WO2016067463A1 - Fluid control valve - Google Patents

Fluid control valve Download PDF

Info

Publication number
WO2016067463A1
WO2016067463A1 PCT/JP2014/079102 JP2014079102W WO2016067463A1 WO 2016067463 A1 WO2016067463 A1 WO 2016067463A1 JP 2014079102 W JP2014079102 W JP 2014079102W WO 2016067463 A1 WO2016067463 A1 WO 2016067463A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
housing
control valve
seal member
fluid control
Prior art date
Application number
PCT/JP2014/079102
Other languages
French (fr)
Japanese (ja)
Inventor
克典 高井
直樹 井花
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016556166A priority Critical patent/JP6230723B2/en
Priority to PCT/JP2014/079102 priority patent/WO2016067463A1/en
Publication of WO2016067463A1 publication Critical patent/WO2016067463A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor

Definitions

  • This invention relates to a fluid control valve installed in a conduit through which a fluid flows, and more particularly to a structure for preventing fluid leaking from around a valve shaft from flowing out.
  • a valve-side housing having a fluid passage through which exhaust gas flows and an actuator-side housing having an actuator section that drives the valve are screwed. They are connected using members. A seal member is sandwiched between the valve side housing and the actuator side housing at the part fastened with the screw member so that the exhaust gas does not flow out from the connecting portion between the valve side housing and the actuator side housing. It is in the state.
  • EGR exhaust gas recirculation
  • the fastening force of the screw member may be reduced.
  • Such a decrease in the fastening force of the screw member becomes more conspicuous as the temperature increases (for example, about 700 ° C. to 800 ° C.).
  • the fastening can be removed when external vibration is applied in a state where the fastening force is reduced due to the temperature change.
  • the present invention has been made to solve the above-described problems, and is capable of preventing a fluid leaking from around the valve shaft from flowing out while suppressing a decrease in fastening force due to a temperature change.
  • the purpose is to obtain a control valve.
  • the fluid control valve includes a first housing having a fluid passage that is opened and closed by the valve, a second housing that is fastened with the opposing surfaces of the first housing spaced apart from each other, and a second housing And is inserted into a through-hole penetrating the actuator portion that generates the driving force and the facing surface of the first housing and the facing surface of the second housing, and opens and closes the valve in response to the driving force of the actuator portion.
  • a sealing member that is provided between the opposing surface of the first housing and the opposing surface of the second housing and seals between the opposing surfaces by contacting both opposing surfaces. It is characterized by having.
  • FIG. 1 It is a figure which shows the fluid control valve which concerns on Embodiment 1 of this invention. It is a cross-sectional enlarged view of A part of FIG. It is a figure which shows the valve side housing. It is a perspective view which shows a sealing member. It is the figure which expanded a part of FIG.
  • FIG. 1 is a diagram showing a fluid control valve according to Embodiment 1 of the present invention, in which the fluid control valve according to Embodiment 1 is embodied as an EGR valve that circulates engine exhaust gas into an intake passage.
  • the EGR valve shown in FIG. 1 is a butterfly valve, and the valve 33 rotates integrally with the valve shaft 32 to open and close the exhaust gas passage (fluid passage) 34.
  • the configuration includes an actuator unit 10, a driving force transmission unit 20, and a valve unit 30.
  • the actuator unit 10 includes a motor 11 and generates a rotational driving force for opening and closing the valve 33.
  • the output shaft of the motor 11 is attached to a gear mechanism disposed inside the driving force transmission unit 20.
  • the driving force transmission unit 20 includes the gear mechanism and an actuator-side housing 21 that accommodates the gear mechanism.
  • the output shaft of the motor 11 and the valve shaft 32 are connected via this gear mechanism, and the rotational driving force of the motor 11 is transmitted to the valve shaft 32 via the gear mechanism.
  • a pinion gear attached to the output shaft of the motor 11 and the valve shaft 32 are engaged with each other by a gear, and the rotational driving force of the motor 11 is directly transmitted to the valve shaft 32.
  • the actuator side housing 21 embodies the second housing of the present invention, and is made of, for example, aluminum. The actuator side housing 21 is attached to the actuator side housing 21 as shown in FIG.
  • the valve unit 30 is connected to a conduit through which exhaust gas flows, and controls the flow rate of exhaust gas by opening and closing the valve 33.
  • the valve-side housing 31 that constitutes the valve portion 30 embodies the first housing according to the present invention, is made of heat-resistant steel such as cast iron or stainless steel, and has an exhaust gas passage 34 provided therein.
  • the valve-side housing 31 is formed with a through hole 31a that connects the outside of the housing and the exhaust gas passage 34, and the valve shaft 32 is inserted into the through hole 31a.
  • the valve 33 rotates integrally with the valve shaft 32 to open and close the exhaust gas passage 34.
  • the actuator side housing 21 and the valve side housing 31 are fastened by a bolt 22 that is a screw member.
  • FIG. 2 is an enlarged cross-sectional view of a portion A in FIG. 1, and shows a cross section of the portion A cut in the axial direction.
  • FIG. 3 is a view showing the valve-side housing 31, and shows a configuration viewed from the side facing the actuator-side housing 21.
  • the actuator side housing 21 is formed with a through hole 21a that extends to the valve portion 30 side, and the valve shaft 32 is inserted into the through hole 21a.
  • the opposing surfaces 21A and 31A are spaced apart to form a space B, and the actuator-side housing 21 is connected to the valve-side housing 31 only through the connection surface 21b.
  • the connection surface 21b protrudes toward the valve portion 30 from the facing surface 21A that faces the valve-side housing 31 with the space B interposed therebetween.
  • the connection surface 21b is located on the outer periphery of the facing surface 21A.
  • the bolt hole 21c which inserts the volt
  • the through hole 21a penetrates the facing surface 21A.
  • the actuator side housing 21 is formed with a cooling passage 23 for circulating cooling water.
  • the cooling passage 23 By providing the cooling passage 23, the heat of the exhaust gas passing through the valve unit 30 is suppressed from being transmitted to the actuator unit 10.
  • the space B also suppresses the heat of the exhaust gas passing through the valve portion 30 from being transmitted from the valve side housing 31 to the actuator side housing 21.
  • the valve-side housing 31 has a hole communicating with the through hole 31a, and the bearing 35 is mounted in the hole.
  • the hole is formed so as to penetrate the facing surface 31 ⁇ / b> A to the actuator-side housing 21.
  • the valve shaft 32 inserted into the through hole 31 a is rotatably supported by the inner peripheral surface of the bearing portion 35.
  • the facing surface 31A is opposed to the facing surface 21A with the space B interposed therebetween.
  • the connection surface 31b is a connection surface that contacts the connection surface 21b of the actuator-side housing 21, and is located on the outer periphery of the facing surface 31A.
  • the connection surface 31b passes through a bolt hole 31c formed coaxially with the bolt hole 21c.
  • On the facing surface 31A the periphery of the hole portion in which the bearing portion 35 is mounted is raised, and a step portion 31d having an upper surface that is substantially rectangular is formed.
  • FIG. 2 shows an exhaust gas flow F at the time of shaft leakage.
  • the space B is sealed with, for example, stainless steel so that the exhaust gas leaking from the periphery of the valve shaft 32 does not pass between the connection surface 21b and the connection surface 31b and flow out of the EGR valve.
  • a member 40 is provided.
  • FIG. 4 is a perspective view of the seal member 40.
  • the seal member 40 formed along the outer shape of the upper surface of the stepped portion 31d is a substantially rectangular frame-like member, and has a C-shaped cross section.
  • the curved portion of the C-shaped cross section is a curved portion 41, and the upper and lower straight portions are flat portions 42 and 43.
