WO2016067592A1 - Lithium-air battery and lithium-air battery device - Google Patents

Lithium-air battery and lithium-air battery device Download PDF

Info

Publication number
WO2016067592A1
WO2016067592A1 PCT/JP2015/005387 JP2015005387W WO2016067592A1 WO 2016067592 A1 WO2016067592 A1 WO 2016067592A1 JP 2015005387 W JP2015005387 W JP 2015005387W WO 2016067592 A1 WO2016067592 A1 WO 2016067592A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
solid electrolyte
air battery
lithium
negative electrode
Prior art date
Application number
PCT/JP2015/005387
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 洋介
謙一郎 加美
平田 和希
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015192600A external-priority patent/JP2016091995A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/500,674 priority Critical patent/US20170222287A1/en
Priority to CN201580034228.5A priority patent/CN107027333A/en
Publication of WO2016067592A1 publication Critical patent/WO2016067592A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a lithium air battery and a lithium air battery device.
  • Lithium-air batteries have a high energy density.
  • lithium-air batteries exhibit a very large discharge capacity because they do not need to be filled with a positive electrode active material.
  • Lithium-air batteries include, for example, a positive electrode layer containing a conductive material, a catalyst, and a binder, a positive electrode current collector that collects current from the positive electrode layer, a negative electrode layer made of a metal or an alloy, and a collection of negative electrode layers.
  • Negative electrode Li ⁇ Li + + e ⁇ Positive electrode: 2Li + + O 2 + 2e ⁇ ⁇ Li 2 O 2 [When charging] Negative electrode: Li + + e ⁇ ⁇ Li Positive electrode: Li 2 O 2 ⁇ 2Li + + O 2 + 2e ⁇ Conventionally, an electrolytic solution in which a supporting electrolyte salt is dissolved in an organic solvent has been used as an electrolyte of a battery. An electrolytic solution using an organic solvent as a medium exhibits high ionic conductivity.
  • a lithium-air battery using an electrolytic solution needs to be improved in terms of structure and material to prevent a short circuit and to install a safety device that suppresses a temperature rise at the time of a short circuit in order to prevent burning of an organic solvent.
  • organic solvents are volatile
  • lithium air batteries that have a structure for taking air into the battery and that work by taking oxygen in the air into the positive electrode have problems with stability in long-term operation. It is thought that there is. That is, in the long-term operation of the lithium-air battery, the electrolyte solution may volatilize from the positive electrode. As the electrolytic solution volatilizes, it is expected that the battery performance of the lithium-air battery is increased and the battery performance is significantly reduced.
  • an all-solid-state air battery in which the electrolytic solution is changed to a solid electrolyte does not use an organic solvent in the battery.
  • the ionic conductivity of the solid electrolyte is improved by increasing the temperature. Therefore, the safety device for preventing the temperature rise can be simplified, and the manufacturing cost and productivity are excellent.
  • the organic solvent volatilizes from the positive electrode Accordingly, it is possible to prevent a decrease in battery performance due to volatilization of the organic solvent.
  • Patent Document 1 discloses a lithium-air battery including a negative electrode, a positive electrode including a catalyst for oxygen reduction and a first solid electrolyte layer, and a second solid electrolyte layer disposed between the negative electrode and the positive electrode. Patent Document 1 also discloses that the first solid electrolyte layer and the second solid electrolyte layer are continuous without being physically separated. However, since an organic electrolyte solution and an aqueous electrolyte solution are required on the surface of the air electrode, it has not been possible to prevent deterioration in performance due to volatilization.
  • a conventional lithium-air battery generates an overvoltage during charging after discharging.
  • overvoltage occurs, there is a problem in that the battery capacity is reduced, and as a result, the performance of the lithium-air battery is reduced.
  • This disclosure is intended to provide a lithium-air battery and a lithium-air battery device that can suppress overvoltage and can charge and discharge a large current.
  • a lithium-air battery in a first aspect of the present disclosure, includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material having oxygen as a positive electrode active material and a catalyst that reduces oxygen. And a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode. At least one of charging and discharging is performed in the presence of vapor phase water. That is, oxygen or oxide reduction is performed in the presence of vapor phase water. According to this configuration, the air battery exhibits an effect of reducing the overvoltage.
  • a lithium-air battery in a second aspect of the present disclosure, includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material having oxygen as a positive electrode active material and a catalyst that reduces oxygen. And a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode.
  • the reaction product by discharge contains an amorphous phase. That is, the reaction product resulting from the discharge contains the amorphous phase, thereby exhibiting the same effect as the first air battery.
  • a lithium-air battery in a third aspect of the present disclosure, includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material having oxygen as a positive electrode active material and a catalyst that reduces oxygen. And a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode.
  • the reaction product from the discharge contains hydrogen atoms.
  • the reaction product resulting from the discharge contains hydrogen atoms, thereby exhibiting the same effect as the first and second air batteries.
  • the hydrogen atom in a reaction product shows hydrogen of an atomic state.
  • Atomic state hydrogen includes proton state (ionic) hydrogen.
  • a lithium-air battery device in a fourth aspect of the present disclosure, includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material including oxygen as a positive electrode active material and a catalyst for reducing oxygen.
  • a lithium-air battery cell having a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode, and a water supply unit that supplies gas-phase water to the positive electrode of the lithium-air battery cell.
  • the present lithium-air battery device exhibits an effect capable of obtaining the same effects as those of the first to third air batteries of the present invention described above.
  • FIG. 1 is a diagram illustrating a configuration of an air battery system according to Embodiment 1.
  • FIG. 2 is a configuration diagram schematically showing the configuration of the air battery cell of Embodiment 1.
  • FIG. 3 is a cross-sectional view showing a configuration of an air battery cell of a test example
  • FIG. 4 is a diagram showing a change in discharge voltage in the air battery system of the test example
  • FIG. 5 is a diagram showing a change in discharge / charge voltage in the air battery system of the comparative test example.
  • FIG. 6 is a diagram showing a change in the discharge / charge voltage in the air battery system of the test example, FIG.
  • FIG. 7 is a diagram showing a change in the discharge / charge voltage in the air battery system of the comparative test example.
  • FIG. 8 is a SEM photograph of the solid electrolyte layer after discharge of the air battery cell of the test example.
  • FIG. 9 is a graph showing a Raman spectroscopic analysis result of the solid electrolyte layer after the discharge of the air battery cell of the test example,
  • FIG. 10 is an XRD of the solid electrolyte layer after the discharge of the air battery cell of the test example,
  • FIG. 11 shows SIMS analysis results of the solid electrolyte layer after discharge of the air battery cell of the test example.
  • FIG. 12 is a configuration diagram schematically showing the configuration of the air battery system of Embodiment 2.
  • FIG. 13 is a configuration diagram schematically illustrating the configuration of the air battery system according to the third embodiment.
  • lithium-air battery and the lithium-air battery device of the present disclosure will be specifically described as embodiments.
  • the lithium-air battery system 1 of this embodiment includes a lithium-air battery cell 2 and a humidifier 6.
  • the air battery system 1 corresponds to the air battery device of the present disclosure.
  • the air battery cell 2 also corresponds to the first to third air batteries of the present disclosure.
  • the air battery cell 2 of the present embodiment includes the positive electrode 3, the negative electrode 4, and the solid electrolyte layer 5 as chargeable / dischargeable elements.
  • the positive electrode 3 is also referred to as an air electrode.
  • the positive electrode 3 has a positive electrode material including oxygen as an active material and a catalyst that reduces oxygen.
  • the positive electrode 3 includes an air introduction device for advancing a battery reaction with oxygen (or a gas containing oxygen) as an active material.
  • the negative electrode 4 has a negative electrode material capable of occluding and releasing lithium ions.
  • the solid electrolyte layer 5 is a layer containing a solid electrolyte interposed between the negative electrode 4 and the positive electrode 3.
  • the solid electrolyte layer 5 functions as a transmission path through which lithium ions move between the positive electrode 3 and the negative electrode 4.
  • the air battery cell 2 of the present embodiment can form a laminated body in which the positive electrode 3, the negative electrode 4, and the solid electrolyte layer 5 are laminated. In addition, the air battery cell 2 does not need to form the laminated body.
  • the air battery cell 2 of the present embodiment is not particularly limited as long as the shape of the outer shape thereof is a shape that allows the gas containing oxygen to contact the positive electrode 3.
  • Examples of the shape (configuration) that allows gas to contact the positive electrode 3 include a shape having a gas intake port.
  • a desired shape such as a cylindrical shape, a square shape, a button shape, a coin shape, or a flat shape can be taken.
  • the air battery cell 2 of this embodiment may be either a primary battery or a secondary battery. Preferably, it is a chargeable / dischargeable secondary battery.
  • Solid electrolyte layer 5 The solid electrolyte layer 5 is interposed between the positive electrode 3 and the negative electrode 4 and is made of a solid electrolyte capable of conducting lithium ions.
  • the solid electrolyte is preferably made of a material that has no electron conductivity and high lithium ion conductivity.
  • the solid electrolyte is preferably an inorganic material (inorganic solid electrolyte) that can be fired at a high temperature in an air atmosphere.
  • the solid electrolyte layer 5 may be not only a single layer but also a plurality of layers so as to have a quasi-solid electrolyte layer 50 described later.
  • the inorganic solid electrolyte may be a crystal, glass, a mixture or a composite of both.
  • the inorganic solid electrolyte may be any oxide-based inorganic solid electrolyte that is excellent in atmospheric stability and suitable for high-temperature firing, as long as it does not cause a significant decrease in performance due to contact with water vapor. .
  • Such an oxide-based inorganic solid electrolyte has at least a crystal structure selected from the group consisting of a perovskite type, NASICON type, LISICON type, thio-LISICON type, ⁇ -Li 3 PO 4 type, garnet type, and LIPON type. It is preferable to include one or more inorganic solid electrolyte materials.
  • perovskite oxide examples include oxides represented by Li x La 1-x TiO 3 (Li—La—Ti—O-based perovskite oxide).
  • Li a Xb Y cP d O e Li a Xb Y cP d O e
  • X is at least one selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Sb and Se
  • Y is at least one selected from the group consisting of Ti, Zr, Ge, In, Ga, Sn and Al, and 0.5 ⁇ a ⁇ 5.0, 0 ⁇ b ⁇ 2. 98, 0.5 ⁇ c ⁇ 3.0, 0.02 ⁇ d ⁇ 3.0, 2.0 ⁇ b + d ⁇ 4.0, and 3.0 ⁇ e ⁇ 12.0. Oxides.
  • Li 4 XO 4 -Li 3 YO 4 (X is at least one selected from Si, Ge, and Ti) Y is at least one selected from P, As and V), Li 4 XO 4 -Li 2 AO 4 (X is at least one selected from Si, Ge and Ti.
  • Z is from Al, Ga, and Cr)
  • at least one selected from Li 4 XO 4 -Li 2 BXO 4 (X is at least one selected from Si, Ge, and Ti.
  • B is selected from Ca and Zn).
  • Li 3 DO 3 -Li 3 YO 4 (D is B, Y is at least one selected from P, As and V).
  • Li 3.25 Ge 0.25 P 0.75 S 4 , Li 4 SiO 4 —Li 3 PO 4 , Li 3 BO 3 —Li 3 PO 4 and the like are preferable.
  • a garnet-type oxide is an oxide represented by Li 3 + x A y G z M 2 -v B v O 12 .
  • A, G, M and B are metal cations.
  • A is preferably an alkaline earth metal cation such as Ca, Sr, Ba and Mg, or a transition metal cation such as Zn.
  • G is preferably a transition metal cation such as La, Y, Pr, Nd, Sm, Lu, or Eu.
  • M include transition metal cations such as Zr, Nb, Ta, Bi, Te, and Sb. Among these, Zr is preferable.
  • B is preferably In, for example.
  • O may be partially or completely exchanged with a divalent anion and / or a trivalent anion, for example, N 3 ⁇ .
  • LLZ Li 7 La 3 Zr 2 O 12
  • LiPON type oxide examples include Li 2.88 PO 3.73 N 0.14 and Li 3.0 PO 2.0 N 1.2 .
  • the solid electrolyte layer 5 may further include an electrolyte layer made of a quasi-solid (referred to as a quasi-solid electrolyte layer 50).
  • the semi-solid electrolyte layer 50 is an electrolyte layer (an elastically deformable electrolyte layer) that can change the shape of the gel, and can be exemplified by a layer made of a non-aqueous electrolyte.
  • the nonaqueous electrolyte forming the quasi-solid electrolyte layer 50 is, for example, impregnated in an insulating porous body such as a porous film such as polyethylene or polypropylene, a nonwoven fabric such as a resin nonwoven fabric or a glass fiber nonwoven fabric, and the solid electrolyte layer 5 And the negative electrode 4.
  • an insulating porous body such as a porous film such as polyethylene or polypropylene, a nonwoven fabric such as a resin nonwoven fabric or a glass fiber nonwoven fabric, and the solid electrolyte layer 5 And the negative electrode 4.
  • the nonaqueous electrolyte can be used by adding a polymer such as polyethylene oxide (PEO), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), etc. and gelling. From the viewpoint of ion conductivity of the nonaqueous electrolyte, the nonaqueous electrolyte is preferably used without being gelled.
  • a polymer such as polyethylene oxide (PEO), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), etc.
  • PEO polyethylene oxide
  • PAN polyacrylonitrile
  • PMMA polymethyl methacrylate
  • the positive electrode 3 includes a positive electrode material including a catalyst 31, a solid electrolyte 30, and a conductive material, and a positive electrode current collector (not shown).
  • the positive electrode material has a solid electrolyte 30 as a base material and has pores into which a gas (a gas containing oxygen) can be introduced.
  • a catalyst 31 is disposed on the surface of the solid electrolyte 30 (inner surface of the hole).
  • the solid electrolyte 30 can be selected from solid electrolytes that can be used for the solid electrolyte layer 5 described above. As the solid electrolyte 30, it is preferable to use the same inorganic solid electrolyte as the solid electrolyte selected for the solid electrolyte layer 5 described above. Since the solid electrolyte 30 is made of the same electrolyte as the solid electrolyte constituting the solid electrolyte layer 5 described above, the solid electrolyte layer 5 and the positive electrode material (the positive electrode 3) can be combined with the same solid electrolyte, and manufacturing is easy. An air battery having low interface resistance can be obtained.
  • Catalyst 31 promotes a reaction (reduction reaction) of oxygen, which is a positive electrode active material, in positive electrode 3.
  • Catalysts include silver, palladium, gold, platinum, aluminum, nickel, titanium, platinum, iridium oxide, ruthenium oxide, manganese oxide, cobalt oxide, nickel oxide, iron oxide, copper oxide, and metal phthalocyanines. 1 type or 2 types or more selected from the group which consists of can be illustrated.
  • oxygen oxygen contained in the atmosphere
  • air battery cell 2 positive electrode 3
  • Conductive material is used as needed.
  • the conductive material is not particularly limited as long as it has conductivity.
  • the conductive material needs to have necessary stability under the atmosphere in the air battery cell 2.
  • the conductive material used when integrating with the positive electrode 3 or the negative electrode 4 is preferably a material suitable for firing.
  • a metal or alloy having high oxidation resistance is a metal, it is preferably silver, palladium, gold, platinum, aluminum, nickel, titanium or the like. If it is an alloy, it is preferable that it is an alloy which consists of 2 or more types of metals chosen from silver, palladium, gold
  • the positive electrode current collector may have any electrical conductivity. Since the positive electrode 3 requires a device for introducing a gas containing oxygen into the positive electrode material, the positive electrode current collector is preferably formed to transmit oxygen.
  • the positive electrode current collector is preferably a porous material composed of a metal such as stainless steel, nickel, aluminum, or copper, a net, or a punching metal. Moreover, when using a porous material etc., it is preferable to employ
  • the negative electrode 4 includes a negative electrode material 40 including a negative electrode active material capable of occluding and releasing lithium ions, and a negative electrode current collector (not shown).
  • the negative electrode material 40 can contain a solid electrolyte and a conductive material in addition to the negative electrode active material.
  • a negative electrode collector copper, nickel, etc. can be made into forms, such as a net
  • a battery casing can also be used as the negative electrode current collector.
  • the negative electrode active material includes metal lithium, lithium alloy, metal material capable of inserting and extracting lithium, alloy material capable of inserting and extracting lithium (not only alloys consisting of metals but also alloys of metals and metalloids).
  • the structure consists of a solid solution, a eutectic (eutectic mixture), an intermetallic compound or a compound in which two or more of them coexist), and a compound capable of inserting and extracting lithium.
  • the negative electrode active material is preferably a material suitable for firing.
  • when using Li metal it can introduce
  • Metal elements and metalloid elements that can constitute metal materials and alloy materials include tin (Sn), lead (Pb), aluminum (Al), indium (In), silicon (Si), zinc (Zn), and antimony (Sb). ), Bismuth (Bi), cadmium (Cd), magnesium (Mg), boron (B), gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), zirconium (Zr), yttrium (Y ) And hafnium (Hf).
  • these alloy materials or compounds include those represented by the chemical formula Ma f Mb g Li h or the chemical formula Ma s Mc t Md u .
  • Ma represents at least one of a metal element and a metalloid element capable of forming an alloy with lithium
  • Mb represents at least one of a metal element and a metalloid element other than lithium
  • Ma Mc represents at least one of non-metallic elements
  • Md represents at least one of metallic elements and metalloid elements other than Ma.
  • the negative electrode material is preferably a simple substance, alloy or compound of a group 4B metal element or metalloid element in the short-period type periodic table, particularly preferably silicon (Si) or tin (Sn), or an alloy or compound thereof. It is. These may be crystalline or amorphous.
  • Examples of the material capable of inserting and extracting lithium include oxides, sulfides, and other metal compounds such as lithium nitrides such as LiN 3 .
  • Examples of the oxide include MnO 2 , V 2 O 5 , V 6 O 13 , NiS, and MoS.
  • examples of the oxide that has a relatively low potential and can occlude and release lithium include iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, and tin oxide.
  • Examples of the sulfide include NiS and MoS.
  • the solid electrolyte contained in the negative electrode material is used as necessary.
  • the same solid electrolyte as that used in the solid electrolyte layer 5 is used as the solid electrolyte contained in the negative electrode material.
  • the solid electrolyte contained in the negative electrode material can be selected from the solid electrolytes that can be used for the solid electrolyte layer 5 described above.
  • As the solid electrolyte contained in the negative electrode material it is preferable to use the same inorganic solid electrolyte as the solid electrolyte selected for the solid electrolyte layer 5 described above. Since the solid electrolyte contained in the negative electrode material is made of the same electrolyte as the solid electrolyte constituting the solid electrolyte layer 5 described above, the solid electrolyte layer 5 and the negative electrode material 40 (negative electrode 4) can be combined with the same solid electrolyte, An air battery that is easy to manufacture and has low interface resistance is possible.
  • the solid electrolyte contained in both is the same inorganic solid electrolyte as the solid electrolyte selected for the solid electrolyte layer 5 described above. Is most preferred.
  • Conductive material is used as needed.
  • As the conductive material those exemplified in the column of the positive electrode 3 can be used.
  • the negative electrode current collector may have any electrical conductivity.
  • materials such as copper, stainless steel, and nickel can be cited.
  • the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh (grid) shape.
  • the humidifier 6 humidifies the gas containing oxygen introduced into the positive electrode 3 of the air battery cell 2.
  • the humidifier 6 supplies vapor phase water to the positive electrode 3.
  • the humidifier 6 causes the reduction of oxygen introduced into the positive electrode 3 to proceed in the presence of vapor phase water.
  • the humidifier 6 corresponds to a water supply unit and a humidifier.
  • the humidifier 6 is not particularly limited as long as it can supply vapor phase water around the air battery cell 2 (positive electrode 3).
  • the storage tank 60 is arranged around the air battery cell 2 in the case 7.
  • the humidification of the gas containing oxygen introduced into the positive electrode 3 by the humidifier 6 is not limited with respect to the humidity of the gas.
  • the gas humidity should be higher than 0% (not 0%).
  • the temperature of the positive electrode 3 is equal to or higher than the dew point of water (moisture) contained in the gas.
  • the air battery system 1 of the present embodiment includes a case 7 that houses the air battery cell 2 and the humidifying devices 6 and 60, and an atmosphere adjusting device 8 that adjusts the atmosphere in the case 7. .
  • the atmosphere adjusting device 8 adjusts to a gas atmosphere containing oxygen.
  • it has the member (For example, the conducting wire connected to the electrodes 3 and 4 of the air battery cell 2, and an electrode terminal) required for the structure of an air battery system.
  • the case 7 forms a sealed space in which the air battery cell 2 can be accommodated.
  • the configuration of the case 7 is not limited. A chamber can be used.
  • the atmosphere adjusting device 8 adjusts the atmosphere in the case 7.
  • the atmosphere is adjusted by adjusting the gas supplied into the case 7 and the gas discharged from the case 7. That is, the atmosphere control device 8 includes a gas supply device 80 that supplies gas into the case 7 and a gas discharge device 81 that discharges the gas in the case 7.
