WO2016067586A1 - Battery parameter estimation device - Google Patents

Battery parameter estimation device Download PDF

Info

Publication number
WO2016067586A1
WO2016067586A1 PCT/JP2015/005364 JP2015005364W WO2016067586A1 WO 2016067586 A1 WO2016067586 A1 WO 2016067586A1 JP 2015005364 W JP2015005364 W JP 2015005364W WO 2016067586 A1 WO2016067586 A1 WO 2016067586A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
hysteresis
model
estimation device
resistance
Prior art date
Application number
PCT/JP2015/005364
Other languages
French (fr)
Japanese (ja)
Inventor
厚志 馬場
修一 足立
Original Assignee
カルソニックカンセイ株式会社
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社, 学校法人慶應義塾 filed Critical カルソニックカンセイ株式会社
Publication of WO2016067586A1 publication Critical patent/WO2016067586A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery parameter estimation device capable of sequentially estimating parameters of a battery equivalent circuit model using a Kalman filter.
  • This conventional battery parameter estimation device detects the charge / discharge current and terminal voltage of the battery, and uses them as inputs, the parameter and internal state quantity of the battery with a Kalman filter using an equivalent circuit model of the battery including resistance and capacity , Estimate (calculate) the open circuit voltage value.
  • the SOC-OCV characteristics of the battery can be represented in the above-described battery equivalent circuit model.
  • a hysteresis phenomenon may occur in which SOC-OCV characteristics differ between after charging and after discharging. In this case, the SOC-OCV characteristics of the battery can not be accurately represented.
  • the hysteresis phenomenon is caused by the material of the electrode, and particularly when lithium phosphate is used, the influence of the hysteresis phenomenon is significant.
  • a model is proposed in which a hysteresis element representing a voltage drop due to hysteresis is added to the equivalent circuit of the battery in order to handle the hysteresis phenomenon of the battery.
  • a battery internal state / parameter estimation device described in Patent Document 2 and Non-Patent Document 1-2 is known.
  • the hysteresis phenomenon of the battery means that, in the fluctuation of the state accompanying charging and discharging of the battery, the equilibrium state of the battery fluctuates due to the fluctuation history.
  • a battery without hysteresis returns to the original equilibrium state by leaving it for a certain period of time regardless of the battery's charge / discharge history, but with a battery with hysteresis, it remains the original regardless of the battery's charge / discharge history. It may not return to equilibrium.
  • An object of the present invention made in view of such circumstances is to provide a battery parameter estimation device capable of handling hysteresis without increasing the hysteresis element in the equivalent circuit of the battery.
  • a parameter estimation device of a battery concerning the 1st viewpoint is:
  • a battery parameter estimation device for sequentially estimating a parameter including the resistance or the capacitance in an equivalent circuit model of the battery based on at least one of a battery voltage and a battery current.
  • the equivalent circuit model of the battery is formed by the maximum range of voltage drop and the resistance related by the characteristics of input current. I assume.
  • the parameter estimating device of the battery concerning the 2nd viewpoint is: A battery parameter estimation device for a battery, wherein the equivalent circuit model of the battery is formed using the maximum range of the voltage drop in the hysteresis model and the capacitance related by the characteristics of the speed of voltage drop in the hysteresis model.
  • the parameter estimating device of the battery concerning the 3rd viewpoint is: Assuming that the maximum range of the voltage drop is M (t) and the input current is u (t), the resistance R h (t) is It is characterized by.
  • a parameter estimation device of a battery concerning the 4th viewpoint is: Assuming that the maximum range of the voltage drop is M (t) and the speed of the voltage drop is ⁇ (t), the capacitance C h (t) is It is characterized by.
  • the parameter estimating device of the battery concerning the 5th viewpoint is:
  • the resistance R h (t) is expressed by It is characterized by.
  • the parameter estimating device of the battery concerning a 6th viewpoint is:
  • the resistance R h (t) is expressed by It is characterized by.
  • the battery parameter estimation device pertaining to the first aspect, it is possible to handle hysteresis without increasing the hysteresis element in the equivalent circuit of the battery.
  • hysteresis can be handled without increasing the hysteresis element in the equivalent circuit of the battery.
  • hysteresis can be handled without increasing the hysteresis element in the equivalent circuit of the battery.
  • hysteresis can be handled without increasing the hysteresis element in the equivalent circuit of the battery.
  • the battery parameter estimating device since the hysteresis can be accurately handled, it is possible to obtain an accurate estimated value more quickly.
  • the model configuration is simple and the hysteresis phenomenon can be easily handled.
  • FIG. 7 is a diagram showing an n-order Foster RC ladder circuit which approximates a Warburg impedance. It is a figure which shows the n-order Cawell type RC ladder circuit which approximated the Warburg impedance. It is a graph which shows the measurement result of the SOC-OCV characteristic of lithium iron phosphate. It is an enlarged view of the broken-line enclosure part of FIG. 5A.
  • the battery parameter estimation device of the first embodiment is used for a vehicle such as an electric vehicle or a hybrid electric vehicle.
  • a vehicle is equipped with an electric motor for driving the vehicle, a battery, a controller thereof, etc., supply (discharge) of electric power to the electric motor, regeneration of braking energy from the electric motor at the time of braking, ground charging equipment Power recovery (charging) from the battery to
  • charge and discharge current flows into and out of the battery
  • the internal state of the battery changes, and the internal state is monitored while being estimated by the parameter estimation device of the battery, so that the remaining amount of the battery, etc. It has collected the necessary information.
  • the parameter estimation device of the battery 1 includes a voltage sensor (terminal voltage detection unit) 2, a current sensor (charge / discharge current detection unit) 3, an estimation unit 4, and a charge amount calculation unit 5.
  • the charging rate calculating unit 6 and the soundness calculating unit 7 are provided.
  • the estimation unit 4, the charge amount calculation unit 5, the charging rate calculation unit 6, and the soundness calculation unit 7 are configured by, for example, a vehicle-mounted microcomputer.
  • the battery 1 is, for example, a rechargeable battery (secondary battery). Although battery 1 is described as being a lithium ion battery in the present embodiment, other types of batteries may be used.
  • the terminal voltage detection unit 2 is, for example, a voltage sensor, and detects a terminal voltage value v of the battery 1.
  • the terminal voltage detection unit 2 inputs the detected terminal voltage value v to the estimation unit 4.
  • the charge / discharge current detection unit 3 is, for example, a current sensor, and detects a charge / discharge current value i of the battery 1.
  • the charge / discharge current detection unit 3 inputs the detected charge / discharge current value i to the estimation unit 4.
  • the estimation unit 4 includes a battery equivalent circuit model 41 of the battery 1 and a Kalman filter 42.
  • the estimation unit 4 can estimate (calculate) the parameter value of the battery equivalent circuit model 41, the open circuit voltage OCV (Open Circuit Voltage) of the battery 1, and the internal state amount of the battery 1 using the Kalman filter 42. .
  • estimation unit 4 simultaneously estimates and estimates the parameter value and the internal state quantity based on terminal voltage v from terminal voltage detection unit 2 and charge / discharge current i from charge / discharge current detection unit 3.
  • the open circuit voltage OCV is calculated based on the determined parameter value. Details of the estimation / calculation processing performed by the estimation unit 4 will be described later. Further, the estimation unit 4 inputs the calculated open circuit voltage OCV to the charging rate calculation unit 6 and the soundness calculation unit 7.
  • the Foster type RC ladder circuit represented by an approximation of the sum of infinite series, in which a parallel circuit of a resistor and a capacitor is connected, and the resistor connected in series are grounded by a capacitor It consists of a Kawell RC ladder circuit or the like represented by approximation by continuous fraction expansion.
  • the resistor and the capacitor are parameters of the battery equivalent circuit model 41.
  • the Kalman filter 42 designs a model of the target system (in the case of this embodiment, the battery equivalent circuit model 41), inputs the same input signal to this model and the real system, and compares the outputs of that case. If there is an error in them, this error is multiplied by the Kalman gain and fed back to the model to correct the model so as to minimize both errors. By repeating this, the parameters of the model are estimated.
  • the charge amount calculation unit 5 receives the charge / discharge current value i of the battery 1 detected by the charge / discharge current detection unit 3 and sequentially integrates this value to obtain the charge amount in / out of the battery 1.
  • the charge amount calculation unit 5 calculates the charge amount Q that the battery 1 currently has by subtracting the charge amount that has come in and out from the remaining charge amount stored before the successive integration operation.
  • the charge amount Q is output to the soundness level calculation unit 7.
  • the charging rate calculation unit 6 uses relationship data obtained by obtaining these relationships in advance by experiment etc. I remember. Then, based on this characteristic table, the state of charge SOC (State of Charge) at that time is estimated from the open circuit voltage estimation value estimated by the estimation unit 4. The charging rate SOC is used for battery management of the battery 1.
  • the health level calculation unit 7 has a characteristic table that represents the relationship between the charge amount Q and the open circuit voltage OCV for each of the health levels SOH (State of Health) divided into predetermined widths.
  • the details of the characteristic table are disclosed, for example, in Japanese Patent Application Laid-Open No. 2012-57956 filed by the present applicant.
  • the openness voltage OCV estimated by the estimation unit 4 and the charge amount Q calculated by the charge amount calculation unit 5 are input to the soundness calculation unit 7, and these fall within any soundness SOH range of the above characteristic table. Is calculated, and the applicable soundness level SOH is output.
  • the electrode reaction of a battery includes a charge transfer process at the interface between the electrolyte and the active material, and a diffusion process of ions in the electrolyte or the active material.
  • a non-faradaic process battery such as a lithium ion battery, ie, a battery in which the diffusion phenomenon is dominant
  • the influence of the Warburg impedance which is an impedance resulting from the diffusion process becomes dominant.
  • the open circuit voltage OCV is a non-linear function of the charging rate SOC as shown in FIG.
  • the charging rate SOC is expressed by equation (1) using a charge / discharge current value i and a full charge capacity FCC (Full Charge Capacity).
  • the transfer function of the Warburg impedance Z w is expressed by equation (2).
  • s is the Laplace operator
  • the diffusion resistance R d is the low frequency limit ( ⁇ ⁇ 0) of Z w (s).
  • the diffusion time constant ⁇ d means the speed of the diffusion reaction.
  • the diffusion capacitance C d is defined by equation (3) using the diffusion resistance R d and the diffusion time constant ⁇ d .
  • Equation (2) it is difficult to convert the Warburg impedance Z w into the time domain as it is because there is a square root of the Laplace operator s. For this reason, an approximation of the Warburg impedance Z w is considered.
  • the Warburg impedance Z w can be approximated by, for example, a sum of infinite series, or an approximation by continued fraction expansion.
  • the Warburg impedance Z w can be expressed as a sum of infinite series, as shown in equation (4). However, It is. If the above-mentioned approximate expression is expressed in a circuit diagram, it is an n-order Foster type circuit in which n parallel circuits of a resistor and a capacitor are connected in series (see FIG. 4A). As apparent from the equations (5) and (6), according to the n-order Foster-type equivalent circuit model approximating the Warburg impedance Z w , the diffusion capacitance C d and the diffusion resistance R d are used to obtain an equivalent circuit. Other parameters (resistor R n , capacitor C n ) can be calculated.
  • the Warburg impedance Z w can be represented by a continued fraction expansion as shown in equation (7). However, It is. If the above-mentioned approximate expression is expressed in a circuit diagram, it is an n-order Kawell type circuit in which each of n resistors R connected in parallel is connected between n capacitors C connected in series (see FIG. 4B). ). As apparent from the equations (8) and (9), according to the n-th order Kawell-type equivalent circuit model approximating the Warburg impedance Z w , the diffusion capacitance C d and the diffusion resistance R d are used to generate the other circuit. Parameters (resistance R n , capacitor C n ) can be calculated.
  • the estimation unit 4 simultaneously estimates the internal state quantity and the parameter value of the battery using the Kalman filter 42 in the battery equivalent circuit model 41 of either the Foster type or the Cawell type.
  • the internal state quantity of the battery includes the SOC of the battery
  • the parameter value includes at least one of the diffusion capacitance C d or the diffusion resistance R d .
  • an unscented Kalman filter (UKF: Unscented Kalman Filter) is used as the Kalman filter 42, but another filter may be used. UKF uses weighted sample points called sigma points to approximate the probability distribution and calculate each weighted transition.
  • the average value and variance after transition are calculated for each sigma point, and they are added according to the weight. By doing this, it is possible to approximate the probability distribution after the transition closer to the true value and without increasing the amount of calculation too much. Also, since the probability distribution is approximated by sigma points instead of approximating the system, there is no restriction on the nonlinearity of the system.
  • the SOC-OCV characteristics of the battery can be represented in the above-described battery equivalent circuit model.
  • a hysteresis phenomenon may occur in which the SOC-OCV characteristics differ between after charging and after discharging. In this case, the SOC-OCV characteristics of the battery can not be accurately represented.
  • the hysteresis phenomenon is caused by the material of the electrode, and particularly when lithium phosphate is used, the influence of the hysteresis phenomenon is significant.
  • FIG. 5A shows the measurement results of the SOC-OCV characteristics of a lithium iron phosphate battery. According to FIG. 5A, it can be seen that there is a difference in OCV between the characteristics during charging and the characteristics during discharging. Moreover, in FIG. 5B which expanded the broken-line enclosure part of FIG. 5A, even if it is made to discharge at SOC about 30%, it turns out that a hysteresis characteristic is shown.
  • the above-described battery equivalent circuit model can not accurately handle the SOC-OCV characteristics of the battery in which the hysteresis phenomenon occurs.
  • a hysteresis model by Plett which is one of models representing such a hysteresis phenomenon, is represented by an equivalent circuit of FIG.
  • the element V H is an element that represents a hysteresis voltage.
  • This hysteresis model is expressed by the following equation (10).
  • v h (t) is the hysteresis voltage
  • ⁇ (t) is the voltage drop speed of the hysteresis model (corresponding to the slope of the SOC-OCV curve)
  • M (t) is the maximum range of the voltage drop of the hysteresis model
  • u (t) is a parameter representing the input current.
  • the hysteresis of a battery appears as a result of an electrochemical reaction inside the battery, and is closely related to the charge transfer process inside the battery and the diffusion process of ions.
  • the hysteresis model by Plett expresses v h (t) by adding a reaction independent of the charge transfer process and the diffusion process of ions. Therefore, when estimating the battery state based on the equation (10), it is necessary to estimate ⁇ (t) and M (t) representing the hysteresis voltage, in addition to the estimation of the resistance and capacity of the RC parallel circuit. That is, the parameters to be estimated are increased by two ( ⁇ and M) as compared with the estimation of the battery model not considering the hysteresis.
  • equation (10) representing the hysteresis model can be rewritten as the following equation (13). This can be interpreted as being equivalent to the equation representing an RC parallel circuit configured by the variable resistor R h and the variable capacitor C h shown in FIG.
  • the resistance of the model is a variable resistance which is variable according to the magnitude of the current.
  • a variable resistor and a variable capacitance hysteresis model of the first embodiment can be applied to the RC parallel circuit of the charge transfer resistance R ct and the electric double layer capacity C dl models the charge transfer process.
  • the Plett hysteresis model is represented by an equivalent circuit in which a hysteresis element is added to the RC parallel circuit as shown in the left of FIG.
  • the hysteresis model of the present embodiment it is represented by a parallel circuit of variable resistance and variable capacitance as shown in the right of FIG.
  • variable resistor R ct, h (t) and the variable capacitance C dl, h (t) are expressed as the following equations (14) and (15).
  • M ct (t) indicates the maximum range of the hysteresis voltage drop generated by the charge transfer process
  • ⁇ ct (t) is the speed of the hysteresis voltage drop generated by the charge transfer process (corresponding to the slope of the SOC-OCV characteristic)
  • the hysteresis phenomenon can be handled by estimating the same number of parameters (resistance and capacity) as the battery model estimation that does not consider hysteresis.
  • the parameter since it is possible to obtain the parameter by integrating the hysteresis phenomenon into the resistance and capacity of the battery model which does not consider the hysteresis within the time constant matched to the charge transfer process and the diffusion process of ions, accuracy improves. .
  • the model in which the denominator of the equation representing the variable resistance R h is the absolute value
  • variable resistance and the variable capacitance of the hysteresis model of the first embodiment can be applied to the Foster type circuit representing the diffusion process of ions.
  • the Plett hysteresis model is represented by an equivalent circuit in which a hysteresis element is added to the n-order Foster type circuit as shown in FIG.
  • the hysteresis model of this embodiment can be represented by an equivalent circuit in which an n-order Foster circuit as shown in the lower part of FIG. 9 is configured by a variable resistor and a variable capacitor.
  • the circuit parameters of the Foster type circuit FIG.
  • variable resistor R d, h and the variable capacitance C d may be estimated h incorporating a hysteresis phenomenon.
  • variable resistance and variable capacitance of the hysteresis model of the first embodiment can also be applied to a Kawell-type circuit that represents the diffusion process of ions.
  • the circuit parameters may be replaced with the values of the variable resistor and the variable capacitance.
  • the resistance and the capacitance of the equivalent circuit are simply replaced with the variable resistance and the variable capacitance.
  • a hysteresis model can be applied. Thus, hysteresis can be handled without increasing the hysteresis element in the equivalent circuit of the battery.
  • the hysteresis phenomenon can be handled by estimating the same number of parameters (resistance and capacity) as the battery model estimation that does not consider hysteresis.
  • the parameter since it is possible to obtain the parameter by integrating the hysteresis phenomenon into the resistance and capacity of the battery model which does not consider the hysteresis within the time constant matched to the charge transfer process and the diffusion process of ions, accuracy improves. .
  • variable resistor R h of the hysteresis model is represented by a function having the absolute value
  • of the input current u (t)
  • ) is defined as a function of the input current u (t).
  • the function f (x) represents the output for the input x, and the relationship between the input x and the output f (x) is arbitrarily determined.
  • the resistance of the model is a variable resistance which is variable according to the magnitude of the current.
  • f (x) ⁇ x + ⁇
  • ⁇ and ⁇ are constants.
  • hysteresis can be handled without increasing the hysteresis element in the equivalent circuit of the battery, and accurate estimated values can be obtained by selecting coefficients as a model conforming to the hysteresis characteristics.
  • the battery parameter estimation device sequentially estimates a parameter including resistance or capacity in the equivalent circuit model of the battery based on at least one of the battery voltage and the battery current.
  • the resistance R h (t) M (t) / f (
  • the battery parameter estimation device by replacing the resistance and capacitance of the equivalent circuit with a variable resistance and a variable capacitance, it is possible to handle hysteresis without increasing the hysteresis element in the battery equivalent circuit. .
  • the battery parameter estimation device is a battery parameter estimation device that sequentially estimates a parameter including resistance or capacity in an equivalent circuit model of the battery based on at least one of a battery voltage and a battery current.
  • the battery parameter estimation device is a battery parameter estimation device that sequentially estimates a parameter including resistance or capacity in an equivalent circuit model of the battery based on at least one of a battery voltage and a battery current.
  • the model configuration is simple and the hysteresis phenomenon can be easily handled.
  • each component, each function included in each step, etc. can be rearranged so as not to be logically contradictory, and it is possible to combine or divide a plurality of components and steps into one. It is.
  • the Warburg impedance Z w is approximated by the infinite series expansion or the continued fraction expansion, but may be approximated by any method. For example, approximation using an infinite product expansion can be considered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A battery parameter estimation device is provided that is capable of handling hysteresis without increasing the hysteresis elements of an equivalent circuit of a battery. A battery parameter estimation device for successively estimating parameters including the resistance or capacity of an equivalent circuit model (41) of a battery (1) on the basis of at least one from among the battery voltage and the battery current is characterized in that the equivalent circuit model of the battery is formed using the resistance associated with the maximum voltage drop range and input current characteristic in a hysteresis model expressing the hysteresis generated with the characteristic of the battery charge state and open-circuit voltage.