  • the curved portion 41 is convex toward the inside of the frame-shaped seal member 40, and the flat portions 42 and 43 are extended from both ends of the curved portion 41 toward the outside of the frame-shaped seal member 40. Yes.
  • the curved portion 41 and the flat portions 42 and 43 that are integrally formed have an elastic shape that has a function of elastically deforming and pushing back in a direction opposite to the external force when an external force is applied in a direction in which the interval between the flat portions 42 and 43 is reduced. It functions as a so-called leaf spring.
  • the flat part 43 is provided with a positioning piece (positioning part) 44 extending in a direction away from the flat part 42. In the example of FIG. 4, one positioning piece 44 is provided at each side position of the substantially rectangular sealing member 40, and a total of four positioning pieces 44 are formed.
  • FIG. 5 is an enlarged view of the vicinity of the seal member 40 in FIG.
  • the seal member 40 is placed on a step portion 31d formed on the facing surface 31A of the valve-side housing 31, the flat portion 42 contacts the facing surface 21A of the actuator-side housing 21, and the flat portion 43 is formed on the valve-side housing. 31 is in contact with the opposing surface 31A.
  • the flat portions 42 and 43 that contact the facing surfaces 21A and 31A and the curved portions 41 that are formed integrally with the flat portions 42 and 43 constitute a contact portion.
  • the positioning piece 44 comes into contact with the side surface of the stepped portion 31d to restrict the movement in the direction perpendicular to the valve shaft 32, and positioning on the facing surface 31A is performed.
  • the seal member 40 seals between the facing surface 21A and the facing surface 31A, and prevents the exhaust gas leaking from the periphery of the valve shaft 32 from flowing out.
  • the valve shaft 32 is configured by surrounding the stepped portion 31d with a gasket as a seal member between the connection surface 21b and the connection surface 31b without providing the seal member 40.
  • a gasket as a seal member between the connection surface 21b and the connection surface 31b without providing the seal member 40.
  • the exhaust gas leaked from the surroundings was prevented from flowing outside.
  • the fastening force of the bolt 22 is reduced due to the difference in the linear expansion coefficients of the bolt 22, the actuator side housing 21, the valve side housing 31, and the gasket. That is, the gasket has an effect that the fastening force is reduced when the bolt 22 is fastened.
  • a gasket made of mica, clayey material, or the like is used.
  • the linear expansion coefficient of such a material is the same as that of aluminum constituting the actuator side housing 21 and valve side housing 31. It differs greatly from the linear expansion coefficient of the cast iron. Therefore, the fastening force of the bolt 22 is greatly reduced by sandwiching the gasket between the connection surface 21b and the connection surface 31b.
  • the sealing member 40 is installed in the space B formed by separating the facing surface 21A and the facing surface 31A, instead of being sandwiched between the connecting surface 21b and the connecting surface 31b. For this reason, the influence which the sealing member 40 has with respect to the fastening with the volt
  • the seal member 40 is configured as a leaf spring, and due to its elasticity, the flat portion 42 is pressed against the facing surface 21A of the actuator side housing 21 and the flat portion 43 is pressed against the facing surface 31A of the valve side housing 31. Yes. Therefore, even if the gap between the opposing surface 21A and the opposing surface 31A changes due to a temperature change, the contact state with the opposing surfaces 21A and 31A can be maintained following the change.
  • the seal member 40 is made of a material having low thermal conductivity.
  • heat transfer to the actuator-side housing 21 can be suppressed by making the plate thickness of the seal member 40 thinner than the gap between the facing surface 21A and the facing surface 31A. The plate thickness of the seal member 40 is reduced to, for example, about 0.2 mm or less.
  • the sealing member 40 should just be an elastic shape which press-contacts to opposing surface 21A, 31A, and is not restricted to the shape shown in figure.
  • the curved portion 41 may be configured to be convex outward rather than configured to be convex toward the inside of the frame-shaped seal member 40.
  • a total of four positioning pieces 44 are partially provided.
  • the circumference of the side surface of the step portion 31d is surrounded. You may form in.
  • the step portion 31d is formed on the facing surface 31A, and the seal member 40 is placed on the step portion 31d.
  • the facing surface 31A may be flattened and a stepped portion may be formed on the facing surface 21A, and the sealing member 40 may be placed on the stepped portion and the positioning piece 44 may be positioned on the facing surface 21A.
  • connection surface 21b and the connection surface 31b contact directly was shown.
  • a plate having low thermal conductivity is sandwiched between the connection surface 21b and the connection surface 31b, and the connection surface 21b and the connection surface It is good also as a structure which 31b contacts indirectly.
  • the plate is made of a material having a low thermal conductivity and a linear expansion coefficient that is not significantly different from that of the actuator-side housing 21 and the valve-side housing 31, for example, stainless steel.
  • the fluid control valve is used as the EGR valve.
  • the fluid control valve may be used as a valve other than the EGR valve.
  • the butterfly type fluid control valve has been described, but a poppet type, flap type, or other fluid control valve may be used.
  • the seal member 40 has the connection surface 21b and the connection surface 31b that come into contact when the actuator-side housing 21 and the valve-side housing 31 are fastened with the bolts 22.
  • the opposed surface 21 ⁇ / b> A and the opposed surface 31 ⁇ / b> A are provided in a space B formed apart from each other. Accordingly, it is possible to prevent the exhaust gas leaking from the periphery of the valve shaft 32 from flowing out to the outside while suppressing a decrease in the fastening force of the bolt 22 due to the temperature change.
  • the seal member 40 is provided with a positioning piece 44 for positioning the mounting position on the facing surfaces 21A and 31A. Therefore, the seal member 40 is easily positioned.
  • the contact portions that contact the opposing surfaces 21A and 31A have an elastic shape, and the contact portions are in pressure contact with the opposing surfaces 21A and 31A, respectively. Therefore, the seal member 40 can maintain a contact state with the opposing surfaces 21A and 31A, and can always seal between the opposing surface 21A and the opposing surface 31A.
  • the seal member 40 is made of a material having a lower thermal conductivity than the actuator-side housing 21 and a thickness thinner than the gap between the facing surface 21A and the facing surface 31A. Therefore, the heat of the fluid flowing through the valve side housing 31 can be prevented from being transmitted to the actuator unit 10 via the seal member 40.
  • the fluid control valve according to the first embodiment as an EGR valve, even if the exhaust gas to be circulated is at a high temperature, the exhaust gas is prevented from flowing out while suppressing a decrease in fastening force. can do.
  • any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
  • the fluid control valve according to the present invention even when exposed to a high temperature environment, the fluid leaking from the periphery of the valve shaft flows out to the outside while suppressing a decrease in the fastening force of the bolt due to the temperature change.
  • it is suitable for use as an EGR valve through which high-temperature exhaust gas flows.
  • actuator section 10 actuator section, 11 motor, 20 driving force transmission section, 21 actuator side housing (second housing), 21A facing surface, 21a through hole, 21b connection surface, 21c bolt hole, 22 bolt, 23 cooling passage, 30 valve section , 31 Valve side housing (first housing), 31A facing surface, 31a through hole, 31b connection surface, 31c bolt hole, 31d step, 32 valve shaft, 33 valve, 34 exhaust gas passage (fluid passage), 35 bearing Part, 40 sealing member, 41 curved part, 42, 43 flat part, 44 positioning piece (positioning part).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Valve Housings (AREA)
  • Lift Valve (AREA)