  • the gas supply device 80 is a device capable of controlling the type (composition) of gas supplied into the case 7 and the inflow amount.
  • a device capable of controlling the type (composition) of gas supplied into the case 7 and the inflow amount.
  • an apparatus having a gas cylinder, a pipe line that communicates between the gas cylinder and the case 7, and a valve that controls the flow rate of the gas flowing through the pipe line can be given.
  • the gas supplied by the gas supply device 80 is not limited as long as it contains oxygen.
  • gas such as air and pure oxygen gas, can be mentioned.
  • the gas discharge device 81 is a device capable of controlling the discharge amount of the gas discharged from the case 7.
  • a device having a conduit that communicates the inside of the case 7 with the outside and a valve that controls the flow rate of the gas flowing in the conduit can be mentioned.
  • the atmosphere control device 8 may have a control device that controls the gas supply device 80 and the gas discharge device 81.
  • Test example The air battery system 1 of Embodiment 1 is demonstrated more concretely using a test example.
  • the structure of the air battery cell of a test example is shown in FIG.
  • the positive electrode 3 (the solid electrolyte 30) and the solid electrolyte layer 5 are integrally formed.
  • the negative electrode 4 is disposed via a quasi-solid electrolyte layer 50 in contact with a portion of the solid electrolyte layer 5 where the positive electrode 3 is not formed (portion facing away from the positive electrode 3).
  • these laminated bodies are accommodated in the exterior body 20 which consists of laminate films.
  • the pattern formation of the catalyst 31 may be performed using a mask during sputtering.
  • the catalyst 31 made of Pt was provided on the inorganic solid electrolyte 30 in a Pt thickness of 50 nm and in lines and spaces at intervals of 3 to 100 ⁇ m.
  • a tab serving as a current collector was provided in a part of the catalyst 31.
  • the tab was produced by sputtering Pt on the solid electrolyte 30 in the same manner as the catalyst 31.
  • the catalyst 31 and the tab are electrically connected.
  • negative electrode material 40 negative electrode active material
  • metallic lithium was used as the negative electrode material 40.
  • the exterior body 20 was formed from two laminated films.
  • the laminate film has a size of 40 mm ⁇ 40 mm.
  • One laminate film was a positive electrode side laminate film, and a hole having a diameter of 14.5 mm for introducing oxygen into Pt as the catalyst 31 was provided.
  • the other laminate film is a negative electrode-side laminate film and has no holes.
  • the hole of the positive electrode side laminate film was sealed with a sealing film (not shown) from the outside and the inside.
  • the nickel lead wire (not shown) used as a negative electrode terminal was attached to the negative electrode side laminated film.
  • a laminate was formed by laminating LATP sputtered with Pt, polyethylene oxide (PEO), and metallic lithium in this order.
  • Pt polyethylene oxide
  • metallic lithium metallic lithium
  • these laminates were sandwiched between positive and negative side laminate films.
  • the catalyst layer appears in the holes of the positive electrode side laminate film, and the metal lithium is disposed in contact with the nickel lead wires of the negative electrode side laminate film.
  • the inside of the laminate film is evacuated and sealed using a vacuum sealing machine to produce the air battery cell 2. And cell 2 was left still overnight in a 60 ° C thermostat.
  • the sealing film was removed so that the catalyst layer was entirely exposed from the hole in the positive laminate film. Moreover, the tab which is a part of a catalyst layer, and the nickel lead wire were piled up, and the positive electrode terminal was provided by joining with a silver paste.
  • the manufactured air battery cell 2 was accommodated in the case 7.
  • the water tank 60 was placed in the case 7 and the gas supply device 80 and the gas discharge device 81 were used to create a pure oxygen atmosphere in the case 7, and the gas supply device 80 and the gas discharge device 81 were closed and sealed.
  • the pure oxygen atmosphere in the case 7 includes water evaporated from the water storage tank 60. Thereafter, the case 7 was kept at 60 ° C. At this time, the humidity in the case 7 was 100%.
  • the air battery system 1 of the test example can be charged and discharged with a capacity of 1.0 ⁇ Ah.
  • FIG. 5 in the comparative test example, when charging after discharging is performed, it can be seen that the voltage greatly increases in the middle of the battery capacity (about 0.6 ⁇ Ah in FIG. 5) ( Overvoltage occurrence). That is, it can be seen that the charge after discharge is about 0.4 ⁇ Ah, and the charge capacity is reduced.
  • the air battery system 1 of the test example can discharge at 2.9 V or more.
  • the maximum voltage is 2.6V. That is, in the air battery cell 2 of the test example, it can be confirmed that the overvoltage is significantly reduced as compared with that of the comparative test example.
  • the air battery cell 2 of the air battery system 1 of the test example shows almost the same voltage change. That is, even if the charging / discharging is repeated, the discharge characteristics of the air battery cell 2 are not deteriorated.
  • the voltage (battery capacity) of the air battery cell 2 does not return to the same state as before the discharge even after charging after discharging. Can't show. That is, when the charge / discharge is repeated, the charge / discharge characteristics of the air battery cell 2 are degraded.
  • the air battery system 1 of the test example has the air battery cell 2 in an atmosphere in which a gas containing oxygen is humidified. That is, the reduction of oxygen in the air battery cell 2 proceeds in the presence of gas-phase water. According to this structure, the air battery cell 2 exhibits the effect which can reduce an overvoltage in charging / discharging.
  • the positive electrode 3 is made of the same (integral) solid electrolyte as the solid electrolyte layer 5. That is, a decrease in ionic conductivity due to the interface resistance at the boundary between the positive electrode 3 and the solid electrolyte layer 5 is suppressed. That is, the air battery cell 2 can enable charging / discharging of a large current. As a result, the air battery system 1 of the test example can also exhibit the effect of enabling charging / discharging of a large current.
  • each of the positive electrode 3, the negative electrode 4, and the solid electrolyte layer 5 is made of a solid electrolyte, the all-solid-state air battery cell 2 that functions as a support that supports each other is formed.
  • the all-solid-type air battery cell 2 exhibits an effect of suppressing a decrease in performance. Furthermore, since no organic solvent is used in the electrolyte or the like, combustion does not occur and an effect of excellent safety can be exhibited.
  • the solid electrolyte layer 5 was observed about the air battery cell 2 of the test example in which the discharge / charge test was performed. Reaction products at the positive electrode were observed on the surface of the solid electrolyte layer 5. The observation of the solid electrolyte layer 5 was performed by disassembling and taking out the air battery cell 2 of the test example after discharging for 2 hours at a current density of 100 ( ⁇ A / cm 2 ).
  • reaction product of the positive electrode 3 is present on the surface of the solid electrolyte layer 5.
  • the surface of the solid electrolyte layer 5 was observed by Raman spectroscopic analysis.
  • the Raman spectroscopic analysis was performed using a Raman spectrophotometer (trade name: LabRAM HR-800, manufactured by HORIBA, Ltd.). The measurement results are shown in FIG.
  • the peak derived from the solid electrolyte of the solid electrolyte layer 5 can be confirmed, but the peak of the reaction product itself cannot be confirmed. This confirms that the reaction product at the positive electrode 3 does not have a crystal structure, that is, is in an amorphous state.
  • reaction product itself is essentially composed of an amorphous state. That is, it can be confirmed that almost all reaction products (90% or more, 90 vol% or more) are amorphous.
  • XRD X-ray diffractometer
  • the peak derived from the solid electrolyte of the solid electrolyte layer 5 can be confirmed, but the peak of the reaction product itself cannot be confirmed. This also confirms that the reaction product at the positive electrode 3 does not have a crystal structure, that is, is in an amorphous state.
  • the reaction product generated by the discharge at the positive electrode 3 contains an amorphous phase.
  • reaction product of the positive electrode 3 has a crystal structure, not an amorphous state.
  • SIMS surface analysis
  • the result of the surface analysis for D is shown in the upper left of FIG. 11, and it can be confirmed that D exists in the area indicated by the broken line.
  • This D is an isotope of hydrogen and indicates the presence of substantially atomic hydrogen. That is, it can be confirmed that the solid electrolyte layer 5 contains hydrogen atoms.
  • FIG. 11 is an area analysis of the same part of the surface of the solid electrolyte layer 5, and the areas indicated by broken lines in each figure overlap. That is, it can be confirmed that the reaction product exists in the region indicated by the broken line. Then, as shown in FIG. 11, it can be confirmed that the solid electrolyte layer 5 contains hydrogen atoms.
  • the reaction product generated by the discharge at the positive electrode 3 contains hydrogen atoms.
  • the reaction product of the positive electrode 3 does not contain hydrogen atoms because it has a crystal structure rather than an amorphous state.
  • the present embodiment is an air battery system 1 similar to that of the first embodiment except that the configurations of the humidifying device 6 and the atmosphere adjusting device 8 are different.
  • a humidifier 6 and an atmosphere controller 8 are integrally formed.
  • a water storage part 82 for storing water is provided in a gas flow path (pipe) of the gas supply device 80 of the atmosphere control device 8, and the gas is bubbled into the water stored in the water storage part 82. It is configured to pass through.
  • the gas supplied into the case 7 is supplied in a humidified state.
  • This embodiment has the same configuration as that of the first embodiment except that the gas supplied into the case 7 is supplied in a humidified state, and exhibits the same effect.
  • the impurities when the gas supplied from the gas supply device 80 contains water-soluble impurities, the impurities can also be removed.
  • the water-soluble impurities include components such as carbon dioxide contained in the atmosphere when the gas supplied from the gas supply device 80 is the atmosphere.
  • the present embodiment is an air battery system 1 similar to that of the first embodiment except that the configurations of the humidifying device 6 and the atmosphere adjusting device 8 are different.
  • Battery system 1 houses humidifier 6 in case 7 as shown in FIG. Further, the atmosphere adjusting device 8 is not provided.
  • the humidifier 6 includes a raw material reservoir 61 and a humidified gas supply unit 62.
  • the raw material storage unit 61 stores a compound containing oxygen and water.
  • the compound containing oxygen and water stored in the raw material storage unit 61 is not limited.
  • hydrogen peroxide liquid phase hydrogen peroxide
  • This compound may be an organic or inorganic compound other than hydrogen peroxide.
  • the humidified gas supply unit 62 decomposes the compound stored in the raw material storage unit 61 and supplies the generated oxygen and water into the case 7 in a gas phase state.
  • the humidified gas supply unit 62 of this embodiment is decomposed by adding a catalyst to hydrogen peroxide. Then, the generated oxygen and gas-phase water are supplied into the case 7.
  • the compound stored in the raw material storage unit 61 is decomposed to generate a reaction that generates oxygen and water, but it is preferable that this reverse reaction can be generated.
  • the humidified gas supply unit 62 can cause a reverse reaction during charging, and the air battery system 1 can be moved in this closed system.
  • This embodiment has the same configuration as that of the first embodiment except that the atmosphere in the case 7 is directly humidified, and exhibits the same effect.
  • the gas supply device 80 is not provided, and an effect that can be independently formed in a system in which the battery system 1 is closed is also exhibited.
  • the air battery cell 2 has a single cell configuration, but is not limited to this configuration. As long as the reduction of oxygen proceeds in the presence of water, a stacked air battery in which a large number of cells are stacked may be used.
  • the air battery cell 2 has a configuration in which the positive electrode 3 and the solid electrolyte layer 5 are integrated, but the configuration is not limited to this configuration.
  • the negative electrode 4 may also be integrally formed.
  • the air battery cell 2 of this embodiment can be specifically exemplified by those manufactured by the following manufacturing method.
  • a solid electrolyte powder, a binder and an appropriate dispersion medium are prepared, and these are mixed to prepare a solid electrolyte slurry.
  • a solid electrolyte green sheet is produced from the solid electrolyte slurry.
  • the green sheet indicates an unsintered body such as a crystal powder formed into a thin plate shape.
  • a mixed slurry of crystal powder, a conductive material, a binder, a solvent, and the like is used for a doctor blade, a calendar method,
  • a molded product formed into a thin plate by a coating method such as spin coating or dip coating, a printing method such as ink jet and offset, a die coater method, or a spray method is shown.
  • the binder exhibits an action of connecting the constituent elements contained in the solid electrolyte.
  • a thermoplastic resin, a thermosetting resin, etc. are mentioned.
  • the solid electrolyte layer 5 is preferably provided with a hole for introducing a negative electrode material in a part thereof. That is, the solid electrolyte green sheet is divided into a portion (solid electrolyte portion) that becomes a solid electrolyte layer after subsequent integral firing and a portion (negative electrode portion) that becomes a negative electrode.
  • the negative electrode part is provided at the other end opposite to one end of the solid electrolyte part on which the positive electrode green sheet is laminated later.
  • the negative electrode part may be formed separately from the solid electrolyte layer green sheet and later integrated.
  • a pore former in the negative electrode portion of the solid electrolyte green sheet.
  • the negative electrode portion is vacated by the action of the pore former.
  • the negative electrode is produced by introducing liquefied metallic lithium into the pores at a predetermined pressure or by depositing Li metal through a solid electrolyte.
  • the pore former forms pores in the negative electrode part of the fired body of the solid electrolyte green sheet.
  • the pore former forms holes for introducing the negative electrode active material.
  • the pore former is desired to be a material that can be vaporized by firing to form pores.
  • the pore former is made of theobromine, graphite, wheat flour, starch, phenol resin, polymethyl methacrylate, polyethylene, polyethylene terephthalate, foamed resin (acrylonitrile plastic balloon, etc.), etc. Can be mentioned.
  • the pore former is preferably used together with a conductive material. Thereby, the negative electrode part can form the void
  • the positive electrode As the manufacture of the positive electrode, first, catalyst powder, pore former powder, conductive material powder, binder and appropriate dispersion medium are prepared, and these are mixed to prepare a positive electrode slurry. Next, a positive electrode green sheet is produced from this positive electrode slurry.
  • the pore-forming material powder is for providing holes for introducing oxygen into the positive electrode material.
  • the pore former is preferably a material that can be vaporized by firing to form pores. It is preferable to use the same material as the pore former described above as the pore former.
  • the negative electrode green sheets are laminated to form a laminate.
  • the positive electrode green sheet is laminated on one end of the solid electrolyte sheet opposite to the other end (negative electrode part) of the solid electrolyte green sheet containing the pore former. And the produced laminated body is integrally baked.
  • the atmosphere is not particularly limited, but it is preferably performed under conditions that do not change the valence of the transition metal contained in the electrode active material. More desirable is an oxidizing atmosphere, particularly an air atmosphere. In firing, it is only necessary to reduce the interface resistance between the positive electrode and the solid electrolyte and between the negative electrode and the solid electrolyte.
  • the firing temperature when using the inorganic solid electrolyte is, for example, 600 to 1100 ° C.
  • the solid electrolyte green sheet and the positive electrode green sheet are bonded (sintered) and integrated. That is, the solid electrolyte and the solid electrolyte layer 5 of the positive electrode 3 are combined and integrated.
  • pores are formed in the portion (the other end) corresponding to the negative electrode portion of the fired body.
  • the negative electrode 4 is formed by introducing liquefied metallic lithium into the pores at a predetermined pressure. Moreover, you may form by making a metal lithium electrodeposit on this hole by charging / discharging.
  • the positive electrode 3 and the solid electrolyte layer 5 are based on the same solid electrolyte. For this reason, the fall of the ionic conductivity resulting from the interface resistance in the boundary of the positive electrode 3 and the solid electrolyte layer 5 is suppressed. That is, the same effects as those of the above embodiments can be exhibited.
  • the negative electrode 4 may be formed by producing a negative electrode green sheet similarly to the positive electrode 3 and firing it integrally with the solid electrolyte part.
  • the negative electrode part is not provided in the solid electrolyte layer.
  • the negative electrode green sheet in this case can be manufactured by the same method as the positive electrode green sheet.
  • a positive electrode green sheet, a solid electrolyte green sheet, and a negative electrode green sheet are laminated in this order to form a laminate, which is integrally fired.
  • the positive electrode 3, the solid electrolyte layer 5, and the negative electrode 4 have the same solid electrolyte as a base material.
  • An effect similar to the effect at the boundary between the positive electrode 3 and the solid electrolyte layer 5 described above is also exhibited at the boundary between the solid electrolyte layer 5 and the negative electrode 4. That is, the air battery system 1 (and the air battery cell 2) of the test example can also exhibit an effect that enables charging / discharging of a large current.
  • This disclosure includes the following aspects.
  • This disclosure is intended to provide a lithium-air battery and a lithium-air battery device that can suppress overvoltage and can charge and discharge a large current.
  • a lithium-air battery in a first aspect of the present disclosure, includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material having oxygen as a positive electrode active material and a catalyst that reduces oxygen. And a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode. At least one of charging and discharging is performed in the presence of vapor phase water. That is, oxygen or oxide reduction is performed in the presence of vapor phase water. According to this configuration, the air battery exhibits an effect of reducing the overvoltage.
  • a lithium-air battery in a second aspect of the present disclosure, includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material having oxygen as a positive electrode active material and a catalyst that reduces oxygen. And a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode.
  • the reaction product by discharge contains an amorphous phase. That is, the reaction product resulting from the discharge contains the amorphous phase, thereby exhibiting the same effect as the first air battery.
  • a lithium-air battery in a third aspect of the present disclosure, includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material having oxygen as a positive electrode active material and a catalyst that reduces oxygen. And a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode.
  • the reaction product from the discharge contains hydrogen atoms.
  • the reaction product resulting from the discharge contains hydrogen atoms, thereby exhibiting the same effect as the first and second air batteries.
  • the hydrogen atom in a reaction product shows hydrogen of an atomic state.
  • Atomic state hydrogen includes proton state (ionic) hydrogen.
  • a lithium-air battery device in a fourth aspect of the present disclosure, includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material including oxygen as a positive electrode active material and a catalyst for reducing oxygen.
  • a lithium-air battery cell having a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode, and a water supply unit that supplies gas-phase water to the positive electrode of the lithium-air battery cell.
  • the present lithium-air battery device exhibits an effect capable of obtaining the same effects as those of the first to third air batteries of the present invention described above.
  • the water supply unit may be a humidifier that humidifies a gas containing oxygen.
  • the humidifier by providing the humidifier, oxygen as the positive electrode active material can be supplied to the positive electrode of the air battery cell in the presence of gas-phase water, and the reduction of oxygen can be performed in the presence of this water.
  • the water supply unit may decompose the compound containing oxygen and water and supply the generated oxygen and water in a gas phase state.
  • the positive electrode active material oxygen can be supplied to the positive electrode of the air battery cell in the presence of water in the vapor phase, and the reduction of oxygen can be performed in the presence of this water.
  • At least one of the negative electrode material and the positive electrode material may include the solid electrolyte and be bonded in a state having an interface with the solid electrolyte layer.
  • at least one of the positive electrode generally also referred to as an air electrode
  • the negative electrode is bonded to the solid electrolyte layer.
  • a battery cell using at least one of the positive electrode, the negative electrode, and the solid electrolyte layer as a support can be constructed.
  • At least one of the solid electrolyte layer, the negative electrode, and the positive electrode may be a support that supports at least one remaining.
  • the positive electrode, the negative electrode, and the solid electrolyte layer may be supports that support each other.
  • At least one of the positive electrode and the negative electrode and the solid electrolyte layer may form a fired body integrally bonded by firing. According to this configuration, at least one of the positive electrode and the negative electrode and the solid electrolyte layer form a fired body integrated by firing, and can suppress a decrease in ion conductivity due to interface resistance at the interface.
  • the solid electrolyte is at least one inorganic solid electrolyte material selected from the group consisting of perovskite type, NASICON type, LISICON type, thio-LISON type, ⁇ -Li 3 PO 4 type, garnet type, and LIPON type May be included.
  • the positive electrode (air electrode) which comprises the air battery apparatus of this invention does not contain an organic solvent, and the fall of the performance by the organic solvent volatilizing is suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

