成分周波数を有するトルク脈動の振幅を抽出するトルク脈動抽出部と、を備え、
    前記トルク脈動の振幅に基づいて前記運転モードを判別することを特徴とする請求項1または3に記載のインバータ制御装置。
    The operation mode determination unit
    A power estimation unit for calculating the estimated power;
    A torque pulsation extraction unit that extracts the amplitude of torque pulsation having a fluctuation component frequency in the estimated torque calculated from the estimated power,
    The inverter control device according to claim 1, wherein the operation mode is determined based on an amplitude of the torque pulsation.
  6.  前記トルク脈動抽出部は、
    抽出された前記トルク脈動の振幅における最も支配的な前記変動成分周波数である選択周波数を決定し、前記選択周波数と当該選択周波数の前記トルク脈動の振幅とを有する合成トルク脈動成分を生成し、
    前記インバータ出力電圧制御部は、
    前記回転速度指令の値に基づいてトルク指令を生成する速度制御部と、
    前記トルク指令の値と前記合成トルク脈動成分とに基づいて電流指令を生成するトルク制御部と、を備え、
    前記電流指令に基づいて、前記電圧指令を生成することを特徴とする請求項5に記載のインバータ制御装置。
    The torque pulsation extracting unit
    Determining a selection frequency which is the most dominant fluctuation component frequency in the extracted amplitude of the torque pulsation, and generating a synthesized torque pulsation component having the selection frequency and the amplitude of the torque pulsation of the selection frequency;
    The inverter output voltage controller is
    A speed control unit that generates a torque command based on the value of the rotational speed command;
    A torque control unit that generates a current command based on the value of the torque command and the combined torque pulsation component;
    The inverter control device according to claim 5, wherein the voltage command is generated based on the current command.
  7.  前記インバータ出力電圧制御部は、
    前記電流指令および前記電源線の電流を用いて推定された前記電動機の回転速度である推定回転速度に基づいて、前記電動機の機械回転角度を推定して推定機械回転角度を生成する電動機位相推定部と、
    前記推定回転速度と前記回転速度指令との差、および前記推定機械回転角度に基づいて、前記トルク指令、および前記推定トルクの位相を補正した補正トルク指令のいずれか一方であるトルク補正指令を生成するトルク指令値切替部と、をさらに備え、
    トルク指令値切替部が生成した前記トルク補正指令に基づいて前記電流指令を生成し、
    前記電流指令に基づいて前記電圧指令を生成することを特徴とする請求項6に記載のインバータ制御装置。
    The inverter output voltage controller is
    A motor phase estimator that estimates a machine rotation angle of the motor and generates an estimated machine rotation angle based on the estimated rotation speed that is the rotation speed of the motor estimated using the current command and the current of the power line. When,
    Based on the difference between the estimated rotational speed and the rotational speed command, and the estimated mechanical rotational angle, a torque correction command that is one of the torque command and a corrected torque command that corrects the phase of the estimated torque is generated. A torque command value switching unit for performing
    The current command is generated based on the torque correction command generated by the torque command value switching unit,
    The inverter control device according to claim 6, wherein the voltage command is generated based on the current command.
  8.  前記インバータ出力電圧制御部は、
    前記推定機械回転角度を予め定められた分解能で記憶する角度記憶部と、
    前記推定機械回転角度に対応する前記推定トルクを記憶する推定トルク記憶部と、をさらに備え、
    前記推定機械回転角度に基づいて選択した前記角度記憶部の記憶回転角度値である選択記憶回転角度値、および前記推定回転速度と前記回転速度指令との差に基づいて、前記推定機械回転角度を調整し、この調整された新たな記憶回転角度値を前記角度記憶部から選択し、前記新たな記憶回転角度値に対応する記憶推定トルク値を前記推定トルク記憶部から出力し、この記憶推定トルク値を前記補正トルク指令として生成することを特徴とする請求項7に記載のインバータ制御装置。
    The inverter output voltage controller is
    An angle storage unit for storing the estimated machine rotation angle with a predetermined resolution;
    An estimated torque storage unit that stores the estimated torque corresponding to the estimated machine rotation angle;
    Based on the selected storage rotation angle value that is the storage rotation angle value of the angle storage unit selected based on the estimated machine rotation angle and the difference between the estimated rotation speed and the rotation speed command, the estimated machine rotation angle is calculated. Adjusting, selecting the adjusted new stored rotation angle value from the angle storage unit, and outputting the estimated storage torque value corresponding to the new stored rotation angle value from the estimated torque storage unit. The inverter control device according to claim 7, wherein a value is generated as the correction torque command.
  9.  前記インバータ出力電圧制御部は、
    前記電流指令および前記電源線の電流を用いて推定された前記電動機の回転速度である推定回転速度を生成する磁束推定部を備え、
    前記トルク脈動抽出部は、
    前記推定回転速度と前記回転速度指令との差、および前記推定回転速度に基づいて推定された前記電動機の推定回転角度に基づいて、前記選択周波数における前記トルク脈動の初期位相を補正し、この補正された前記合成トルク脈動成分である補正合成トルク脈動成分を生成し、