Abstract

A seal member 40 is provided not between a connecting surface 21b and a connecting surface 31b, which come into contact with each other when an actuator-side housing 21 and a valve-side housing 31 are fastened by means of a bolt 22, but is provided in a space B formed by having a facing surface 21A and a facing surface 31A separated from each other. The seal member 40 seals between the facing surface 21A and the facing surface 31A by being in contact with the facing surface 21A and the facing surface 31A.

Description

流体制御バルブFluid control valve
 この発明は、流体が流れる管路に設置される流体制御バルブに関し、特に、バルブ軸周りから漏れた流体が外部に流出することを防止する構造に関するものである。 This invention relates to a fluid control valve installed in a conduit through which a fluid flows, and more particularly to a structure for preventing fluid leaking from around a valve shaft from flowing out.
 例えば、特許文献1に記載の排気ガス再循環(EGR:Exhaust Gas Recirculation)バルブでは、排気ガスが流れる流体通路を有するバルブ側ハウジングと、バルブを駆動するアクチュエータ部を有するアクチュエータ側ハウジングとが、ねじ部材を用いて連結されている。
 バルブ側ハウジングとアクチュエータ側ハウジングとの連結部から排気ガスが外部に流出することがないよう、ねじ部材で締結されている部分では、バルブ側ハウジングとアクチュエータ側ハウジングとの間に、シール部材が挟まれた状態となっている。
For example, in an exhaust gas recirculation (EGR) valve described in Patent Document 1, a valve-side housing having a fluid passage through which exhaust gas flows and an actuator-side housing having an actuator section that drives the valve are screwed. They are connected using members.
A seal member is sandwiched between the valve side housing and the actuator side housing at the part fastened with the screw member so that the exhaust gas does not flow out from the connecting portion between the valve side housing and the actuator side housing. It is in the state.
特開2004―301086号公報JP 2004-301086 A
 上記のようにねじ部材で締結されている部分にシール部材が挟まれている場合、使用環境下で温度変化が生じると、ねじ部材、連結された2つのハウジング、シール部材の線膨張係数がそれぞれ異なることから、ねじ部材の締結力が低下することがあった。このようなねじ部材の締結力の低下は、高温環境下(例えば、700℃程度~800℃程度)になるほど特に顕著となる。そして、温度変化に起因して締結力が低下した状態で、外部からの振動が加わると、締結が取れてしまうことも考えられる。 When the seal member is sandwiched between the parts fastened by the screw member as described above, when the temperature changes in the use environment, the linear expansion coefficients of the screw member, the two connected housings, and the seal member are respectively Due to the difference, the fastening force of the screw member may be reduced. Such a decrease in the fastening force of the screw member becomes more conspicuous as the temperature increases (for example, about 700 ° C. to 800 ° C.). And it is also conceivable that the fastening can be removed when external vibration is applied in a state where the fastening force is reduced due to the temperature change.
 この発明は、上記のような課題を解決するためになされたもので、温度変化に起因する締結力の低下を抑制しつつ、バルブ軸周りから漏れた流体が外部に流出することを防止できる流体制御バルブを得ることを目的とする。 The present invention has been made to solve the above-described problems, and is capable of preventing a fluid leaking from around the valve shaft from flowing out while suppressing a decrease in fastening force due to a temperature change. The purpose is to obtain a control valve.
 この発明に係る流体制御バルブは、バルブにより開閉される流体通路を有する第1のハウジングと、第1のハウジングと互いの対向面を離間させて締結される第2のハウジングと、第2のハウジングに取り付けられ、駆動力を発生するアクチュエータ部と、第1のハウジングの対向面と第2のハウジングの対向面とを貫通する貫通穴に挿入され、アクチュエータ部の駆動力を受けてバルブを開閉させるバルブ軸とを備えたものであって、第1のハウジングの対向面と第2のハウジングの対向面との間に設けられ、双方の対向面に接触して対向面間をシールするシール部材を備えたことを特徴とするものである。 The fluid control valve according to the present invention includes a first housing having a fluid passage that is opened and closed by the valve, a second housing that is fastened with the opposing surfaces of the first housing spaced apart from each other, and a second housing And is inserted into a through-hole penetrating the actuator portion that generates the driving force and the facing surface of the first housing and the facing surface of the second housing, and opens and closes the valve in response to the driving force of the actuator portion. A sealing member that is provided between the opposing surface of the first housing and the opposing surface of the second housing and seals between the opposing surfaces by contacting both opposing surfaces. It is characterized by having.
 この発明によれば、温度変化に起因する締結力の低下を抑制しつつ、バルブ軸周りから漏れた流体が外部に流出することを防止する流体制御バルブを得ることができる。 According to the present invention, it is possible to obtain a fluid control valve that prevents a fluid leaking from around the valve shaft from flowing out while suppressing a decrease in fastening force due to a temperature change.
この発明の実施の形態1に係る流体制御バルブを示す図である。It is a figure which shows the fluid control valve which concerns on Embodiment 1 of this invention. 図1のA部分の断面拡大図である。It is a cross-sectional enlarged view of A part of FIG. バルブ側ハウジングを示す図である。It is a figure which shows the valve side housing. シール部材を示す斜視図である。It is a perspective view which shows a sealing member. 図2の一部を拡大した図である。It is the figure which expanded a part of FIG.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係る流体制御バルブを示す図であり、実施の形態1に係る流体制御バルブを、エンジン排気ガスを吸気通路に循環させるEGRバルブに具体化した場合を示している。図1に示すEGRバルブは、バタフライ式と呼ばれるバルブであって、バルブ33がバルブ軸32と一体に回転して排気ガス通路(流体通路)34を開閉する。その構成として、アクチュエータ部10、駆動力伝達部20およびバルブ部30を備える。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a diagram showing a fluid control valve according to Embodiment 1 of the present invention, in which the fluid control valve according to Embodiment 1 is embodied as an EGR valve that circulates engine exhaust gas into an intake passage. Show. The EGR valve shown in FIG. 1 is a butterfly valve, and the valve 33 rotates integrally with the valve shaft 32 to open and close the exhaust gas passage (fluid passage) 34. The configuration includes an actuator unit 10, a driving force transmission unit 20, and a valve unit 30.
 アクチュエータ部10は、モータ11を備えて、バルブ33を開閉させる回転駆動力を発生する。モータ11の出力軸は、駆動力伝達部20の内部に配置されたギア機構に取り付けられる。 The actuator unit 10 includes a motor 11 and generates a rotational driving force for opening and closing the valve 33. The output shaft of the motor 11 is attached to a gear mechanism disposed inside the driving force transmission unit 20.
 駆動力伝達部20は、上記ギア機構およびこれを収容するアクチュエータ側ハウジング21を備えて構成される。モータ11の出力軸とバルブ軸32は、このギア機構を介して連結され、モータ11の回転駆動力がギア機構を介してバルブ軸32に伝達される。
 例えば、モータ11の出力軸に取り付けられたピニオンギアとバルブ軸32とをギアで噛合させて、モータ11の回転駆動力を直接的にバルブ軸32へ伝達する。
 アクチュエータ側ハウジング21は、本発明における第2のハウジングを具体化したものであり、例えばアルミニウムで構成される。アクチュエータ側ハウジング21には、図1に示すようにアクチュエータ部10が取り付けられている。
The driving force transmission unit 20 includes the gear mechanism and an actuator-side housing 21 that accommodates the gear mechanism. The output shaft of the motor 11 and the valve shaft 32 are connected via this gear mechanism, and the rotational driving force of the motor 11 is transmitted to the valve shaft 32 via the gear mechanism.