This lithium-air battery (2) comprises: a negative electrode (4) comprising a negative electrode material (40) that is capable of absorbing and desorbing lithium ions; a positive electrode (3) which uses oxygen as a positive electrode active material and comprises a positive electrode material that is provided with a catalyst (31) for reducing oxygen; and a solid electrolyte layer (5) which is interposed between the negative electrode and the positive electrode and contains a solid electrolyte. At least one of charging and discharging is carried out in the presence of water in a gas phase. Namely, reduction of oxygen or an oxide is carried out in the presence of water in a gas phase. Due to this configuration, this air battery exhibits an effect of reducing the overvoltage.

Description

リチウム空気電池及びリチウム空気電池装置Lithium air battery and lithium air battery device 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年10月30日に出願された日本特許出願番号2014-221188号および2015年9月30日に出願された日本特許出願番号2015―192600号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2014-221188 filed on October 30, 2014 and Japanese Patent Application No. 2015-192600 filed on September 30, 2015, which is described herein. Incorporate content.
 本開示は、リチウム空気電池及びリチウム空気電池装置に関するものである。 The present disclosure relates to a lithium air battery and a lithium air battery device.
 近年、パーソナルコンピュータ、携帯電話等のポータブル機器の開発に伴い、その電源としての電池の需要は大幅に拡大している。そして、より大容量の電池の実現を目指し、正極活物質として空気中の酸素を用いるリチウム空気電池の研究が進められている。リチウム空気電池は、エネルギー密度が高い。 In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as power sources has been greatly expanded. Research on lithium-air batteries using oxygen in the air as a positive electrode active material has been conducted with the aim of realizing a battery with a larger capacity. Lithium-air batteries have a high energy density.
 リチウム空気電池は、正極活物質を充填する必要がないため、非常に大きな放電容量を示すことが報告されている。 It has been reported that lithium-air batteries exhibit a very large discharge capacity because they do not need to be filled with a positive electrode active material.
 リチウム空気電池は、例えば、導電性材料、触媒、及び結着材を含有する正極層と、正極層の集電を行う正極集電体と、金属又は合金からなる負極層と、負極層の集電を行う負極集電体と、正極層及び負極層の間に介在する電解質とを有する。そして、リチウム空気電池は、以下のような充放電反応が進むと考えられている。 Lithium-air batteries include, for example, a positive electrode layer containing a conductive material, a catalyst, and a binder, a positive electrode current collector that collects current from the positive electrode layer, a negative electrode layer made of a metal or an alloy, and a collection of negative electrode layers. A negative electrode current collector for conducting electricity, and an electrolyte interposed between the positive electrode layer and the negative electrode layer. And it is thought that the following charge / discharge reaction advances in a lithium air battery.
 [放電時]
 負極 : Li → Li + e
 正極 : 2Li + O + 2e → Li
 [充電時]
 負極 : Li + e → Li
 正極 : Li → 2Li + O + 2e
 従来、電池の電解質として、有機溶媒に支持電解質塩を溶解させた電解液が使用されている。有機溶媒を媒体とした電解液は高いイオン伝導率を示す。
[During discharge]
Negative electrode: Li → Li + + e
Positive electrode: 2Li + + O 2 + 2e → Li 2 O 2
[When charging]
Negative electrode: Li + + e → Li
Positive electrode: Li 2 O 2 → 2Li + + O 2 + 2e
Conventionally, an electrolytic solution in which a supporting electrolyte salt is dissolved in an organic solvent has been used as an electrolyte of a battery. An electrolytic solution using an organic solvent as a medium exhibits high ionic conductivity.
 しかしながら、電解液を用いたリチウム空気電池は、有機溶媒の燃焼を防止するために短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。また、有機溶媒は揮発性であるため、空気を電池内に取り込む構造を有し、かつ空気中の酸素を正極内に取り込むことによって動作するリチウム空気電池においては、長期作動での安定性に課題があると考えられる。すなわち、リチウム空気電池の長期作動では、正極から電解液が揮発するおそれがある。電解液が揮発してしまうことにより、リチウム空気電池は電池抵抗が増大し、電池性能が著しく低下することが予想される。 However, a lithium-air battery using an electrolytic solution needs to be improved in terms of structure and material to prevent a short circuit and to install a safety device that suppresses a temperature rise at the time of a short circuit in order to prevent burning of an organic solvent. In addition, since organic solvents are volatile, lithium air batteries that have a structure for taking air into the battery and that work by taking oxygen in the air into the positive electrode have problems with stability in long-term operation. It is thought that there is. That is, in the long-term operation of the lithium-air battery, the electrolyte solution may volatilize from the positive electrode. As the electrolytic solution volatilizes, it is expected that the battery performance of the lithium-air battery is increased and the battery performance is significantly reduced.
 一方、電解液を固体電解質に変更した全固体空気電池は、電池内に有機溶媒を用いない。また、固体電解質は、昇温によってイオン伝導度が向上する。よって、昇温防止のための安全装置の簡素化が図れ、製造コストや生産性に優れる。また、全固体空気電池は、正極から有機溶媒が揮発するおそれもない。したがって、有機溶媒が揮発することによる電池性能低下を防止できる。 On the other hand, an all-solid-state air battery in which the electrolytic solution is changed to a solid electrolyte does not use an organic solvent in the battery. In addition, the ionic conductivity of the solid electrolyte is improved by increasing the temperature. Therefore, the safety device for preventing the temperature rise can be simplified, and the manufacturing cost and productivity are excellent. Further, in the all solid-state air battery, there is no possibility that the organic solvent volatilizes from the positive electrode. Accordingly, it is possible to prevent a decrease in battery performance due to volatilization of the organic solvent.
 特許文献1は、負極と、酸素還元のための触媒及び第1固体電解質層を含む正極と、負極と正極の間に配置された第2固体電解質層とを備えるリチウム空気電池を開示する。特許文献1では、更に第1固体電解質層と第2固体電解質層とが物理的に分離せず連続していることも開示している。しかしながら、空気極表面に有機電解液、水溶液電解液を必要とするため、その揮発による性能の低下を防止することはできなかった。 Patent Document 1 discloses a lithium-air battery including a negative electrode, a positive electrode including a catalyst for oxygen reduction and a first solid electrolyte layer, and a second solid electrolyte layer disposed between the negative electrode and the positive electrode. Patent Document 1 also discloses that the first solid electrolyte layer and the second solid electrolyte layer are continuous without being physically separated. However, since an organic electrolyte solution and an aqueous electrolyte solution are required on the surface of the air electrode, it has not been possible to prevent deterioration in performance due to volatilization.
 これらの電解液に揮発の問題に対して、その水溶液や電解質を不要とした構成の電池も検討されている。 In order to solve the problem of volatilization in these electrolytes, a battery having a configuration in which an aqueous solution or an electrolyte is not required has been studied.
 そして、従来のリチウム空気電池では、放電後の充電時に過電圧が発生することが知られている。過電圧が発生すると、電池容量の低下を招き、結果としてリチウム空気電池の性能低下を招くという問題があった。 And, it is known that a conventional lithium-air battery generates an overvoltage during charging after discharging. When overvoltage occurs, there is a problem in that the battery capacity is reduced, and as a result, the performance of the lithium-air battery is reduced.
特開2011-96586号公報JP 2011-96586 A
 本開示は、過電圧を抑制可能な、大電流の充放電が可能となるリチウム空気電池及びリチウム空気電池装置を提供することを目的とする。 This disclosure is intended to provide a lithium-air battery and a lithium-air battery device that can suppress overvoltage and can charge and discharge a large current.
 本開示の第一の態様において、リチウム空気電池は、リチウムイオンを吸蔵放出可能な負極材料を有する負極と、酸素を正極活物質とし、かつ、酸素を還元する触媒を備える正極材料を有する正極と、該負極及び該正極の間に介在する固体電解質を含む固体電解質層とを有する。充電と放電の少なくとも一方が、気相の水の存在下で行われる。すなわち、酸素や酸化物の還元が、気相の水の存在下で行われる。この構成によると、空気電池が過電圧を低減できる効果を発揮する。 In a first aspect of the present disclosure, a lithium-air battery includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material having oxygen as a positive electrode active material and a catalyst that reduces oxygen. And a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode. At least one of charging and discharging is performed in the presence of vapor phase water. That is, oxygen or oxide reduction is performed in the presence of vapor phase water. According to this configuration, the air battery exhibits an effect of reducing the overvoltage.
 本開示の第二の態様において、リチウム空気電池は、リチウムイオンを吸蔵放出可能な負極材料を有する負極と、酸素を正極活物質とし、かつ、酸素を還元する触媒を備える正極材料を有する正極と、該負極及び該正極の間に介在する固体電解質を含む固体電解質層とを有する。放電による反応生成物が、アモルファス相を含有する。つまり、放電による反応生成物が、アモルファス相を含有することで、上記の第1の空気電池と同様な効果を発揮する。 In a second aspect of the present disclosure, a lithium-air battery includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material having oxygen as a positive electrode active material and a catalyst that reduces oxygen. And a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode. The reaction product by discharge contains an amorphous phase. That is, the reaction product resulting from the discharge contains the amorphous phase, thereby exhibiting the same effect as the first air battery.
 本開示の第三の態様において、リチウム空気電池は、リチウムイオンを吸蔵放出可能な負極材料を有する負極と、酸素を正極活物質とし、かつ、酸素を還元する触媒を備える正極材料を有する正極と、該負極及び該正極の間に介在する固体電解質を含む固体電解質層とを有する。放電による反応生成物が、水素原子を含有する。つまり、放電による反応生成物が、水素原子を含有することで、上記の第1~第2の空気電池と同様な効果を発揮する。なお、反応生成物中の水素原子とは、原子状態の水素を示す。原子状態の水素は、プロトン状態(イオン状)の水素を含む。 In a third aspect of the present disclosure, a lithium-air battery includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material having oxygen as a positive electrode active material and a catalyst that reduces oxygen. And a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode. The reaction product from the discharge contains hydrogen atoms. In other words, the reaction product resulting from the discharge contains hydrogen atoms, thereby exhibiting the same effect as the first and second air batteries. In addition, the hydrogen atom in a reaction product shows hydrogen of an atomic state. Atomic state hydrogen includes proton state (ionic) hydrogen.
 本開示の第四の態様において、リチウム空気電池装置は、リチウムイオンを吸蔵放出可能な負極材料を有する負極と、酸素を正極活物質とし、かつ、酸素を還元する触媒を備える正極材料を有する正極と、該負極及び該正極の間に介在する固体電解質を含む固体電解質層と、を有するリチウム空気電池セルと、該リチウム空気電池セルの正極に、気相の水を供給する水供給部とを有する。本リチウム空気電池装置は、上記した本発明の第1~第3の空気電池と同様な効果を得ることができる効果を発揮する。 In a fourth aspect of the present disclosure, a lithium-air battery device includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material including oxygen as a positive electrode active material and a catalyst for reducing oxygen. A lithium-air battery cell having a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode, and a water supply unit that supplies gas-phase water to the positive electrode of the lithium-air battery cell. Have. The present lithium-air battery device exhibits an effect capable of obtaining the same effects as those of the first to third air batteries of the present invention described above.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1の空気電池システムの構成を示す図であり、 図2は、実施形態1の空気電池セルの構成を模式的に示す構成図であり、 図3は、試験例の空気電池セルの構成を示す断面図であり、 図4は、試験例の空気電池システムにおける放充電電圧の変化を示す図であり、 図5は、比較試験例の空気電池システムにおける放充電電圧の変化を示す図であり、 図6は、試験例の空気電池システムにおける放充電電圧の変化を示す図であり、 図7は、比較試験例の空気電池システムにおける放充電電圧の変化を示す図であり、 図8は、試験例の空気電池セルの放電後の固体電解質層のSEM写真であり、 図9は、試験例の空気電池セルの放電後の固体電解質層のラマン分光分析結果を示すグラフであり、 図10は、試験例の空気電池セルの放電後の固体電解質層のXRDであり、 図11は、試験例の空気電池セルの放電後の固体電解質層のSIMS分析結果であり、 図12は、実施形態2の空気電池システムの構成を模式的に示す構成図であり、 図13は、実施形態3の空気電池システムの構成を模式的に示す構成図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram illustrating a configuration of an air battery system according to Embodiment 1. FIG. 2 is a configuration diagram schematically showing the configuration of the air battery cell of Embodiment 1. FIG. 3 is a cross-sectional view showing a configuration of an air battery cell of a test example, FIG. 4 is a diagram showing a change in discharge voltage in the air battery system of the test example, FIG. 5 is a diagram showing a change in discharge / charge voltage in the air battery system of the comparative test example. FIG. 6 is a diagram showing a change in the discharge / charge voltage in the air battery system of the test example, FIG. 7 is a diagram showing a change in the discharge / charge voltage in the air battery system of the comparative test example. FIG. 8 is a SEM photograph of the solid electrolyte layer after discharge of the air battery cell of the test example. FIG. 9 is a graph showing a Raman spectroscopic analysis result of the solid electrolyte layer after the discharge of the air battery cell of the test example, FIG. 10 is an XRD of the solid electrolyte layer after the discharge of the air battery cell of the test example, FIG. 11 shows SIMS analysis results of the solid electrolyte layer after discharge of the air battery cell of the test example. FIG. 12 is a configuration diagram schematically showing the configuration of the air battery system of Embodiment 2. FIG. 13 is a configuration diagram schematically illustrating the configuration of the air battery system according to the third embodiment.
 以下、実施の形態として本開示のリチウム空気電池及びリチウム空気電池装置を具体的に説明する。 Hereinafter, the lithium-air battery and the lithium-air battery device of the present disclosure will be specifically described as embodiments.
 [実施形態1]
 本形態のリチウム空気電池システム1は、図1に示したように、リチウム空気電池セル2と、加湿装置6と、を有する。空気電池システム1は、本開示の空気電池装置に相当する。空気電池セル2は、本開示の第1~第3の空気電池にも相当する。
[Embodiment 1]
As shown in FIG. 1, the lithium-air battery system 1 of this embodiment includes a lithium-air battery cell 2 and a humidifier 6. The air battery system 1 corresponds to the air battery device of the present disclosure. The air battery cell 2 also corresponds to the first to third air batteries of the present disclosure.
 (空気電池セル2)
 本形態の空気電池セル2は、図2に示したように、正極3、負極4、固体電解質層5、を充放電可能な要素として有する。ここで、空気電池において、正極3は、空気極とも称する。
(Air battery cell 2)
As shown in FIG. 2, the air battery cell 2 of the present embodiment includes the positive electrode 3, the negative electrode 4, and the solid electrolyte layer 5 as chargeable / dischargeable elements. Here, in the air battery, the positive electrode 3 is also referred to as an air electrode.
 正極3は、酸素を活物質とし、かつ、酸素を還元する触媒を備える正極材料を有する。正極3は、活物質である酸素(又は酸素を含むガス)を電池反応を進行するための空気導入装置を備える。 The positive electrode 3 has a positive electrode material including oxygen as an active material and a catalyst that reduces oxygen. The positive electrode 3 includes an air introduction device for advancing a battery reaction with oxygen (or a gas containing oxygen) as an active material.
 負極4は、リチウムイオンを吸蔵放出可能な負極材料を有する。 The negative electrode 4 has a negative electrode material capable of occluding and releasing lithium ions.
 固体電解質層5は、負極4及び正極3の間に介在する固体電解質を含む層である。固体電解質層5は、リチウムイオンが正極3と負極4との間を移動する伝達経路として機能する。 The solid electrolyte layer 5 is a layer containing a solid electrolyte interposed between the negative electrode 4 and the positive electrode 3. The solid electrolyte layer 5 functions as a transmission path through which lithium ions move between the positive electrode 3 and the negative electrode 4.
 本形態の空気電池セル2は、図2に示したように、正極3、負極4、固体電解質層5が積層した積層体を形成することができる。なお、空気電池セル2は、積層体を形成していなくともよい。 As shown in FIG. 2, the air battery cell 2 of the present embodiment can form a laminated body in which the positive electrode 3, the negative electrode 4, and the solid electrolyte layer 5 are laminated. In addition, the air battery cell 2 does not need to form the laminated body.
 本形態の空気電池セル2は、その外形の形状が、正極3に酸素を含むガスを接触させることができる形状であれば特に限定されない。正極3にガスを接触させることができる形状(構成)としては、ガス取り込み口を有する形状を例示できる。外形としては、例えば円筒型、角型、ボタン型、コイン型、又は扁平型等、所望の形状をとることができる。 The air battery cell 2 of the present embodiment is not particularly limited as long as the shape of the outer shape thereof is a shape that allows the gas containing oxygen to contact the positive electrode 3. Examples of the shape (configuration) that allows gas to contact the positive electrode 3 include a shape having a gas intake port. As the outer shape, a desired shape such as a cylindrical shape, a square shape, a button shape, a coin shape, or a flat shape can be taken.
 本形態の空気電池セル2は、一次電池であっても二次電池であっても、いずれの形態でも良い。好ましくは、充放電可能な二次電池である。 The air battery cell 2 of this embodiment may be either a primary battery or a secondary battery. Preferably, it is a chargeable / dischargeable secondary battery.
 (固体電解質層5)
 固体電解質層5は、正極3及び負極4の間に介在し、リチウムイオンを伝導可能な固体電解質からなる。特に、固体電解質は、電子の伝導性がなく、リチウムイオンの伝導性が高い材料を用いることが好ましい。また、固体電解質は、大気雰囲気で高温焼成できる無機材料(無機固体電解質)を用いることが好ましい。
(Solid electrolyte layer 5)
The solid electrolyte layer 5 is interposed between the positive electrode 3 and the negative electrode 4 and is made of a solid electrolyte capable of conducting lithium ions. In particular, the solid electrolyte is preferably made of a material that has no electron conductivity and high lithium ion conductivity. The solid electrolyte is preferably an inorganic material (inorganic solid electrolyte) that can be fired at a high temperature in an air atmosphere.
 固体電解質層5は、単層だけでなく、後述の準固体電解質層50を有するように複数層であってもよい。 The solid electrolyte layer 5 may be not only a single layer but also a plurality of layers so as to have a quasi-solid electrolyte layer 50 described later.
 無機固体電解質は、結晶、ガラス、両者の混合物ないし複合物のいずれでもよい。また、無機固体電解質は、水蒸気に接することで著しい性能の低下を起こさないものであればよく、より好ましくは、大気安定性に優れるとともに、高温焼成に適した酸化物系の無機固体電解質である。 The inorganic solid electrolyte may be a crystal, glass, a mixture or a composite of both. The inorganic solid electrolyte may be any oxide-based inorganic solid electrolyte that is excellent in atmospheric stability and suitable for high-temperature firing, as long as it does not cause a significant decrease in performance due to contact with water vapor. .
 このような酸化物系無機固体電解質として、ペロブスカイト型、NASICON型、LISICON型、チオ-LISICON型、γ-LiPO型、ガーネット型、及びLIPON型からなる群から選ばれる結晶構造を持つ少なくとも1以上の無機固体電解質材料を含むことが好ましい。 Such an oxide-based inorganic solid electrolyte has at least a crystal structure selected from the group consisting of a perovskite type, NASICON type, LISICON type, thio-LISICON type, γ-Li 3 PO 4 type, garnet type, and LIPON type. It is preferable to include one or more inorganic solid electrolyte materials.
 ペロブスカイト型酸化物としては、例えば、LiLa1-xTiO等で表される酸化物(Li-La-Ti-O系ペロブスカイト型酸化物)を挙げることができる。 Examples of the perovskite oxide include oxides represented by Li x La 1-x TiO 3 (Li—La—Ti—O-based perovskite oxide).
 NASICON型酸化物としては、例えば、Li(XはB、Al、Ga、In、C、Si、Ge、Sn、Sb及びSeよりなる群から選択される少なくとも1種である。YはTi、Zr、Ge、In、Ga、Sn及びAlよりなる群から選択される少なくとも1種である。また、0.5<a<5.0、0≦b<2.98、0.5≦c<3.0、0.02<d≦3.0、2.0<b+d<4.0、3.0<e≦12.0の関係を満たす。)で表される酸化物を挙げることができる。特に、上記式において、X=Al、Y=Tiである酸化物(Li-Al-Ti-P-O系NASICON型酸化物)、及び、X=Al、Y=Ge若しくはX=Ge、Y=Alである酸化物(Li-Al-Ge-Ti-O系NASICON型酸化物)が好ましい。そして、Li-Al-Ti-P-O系NASICON型酸化物であるLi1.3Al0.3Ti1.7(PO(LATP)がより好ましい。 As the NASICON type oxide, for example, Li a Xb Y cP d O e (X is at least one selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Sb and Se). Y is at least one selected from the group consisting of Ti, Zr, Ge, In, Ga, Sn and Al, and 0.5 <a <5.0, 0 ≦ b <2. 98, 0.5 ≦ c <3.0, 0.02 <d ≦ 3.0, 2.0 <b + d <4.0, and 3.0 <e ≦ 12.0. Oxides. In particular, in the above formula, an oxide where X = Al and Y = Ti (Li—Al—Ti—PO-based NASICON type oxide), and X = Al, Y = Ge or X = Ge, Y = An oxide that is Al (Li—Al—Ge—Ti—O-based NASICON-type oxide) is preferable. Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP), which is a Li—Al—Ti—P—O-based NASICON type oxide, is more preferable.
 LISICON型酸化物、チオ-LISICON型酸化物、又はγ-LiPO型酸化物としては、例えば、LiXO-LiYO(XはSi、Ge、及びTiから選ばれる少なくとも1種である。YはP、As及びVから選ばれる少なくとも1種である。)、LiXO-LiAO(XはSi、Ge、及びTiから選ばれる少なくとも1種である。AはMo及びSから選ばれる少なくとも1種である。)、LiXO-LiZO(XはSi、Ge、及びTiから選ばれる少なくとも1種である。ZはAl、Ga及びCrから選ばれる少なくとも1種である。)、並びに、LiXO-LiBXO(XはSi、Ge、及びTiから選ばれる少なくとも1種である。BはCa及びZnから選ばれる少なくとも1種である。)、LiDO-LiYO(DはB、YはP、As及びVから選ばれる少なくとも1種である。)等が挙げられる。特に、Li3.25Ge0.250.75、LiSiO-LiPO、LiBO-LiPO等が好ましい。 As the LISICON type oxide, thio-LISICON type oxide, or γ-Li 3 PO 4 type oxide, for example, Li 4 XO 4 -Li 3 YO 4 (X is at least one selected from Si, Ge, and Ti) Y is at least one selected from P, As and V), Li 4 XO 4 -Li 2 AO 4 (X is at least one selected from Si, Ge and Ti. A Is at least one selected from Mo and S), Li 4 XO 4 —Li 2 ZO 2 (X is at least one selected from Si, Ge, and Ti. Z is from Al, Ga, and Cr) And at least one selected from Li 4 XO 4 -Li 2 BXO 4 (X is at least one selected from Si, Ge, and Ti. B is selected from Ca and Zn). Li 3 DO 3 -Li 3 YO 4 (D is B, Y is at least one selected from P, As and V). In particular, Li 3.25 Ge 0.25 P 0.75 S 4 , Li 4 SiO 4 —Li 3 PO 4 , Li 3 BO 3 —Li 3 PO 4 and the like are preferable.