    前記インバータ出力電圧制御部は、
    前記トルク脈動抽出部が生成した前記補正合成トルク脈動成分に基づいて前記電流指令を生成し、
    前記電流指令に基づいて前記電圧指令を生成することを特徴とすることを特徴とする請求項6に記載のインバータ制御装置。
    The inverter output voltage controller is
    A magnetic flux estimator that generates an estimated rotational speed that is a rotational speed of the electric motor estimated using the current command and the current of the power line;
    The torque pulsation extracting unit
    The initial phase of the torque pulsation at the selected frequency is corrected based on the difference between the estimated rotational speed and the rotational speed command, and the estimated rotational angle of the electric motor estimated based on the estimated rotational speed, and this correction A corrected composite torque pulsation component that is the generated composite torque pulsation component,
    The inverter output voltage controller is
    The current command is generated based on the corrected combined torque pulsation component generated by the torque pulsation extraction unit,
    The inverter control device according to claim 6, wherein the voltage command is generated based on the current command.
  10.  前記運転モード判別部は、
    前記推定トルクの位相を進め、位相が進められた前記推定トルクである調整推定トルクを生成する位相調整部をさらに備え、
    前記トルク脈動抽出部は、
    前記調整推定トルクにおいて抽出された前記トルク脈動の振幅における最も支配的な前記変動成分周波数である選択周波数を決定し、前記選択周波数と当該選択周波数の前記トルク脈動の振幅とを有する合成トルク脈動成分を生成することを特徴とする請求項6に記載のインバータ制御装置。
    The operation mode determination unit
    A phase adjustment unit that advances the phase of the estimated torque and generates an adjusted estimated torque that is the estimated torque that has been advanced in phase;
    The torque pulsation extracting unit
    A composite torque pulsation component having the selected frequency and the amplitude of the torque pulsation at the selected frequency is determined by determining a selection frequency that is the most dominant fluctuation component frequency in the amplitude of the torque pulsation extracted in the adjusted estimated torque. The inverter control device according to claim 6, wherein:
  11.  一個以上の圧縮部と、前記圧縮部の全てを一つの回転軸で駆動する前記電動機と、前記電動機をインバータにて変換した交流電圧に基づき制御する請求項1、及び3から10のいずれか1項に記載のインバータ制御装置を備えたインバータ圧縮機。 11. One or more compression parts, The said electric motor which drives all the said compression parts by one rotating shaft, Control based on the alternating voltage converted from the said motor with the inverter, Any one of 3 to 10 An inverter compressor provided with the inverter control device according to Item.
  12.  一個以上の圧縮部と、前記圧縮部の全てを一つの回転軸で駆動する前記電動機と、前記電動機をインバータにて変換した交流電圧に基づき制御する請求項2に記載のインバータ制御装置を備えたインバータ圧縮機。 The inverter control device according to claim 2, wherein one or more compression units, the electric motor that drives all of the compression units with a single rotating shaft, and an inverter control device according to claim 2 that controls the electric motor based on an alternating voltage converted by an inverter. Inverter compressor.
  13.  前記運転モード判別部にて判別した前記運転モードは、前記圧縮部の圧縮動作個数に関連しており、
    前記圧縮部が一つのみ圧縮動作している前記回転速度指令の値を基準回転速度指令値とし、
    前記回転速度指令値生成部は、前記運転モードが変化した場合に、前記運転モードと関連付けられた前記圧縮動作個数に応じて、前記基準回転速度指令値を前記圧縮動作個数で割った値を示す前記回転速度指令を生成することを特徴とする請求項11に記載のインバータ圧縮機。
    The operation mode determined by the operation mode determination unit is related to the number of compression operations of the compression unit,
    The value of the rotational speed command in which only one compression unit is performing compression operation is set as a reference rotational speed command value,
    The rotation speed command value generation unit indicates a value obtained by dividing the reference rotation speed command value by the number of compression operations according to the number of compression operations associated with the operation mode when the operation mode is changed. The inverter compressor according to claim 11, wherein the rotation speed command is generated.
PCT/JP2015/063909 2014-10-30 2015-05-14 Inverter control device and inverter compressor WO2016067665A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580037907.8A CN106537761B (en) 2014-10-30 2015-05-14 Control device for inverter and inverter compressor
JP2015549110A JP5868564B1 (en) 2014-10-30 2015-05-14 Inverter control device and inverter compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014221058 2014-10-30
JP2014-221058 2014-10-30