Description

バッテリのパラメータ推定装置Battery parameter estimation device 関連出願へのクロスリファレンスCross-reference to related applications
 本出願は、日本国特許出願2014-222959号(2014年10月31日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application 2014-222959 (filed on October 31, 2014), the entire disclosure of which is incorporated herein by reference.
 本発明は、バッテリの等価回路モデルのパラメータをカルマンフィルタで逐次推定可能なバッテリのパラメータ推定装置に関する。 The present invention relates to a battery parameter estimation device capable of sequentially estimating parameters of a battery equivalent circuit model using a Kalman filter.
 従来のバッテリの内部状態・パラメータ推定装置としては、例えば特許文献1に記載のものが知られている。この従来のバッテリのパラメータ推定装置は、バッテリの充放電電流および端子電圧を検出し、これらを入力として、抵抗と容量を含むバッテリの等価回路モデルを用いてカルマンフィルタでそのパラメータやバッテリの内部状態量、開放電圧値を推定(算出)する。 As a conventional battery internal state / parameter estimation device, for example, the one described in Patent Document 1 is known. This conventional battery parameter estimation device detects the charge / discharge current and terminal voltage of the battery, and uses them as inputs, the parameter and internal state quantity of the battery with a Kalman filter using an equivalent circuit model of the battery including resistance and capacity , Estimate (calculate) the open circuit voltage value.
 上述のバッテリの等価回路モデルにおいて、バッテリのSOC-OCV特性を表すことができる。しかしながら、実際のバッテリでは充電後と放電後とでSOC-OCV特性が異なるヒステリシス現象が発生することがある。この場合にはバッテリのSOC-OCV特性を正確に表すことができない。ヒステリシス現象は電極の材料により発生し、特にリン酸リチウムを用いた場合にはヒステリシス現象の影響が大きく出る。 The SOC-OCV characteristics of the battery can be represented in the above-described battery equivalent circuit model. However, in an actual battery, a hysteresis phenomenon may occur in which SOC-OCV characteristics differ between after charging and after discharging. In this case, the SOC-OCV characteristics of the battery can not be accurately represented. The hysteresis phenomenon is caused by the material of the electrode, and particularly when lithium phosphate is used, the influence of the hysteresis phenomenon is significant.
 ここで、バッテリのヒステリシス現象を取り扱うためにバッテリの等価回路にヒステリシスによる電圧降下を表すヒステリシス素子を付け加えたモデルが提案されている。例えば特許文献2、非特許文献1-2に記載のバッテリの内部状態・パラメータ推定装置が知られている。なおバッテリのヒステリシス現象とは、バッテリの充放電に伴う状態の変動において、その変動履歴によってバッテリの平衡状態が変動することを言う。つまりヒステリシスのないバッテリではバッテリの充放電の履歴にかかわらず、ある程度の時間放置することによって元の平衡状態に戻るが、ヒステリシスのあるバッテリではバッテリの充放電の履歴によりいくら放置しても元の平衡状態に戻らないことがある。 Here, a model is proposed in which a hysteresis element representing a voltage drop due to hysteresis is added to the equivalent circuit of the battery in order to handle the hysteresis phenomenon of the battery. For example, a battery internal state / parameter estimation device described in Patent Document 2 and Non-Patent Document 1-2 is known. Note that the hysteresis phenomenon of the battery means that, in the fluctuation of the state accompanying charging and discharging of the battery, the equilibrium state of the battery fluctuates due to the fluctuation history. In other words, a battery without hysteresis returns to the original equilibrium state by leaving it for a certain period of time regardless of the battery's charge / discharge history, but with a battery with hysteresis, it remains the original regardless of the battery's charge / discharge history. It may not return to equilibrium.
特開2014-74682号公報JP, 2014-74682, A 特許第4511600号公報Patent No. 4511600
 本来、バッテリのヒステリシス現象はバッテリ内部の電気化学反応の結果としてあらわれてくるもので、バッテリ内部の電荷移動過程やイオンの拡散過程と密接な関係がある。しかし、特許文献1、非特許文献1-2では、開放電圧のヒステリシスを扱うものとして、バッテリ内部の電荷移動過程やイオンの拡散過程に対応した抵抗や容量とは別に、独立した反応(ダイナミクス)を追加している。そのためバッテリの等価回路にヒステリシス素子が増えてしまう。また、このヒステリシス素子は電荷移動過程やイオンの拡散過程に関連付けられていないという問題点がある。 Inherently, the hysteresis phenomenon of the battery appears as a result of the electrochemical reaction inside the battery, and is closely related to the charge transfer process inside the battery and the diffusion process of ions. However, in Patent Document 1 and Non-patent Document 1-2, independent reactions (dynamics) are handled separately from the resistance and capacity corresponding to the charge transfer process inside the battery and the diffusion process of ions as handling hysteresis of the open circuit voltage. Has been added. Therefore, the hysteresis element is added to the equivalent circuit of the battery. Also, this hysteresis element has a problem that it is not associated with the charge transfer process or the diffusion process of ions.
 かかる事情に鑑みてなされた本発明の目的は、バッテリの等価回路にヒステリシス素子を増やすことなくヒステリシスを扱うことができるバッテリのパラメータ推定装置を提供することにある。 An object of the present invention made in view of such circumstances is to provide a battery parameter estimation device capable of handling hysteresis without increasing the hysteresis element in the equivalent circuit of the battery.
 上記課題を解決するために、第1の観点に係るバッテリのパラメータ推定装置は、
 バッテリの電圧及びバッテリの電流のうち少なくとも一方に基づき、前記バッテリの等価回路モデルにおける前記抵抗又は前記容量を含むパラメータを逐次推定するバッテリのパラメータ推定装置において、
 バッテリの充電状態と開回路電圧との特性において発生するヒステリシスを表すヒステリシスモデルにおける、電圧降下の最大範囲および入力電流の特性により関係づけられる前記抵抗によって前記バッテリの等価回路モデルを形成することを特徴とする。
In order to solve the above-mentioned subject, a parameter estimation device of a battery concerning the 1st viewpoint is:
In a battery parameter estimation device for sequentially estimating a parameter including the resistance or the capacitance in an equivalent circuit model of the battery based on at least one of a battery voltage and a battery current.
In the hysteresis model representing the hysteresis generated in the characteristics of the battery state of charge and the open circuit voltage, it is characterized in that the equivalent circuit model of the battery is formed by the maximum range of voltage drop and the resistance related by the characteristics of input current. I assume.
 上記課題を解決するために、第2の観点に係るバッテリのパラメータ推定装置は、
 前記ヒステリシスモデルにおける前記電圧降下の最大範囲、およびヒステリシスモデルにおける電圧降下の速さの特性により関連付けられる前記容量を用いて前記バッテリの等価回路モデルを形成することを特徴とするバッテリのパラメータ推定装置。
In order to solve the above-mentioned subject, the parameter estimating device of the battery concerning the 2nd viewpoint is:
A battery parameter estimation device for a battery, wherein the equivalent circuit model of the battery is formed using the maximum range of the voltage drop in the hysteresis model and the capacitance related by the characteristics of the speed of voltage drop in the hysteresis model.
 上記課題を解決するために、第3の観点に係るバッテリのパラメータ推定装置は、
 前記電圧降下の最大範囲をM(t)、前記入力電流をu(t)とした場合に、前記抵抗Rh(t)を式
Figure JPOXMLDOC01-appb-M000001
で表すことを特徴とする。
In order to solve the above-mentioned subject, the parameter estimating device of the battery concerning the 3rd viewpoint is:
Assuming that the maximum range of the voltage drop is M (t) and the input current is u (t), the resistance R h (t) is
Figure JPOXMLDOC01-appb-M000001
It is characterized by.
 上記課題を解決するために、第4の観点に係るバッテリのパラメータ推定装置は、
 前記電圧降下の最大範囲をM(t)、前記電圧降下の速さをΓ(t)とした場合に、前記容量Ch(t)を式
Figure JPOXMLDOC01-appb-M000002
で表すことを特徴とする。
In order to solve the above-mentioned subject, a parameter estimation device of a battery concerning the 4th viewpoint is:
Assuming that the maximum range of the voltage drop is M (t) and the speed of the voltage drop is Γ (t), the capacitance C h (t) is
Figure JPOXMLDOC01-appb-M000002
It is characterized by.
 上記課題を解決するために、第5の観点に係るバッテリのパラメータ推定装置は、
 前記抵抗Rh(t)を式
Figure JPOXMLDOC01-appb-M000003
で表すことを特徴とする。
In order to solve the above-mentioned subject, the parameter estimating device of the battery concerning the 5th viewpoint is:
The resistance R h (t) is expressed by
Figure JPOXMLDOC01-appb-M000003
It is characterized by.
 上記課題を解決するために、第6の観点に係るバッテリのパラメータ推定装置は、
 前記抵抗Rh(t)を式
Figure JPOXMLDOC01-appb-M000004
で表すことを特徴とする。
In order to solve the above-mentioned subject, the parameter estimating device of the battery concerning a 6th viewpoint is:
The resistance R h (t) is expressed by
Figure JPOXMLDOC01-appb-M000004
It is characterized by.
 第1の観点に係るバッテリのパラメータ推定装置によれば、バッテリの等価回路にヒステリシス素子を増やすことなくヒステリシスを扱うことができる。 According to the battery parameter estimation device pertaining to the first aspect, it is possible to handle hysteresis without increasing the hysteresis element in the equivalent circuit of the battery.
 第2の観点に係るバッテリのパラメータ推定装置によれば、バッテリの等価回路にヒステリシス素子を増やすことなくヒステリシスを扱うことができる。 According to the battery parameter estimation device according to the second aspect, hysteresis can be handled without increasing the hysteresis element in the equivalent circuit of the battery.
 第3の観点に係るバッテリのパラメータ推定装置によれば、バッテリの等価回路にヒステリシス素子を増やすことなくヒステリシスを扱うことができる。 According to the battery parameter estimation device pertaining to the third aspect, hysteresis can be handled without increasing the hysteresis element in the equivalent circuit of the battery.
 第4の観点に係るバッテリのパラメータ推定装置によれば、バッテリの等価回路にヒステリシス素子を増やすことなくヒステリシスを扱うことができる。 According to the battery parameter estimation device pertaining to the fourth aspect, hysteresis can be handled without increasing the hysteresis element in the equivalent circuit of the battery.
 第5の観点に係るバッテリのパラメータ推定装置によれば、ヒステリシスを正確に扱えるため、より早く正確な推定値を得ることができる。 According to the battery parameter estimating device relating to the fifth aspect, since the hysteresis can be accurately handled, it is possible to obtain an accurate estimated value more quickly.
 第6の観点に係るバッテリのパラメータ推定装置によれば、モデル構成が簡易であり容易にヒステリシス現象を取り扱うことができる。 According to the battery parameter estimating device relating to the sixth aspect, the model configuration is simple and the hysteresis phenomenon can be easily handled.