 ガーネット型酸化物としては、例えば、Li3+x2-v12で表される酸化物を挙げることができる。ここで、A、G、M及びBは金属カチオンである。Aは、Ca、Sr、Ba及びMg等のアルカリ土類金属カチオン、又は、Zn等の遷移金属カチオンであることが好ましい。また、Gは、La、Y、Pr、Nd、Sm、Lu、Eu等の遷移金属カチオンであることが好ましい。また、Mとしては、Zr、Nb、Ta、Bi、Te、Sb等の遷移金属カチオンを挙げることができ、中でもZrが好ましい。また、Bは、例えばInであることが好ましい。0≦x≦5を満たすことが好ましく、4≦x≦5を満たすことがより好ましい。0≦y≦3を満たすことが好ましく、0≦y≦2を満たすことがより好ましい。0≦z≦3を満たすことが好ましく、1≦z≦3を満たすことがより好ましい。0≦v≦2を満たすことが好ましく、0≦v≦1を満たすことがより好ましい。なお、Oは部分的に、又は、完全に二価アニオン及び/又は三価のアニオン、例えばN3-と交換されていてもよい。ガーネット型酸化物としては、LiLaZr12(LLZ)等のLi-La-Zr-O系酸化物が好ましい。 An example of the garnet-type oxide is an oxide represented by Li 3 + x A y G z M 2 -v B v O 12 . Here, A, G, M and B are metal cations. A is preferably an alkaline earth metal cation such as Ca, Sr, Ba and Mg, or a transition metal cation such as Zn. G is preferably a transition metal cation such as La, Y, Pr, Nd, Sm, Lu, or Eu. Examples of M include transition metal cations such as Zr, Nb, Ta, Bi, Te, and Sb. Among these, Zr is preferable. B is preferably In, for example. It is preferable to satisfy 0 ≦ x ≦ 5, and it is more preferable to satisfy 4 ≦ x ≦ 5. It is preferable to satisfy 0 ≦ y ≦ 3, and it is more preferable to satisfy 0 ≦ y ≦ 2. It is preferable to satisfy 0 ≦ z ≦ 3, and it is more preferable to satisfy 1 ≦ z ≦ 3. It is preferable to satisfy 0 ≦ v ≦ 2, and it is more preferable to satisfy 0 ≦ v ≦ 1. O may be partially or completely exchanged with a divalent anion and / or a trivalent anion, for example, N 3− . As the garnet-type oxide, Li—La—Zr—O-based oxides such as Li 7 La 3 Zr 2 O 12 (LLZ) are preferable.
 LiPON型酸化物としては、例えばLi2.88PO3.730.14、Li3.0PO2.01.2等を挙げることができる。 Examples of the LiPON type oxide include Li 2.88 PO 3.73 N 0.14 and Li 3.0 PO 2.0 N 1.2 .
 固体電解質層5は、更に準固体からなる電解質層(準固体電解質層50と称する)を有していてもよい。準固体電解質層50とは、ゲルの形状変化可能な電解質層(弾性変形可能な電解質層)を示し、非水電解質よりなる層を例示できる。準固体電解質層50を形成する非水電解質は、例えば、ポリエチレン、ポリプロピレン等の多孔膜、樹脂不織布、ガラス繊維不織布等の不織布等の絶縁性多孔質体に含浸させた状態で、固体電解質層5と負極4との間に配置してもよい。 The solid electrolyte layer 5 may further include an electrolyte layer made of a quasi-solid (referred to as a quasi-solid electrolyte layer 50). The semi-solid electrolyte layer 50 is an electrolyte layer (an elastically deformable electrolyte layer) that can change the shape of the gel, and can be exemplified by a layer made of a non-aqueous electrolyte. The nonaqueous electrolyte forming the quasi-solid electrolyte layer 50 is, for example, impregnated in an insulating porous body such as a porous film such as polyethylene or polypropylene, a nonwoven fabric such as a resin nonwoven fabric or a glass fiber nonwoven fabric, and the solid electrolyte layer 5 And the negative electrode 4.
 なお、非水電解質は、例えば、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)等のポリマーを添加し、ゲル化して用いることもできる。非水電解質のイオン伝導性の観点から、非水電解質はゲル化せずに用いることが好ましい。 The nonaqueous electrolyte can be used by adding a polymer such as polyethylene oxide (PEO), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), etc. and gelling. From the viewpoint of ion conductivity of the nonaqueous electrolyte, the nonaqueous electrolyte is preferably used without being gelled.
 (正極3)
 正極3は、触媒31、固体電解質30、導電材、を含む正極材料と、正極集電体(図示せず)と、から構成される。正極材料は、固体電解質30を母材とし、内部に気体(酸素を含むガス)を導入可能な孔を備えている。固体電解質30の表面(孔の内面)には、触媒31が配される。
(Positive electrode 3)
The positive electrode 3 includes a positive electrode material including a catalyst 31, a solid electrolyte 30, and a conductive material, and a positive electrode current collector (not shown). The positive electrode material has a solid electrolyte 30 as a base material and has pores into which a gas (a gas containing oxygen) can be introduced. A catalyst 31 is disposed on the surface of the solid electrolyte 30 (inner surface of the hole).
 固体電解質30は、上記した固体電解質層5に用いることができる固体電解質から選択することができる。固体電解質30は、上記した固体電解質層5に選択される固体電解質と同じ無機固体電解質を用いること好ましい。固体電解質30が上記した固体電解質層5を構成する固体電解質と同じ電解質よりなることで、固体電解質層5と正極材料(正極3)とが同一の固体電解質で結合可能となり、製造が容易で、界面抵抗が低い空気電池を得ることができる。 The solid electrolyte 30 can be selected from solid electrolytes that can be used for the solid electrolyte layer 5 described above. As the solid electrolyte 30, it is preferable to use the same inorganic solid electrolyte as the solid electrolyte selected for the solid electrolyte layer 5 described above. Since the solid electrolyte 30 is made of the same electrolyte as the solid electrolyte constituting the solid electrolyte layer 5 described above, the solid electrolyte layer 5 and the positive electrode material (the positive electrode 3) can be combined with the same solid electrolyte, and manufacturing is easy. An air battery having low interface resistance can be obtained.
 触媒31は、正極3において正極活物質である酸素の反応(還元反応)を促進する。触媒には、銀、パラジウム、金、プラチナ、アルミニウム、ニッケル、チタン、白金、イリジウム酸化物、ルテニウム酸化物、マンガン酸化物、コバルト酸化物、酸化ニッケル、酸化鉄、酸化銅、及び金属フタロシアニン類からなる群から選択される1種又は2種以上を例示できる。 Catalyst 31 promotes a reaction (reduction reaction) of oxygen, which is a positive electrode active material, in positive electrode 3. Catalysts include silver, palladium, gold, platinum, aluminum, nickel, titanium, platinum, iridium oxide, ruthenium oxide, manganese oxide, cobalt oxide, nickel oxide, iron oxide, copper oxide, and metal phthalocyanines. 1 type or 2 types or more selected from the group which consists of can be illustrated.
 正極活物質の酸素は、空気電池セル2(正極3)の周囲に存在する酸素(雰囲気に含まれる酸素)が用いられる。 As the oxygen of the positive electrode active material, oxygen (oxygen contained in the atmosphere) existing around the air battery cell 2 (positive electrode 3) is used.
 導電材は、必要に応じて用いられる。導電材は、導電性を有するものであれば特に限定されない。導電材は、空気電池セル2内の雰囲気下で必要な安定性を有することが必要である。また、正極3、または負極4と一体化する際に用いる導電材としては焼成に適した材料であることが好ましい。例えば、耐酸化性の高い金属又は合金を用いることが好ましい。耐酸化性の高い金属又は合金とは、金属であれば、銀、パラジウム、金、プラチナ、アルミニウム、ニッケル、チタン等であることが好ましい。合金であれば、銀、パラジウム、金、白金、銅、アルミニウム、ニッケルから選ばれる2種以上の金属からなる合金であることが好ましい。また、これらの酸化物であってもよい。 Conductive material is used as needed. The conductive material is not particularly limited as long as it has conductivity. The conductive material needs to have necessary stability under the atmosphere in the air battery cell 2. In addition, the conductive material used when integrating with the positive electrode 3 or the negative electrode 4 is preferably a material suitable for firing. For example, it is preferable to use a metal or alloy having high oxidation resistance. If the metal or alloy having high oxidation resistance is a metal, it is preferably silver, palladium, gold, platinum, aluminum, nickel, titanium or the like. If it is an alloy, it is preferable that it is an alloy which consists of 2 or more types of metals chosen from silver, palladium, gold | metal | money, platinum, copper, aluminum, and nickel. These oxides may also be used.
 正極集電体は、電気伝導性をもつものであればよい。正極3は、正極材料に酸素を含有するガスを導入するための装置が必要であることから、正極集電体は、酸素透過に形成されていることが好ましい。例えば、正極集電体は、ステンレス鋼、ニッケル、アルミニウム、銅等の金属から構成される多孔質材料、網、パンチングメタルであることが好ましい。また、多孔質材料等を用いる場合にはその孔に、導電材、触媒などを充填した形態を採用することが好ましい。 The positive electrode current collector may have any electrical conductivity. Since the positive electrode 3 requires a device for introducing a gas containing oxygen into the positive electrode material, the positive electrode current collector is preferably formed to transmit oxygen. For example, the positive electrode current collector is preferably a porous material composed of a metal such as stainless steel, nickel, aluminum, or copper, a net, or a punching metal. Moreover, when using a porous material etc., it is preferable to employ | adopt the form with which the hole was filled with the electrically conductive material, the catalyst, etc.
 (負極4)
 負極4は、リチウムイオンを吸蔵放出可能な負極活物質を含む負極材料40と、負極集電体(図示せず)と、を有する。負極材料40は、負極活物質以外に、固体電解質、導電材、を含むことができる。負極集電体としては、例えば、銅、ニッケル等を網、パンチドメタル、フォームメタル、板状、箔状などの形態とすることができる。負極集電体としては電池筐体を兼用することもできる。
(Negative electrode 4)
The negative electrode 4 includes a negative electrode material 40 including a negative electrode active material capable of occluding and releasing lithium ions, and a negative electrode current collector (not shown). The negative electrode material 40 can contain a solid electrolyte and a conductive material in addition to the negative electrode active material. As a negative electrode collector, copper, nickel, etc. can be made into forms, such as a net | network, a punched metal, foam metal, plate shape, foil shape, for example. A battery casing can also be used as the negative electrode current collector.
 負極活物質は、金属リチウム、リチウム合金、リチウムの吸蔵と放出が可能な金属材料、リチウムの吸蔵と放出が可能な合金材料(金属のみからなる合金はもちろん、金属と半金属との合金をも含む概念として用いる。その組織には固溶体、共晶(共融混合物)、金属間化合物あるいはそれらのうち2種以上が共存するものがある。)、及びリチウムの吸蔵と放出が可能な化合物からなる群から選択される1種又は2種以上の材料である。ただし、後述するように、正極部、固体電解質部、及び負極部を一体焼成により形成するため、負極活物質は焼成に適した材料が好ましい。また、Li金属を用いる際には、Li金属溶解析出部を形成した負極中に挿入、または電気化学的に析出させることにより導入することができる。 The negative electrode active material includes metal lithium, lithium alloy, metal material capable of inserting and extracting lithium, alloy material capable of inserting and extracting lithium (not only alloys consisting of metals but also alloys of metals and metalloids). The structure consists of a solid solution, a eutectic (eutectic mixture), an intermetallic compound or a compound in which two or more of them coexist), and a compound capable of inserting and extracting lithium. One or more materials selected from the group. However, as described later, since the positive electrode part, the solid electrolyte part, and the negative electrode part are formed by integral firing, the negative electrode active material is preferably a material suitable for firing. Moreover, when using Li metal, it can introduce | transduce by inserting in the negative electrode in which the Li metal melt | dissolution precipitation part was formed, or making it deposit electrochemically.
 金属材料及び合金材料を構成できる金属元素及び半金属元素としては、スズ(Sn)、鉛(Pb)、アルミニウム(Al)、インジウム(In)、ケイ素(Si)、亜鉛(Zn)、アンチモン(Sb)、ビスマス(Bi)、カドミウム(Cd)、マグネシウム(Mg)、ホウ素(B)、ガリウム(Ga)、ゲルマニウム(Ge)、ヒ素(As)、銀(Ag)、ジルコニウム(Zr)、イットリウム(Y)、ハフニウム(Hf)が例示できる。これらの合金材料あるいは化合物としては、化学式MaMbLi、あるいは化学式MaMcMdで表されるものが挙げられる。これら化学式において、Maはリチウムと合金を形成可能な金属元素及び半金属元素のうちの少なくとも1種を表し、Mbはリチウム及びMa以外の金属元素及び半金属元素のうちの少なくとも1種を表し、Mcは非金属元素の少なくとも1種を表し、MdはMa以外の金属元素及び半金属元素のうちの少なくとも1種を表す。また、f>0、g≧0、h≧0、s>0、t>0、u≧0である。 Metal elements and metalloid elements that can constitute metal materials and alloy materials include tin (Sn), lead (Pb), aluminum (Al), indium (In), silicon (Si), zinc (Zn), and antimony (Sb). ), Bismuth (Bi), cadmium (Cd), magnesium (Mg), boron (B), gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), zirconium (Zr), yttrium (Y ) And hafnium (Hf). Examples of these alloy materials or compounds include those represented by the chemical formula Ma f Mb g Li h or the chemical formula Ma s Mc t Md u . In these chemical formulas, Ma represents at least one of a metal element and a metalloid element capable of forming an alloy with lithium, Mb represents at least one of a metal element and a metalloid element other than lithium and Ma, Mc represents at least one of non-metallic elements, and Md represents at least one of metallic elements and metalloid elements other than Ma. Further, f> 0, g ≧ 0, h ≧ 0, s> 0, t> 0, u ≧ 0.
 なかでも負極材料は、短周期型周期表における4B族の金属元素あるいは半金属元素の単体、合金又は化合物が好ましく、特に好ましいのはケイ素(Si)あるいはスズ(Sn)、又はこれらの合金あるいは化合物である。これらは結晶質のものでもアモルファスのものでもよい。 Among them, the negative electrode material is preferably a simple substance, alloy or compound of a group 4B metal element or metalloid element in the short-period type periodic table, particularly preferably silicon (Si) or tin (Sn), or an alloy or compound thereof. It is. These may be crystalline or amorphous.
 リチウムを吸蔵・放出可能な材料としては、更に、酸化物、硫化物、あるいはLiNなどのリチウム窒化物などの他の金属化合物が挙げられる。酸化物としては、MnO、V、V13、NiS、MoSなどが挙げられる。その他、比較的電位が卑でリチウムを吸蔵及び放出することが可能な酸化物として、例えば酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズなどが挙げられる。硫化物としてはNiS、MoSなどが挙げられる。 Examples of the material capable of inserting and extracting lithium include oxides, sulfides, and other metal compounds such as lithium nitrides such as LiN 3 . Examples of the oxide include MnO 2 , V 2 O 5 , V 6 O 13 , NiS, and MoS. In addition, examples of the oxide that has a relatively low potential and can occlude and release lithium include iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, and tin oxide. Examples of the sulfide include NiS and MoS.
 負極材料に含まれる固体電解質は、必要に応じて用いられる。負極材料に含まれる固体電解質は、固体電解質層5で用いられる固体電解質と同じものを用いる。 The solid electrolyte contained in the negative electrode material is used as necessary. As the solid electrolyte contained in the negative electrode material, the same solid electrolyte as that used in the solid electrolyte layer 5 is used.
 負極材料に含まれる固体電解質は、上記した固体電解質層5に用いることができる固体電解質から選択することができる。負極材料に含まれる固体電解質は、上記した固体電解質層5に選択される固体電解質と同じ無機固体電解質を用いること好ましい。負極材料に含まれる固体電解質が上記した固体電解質層5を構成する固体電解質と同じ電解質よりなることで、固体電解質層5と負極材料40(負極4)とが同一の固体電解質で結合可能となり、製造が容易で、界面抵抗が低い空気電池が可能となる。 The solid electrolyte contained in the negative electrode material can be selected from the solid electrolytes that can be used for the solid electrolyte layer 5 described above. As the solid electrolyte contained in the negative electrode material, it is preferable to use the same inorganic solid electrolyte as the solid electrolyte selected for the solid electrolyte layer 5 described above. Since the solid electrolyte contained in the negative electrode material is made of the same electrolyte as the solid electrolyte constituting the solid electrolyte layer 5 described above, the solid electrolyte layer 5 and the negative electrode material 40 (negative electrode 4) can be combined with the same solid electrolyte, An air battery that is easy to manufacture and has low interface resistance is possible.
 正極3(正極材料)及び負極4(負極材料40)が固体電解質を含むときに、両者に含まれる固体電解質は、上記した固体電解質層5に選択される固体電解質と同じ無機固体電解質であることが最も好ましい。 When the positive electrode 3 (positive electrode material) and the negative electrode 4 (negative electrode material 40) contain a solid electrolyte, the solid electrolyte contained in both is the same inorganic solid electrolyte as the solid electrolyte selected for the solid electrolyte layer 5 described above. Is most preferred.
 導電材は、必要に応じて用いられる。導電材は、正極3の欄において例示したものを用いることができる。 Conductive material is used as needed. As the conductive material, those exemplified in the column of the positive electrode 3 can be used.
 負極集電体は、電気伝導性をもつものであればよい。例えば、銅、ステンレス、ニッケル等の材質を挙げることができる。負極集電体の形状としては、例えば箔状、板状及びメッシュ(グリッド)状等の形状を挙げることができる。 The negative electrode current collector may have any electrical conductivity. For example, materials such as copper, stainless steel, and nickel can be cited. Examples of the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh (grid) shape.
 (加湿装置6)
 加湿装置6は、空気電池セル2の正極3に導入される酸素を含むガスを加湿する。加湿装置6は、気相の水を正極3に供給する。加湿装置6は、正極3に導入される酸素の還元の進行を、気相の水の存在下で行わせる。加湿装置6は、水供給部及び加湿装置に相当する。
(Humidifying device 6)
The humidifier 6 humidifies the gas containing oxygen introduced into the positive electrode 3 of the air battery cell 2. The humidifier 6 supplies vapor phase water to the positive electrode 3. The humidifier 6 causes the reduction of oxygen introduced into the positive electrode 3 to proceed in the presence of vapor phase water. The humidifier 6 corresponds to a water supply unit and a humidifier.
 加湿装置6は、空気電池セル2(正極3)の周囲に気相の水を供給できる構成であれば、特に限定されない。本形態では、図1に示されたように、ケース7内で空気電池セル2の周囲に配された貯水槽60よりなる。 The humidifier 6 is not particularly limited as long as it can supply vapor phase water around the air battery cell 2 (positive electrode 3). In this embodiment, as shown in FIG. 1, the storage tank 60 is arranged around the air battery cell 2 in the case 7.
 加湿装置6による正極3に導入される酸素を含むガスの加湿は、ガスの湿度については限定されるものではない。ガスの湿度については、0%より高ければ(0%でなければ)よい。 The humidification of the gas containing oxygen introduced into the positive electrode 3 by the humidifier 6 is not limited with respect to the humidity of the gas. The gas humidity should be higher than 0% (not 0%).
 なお、正極3の温度は、ガスに含まれる水(水分)の露点以上であることが好ましい。 In addition, it is preferable that the temperature of the positive electrode 3 is equal to or higher than the dew point of water (moisture) contained in the gas.
 (その他の構成)
 本形態の空気電池システム1は、図1に示したように、空気電池セル2及び加湿装置6、60を収容するケース7と、ケース7内の雰囲気を調節する雰囲気調節装置8と、を有する。雰囲気調節装置8は、酸素を含むガス雰囲気に調節する。また、空気電池システムの構成に必要な部材(例えば、空気電池セル2の電極3、4に接続される導線や電極端子)も、図示されないが、有している。
(Other configurations)
As shown in FIG. 1, the air battery system 1 of the present embodiment includes a case 7 that houses the air battery cell 2 and the humidifying devices 6 and 60, and an atmosphere adjusting device 8 that adjusts the atmosphere in the case 7. . The atmosphere adjusting device 8 adjusts to a gas atmosphere containing oxygen. Moreover, although it is not shown in figure, it has the member (For example, the conducting wire connected to the electrodes 3 and 4 of the air battery cell 2, and an electrode terminal) required for the structure of an air battery system.
 ケース7は、その内部に空気電池セル2を収容可能な密閉空間を形成する。ケース7は、その構成が限定されるものではない。チャンバを用いることができる。 The case 7 forms a sealed space in which the air battery cell 2 can be accommodated. The configuration of the case 7 is not limited. A chamber can be used.
 雰囲気調節装置8は、ケース7内の雰囲気を調節する。雰囲気の調節は、ケース7内に供給されるガスと、ケース7から排出されるガスと、を調節することで行われる。すなわち、雰囲気調節装置8は、ケース7内にガスを供給するガス供給装置80と、ケース7内のガスを排出するガス排出装置81と、から構成される。 The atmosphere adjusting device 8 adjusts the atmosphere in the case 7. The atmosphere is adjusted by adjusting the gas supplied into the case 7 and the gas discharged from the case 7. That is, the atmosphere control device 8 includes a gas supply device 80 that supplies gas into the case 7 and a gas discharge device 81 that discharges the gas in the case 7.
 ガス供給装置80は、ケース7内に供給されるガスの種類(組成)及び流入量を制御可能な装置よりなる。例えば、ガスボンベと、ガスボンベとケース7内を連通する管路と、管路内を流れるガスの流量を制御するバルブと、を有する装置を挙げることができる。 The gas supply device 80 is a device capable of controlling the type (composition) of gas supplied into the case 7 and the inflow amount. For example, an apparatus having a gas cylinder, a pipe line that communicates between the gas cylinder and the case 7, and a valve that controls the flow rate of the gas flowing through the pipe line can be given.
 ガス供給装置80が供給するガスは、酸素を含有するガスであれば限定されるものではない。例えば、空気、純酸素ガス等のガスを挙げることができる。 The gas supplied by the gas supply device 80 is not limited as long as it contains oxygen. For example, gas, such as air and pure oxygen gas, can be mentioned.
 ガス排出装置81は、ケース7内から排出されるガスの排出量を制御可能な装置よりなる。例えば、ケース7内と外部を連通する管路と、管路内を流れるガスの流量を制御するバルブと、を有する装置を挙げることができる。 The gas discharge device 81 is a device capable of controlling the discharge amount of the gas discharged from the case 7. For example, a device having a conduit that communicates the inside of the case 7 with the outside and a valve that controls the flow rate of the gas flowing in the conduit can be mentioned.
 雰囲気調節装置8は、ガス供給装置80及びガス排出装置81を制御する制御装置を有していても良い。 The atmosphere control device 8 may have a control device that controls the gas supply device 80 and the gas discharge device 81.
 [試験例]
 実施形態1の空気電池システム1について、試験例を用いてより具体的に説明する。試験例の空気電池セルの構成を図3に示す。
[Test example]
The air battery system 1 of Embodiment 1 is demonstrated more concretely using a test example. The structure of the air battery cell of a test example is shown in FIG.
 試験例における空気電池セル2は、正極3(の固体電解質30)と固体電解質層5とが一体に形成されている。固体電解質層5の正極3を形成しない部分(正極3に背向した部分)に当接して準固体電解質層50を介して負極4が配されている。そして、これらの積層体が、ラミネートフィルムよりなる外装体20に収容されている。 In the air battery cell 2 in the test example, the positive electrode 3 (the solid electrolyte 30) and the solid electrolyte layer 5 are integrally formed. The negative electrode 4 is disposed via a quasi-solid electrolyte layer 50 in contact with a portion of the solid electrolyte layer 5 where the positive electrode 3 is not formed (portion facing away from the positive electrode 3). And these laminated bodies are accommodated in the exterior body 20 which consists of laminate films.
 無機固体電解質であるLATP(オハラ製LICGC;φ19mm(直径)、t=0.15mm(厚さ))上の10mm×10mmの範囲に、Ptを全面スパッタリングし、フォトリソグラフィによりパターニング加工することにより、正極3と固体電解質層5とが一体に作製された。 By sputtering the entire surface of Pt in a range of 10 mm × 10 mm on LATP (LICAGC manufactured by OHARA; φ19 mm (diameter), t = 0.15 mm (thickness)), which is an inorganic solid electrolyte, and patterning by photolithography, The positive electrode 3 and the solid electrolyte layer 5 were produced integrally.
