WO2016067357A1 - Measurement method and measurement device - Google Patents

Measurement method and measurement device Download PDF

Info

Publication number
WO2016067357A1
WO2016067357A1 PCT/JP2014/078574 JP2014078574W WO2016067357A1 WO 2016067357 A1 WO2016067357 A1 WO 2016067357A1 JP 2014078574 W JP2014078574 W JP 2014078574W WO 2016067357 A1 WO2016067357 A1 WO 2016067357A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
slit
measured
slab
Prior art date
Application number
PCT/JP2014/078574
Other languages
French (fr)
Japanese (ja)
Inventor
太田 佳孝
Original Assignee
株式会社ニレコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニレコ filed Critical 株式会社ニレコ
Priority to PCT/JP2014/078574 priority Critical patent/WO2016067357A1/en
Publication of WO2016067357A1 publication Critical patent/WO2016067357A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present invention provides a measurement method for obtaining a captured image including reflected light of a light cutting line when measuring the shape of a measured object such as a long slab or rolled material having a quadrangular cross section having four surfaces. And a measuring device.
  • the corner of the tip of the rolled material fed out from the rolling mill has an extruded shape as shown in FIG. 20 (the white portion facing downward indicates the tip of the rolled material). Since such a tip portion becomes a defective portion that cannot be used as a product, the defective portion is cut out. At this time, it is important to calculate how much weight the material after the defective part is cut out, but there was no effective method for measuring this during conveyance.
  • a plurality of contact-type sensors 50 are arranged around the conveyance path of the slab 10 conveyed in the Y direction, and the slab 10 passes therethrough.
  • the shape distortion of the slab 10 is detected by sequentially detecting each unit transport distance of the slab 10. To do.
  • non-contact distance meter 60 Use of non-contact distance meter This is because, as shown in FIG. 22, a plurality of non-contact distance meters 60 are arranged around the conveyance path of the slab 10 conveyed in the Y direction. The shape distortion of the slab 10 is detected by sequentially measuring the distance data between the slab 10 obtained by the measurement at 60 and the non-contact distance meter 60 for each unit transport distance of the slab 10. Is.
  • the self-light emission generated by the slab 10 conveyed in the Y direction is photographed by a line sensor camera 81 arranged on the upper part of the slab 10, and The shape is measured.
  • Reference numeral 83 denotes an attachment column
  • 84 denotes an attachment beam.
  • the image 85 obtained by the line sensor camera 81 is an image in which a portion corresponding to the lateral width of the slab 10 (the width in the direction orthogonal to the conveying direction) is a self-luminous portion 85a.
  • the presence or absence of the shape distortion of the slab 10 can be determined from the data of the length B of the portion 85a in the drawing and the data of both end positions B1 and B2. Even if the line sensor camera 81 is integrated with the light source 82 and the reflected light when the light source 82 irradiates the slab 10 is imaged by the line sensor camera 81, the shape distortion of the slab 10 is similarly determined. be able to.
  • the slit light P ⁇ b> 1 is irradiated in the width direction of the slab 10.
  • the slit light P1 can be generated, for example, by passing a point laser beam through a cylindrical lens.
  • the reflected light of the slit light P1 becomes an image whose position is changed in accordance with the unevenness of the surface of the slab 10.
  • This image is the optical cutting line T0, and the optical cutting line T0 is imaged by the imaging device 22 arranged so that the sandwiching angle ⁇ between the surface of the slit light P1 is 25 ° to 160 °. Then, the shape of the slab 10 on the optical cutting line T0 is measured from the positional relationship between the light source 21 and the imaging device 22, the shape of the optical cutting line T0 on the captured image W, and the like. By performing this measurement operation for each unit transport distance of the slab 10 along the transport direction indicated by Y of the slab 10, the three-dimensional shape of the surface of the slab 10 can be measured (Patent Literature). 1).
  • disconnects for every predetermined weight and is single-piece
  • the said weight was calculated by multiplying theoretical cross-sectional area by length and specific gravity. Then, the calculated value is multiplied by a safety factor to obtain a weight larger than the predetermined weight, and is cut into a long piece to be a single product.
  • “(1) Use of contact type sensor” described in FIG. 21 is a contact type, not only distortion of the slab 10 but also warpage of the slab 10 and vibration during conveyance are detected. there is a possibility. Moreover, depending on the form of the shape distortion of the slab 10, the slab 10 may not be in contact with the contact sensor 50, and the shape distortion may not be measured. Furthermore, accurate distortion information such as what shape and how many millimeters the slab 10 is distorted cannot be extracted.
  • “(2) Use of non-contact type sensor” described in FIG. 22 connects the distance information of one point to the slab 10 measured by each non-contact type sensor 60 to connect the shape of the slab 10 to each other. Since it is estimated, a measurement error occurs due to the influence of the curvature of the surface of the slab 10, as shown in FIG. 10a is an angle line of the surface obtained by measurement, and 10b is a correct angle line. Further, as shown in FIG. 27 (b), if the measurement point changes due to vibration during the conveyance of the slab 10, a measurement error also occurs. 10a1 is an uppermost position, 10a2 is an intermediate position, and 10a3 is an angle line obtained by measurement, respectively.
  • 10b1 is a correct angle line at the highest position
  • 10b2 is an intermediate position
  • 10b3 is a lowest position.
  • 10c is a measurement point by a non-contact type sensor among a plurality of non-contact type sensors 60
  • 10d is a measurement point by another non-contact type sensor.
  • the distance to the surface is measured while scanning the surface of the slab 10 conveyed at a predetermined speed at a constant period.
  • the scanning speed is not sufficiently high with respect to the conveyance speed of the slab 10
  • the scanning trajectory 10e greatly deviates from 90 ° with respect to the conveyance direction of the slab 10, and thus accurate geometric distortion is measured. I can't.
  • air fluctuations occur, so that the distance measurement from the scan type distance meter 90 to the surface of the slab 10 becomes inaccurate, and a measurement error similarly occurs.
  • An object of the present invention is to provide a measuring method capable of accurately acquiring a light cutting line for obtaining a shape, an angle, etc. of an object to be measured such as a slab or a rolled material in a method using a light cutting method. And providing a measuring device.
  • a measurement method is a quadrangular cross-sectional shape having a first surface, a second surface, a third surface, and a fourth surface in the circumferential direction.
  • slit light is emitted from the first light source toward the first surface and the second surface from the direction perpendicular to the conveying direction in the longitudinal direction of the object to be measured.
  • the first captured image including the reflected light of the first light cutting line on the first surface and the second surface generated by the irradiation of the slit light of the first light source is the first captured image.
  • the first light source When acquiring with the first imaging device in which the optical axis is inclined in the transport direction or the opposite direction at a predetermined sandwich angle with respect to the slit light surface of the light source, the first light source is the first light source.
  • the central optical axis of the slit light of the light source is a corner portion that forms the boundary between the first surface and the second surface of the object to be measured.
  • Direction and, and the allowable maximum angle of inclination of the directivity is set so as to be 45 ° ⁇ 25 ° with respect to parallel imaginary plane to said first surface, it is characterized.
  • the invention according to claim 2 is the measurement method according to claim 1, from the direction orthogonal to the transport direction in the longitudinal direction of the object to be measured, toward the third surface and the fourth surface.
  • a second light source irradiates slit light from the second light source, and includes second light including a reflected light of a second light cutting line on the third surface and the fourth surface generated by irradiation of the slit light of the second light source.
  • the center optical axis of the slit light of the second light source is directed to the corner portion forming the boundary between the third surface and the fourth surface of the object to be measured, and the inclination of the direction
  • the maximum allowable angle is set to 45 ° ⁇ 25 ° with respect to a virtual plane parallel to the third surface.
  • the invention according to claim 3 is the measurement method according to claim 2, from the direction orthogonal to the conveying direction to the longitudinal direction of the object to be measured, toward the second surface and the third surface,
  • the third light source irradiates the slit light, and includes the second surface generated by the slit light irradiation of the third light source and the reflected light of the third light cutting line on the third surface.
  • the center light axis of the slit light of the third light source is directed to the corner portion that forms the boundary between the second surface and the third surface of the object to be measured, and the inclination of the direction Is set so that an allowable maximum angle of 45 ° ⁇ 25 ° with respect to a virtual plane parallel to the second surface,
  • a slit light is irradiated by a fourth light source toward the fourth surface and the first surface from a direction perpendicular to the conveyance direction in the longitudinal direction of the measurement object, and the slit light of the fourth light source
  • a fourth captured image including the reflected light of the fourth light cutting line on the fourth surface and the first surface generated by irradiation is sandwiched with a predetermined surface of the slit light surface of the fourth light source.
  • the fourth light source When acquiring with the fourth imaging device in which the optical axis is inclined in the transport direction or the opposite direction at an angle, the fourth light source is connected to the center optical axis of the slit light of the fourth light source.
  • the angle of the object forming the boundary between the fourth surface and the first surface is pointed, and the allowable maximum angle of inclination of the directivity is 45 ° with respect to a virtual surface parallel to the fourth surface. It is set to be ⁇ 25 °.
  • the slit light of each of the first light source and the second light source is on a surface orthogonal to the transport direction of the object to be measured.
  • Each of the slit light beams of the third light source and the fourth light source overlaps a plane orthogonal to the transport direction of the object to be measured, and the first light source and the second light source respectively The plane orthogonal to the conveyance direction of the measurement object of the slit light and the plane orthogonal to the conveyance direction of the measurement object of the slit light of each of the third light source and the fourth light source are shifted.
  • the first to fourth light sources are arranged.
  • each slit light of the first light source to the fourth light source is on a surface orthogonal to the transport direction of the object to be measured.
  • the first to fourth light sources are arranged so as to overlap each other.
  • a cross-sectional area of the object to be measured is obtained based on the first to fourth optical cutting lines, and the cross-sectional area is obtained. Is integrated by a predetermined length in the longitudinal direction of the object to be measured to obtain a volume per predetermined length of the object to be measured, and based on the volume and the specific gravity of the object to be measured, the predetermined of the object to be measured The weight per length is obtained.
  • the invention according to claim 7 is the measuring method according to any one of claims 1 to 6, wherein the slit light is replaced with scanning light for scanning spot light, and the central optical axis is scanned with the scanning light.
  • the optical axis passing through the center between both ends of the range is replaced.
  • the invention according to claim 8 is the measuring method according to any one of claims 1 to 7, wherein the object to be measured is a slab or a rolled material.
  • a measuring device is a long object to be measured having a quadrangular cross section having a first surface, a second surface, a third surface, and a fourth surface in this order in the circumferential direction.
  • a first light source that irradiates slit light toward the first surface and the second surface from a direction orthogonal to the conveyance direction in the longitudinal direction of the object to be measured, and the first light source
  • the optical axis is inclined in the transport direction or the opposite direction at a predetermined sandwich angle with respect to the surface of the slit light of the first light source and the second surface generated by the slit light irradiation of the first light source.
  • a first imaging device that acquires a first captured image including reflected light of a first light cutting line on a surface, wherein the first light source is a central optical axis of slit light of the first light source, Directing the corner portion forming the boundary between the first surface and the second surface of the object to be measured, and allowing the inclination of the direction Large angle was set to be 45 ° ⁇ 25 ° with respect to parallel imaginary plane to said first surface, characterized in that.
  • the invention according to claim 10 is the measuring apparatus according to claim 9, wherein the slit is directed from the direction orthogonal to the conveying direction to the longitudinal direction of the object to be measured toward the third surface and the fourth surface.