バッテリに接続した本発明の実施の形態に係るバッテリのパラメータ推定装置の機能ブロックを示す図である。It is a figure which shows the functional block of the parameter estimation apparatus of the battery which connected to the battery concerning embodiment of this invention. バッテリの等価回路モデルを説明する図である。It is a figure explaining the equivalent circuit model of a battery. バッテリの開放電圧と充電率との関係を示す図である。It is a figure which shows the relationship between the open circuit voltage of a battery, and a charging rate. ワールブルグインピーダンスを近似したn次のフォスタ型RC梯子回路を示す図である。FIG. 7 is a diagram showing an n-order Foster RC ladder circuit which approximates a Warburg impedance. ワールブルグインピーダンスを近似したn次のカウエル型RC梯子回路を示す図である。It is a figure which shows the n-order Cawell type RC ladder circuit which approximated the Warburg impedance. リン酸鉄リチウムイオン電池のSOC-OCV特性の測定結果を示すグラフである。It is a graph which shows the measurement result of the SOC-OCV characteristic of lithium iron phosphate. 図5Aの破線囲み部の拡大図である。It is an enlarged view of the broken-line enclosure part of FIG. 5A. Plettによるヒステリシスモデルの等価回路を示す図である。It is a figure which shows the equivalent circuit of the hysteresis model by Plett. 可変抵抗Rhと可変容量Chによって構成されるRC並列回路を表す図である。Is a diagram representing the RC parallel circuit constituted by a variable resistor R h and the variable capacitor C h. 電荷移動過程をモデル化した電荷移動抵抗Rctと電気二重層容量Cdlからなるヒステリシスモデルに対応したRC並列回路を表す図である。It is a figure showing RC parallel circuit corresponding to the hysteresis model which consists of charge transfer resistance Rct and electric double layer capacity Cdl which modeled a charge transfer process. イオンの拡散過程をモデル化し、ヒステリシスモデルに対応したフォスタ型回路を表す図である。It is a figure which models the diffusion process of ion and represents the Foster type | mold circuit corresponding to a hysteresis model.
 以下、本発明に係る実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.
(第1の実施形態)
 第1の実施形態のバッテリのパラメータ推定装置は、電気自動車やハイブリッド電気自動車などの車両に用いられる。このような車両には、車両を駆動する電気モータ、バッテリ、これらのコントローラなどが搭載され、電気モータへの電力の供給(放電)や制動時における電気モータからの制動エネルギの回生、地上充電設備からのバッテリへの電力回収(充電)が行われる。このような充放電電流のバッテリへの出入りがあると、バッテリ内部の状態が変化していき、この内部状態をバッテリのパラメータ推定装置で推定しながらモニタしていくことで、バッテリの残量など必要な情報を収集している。
First Embodiment
The battery parameter estimation device of the first embodiment is used for a vehicle such as an electric vehicle or a hybrid electric vehicle. Such a vehicle is equipped with an electric motor for driving the vehicle, a battery, a controller thereof, etc., supply (discharge) of electric power to the electric motor, regeneration of braking energy from the electric motor at the time of braking, ground charging equipment Power recovery (charging) from the battery to When such charge and discharge current flows into and out of the battery, the internal state of the battery changes, and the internal state is monitored while being estimated by the parameter estimation device of the battery, so that the remaining amount of the battery, etc. It has collected the necessary information.
 図1に示すように、バッテリ1のパラメータ推定装置は、電圧センサ(端子電圧検出部)2と、電流センサ(充放電電流検出部)3と、推定部4と、電荷量算出部5と、充電率算出部6と、健全度算出部7と、を備える。推定部4、電荷量算出部5、充電率算出部6、及び健全度算出部7は、例えば車載のマイクロ・コンピュータで構成される。 As shown in FIG. 1, the parameter estimation device of the battery 1 includes a voltage sensor (terminal voltage detection unit) 2, a current sensor (charge / discharge current detection unit) 3, an estimation unit 4, and a charge amount calculation unit 5. The charging rate calculating unit 6 and the soundness calculating unit 7 are provided. The estimation unit 4, the charge amount calculation unit 5, the charging rate calculation unit 6, and the soundness calculation unit 7 are configured by, for example, a vehicle-mounted microcomputer.
 バッテリ1は、例えばリチャージャブル・バッテリ(二次電池)である。バッテリ1は、本実施の形態においてリチウム・イオン・バッテリであるものとして説明するが、他の種類のバッテリを用いてもよい。 The battery 1 is, for example, a rechargeable battery (secondary battery). Although battery 1 is described as being a lithium ion battery in the present embodiment, other types of batteries may be used.
 端子電圧検出部2は、例えば電圧センサであって、バッテリ1の端子電圧値vを検出する。端子電圧検出部2は、検出した端子電圧値vを推定部4へ入力する。 The terminal voltage detection unit 2 is, for example, a voltage sensor, and detects a terminal voltage value v of the battery 1. The terminal voltage detection unit 2 inputs the detected terminal voltage value v to the estimation unit 4.
 充放電電流検出部3は、例えば電流センサであって、バッテリ1の充放電電流値iを検出する。充放電電流検出部3は、検出した充放電電流値iを推定部4へ入力する。 The charge / discharge current detection unit 3 is, for example, a current sensor, and detects a charge / discharge current value i of the battery 1. The charge / discharge current detection unit 3 inputs the detected charge / discharge current value i to the estimation unit 4.
 推定部4は、バッテリ1のバッテリ等価回路モデル41と、カルマンフィルタ42と、を有する。推定部4は、カルマンフィルタ42を用いて、バッテリ等価回路モデル41のパラメータ値と、バッテリ1の開放電圧OCV(Open Circuit Voltage)と、バッテリ1の内部状態量と、を推定(算出)可能である。本実施の形態において、推定部4は、端子電圧検出部2からの端子電圧v及び充放電電流検出部3からの充放電電流iに基づいて、パラメータ値及び内部状態量を同時に推定し、推定したパラメータ値に基づいて開放電圧OCVを算出する。推定部4が行う推定・算出の処理の詳細については後述する。また、推定部4は、算出した開放電圧OCVを、充電率算出部6と健全度算出部7へ入力する。 The estimation unit 4 includes a battery equivalent circuit model 41 of the battery 1 and a Kalman filter 42. The estimation unit 4 can estimate (calculate) the parameter value of the battery equivalent circuit model 41, the open circuit voltage OCV (Open Circuit Voltage) of the battery 1, and the internal state amount of the battery 1 using the Kalman filter 42. . In the present embodiment, estimation unit 4 simultaneously estimates and estimates the parameter value and the internal state quantity based on terminal voltage v from terminal voltage detection unit 2 and charge / discharge current i from charge / discharge current detection unit 3. The open circuit voltage OCV is calculated based on the determined parameter value. Details of the estimation / calculation processing performed by the estimation unit 4 will be described later. Further, the estimation unit 4 inputs the calculated open circuit voltage OCV to the charging rate calculation unit 6 and the soundness calculation unit 7.
 バッテリ等価回路モデル41は、後述するように、抵抗とコンデンサとの並列回路を接続した、無限級数の和による近似で表されるフォスタ型RC梯子回路や、直列接続した抵抗間をコンデンサで接地した、連分数展開による近似で表されるカウエル型RC梯子回路等で構成する。なお、抵抗やコンデンサは、バッテリ等価回路モデル41のパラメータとなる。 In the battery equivalent circuit model 41, as described later, the Foster type RC ladder circuit represented by an approximation of the sum of infinite series, in which a parallel circuit of a resistor and a capacitor is connected, and the resistor connected in series are grounded by a capacitor It consists of a Kawell RC ladder circuit or the like represented by approximation by continuous fraction expansion. The resistor and the capacitor are parameters of the battery equivalent circuit model 41.
 カルマンフィルタ42では、対象となるシステムのモデル(本実施形態の場合、バッテリ等価回路モデル41)を設計し、このモデルと実システムに同一の入力信号を入力し、その場合の両者の出力を比較してそれらに誤差があれば、この誤差にカルマン・ゲインをかけてモデルへフィードバックすることで、両者の誤差が最小になるようにモデルを修正する。これを繰り返すことで、モデルのパラメータを推定する。 The Kalman filter 42 designs a model of the target system (in the case of this embodiment, the battery equivalent circuit model 41), inputs the same input signal to this model and the real system, and compares the outputs of that case. If there is an error in them, this error is multiplied by the Kalman gain and fed back to the model to correct the model so as to minimize both errors. By repeating this, the parameters of the model are estimated.
 電荷量算出部5は、充放電電流検出部3で検出したバッテリ1の充放電電流値iが入力され、この値を逐次積算していくことでバッテリ1から出入りした電荷量を求める。電荷量算出部5は、出入りした電荷量を、逐次積算演算前に記憶した残存電荷量から減算することで、現在のバッテリ1が有する電荷量Qを算出する。この電荷量Qは、健全度算出部7へ出力される。 The charge amount calculation unit 5 receives the charge / discharge current value i of the battery 1 detected by the charge / discharge current detection unit 3 and sequentially integrates this value to obtain the charge amount in / out of the battery 1. The charge amount calculation unit 5 calculates the charge amount Q that the battery 1 currently has by subtracting the charge amount that has come in and out from the remaining charge amount stored before the successive integration operation. The charge amount Q is output to the soundness level calculation unit 7.
 充電率算出部6は、開放電圧値と充電率との関係が温度やバッテリ1の劣化に影響されにくいことから、これらの関係を予め実験等で求めて得た関係データを、例えば特性表として記憶している。そして、この特性表に基づき、推定部4で推定した開放電圧推定値からそのときの充電率SOC(State of Charge)を推定する。この充電率SOCは、バッテリ1のバッテリ・マネージメントに利用される。 Since the relationship between the open-circuit voltage value and the charging ratio is unlikely to be affected by the temperature and the deterioration of the battery 1, the charging rate calculation unit 6 uses relationship data obtained by obtaining these relationships in advance by experiment etc. I remember. Then, based on this characteristic table, the state of charge SOC (State of Charge) at that time is estimated from the open circuit voltage estimation value estimated by the estimation unit 4. The charging rate SOC is used for battery management of the battery 1.
 健全度算出部7は、所定幅で区分けした健全度SOH(State of Health)ごとに電荷量Qと開放電圧OCVの関係を表わす特性表を有する。この特性表の詳細については、例えば、本出願人の出願による特開2012-57956号公報に開示されている。健全度算出部7には、推定部4で推定した開放電圧OCVと電荷量算出部5で算出した電荷量Qとが入力されて、これらが上記特性表のいずれの健全度SOHの範囲に入るのかが算出されて、当てはまる健全度SOHが出力される。 The health level calculation unit 7 has a characteristic table that represents the relationship between the charge amount Q and the open circuit voltage OCV for each of the health levels SOH (State of Health) divided into predetermined widths. The details of the characteristic table are disclosed, for example, in Japanese Patent Application Laid-Open No. 2012-57956 filed by the present applicant. The openness voltage OCV estimated by the estimation unit 4 and the charge amount Q calculated by the charge amount calculation unit 5 are input to the soundness calculation unit 7, and these fall within any soundness SOH range of the above characteristic table. Is calculated, and the applicable soundness level SOH is output.