 また、触媒31のパターン形成は、スパッタ時にマスクを用いて行うでもよい。 The pattern formation of the catalyst 31 may be performed using a mask during sputtering.
 Ptよりなる触媒31は、無機固体電解質30上にPt厚50nm、3~100μm間隔のライン&スペース状に設けられた。 The catalyst 31 made of Pt was provided on the inorganic solid electrolyte 30 in a Pt thickness of 50 nm and in lines and spaces at intervals of 3 to 100 μm.
 併せて、触媒31の一部に集電部となるタブ(図示せず)を設けた。タブは、触媒31と同様に固体電解質30上にPtをスパッタリングすることにより作製された。触媒31とタブは、電気的に接続している。 In addition, a tab (not shown) serving as a current collector was provided in a part of the catalyst 31. The tab was produced by sputtering Pt on the solid electrolyte 30 in the same manner as the catalyst 31. The catalyst 31 and the tab are electrically connected.
 負極材料40(負極活物質)は、金属リチウムを用いた。 As the negative electrode material 40 (negative electrode active material), metallic lithium was used.
 外装体20は、2枚のラミネートフィルムから形成された。ラミネートフィルムは、40mm×40mmのサイズである。一方のラミネートフィルムは正極側ラミネートフィルムであり、触媒31であるPtに酸素を導入するためのφ14.5mmの穴を設けた。もう一方のラミネートフィルムは、負極側ラミネートフィルムであり、穴を設けていない。正極側ラミネートフィルムの穴は、外側と内側から封止フィルム(図示せず)によって封止した。また、負極側ラミネートフィルムには負極端子となるニッケルリード線(図示せず)を取付けた。 The exterior body 20 was formed from two laminated films. The laminate film has a size of 40 mm × 40 mm. One laminate film was a positive electrode side laminate film, and a hole having a diameter of 14.5 mm for introducing oxygen into Pt as the catalyst 31 was provided. The other laminate film is a negative electrode-side laminate film and has no holes. The hole of the positive electrode side laminate film was sealed with a sealing film (not shown) from the outside and the inside. Moreover, the nickel lead wire (not shown) used as a negative electrode terminal was attached to the negative electrode side laminated film.
 不活性乾燥雰囲気のグローブボックス内において、PtをスパッタリングしたLATPとポリエチレンオキサイド(PEO)と金属リチウムをこの順に積層した積層体を形成した。次に、これらの積層体を正極側及び負極側ラミネートフィルムで挟み込んだ。積層体を正極側及び負極側ラミネートフィルムで挟み込む際、触媒層が正極側ラミネートフィルムの穴に現れ、金属リチウムが負極側ラミネートフィルムのニッケルリード線と接するように配置される。最後に、真空封止機を用いてラミネートフィルム内を真空にして封止して空気電池セル2を作成する。そしてセル2を60℃の恒温槽で一晩静置した。 In a glove box in an inert dry atmosphere, a laminate was formed by laminating LATP sputtered with Pt, polyethylene oxide (PEO), and metallic lithium in this order. Next, these laminates were sandwiched between positive and negative side laminate films. When the laminate is sandwiched between the positive electrode side and negative electrode side laminate films, the catalyst layer appears in the holes of the positive electrode side laminate film, and the metal lithium is disposed in contact with the nickel lead wires of the negative electrode side laminate film. Finally, the inside of the laminate film is evacuated and sealed using a vacuum sealing machine to produce the air battery cell 2. And cell 2 was left still overnight in a 60 ° C thermostat.
 その後、正極側ラミネートフィルムの穴から触媒層がすべて露出するように封止フィルムを取り除いた。また、触媒層の一部であるタブとニッケルリード線を重ね合わせ、銀ペーストによって接合することにより正極端子を設けた。 Thereafter, the sealing film was removed so that the catalyst layer was entirely exposed from the hole in the positive laminate film. Moreover, the tab which is a part of a catalyst layer, and the nickel lead wire were piled up, and the positive electrode terminal was provided by joining with a silver paste.
 以上により、試験例の空気電池セル2が得られた。 Thus, the air battery cell 2 of the test example was obtained.
 製造された空気電池セル2は、ケース7内に収容された。また、ケース7内に貯水槽60を入れガス供給装置80とガス排出装置81を用いて、ケース7内を純酸素雰囲気とし、ガス供給装置80とガス排出装置81を閉じ、密閉した。なお、ケース7内の純酸素雰囲気は、貯水槽60から蒸発した水を含む。その後ケース7を60℃に保持した。このときケース7内の湿度は100%であった。 The manufactured air battery cell 2 was accommodated in the case 7. In addition, the water tank 60 was placed in the case 7 and the gas supply device 80 and the gas discharge device 81 were used to create a pure oxygen atmosphere in the case 7, and the gas supply device 80 and the gas discharge device 81 were closed and sealed. The pure oxygen atmosphere in the case 7 includes water evaporated from the water storage tank 60. Thereafter, the case 7 was kept at 60 ° C. At this time, the humidity in the case 7 was 100%.
 以上により、試験例の空気電池システム1が得られた。 Thus, the air battery system 1 of the test example was obtained.
 また、比較試験例として、貯水槽60の水に替えて、モレキュラーシーブ(吸湿剤)を配した空気電池システムも製造した。 In addition, as a comparative test example, an air battery system in which a molecular sieve (a hygroscopic agent) was arranged instead of the water in the water storage tank 60 was also manufactured.
 (評価)
 試験例及び比較試験例の各空気電池システム1の評価として、各空気電池システム1に放充電試験を行った。
(Evaluation)
As an evaluation of each air battery system 1 in the test example and the comparative test example, a discharge charge test was performed on each air battery system 1.
 (放充電試験)
 試験例及び比較試験例の各空気電池システム1に対して、2.0~4.0Vの電圧範囲、1μA/cmの電流密度で定電流定電圧方充電(放電後、充電)を行った。この放充電時の、試験例の空気電池セル2の電圧の変化を図4に示した。また、比較試験例の空気電池セルの電圧の変化を図5に示した。
(Discharge test)
Each air battery system 1 of the test example and the comparative test example was subjected to constant current and constant voltage charge (charge after discharge) at a voltage range of 2.0 to 4.0 V and a current density of 1 μA / cm 2 . . The change in the voltage of the air battery cell 2 of the test example at the time of this discharge is shown in FIG. Moreover, the change of the voltage of the air battery cell of the comparative test example is shown in FIG.
 図4に示したように、試験例の空気電池システム1では、1.0μAhの容量の放充電が可能であることが確認できる。対して、図5に示したように、比較試験例では、放電後の充電を行うと、電池容量の途中(図5では、約0.6μAh)で電圧が大きく上昇していることがわかる(過電圧の発生)。すなわち、放電後の充電が、約0.4μAhとなり、充電容量が減少することがわかる。 As shown in FIG. 4, it can be confirmed that the air battery system 1 of the test example can be charged and discharged with a capacity of 1.0 μAh. On the other hand, as shown in FIG. 5, in the comparative test example, when charging after discharging is performed, it can be seen that the voltage greatly increases in the middle of the battery capacity (about 0.6 μAh in FIG. 5) ( Overvoltage occurrence). That is, it can be seen that the charge after discharge is about 0.4 μAh, and the charge capacity is reduced.
 (放充電試験)
 1,5,10,20,50,100(μA/cm)の電流密度で放電を行ったときの各空気電池セルの電池電圧を測定した。試験例の空気電池セル2の電圧の変化を図6に示した。また、比較試験例の空気電池セルの電圧の変化を図7に示した。
(Discharge test)
The battery voltage of each air battery cell was measured when discharging was performed at a current density of 1, 5, 10, 20, 50, 100 (μA / cm 2 ). The change in voltage of the air battery cell 2 of the test example is shown in FIG. Moreover, the change of the voltage of the air battery cell of the comparative test example is shown in FIG.
 図6に示したように、試験例の空気電池システム1では、2.9V以上での放電が可能であることが確認できる。対して、図7に示したように、比較試験例では、最大の電圧が2.6Vとなっている。すなわち、試験例の空気電池セル2は、比較試験例のそれと比較して、過電圧が大幅に低減していることが確認できる。 As shown in FIG. 6, it can be confirmed that the air battery system 1 of the test example can discharge at 2.9 V or more. On the other hand, as shown in FIG. 7, in the comparative test example, the maximum voltage is 2.6V. That is, in the air battery cell 2 of the test example, it can be confirmed that the overvoltage is significantly reduced as compared with that of the comparative test example.
 (サイクル試験)
 上記した放充電試験の放充電を6サイクル繰り返したときの試験例の空気電池セル2の電圧の変化を観察した。本試験は、上記した図4の繰り返しに相当する。
(Cycle test)
The change in the voltage of the air battery cell 2 in the test example was observed when the above-described discharge / discharge test was repeated 6 cycles. This test corresponds to the repetition of FIG. 4 described above.
 試験例の空気電池システム1の空気電池セル2では、ほぼ同じ電圧変化を示すことが確認できる。すなわち、放充電を繰り返しても、空気電池セル2の放充電特性の低下が生じていない。対して、比較試験例では図5に示したように、放電後の充電を行っても空気電池セル2の電圧(電池容量)が放電前と同じ状態に戻らないことから、ほぼ同じ電圧変化を示すことができない。すなわち、放充電を繰り返すと、空気電池セル2の放充電特性の低下が生じる。 It can be confirmed that the air battery cell 2 of the air battery system 1 of the test example shows almost the same voltage change. That is, even if the charging / discharging is repeated, the discharge characteristics of the air battery cell 2 are not deteriorated. On the other hand, in the comparative test example, as shown in FIG. 5, the voltage (battery capacity) of the air battery cell 2 does not return to the same state as before the discharge even after charging after discharging. Can't show. That is, when the charge / discharge is repeated, the charge / discharge characteristics of the air battery cell 2 are degraded.
 以上に説明したように、試験例の空気電池システム1は、空気電池セル2を、酸素を含有するガスが加湿された雰囲気中に有する。すなわち、空気電池セル2の酸素の還元が、気相の水の存在下で進行する。この構成によると、空気電池セル2が、充放電に過電圧を低減できる効果を発揮する。 As described above, the air battery system 1 of the test example has the air battery cell 2 in an atmosphere in which a gas containing oxygen is humidified. That is, the reduction of oxygen in the air battery cell 2 proceeds in the presence of gas-phase water. According to this structure, the air battery cell 2 exhibits the effect which can reduce an overvoltage in charging / discharging.
 更に、試験例の空気電池セル2は、正極3が、固体電解質層5と同じ(一体)の固体電解質よりなる。つまり、正極3と固体電解質層5との境界における界面抵抗に起因するイオン伝導率の低下が抑制されている。すなわち、空気電池セル2は、大電流の充放電を可能とすることができる。この結果、試験例の空気電池システム1は、大電流の充放電を可能となる効果も発揮できる。 Furthermore, in the air battery cell 2 of the test example, the positive electrode 3 is made of the same (integral) solid electrolyte as the solid electrolyte layer 5. That is, a decrease in ionic conductivity due to the interface resistance at the boundary between the positive electrode 3 and the solid electrolyte layer 5 is suppressed. That is, the air battery cell 2 can enable charging / discharging of a large current. As a result, the air battery system 1 of the test example can also exhibit the effect of enabling charging / discharging of a large current.
 その上、正極3、負極4、固体電解質層5のそれぞれが固体電解質よりなることから、これらが互いに支持し合う支持体として機能する全固体型の空気電池セル2を形成している。全固体型の空気電池セル2は、性能の低下が抑えられる効果を発揮する。さらに、電解質等において有機溶媒を使用しないため、燃焼が生じず、安全性に優れる効果も発揮できる。 In addition, since each of the positive electrode 3, the negative electrode 4, and the solid electrolyte layer 5 is made of a solid electrolyte, the all-solid-state air battery cell 2 that functions as a support that supports each other is formed. The all-solid-type air battery cell 2 exhibits an effect of suppressing a decrease in performance. Furthermore, since no organic solvent is used in the electrolyte or the like, combustion does not occur and an effect of excellent safety can be exhibited.
 (反応生成物の観察)
 放充電試験が行われた試験例の空気電池セル2について、固体電解質層5を観察した。固体電解質層5の表面には、正極での反応生成物を観察した。固体電解質層5を観察は、100(μA/cm)の電流密度で2時間の放電を行った後の試験例の空気電池セル2を分解し、取り出して行った。
(Observation of reaction products)
The solid electrolyte layer 5 was observed about the air battery cell 2 of the test example in which the discharge / charge test was performed. Reaction products at the positive electrode were observed on the surface of the solid electrolyte layer 5. The observation of the solid electrolyte layer 5 was performed by disassembling and taking out the air battery cell 2 of the test example after discharging for 2 hours at a current density of 100 (μA / cm 2 ).
 (SEM)
 固体電解質層5の正極3と当接した表面をSEMで観察した。SEMの撮影結果を図8に示す。
(SEM)
The surface of the solid electrolyte layer 5 in contact with the positive electrode 3 was observed with an SEM. The result of SEM imaging is shown in FIG.
 図8に示したように、固体電解質層5の表面に、正極3での反応生成物が存在していることが確認できる。 As shown in FIG. 8, it can be confirmed that the reaction product of the positive electrode 3 is present on the surface of the solid electrolyte layer 5.
 (ラマン分光分析)
 固体電解質層5の表面をラマン分光分析で観察した。ラマン分光分析は、ラマン分光光度計(堀場製作所製、商品名:LabRAM HR-800)を用いて行った。測定結果を図9に示す。
(Raman spectroscopy)
The surface of the solid electrolyte layer 5 was observed by Raman spectroscopic analysis. The Raman spectroscopic analysis was performed using a Raman spectrophotometer (trade name: LabRAM HR-800, manufactured by HORIBA, Ltd.). The measurement results are shown in FIG.
 図9に示したように、固体電解質層5の固体電解質由来のピークは確認できるが、反応生成物そのもののピークは確認できない。このことは、正極3での反応生成物が結晶構造を有していない、すなわち、アモルファス状態であることが確認できる。 As shown in FIG. 9, the peak derived from the solid electrolyte of the solid electrolyte layer 5 can be confirmed, but the peak of the reaction product itself cannot be confirmed. This confirms that the reaction product at the positive electrode 3 does not have a crystal structure, that is, is in an amorphous state.
 その上で、反応生成物そのもののピークが確認できないことから、実質的にアモルファス状のみからなることが確認できる。すなわち、ほぼ全て(90%以上、90vol%以上)の反応生成物がアモルファス状となっていることが確認できる。 Furthermore, since the peak of the reaction product itself cannot be confirmed, it can be confirmed that the reaction product itself is essentially composed of an amorphous state. That is, it can be confirmed that almost all reaction products (90% or more, 90 vol% or more) are amorphous.
 なお、アモルファスではなく結晶性のLiOHが存在する場合には、2500(cm-1)付近にピークが確認できる。同様に、結晶性のLiでは790(cm-1)付近に、結晶性のLiOでは515(cm-1)付近に、それぞれピークが確認できる。これらのリチウム化合物は、化学的に反応化合物として推測される化合物である。 Note that when crystalline LiOH is present instead of amorphous, a peak can be confirmed in the vicinity of 2500 (cm −1 ). Similarly, in the vicinity of crystalline Li 2 O 2 in 790 (cm -1), in the vicinity of crystalline Li 2 O in 515 (cm -1), peak respectively can be confirmed. These lithium compounds are compounds that are chemically estimated as reaction compounds.
 (XRD)
 固体電解質層5の表面をXRDで観察した。XRDは、X線回折装置(リガク製、商品名:RINT-2500)を用いて行った。測定結果を図10に示す。
(XRD)
The surface of the solid electrolyte layer 5 was observed by XRD. XRD was performed using an X-ray diffractometer (manufactured by Rigaku, trade name: RINT-2500). The measurement results are shown in FIG.
 図10に示したように、固体電解質層5の固体電解質由来のピークは確認できるが、反応生成物そのもののピークは確認できない。このことからも、正極3での反応生成物が結晶構造を有していない、すなわち、アモルファス状態であることが確認できる。 As shown in FIG. 10, the peak derived from the solid electrolyte of the solid electrolyte layer 5 can be confirmed, but the peak of the reaction product itself cannot be confirmed. This also confirms that the reaction product at the positive electrode 3 does not have a crystal structure, that is, is in an amorphous state.
 上記の各分析によると、試験例の空気電池システム1の空気電池セル2では、正極3で放電により生成する反応生成物がアモルファス相を含有する。この構成によることで、上記の大電流の充放電を可能とすることができる効果が発揮できる。 According to each analysis described above, in the air battery cell 2 of the air battery system 1 of the test example, the reaction product generated by the discharge at the positive electrode 3 contains an amorphous phase. By this structure, the effect which can enable charging / discharging of said large electric current can be exhibited.
 なお、試験例の空気電池システム1の空気電池セル2では、正極3の反応生成物が、アモルファス状ではなく、結晶構造を有することが確認される。 In the air battery cell 2 of the air battery system 1 of the test example, it is confirmed that the reaction product of the positive electrode 3 has a crystal structure, not an amorphous state.
 (SIMS)
 固体電解質層5の表面をSIMSで面分析した。SIMSは、二次イオン質量分析装置(CAMECA製、商品名:NANO-SIMS)を用いて、D(重水素),O,Li,Tiについて、面分析を行った。測定結果を図11に示す。
(SIMS)
The surface of the solid electrolyte layer 5 was subjected to surface analysis by SIMS. In SIMS, a surface analysis was performed on D (deuterium), O, Li, and Ti using a secondary ion mass spectrometer (trade name: NANO-SIMS, manufactured by CAMECA). The measurement results are shown in FIG.
 Dについての面分析の結果は、図11左上に示され、破線で示した領域中にDが存在することが確認できる。このDは、水素の同位体であり、実質的に原子状の水素の存在を示す。つまり、固体電解質層5には、水素原子が含有することが確認できる。 The result of the surface analysis for D is shown in the upper left of FIG. 11, and it can be confirmed that D exists in the area indicated by the broken line. This D is an isotope of hydrogen and indicates the presence of substantially atomic hydrogen. That is, it can be confirmed that the solid electrolyte layer 5 contains hydrogen atoms.
 Oについての面分析の結果は、図11右上に示され、破線で示した領域中にOが存在することが確認できる。つまり、固体電解質層5には、酸素が含有することが確認できる。 The result of the surface analysis for O is shown in the upper right of FIG. 11, and it can be confirmed that O exists in the area indicated by the broken line. That is, it can be confirmed that the solid electrolyte layer 5 contains oxygen.
 Liについての面分析の結果は、図11左下に示され、破線で示した領域中にLiが存在することが確認できる。つまり、固体電解質層5には、リチウムが含有することが確認できる。 The result of the surface analysis for Li is shown in the lower left of FIG. 11, and it can be confirmed that Li is present in the region indicated by the broken line. That is, it can be confirmed that the solid electrolyte layer 5 contains lithium.
 Tiについての面分析の結果は、図11右下に示され、破線で示した領域中にTiが存在することが確認できる。つまり、固体電解質層5には、Tiが含有することが確認できる。 The results of the surface analysis for Ti are shown in the lower right of FIG. 11, and it can be confirmed that Ti is present in the area indicated by the broken line. That is, it can be confirmed that the solid electrolyte layer 5 contains Ti.
 図11に示した各図は、固体電解質層5の表面の同じ部位を面分析したものであり、各図中の破線で示した領域は重なる。つまり、破線で示した領域中に、反応生成物が存在することが確認できる。そして、図11に示したように、固体電解質層5には、水素原子が含有することが確認できる。 Each figure shown in FIG. 11 is an area analysis of the same part of the surface of the solid electrolyte layer 5, and the areas indicated by broken lines in each figure overlap. That is, it can be confirmed that the reaction product exists in the region indicated by the broken line. Then, as shown in FIG. 11, it can be confirmed that the solid electrolyte layer 5 contains hydrogen atoms.
 すなわち、試験例の空気電池システム1の空気電池セル2では、正極3で放電により生成する反応生成物が水素原子を含有する。この構成によることで、上記の大電流の充放電を可能とすることができる効果が発揮できる。 That is, in the air battery cell 2 of the air battery system 1 of the test example, the reaction product generated by the discharge at the positive electrode 3 contains hydrogen atoms. By this structure, the effect which can enable charging / discharging of said large electric current can be exhibited.
 なお、試験例の空気電池システム1の空気電池セル2では、正極3の反応生成物が、アモルファス状ではなく結晶構造を有することから、水素原子を含まない。 In addition, in the air battery cell 2 of the air battery system 1 of the test example, the reaction product of the positive electrode 3 does not contain hydrogen atoms because it has a crystal structure rather than an amorphous state.
 [実施形態2]
 本形態は、加湿装置6と雰囲気調節装置8との構成が異なる以外は、実施形態1と同様な空気電池システム1である。
[Embodiment 2]
The present embodiment is an air battery system 1 similar to that of the first embodiment except that the configurations of the humidifying device 6 and the atmosphere adjusting device 8 are different.
 空気電池システム1は、図12に示したように、加湿装置6と雰囲気調節装置8とが一体に形成されている。 In the air battery system 1, as shown in FIG. 12, a humidifier 6 and an atmosphere controller 8 are integrally formed.
 具体的には、雰囲気調節装置8のガス供給装置80のガスが流れる経路(管路)中に、水を貯めておく貯水部82をもうけ、ガスを貯水部82に貯水した水にバブリングして通過させる構成となっている。本形態では、ケース7内に供給されるガスが、加湿された状態で供給される。 Specifically, a water storage part 82 for storing water is provided in a gas flow path (pipe) of the gas supply device 80 of the atmosphere control device 8, and the gas is bubbled into the water stored in the water storage part 82. It is configured to pass through. In this embodiment, the gas supplied into the case 7 is supplied in a humidified state.
 本形態は、ケース7内に供給されるガスが加湿された状態で供給されること以外は実施形態1と同様の構成であり、同様の効果を発揮する。 This embodiment has the same configuration as that of the first embodiment except that the gas supplied into the case 7 is supplied in a humidified state, and exhibits the same effect.
 本形態では、ガス供給装置80から供給されるガスが、水溶性の不純物を含有する場合に、当該不純物も除去できる。水溶性の不純物は、ガス供給装置80から供給されるガスが大気である場合に、大気に含まれる二酸化炭素等の成分を挙げることができる。 In this embodiment, when the gas supplied from the gas supply device 80 contains water-soluble impurities, the impurities can also be removed. Examples of the water-soluble impurities include components such as carbon dioxide contained in the atmosphere when the gas supplied from the gas supply device 80 is the atmosphere.
 [実施形態3]
 本形態は、加湿装置6と雰囲気調節装置8との構成が異なる以外は、実施形態1と同様な空気電池システム1である。
[Embodiment 3]
The present embodiment is an air battery system 1 similar to that of the first embodiment except that the configurations of the humidifying device 6 and the atmosphere adjusting device 8 are different.
 電池システム1は、図13に示したように、ケース7内に加湿装置6を収納する。また、雰囲気調節装置8を備えていない。 Battery system 1 houses humidifier 6 in case 7 as shown in FIG. Further, the atmosphere adjusting device 8 is not provided.
 加湿装置6は、原料貯留部61と、加湿ガス供給部62と、を有する。 The humidifier 6 includes a raw material reservoir 61 and a humidified gas supply unit 62.
 原料貯留部61は、酸素と水を含む化合物を貯留する。原料貯留部61に貯留する酸素と水を含む化合物は、限定されるものではない。本形態では、過酸化水素(液相の過酸化水素)を用いる。なお、この化合物は、過酸化水素以外の有機又は無機化合物であっても良い。 The raw material storage unit 61 stores a compound containing oxygen and water. The compound containing oxygen and water stored in the raw material storage unit 61 is not limited. In this embodiment, hydrogen peroxide (liquid phase hydrogen peroxide) is used. This compound may be an organic or inorganic compound other than hydrogen peroxide.