  • the optical axis is inclined in the transport direction or the opposite direction at a predetermined sandwich angle with respect to the surface of the second light source for irradiating light and the slit light of the second light source, and the slit light of the second light source
  • the second light source further includes a second imaging device that acquires a second captured image including the reflected light of the second light cutting line on the third surface and the fourth surface generated by irradiation of the second light source.
  • the central optical axis of the slit light of the second light source is directed to the corner portion forming the boundary between the third surface and the fourth surface of the object to be measured, and the inclination of the directivity is allowed.
  • a maximum angle is set to be 45 ° ⁇ 25 ° with respect to a virtual plane parallel to the third surface; And wherein the door.
  • the measuring apparatus wherein the slit is directed from the direction orthogonal to the longitudinal conveying direction of the object to be measured toward the second surface and the third surface.
  • a third light source for irradiating light and an optical axis inclined in the transport direction or the opposite direction at a predetermined sandwich angle with respect to the surface of the slit light of the third light source, and the slit light of the third light source A third imaging device that obtains a third captured image that includes the reflected light of the third optical cutting line on the second surface and the third surface caused by the irradiation, and the longitudinal direction of the object to be measured
  • a fourth light source that irradiates slit light toward the fourth surface and the first surface from a direction orthogonal to the conveying direction to the first surface, and a predetermined surface with respect to the slit light surface of the fourth light source.
  • An optical axis is inclined in the conveying direction or the opposite direction at a sandwiching angle
  • the fourth light source A fourth imaging device that obtains a fourth captured image including reflected light of the fourth optical section line on the fourth surface and the first surface generated by irradiation of slit light;
  • the center light axis of the slit light of the third light source is directed to the corner portion that forms the boundary between the second surface and the third surface of the object to be measured, and the inclination of the direction Is set to be 45 ° ⁇ 25 ° with respect to a virtual plane parallel to the second surface, and the fourth light source has a center optical axis of slit light of the fourth light source,
  • the virtual object is directed to a corner portion that forms a boundary between the fourth surface and the first surface of the object to be measured, and an allowable maximum inclination angle of the directivity is parallel to the fourth surface. It is set to be 45 ° ⁇ 25 °.
  • the slit light of each of the first light source and the second light source is on a surface orthogonal to the conveyance direction of the measurement object.
  • Each of the slit light beams of the third light source and the fourth light source overlaps a plane orthogonal to the transport direction of the object to be measured, and the first light source and the second light source respectively The plane orthogonal to the conveyance direction of the measurement object of the slit light and the plane orthogonal to the conveyance direction of the measurement object of the slit light of each of the third light source and the fourth light source are shifted.
  • the first to fourth light sources are arranged.
  • each slit light of the first light source to the fourth light source is on a surface orthogonal to the transport direction of the object to be measured.
  • the first to fourth light sources are arranged so as to overlap.
  • the slit light is replaced with scanning light that scans spot light, and the central optical axis is scanned by the scanning light.
  • the optical axis passing through the center between both ends of the range is replaced.
  • the invention according to claim 15 is the measuring apparatus according to any one of claims 9 to 14, wherein the object to be measured is a slab or a rolled material.
  • the first light source is directed to the corner portion where the center optical axis of the slit light of the first light source forms the boundary between the first surface and the second surface of the object to be measured, and Since the allowable maximum angle of the inclination of the directivity is set to 45 ° ⁇ 25 ° with respect to a virtual surface parallel to the first surface, the first surface and the second surface adjacent to the object to be measured are set.
  • the light cutting line can be obtained accurately. Therefore, it is possible to accurately measure the shape of the first surface and the second surface of the object to be measured and the angle of the corner that forms the boundary between the first surface and the second surface.
  • FIG. 1 shows the configuration of the measurement method of the first embodiment.
  • the object to be measured is a slab 10.
  • the slab 10 has a quadrangular cross-sectional shape and is conveyed in a direction perpendicular to the paper surface.
  • the slab 10 has a normal shape (square or rectangular)
  • the upper surface 11 and the lower surface 13 are flat and parallel to each other
  • the right side surface 12 and the left side surface 14 are also parallel to each other.
  • the angle of the corner 15 that forms the boundary between the upper surface 11 and the right side 12 of the slab 10 the angle of the corner 16 that forms the boundary between the right side 12 and the lower surface 13, and the lower surface 13 and the left side 14
  • the angle of the corner 17 that forms the boundary and the angle of the corner 18 that forms the boundary between the left side surface 14 and the upper surface 11 are each 90 °.
  • the measuring device for measuring the shape includes an optical sensor 20 and a measurement control device 30 as shown in FIG.
  • the optical sensor 20 includes a light source 21, an imaging device 22, and a filter 23.
  • the light source 21 includes a laser light source and a cylindrical lens for converting a point laser beam having a wavelength ⁇ generated by the laser light source into slit light P1.
  • This wavelength ⁇ is a wavelength that can be distinguished from the self-emission and ambient light of the slab 10.
  • the light source 21 has a central optical axis P0 of the slit light P1 directed to the corner 15 forming the boundary between the upper surface 11 and the right side surface 12 of the slab 10 and
  • the inclination angle ⁇ of the inclination is set to be 45 ° with respect to the virtual surface M parallel to the upper surface 11.
  • the surface of the slit light P1 of the light source 21 is installed so as to be in a direction (horizontal direction on the paper surface in FIG. 1) orthogonal to the conveyance direction of the slab 10 (a direction perpendicular to the paper surface in FIG. 1). .
  • the slit light P1 projected on the upper surface 11 of the slab 10 faces the direction orthogonal to the conveyance direction of the slab 10, and the slit light P1 projected on the right side 12 is also orthogonal to the conveyance direction of the slab 10. It will turn in the direction.
  • the imaging device 22 is composed of, for example, a two-dimensional CCD camera, and its optical axis overlaps the optical axis center P0 of the light source 21 in the direction along the conveying direction of the cast piece 10. Further, the optical axis of the slab 10 is such that the sandwiching angle ⁇ between the upper surface 11 and the right side surface 12 of the slab 10 is 8 ° to 20 ° with respect to the surface of the slit light P1 of the light source 21. Or, it is installed inclining in the opposite direction (see FIG. 26 for the meaning of the sandwiching angle ⁇ ).
  • the imaging range of the imaging device 22 is set so that the range including the total reflected light of the slit light P1 can be imaged.
  • the passing wavelength of the filter 23 is set to ⁇ so that only the reflected light of the slit light P1 having the wavelength ⁇ out of the total light incident from the slab 100 is sent to the imaging device 22.
  • the measurement control device 30 includes an imaging control unit 31 that controls operations of the light source 21 and the imaging device 22, a memory 32 that stores an image captured by the imaging device 31, and an image stored in the memory 32 to analyze the slab 10.
  • the image recognition unit 33 for creating the shape profile of the upper surface 11 and the right side surface 12 of the image display unit 33 and the display 34 for displaying the image stored in the memory 32 and the shape profile created by the image recognition unit 31 are provided.
  • the memory 32 is composed of, for example, a frame memory, and stores an image that has been transmitted from the imaging device 22 but is composed of, for example, 1280 ⁇ 1024 pixels.
  • the image recognition unit 33 extracts a light cutting line from the reflected light in the image stored in the memory 32, and calculates data of the coordinates (X coordinate and Y coordinate) of the light cutting line.
  • the X coordinate is a coordinate in the width direction of the slab 10 (the direction from the corner 18 to the corner 15 and the direction from the corner 15 to the corner 16)
  • the Y coordinate is a coordinate in the conveying direction of the slab 10.
  • the image recognition unit 33 calculates the shape profiles of the upper surface 11 and the right side surface 12 of the slab 10 based on the image coordinate data.
  • the calculated image profile is normalized and stored in the memory 32 as two-dimensional (X coordinate and Z coordinate) normalized coordinate data or displayed on the display 34.
  • the Z coordinate is a coordinate in the thickness direction of the slab 10 from the upper surface 11 of the slab 10 and in the thickness direction of the slab 10 from the right side surface 12.
  • FIG. 3 is a flowchart showing the operation of the measuring apparatus. Hereinafter, the operation of the measuring apparatus will be described with reference to FIG.
  • imaging processing (step S11) is performed. Specifically, the light source 21 irradiates the slit light P1 on the upper surface 11 and the right side surface 12 of the slab 10, and the imaging device 22 images reflected light having a wavelength ⁇ in the region where the slit light P1 is irradiated, and images the image. The obtained image is transmitted to the measurement control device 30. The image transmitted to the measurement control device 30 is stored in the memory 32.
  • the image recognition unit 33 performs an operation of removing disturbance factor noise from the image showing the light cutting line (step S12).
  • the fluctuation portion TA or the chipped portion TB is generated in the pattern TX showing the light cutting line due to the heat generation of the slab 10, water vapor, smoke or the like, it can be taken out by one imaging.
  • an operation such as approximate complement is performed on the fluctuation portion TA or the missing portion TB, thereby performing image correction that makes the pattern X segment a continuous line segment.
  • the noise component is removed by smoothing the image data.
  • a moving average filter, a Gaussian filter, a median filter, or the like can be used.
  • small pattern noise is removed by binarizing the processed image as necessary and then performing a contraction / expansion process.
  • Shrinkage processing is processing that replaces all surrounding pixels with black if there is even one pixel around the pixel of interest, and expansion processing is whitening if there is even one pixel around the pixel of interest and white pixels. It is a process to replace with. As a result, the pattern TX can be further clarified.
  • This thinning process is a process for ensuring the continuity of the pattern TX. By this thinning process, only one pixel of the pattern TX that constitutes the light cutting line is left, and the other pixels are deleted. Is extracted.
  • the image recognition unit 33 extracts a light cutting line (step S13).
  • the image recognition unit 33 extracts the light cutting line from the coordinate data of each position of the continuous line pattern TX.
  • the image recognition unit 33 calculates the shapes and the like of the upper surface 11 and the right side surface 12 of the cast slab 10 as the object from the extracted shape of the optical cutting line (step S14).
  • the lengths L1 and L2 of straight lines connecting the vertex coordinates Q1 and the end point coordinates Q2 and Q3 in the coordinate data of the light cutting lines T1 and T2 extracted from the pattern TX are obtained.
  • L1 and L2 are an inclination angle ⁇ of the slit light P1 of the light source 21 with respect to the virtual surface M of the central optical axis P0, a sandwich angle ⁇ between the central optical axis P0 and the optical axis of the imaging device 22, and a slab from the imaging device 22 20 from the distance to the corner 15.
  • L ⁇ b> 1 indicates the width value of the upper surface 11 of the slab 10
  • L ⁇ b> 2 indicates the width value of the right side surface 12 of the slab 10.
  • an inclined line R1 approximating the optical cutting line T1 passing through the coordinates Q1 and Q2 by a linear expression is obtained
  • an inclined line R2 approximating the optical cutting line T2 passing through the coordinates Q1 and Q3 by a linear expression is obtained.
  • the sandwiching angle ⁇ between the two lines R1, R2 is obtained.
  • This angle ⁇ is the angle of the corner 15 that forms the boundary between the upper surface 11 and the right side surface 12 of the slab 10.
  • angular part 18 of the slab 10 is calculated
  • the above lengths L1, L2, L3 and angle ⁇ are compared with a preset reference value of the slab 10.