 ここで、バッテリ1の等価回路モデル41について説明する。一般に、バッテリの電極反応には、電解液と活物質との界面における電荷移動過程と、電解液又は活物質におけるイオンの拡散過程と、が含まれる。例えばリチウム・イオン・バッテリ等の物理過程(non-Faradaic process)バッテリ、即ち拡散現象が支配的なバッテリにおいて、拡散過程に起因するインピーダンスであるワールブルグインピーダンスの影響が支配的となる。 Here, the equivalent circuit model 41 of the battery 1 will be described. Generally, the electrode reaction of a battery includes a charge transfer process at the interface between the electrolyte and the active material, and a diffusion process of ions in the electrolyte or the active material. For example, in a non-faradaic process battery such as a lithium ion battery, ie, a battery in which the diffusion phenomenon is dominant, the influence of the Warburg impedance which is an impedance resulting from the diffusion process becomes dominant.
 はじめに、図2に示すように、バッテリのモデルとして、開放電圧(開回路電圧)OCVを有し、内部抵抗R0とワールブルグインピーダンスZwとが直列に接続される開回路を想定する。 First, as shown in FIG. 2, it is assumed that an open circuit having an open circuit voltage (open circuit voltage) OCV and in which an internal resistance R 0 and a Warburg impedance Z w are connected in series as a model of a battery.
 開放電圧OCVは、図3に示すような充電率SOCの非線形関数となる。充電率SOCは、充放電電流値iと満充電容量FCC(Full Charge Capacity)を用いて、式(1)で表される。
Figure JPOXMLDOC01-appb-M000005
The open circuit voltage OCV is a non-linear function of the charging rate SOC as shown in FIG. The charging rate SOC is expressed by equation (1) using a charge / discharge current value i and a full charge capacity FCC (Full Charge Capacity).
Figure JPOXMLDOC01-appb-M000005
 また、ワールブルグインピーダンスZwの伝達関数は、式(2)により表される。
Figure JPOXMLDOC01-appb-M000006
ただし、sはラプラス演算子、拡散抵抗RdはZw(s)の低周波極限(ω→0)である。また、拡散時定数τdは、拡散反応の速度を意味する。拡散抵抗Rdおよび拡散時定数τdを用いて、式(3)により拡散容量Cdを定義する。
Figure JPOXMLDOC01-appb-M000007
Further, the transfer function of the Warburg impedance Z w is expressed by equation (2).
Figure JPOXMLDOC01-appb-M000006
Where s is the Laplace operator, and the diffusion resistance R d is the low frequency limit (ω → 0) of Z w (s). Also, the diffusion time constant τ d means the speed of the diffusion reaction. The diffusion capacitance C d is defined by equation (3) using the diffusion resistance R d and the diffusion time constant τ d .
Figure JPOXMLDOC01-appb-M000007
 式(2)において、ラプラス演算子sの平方根が存在するため、そのままではワールブルグインピーダンスZwを時間領域へ変換することは困難である。このため、ワールブルグインピーダンスZwの近似を考える。ワールブルグインピーダンスZwは、例えば、無限級数の和による近似、又は連分数展開による近似が可能である。 In Equation (2), it is difficult to convert the Warburg impedance Z w into the time domain as it is because there is a square root of the Laplace operator s. For this reason, an approximation of the Warburg impedance Z w is considered. The Warburg impedance Z w can be approximated by, for example, a sum of infinite series, or an approximation by continued fraction expansion.
 まず、無限級数の和による近似について説明する。ワールブルグインピーダンスZwは、式(4)に示すように、無限級数の和として表すことができる。
Figure JPOXMLDOC01-appb-M000008
ただし、
Figure JPOXMLDOC01-appb-M000009
である。上述の近似式を回路図で表すと、抵抗とコンデンサとの並列回路がn個直列に接続されたn次フォスタ型回路である(図4A参照)。式(5)及び式(6)から明らかなように、ワールブルグインピーダンスZwを近似したn次のフォスタ型等価回路モデルによれば、拡散容量Cd及び拡散抵抗Rdを用いて、等価回路の他のパラメータ(抵抗Rn、コンデンサCn)を算出可能である。
First, approximation by the sum of infinite series will be described. The Warburg impedance Z w can be expressed as a sum of infinite series, as shown in equation (4).
Figure JPOXMLDOC01-appb-M000008
However,
Figure JPOXMLDOC01-appb-M000009
It is. If the above-mentioned approximate expression is expressed in a circuit diagram, it is an n-order Foster type circuit in which n parallel circuits of a resistor and a capacitor are connected in series (see FIG. 4A). As apparent from the equations (5) and (6), according to the n-order Foster-type equivalent circuit model approximating the Warburg impedance Z w , the diffusion capacitance C d and the diffusion resistance R d are used to obtain an equivalent circuit. Other parameters (resistor R n , capacitor C n ) can be calculated.
 次に、連分数展開による近似について説明する。ワールブルグインピーダンスZwは、式(7)に示すように、連分数展開により表すことができる。
Figure JPOXMLDOC01-appb-M000010
ただし、
Figure JPOXMLDOC01-appb-M000011
である。上述の近似式を回路図で表すと、並列接続されたn個の抵抗Rのそれぞれが、直列接続されたn個のコンデンサCの間に接続されたn次カウエル型回路である(図4B参照)。式(8)及び式(9)から明らかなように、ワールブルグインピーダンスZwを近似したn次のカウエル型等価回路モデルによれば、拡散容量Cd及び拡散抵抗Rdを用いて、回路の他のパラメータ(抵抗Rn、コンデンサCn)を算出可能である。
Next, approximation by continuous fraction expansion will be described. The Warburg impedance Z w can be represented by a continued fraction expansion as shown in equation (7).
Figure JPOXMLDOC01-appb-M000010
However,
Figure JPOXMLDOC01-appb-M000011
It is. If the above-mentioned approximate expression is expressed in a circuit diagram, it is an n-order Kawell type circuit in which each of n resistors R connected in parallel is connected between n capacitors C connected in series (see FIG. 4B). ). As apparent from the equations (8) and (9), according to the n-th order Kawell-type equivalent circuit model approximating the Warburg impedance Z w , the diffusion capacitance C d and the diffusion resistance R d are used to generate the other circuit. Parameters (resistance R n , capacitor C n ) can be calculated.
 次に、推定部4の処理について説明する。本実施の形態において、推定部4は、上記フォスタ型及びカウエル型の何れかのバッテリ等価回路モデル41において、カルマンフィルタ42を用いてバッテリの内部状態量とパラメータ値とを同時に推定する。好適には、バッテリの内部状態量にはバッテリのSOCを含み、パラメータ値には拡散容量Cd又は拡散抵抗Rdの少なくとも1つを含む。本実施の形態において、カルマンフィルタ42には無香料カルマンフィルタ(UKF: Unscented Kalman Filter)を用いるが、他のものでもよい。UKFは、シグマ・ポイントという重み付きサンプル点を使って、確率分布を近似し、それぞれの重み付き遷移を計算する。具体的には、シグマ・ポイントごとに遷移後の平均値と分散を計算し、それらを重みに従って加算する。このようにすることで、遷移後の確率分布をより真値に近く、また計算量も増え過ぎない近似を行うことができる。また、システムを近似するのではなく、確率分布をシグマ・ポイントで近似しているので、システムの非線形性について制約がない。 Next, the process of the estimation unit 4 will be described. In the present embodiment, the estimation unit 4 simultaneously estimates the internal state quantity and the parameter value of the battery using the Kalman filter 42 in the battery equivalent circuit model 41 of either the Foster type or the Cawell type. Preferably, the internal state quantity of the battery includes the SOC of the battery, and the parameter value includes at least one of the diffusion capacitance C d or the diffusion resistance R d . In the present embodiment, an unscented Kalman filter (UKF: Unscented Kalman Filter) is used as the Kalman filter 42, but another filter may be used. UKF uses weighted sample points called sigma points to approximate the probability distribution and calculate each weighted transition. Specifically, the average value and variance after transition are calculated for each sigma point, and they are added according to the weight. By doing this, it is possible to approximate the probability distribution after the transition closer to the true value and without increasing the amount of calculation too much. Also, since the probability distribution is approximated by sigma points instead of approximating the system, there is no restriction on the nonlinearity of the system.
 上述のバッテリの等価回路モデルにおいて、バッテリのSOC-OCV特性を表すことができる。しかしながら、実際のバッテリでは充電後と放電後とでSOC-OCV特性が異なるヒステリシス現象が発生することがあり、この場合にはバッテリのSOC-OCV特性を正確に表すことができない。ヒステリシス現象は電極の材料により発生し、特にリン酸リチウムを用いた場合にはヒステリシス現象の影響が大きく出る。 The SOC-OCV characteristics of the battery can be represented in the above-described battery equivalent circuit model. However, in an actual battery, a hysteresis phenomenon may occur in which the SOC-OCV characteristics differ between after charging and after discharging. In this case, the SOC-OCV characteristics of the battery can not be accurately represented. The hysteresis phenomenon is caused by the material of the electrode, and particularly when lithium phosphate is used, the influence of the hysteresis phenomenon is significant.
 図5Aはリン酸鉄リチウムイオン電池のSOC-OCV特性の測定結果である。図5Aによれば充電時の特性と放電時の特性との間でOCVの差が生じていることが分かる。また図5Aの破線囲み部を拡大した図5Bにおいて、SOCが約30%の時点で放電するようにしてもヒステリシス特性を示すことが分かる。上述のバッテリの等価回路モデルでは、このようにヒステリシス現象が発生するバッテリのSOC-OCV特性を正確に取り扱うことができない。 FIG. 5A shows the measurement results of the SOC-OCV characteristics of a lithium iron phosphate battery. According to FIG. 5A, it can be seen that there is a difference in OCV between the characteristics during charging and the characteristics during discharging. Moreover, in FIG. 5B which expanded the broken-line enclosure part of FIG. 5A, even if it is made to discharge at SOC about 30%, it turns out that a hysteresis characteristic is shown. The above-described battery equivalent circuit model can not accurately handle the SOC-OCV characteristics of the battery in which the hysteresis phenomenon occurs.
 このようなヒステリシス現象を表すモデルの一つであるPlettによるヒステリシスモデルは、図6の等価回路で表される。ここで素子VHがヒステリシス電圧を表す素子である。このヒステリシスモデルは、以下の式(10)で表される。
Figure JPOXMLDOC01-appb-M000012
 ここで、vh(t)はヒステリシス電圧、Γ(t)はヒステリシスモデルの電圧降下の速さ(SOC-OCV曲線の傾きに相当)、M(t)はヒステリシスモデルの電圧降下の最大範囲、u(t)は入力電流を表すパラメータである。
A hysteresis model by Plett, which is one of models representing such a hysteresis phenomenon, is represented by an equivalent circuit of FIG. Here, the element V H is an element that represents a hysteresis voltage. This hysteresis model is expressed by the following equation (10).
Figure JPOXMLDOC01-appb-M000012