For example, a pinion gear attached to the output shaft of the motor 11 and the valve shaft 32 are engaged with each other by a gear, and the rotational driving force of the motor 11 is directly transmitted to the valve shaft 32.
The actuator side housing 21 embodies the second housing of the present invention, and is made of, for example, aluminum. The actuator side housing 21 is attached to the actuator side housing 21 as shown in FIG.
 バルブ部30は、排気ガスが流れる管路に連結され、バルブ33を開閉して排気ガスの流量を制御する。このバルブ部30を構成するバルブ側ハウジング31は、本発明における第1のハウジングを具体化したものであり、鋳鉄、ステンレス鋼などの耐熱鋼で構成され、内部に排気ガス通路34が設けられる。 The valve unit 30 is connected to a conduit through which exhaust gas flows, and controls the flow rate of exhaust gas by opening and closing the valve 33. The valve-side housing 31 that constitutes the valve portion 30 embodies the first housing according to the present invention, is made of heat-resistant steel such as cast iron or stainless steel, and has an exhaust gas passage 34 provided therein.
 また、バルブ側ハウジング31には、ハウジング外部と排気ガス通路34とを連結する貫通穴31aが形成されており、この貫通穴31aにバルブ軸32が挿入される。バルブ33は、バルブ軸32と一体に回転して排気ガス通路34を開閉する。
 アクチュエータ側ハウジング21とバルブ側ハウジング31とは、ねじ部材であるボルト22により締結される。
The valve-side housing 31 is formed with a through hole 31a that connects the outside of the housing and the exhaust gas passage 34, and the valve shaft 32 is inserted into the through hole 31a. The valve 33 rotates integrally with the valve shaft 32 to open and close the exhaust gas passage 34.
The actuator side housing 21 and the valve side housing 31 are fastened by a bolt 22 that is a screw member.
 図2は、図1のA部分の断面拡大図であり、A部分を軸方向に切った断面を示している。図3は、バルブ側ハウジング31を示す図であり、アクチュエータ側ハウジング21との対向面側から見た構成を示している。 FIG. 2 is an enlarged cross-sectional view of a portion A in FIG. 1, and shows a cross section of the portion A cut in the axial direction. FIG. 3 is a view showing the valve-side housing 31, and shows a configuration viewed from the side facing the actuator-side housing 21.
 アクチュエータ側ハウジング21には、バルブ部30の側に抜ける貫通穴21aが形成されており、この貫通穴21aにバルブ軸32が挿入される。図2に示すように、対向面21A,31Aが離間して空間Bが形成されており、アクチュエータ側ハウジング21は、接続面21bのみを介してバルブ側ハウジング31と接続している。接続面21bは、空間Bを挟んでバルブ側ハウジング31に対向する対向面21Aよりも、バルブ部30の側に突出している。接続面21bは、対向面21Aの外周に位置する。また、ボルト22を挿入するボルト穴21cが、接続面21bを貫通して形成されている。貫通穴21aは、対向面21Aを貫通している。 The actuator side housing 21 is formed with a through hole 21a that extends to the valve portion 30 side, and the valve shaft 32 is inserted into the through hole 21a. As shown in FIG. 2, the opposing surfaces 21A and 31A are spaced apart to form a space B, and the actuator-side housing 21 is connected to the valve-side housing 31 only through the connection surface 21b. The connection surface 21b protrudes toward the valve portion 30 from the facing surface 21A that faces the valve-side housing 31 with the space B interposed therebetween. The connection surface 21b is located on the outer periphery of the facing surface 21A. Moreover, the bolt hole 21c which inserts the volt | bolt 22 is formed through the connection surface 21b. The through hole 21a penetrates the facing surface 21A.
 アクチュエータ側ハウジング21には、図2に示すように、冷却水を循環する冷却通路23が形成されている。冷却通路23を設けることで、バルブ部30を通過する排気ガスの熱が、アクチュエータ部10まで伝わるのを抑制している。
 なお、空間Bによっても、バルブ部30を通過する排気ガスの熱が、バルブ側ハウジング31からアクチュエータ側ハウジング21へと伝わるのを抑制している。
As shown in FIG. 2, the actuator side housing 21 is formed with a cooling passage 23 for circulating cooling water. By providing the cooling passage 23, the heat of the exhaust gas passing through the valve unit 30 is suppressed from being transmitted to the actuator unit 10.
The space B also suppresses the heat of the exhaust gas passing through the valve portion 30 from being transmitted from the valve side housing 31 to the actuator side housing 21.
 バルブ側ハウジング31には、貫通穴31aに連通する穴部が形成されており、この穴部に軸受部35が装着される。またこの穴部は、アクチュエータ側ハウジング21との対向面31Aを貫通して形成されている。貫通穴31aに挿入されたバルブ軸32は、この軸受部35の内周面で回転自在に支持される。
 対向面31Aは、空間Bを挟んで対向面21Aに離間した状態で対向している。接続面31bは、アクチュエータ側ハウジング21の接続面21bに接触する接続面であり、対向面31Aの外周に位置する。接続面31bは、ボルト穴21cと同軸上に形成されるボルト穴31cに貫通される。
 対向面31Aでは、軸受部35が装着された穴部の周囲が盛り上がって、上面が略矩形を成す段差部31dが形成される。
The valve-side housing 31 has a hole communicating with the through hole 31a, and the bearing 35 is mounted in the hole. The hole is formed so as to penetrate the facing surface 31 </ b> A to the actuator-side housing 21. The valve shaft 32 inserted into the through hole 31 a is rotatably supported by the inner peripheral surface of the bearing portion 35.
The facing surface 31A is opposed to the facing surface 21A with the space B interposed therebetween. The connection surface 31b is a connection surface that contacts the connection surface 21b of the actuator-side housing 21, and is located on the outer periphery of the facing surface 31A. The connection surface 31b passes through a bolt hole 31c formed coaxially with the bolt hole 21c.
On the facing surface 31A, the periphery of the hole portion in which the bearing portion 35 is mounted is raised, and a step portion 31d having an upper surface that is substantially rectangular is formed.
 ところで、バルブ軸32を回転自在に支持する軸受部35の内周面と、バルブ軸32の外周面との間には、わずかに隙間が形成される。このため、排気ガス通路34を流れる排気ガスが、この隙間を通って空間Bまで到達して、軸漏れが発生する。図2中には、軸漏れの際の排気ガスの流れFを示している。こうしてバルブ軸32周りから漏れた排気ガスが、接続面21bと接続面31bとの間を通り抜けてEGRバルブ外部に流出することのないように、空間Bには、例えばステンレス鋼で構成されたシール部材40が設けられている。 Incidentally, a slight gap is formed between the inner peripheral surface of the bearing portion 35 that rotatably supports the valve shaft 32 and the outer peripheral surface of the valve shaft 32. For this reason, the exhaust gas flowing through the exhaust gas passage 34 reaches the space B through this gap, and shaft leakage occurs. FIG. 2 shows an exhaust gas flow F at the time of shaft leakage. In this way, the space B is sealed with, for example, stainless steel so that the exhaust gas leaking from the periphery of the valve shaft 32 does not pass between the connection surface 21b and the connection surface 31b and flow out of the EGR valve. A member 40 is provided.
 図4は、シール部材40の斜視図である。段差部31dの上面の外形に沿うように形成されるシール部材40は、略矩形のフレーム状の部材であり、断面がC字状となっている。このC字状の断面の曲線部分を湾曲部41とし、上下の直線部分を平坦部42,43とする。湾曲部41は、フレーム状のシール部材40の内側に向けて凸となっており、平坦部42,43は、湾曲部41の両端からフレーム状のシール部材40の外側に向けて延設されている。一体的に形成された湾曲部41と平坦部42,43は、平坦部42,43の間隔が狭まる方向に押す外力が加わると、弾性変形して当該外力と反対方向に押し返す働きを有する弾性形状となっており、いわゆる板ばねとして機能する。
 平坦部43では、平坦部42から離れる方向に延びる位置決め片(位置決め部)44が設けられている。図4の例では、位置決め片44が、略矩形のシール部材40の各辺の位置に1つずつ設けられて、合計4つ形成される。
FIG. 4 is a perspective view of the seal member 40. The seal member 40 formed along the outer shape of the upper surface of the stepped portion 31d is a substantially rectangular frame-like member, and has a C-shaped cross section. The curved portion of the C-shaped cross section is a curved portion 41, and the upper and lower straight portions are flat portions 42 and 43. The curved portion 41 is convex toward the inside of the frame-shaped seal member 40, and the flat portions 42 and 43 are extended from both ends of the curved portion 41 toward the outside of the frame-shaped seal member 40. Yes. The curved portion 41 and the flat portions 42 and 43 that are integrally formed have an elastic shape that has a function of elastically deforming and pushing back in a direction opposite to the external force when an external force is applied in a direction in which the interval between the flat portions 42 and 43 is reduced. It functions as a so-called leaf spring.