  • the optical sensor 20 has an inclination angle ⁇ of the central optical axis P0 of the slit light P1 with respect to a virtual plane M parallel to the upper surface 11 of the slab 10, as shown in FIG. It set so that it might become (degree), and the shape of the width direction of the upper surface 11 and the right side surface 12 of the slab 10 was acquired.
  • FIG. 7 shows a characteristic diagram showing the calculation results for the angle ⁇ of the corner 15 of the slab 10 obtained in this way.
  • the slab 10 is intended for the corner 15 having an angle ⁇ of 90 °, the slab 10 is transported only for a time of 750 msec in the characteristic diagram shown in FIG. 7 (unit transport distance).
  • the average value of the angles ⁇ obtained every 10 mm) is 89.99 °. That is, the maximum error of the angle ⁇ is 0.1 ° or less.
  • the laser beam constituting the slit light P1 varies in luminance due to spec noise. As can be seen from the characteristic diagram of FIG. 7, when the inclination angle ⁇ of the sensor 20 is 45 °, The measurement error of the angle ⁇ is extremely small.
  • FIG. 8 is a captured image obtained at that time (left and right and up and down are reversed from those in FIG. 6). According to this, the light cutting lines T1 and T2 are clearly imaged, and the vertex coordinate Q1 of the light quantity distribution PQ has the highest value. It can also be seen that the total light quantity of the light cutting lines T1 and T2 exceeds the measurement limit light quantity PL (when it is below this measurement limit light quantity PL, it is greatly affected by noise and difficult to discriminate). Further, the images of the end point coordinates Q2 and Q3 of the light cutting lines T1 and T2 can be stably captured. The end point position PE of the end point Q3 is also clear.
  • the optical sensor 20 is set so that the inclination angle ⁇ of the central optical axis P0 of the slit light P1 is 45 ° + 25 ° with respect to a virtual surface M parallel to the upper surface 11 of the slab 10.
  • FIG. 6 is a characteristic diagram showing the calculation result of the angle ⁇ of the corner 15 detected at that time. Also here, the average value of the angle ⁇ obtained by conveying the slab 10 for a time of 750 msec every 10 msec (unit conveyance distance 10 mm) is 90.05 °, and the maximum error of the angle ⁇ is 0.1 °. It is as follows.
  • FIG. 10 is a captured image obtained at that time. According to this, although the light cutting line T2 of the right side surface 12 of the slab 10 is thin, the light quantity distribution of the vertex coordinate Q1 is clear. It can also be seen that the total light quantity in the light quantity distribution PQ of the light cutting lines T1, T2 exceeds the measurement limit light quantity PL. Further, the images of the end point coordinates Q2 and Q3 of the light cutting lines T1 and T2 can be stably captured. The end point position PE of the end point Q3 is also clear.
  • FIG. 11 the optical sensor 20 is set so that the inclination angle ⁇ of the central optical axis P0 of the slit light P1 is 45 ° + 30 ° with respect to a virtual surface M parallel to the upper surface 11 of the slab 10.
  • FIG. 6 is a characteristic diagram showing the calculation result of the angle ⁇ of the corner 15 detected at that time.
  • the slab 10 is intended for the corner 15 having an angle of 90 °, but the slab 10 is transported for a time of 750 msec and the average angle ⁇ obtained every 10 msec (unit transport distance 10 mm) is obtained.
  • the value is 90.00 °, and the maximum error of the angle ⁇ is about 0.5 °.
  • FIG. 12 is a captured image obtained at that time.
  • the reflected light of the upper surface 11 of the slab 10 is obtained sufficiently clearly and the light cutting line T1 is clear, but the reflected light of the right side surface 12 is barely imaged, and the coordinates Q1 and Q3
  • the light cutting line T2 between them is considerably thin.
  • the angle ⁇ of the corner 15 is obtained by the approximate lines R1 and R2 connecting the coordinates Q1 and Q2 and the coordinates Q1 and Q3, measurement is possible, but the slab 10 is conveyed.
  • the approximate line R2 cannot be obtained correctly with respect to the light cutting line T2 due to fluctuations in the amount of reflected light that occurs in the middle, an error of approximately 0.5 ° has occurred.
  • FIG. 13 is a characteristic diagram showing the calculation result of the angle ⁇ of the corner 15 detected at that time.
  • the slab 10 is intended for the corner 15 having an angle of 90 °, but the slab 10 is transported for a time of 750 msec and the angle obtained as a result obtained every 10 msec (unit transport distance 10 mm).
  • the average value of ⁇ is 90.36 °, and the maximum error of the angle ⁇ is about 0.5 °.
  • FIG. 14 is a captured image obtained at that time.
  • the reflected light on the upper surface 11 of the slab 10 is sufficiently clearly obtained and the light cutting line T1 is clear, but the amount of reflected light on the right side surface 12 is less than the measurement limit PL and is very small. Therefore, it is difficult to measure the light amount distribution in that portion.
  • the angle ⁇ of the corner portion 15 is obtained by the approximate lines R1 and R2 connecting the coordinates Q1 and Q2 and the coordinates Q1 and Q3, the approximate line R2 is not stable and is large at a plurality of points in time. An error has occurred.
  • the optical sensor 20 has an inclination angle ⁇ of 45 °, 45 ° + 25 ° with respect to a virtual plane M in which the inclination angle ⁇ of the central optical axis P0 of the slit light P1 is parallel to the upper surface 11 of the slab 10. , 45 ° + 30 ° and 45 ° + 35 °.
  • the inclination angle ⁇ is set to 45 ° -25 °, 45 ° -30 °, 45 ° -35 °, the amount of reflected light on the upper surface 11 decreases as the inclination angle ⁇ decreases. Sufficient and similar tendency can be obtained.
  • the optical sensor 20 is arranged so that the center optical axis P0 of the slit light P1 is at the corner 15 of the slab 10 and the allowable maximum value of the inclination angle ⁇ with respect to the virtual plane M is 45 ° ⁇ 25 °. It was found that the optical cutting lines T1 and T2 on the upper surface 11 and the right side surface 12 of the slab 10 can be obtained in a clear state. As described above, the present invention has been made to investigate that the allowable maximum value of the inclination angle ⁇ is 45 ° ⁇ 25 °.
  • the width in the direction perpendicular to the conveying direction of the upper surface 11 and the right side surface 12 of the slab 10, that is, the lengths L1 and L2, the angle ⁇ of the corner 15 and the diagonal length L3 are accurately measured.
  • the measurement is performed sequentially for each unit transport distance, so that when the top surface 11 and the right side surface 12 of the slab 10 have a shape distortion, the shape distortion is reduced. It can be seen that accurate measurement is possible.
  • FIG. 15 shows the configuration of the measurement method of the second embodiment.
  • two optical sensors 20A and 20B are used.
  • the optical sensor 20A is arranged so that the inclination angle of the central optical axis P0 of the slit light P1 with respect to the virtual plane M1 parallel to the upper surface 11 of the slab 10 is ⁇ 1.
  • the optical sensor 20B is arranged so that the inclination angle of the central optical axis P0 of the slit light P1 with respect to the virtual surface M2 parallel to the lower surface 13 is ⁇ 2.
  • the inclination angles ⁇ 1 and ⁇ 2 are set such that the maximum allowable value is 45 ° ⁇ 25 °.
  • optical sensors 20A and 20B are arranged so that each slit light of a built-in light source overlaps a surface orthogonal to the conveying direction of the slab 10, and at the same measurement timing, the upper surface 11 and the right side of the slab 10 Irradiation and imaging of the slit light P ⁇ b> 1 are performed on the same line orthogonal to the conveying direction of the surface 12, the lower surface 13, and the left side surface 14.
  • the optical sensor 20A can acquire the optical cutting lines of the upper surface 11 and the right side surface 12 of the slab 10, and the optical sensor 20B can acquire the lower surface 13 and the left side surface 14 of the slab 10. Since the optical cutting line can be obtained, the optical cutting line over the entire circumference of the slab 10 can be obtained at one measurement timing.
  • FIG. 16 is a diagram showing the control of two optical sensors 20A and 20B having the same configuration and the configuration of a measurement control device 30A for processing image data obtained there.
  • the optical sensor 20A includes a light source 21A, an imaging device 22A, and a filter 23A
  • the optical sensor 20B includes a light source 21B, an imaging device 22B, and a filter 23B.
  • the measurement control device 30A is obtained with the light sources 21A and 21B of the optical sensors 20A and 20B, the imaging unit 31A that controls the imaging devices 22A and 22B, and the memory 32A that stores image data captured by the imaging devices 22A and 22B.
  • An image recognition unit 33A that performs the processing shown in FIG. 17 based on the image data, and a display 34A that displays the obtained image data and processing results are provided.
  • the imaging unit 31A, the memory 32A, the image recognition unit 33A, and the display 34A are substantially the same as the imaging unit 310, the memory 320, the image recognition unit 330, and the display 340 described in FIG.
  • FIG. 17 is a flowchart showing the operation of the measurement method of the second embodiment.
  • steps S21 to S23 are the same as steps S11 to S13 in the flowchart described with reference to FIG. 3 except that the processes are individually performed based on the image data obtained by the individual optical sensors 20A and 20B.
  • step S24 it is possible to obtain optical cutting lines in the width direction (direction perpendicular to the conveying direction) of the upper surface 11, the right side surface 12, the lower surface 13, and the left side surface 14 of the slab 10.
  • step S24 the shape and length in the width direction of the upper surface 11, the right side surface 12, the lower surface 13, and the left side surface 14 of the slab 10 by using those optical cutting lines.
  • the angles ⁇ 1 and ⁇ 2 of the corner portions 15 and 17 are calculated. Since the diagonal length between the corners 15 and 17 can be doubled, one or the average value can be used.
  • the cross-sectional shape and cross-sectional area of the slab 10 can be obtained.
  • step S25 the number of pulses generated at each measurement timing of the slab 10 being conveyed (every 1 msec in the above example) is counted, and the number of pulses is multiplied by the unit conveyance distance per pulse. Then, it is confirmed that the slab 10 is conveyed by a predetermined length.
  • step S26 the volume of the slab 10 is calculated by integrating the cross-sectional area by the predetermined length of the slab 100 obtained in step S25.
  • the unit volume is obtained by assuming that the cross-sectional areas are the same for the unit transport distance described above, and the unit volume obtained at each measurement timing is added for the number of pulses corresponding to the predetermined length. A long volume can be calculated.
  • the weight of the slab 10 for predetermined length is computable by multiplying the specific gravity of the slab 10 by the obtained volume.
  • the length in the width direction of each surface 11 to 14 of the slab 10 immediately after casting the diagonal length, the angles ⁇ 1 to ⁇ 4 of the corners 15 to 18, the degree of shape distortion, and the like.
  • the length and weight of the slab 10 can be obtained as well as being able to be continuously measured along the transport direction of the slab 10 for each unit transport distance, and the cutting position when the slab 10 is made into a single product Can also be set.
  • FIG. 18 shows the measuring method of the third embodiment.
  • four photosensors 20A to 20D are used.
  • the optical sensors 20A and 20B are the same as the arrangement in the second embodiment described with reference to FIG.
  • the optical sensor 20C is arranged such that the angle of the central optical axis P0 of the slit light P1 with respect to the virtual surface M3 parallel to the right side surface 12 is ⁇ 3.
  • the optical sensor 20D is arranged so that the angle of the central optical axis P0 of the slit light P1 with respect to the virtual surface M4 parallel to the left side surface 14 is ⁇ 4.