Here, v h (t) is the hysteresis voltage, Γ (t) is the voltage drop speed of the hysteresis model (corresponding to the slope of the SOC-OCV curve), and M (t) is the maximum range of the voltage drop of the hysteresis model u (t) is a parameter representing the input current.
 本来、バッテリのヒステリシスはバッテリ内部の電気化学反応の結果としてあらわれてくるもので、バッテリ内部の電荷移動過程やイオンの拡散過程と密接な関係が有る。しかしながらPlettによるヒステリシスモデルは、電荷移動過程やイオンの拡散過程とは独立した反応を追加してvh(t)を表している。そのため、式(10)に基づいてバッテリ状態を推定する場合には、RC並列回路の抵抗及び容量の推定に加え、ヒステリシス電圧を表すΓ(t)及びM(t)を推定する必要がある。つまりヒステリシスを考えないバッテリモデルの推定と比較して、推定すべきパラメータが2つ(ΓとM)増加する。 Inherently, the hysteresis of a battery appears as a result of an electrochemical reaction inside the battery, and is closely related to the charge transfer process inside the battery and the diffusion process of ions. However, the hysteresis model by Plett expresses v h (t) by adding a reaction independent of the charge transfer process and the diffusion process of ions. Therefore, when estimating the battery state based on the equation (10), it is necessary to estimate Γ (t) and M (t) representing the hysteresis voltage, in addition to the estimation of the resistance and capacity of the RC parallel circuit. That is, the parameters to be estimated are increased by two (Γ and M) as compared with the estimation of the battery model not considering the hysteresis.
 ここで、本実施形態においては、かかる独立した反応を電荷移動過程やイオンの拡散過程に対応したモデルに統合する。ヒステリシスモデルを表す式(10)において、
Figure JPOXMLDOC01-appb-M000013
と置く。このとき、ヒステリシスモデルを表す式(10)は、以下の式(13)のように書き換えることができる。
Figure JPOXMLDOC01-appb-M000014
 これは、図7に示す可変抵抗Rhと可変容量Chによって構成されるRC並列回路を表す式と同等であると解釈できる。特に式(11)で表されるように、モデルの抵抗は電流の大きさによって可変となる可変抵抗であることが特徴である。
Here, in the present embodiment, such independent reactions are integrated into a model corresponding to the charge transfer process and the ion diffusion process. In equation (10) representing the hysteresis model,
Figure JPOXMLDOC01-appb-M000013
And put. At this time, the equation (10) representing the hysteresis model can be rewritten as the following equation (13).
Figure JPOXMLDOC01-appb-M000014
This can be interpreted as being equivalent to the equation representing an RC parallel circuit configured by the variable resistor R h and the variable capacitor C h shown in FIG. In particular, as represented by the equation (11), it is characterized that the resistance of the model is a variable resistance which is variable according to the magnitude of the current.
 第1の実施形態のヒステリシスモデルの可変抵抗及び可変容量を、電荷移動過程をモデル化した電荷移動抵抗Rctと電気二重層容量CdlからなるRC並列回路に適用することができる。Plettのヒステリシスモデルでは図8左のようなRC並列回路にヒステリシス素子を加えた等価回路で表される。一方、本実施形態のヒステリシスモデルを用いれば図8右のような可変抵抗及び可変容量の並列回路で表される。この等価回路において、可変抵抗Rct,h(t)及び可変容量Cdl,h(t)は、以下の式(14)(15)のように表される。
Figure JPOXMLDOC01-appb-M000015
 ここで、Mct(t)は電荷移動過程によって生じるヒステリシス電圧降下の最大範囲を示し、Γct(t)は電荷移動過程によって生じるヒステリシス電圧降下の速さ(SOC-OCV特性の傾きに相当)を示す。このように本変形例のヒステリシスモデルを用いれば、バッテリの等価回路にヒステリシス素子を増やすことなくヒステリシスを扱うことができる。したがって、ヒステリシスを考えないバッテリモデルの推定と同数のパラメータ(抵抗と容量)を推定することによってヒステリシス現象を扱うことができる。また、電荷移動過程やイオンの拡散過程に合わせた時定数の中で、すなわちヒステリシスを考えないバッテリモデルの抵抗と容量にヒステリシス現象を統合した形でパラメータを求めることができるので、精度が向上する。また、式(14)のように可変抵抗Rhを表す式の分母が入力電流u(t)の絶対値|u(t)|であるモデルによれば、モデル構成が簡易であり、容易にヒステリシス現象を取り扱うことができる。
A variable resistor and a variable capacitance hysteresis model of the first embodiment can be applied to the RC parallel circuit of the charge transfer resistance R ct and the electric double layer capacity C dl models the charge transfer process. The Plett hysteresis model is represented by an equivalent circuit in which a hysteresis element is added to the RC parallel circuit as shown in the left of FIG. On the other hand, if the hysteresis model of the present embodiment is used, it is represented by a parallel circuit of variable resistance and variable capacitance as shown in the right of FIG. In this equivalent circuit, the variable resistor R ct, h (t) and the variable capacitance C dl, h (t) are expressed as the following equations (14) and (15).
Figure JPOXMLDOC01-appb-M000015
Here, M ct (t) indicates the maximum range of the hysteresis voltage drop generated by the charge transfer process, and Γ ct (t) is the speed of the hysteresis voltage drop generated by the charge transfer process (corresponding to the slope of the SOC-OCV characteristic) Indicates As described above, if the hysteresis model of the present modification is used, hysteresis can be handled without increasing the hysteresis element in the equivalent circuit of the battery. Therefore, the hysteresis phenomenon can be handled by estimating the same number of parameters (resistance and capacity) as the battery model estimation that does not consider hysteresis. In addition, since it is possible to obtain the parameter by integrating the hysteresis phenomenon into the resistance and capacity of the battery model which does not consider the hysteresis within the time constant matched to the charge transfer process and the diffusion process of ions, accuracy improves. . Further, according to the model in which the denominator of the equation representing the variable resistance R h is the absolute value | u (t) | of the input current u (t) as in the equation (14), the model configuration is simple and easily It can handle hysteresis phenomena.
 また第1の実施形態のヒステリシスモデルの可変抵抗及び可変容量を、イオンの拡散過程を表すフォスタ型回路に適用することができる。Plettのヒステリシスモデルでは図9上のようなn次フォスタ型回路にヒステリシス素子を加えた等価回路で表される。一方、本実施形態のヒステリシスモデルを用いれば図9下のようなn次フォスタ回路を可変抵抗及び可変容量で構成した等価回路でヒステリシスモデルを表すことができる。ここで、可変抵抗及び可変容量を適用する前のフォスタ型回路(図9上)の回路パラメータは、
Figure JPOXMLDOC01-appb-M000016
であり、可変抵抗及び可変容量を適用した後のフォスタ型回路(図9下)の回路パラメータは、
Figure JPOXMLDOC01-appb-M000017
である。すなわち、拡散抵抗Rd及び拡散容量Cdを推定する代わりに、ヒステリシス現象を取り入れた可変抵抗Rd,h及び可変容量Cd,hを推定すればよい。
Further, the variable resistance and the variable capacitance of the hysteresis model of the first embodiment can be applied to the Foster type circuit representing the diffusion process of ions. The Plett hysteresis model is represented by an equivalent circuit in which a hysteresis element is added to the n-order Foster type circuit as shown in FIG. On the other hand, if the hysteresis model of this embodiment is used, the hysteresis model can be represented by an equivalent circuit in which an n-order Foster circuit as shown in the lower part of FIG. 9 is configured by a variable resistor and a variable capacitor. Here, the circuit parameters of the Foster type circuit (FIG. 9 upper) before applying the variable resistor and the variable capacitance are
Figure JPOXMLDOC01-appb-M000016
The circuit parameters of the Foster type circuit (FIG. 9 bottom) after application of variable resistance and variable capacitance are
Figure JPOXMLDOC01-appb-M000017
It is. That is, instead of estimating the diffusion resistance R d and diffusion capacitance C d, the variable resistor R d, h and the variable capacitance C d, may be estimated h incorporating a hysteresis phenomenon.
 第1の実施形態のヒステリシスモデルの可変抵抗及び可変容量を、イオンの拡散過程を表すカウエル型回路に適用することもできる。この場合はフォスタ型回路に適用した場合と同様、回路パラメータを可変抵抗及び可変容量の値に置き換えればよい。このように第1の実施形態に係るバッテリのパラメータ推定装置によれば、バッテリ等価回路の形式にかかわらず、等価回路の抵抗及び容量を可変抵抗及び可変容量に置き換えることによって簡単に本変形例のヒステリシスモデルを適用することができる。これによって、バッテリの等価回路にヒステリシス素子を増やすことなくヒステリシスを扱うことができる。したがって、ヒステリシスを考えないバッテリモデルの推定と同数のパラメータ(抵抗と容量)を推定することによってヒステリシス現象を扱うことができる。また、電荷移動過程やイオンの拡散過程に合わせた時定数の中で、すなわちヒステリシスを考えないバッテリモデルの抵抗と容量にヒステリシス現象を統合した形でパラメータを求めることができるので、精度が向上する。 The variable resistance and variable capacitance of the hysteresis model of the first embodiment can also be applied to a Kawell-type circuit that represents the diffusion process of ions. In this case, as in the case of applying to the Foster type circuit, the circuit parameters may be replaced with the values of the variable resistor and the variable capacitance. As described above, according to the battery parameter estimation device according to the first embodiment, regardless of the type of the battery equivalent circuit, the resistance and the capacitance of the equivalent circuit are simply replaced with the variable resistance and the variable capacitance. A hysteresis model can be applied. Thus, hysteresis can be handled without increasing the hysteresis element in the equivalent circuit of the battery. Therefore, the hysteresis phenomenon can be handled by estimating the same number of parameters (resistance and capacity) as the battery model estimation that does not consider hysteresis. In addition, since it is possible to obtain the parameter by integrating the hysteresis phenomenon into the resistance and capacity of the battery model which does not consider the hysteresis within the time constant matched to the charge transfer process and the diffusion process of ions, accuracy improves. .
 (第2の実施形態)
 第1の実施形態では、ヒステリシスモデルの抵抗を可変抵抗Rhとして式(11)の形式で表すことにより、バッテリの等価回路にヒステリシス素子を増やすことなくヒステリシスを扱うことができた。第2の実施形態では、ヒステリシスモデルの可変抵抗Rhを表す形式として式(11)以外の形式を用いる場合について説明する。第1の実施形態と重複する説明については省略する。
Second Embodiment
In the first embodiment, by expressing the resistance of the hysteresis model as the variable resistance R h in the form of equation (11), it is possible to handle the hysteresis without increasing the hysteresis element in the equivalent circuit of the battery. In the second embodiment, a case will be described in which a form other than the equation (11) is used as a form representing the variable resistance R h of the hysteresis model. The description overlapping with the first embodiment is omitted.