The flat part 43 is provided with a positioning piece (positioning part) 44 extending in a direction away from the flat part 42. In the example of FIG. 4, one positioning piece 44 is provided at each side position of the substantially rectangular sealing member 40, and a total of four positioning pieces 44 are formed.
 図5は、図2におけるシール部材40付近の拡大図である。シール部材40は、バルブ側ハウジング31の対向面31Aに形成された段差部31dに置かれて、平坦部42が、アクチュエータ側ハウジング21の対向面21Aに接触し、平坦部43が、バルブ側ハウジング31の対向面31Aに接触する。このように対向面21A,31Aに接触する平坦部42,43と、平坦部42,43と一体的に形成された湾曲部41とで、接触部が構成される。また、位置決め片44が段差部31dの側面に接触してバルブ軸32に垂直な方向の移動が規制され、対向面31Aでの位置決めがなされる。こうして、シール部材40は、対向面21Aと対向面31Aとの間をシールし、バルブ軸32周りから漏れた排気ガスが外部に流出することを防止している。 FIG. 5 is an enlarged view of the vicinity of the seal member 40 in FIG. The seal member 40 is placed on a step portion 31d formed on the facing surface 31A of the valve-side housing 31, the flat portion 42 contacts the facing surface 21A of the actuator-side housing 21, and the flat portion 43 is formed on the valve-side housing. 31 is in contact with the opposing surface 31A. In this way, the flat portions 42 and 43 that contact the facing surfaces 21A and 31A and the curved portions 41 that are formed integrally with the flat portions 42 and 43 constitute a contact portion. Further, the positioning piece 44 comes into contact with the side surface of the stepped portion 31d to restrict the movement in the direction perpendicular to the valve shaft 32, and positioning on the facing surface 31A is performed. Thus, the seal member 40 seals between the facing surface 21A and the facing surface 31A, and prevents the exhaust gas leaking from the periphery of the valve shaft 32 from flowing out.
 これに対して、従来は、シール部材40を設けずに、接続面21bと接続面31bとの間にシール部材としてガスケットを挟んで段差部31dの周りを囲う構成とすることで、バルブ軸32周りから漏れた排気ガスが外部に流出することを防止していた。このように構成した場合、ボルト22、アクチュエータ側ハウジング21、バルブ側ハウジング31、ガスケットの線膨張係数の差によって、ボルト22の締結力の低下が発生する。つまり、ガスケットは、ボルト22による締結に対し、その締結力が低下するような影響を与えるものとなる。さらに、高温環境下にさらされるEGRバルブでは、マイカ、粘土質材料等で構成されたガスケットが用いられるが、こうした材料の線膨張係数は、アクチュエータ側ハウジング21を構成するアルミニウム、バルブ側ハウジング31を構成する鋳鉄の線膨張係数と大きく異なる。従って、接続面21bと接続面31bとの間にガスケットを挟むことで、ボルト22の締結力が大きく低下していた。 On the other hand, conventionally, the valve shaft 32 is configured by surrounding the stepped portion 31d with a gasket as a seal member between the connection surface 21b and the connection surface 31b without providing the seal member 40. The exhaust gas leaked from the surroundings was prevented from flowing outside. When configured in this manner, the fastening force of the bolt 22 is reduced due to the difference in the linear expansion coefficients of the bolt 22, the actuator side housing 21, the valve side housing 31, and the gasket. That is, the gasket has an effect that the fastening force is reduced when the bolt 22 is fastened. Furthermore, in an EGR valve that is exposed to a high temperature environment, a gasket made of mica, clayey material, or the like is used. The linear expansion coefficient of such a material is the same as that of aluminum constituting the actuator side housing 21 and valve side housing 31. It differs greatly from the linear expansion coefficient of the cast iron. Therefore, the fastening force of the bolt 22 is greatly reduced by sandwiching the gasket between the connection surface 21b and the connection surface 31b.
 本発明では、接続面21bと接続面31bとの間に挟むのではなく、対向面21Aと対向面31Aとが離間して形成された空間Bにシール部材40を設置している。このため、シール部材40がボルト22による締結に対して与える影響を低減することができ、温度変化に起因するボルト22の締結力の低下を抑制することができる。 In the present invention, the sealing member 40 is installed in the space B formed by separating the facing surface 21A and the facing surface 31A, instead of being sandwiched between the connecting surface 21b and the connecting surface 31b. For this reason, the influence which the sealing member 40 has with respect to the fastening with the volt | bolt 22 can be reduced, and the fall of the fastening force of the volt | bolt 22 resulting from a temperature change can be suppressed.
 また、シール部材40は、板ばねとして構成されており、その弾性で平坦部42がアクチュエータ側ハウジング21の対向面21Aに圧接し、平坦部43がバルブ側ハウジング31の対向面31Aに圧接している。従って、温度変化に起因して対向面21Aと対向面31Aとの間隙が変化しても、その変化に追従して対向面21A,31Aとの接触状態を保つことができる。 Further, the seal member 40 is configured as a leaf spring, and due to its elasticity, the flat portion 42 is pressed against the facing surface 21A of the actuator side housing 21 and the flat portion 43 is pressed against the facing surface 31A of the valve side housing 31. Yes. Therefore, even if the gap between the opposing surface 21A and the opposing surface 31A changes due to a temperature change, the contact state with the opposing surfaces 21A and 31A can be maintained following the change.
 なお、シール部材40が対向面21A,31Aに接触していることで、バルブ部30を通過する排気ガスの熱が、シール部材40を介してアクチュエータ側ハウジング21そしてアクチュエータ部10へと伝わる。そこで、この伝熱を抑制するために、シール部材40を、熱伝導率の低い材料で構成することが望ましい。例えばアクチュエータ側ハウジング21を構成するアルミニウムよりも熱伝導率の低い材料、具体的には、既に述べたステンレス鋼でもよいし、他にもマイカ、カーボン等で構成してもよい。また、シール部材40の板厚を、対向面21Aと対向面31Aとの間隙より薄くすることでも、アクチュエータ側ハウジング21への伝熱を抑制することができる。シール部材40の板厚は、例えば0.2mm程度以下と薄くする。 The heat of exhaust gas passing through the valve portion 30 is transmitted to the actuator-side housing 21 and the actuator portion 10 through the seal member 40 because the seal member 40 is in contact with the opposing surfaces 21A and 31A. Therefore, in order to suppress this heat transfer, it is desirable that the seal member 40 is made of a material having low thermal conductivity. For example, a material having lower thermal conductivity than aluminum constituting the actuator-side housing 21, specifically, stainless steel already described may be used, or mica, carbon, or the like may be used. Further, heat transfer to the actuator-side housing 21 can be suppressed by making the plate thickness of the seal member 40 thinner than the gap between the facing surface 21A and the facing surface 31A. The plate thickness of the seal member 40 is reduced to, for example, about 0.2 mm or less.
 また、シール部材40は、対向面21A,31Aに圧接する弾性形状であればよく、図示した形状に限らない。例えば、湾曲部41がフレーム状のシール部材40の内側に向けて凸となるように構成するのではなく、外側に凸となるように構成してもよい。
 また、上記では、位置決め片44は、部分的に合計4つ設けられる構成としたが、シール部材40のフレームの全周から延出させた位置決め壁として、段差部31dの側面の一周を囲うように形成してもよい。
Moreover, the sealing member 40 should just be an elastic shape which press-contacts to opposing surface 21A, 31A, and is not restricted to the shape shown in figure. For example, the curved portion 41 may be configured to be convex outward rather than configured to be convex toward the inside of the frame-shaped seal member 40.