  • the inclination angles ⁇ 3 and ⁇ 4 are set such that the maximum allowable value is 45 ° ⁇ 25 °.
  • the optical sensors 20C and 20D are configured so that the slit light P1 overlaps the surface orthogonal to the conveying direction of the slab 10 and does not overlap the surface of the slit light P1 by the optical sensors 20A and 20B.
  • the slab 10 is shifted in the transport direction of the slab 10 by two or three times the unit transport distance.
  • the optical sensor 20A can acquire the optical cutting lines of the upper surface 11 and the right side surface 12 of the slab 10, and the lower surface 13 and the left side surface 14 of the slab 10 by the optical sensor 20B.
  • the optical sensor 20C can obtain the optical cutting lines on the right side surface 12 and the lower surface 13 of the slab 10
  • the optical sensor 20D can obtain the optical cutting lines on the left side surface 14 and the upper surface 11 of the slab 10. it can.
  • FIG. 16 is a diagram showing the control of four photosensors 20A to 20D having the same configuration and the configuration of a measurement control device 30B that processes image data captured there.
  • the optical sensor 20C includes a light source 21C, an imaging device 22C, and a filter 23C
  • the optical sensor 20D includes a light source 21D, an imaging device 22D, and a filter 23D.
  • the measurement control device 30B is obtained with the light sources 21A to 21D of the optical sensors 20A to 20D, the imaging unit 31B that controls the imaging devices 22A to 22D, and the memory 32B that stores the image data captured by the imaging devices 22A to 22D.
  • An image recognition unit 33B that performs processing based on image data and a display 34B that displays the obtained image data and processing results are provided.
  • These imaging unit 31B, memory 32B, image recognition unit 33B, and display 34B are substantially the same as the imaging unit 310, memory 320, image recognition unit 330, and display 340 described in FIG.
  • the image recognition unit 33B performs the following processing.
  • the slab 10 by the optical sensors 20C and 20D is deviated by, for example, a unit transport distance in the transport direction of the slab 10 with respect to the slit light P1 of the optical sensors 20A and 20B.
  • Irradiation and imaging, and irradiation and imaging of the slab 10 by the optical sensors 20C and 20D are alternately performed for each unit conveyance distance, and the optical cutting line over the entire circumference of each surface 11 to 14 of the slab 10 is unit-conveyed. It acquires for every distance and calculates
  • the optical sensor Irradiation and imaging of the slab 10 with 20C and 20D and irradiation and imaging of the slab 10 with the optical sensors 20C and 20D can be performed simultaneously for each unit transport distance.
  • the optical cutting lines per unit conveyance distance over the entire circumference of each surface 11 to 14 of the slab 10 can be obtained in duplicate, the amount of imaged light when the slab 10 is conveyed is averaged. It is possible to reduce the influence of fluctuations and increase the accuracy of the obtained light section line.
  • the optical sensors 20A and 20B are configured such that the slit light P1 of the light sources 21A and 21B overlaps the same surface orthogonal to the conveyance direction of the slab 10, but It may be arranged so as not to overlap each other by being shifted from each other by 2 or 3 times the unit transport distance in the transport direction.
  • the optical cutting line obtained from the image captured by the imaging device 22A of the optical sensor 20A and the optical cutting line obtained from the image captured by the imaging device 22A of the optical sensor 20A are obtained at different measurement timings. Both optical cutting lines obtained at the same measurement timing are used.
  • the optical sensors 20A to 20D can be arranged so that the respective slit lights P1 from the optical sensors 20A to 20D overlap with a surface orthogonal to the conveying direction of the cast piece 20. .
  • the slit light of one of the two adjacent optical sensors is irradiated with the slit light of the other optical sensor, and the imaging device of one of the optical sensors is the other. Since a reflected image of the slit light of the optical sensor is also taken, a measurement error occurs.
  • the wavelengths of the light sources 21C and 21D and the filters 23C and 23D of the optical sensors 20C and 20D may be different from the wavelengths of the light sources 21A and 21B and the filters 23A and 23B of the optical sensors 20A and 20B. .
  • the slit light is used as the light source of the optical sensors 20, 20A, 20B
  • the scanning light obtained by scanning the spot light can be used instead of the slit light.
  • the optical axes passing through the centers of both ends of the scanning light are directed to the corners forming the boundary between the two surfaces of the object to be measured, and the allowable maximum inclination angle of the directivity is within the two surfaces. What is necessary is just to set so that it may become 45 degrees +/- 25 degrees with respect to the virtual surface parallel to one surface.
  • the slab 10 has been described as an object to be measured. However, the same measurement and processing can be performed on a rolled material fed from a rolling mill and other conveyed items.

Abstract

[Problem] To accurately measure the shapes of two surfaces of an object of measurement and the angle of a corner part forming the boundary of those two surfaces. [Solution] An elongated cast slab 10 having a rectangular cross-sectional shape that has, in order in the circumferential direction, an upper surface 11, right side surface 12, lower surface 13, and left side surface 14 is irradiated with slit light P1 oriented toward the upper surface 11 and right side surface 12 by a light source 21 from a direction orthogonal to a conveyance direction in the longitudinal direction of the cast slab 10 and when a photography device 22 having an optical axis inclined in the conveyance direction or the direction opposite therefrom by a prescribed pinching angle in relation to a plane of the slit light P1 of the light source 21 acquires a photographed image including reflection light of an optical section line for the upper surface 11 and right side surface 12 created through the irradiation of the slit light P1 by the light source 21, the light source 21 is set so that the central optical axis P0 of the slit light P1 is oriented toward the corner part 15 forming the boundary of the upper surface 11 and right side surface 12 of the cast slab 10 and the maximum allowable angle of the tilting of the orientation is 45° ± 25° in relation to an imaginary plane M parallel to the upper surface 11.

Description

計測方法および計測装置Measuring method and measuring device
 本発明は、4面を有する断面四角形状で且つ長尺の鋳片、圧延材等の被測定物の形状その他を計測する際に、光切断線の反射光を含む撮像画像を取得する計測方法および計測装置に関する。 The present invention provides a measurement method for obtaining a captured image including reflected light of a light cutting line when measuring the shape of a measured object such as a long slab or rolled material having a quadrangular cross section having four surfaces. And a measuring device.
 溶鉱炉から取り出される鋳片や圧延機から繰り出される圧延材の形状に歪が発生していると、それら鋳片や圧延材が冷却されて固まる際に、内部にヒビなどの欠陥が生じ、品質劣化を招く。鋳片にヒビが生じていると、圧延時に割れてしまう不具合が発生する。また鋳片の歪の程度によっては、圧延機の入口に当該の鋳片が引っかかって、圧延機を通せない不具合が発生する。 If distortion occurs in the shape of the slab taken out from the blast furnace or the rolled material fed out from the rolling mill, when the slab or rolled material is cooled and solidified, defects such as cracks are generated inside, resulting in quality deterioration. Invite. If the slab is cracked, there is a problem of cracking during rolling. Further, depending on the degree of distortion of the slab, the slab is caught at the entrance of the rolling mill, which causes a problem that the rolling mill cannot pass.
 また、圧延を行う場合は、圧延機から繰り出される圧延材の先端部の角が、図20に示すように押し出された形状となる(下向きの白い部分が圧延材の先端部を示す)。このような先端部分は製品として使用することができない不良部分となるので、その不良部分を切除することが行われる。このとき、その不良部分を切除した後の材料はどの位の重量になるかを計算することが重要であるが、これを搬送中に計測する有効な手法はなかった。 Also, when rolling, the corner of the tip of the rolled material fed out from the rolling mill has an extruded shape as shown in FIG. 20 (the white portion facing downward indicates the tip of the rolled material). Since such a tip portion becomes a defective portion that cannot be used as a product, the defective portion is cut out. At this time, it is important to calculate how much weight the material after the defective part is cut out, but there was no effective method for measuring this during conveyance.
 従来では、鋳片や圧延材の形状歪に関しては、ほとんどの場合、オペレータが鋳片や圧延材の搬送路内に入って計測していたが、それ以外では以下のような方法が採用されていた。 Conventionally, in most cases, the operator has entered and measured the shape distortion of the slab or rolled material by entering the conveyance path of the slab or rolled material, but otherwise, the following method is adopted. It was.
 (1)接触式センサの利用
 これは、図21に示すように、Y方向に搬送される鋳片10の搬送経路の周囲に接触式センサ50を複数配置して、鋳片10がそこを通過する際に、その鋳片10がいずれか1以上の接触式センサ50に接触するか否かを、鋳片10の単位搬送距離毎に順次検出することで、当該鋳片10の形状歪を検出するものである。
(1) Utilization of contact-type sensor As shown in FIG. 21, a plurality of contact-type sensors 50 are arranged around the conveyance path of the slab 10 conveyed in the Y direction, and the slab 10 passes therethrough. When the slab 10 is in contact with any one or more contact-type sensors 50, the shape distortion of the slab 10 is detected by sequentially detecting each unit transport distance of the slab 10. To do.
 (2)非接触距離計の利用
 これは、図22に示すように、Y方向に搬送される鋳片10の搬送経路の周囲に非接触距離計60を複数配置して、各非接触距離計60で計測して得られた鋳片10と非接触距離計60との間の距離データを、鋳片10の単位搬送距離毎に順次計測することで、当該鋳片10の形状歪を検出するものである。
(2) Use of non-contact distance meter This is because, as shown in FIG. 22, a plurality of non-contact distance meters 60 are arranged around the conveyance path of the slab 10 conveyed in the Y direction. The shape distortion of the slab 10 is detected by sequentially measuring the distance data between the slab 10 obtained by the measurement at 60 and the non-contact distance meter 60 for each unit transport distance of the slab 10. Is.
 (3)ラインセンサの利用(透過式)
 これは、図23の(a)に示すように、Y方向に搬送される鋳片10の搬送経路の下方に長尺の下部光源71を横方向に配置し、その鋳片10の上部に配置したラインセンサカメラ72によって、鋳片10で遮られた画像を撮影して、鋳片10の形状計測を行うものである。73は取付支柱、74は取付梁である。ラインセンサカメラ72で得られる画像75は、図23の(b)に示すように、鋳片10の横幅(搬送方向に直交する方向の幅)に相当する部分が影75aとなる画像であるので、その影75aの部分の図における横方向の長さAやその両端位置A1,A2のデータから、鋳片10の形状歪の有無を判定することができる。
(3) Use of line sensor (transmission type)
This is because, as shown in FIG. 23 (a), a long lower light source 71 is arranged in the horizontal direction below the conveyance path of the slab 10 conveyed in the Y direction, and is arranged in the upper part of the slab 10. An image obstructed by the slab 10 is taken by the line sensor camera 72 and the shape of the slab 10 is measured. Reference numeral 73 denotes an attachment column, and 74 denotes an attachment beam. The image 75 obtained by the line sensor camera 72 is an image in which a portion corresponding to the lateral width of the slab 10 (the width in the direction orthogonal to the conveying direction) is a shadow 75a as shown in FIG. The presence or absence of shape distortion of the slab 10 can be determined from the horizontal length A in the figure of the shadow 75a and the data of both end positions A1 and A2.