 式(11)ではヒステリシスモデルの可変抵抗Rhが入力電流u(t)の絶対値|u(t)|を分母とする関数で表される。一方、ヒステリシス現象をさらに正確に取り扱うために、可変抵抗Rhを表す式の分母を入力電流u(t)の関数として拡張して表すことが考えられる。ここで、入力電流u(t)の関数として、f(|u(t)|)を定義する。一般に関数f(x)は入力xに対する出力を表し、入力xと出力f(x)の関係は任意に定められる。関数f(|u(t)|)を用いて可変抵抗Rhを表すと、以下の式(22)のようになる。
Figure JPOXMLDOC01-appb-M000018
 式(22)においても、モデルの抵抗は電流の大きさによって可変となる可変抵抗であることが特徴である。
In the equation (11), the variable resistor R h of the hysteresis model is represented by a function having the absolute value | u (t) | of the input current u (t) as a denominator. On the other hand, in order to handle the hysteresis phenomenon more accurately, it is conceivable to extend and express the denominator of the equation representing the variable resistance R h as a function of the input current u (t). Here, f (| u (t) |) is defined as a function of the input current u (t). In general, the function f (x) represents the output for the input x, and the relationship between the input x and the output f (x) is arbitrarily determined. When the variable resistor R h is represented using a function f (| u (t) |), the following equation (22) is obtained.
Figure JPOXMLDOC01-appb-M000018
Also in the equation (22), it is characterized that the resistance of the model is a variable resistance which is variable according to the magnitude of the current.
 関数f(x)の形式の一つに一次関数がある。これは、f(x)=αx+βと表す形式であり、α及びβは定数である。この形式で可変抵抗Rhを表すと、式(23)のようになる。
Figure JPOXMLDOC01-appb-M000019
 式(23)においてβ>0であれば、u(t)=0の場合に可変抵抗Rhは有限の値をとる。すなわち可変抵抗Rhを推定するときに無限大に発散することがなくモデルが安定し、実際のモデルに近づく。また式(23)においてβ=1であれば、u(t)=0の場合にRh(t)=M(t)となるため、モデルのパラメータの理解が容易になる。このように本実施形態に係るバッテリのパラメータ推定装置によれば、ヒステリシスを正確に扱えるため、より早く正確な推定値を得ることができる。特に、f(|u(t)|)=α|u(t)|+βと表す形式とした式(23)のモデルによれば、より早く正確な推定値を得ることができる。
One of the forms of the function f (x) is a linear function. This is a form expressed as f (x) = αx + β, and α and β are constants. Expressing the variable resistor R h in this form, it becomes as shown in equation (23).
Figure JPOXMLDOC01-appb-M000019
If β> 0 in the equation (23), the variable resistance R h takes a finite value when u (t) = 0. That is, when estimating the variable resistance R h , the model becomes stable without diverging to infinity, and approaches an actual model. Further, if β = 1 in the equation (23), then R h (t) = M (t) in the case of u (t) = 0, so that the model parameters can be easily understood. As described above, according to the battery parameter estimation device according to the present embodiment, since the hysteresis can be accurately handled, it is possible to obtain an accurate estimated value more quickly. In particular, according to the model of equation (23) in the form of f (| u (t) |) = α | u (t) | + β, an accurate estimated value can be obtained more quickly.
 さらに式(23)においてα=1、β=0とすれば、f(|u(t)|)=|u(t)|であり、式(11)の形式でモデルを表すこととなる。これによりモデル構成がより簡易にできるため、より容易にヒステリシス現象を取り扱うことができる。 Further, if α = 1 and β = 0 in the equation (23), then f (│u (t) │) = │u (t) │ and the model is expressed in the form of the equation (11). Since this makes it possible to simplify the model configuration, it is possible to handle the hysteresis phenomenon more easily.
 以上、関数f(x)の形式として一次関数について説明したが、これに限られない。二次関数などの多項式であってもよいし、有理関数、無理関数、対数関数や指数関数などであってもよい。いずれの形式であっても、バッテリの等価回路にヒステリシス素子を増やすことなくヒステリシスを扱うことができ、ヒステリシス特性に則したモデルとして係数を選ぶことにより正確な推定値を得ることができる。 As mentioned above, although a linear function was demonstrated as a form of function f (x), it is not restricted to this. It may be a polynomial such as a quadratic function, or it may be a rational function, an irrational function, a logarithmic function or an exponential function. Regardless of the type, hysteresis can be handled without increasing the hysteresis element in the equivalent circuit of the battery, and accurate estimated values can be obtained by selecting coefficients as a model conforming to the hysteresis characteristics.
 以上のように、第2の実施形態に係るバッテリのパラメータ推定装置は、バッテリの電圧及びバッテリの電流のうち少なくとも一方に基づき、前記バッテリの等価回路モデルにおける抵抗又は容量を含むパラメータを逐次推定するバッテリのパラメータ推定装置において、ヒステリシスによる電圧降下の最大範囲をM(t)、電圧降下の速さをΓ(t)、入力電流をu(t)とした場合に、抵抗Rh(t)を前記入力電流の関数として式Rh(t)=M(t)/f(|u(t)|)で表し、容量Ch(t)を式Ch(t)=1/Γ(t)M(t)で表すことを特徴とする。第2の実施形態に係るバッテリのパラメータ推定装置によれば、等価回路の抵抗及び容量を可変抵抗及び可変容量に置き換えることによって、バッテリの等価回路にヒステリシス素子を増やすことなくヒステリシスを扱うことができる。 As described above, the battery parameter estimation device according to the second embodiment sequentially estimates a parameter including resistance or capacity in the equivalent circuit model of the battery based on at least one of the battery voltage and the battery current. In the battery parameter estimation device, when the maximum range of voltage drop due to hysteresis is M (t), the speed of voltage drop is 入 力 (t), and the input current is u (t), the resistance R h (t) is The expression R h (t) = M (t) / f (| u (t) |) as a function of the input current, and the capacitance C h (t) is an expression C h (t) = 1 / Γ (t) It is characterized by being represented by M (t). According to the battery parameter estimation device according to the second embodiment, by replacing the resistance and capacitance of the equivalent circuit with a variable resistance and a variable capacitance, it is possible to handle hysteresis without increasing the hysteresis element in the battery equivalent circuit. .
 また第2の実施形態の中でも、f(|u(t)|)=α|u(t)|+βと表す実施形態が考えられる。この実施形態に係るバッテリのパラメータ推定装置は、バッテリの電圧及びバッテリの電流のうち少なくとも一方に基づき、前記バッテリの等価回路モデルにおける抵抗又は容量を含むパラメータを逐次推定するバッテリのパラメータ推定装置において、ヒステリシスによる電圧降下の最大範囲をM(t)、電圧降下の速さをΓ(t)、入力電流をu(t)とした場合に、抵抗Rh(t)を前記入力電流の関数として式Rh(t)=M(t)/(α|u(t)|+β)で表し、容量Ch(t)を式Ch(t)=1/Γ(t)M(t)で表すことを特徴とする。この実施形態に係るバッテリのパラメータ推定装置によれば、実際のモデルに近づき、より早く正確な推定値を得ることができる。 In addition, among the second embodiment, an embodiment in which f (| u (t) |) = α | u (t) | + β can be considered. The battery parameter estimation device according to this embodiment is a battery parameter estimation device that sequentially estimates a parameter including resistance or capacity in an equivalent circuit model of the battery based on at least one of a battery voltage and a battery current. Assuming that the maximum range of voltage drop due to hysteresis is M (t), the speed of voltage drop is Γ (t), and the input current is u (t), the resistance R h (t) is expressed as a function of the input current R h (t) = M (t) / (α | u (t) | + β), and the capacity C h (t) is expressed by the equation C h (t) = 1 / Γ (t) M (t) It is characterized by According to the battery parameter estimation device according to this embodiment, it is possible to get closer to the actual model and obtain an accurate estimated value more quickly.
 さらにf(|u(t)|)=α|u(t)|+βと表す実施形態の中でも、α=1、β=0として、f(|u(t)|)=|u(t)|と表す実施形態が考えられる。この実施形態に係るバッテリのパラメータ推定装置は、バッテリの電圧及びバッテリの電流のうち少なくとも一方に基づき、前記バッテリの等価回路モデルにおける抵抗又は容量を含むパラメータを逐次推定するバッテリのパラメータ推定装置において、ヒステリシスによる電圧降下の最大範囲をM(t)、電圧降下の速さをΓ(t)、入力電流をu(t)とした場合に、抵抗Rh(t)を前記入力電流の関数として式Rh(t)=M(t)/|u(t)|で表し、容量Ch(t)を式Ch(t)=1/Γ(t)M(t)で表すことを特徴とする。この実施形態に係るバッテリのパラメータ推定装置によれば、モデル構成が簡易であり容易にヒステリシス現象を取り扱うことができる。 Further, in the embodiment in which f (| u (t) |) = α | u (t) | + β, f (| u (t) |) = | u (t), with α = 1 and β = 0. An embodiment representing | can be considered. The battery parameter estimation device according to this embodiment is a battery parameter estimation device that sequentially estimates a parameter including resistance or capacity in an equivalent circuit model of the battery based on at least one of a battery voltage and a battery current. Assuming that the maximum range of voltage drop due to hysteresis is M (t), the speed of voltage drop is Γ (t), and the input current is u (t), the resistance R h (t) is expressed as a function of the input current R h (t) = M (t) / | u (t) | and the capacity C h (t) is expressed by the equation C h (t) = 1 / Γ (t) M (t) Do. According to the battery parameter estimation device according to this embodiment, the model configuration is simple and the hysteresis phenomenon can be easily handled.
 本発明を諸図面および実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形または修正をおこなうことが容易であることに注意されたい。従って、これらの変形または修正は本発明の範囲に含まれることに留意されたい。例えば、各構成部、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部およびステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。 Although the present invention has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various changes or modifications based on the present disclosure. Therefore, it should be noted that these variations or modifications are included in the scope of the present invention. For example, each component, each function included in each step, etc. can be rearranged so as not to be logically contradictory, and it is possible to combine or divide a plurality of components and steps into one. It is.
 例えば、上述の実施の形態において、ワールブルグインピーダンスZwを無限級数展開又は連分数展開により近似したが、任意の方法で近似してもよい。例えば、無限乗積展開を用いて近似することが考えられる。 For example, in the above-described embodiment, the Warburg impedance Z w is approximated by the infinite series expansion or the continued fraction expansion, but may be approximated by any method. For example, approximation using an infinite product expansion can be considered.
1    バッテリ
2    電圧センサ(端子電圧検出部)
3    電流センサ(充放電電流検出部)
4    推定部
41   バッテリ等価回路モデル
42   カルマンフィルタ
5    電荷量算出部
6    充電率算出部
7    健全度算出部
1 Battery 2 Voltage sensor (terminal voltage detector)
3 Current sensor (charge and discharge current detector)
4 estimation unit 41 battery equivalent circuit model 42 Kalman filter 5 charge amount calculation unit 6 charge ratio calculation unit 7 soundness calculation unit