In the above description, a total of four positioning pieces 44 are partially provided. However, as a positioning wall extending from the entire circumference of the frame of the seal member 40, the circumference of the side surface of the step portion 31d is surrounded. You may form in.
 また、上記では、対向面31Aに段差部31dを形成して、段差部31dにシール部材40を置く構成とした。しかしながら、対向面31Aを平坦にするとともに対向面21Aに段差部を形成して、この段差部にシール部材40が置かれ位置決め片44によって対向面21Aでの位置決めがなされるようにしてもよい。 In the above description, the step portion 31d is formed on the facing surface 31A, and the seal member 40 is placed on the step portion 31d. However, the facing surface 31A may be flattened and a stepped portion may be formed on the facing surface 21A, and the sealing member 40 may be placed on the stepped portion and the positioning piece 44 may be positioned on the facing surface 21A.
 また、上記では、接続面21bと接続面31bとが直接的に接触する構成を示した。しかしながら、排気ガスの熱が接続面31bから接続面21bへ伝わるのを抑制するために、接続面21bと接続面31bとの間に熱伝導率の低いプレートを挟んで、接続面21bと接続面31bとが間接的に接触する構成としてもよい。またこの場合は、接続面21bと接続面31bとの間に挟んだプレートによって、ボルト22の締結力がさらに低下することのないように配慮する必要がある。従って、プレートは、熱伝導率が低く、かつ、アクチュエータ側ハウジング21及びバルブ側ハウジング31と線膨張係数が大きく異ならない材料、例えばステンレス鋼で構成される。 Moreover, in the above, the structure which the connection surface 21b and the connection surface 31b contact directly was shown. However, in order to suppress the heat of the exhaust gas from being transmitted from the connection surface 31b to the connection surface 21b, a plate having low thermal conductivity is sandwiched between the connection surface 21b and the connection surface 31b, and the connection surface 21b and the connection surface It is good also as a structure which 31b contacts indirectly. In this case, it is necessary to consider that the fastening force of the bolt 22 is not further reduced by the plate sandwiched between the connection surface 21b and the connection surface 31b. Therefore, the plate is made of a material having a low thermal conductivity and a linear expansion coefficient that is not significantly different from that of the actuator-side housing 21 and the valve-side housing 31, for example, stainless steel.
 また、上記では、流体制御バルブをEGRバルブとして用いる場合を説明したが、EGRバルブ以外のバルブとして用いても構わない。
 また、上記では、バタフライ式の流体制御バルブとして説明したが、ポペット式、フラップ式等の流体制御バルブであってもよい。
In the above description, the fluid control valve is used as the EGR valve. However, the fluid control valve may be used as a valve other than the EGR valve.
In the above description, the butterfly type fluid control valve has been described, but a poppet type, flap type, or other fluid control valve may be used.
 以上のように、この実施の形態1に係る流体制御バルブによれば、シール部材40は、アクチュエータ側ハウジング21とバルブ側ハウジング31をボルト22で締結した際に接触する接続面21bと接続面31bとの間ではなく、対向面21Aと対向面31Aとが離間して形成される空間Bに設けられる。従って、温度変化に起因するボルト22の締結力の低下を抑制しつつ、バルブ軸32周りから漏れた排気ガスが外部に流出することを防止することができる。 As described above, according to the fluid control valve according to the first embodiment, the seal member 40 has the connection surface 21b and the connection surface 31b that come into contact when the actuator-side housing 21 and the valve-side housing 31 are fastened with the bolts 22. The opposed surface 21 </ b> A and the opposed surface 31 </ b> A are provided in a space B formed apart from each other. Accordingly, it is possible to prevent the exhaust gas leaking from the periphery of the valve shaft 32 from flowing out to the outside while suppressing a decrease in the fastening force of the bolt 22 due to the temperature change.
 また、シール部材40は、対向面21A,31Aへの取り付け位置を位置決めする位置決め片44を備えることとした。従って、シール部材40が容易に位置決めされる。 Further, the seal member 40 is provided with a positioning piece 44 for positioning the mounting position on the facing surfaces 21A and 31A. Therefore, the seal member 40 is easily positioned.
 また、シール部材40は、対向面21A,31Aに接触する接触部が弾性形状を有し、接触部は、対向面21A,31Aのそれぞれに圧接していることとした。従って、シール部材40は対向面21A,31Aとの接触状態を保ち、対向面21Aと対向面31Aとの間を常にシールすることができる。 Further, in the sealing member 40, the contact portions that contact the opposing surfaces 21A and 31A have an elastic shape, and the contact portions are in pressure contact with the opposing surfaces 21A and 31A, respectively. Therefore, the seal member 40 can maintain a contact state with the opposing surfaces 21A and 31A, and can always seal between the opposing surface 21A and the opposing surface 31A.
 また、シール部材40は、アクチュエータ側ハウジング21より熱伝導率が低い材料および対向面21Aと対向面31Aとの間隙より薄い厚さで構成されることとした。従って、バルブ側ハウジング31を流れる流体の熱が、シール部材40を介してアクチュエータ部10へと伝わるのを抑制することができる。 The seal member 40 is made of a material having a lower thermal conductivity than the actuator-side housing 21 and a thickness thinner than the gap between the facing surface 21A and the facing surface 31A. Therefore, the heat of the fluid flowing through the valve side housing 31 can be prevented from being transmitted to the actuator unit 10 via the seal member 40.
 また、この実施の形態1に係る流体制御バルブをEGRバルブとして用いることで、循環させる排気ガスが高温であっても、締結力の低下を抑制しつつ、排気ガスが外部に流出することを防止することができる。 In addition, by using the fluid control valve according to the first embodiment as an EGR valve, even if the exhaust gas to be circulated is at a high temperature, the exhaust gas is prevented from flowing out while suppressing a decrease in fastening force. can do.
 なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 In the present invention, any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
 以上のように、この発明に係る流体制御バルブは、高温環境下にさらされても、温度変化に起因するボルトの締結力の低下を抑制しつつ、バルブ軸周りから漏れた流体が外部に流出することを防止することができるため、例えば高温の排気ガスが内部を流れるEGRバルブとして用いるのに適している。 As described above, in the fluid control valve according to the present invention, even when exposed to a high temperature environment, the fluid leaking from the periphery of the valve shaft flows out to the outside while suppressing a decrease in the fastening force of the bolt due to the temperature change. For example, it is suitable for use as an EGR valve through which high-temperature exhaust gas flows.
 10 アクチュエータ部、11 モータ、20 駆動力伝達部、21 アクチュエータ側ハウジング(第2のハウジング)、21A 対向面、21a 貫通穴、21b 接続面、21c ボルト穴、22 ボルト、23 冷却通路、30 バルブ部、31 バルブ側ハウジング(第1のハウジング)、31A 対向面、31a 貫通穴、31b 接続面、31c ボルト穴、31d 段差部、32 バルブ軸、33 バルブ、34 排気ガス通路(流体通路)、35 軸受部、40 シール部材、41 湾曲部、42,43 平坦部、44 位置決め片(位置決め部)。 10 actuator section, 11 motor, 20 driving force transmission section, 21 actuator side housing (second housing), 21A facing surface, 21a through hole, 21b connection surface, 21c bolt hole, 22 bolt, 23 cooling passage, 30 valve section , 31 Valve side housing (first housing), 31A facing surface, 31a through hole, 31b connection surface, 31c bolt hole, 31d step, 32 valve shaft, 33 valve, 34 exhaust gas passage (fluid passage), 35 bearing Part, 40 sealing member, 41 curved part, 42, 43 flat part, 44 positioning piece (positioning part).