 (4)ラインセンサの利用(反射式)
 これは、図24の(a)に示すように、Y方向に搬送される鋳片10の発生する自発光をその鋳片10の上部に配置したラインセンサカメラ81で撮影して鋳片10の形状計測を行うものである。83は取付支柱、84は取付梁である。ラインセンサカメラ81で得られる画像85は、図24の(b)に示すように、鋳片10の横幅(搬送方向に直交する方向の幅)に相当する部分が自発光の部分85aとなる画像であるので、その部分85aの図における横方向の長さBや両端位置B1,B2のデータから鋳片10の形状歪を有無を判定することができる。なお、ラインセンサカメラ81に光源82の一体化させ、この光源82で鋳片10を照射したときの反射光をラインセンサカメラ81で撮像しても、同様に鋳片10の形状歪を判定することができる。
(4) Use of line sensor (reflection type)
As shown in FIG. 24 (a), the self-light emission generated by the slab 10 conveyed in the Y direction is photographed by a line sensor camera 81 arranged on the upper part of the slab 10, and The shape is measured. Reference numeral 83 denotes an attachment column, and 84 denotes an attachment beam. As shown in FIG. 24B, the image 85 obtained by the line sensor camera 81 is an image in which a portion corresponding to the lateral width of the slab 10 (the width in the direction orthogonal to the conveying direction) is a self-luminous portion 85a. Therefore, the presence or absence of the shape distortion of the slab 10 can be determined from the data of the length B of the portion 85a in the drawing and the data of both end positions B1 and B2. Even if the line sensor camera 81 is integrated with the light source 82 and the reflected light when the light source 82 irradiates the slab 10 is imaged by the line sensor camera 81, the shape distortion of the slab 10 is similarly determined. be able to.
 (5)スキャン型距離計の利用
 これは、図25に示すように、Y方向に搬送される鋳片10の搬送経路の周辺に、鋳片10に向けてスキャン型距離計90を配置して、鋳片10の搬送方向に直交する方向からその鋳片10をスキャンし、そのスキャン型距離計90から鋳片10の面の各部分までの各スキャン点の距離データを、鋳片10の単位搬送距離毎に順次取得することで、当該鋳片10の形状歪を推定するものである。
(5) Utilization of scan type distance meter This is because a scan type distance meter 90 is arranged toward the slab 10 around the conveyance path of the slab 10 conveyed in the Y direction as shown in FIG. The slab 10 is scanned from the direction orthogonal to the conveying direction of the slab 10, and distance data of each scan point from the scan type distance meter 90 to each part of the surface of the slab 10 is obtained as a unit of the slab 10. By acquiring sequentially for every conveyance distance, the shape distortion of the said slab 10 is estimated.
 (6)光切断法の利用
 これは、図26に示すように、Y方向に搬送される鋳片10の1つの表面の垂直上方において、その鋳片10に対して傾けて配置された光源21から、鋳片10の幅方向にスリット光P1を照射する。このスリット光P1は、例えばシリンドリカルレンズに点レーザビームを通過させることにより生成できる。このとき、スリット光P1の面を鋳片10の搬送方向Yに対して傾けて配置することにより、スリット光P1の反射光は鋳片10の表面の凹凸に合わせて位置変化した像となる。この像が光切断線T0であり、この光切断線T0をスリット光P1の面とのなす挟み角度ηが25°~160°となるように配した撮像装置22で撮像する。そして、光源21と撮像装置22の位置関係および撮像画像W上の光切断線T0の形状等から、光切断線T0上の鋳片10の形状を計測する。この計測作業を、鋳片10のYで示す搬送方向に沿って、鋳片10の単位搬送距離毎に実施することで、鋳片10の表面の3次元形状を計測することができる(特許文献1)。
(6) Utilization of light cutting method This is because, as shown in FIG. 26, the light source 21 arranged at an angle with respect to the slab 10 vertically above one surface of the slab 10 conveyed in the Y direction. Then, the slit light P <b> 1 is irradiated in the width direction of the slab 10. The slit light P1 can be generated, for example, by passing a point laser beam through a cylindrical lens. At this time, by arranging the surface of the slit light P1 to be inclined with respect to the conveying direction Y of the slab 10, the reflected light of the slit light P1 becomes an image whose position is changed in accordance with the unevenness of the surface of the slab 10. This image is the optical cutting line T0, and the optical cutting line T0 is imaged by the imaging device 22 arranged so that the sandwiching angle η between the surface of the slit light P1 is 25 ° to 160 °. Then, the shape of the slab 10 on the optical cutting line T0 is measured from the positional relationship between the light source 21 and the imaging device 22, the shape of the optical cutting line T0 on the captured image W, and the like. By performing this measurement operation for each unit transport distance of the slab 10 along the transport direction indicated by Y of the slab 10, the three-dimensional shape of the surface of the slab 10 can be measured (Patent Literature). 1).
 なお、搬送された鋳片10は、所定重量ごとに切断して単品化されるが、当該重量は理論上の断面積に長さと比重を乗算することで算出していた。そして、その算出値に安全率を乗算することで当該所定重量より大きめの重量にし、長めに切断して単品化されていた。 In addition, although the conveyed slab 10 cut | disconnects for every predetermined weight and is single-piece | united, the said weight was calculated by multiplying theoretical cross-sectional area by length and specific gravity. Then, the calculated value is multiplied by a safety factor to obtain a weight larger than the predetermined weight, and is cut into a long piece to be a single product.
国際公開第2014/057580号International Publication No. 2014/057580
 しかしながら、図21で説明した「(1)接触式センサの利用」は、接触式であるため、鋳片10の歪だけでなく、鋳片10の反りや搬送時の振動も検出してしまいう可能性がある。また、鋳片10の形状歪の形態によっては接触式センサ50に鋳片10が触れず、形状歪を計測することができない場合もある。さらに、鋳片10がどのような形状で何ミリメートル位歪んでいるかといった正確な歪情報を取り出すことができない。 However, since “(1) Use of contact type sensor” described in FIG. 21 is a contact type, not only distortion of the slab 10 but also warpage of the slab 10 and vibration during conveyance are detected. there is a possibility. Moreover, depending on the form of the shape distortion of the slab 10, the slab 10 may not be in contact with the contact sensor 50, and the shape distortion may not be measured. Furthermore, accurate distortion information such as what shape and how many millimeters the slab 10 is distorted cannot be extracted.
 図22で説明した「(2)非接触式センサの利用」は、各非接触式センサ60がそれぞれ計測した鋳片10までの1点の距離情報を互いに接続することで鋳片10の形状を推定するものであるので、図27の(a)に示すように、鋳片10の表面の湾曲の影響で計測誤差が発生する。10aが測定で得られた表面の角度ライン、10bが正しい角度ラインである。また、図27の(b)に示すように、鋳片10の搬送時の振動などにより、計測点が変化すると、これによっても計測誤差が発生する。10a1が最上位位置での、10a2が中間位置での、10a3が最下位位置での、それぞれ測定で得られた角度ラインである。また、10b1が最上位位置での、10b2中間位置での、10b3が最下位位置での、それぞれ正しい角度ラインである。さらに、図27の(c)に示すように、それぞれの非接触式センサ60の計測タイミングが同期していないと、鋳片10の搬送方向における測定点にズレが発生して、同様に計測誤差が発生する。10cが複数の非接触式センサ60のうちのある非接触式センサによる測定点、10dが別の非接触式センサによる測定点である。さらに、この手法は鋳片10の形状を正確に計測できるように非接触式センサ60の設置位置を調整することが難しい。また、鋳片10が高温の場合は空気の揺らぎが発生するために、鋳片10までの距離計測が不正確になることがあり、同様に計測誤差が発生する。 “(2) Use of non-contact type sensor” described in FIG. 22 connects the distance information of one point to the slab 10 measured by each non-contact type sensor 60 to connect the shape of the slab 10 to each other. Since it is estimated, a measurement error occurs due to the influence of the curvature of the surface of the slab 10, as shown in FIG. 10a is an angle line of the surface obtained by measurement, and 10b is a correct angle line. Further, as shown in FIG. 27 (b), if the measurement point changes due to vibration during the conveyance of the slab 10, a measurement error also occurs. 10a1 is an uppermost position, 10a2 is an intermediate position, and 10a3 is an angle line obtained by measurement, respectively. Further, 10b1 is a correct angle line at the highest position, 10b2 is an intermediate position, and 10b3 is a lowest position. Further, as shown in FIG. 27 (c), if the measurement timings of the non-contact sensors 60 are not synchronized, the measurement point in the conveyance direction of the slab 10 is displaced, and the measurement error is similarly detected. Will occur. 10c is a measurement point by a non-contact type sensor among a plurality of non-contact type sensors 60, and 10d is a measurement point by another non-contact type sensor. Furthermore, it is difficult for this technique to adjust the installation position of the non-contact sensor 60 so that the shape of the slab 10 can be measured accurately. Further, when the slab 10 is at a high temperature, air fluctuations occur, so that the distance measurement to the slab 10 may be inaccurate, and similarly a measurement error occurs.
 図23の(a)で説明した「(3)ラインセンサの利用(透過式)」や図24の(a)で説明した「(4)ラインセンサの利用(反射式)」は、光学方式であるので、形状歪の有無は正確且つ高速に計測可能であるが、横方向の長さA,Bやその両端位置幅A1,B2,B1,B2を計測するものであるので、歪の形状を正確に把握することはできない。また、「(3)ラインセンサの利用(透過式)」では、下部光源71にスケールやゴミが落下すると、それらもラインセンサカメラ72が撮像してしまうため、鋳片10の正確な判定ができなくなる。また、「(4)ラインセンサの利用(反射式)」で鋳片10の自発光を利用するものでは、鋳片10の温度が低下してくると鋳片10の自発光が弱くなり、計測誤差を大きくなる。 “(3) Use of line sensor (transmission type)” described in (a) of FIG. 23 and “(4) Use of line sensor (reflection type)” described in (a) of FIG. Therefore, the presence / absence of shape distortion can be measured accurately and at high speed. However, since the lateral lengths A and B and the end position widths A1, B2, B1, and B2 are measured, the shape of the distortion can be determined. It cannot be accurately grasped. In addition, in “(3) Use of line sensor (transmission type)”, when scale or dust falls on the lower light source 71, the line sensor camera 72 also picks up the image, so that the slab 10 can be accurately determined. Disappear. In the case of using (4) use of line sensor (reflective type) and using the self-emission of the slab 10, when the temperature of the slab 10 decreases, the self-emission of the slab 10 becomes weaker, and measurement is performed. Increase the error.
 図25で説明した「(5)スキャン型距離計の利用」では、所定速度で搬送される鋳片10の面を一定周期でスキャンしながら当該面までの距離を計測するため、図28に示すように、スキャン速度が鋳片10の搬送速度に対して十分に高速でないと、スキャンの軌跡10eが鋳片10の搬送方向に対して90°から大きくずれるので、正確な形状歪を計測することができない。また、鋳片10が高温の場合は空気の揺らぎが発生するために、スキャン型距離計90から鋳片10の面までの距離計測が不正確になり、同様に計測誤差が発生する。 In “(5) Use of scanning distance meter” described with reference to FIG. 25, the distance to the surface is measured while scanning the surface of the slab 10 conveyed at a predetermined speed at a constant period. As described above, if the scanning speed is not sufficiently high with respect to the conveyance speed of the slab 10, the scanning trajectory 10e greatly deviates from 90 ° with respect to the conveyance direction of the slab 10, and thus accurate geometric distortion is measured. I can't. Further, when the slab 10 is at a high temperature, air fluctuations occur, so that the distance measurement from the scan type distance meter 90 to the surface of the slab 10 becomes inaccurate, and a measurement error similarly occurs.