Publications (1)

Publication Number Publication Date
WO2016067665A1 true WO2016067665A1 (en) 2016-05-06

Family

ID=55857020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063909 WO2016067665A1 (en) 2014-10-30 2015-05-14 Inverter control device and inverter compressor

Country Status (2)

Country Link
CN (1) CN106537761B (en)
WO (1) WO2016067665A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3829050A1 (en) * 2019-11-27 2021-06-02 Infineon Technologies Austria AG Speed constant control and power constant control of a permanent magnet synchronous motor
US11146195B2 (en) 2019-11-27 2021-10-12 Infineon Technologies Austria Ag Fail-safe function for a permanent magnet synchronous motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11177757B2 (en) * 2017-12-07 2021-11-16 Mitsubishi Electric Corporation Power conversion device
CN111628695A (en) * 2020-05-25 2020-09-04 库卡机器人(广东)有限公司 Motor speed control method, device and system and robot
JP6980068B1 (en) * 2020-09-02 2021-12-15 三菱電機株式会社 Rotating machine control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166686A (en) * 2009-01-15 2010-07-29 Yaskawa Electric Corp Motor control unit equipped with failure diagnosing section of machine
JP2011196372A (en) * 2010-02-26 2011-10-06 Mitsubishi Heavy Ind Ltd Compressor
JP2012210067A (en) * 2011-03-30 2012-10-25 Meidensha Corp Pulsation suppression device of motor and pulsation suppression method of motor
JP2013230060A (en) * 2012-04-27 2013-11-07 Hitachi Appliances Inc Motor control device and refrigerator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5446988B2 (en) * 2010-02-25 2014-03-19 株式会社明電舎 Torque ripple suppression control device and control method for rotating electrical machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166686A (en) * 2009-01-15 2010-07-29 Yaskawa Electric Corp Motor control unit equipped with failure diagnosing section of machine
JP2011196372A (en) * 2010-02-26 2011-10-06 Mitsubishi Heavy Ind Ltd Compressor
JP2012210067A (en) * 2011-03-30 2012-10-25 Meidensha Corp Pulsation suppression device of motor and pulsation suppression method of motor
JP2013230060A (en) * 2012-04-27 2013-11-07 Hitachi Appliances Inc Motor control device and refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3829050A1 (en) * 2019-11-27 2021-06-02 Infineon Technologies Austria AG Speed constant control and power constant control of a permanent magnet synchronous motor
US11146195B2 (en) 2019-11-27 2021-10-12 Infineon Technologies Austria Ag Fail-safe function for a permanent magnet synchronous motor
US11165381B2 (en) 2019-11-27 2021-11-02 Infineon Technologies Austria Ag Speed contant control and power constant control of a permanent magnet synchronous motor

Also Published As

Publication number Publication date
CN106537761B (en) 2019-01-22
CN106537761A (en) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2016067665A1 (en) Inverter control device and inverter compressor
US8084977B2 (en) Motor control device and compressor
JP5175887B2 (en) Motor control device and electrical equipment
US9479097B2 (en) Apparatus and method for initially driving a sensorless BLDC motor
US20070152624A1 (en) Motor system, control method thereof, and compressor using the same
JP3684203B2 (en) Motor control device
JP7113939B2 (en) drive unit and air conditioner
WO2012144276A1 (en) Motor control device
JP2017046430A (en) Motor controller, fluid machinery, air conditioner, and program
EP2448110A2 (en) Refrigerating apparatus and controller for permanent magnet synchronous motor
CN111212980B (en) Closed loop torque compensation for compressor applications
JP2010022111A (en) Refrigerator
TWI355477B (en)
TW201425941A (en) Method for estimating speed of motor
KR101623652B1 (en) Motor controlor device
JP2012249355A (en) Motor controller and motor starting method using the same
JP6833071B2 (en) Drive device, fluid utilization device and air conditioner
JP5517851B2 (en) Refrigeration equipment having a motor control device and a compressor drive device using the motor control device
JP5868564B1 (en) Inverter control device and inverter compressor
JP7042028B2 (en) Motor control device and air conditioner
JP2019213389A (en) Motor controller and air conditioning apparatus
KR20110090546A (en) Refrigerator and controlling method thereof
JP2018148677A (en) Motor control device and air-conditioner
JP6846939B2 (en) Motor control device, rotary compressor system and motor control method
JP3995377B2 (en) Control apparatus and method for refrigeration cycle

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015549110

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854081

Country of ref document: EP

Kind code of ref document: A1