Claims (5)

  1.  バルブにより開閉される流体通路を有する第1のハウジングと、
     前記第1のハウジングと互いの対向面を離間させて締結される第2のハウジングと、
     前記第2のハウジングに取り付けられ、駆動力を発生するアクチュエータ部と、
     前記第1のハウジングの前記対向面と前記第2のハウジングの前記対向面とを貫通する貫通穴に挿入され、前記アクチュエータ部の駆動力を受けて前記バルブを開閉させるバルブ軸とを備えた流体制御バルブにおいて、
     前記第1のハウジングの前記対向面と前記第2のハウジングの前記対向面との間に設けられ、双方の前記対向面に接触して対向面間をシールするシール部材を備えたことを特徴とする流体制御バルブ。
    A first housing having a fluid passage opened and closed by a valve;
    A second housing fastened to the first housing with the opposing surfaces spaced apart from each other;
    An actuator unit attached to the second housing and generating a driving force;
    A fluid provided with a valve shaft that is inserted into a through-hole penetrating the opposing surface of the first housing and the opposing surface of the second housing, and that opens and closes the valve by receiving the driving force of the actuator unit. In the control valve,
    A seal member is provided between the facing surface of the first housing and the facing surface of the second housing, and seals between the facing surfaces by contacting both of the facing surfaces. Fluid control valve.
  2.  前記シール部材は、前記対向面への取り付け位置を位置決めする位置決め部を備えたことを特徴とする請求項1記載の流体制御バルブ。 The fluid control valve according to claim 1, wherein the seal member includes a positioning portion for positioning an attachment position on the facing surface.
  3.  前記シール部材は、双方の前記対向面に接触する接触部が弾性形状を有し、
     前記接触部は、双方の前記対向面のそれぞれに圧接していることを特徴とする請求項1記載の流体制御バルブ。
    The seal member has an elastic shape at a contact portion that contacts both the opposed surfaces,
    The fluid control valve according to claim 1, wherein the contact portion is in pressure contact with both of the opposing surfaces.
  4.  前記シール部材は、前記第2のハウジングより熱伝導率が低い材料および前記対向面の間隙より薄い厚さで構成されていることを特徴とする請求項1記載の流体制御バルブ。 The fluid control valve according to claim 1, wherein the seal member is made of a material having a lower thermal conductivity than the second housing and a thickness thinner than a gap between the opposing surfaces.
  5.  排気ガス再循環バルブであることを特徴とする請求項1記載の流体制御バルブ。 The fluid control valve according to claim 1, wherein the fluid control valve is an exhaust gas recirculation valve.
PCT/JP2014/079102 2014-10-31 2014-10-31 Fluid control valve WO2016067463A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016556166A JP6230723B2 (en) 2014-10-31 2014-10-31 Fluid control valve
PCT/JP2014/079102 WO2016067463A1 (en) 2014-10-31 2014-10-31 Fluid control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079102 WO2016067463A1 (en) 2014-10-31 2014-10-31 Fluid control valve