 図26で説明した「(6)光切断法の利用」では、断面四角形の鋳片10の隣接する2つの側面の形状や当該2面の境界を形成する角部の角度を同時に計測する場合に、光切断線を当該の2側面にわたって形成させる必要があるが、当該の2側面に対するスリット光P1の光軸中心の角度によっては適切な光切断線を得ることができないおそれがあった。 In “(6) Use of light cutting method” explained in FIG. 26, when the shape of two adjacent side faces of the slab 10 having a quadrangular section and the angle of the corners forming the boundary between the two faces are measured simultaneously. Although it is necessary to form the light cutting line over the two side surfaces, there is a possibility that an appropriate light cutting line cannot be obtained depending on the angle of the optical axis center of the slit light P1 with respect to the two side surfaces.
 本発明の目的は、光切断法を利用する手法において、鋳片や圧延材等の被測定物の形状や角度等を得るための光切断線を正確に取得することができるようにした計測方法および計測装置を提供することである。 An object of the present invention is to provide a measuring method capable of accurately acquiring a light cutting line for obtaining a shape, an angle, etc. of an object to be measured such as a slab or a rolled material in a method using a light cutting method. And providing a measuring device.
 上記目的を達成するために、請求項1にかかる発明の計測方法は、周方向に向けて第1の面、第2の面、第3の面、および第4の面を順次有する断面四角形状で且つ長尺の被測定物に対し、該被測定物の長手方向への搬送方向と直交する方向から、前記第1の面と前記第2の面に向けて、第1の光源によりスリット光を照射し、前記第1の光源のスリット光の照射で生じた前記第1の面と前記第2の面における第1の光切断線の反射光を含む第1の撮像画像を、前記第1の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸を傾斜させた第1の撮像装置で取得する際に、前記第1の光源を、前記第1の光源のスリット光の中心光軸が、前記被測定物の前記第1の面と前記第2の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第1の面に平行な仮想面に対して45°±25°になるよう設定する、ことを特徴とする。 In order to achieve the above object, a measurement method according to a first aspect of the present invention is a quadrangular cross-sectional shape having a first surface, a second surface, a third surface, and a fourth surface in the circumferential direction. In addition, for a long object to be measured, slit light is emitted from the first light source toward the first surface and the second surface from the direction perpendicular to the conveying direction in the longitudinal direction of the object to be measured. The first captured image including the reflected light of the first light cutting line on the first surface and the second surface generated by the irradiation of the slit light of the first light source is the first captured image. When acquiring with the first imaging device in which the optical axis is inclined in the transport direction or the opposite direction at a predetermined sandwich angle with respect to the slit light surface of the light source, the first light source is the first light source. The central optical axis of the slit light of the light source is a corner portion that forms the boundary between the first surface and the second surface of the object to be measured. Direction and, and the allowable maximum angle of inclination of the directivity is set so as to be 45 ° ± 25 ° with respect to parallel imaginary plane to said first surface, it is characterized.
 請求項2にかかる発明は、請求項1に記載の計測方法において、前記被測定物の長手方向への搬送方向と直交する方向から、前記第3の面と前記第4の面に向けて、第2の光源によりスリット光を照射し、前記第2の光源のスリット光の照射で生じた前記第3の面と前記第4の面における第2の光切断線の反射光を含む第2の撮像画像を、前記第2の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸を傾斜させた第2の撮像装置で取得する際に、前記第2の光源を、前記第2の光源のスリット光の中心光軸が、前記被測定物の前記第3の面と前記第4の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第3の面に平行な仮想面に対して45°±25°になるよう設定する、ことを特徴とする。 The invention according to claim 2 is the measurement method according to claim 1, from the direction orthogonal to the transport direction in the longitudinal direction of the object to be measured, toward the third surface and the fourth surface. A second light source irradiates slit light from the second light source, and includes second light including a reflected light of a second light cutting line on the third surface and the fourth surface generated by irradiation of the slit light of the second light source. When the captured image is acquired by the second imaging device in which the optical axis is inclined in the transport direction or the opposite direction at a predetermined sandwich angle with respect to the slit light surface of the second light source, The center optical axis of the slit light of the second light source is directed to the corner portion forming the boundary between the third surface and the fourth surface of the object to be measured, and the inclination of the direction The maximum allowable angle is set to 45 ° ± 25 ° with respect to a virtual plane parallel to the third surface. The features.
 請求項3にかかる発明は、請求項2に記載の計測方法において、前記被測定物の長手方向への搬送方向と直交する方向から、前記第2の面と前記第3の面に向けて、第3の光源によりスリット光を照射し、前記第3の光源のスリット光の照射で生じた前記第2の面と前記第3の面における第3の光切断線の反射光を含む第3の撮像画像を、前記第3の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸を傾斜させた第3の撮像装置で取得する際に、前記第3の光源を、前記第3の光源のスリット光の中心光軸が、前記被測定物の前記第2の面と前記第3の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第2の面に平行な仮想面に対して45°±25°になるよう設定し、前記被測定物の長手方向への搬送方向と直交する方向から、前記第4の面と前記第1の面に向けて、第4の光源によりスリット光を照射し、前記第4の光源のスリット光の照射で生じた前記第4の面と前記第1の面における第4の光切断線の反射光を含む第4の撮像画像を、前記第4の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸を傾斜させた第4の撮像装置で取得する際に、前記第4の光源を、前記第4の光源のスリット光の中心光軸が、前記被測定物の前記第4の面と前記第1の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第4の面に平行な仮想面に対して45°±25°になるよう設定する、ことを特徴とする。 The invention according to claim 3 is the measurement method according to claim 2, from the direction orthogonal to the conveying direction to the longitudinal direction of the object to be measured, toward the second surface and the third surface, The third light source irradiates the slit light, and includes the second surface generated by the slit light irradiation of the third light source and the reflected light of the third light cutting line on the third surface. When the captured image is acquired by the third imaging device in which the optical axis is inclined in the transport direction or the opposite direction at a predetermined sandwich angle with respect to the slit light surface of the third light source, The center light axis of the slit light of the third light source is directed to the corner portion that forms the boundary between the second surface and the third surface of the object to be measured, and the inclination of the direction Is set so that an allowable maximum angle of 45 ° ± 25 ° with respect to a virtual plane parallel to the second surface, A slit light is irradiated by a fourth light source toward the fourth surface and the first surface from a direction perpendicular to the conveyance direction in the longitudinal direction of the measurement object, and the slit light of the fourth light source A fourth captured image including the reflected light of the fourth light cutting line on the fourth surface and the first surface generated by irradiation is sandwiched with a predetermined surface of the slit light surface of the fourth light source. When acquiring with the fourth imaging device in which the optical axis is inclined in the transport direction or the opposite direction at an angle, the fourth light source is connected to the center optical axis of the slit light of the fourth light source. The angle of the object forming the boundary between the fourth surface and the first surface is pointed, and the allowable maximum angle of inclination of the directivity is 45 ° with respect to a virtual surface parallel to the fourth surface. It is set to be ± 25 °.
 請求項4にかかる発明は、請求項3に記載の計測方法において、前記第1の光源および前記第2の光源のそれぞれのスリット光が、前記被測定物の搬送方向に対して直交する面に重なり、前記第3の光源および前記第4の光源のそれぞれのスリット光が、前記被測定物の搬送方向に対して直交する面に重なり、前記第1の光源および前記第2の光源のそれぞれのスリット光の前記被測定物の搬送方向に対して直交する面と前記第3の光源および前記第4の光源のそれぞれのスリット光の前記被測定物の搬送方向に対して直交する面がずれているように、前記第1乃至第4の光源を配置することを特徴とする。 According to a fourth aspect of the present invention, in the measurement method according to the third aspect, the slit light of each of the first light source and the second light source is on a surface orthogonal to the transport direction of the object to be measured. Each of the slit light beams of the third light source and the fourth light source overlaps a plane orthogonal to the transport direction of the object to be measured, and the first light source and the second light source respectively The plane orthogonal to the conveyance direction of the measurement object of the slit light and the plane orthogonal to the conveyance direction of the measurement object of the slit light of each of the third light source and the fourth light source are shifted. As described above, the first to fourth light sources are arranged.
 請求項5にかかる発明は、請求項3に記載の計測方法において、前記第1の光源乃至前記第4の光源のそれぞれのスリット光が、前記被測定物の搬送方向に対して直交する面に重なるように、前記第1乃至第4の光源を配置することを特徴とする。 According to a fifth aspect of the present invention, in the measurement method according to the third aspect, each slit light of the first light source to the fourth light source is on a surface orthogonal to the transport direction of the object to be measured. The first to fourth light sources are arranged so as to overlap each other.
 請求項6にかかる発明は、請求項2乃至5のいずれか1つに記載の計測方法において、前記第1乃至第4の光切断線に基づき前記被測定物の断面積を求め、前記断面積を前記被測定物の前記長手方向に所定長だけ積分して前記被測定物の所定長当たりの体積を求め、該体積と前記被測定物の比重とに基づいて、前記被測定物の前記所定長当たりの重量を求めることを特徴とする。 According to a sixth aspect of the present invention, in the measurement method according to any one of the second to fifth aspects, a cross-sectional area of the object to be measured is obtained based on the first to fourth optical cutting lines, and the cross-sectional area is obtained. Is integrated by a predetermined length in the longitudinal direction of the object to be measured to obtain a volume per predetermined length of the object to be measured, and based on the volume and the specific gravity of the object to be measured, the predetermined of the object to be measured The weight per length is obtained.
 請求項7に係る発明は、請求項1乃至6のいずれか1つに記載の計測方法において、前記スリット光をスポット光を走査する走査光に置き換え、前記中心光軸を前記走査光の走査する範囲の両端間の中心を通る光軸に置き換えたことを特徴とする。 The invention according to claim 7 is the measuring method according to any one of claims 1 to 6, wherein the slit light is replaced with scanning light for scanning spot light, and the central optical axis is scanned with the scanning light. The optical axis passing through the center between both ends of the range is replaced.
 請求項8にかかる発明は、請求項1乃至7のいずれか1つに記載の計測方法において、前記被測定物は、鋳片又は圧延材であることを特徴とする。 The invention according to claim 8 is the measuring method according to any one of claims 1 to 7, wherein the object to be measured is a slab or a rolled material.
 請求項9にかかる発明の計測装置は、周方向に向けて第1の面、第2の面、第3の面、および第4の面を順次有する断面四角形状で且つ長尺の被測定物に対し、該被測定物の長手方向への搬送方向と直交する方向から、前記第1の面と前記第2の面に向けてスリット光を照射する第1の光源と、前記第1の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸が傾斜され、前記第1の光源のスリット光の照射で生じた前記第1の面と前記第2の面における第1の光切断線の反射光を含む第1の撮像画像を取得する第1の撮像装置を備え、前記第1の光源を、前記第1の光源のスリット光の中心光軸が、前記被測定物の前記第1の面と前記第2の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第1の面に平行な仮想面に対して45°±25°になるよう設定した、ことを特徴とする。 A measuring device according to a ninth aspect of the present invention is a long object to be measured having a quadrangular cross section having a first surface, a second surface, a third surface, and a fourth surface in this order in the circumferential direction. On the other hand, a first light source that irradiates slit light toward the first surface and the second surface from a direction orthogonal to the conveyance direction in the longitudinal direction of the object to be measured, and the first light source The optical axis is inclined in the transport direction or the opposite direction at a predetermined sandwich angle with respect to the surface of the slit light of the first light source and the second surface generated by the slit light irradiation of the first light source. A first imaging device that acquires a first captured image including reflected light of a first light cutting line on a surface, wherein the first light source is a central optical axis of slit light of the first light source, Directing the corner portion forming the boundary between the first surface and the second surface of the object to be measured, and allowing the inclination of the direction Large angle was set to be 45 ° ± 25 ° with respect to parallel imaginary plane to said first surface, characterized in that.