 加湿ガス供給部62は、原料貯留部61に貯留する化合物を分解し、生成した酸素及び水を気相状態でケース7内に供給する。本形態の加湿ガス供給部62は、過酸化水素に触媒を添加して分解する。そして、生成した酸素と、気相の水をケース7内に供給する。 The humidified gas supply unit 62 decomposes the compound stored in the raw material storage unit 61 and supplies the generated oxygen and water into the case 7 in a gas phase state. The humidified gas supply unit 62 of this embodiment is decomposed by adding a catalyst to hydrogen peroxide. Then, the generated oxygen and gas-phase water are supplied into the case 7.
 本形態の加湿ガス供給部62では、原料貯留部61に貯留する化合物を分解して酸素と水とそ生成する反応を生じさせるが、この逆反応を生じさせることが可能であることが好ましい。充電時に加湿ガス供給部62が逆反応を生じさせることが可能となり、この閉じた系で空気電池システム1を可動できる。 In the humidified gas supply unit 62 of this embodiment, the compound stored in the raw material storage unit 61 is decomposed to generate a reaction that generates oxygen and water, but it is preferable that this reverse reaction can be generated. The humidified gas supply unit 62 can cause a reverse reaction during charging, and the air battery system 1 can be moved in this closed system.
 本形態は、ケース7内の雰囲気を直接加湿すること以外は実施形態1と同様の構成であり、同様の効果を発揮する。 This embodiment has the same configuration as that of the first embodiment except that the atmosphere in the case 7 is directly humidified, and exhibits the same effect.
 本形態では、ガス供給装置80を備えておらず、電池システム1を閉じた系で、独立して形成できる効果も発揮する。 In this embodiment, the gas supply device 80 is not provided, and an effect that can be independently formed in a system in which the battery system 1 is closed is also exhibited.
 [変形形態1]
 上記した各形態において空気電池セル2は、単セルの構成であったが、この構成に限定されるものではない。酸素の還元が水の存在下で進行する構成であれば、多数のセルが積層した積層型の空気電池であってもよい。
[Modification 1]
In each of the above-described embodiments, the air battery cell 2 has a single cell configuration, but is not limited to this configuration. As long as the reduction of oxygen proceeds in the presence of water, a stacked air battery in which a large number of cells are stacked may be used.
 [変形形態2]
 上記した各形態において空気電池セル2は、正極3と固体電解質層5とが一体の構成であったが、この構成に限定されるものではない。負極4も一体に形成したものであってもよい。
[Modification 2]
In each embodiment described above, the air battery cell 2 has a configuration in which the positive electrode 3 and the solid electrolyte layer 5 are integrated, but the configuration is not limited to this configuration. The negative electrode 4 may also be integrally formed.
 本形態の空気電池セル2は、以下の製造方法で製造されたものを具体的に例示できる。 The air battery cell 2 of this embodiment can be specifically exemplified by those manufactured by the following manufacturing method.
 (空気電池セルの製造方法)
 固体電解質層の製造として、まず固体電解質粉末と結着材及び適切な分散媒を準備し、これらを混合して固体電解質スラリーを調製する。次に、この固体電解質スラリーから固体電解質グリーンシートを作製する。
(Air battery cell manufacturing method)
For the production of the solid electrolyte layer, first, a solid electrolyte powder, a binder and an appropriate dispersion medium are prepared, and these are mixed to prepare a solid electrolyte slurry. Next, a solid electrolyte green sheet is produced from the solid electrolyte slurry.
 ここでグリーンシートとは、薄板状に成形された結晶粉末等の未焼成体を示し、具体的には、結晶粉末と導電材と結着材と溶媒等の混合スラリーをドクターブレードやカレンダ法、スピンコートやディップコーティング等の塗布法、インクジェット、及びオフセット等の印刷法、ダイコーター法、スプレー法等で薄板状に成形した成形体を示す。 Here, the green sheet indicates an unsintered body such as a crystal powder formed into a thin plate shape. Specifically, a mixed slurry of crystal powder, a conductive material, a binder, a solvent, and the like is used for a doctor blade, a calendar method, A molded product formed into a thin plate by a coating method such as spin coating or dip coating, a printing method such as ink jet and offset, a die coater method, or a spray method is shown.
 結着材は、固体電解質に含まれる構成要素間をつなぎ止める作用を発揮する。結着材としては特に限定されるものではないが、熱可塑性樹脂や熱硬化性樹脂などが挙げられる。例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体、エチレン-アクリル酸共重合体などが挙げられる。これらの材料は単独で用いてもよいし、複数を混合して用いてもよい。 The binder exhibits an action of connecting the constituent elements contained in the solid electrolyte. Although it does not specifically limit as a binder, A thermoplastic resin, a thermosetting resin, etc. are mentioned. For example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin) , Polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrif Examples include ethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, and ethylene-acrylic acid copolymer. . These materials may be used alone or in combination.
 固体電解質層5は、その一部に負極材料を導入する空孔が設けられることが好ましい。つまり、固体電解質グリーンシートは、後の一体焼成後に固体電解質層となる部分(固体電解質部)と負極となる部分(負極部)とに分けられる。負極部は、後に正極グリーンシートを積層する固体電解質部の一端とは反対側の他端に設けられる。 The solid electrolyte layer 5 is preferably provided with a hole for introducing a negative electrode material in a part thereof. That is, the solid electrolyte green sheet is divided into a portion (solid electrolyte portion) that becomes a solid electrolyte layer after subsequent integral firing and a portion (negative electrode portion) that becomes a negative electrode. The negative electrode part is provided at the other end opposite to one end of the solid electrolyte part on which the positive electrode green sheet is laminated later.
 また、負極部は固体電解質層グリーンシートとは別に成形し、のちに一体化してもよい。 Also, the negative electrode part may be formed separately from the solid electrolyte layer green sheet and later integrated.
 固体電解質グリーンシートの負極部には、造孔材を含めることが好ましい。より詳しくは後述するが、正極グリーンシート、負極グリーンシートが一体焼成された後、負極部は、造孔材の作用により空孔ができる。この空孔に液体化した金属リチウムを所定の圧力で導入する、または固体電解質を通じてLi金属を析出させることで、負極は製造される。 It is preferable to include a pore former in the negative electrode portion of the solid electrolyte green sheet. As will be described in detail later, after the positive electrode green sheet and the negative electrode green sheet are integrally fired, the negative electrode portion is vacated by the action of the pore former. The negative electrode is produced by introducing liquefied metallic lithium into the pores at a predetermined pressure or by depositing Li metal through a solid electrolyte.
 造孔材は、固体電解質グリーンシートの焼成体の負極部に空孔を形成する。造孔材は、負極活物質を導入する空孔を形成する。造孔材は、焼成により気化して空孔が形成可能である材料が望まれる。例えば、造孔材は、テオブロミン、グラファイト、小麦粉、澱粉、フェノール樹脂、ポリメタクリル酸メチル、ポリエチレン、ポリエチレンテレフタレート、又は発泡樹脂(アクリロニトリル系プラスチックバルーン等)等からなり、粉末状ないし繊維状の物質が挙げられる。 The pore former forms pores in the negative electrode part of the fired body of the solid electrolyte green sheet. The pore former forms holes for introducing the negative electrode active material. The pore former is desired to be a material that can be vaporized by firing to form pores. For example, the pore former is made of theobromine, graphite, wheat flour, starch, phenol resin, polymethyl methacrylate, polyethylene, polyethylene terephthalate, foamed resin (acrylonitrile plastic balloon, etc.), etc. Can be mentioned.
 造孔材は、導電材と共に用いられることが好ましい。これにより、負極部は、焼成後導電材を備えた空孔を形成することができる。 The pore former is preferably used together with a conductive material. Thereby, the negative electrode part can form the void | hole provided with the electrically conductive material after baking.
 正極の製造として、まず触媒粉末、造孔材粉末、導電材粉末、結着材及び適切な分散媒を準備し、これらを混合して正極スラリーを調製する。次に、この正極スラリーから正極グリーンシートを作製する。 As the manufacture of the positive electrode, first, catalyst powder, pore former powder, conductive material powder, binder and appropriate dispersion medium are prepared, and these are mixed to prepare a positive electrode slurry. Next, a positive electrode green sheet is produced from this positive electrode slurry.
 造孔材粉末は、正極材料に酸素を導入する空孔を設けるためのものである。造孔材は、焼成により気化して空孔が形成可能である材料が好ましい。造孔材は、上述した造孔材と同じ材料を使用することが好ましい。 The pore-forming material powder is for providing holes for introducing oxygen into the positive electrode material. The pore former is preferably a material that can be vaporized by firing to form pores. It is preferable to use the same material as the pore former described above as the pore former.
 これら作製した固体電解質グリーンシートと正極グリーンシート、また負極部を別シートとして成形する場合には負極グリーンシートは積層され、積層体を形成する。このとき、正極グリーンシートは、造孔材を含有させた固体電解質グリーンシートの他端(負極部)とは反対側の固体電解質シートの一端に積層される。そして、作製された積層体は一体焼成される。 When the produced solid electrolyte green sheet and positive electrode green sheet, and the negative electrode part are formed as separate sheets, the negative electrode green sheets are laminated to form a laminate. At this time, the positive electrode green sheet is laminated on one end of the solid electrolyte sheet opposite to the other end (negative electrode part) of the solid electrolyte green sheet containing the pore former. And the produced laminated body is integrally baked.
 焼成工程では、雰囲気は特に限定されないが、電極活物質に含まれる遷移金属の価数が変化しない条件で行うことが好ましい。より望ましくは、酸化雰囲気、特に大気雰囲気である。焼成では、正極-固体電解質間、負極-固体電解質間の界面抵抗を低減できればよく、無機固体電解質を用いる場合の焼成温度は、例えば、600~1100℃である。 In the firing step, the atmosphere is not particularly limited, but it is preferably performed under conditions that do not change the valence of the transition metal contained in the electrode active material. More desirable is an oxidizing atmosphere, particularly an air atmosphere. In firing, it is only necessary to reduce the interface resistance between the positive electrode and the solid electrolyte and between the negative electrode and the solid electrolyte. The firing temperature when using the inorganic solid electrolyte is, for example, 600 to 1100 ° C.
 以上により、固体電解質グリーンシートと正極グリーンシートは結合(焼結)し、一体化する。すなわち、正極3の固体電解質と固体電解質層5は結合し一体化する。 Thus, the solid electrolyte green sheet and the positive electrode green sheet are bonded (sintered) and integrated. That is, the solid electrolyte and the solid electrolyte layer 5 of the positive electrode 3 are combined and integrated.
 グリーンシートの積層体の一体焼成後、焼成体の負極部に対応した部分(他端)は、空孔が形成される。この空孔に液体化した金属リチウムを所定の圧力で導入することで、負極4が形成される。また、充放電によってこの空孔に金属リチウムを電析させることで形成してもよい。 After the green sheet laminate is integrally fired, pores are formed in the portion (the other end) corresponding to the negative electrode portion of the fired body. The negative electrode 4 is formed by introducing liquefied metallic lithium into the pores at a predetermined pressure. Moreover, you may form by making a metal lithium electrodeposit on this hole by charging / discharging.
 以上により、正極3,固体電解質層5,負極4が一体に形成された充放電要素が製造される。 Thus, a charge / discharge element in which the positive electrode 3, the solid electrolyte layer 5, and the negative electrode 4 are integrally formed is manufactured.
 本形態においても、正極3と固体電解質層5とが同じ固体電解質を母材としている。このため、正極3と固体電解質層5との境界における界面抵抗に起因するイオン伝導率の低下は抑制されている。すなわち、上記した各形態と同様の効果を発揮できる。 Also in this embodiment, the positive electrode 3 and the solid electrolyte layer 5 are based on the same solid electrolyte. For this reason, the fall of the ionic conductivity resulting from the interface resistance in the boundary of the positive electrode 3 and the solid electrolyte layer 5 is suppressed. That is, the same effects as those of the above embodiments can be exhibited.
 なお、負極4は、正極3と同様に負極グリーンシートを作製し固体電解質部と一体焼成することで形成されても良い。この場合、固体電解質層には負極部を設けない。この場合の負極グリーンシートは、正極グリーンシートと同様の手法で製造できる。 In addition, the negative electrode 4 may be formed by producing a negative electrode green sheet similarly to the positive electrode 3 and firing it integrally with the solid electrolyte part. In this case, the negative electrode part is not provided in the solid electrolyte layer. The negative electrode green sheet in this case can be manufactured by the same method as the positive electrode green sheet.
 そして、正極グリーンシート、固体電解質グリーンシート、負極グリーンシートをこの順に積層して積層体を形成し、一体焼成する。 Then, a positive electrode green sheet, a solid electrolyte green sheet, and a negative electrode green sheet are laminated in this order to form a laminate, which is integrally fired.
 この構成となると、正極3,固体電解質層5,負極4が同じ固体電解質を母材とする。上記した正極3と固体電解質層5との境界における効果と同様の効果が、固体電解質層5と負極4との境界においても発揮されることとなる。すなわち、試験例の空気電池システム1(及び空気電池セル2)は、大電流の充放電を可能となる効果も発揮できる。 In this configuration, the positive electrode 3, the solid electrolyte layer 5, and the negative electrode 4 have the same solid electrolyte as a base material. An effect similar to the effect at the boundary between the positive electrode 3 and the solid electrolyte layer 5 described above is also exhibited at the boundary between the solid electrolyte layer 5 and the negative electrode 4. That is, the air battery system 1 (and the air battery cell 2) of the test example can also exhibit an effect that enables charging / discharging of a large current.
 本開示は、下記の態様を含む。 This disclosure includes the following aspects.
 本開示は、過電圧を抑制可能な、大電流の充放電が可能となるリチウム空気電池及びリチウム空気電池装置を提供することを目的とする。 This disclosure is intended to provide a lithium-air battery and a lithium-air battery device that can suppress overvoltage and can charge and discharge a large current.
 本開示の第一の態様において、リチウム空気電池は、リチウムイオンを吸蔵放出可能な負極材料を有する負極と、酸素を正極活物質とし、かつ、酸素を還元する触媒を備える正極材料を有する正極と、該負極及び該正極の間に介在する固体電解質を含む固体電解質層とを有する。充電と放電の少なくとも一方が、気相の水の存在下で行われる。すなわち、酸素や酸化物の還元が、気相の水の存在下で行われる。この構成によると、空気電池が過電圧を低減できる効果を発揮する。 In a first aspect of the present disclosure, a lithium-air battery includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material having oxygen as a positive electrode active material and a catalyst that reduces oxygen. And a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode. At least one of charging and discharging is performed in the presence of vapor phase water. That is, oxygen or oxide reduction is performed in the presence of vapor phase water. According to this configuration, the air battery exhibits an effect of reducing the overvoltage.
 本開示の第二の態様において、リチウム空気電池は、リチウムイオンを吸蔵放出可能な負極材料を有する負極と、酸素を正極活物質とし、かつ、酸素を還元する触媒を備える正極材料を有する正極と、該負極及び該正極の間に介在する固体電解質を含む固体電解質層とを有する。放電による反応生成物が、アモルファス相を含有する。つまり、放電による反応生成物が、アモルファス相を含有することで、上記の第1の空気電池と同様な効果を発揮する。 In a second aspect of the present disclosure, a lithium-air battery includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material having oxygen as a positive electrode active material and a catalyst that reduces oxygen. And a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode. The reaction product by discharge contains an amorphous phase. That is, the reaction product resulting from the discharge contains the amorphous phase, thereby exhibiting the same effect as the first air battery.
 本開示の第三の態様において、リチウム空気電池は、リチウムイオンを吸蔵放出可能な負極材料を有する負極と、酸素を正極活物質とし、かつ、酸素を還元する触媒を備える正極材料を有する正極と、該負極及び該正極の間に介在する固体電解質を含む固体電解質層とを有する。放電による反応生成物が、水素原子を含有する。つまり、放電による反応生成物が、水素原子を含有することで、上記の第1~第2の空気電池と同様な効果を発揮する。なお、反応生成物中の水素原子とは、原子状態の水素を示す。原子状態の水素は、プロトン状態(イオン状)の水素を含む。 In a third aspect of the present disclosure, a lithium-air battery includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material having oxygen as a positive electrode active material and a catalyst that reduces oxygen. And a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode. The reaction product from the discharge contains hydrogen atoms. In other words, the reaction product resulting from the discharge contains hydrogen atoms, thereby exhibiting the same effect as the first and second air batteries. In addition, the hydrogen atom in a reaction product shows hydrogen of an atomic state. Atomic state hydrogen includes proton state (ionic) hydrogen.
 本開示の第四の態様において、リチウム空気電池装置は、リチウムイオンを吸蔵放出可能な負極材料を有する負極と、酸素を正極活物質とし、かつ、酸素を還元する触媒を備える正極材料を有する正極と、該負極及び該正極の間に介在する固体電解質を含む固体電解質層と、を有するリチウム空気電池セルと、該リチウム空気電池セルの正極に、気相の水を供給する水供給部とを有する。本リチウム空気電池装置は、上記した本発明の第1~第3の空気電池と同様な効果を得ることができる効果を発揮する。 In a fourth aspect of the present disclosure, a lithium-air battery device includes a negative electrode having a negative electrode material capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode material including oxygen as a positive electrode active material and a catalyst for reducing oxygen. A lithium-air battery cell having a solid electrolyte layer including a solid electrolyte interposed between the negative electrode and the positive electrode, and a water supply unit that supplies gas-phase water to the positive electrode of the lithium-air battery cell. Have. The present lithium-air battery device exhibits an effect capable of obtaining the same effects as those of the first to third air batteries of the present invention described above.
 代案として、前記水供給部は、酸素を含むガスを加湿する加湿装置であってもよい。この場合、加湿装置を有することで、空気電池セルの正極に正極活物質である酸素を気相の水の存在下で供給でき、酸素の還元がこの水の存在下で行うことができる。 As an alternative, the water supply unit may be a humidifier that humidifies a gas containing oxygen. In this case, by providing the humidifier, oxygen as the positive electrode active material can be supplied to the positive electrode of the air battery cell in the presence of gas-phase water, and the reduction of oxygen can be performed in the presence of this water.
 代案として、前記水供給部は、酸素と水を含む化合物を分解するとともに、生成した酸素及び水を気相状態で供給してもよい。この構成によると、空気電池セルの正極に正極活物質である酸素を気相の水の存在下で供給でき、酸素の還元がこの水の存在下で行うことができる。 As an alternative, the water supply unit may decompose the compound containing oxygen and water and supply the generated oxygen and water in a gas phase state. According to this configuration, the positive electrode active material oxygen can be supplied to the positive electrode of the air battery cell in the presence of water in the vapor phase, and the reduction of oxygen can be performed in the presence of this water.
 代案として、前記負極材料と前記正極材料の少なくとも一方は、前記固体電解質を含み、かつ前記固体電解質層と界面を有する状態で結合していてもよい。この構成とすることで、正極(一般に、空気極とも称される)と負極の少なくとも一方が、固体電解質層に結合される。正極、負極、固体電解質層の少なくとも1つを支持体とした電池セルが構築可能となる。 As an alternative, at least one of the negative electrode material and the positive electrode material may include the solid electrolyte and be bonded in a state having an interface with the solid electrolyte layer. With this configuration, at least one of the positive electrode (generally also referred to as an air electrode) and the negative electrode is bonded to the solid electrolyte layer. A battery cell using at least one of the positive electrode, the negative electrode, and the solid electrolyte layer as a support can be constructed.
 代案として、前記リチウム空気電池セルは、前記固体電解質層、前記負極、前記正極のうち少なくとも一つが、残りの少なくとも1つを支持する支持体であってもよい。また、正極、負極、固体電解質層のそれぞれが、互いに支持し合う支持体であってもよい。この構成では、空気電池セルを全固体で構築すること(全固体型の空気電池セルとなる)が可能となる。全固体型の空気電池セルは、それぞれの構成要素が維持できる(例えば、電解質の流動が生じない)ため、性能の低下が抑えられる。また、全固体型の空気電池セルは、電解質等において有機溶媒を使用しないため、燃焼が生じず、安全性に優れる。 Alternatively, in the lithium-air battery cell, at least one of the solid electrolyte layer, the negative electrode, and the positive electrode may be a support that supports at least one remaining. Further, the positive electrode, the negative electrode, and the solid electrolyte layer may be supports that support each other. With this configuration, it is possible to construct the air battery cell with all solids (become an all solid type air battery cell). In the all-solid-type air battery cell, each component can be maintained (for example, the electrolyte does not flow), so that a decrease in performance can be suppressed. In addition, the all-solid-state air battery cell does not use an organic solvent in the electrolyte or the like, and therefore does not burn and is excellent in safety.
 代案として、前記正極と前記負極の少なくとも一方と前記固体電解質層は焼成によって一体に結合した焼成体をなしていてもよい。この構成によると、正極と負極の少なくとも一方と固体電解質層は、焼成により一体化した焼成体をなし、界面における界面抵抗に起因するイオン伝導率の低下を抑制することができる。 As an alternative, at least one of the positive electrode and the negative electrode and the solid electrolyte layer may form a fired body integrally bonded by firing. According to this configuration, at least one of the positive electrode and the negative electrode and the solid electrolyte layer form a fired body integrated by firing, and can suppress a decrease in ion conductivity due to interface resistance at the interface.
 代案として、前記固体電解質は、ペロブスカイト型、NASICON型、LISICON型、チオ-LISICON型、γ-LiPO型、ガーネット型、及びLIPON型からなる群から選ばれる少なくとも1以上の無機固体電解質材料を含んでもよい。この構成となることで、本発明の空気電池装置を構成する正極(空気極)が、有機溶媒を含まなくなり、有機溶媒が揮発することによる性能の低下が抑えられる。 As an alternative, the solid electrolyte is at least one inorganic solid electrolyte material selected from the group consisting of perovskite type, NASICON type, LISICON type, thio-LISON type, γ-Li 3 PO 4 type, garnet type, and LIPON type May be included. By becoming this structure, the positive electrode (air electrode) which comprises the air battery apparatus of this invention does not contain an organic solvent, and the fall of the performance by the organic solvent volatilizing is suppressed.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (11)