Claims (6)

  1.  バッテリの電圧及びバッテリの電流のうち少なくとも一方に基づき、前記バッテリの等価回路モデルにおける抵抗又は容量を含むパラメータを逐次推定するバッテリのパラメータ推定装置において、
     バッテリの充電状態と開回路電圧との特性において発生するヒステリシスを表すヒステリシスモデルにおける、電圧降下の最大範囲および入力電流の特性により関係づけられる前記抵抗によって前記バッテリの等価回路モデルを形成することを特徴とするバッテリのパラメータ推定装置。
    In a battery parameter estimation device for sequentially estimating a parameter including resistance or capacity in an equivalent circuit model of the battery based on at least one of a battery voltage and a battery current,
    In the hysteresis model representing the hysteresis generated in the characteristics of the battery state of charge and the open circuit voltage, it is characterized in that the equivalent circuit model of the battery is formed by the maximum range of voltage drop and the resistance related by the characteristics of input current. Battery parameter estimation device.
  2.  請求項1に記載のバッテリのパラメータ推定装置において、
     前記ヒステリシスモデルにおける前記電圧降下の最大範囲、およびヒステリシスモデルにおける電圧降下の速さの特性により関連付けられる前記容量を用いて前記バッテリの等価回路モデルを形成することを特徴とするバッテリのパラメータ推定装置。
    In the battery parameter estimation device according to claim 1,
    A battery parameter estimation device for a battery, wherein the equivalent circuit model of the battery is formed using the maximum range of the voltage drop in the hysteresis model and the capacitance related by the characteristics of the speed of voltage drop in the hysteresis model.
  3.  請求項1に記載のバッテリのパラメータ推定装置において、
     前記電圧降下の最大範囲をM(t)、前記入力電流をu(t)とした場合に、前記抵抗Rh(t)を式
    Figure JPOXMLDOC01-appb-M000020
    で表すことを特徴とするバッテリのパラメータ推定装置。
    In the battery parameter estimation device according to claim 1,
    Assuming that the maximum range of the voltage drop is M (t) and the input current is u (t), the resistance R h (t) is
    Figure JPOXMLDOC01-appb-M000020
    An apparatus for estimating a parameter of a battery, wherein
  4.  請求項2に記載のバッテリのパラメータ推定装置において、
     前記電圧降下の最大範囲をM(t)、前記電圧降下の速さをΓ(t)とした場合に、前記容量Ch(t)を式
    Figure JPOXMLDOC01-appb-M000021
    で表すことを特徴とするバッテリのパラメータ推定装置。
    In the battery parameter estimation device according to claim 2,
    Assuming that the maximum range of the voltage drop is M (t) and the speed of the voltage drop is Γ (t), the capacitance C h (t) is
    Figure JPOXMLDOC01-appb-M000021
    An apparatus for estimating a parameter of a battery, wherein
  5.  請求項3に記載のバッテリのパラメータ推定装置において、
     前記抵抗Rh(t)を式
    Figure JPOXMLDOC01-appb-M000022
    で表すことを特徴とするバッテリのパラメータ推定装置。
    In the battery parameter estimation device according to claim 3,
    The resistance R h (t) is expressed by
    Figure JPOXMLDOC01-appb-M000022
    An apparatus for estimating a parameter of a battery, wherein
  6.  請求項3に記載のバッテリのパラメータ推定装置において、
     前記抵抗Rh(t)を式
    Figure JPOXMLDOC01-appb-M000023
    で表すことを特徴とするバッテリのパラメータ推定装置。
    In the battery parameter estimation device according to claim 3,
    The resistance R h (t) is expressed by
    Figure JPOXMLDOC01-appb-M000023
    An apparatus for estimating a parameter of a battery, wherein
PCT/JP2015/005364 2014-10-31 2015-10-26 Battery parameter estimation device WO2016067586A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014222959A JP6450565B2 (en) 2014-10-31 2014-10-31 Battery parameter estimation device
JP2014-222959 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016067586A1 true WO2016067586A1 (en) 2016-05-06