 請求項10にかかる発明は、請求項9に記載の計測装置において、前記被測定物の長手方向への搬送方向と直交する方向から、前記第3の面と前記第4の面に向けてスリット光を照射する第2の光源と、前記第2の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸が傾斜され、前記第2の光源のスリット光の照射で生じた前記第3の面と前記第4の面における第2の光切断線の反射光を含む第2の撮像画像を取得する第2の撮像装置をさらに備え、前記第2の光源を、前記第2の光源のスリット光の中心光軸が、前記被測定物の前記第3の面と前記第4の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第3の面に平行な仮想面に対して45°±25°になるよう設定する、ことを特徴とする。 The invention according to claim 10 is the measuring apparatus according to claim 9, wherein the slit is directed from the direction orthogonal to the conveying direction to the longitudinal direction of the object to be measured toward the third surface and the fourth surface. The optical axis is inclined in the transport direction or the opposite direction at a predetermined sandwich angle with respect to the surface of the second light source for irradiating light and the slit light of the second light source, and the slit light of the second light source The second light source further includes a second imaging device that acquires a second captured image including the reflected light of the second light cutting line on the third surface and the fourth surface generated by irradiation of the second light source. The central optical axis of the slit light of the second light source is directed to the corner portion forming the boundary between the third surface and the fourth surface of the object to be measured, and the inclination of the directivity is allowed. A maximum angle is set to be 45 ° ± 25 ° with respect to a virtual plane parallel to the third surface; And wherein the door.
 請求項11にかかる発明は、請求項10に記載の計測装置において、前記被測定物の長手方向への搬送方向と直交する方向から、前記第2の面と前記第3の面に向けてスリット光を照射する第3の光源と、前記第3の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸が傾斜され、前記第3の光源のスリット光の照射で生じた前記第2の面と前記第3の面における第3の光切断線の反射光を含む第3の撮像画像を取得する第3の撮像装置と、前記被測定物の長手方向への搬送方向と直交する方向から、前記第4の面と前記第1の面に向けてスリット光を照射する第4の光源と、前記第4の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸が傾斜され、前記第4の光源のスリット光の照射で生じた前記第4の面と前記第1の面における第4の光切断線の反射光を含む第4の撮像画像を取得する第4の撮像装置をさらに備え、前記第3の光源を、前記第3の光源のスリット光の中心光軸が、前記被測定物の前記第2の面と前記第3の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第2の面に平行な仮想面に対して45°±25°になるよう設定し、前記第4の光源を、前記第4の光源のスリット光の中心光軸が、前記被測定物の前記第4の面と前記第1の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第4の面に平行な仮想面に対して45°±25°になるよう設定した、ことを特徴とする。 According to an eleventh aspect of the present invention, there is provided the measuring apparatus according to the tenth aspect, wherein the slit is directed from the direction orthogonal to the longitudinal conveying direction of the object to be measured toward the second surface and the third surface. A third light source for irradiating light and an optical axis inclined in the transport direction or the opposite direction at a predetermined sandwich angle with respect to the surface of the slit light of the third light source, and the slit light of the third light source A third imaging device that obtains a third captured image that includes the reflected light of the third optical cutting line on the second surface and the third surface caused by the irradiation, and the longitudinal direction of the object to be measured A fourth light source that irradiates slit light toward the fourth surface and the first surface from a direction orthogonal to the conveying direction to the first surface, and a predetermined surface with respect to the slit light surface of the fourth light source. An optical axis is inclined in the conveying direction or the opposite direction at a sandwiching angle, and the fourth light source A fourth imaging device that obtains a fourth captured image including reflected light of the fourth optical section line on the fourth surface and the first surface generated by irradiation of slit light; The center light axis of the slit light of the third light source is directed to the corner portion that forms the boundary between the second surface and the third surface of the object to be measured, and the inclination of the direction Is set to be 45 ° ± 25 ° with respect to a virtual plane parallel to the second surface, and the fourth light source has a center optical axis of slit light of the fourth light source, The virtual object is directed to a corner portion that forms a boundary between the fourth surface and the first surface of the object to be measured, and an allowable maximum inclination angle of the directivity is parallel to the fourth surface. It is set to be 45 ° ± 25 °.
 請求項12にかかる発明は、請求項11に記載の計測装置において、前記第1の光源および前記第2の光源のそれぞれのスリット光が、前記被測定物の搬送方向に対して直交する面に重なり、前記第3の光源および前記第4の光源のそれぞれのスリット光が、前記被測定物の搬送方向に対して直交する面に重なり、前記第1の光源および前記第2の光源のそれぞれのスリット光の前記被測定物の搬送方向に対して直交する面と前記第3の光源および前記第4の光源のそれぞれのスリット光の前記被測定物の搬送方向に対して直交する面がずれているように、前記第1乃至第4の光源を配置したことを特徴とする。 According to a twelfth aspect of the present invention, in the measurement apparatus according to the eleventh aspect, the slit light of each of the first light source and the second light source is on a surface orthogonal to the conveyance direction of the measurement object. Each of the slit light beams of the third light source and the fourth light source overlaps a plane orthogonal to the transport direction of the object to be measured, and the first light source and the second light source respectively The plane orthogonal to the conveyance direction of the measurement object of the slit light and the plane orthogonal to the conveyance direction of the measurement object of the slit light of each of the third light source and the fourth light source are shifted. As described above, the first to fourth light sources are arranged.
 請求項13にかかる発明は、請求項11に記載の計測装置において、前記第1の光源乃至前記第4の光源のそれぞれのスリット光が、前記被測定物の搬送方向に対して直交する面に重なるように、前記第1乃至第4の光源を配置したことを特徴とする。 According to a thirteenth aspect of the present invention, in the measurement apparatus according to the eleventh aspect, each slit light of the first light source to the fourth light source is on a surface orthogonal to the transport direction of the object to be measured. The first to fourth light sources are arranged so as to overlap.
 請求項14にかかる発明は、請求項9乃至13のいずれか1つに記載の計測装置において、前記スリット光をスポット光を走査する走査光に置き換え、前記中心光軸を前記走査光の走査する範囲の両端間の中心を通る光軸に置き換えたことを特徴とする。 According to a fourteenth aspect of the present invention, in the measurement device according to any one of the ninth to thirteenth aspects, the slit light is replaced with scanning light that scans spot light, and the central optical axis is scanned by the scanning light. The optical axis passing through the center between both ends of the range is replaced.
 請求項15にかかる発明は、請求項9乃至14のいずれか1つに記載の計測装置において、前記被測定物は、鋳片又は圧延材であることを特徴とする。 The invention according to claim 15 is the measuring apparatus according to any one of claims 9 to 14, wherein the object to be measured is a slab or a rolled material.
 本発明によれば、第1の光源を、第1の光源のスリット光の中心光軸が、被測定物の第1の面と第2の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が第1の面に平行な仮想面に対して45°±25°になるよう設定するので、被測定物の隣接する第1の面と第2の面についての光切断線を正確に取得することができる。よって、被測定物の第1の面と第2の面についての形状や第1の面と第2の面の境界を形成する角部の角度を正確に計測することができる。 According to the present invention, the first light source is directed to the corner portion where the center optical axis of the slit light of the first light source forms the boundary between the first surface and the second surface of the object to be measured, and Since the allowable maximum angle of the inclination of the directivity is set to 45 ° ± 25 ° with respect to a virtual surface parallel to the first surface, the first surface and the second surface adjacent to the object to be measured are set. The light cutting line can be obtained accurately. Therefore, it is possible to accurately measure the shape of the first surface and the second surface of the object to be measured and the angle of the corner that forms the boundary between the first surface and the second surface.
本発明の第1の実施例の計測方法の説明図である。It is explanatory drawing of the measuring method of the 1st Example of this invention. 第1の実施例の計測方法を実施するための計測装置の構成の機能ブロック図である。It is a functional block diagram of the structure of the measuring device for enforcing the measuring method of a 1st Example. 第1の実施例の計測方法を実施するためのフローチャートである。It is a flowchart for enforcing the measuring method of the 1st example. 第1の実施例の計測方法で得られた光切断線の一部の説明図である。It is explanatory drawing of a part of optical section line obtained with the measuring method of the 1st example. 第1の実施例の計測方法で得られた光切断線の画像を示す説明図である。It is explanatory drawing which shows the image of the optical cutting line obtained with the measuring method of the 1st Example. 第1の実施例の計測方法で得られた光切断線から長さと角度を得る説明図である。It is explanatory drawing which obtains length and an angle from the optical cutting line obtained with the measuring method of the 1st example. 第1の実施例の計測方法におけるスリット光の中心光軸の角度θを45°に設定したときの角部15の計測角度の特性図である。It is a characteristic view of the measurement angle of the corner | angular part 15 when angle (theta) of the center optical axis of the slit light in the measurement method of a 1st Example is set to 45 degrees. 第1の実施例の計測方法におけるスリット光の中心光軸の角度θを45°に設定したときの光切断線の撮像画像と光量分布を示す説明図である。It is explanatory drawing which shows the picked-up image and light quantity distribution of the optical cutting line when angle (theta) of the center optical axis of the slit light in the measuring method of a 1st Example is set to 45 degrees. 第1の実施例の計測方法におけるスリット光の中心光軸の角度θを45°+25°に設定したときの角部15の計測角度の特性図である。It is a characteristic view of the measurement angle of the corner | angular part 15 when the angle (theta) of the center optical axis of the slit light in the measurement method of a 1st Example is set to 45 degrees +25 degrees. 第1の実施例の計測方法におけるスリット光の中心光軸の角度θを45°+25°に設定したときの光切断線の撮像画像と光量分布を示す説明図である。It is explanatory drawing which shows the picked-up image and light quantity distribution of the optical cutting line when angle (theta) of the center optical axis of the slit light in the measuring method of a 1st Example is set to 45 degrees +25 degrees. 第1の実施例の計測方法におけるスリット光の中心光軸の角度θを45°+30°に設定したときの角部15の計測角度の特性図である。It is a characteristic view of the measurement angle of the corner | angular part 15 when the angle (theta) of the center optical axis of the slit light in the measurement method of a 1st Example is set to 45 degrees +30 degrees. 第1の実施例の計測方法におけるスリット光の中心光軸の角度θを45°+25°に設定したときの光切断線の撮像画像と光量分布を示す説明図である。It is explanatory drawing which shows the picked-up image and light quantity distribution of the optical cutting line when angle (theta) of the center optical axis of the slit light in the measuring method of a 1st Example is set to 45 degrees +25 degrees. 第1の実施例の計測方法におけるスリット光の中心光軸の角度θを45°+35°に設定したときの角部15の計測角度の特性図である。It is a characteristic view of the measurement angle of the corner | angular part 15 when the angle (theta) of the center optical axis of the slit light in the measurement method of a 1st Example is set to 45 degrees +35 degrees. 第1の実施例の計測方法におけるスリット光の中心光軸の角度θを45°+35°に設定したときの光切断線の撮像画像と光量分布を示す説明図である。It is explanatory drawing which shows the picked-up image and light quantity distribution of a light cutting line when angle (theta) of the center optical axis of the slit light in the measuring method of a 1st Example is set to 45 degrees +35 degrees. 第2の実施例の計測方法の説明図である。It is explanatory drawing of the measuring method of a 2nd Example. 第2の実施例の計測方法を実施するための計測装置の構成の機能ブロック図である。It is a functional block diagram of the structure of the measuring device for enforcing the measuring method of a 2nd Example. 第2の実施例の計測方法を実施するためのフローチャートである。It is a flowchart for enforcing the measuring method of the 2nd example. 第3の実施例の計測方法の説明図である。It is explanatory drawing of the measuring method of a 3rd Example. 第3の実施例の計測方法を実施するための計測装置の構成の機能ブロック図であるIt is a functional block diagram of a structure of the measuring device for enforcing the measuring method of a 3rd Example. 圧延機から繰り出される材料の先端部の画像を示す説明図である。It is explanatory drawing which shows the image of the front-end | tip part of the material drawn | fed out from a rolling mill. 接触式センサを使用した鋳片の形状計測の説明図である。It is explanatory drawing of the shape measurement of the slab using a contact-type sensor. 非接触距離計を利用した鋳片の形状計測の説明図である。It is explanatory drawing of the shape measurement of the slab using a non-contact distance meter. ラインセンサ(透過式)を利用した鋳片の形状計測の説明図である。It is explanatory drawing of the shape measurement of the slab using a line sensor (transmission type). ラインセンサ(反射式)を利用した鋳片の形状計測の説明図である。It is explanatory drawing of the shape measurement of the slab using a line sensor (reflection type). スキャン距離計を利用した鋳片の形状計測の説明図である。It is explanatory drawing of the shape measurement of the slab using a scanning distance meter. 光切断線を利用した鋳片の形状計測の説明図である。It is explanatory drawing of the shape measurement of the slab using an optical cutting line. 非接触距離計を利用して鋳片の形状計測を行う場合の課題の説明図である。It is explanatory drawing of the subject in the case of measuring the shape of a slab using a non-contact distance meter. スキャン距離計を利用して鋳片の形状計測を行う場合の課題の説明図である。It is explanatory drawing of the subject in the case of measuring the shape of a slab using a scanning distance meter.