  1.  リチウムイオンを吸蔵放出可能な負極材料(40)を有する負極(4)と、
     酸素を正極活物質とし、かつ、酸素を還元する触媒(31)を備える正極材料を有する正極(3)と、
     該負極及び該正極の間に介在する固体電解質を含む固体電解質層(5)と、
    を有するリチウム空気電池(2)であって、
     充電と放電の少なくとも一方が、気相の水の存在下で行われるリチウム空気電池。
    A negative electrode (4) having a negative electrode material (40) capable of occluding and releasing lithium ions;
    A positive electrode (3) having a positive electrode material comprising oxygen as a positive electrode active material and a catalyst (31) for reducing oxygen;
    A solid electrolyte layer (5) including a solid electrolyte interposed between the negative electrode and the positive electrode;
    A lithium-air battery (2) having
    A lithium-air battery in which at least one of charging and discharging is performed in the presence of vapor phase water.
  2.  リチウムイオンを吸蔵放出可能な負極材料(40)を有する負極(4)と、
     酸素を正極活物質とし、かつ、酸素を還元する触媒(31)を備える正極材料を有する正極(3)と、
     該負極及び該正極の間に介在する固体電解質を含む固体電解質層(5)と、
    を有するリチウム空気電池(2)であって、
     放電による反応生成物が、アモルファス相を含有するリチウム空気電池。
    A negative electrode (4) having a negative electrode material (40) capable of occluding and releasing lithium ions;
    A positive electrode (3) having a positive electrode material comprising oxygen as a positive electrode active material and a catalyst (31) for reducing oxygen;
    A solid electrolyte layer (5) including a solid electrolyte interposed between the negative electrode and the positive electrode;
    A lithium-air battery (2) having
    A lithium air battery in which a reaction product by discharge contains an amorphous phase.
  3.  前記反応生成物は、90%以上がアモルファス相である請求項2記載のリチウム空気電池。 The lithium air battery according to claim 2, wherein 90% or more of the reaction product is an amorphous phase.
  4.  リチウムイオンを吸蔵放出可能な負極材料(40)を有する負極(4)と、
     酸素を正極活物質とし、かつ、酸素を還元する触媒(31)を備える正極材料を有する正極(3)と、
     該負極及び該正極の間に介在する固体電解質を含む固体電解質層(5)と、
    を有するリチウム空気電池(2)であって、
     放電による反応生成物が、水素原子を含有するリチウム空気電池。
    A negative electrode (4) having a negative electrode material (40) capable of occluding and releasing lithium ions;
    A positive electrode (3) having a positive electrode material comprising oxygen as a positive electrode active material and a catalyst (31) for reducing oxygen;
    A solid electrolyte layer (5) including a solid electrolyte interposed between the negative electrode and the positive electrode;
    A lithium-air battery (2) having
    A lithium air battery in which a reaction product of discharge contains hydrogen atoms.
  5.  リチウムイオンを吸蔵放出可能な負極材料(40)を有する負極(4)と、酸素を正極活物質とし、かつ、酸素を還元する触媒(31)を備える正極材料を有する正極(3)と、該負極及び該正極の間に介在する固体電解質を含む固体電解質層(5)と、を有するリチウム空気電池セル(2)と、
     該リチウム空気電池セルの正極に、気相の水を供給する水供給部(6,8)と、
    を有するリチウム空気電池装置。
    A negative electrode (4) having a negative electrode material (40) capable of occluding and releasing lithium ions, a positive electrode (3) having a positive electrode material comprising oxygen as a positive electrode active material and a catalyst (31) for reducing oxygen, A lithium-air battery cell (2) having a solid electrolyte layer (5) comprising a negative electrode and a solid electrolyte interposed between the positive electrode,
    A water supply unit (6, 8) for supplying vapor phase water to the positive electrode of the lithium-air battery cell;
    Lithium-air battery device having
  6.  前記水供給部は、酸素を含むガスを加湿する加湿装置である請求項5記載のリチウム空気電池装置。 The lithium-air battery device according to claim 5, wherein the water supply unit is a humidifier that humidifies a gas containing oxygen.
  7.  前記水供給部は、酸素と水を含む化合物を分解するとともに、生成した酸素及び水を気相状態で供給する請求項5記載のリチウム空気電池装置。 The lithium air battery device according to claim 5, wherein the water supply unit decomposes a compound containing oxygen and water and supplies the generated oxygen and water in a gas phase state.
  8.  前記負極材料と前記正極材料の少なくとも一方は、前記固体電解質を含み、かつ前記固体電解質層と界面を有する状態で結合している請求項5~7のいずれか1項に記載のリチウム空気電池装置。 The lithium-air battery device according to any one of claims 5 to 7, wherein at least one of the negative electrode material and the positive electrode material includes the solid electrolyte and is bonded to the solid electrolyte layer in an interface state. .
  9.  前記正極と前記負極の少なくとも一方と前記固体電解質層は焼成によって一体に結合した焼成体をなしている請求項5~8のいずれか1項に記載のリチウム空気電池装置。 The lithium-air battery device according to any one of claims 5 to 8, wherein at least one of the positive electrode and the negative electrode and the solid electrolyte layer form a fired body integrally bonded by firing.
  10.  前記固体電解質は、ペロブスカイト型、NASICON型、LISICON型、チオ-LISICON型、γ-LiPO型、ガーネット型、及びLIPON型からなる群から選ばれる少なくとも1以上の無機固体電解質材料を含む請求項5~9のいずれか1項に記載のリチウム空気電池装置。 The solid electrolyte includes at least one inorganic solid electrolyte material selected from the group consisting of perovskite type, NASICON type, LISICON type, thio-LISON type, γ-Li 3 PO 4 type, garnet type, and LIPON type. Item 10. The lithium air battery device according to any one of Items 5 to 9.
  11.  前記リチウム空気電池セルは、前記固体電解質層、前記負極、前記正極のうち少なくとも一つが、残りの少なくとも1つを支持する支持体である請求項5~10のいずれか1項に記載のリチウム空気電池装置。
     