Publications (1)

Publication Number Publication Date
WO2016067463A1 true WO2016067463A1 (en) 2016-05-06

Family

ID=55856843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079102 WO2016067463A1 (en) 2014-10-31 2014-10-31 Fluid control valve

Country Status (2)

Country Link
JP (1) JP6230723B2 (en)
WO (1) WO2016067463A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106015656A (en) * 2016-06-29 2016-10-12 中材高新成都能源技术有限公司 Overcurrent protection integrated valve
WO2019244346A1 (en) * 2018-06-22 2019-12-26 三菱電機株式会社 Exhaust gas recirculation valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488263A (en) * 1990-07-31 1992-03-23 Toyota Motor Corp Installation structure for metal gasket
JPH04252850A (en) * 1991-01-25 1992-09-08 Fuji Oozx Kk Exhaust gas recirculation system for internal combustion engine
JP2008064028A (en) * 2006-09-07 2008-03-21 Denso Corp Air control valve
JP2008196437A (en) * 2007-02-15 2008-08-28 Denso Corp Exhaust gas control valve
JP2013181476A (en) * 2012-03-02 2013-09-12 Denso Corp Egr apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925749U (en) * 1982-08-10 1984-02-17 株式会社中北製作所 cage type control valve
JPS6077855U (en) * 1983-11-04 1985-05-30 旭硝子株式会社 Butterfly valve for high temperature
JP6037684B2 (en) * 2012-07-02 2016-12-07 三菱日立パワーシステムズ株式会社 Steam turbine equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488263A (en) * 1990-07-31 1992-03-23 Toyota Motor Corp Installation structure for metal gasket
JPH04252850A (en) * 1991-01-25 1992-09-08 Fuji Oozx Kk Exhaust gas recirculation system for internal combustion engine
JP2008064028A (en) * 2006-09-07 2008-03-21 Denso Corp Air control valve
JP2008196437A (en) * 2007-02-15 2008-08-28 Denso Corp Exhaust gas control valve
JP2013181476A (en) * 2012-03-02 2013-09-12 Denso Corp Egr apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106015656A (en) * 2016-06-29 2016-10-12 中材高新成都能源技术有限公司 Overcurrent protection integrated valve
WO2019244346A1 (en) * 2018-06-22 2019-12-26 三菱電機株式会社 Exhaust gas recirculation valve

Also Published As

Publication number Publication date
JPWO2016067463A1 (en) 2017-04-27
JP6230723B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6062129B2 (en) Fluid control valve
JP5404927B2 (en) Fluid control valve
US9140381B2 (en) Butterfly valve
RU2495314C2 (en) Sealing assembly to be used with valves having two-section cage
US20140252259A1 (en) Butterfly valve
US20120193562A1 (en) Structure for reducing axial leakage of valve
JP2010528213A (en) Valve module for a combustion engine breathing system
JP5355792B2 (en) Step type valve
US9638141B2 (en) Exhaust gas valve device for an internal combustion engine
EP3444466A1 (en) Valve body, electronically controlled throttle body, motor-driven throttle body, and valve device
JP6230723B2 (en) Fluid control valve
JP4606757B2 (en) EGR valve device
US20170211722A1 (en) Fluid control valve
JP6091364B2 (en) Exhaust gas recirculation valve
US10294896B2 (en) Flap device for an internal combustion engine
JP4842203B2 (en) Exhaust valve seal structure
JP6239615B2 (en) Engine control valve with improved seal
JPWO2008146432A1 (en) Valve device
JP2005036882A (en) Double poppet type valve device
JP2021025513A (en) EGR valve
JP2013181476A (en) Egr apparatus
WO2017154204A1 (en) Valve device
JP2018511005A (en) Valve devices installed in automobiles
KR101602680B1 (en) Thermostat for engine
JP2007177699A (en) Diesel engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904643

Country of ref document: EP

Kind code of ref document: A1