Family

ID=55856952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005364 WO2016067586A1 (en) 2014-10-31 2015-10-26 Battery parameter estimation device

Country Status (2)

Country Link
JP (1) JP6450565B2 (en)
WO (1) WO2016067586A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109874354A (en) * 2016-09-23 2019-06-11 古河电气工业株式会社 Secondary cell condition checkout gear and secondary cell condition detection method
CN112083335A (en) * 2020-09-28 2020-12-15 国联汽车动力电池研究院有限责任公司 Quick charging method and system for vehicle storage battery
CN112731160A (en) * 2020-12-25 2021-04-30 东莞新能安科技有限公司 Battery hysteresis model training method, and method and device for estimating battery SOC
US11150303B2 (en) 2017-06-02 2021-10-19 Gs Yuasa International Ltd. Management device, energy storage module, management method, and computer program

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101662207B1 (en) 2014-09-11 2016-10-06 주식회사 모다이노칩 Power inductor
JP6540588B2 (en) 2016-04-28 2019-07-10 トヨタ自動車株式会社 Vehicle battery mounting structure
JP6869697B2 (en) 2016-11-02 2021-05-12 マレリ株式会社 How to set the observer gain
JP6945485B2 (en) * 2018-04-04 2021-10-06 三菱電機株式会社 Hysteresis voltage estimator of storage battery, remaining amount estimation device of storage battery using this, management system of storage battery
JPWO2020090429A1 (en) * 2018-10-30 2021-09-30 住友電気工業株式会社 Parameter estimation system, parameter estimation device, vehicle, computer program and parameter estimation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157912A (en) * 2001-08-13 2003-05-30 Hitachi Maxell Ltd Method and device for cell capacity detection
JP2013500487A (en) * 2009-07-28 2013-01-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ How to characterize a battery
US20130218496A1 (en) * 2012-02-17 2013-08-22 GM Global Technology Operations LLC Battery state estimator with overpotential-based variable resistors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157912A (en) * 2001-08-13 2003-05-30 Hitachi Maxell Ltd Method and device for cell capacity detection
JP2013500487A (en) * 2009-07-28 2013-01-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ How to characterize a battery
US20130218496A1 (en) * 2012-02-17 2013-08-22 GM Global Technology Operations LLC Battery state estimator with overpotential-based variable resistors

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109874354A (en) * 2016-09-23 2019-06-11 古河电气工业株式会社 Secondary cell condition checkout gear and secondary cell condition detection method
EP3518376A4 (en) * 2016-09-23 2019-07-31 Furukawa Electric Co., Ltd. Secondary battery state detection device and secondary battery state detection method
US10928458B2 (en) 2016-09-23 2021-02-23 Furukawa Electric Co., Ltd. Secondary battery state detection device and secondary battery state detection method
CN109874354B (en) * 2016-09-23 2023-01-13 古河电气工业株式会社 Secondary battery state detection device and secondary battery state detection method
US11150303B2 (en) 2017-06-02 2021-10-19 Gs Yuasa International Ltd. Management device, energy storage module, management method, and computer program
CN112083335A (en) * 2020-09-28 2020-12-15 国联汽车动力电池研究院有限责任公司 Quick charging method and system for vehicle storage battery
CN112083335B (en) * 2020-09-28 2023-10-17 国联汽车动力电池研究院有限责任公司 Quick-charging method and system for vehicle storage battery
CN112731160A (en) * 2020-12-25 2021-04-30 东莞新能安科技有限公司 Battery hysteresis model training method, and method and device for estimating battery SOC

Also Published As

Publication number Publication date
JP6450565B2 (en) 2019-01-09
JP2016090322A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
WO2016067586A1 (en) Battery parameter estimation device
JP5946436B2 (en) Battery parameter estimation apparatus and parameter estimation method
EP2963434B1 (en) Battery state estimation method and system using dual extended kalman filter, and recording medium for performing the method
JP6182025B2 (en) Battery health estimation device and health estimation method
WO2016067587A1 (en) Battery parameter estimation device
JP5944291B2 (en) Battery parameter estimation apparatus and method
CN107690585B (en) Method and apparatus for determining the state of health and state of charge of a lithium sulfur battery
CN103907030B (en) The estimation unit of battery charge rate and the method for estimation of battery charge rate
EP3264562B1 (en) Method for determining an estimated combined battery state-parameter vector
Kim et al. Online SOC and SOH estimation for multicell lithium-ion batteries based on an adaptive hybrid battery model and sliding-mode observer
Sassi et al. Comparative study of ANN/KF for on-board SOC estimation for vehicular applications
EP2615468B1 (en) Parameter estimation device
JP6711981B2 (en) Battery parameter estimation device
JP5393619B2 (en) Battery charge rate estimation device
JP5292375B2 (en) Battery charge rate estimation device
KR20140034834A (en) Method of estimating the state of charge of an electric battery
JP6755162B2 (en) Estimator
KR101661578B1 (en) Battery status estimation method, system and recording medium for performing the method
JP6455914B2 (en) Storage power remaining amount estimation device, method for estimating remaining power storage amount of storage battery, and computer program
Taborelli et al. State of charge estimation using extended Kalman filters for battery management system
KR20160060556A (en) Remaining battery life prediction device and battery pack
CN113853524B (en) Method for estimating battery state
WO2018029849A1 (en) Estimation device, estimation program, and charging control device
JP2018048913A (en) Device and method for estimating parameter of battery
JP2018084548A (en) State estimating device of secondary battery and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853963

Country of ref document: EP

Kind code of ref document: A1