     
    The lithium-air battery cell according to any one of claims 5 to 10, wherein the lithium-air battery cell is a support that supports at least one of the solid electrolyte layer, the negative electrode, and the positive electrode. Battery device.

PCT/JP2015/005387 2014-10-30 2015-10-27 Lithium-air battery and lithium-air battery device WO2016067592A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/500,674 US20170222287A1 (en) 2014-10-30 2015-10-27 Lithium-air battery and lithium-air battery device
CN201580034228.5A CN107027333A (en) 2014-10-30 2015-10-27 Lithium-air battery and lithium-air battery device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-221188 2014-10-30
JP2014221188 2014-10-30
JP2015192600A JP2016091995A (en) 2014-10-30 2015-09-30 Lithium air battery and lithium air battery device
JP2015-192600 2015-09-30

Publications (1)

Publication Number Publication Date
WO2016067592A1 true WO2016067592A1 (en) 2016-05-06

Family

ID=55856958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005387 WO2016067592A1 (en) 2014-10-30 2015-10-27 Lithium-air battery and lithium-air battery device

Country Status (1)

Country Link
WO (1) WO2016067592A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11217843B2 (en) * 2016-12-07 2022-01-04 Denso Corporation Electrochemical device system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513464A (en) * 2003-10-14 2007-05-24 ポリプラス バッテリー カンパニー Aqueous active metal electrochemical cell and system
JP2009224296A (en) * 2008-03-19 2009-10-01 Ohara Inc Battery
JP2011065816A (en) * 2009-09-16 2011-03-31 Toyota Motor Corp Metal air cell system
JP2012084379A (en) * 2010-10-12 2012-04-26 Toyota Motor Corp Metal-air battery system and method for charging metal-air battery
JP2012204300A (en) * 2011-03-28 2012-10-22 Aisin Seiki Co Ltd Metal air cell system
JP2013025873A (en) * 2011-07-15 2013-02-04 National Institute Of Advanced Industrial & Technology Open-type lithium-air battery using, as air electrode, metal mesh, metal film, or sintered compact of powdered metal and solid electrolyte
JP2013137868A (en) * 2011-12-28 2013-07-11 National Institute Of Advanced Industrial & Technology Liquid using inorganic solid electrolyte and polymer free lithium-air cell
WO2013161516A1 (en) * 2012-04-26 2013-10-31 日本碍子株式会社 Lithium air secondary cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513464A (en) * 2003-10-14 2007-05-24 ポリプラス バッテリー カンパニー Aqueous active metal electrochemical cell and system
JP2009224296A (en) * 2008-03-19 2009-10-01 Ohara Inc Battery
JP2011065816A (en) * 2009-09-16 2011-03-31 Toyota Motor Corp Metal air cell system
JP2012084379A (en) * 2010-10-12 2012-04-26 Toyota Motor Corp Metal-air battery system and method for charging metal-air battery
JP2012204300A (en) * 2011-03-28 2012-10-22 Aisin Seiki Co Ltd Metal air cell system
JP2013025873A (en) * 2011-07-15 2013-02-04 National Institute Of Advanced Industrial & Technology Open-type lithium-air battery using, as air electrode, metal mesh, metal film, or sintered compact of powdered metal and solid electrolyte
JP2013137868A (en) * 2011-12-28 2013-07-11 National Institute Of Advanced Industrial & Technology Liquid using inorganic solid electrolyte and polymer free lithium-air cell
WO2013161516A1 (en) * 2012-04-26 2013-10-31 日本碍子株式会社 Lithium air secondary cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11217843B2 (en) * 2016-12-07 2022-01-04 Denso Corporation Electrochemical device system

Similar Documents

Publication Publication Date Title
JP2016091995A (en) Lithium air battery and lithium air battery device
US9786905B2 (en) Iron, fluorine, sulfur compounds for battery cell cathodes
KR102067764B1 (en) Positive electrode for Lithium battery and lithium metal battery using the same
CN110998923A (en) Method for inhibiting diffusion of metal in solid electrolyte
JP5942549B2 (en) Air battery, method of using air battery, and electronic device
WO2015107423A2 (en) Aqueous electrolyte sodium ion secondary battery, and charge/discharge system including same
JP2007513464A (en) Aqueous active metal electrochemical cell and system
WO2018128742A1 (en) Battery with coated active material
CN108701885B (en) Lithium air battery system
US20140093791A1 (en) Air electrode for metal air battery
JP5849543B2 (en) Electrode body for lithium ion secondary battery, method for producing electrode body for lithium ion secondary battery, and lithium ion secondary battery
WO2017159420A1 (en) Lithium air battery system
US20200403224A1 (en) Lithium molybdate anode material
JP2020077469A (en) Air electrode for air secondary battery and air secondary battery
JP2023517545A (en) Solid electrolyte, electrochemical battery containing the same, and method for producing solid electrolyte
JP2016028380A (en) All-solid air battery
WO2016067592A1 (en) Lithium-air battery and lithium-air battery device
KR20240048540A (en) Improvements to metal-air cells
KR101833974B1 (en) Negative electrode for rechargeable lithium battery, manufacturing method thereof, and rechargeable lithium battery including the same
EP3089244B1 (en) Aluminium-manganese oxide electrochemical cell
CN114175300B (en) Three-dimensional structure for electrochemical generation of battery electrodes
WO2018105280A1 (en) Electrochemical device system
EP3014694A1 (en) Secondary alkali metal/oxygen batteries
JP5783150B2 (en) Metal air battery
JP2013069493A (en) Method for manufacturing laminated air cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15500674

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854393

Country of ref document: EP

Kind code of ref document: A1