<第1の実施例>
 図1に第1の実施例の計測方法の構成を示す。本実施例においては、被測定物を鋳片10とする。この鋳片10は、図1に示すように、断面形状が四角形であって、紙面に対して垂直方向に搬送されているものとする。この鋳片10が正常形状(正方形あるいは長方形)であるときは、上面11と下面13は平面で互いに平行であり、右側面12と左側面14も平面で互いに平行である。さらに、鋳片10の上面11と右側面12との境界を形成する角部15の角度、右側面12と下面13との境界を形成する角部16の角度、下面13と左側面14との境界を形成する角部17の角度、左側面14と上面11との境界を形成する角部18の角度は、それぞれ90°である。
<First embodiment>
FIG. 1 shows the configuration of the measurement method of the first embodiment. In this embodiment, the object to be measured is a slab 10. As shown in FIG. 1, the slab 10 has a quadrangular cross-sectional shape and is conveyed in a direction perpendicular to the paper surface. When the slab 10 has a normal shape (square or rectangular), the upper surface 11 and the lower surface 13 are flat and parallel to each other, and the right side surface 12 and the left side surface 14 are also parallel to each other. Furthermore, the angle of the corner 15 that forms the boundary between the upper surface 11 and the right side 12 of the slab 10, the angle of the corner 16 that forms the boundary between the right side 12 and the lower surface 13, and the lower surface 13 and the left side 14 The angle of the corner 17 that forms the boundary and the angle of the corner 18 that forms the boundary between the left side surface 14 and the upper surface 11 are each 90 °.
 形状を計測するための計測装置は、図2に示すように、光センサ20と計測制御装置30からなる。光センサ20は、光源21と、撮像装置22と、フィルタ23とを備えている。 The measuring device for measuring the shape includes an optical sensor 20 and a measurement control device 30 as shown in FIG. The optical sensor 20 includes a light source 21, an imaging device 22, and a filter 23.
 光源21は、レーザ光源とそのレーザ光源で発生した波長λの点レーザビームをスリット光P1に変換するためのシリンドリカルレンズを備える。この波長λは鋳片10の自発光や周辺光とは区別できる波長である。そして、光源21は、図1に示すように、そのスリット光P1の中心光軸P0が、鋳片10の上面11と右側面12の境界を形成する角部15を指向し、且つ当該指向の傾きの傾斜角度θが、上面11に平行な仮想面Mに対して45°となるように設定されている。 The light source 21 includes a laser light source and a cylindrical lens for converting a point laser beam having a wavelength λ generated by the laser light source into slit light P1. This wavelength λ is a wavelength that can be distinguished from the self-emission and ambient light of the slab 10. Then, as shown in FIG. 1, the light source 21 has a central optical axis P0 of the slit light P1 directed to the corner 15 forming the boundary between the upper surface 11 and the right side surface 12 of the slab 10 and The inclination angle θ of the inclination is set to be 45 ° with respect to the virtual surface M parallel to the upper surface 11.
 なお、光源21のスリット光P1の面は、鋳片10の搬送方向(図1の紙面に垂直方向)に対して直交する方向(図1の紙面に水平方向)となるように設置されている。これによって、鋳片10の上面11に投射されるスリット光P1は鋳片10の搬送方向に直交する方向を向き、右側面12に投射されるスリット光P1も鋳片10の搬送方向に直交する方向を向くことになる。 In addition, the surface of the slit light P1 of the light source 21 is installed so as to be in a direction (horizontal direction on the paper surface in FIG. 1) orthogonal to the conveyance direction of the slab 10 (a direction perpendicular to the paper surface in FIG. 1). . Thereby, the slit light P1 projected on the upper surface 11 of the slab 10 faces the direction orthogonal to the conveyance direction of the slab 10, and the slit light P1 projected on the right side 12 is also orthogonal to the conveyance direction of the slab 10. It will turn in the direction.
 撮像装置22は、例えば2次元CCDカメラからなり、その光軸は、鋳片10の搬送方向に沿った方向において、光源21の光軸中心P0と互いに重なっている。さらに、その光軸は、光源21のスリット光P1の面に対して、鋳片10の上面11および右側面12における挟み角度ηが8°~20°となるように、鋳片10の搬送方向又はその反対方向に傾けて設置されている(挟み角度ηの意味については図26参照)。 The imaging device 22 is composed of, for example, a two-dimensional CCD camera, and its optical axis overlaps the optical axis center P0 of the light source 21 in the direction along the conveying direction of the cast piece 10. Further, the optical axis of the slab 10 is such that the sandwiching angle η between the upper surface 11 and the right side surface 12 of the slab 10 is 8 ° to 20 ° with respect to the surface of the slit light P1 of the light source 21. Or, it is installed inclining in the opposite direction (see FIG. 26 for the meaning of the sandwiching angle η).
 そして、この撮像装置22の撮像範囲は、スリット光P1の全反射光を含む範囲が撮像できるよう領域が設定されている。フィルタ23は、鋳片100から入射する全光のうちの波長λのスリット光P1の反射光のみをその撮像装置22に送り込むよう、その通過波長がλに設定されている。 The imaging range of the imaging device 22 is set so that the range including the total reflected light of the slit light P1 can be imaged. The passing wavelength of the filter 23 is set to λ so that only the reflected light of the slit light P1 having the wavelength λ out of the total light incident from the slab 100 is sent to the imaging device 22.
 計測制御装置30は、光源21と撮像装置22の動作を制御する撮像制御ユニット31と、撮像装置31が撮像した画像を記憶するメモリ32と、メモリ32に記憶された画像を解析し鋳片10の上面11と右側面12の形状プロファイルを作成する画像認識ユニットと33と、メモリ32に記憶された画像および画像認識ユニット31が作成した形状プロファイルを表示するディスプレイ34を備えている。 The measurement control device 30 includes an imaging control unit 31 that controls operations of the light source 21 and the imaging device 22, a memory 32 that stores an image captured by the imaging device 31, and an image stored in the memory 32 to analyze the slab 10. The image recognition unit 33 for creating the shape profile of the upper surface 11 and the right side surface 12 of the image display unit 33 and the display 34 for displaying the image stored in the memory 32 and the shape profile created by the image recognition unit 31 are provided.
 メモリ32は、例えばフレームメモリからなり、撮像装置22から送信されてきたが画像を、例えば1280×1024個のピクセルで記憶する。 The memory 32 is composed of, for example, a frame memory, and stores an image that has been transmitted from the imaging device 22 but is composed of, for example, 1280 × 1024 pixels.
 画像認識ユニット33は、メモリ32に記憶された画像内の反射光から光切断線を抽出し、当該光切断線の座標(X座標とY座標)のデータを算出する。X座標は鋳片10の幅方向(角部18から角部15の方向、角部15から角部16の方向)における座標であり、Y座標は鋳片10の搬送方向における座標である。 The image recognition unit 33 extracts a light cutting line from the reflected light in the image stored in the memory 32, and calculates data of the coordinates (X coordinate and Y coordinate) of the light cutting line. The X coordinate is a coordinate in the width direction of the slab 10 (the direction from the corner 18 to the corner 15 and the direction from the corner 15 to the corner 16), and the Y coordinate is a coordinate in the conveying direction of the slab 10.
 光切断線の座標データが算出された後は、画像認識ユニット33がこの画像座標データに基づいて鋳片10の上面11と右側面12の形状プロファイルを算出する。算出された画像プロファイルは正規化され、2次元(X座標およびZ座標)の正規化座標データとしてメモリ32に記憶され、あるいはディスプレイ34に表示される。Z座標は鋳片10の上面11から鋳片10の肉厚方向および右側面12から鋳片10の肉厚方向における座標である。 After calculating the optical cutting line coordinate data, the image recognition unit 33 calculates the shape profiles of the upper surface 11 and the right side surface 12 of the slab 10 based on the image coordinate data. The calculated image profile is normalized and stored in the memory 32 as two-dimensional (X coordinate and Z coordinate) normalized coordinate data or displayed on the display 34. The Z coordinate is a coordinate in the thickness direction of the slab 10 from the upper surface 11 of the slab 10 and in the thickness direction of the slab 10 from the right side surface 12.
 図3は計測装置の動作を示すフローチャートである。以下、この図3を参照して計測装置の動作を説明する。 FIG. 3 is a flowchart showing the operation of the measuring apparatus. Hereinafter, the operation of the measuring apparatus will be described with reference to FIG.
 まず、撮像処理(ステップS11)が実施される。具体的には、光源21がスリット光P1を鋳片10の上面11と右側面12に照射し、撮像装置22がスリット光P1が照射されている領域の波長λの反射光を撮像し、撮像した画像を計測制御装置30に送信する。計測制御装置30に送信された画像はメモリ32に保存される。 First, imaging processing (step S11) is performed. Specifically, the light source 21 irradiates the slit light P1 on the upper surface 11 and the right side surface 12 of the slab 10, and the imaging device 22 images reflected light having a wavelength λ in the region where the slit light P1 is irradiated, and images the image. The obtained image is transmitted to the measurement control device 30. The image transmitted to the measurement control device 30 is stored in the memory 32.
 次いで、画像認識ユニット33は、光切断線を示す画像から外乱要因ノイズを除去する作業を実施する(ステップS12)。鋳片10の発熱、水蒸気、煙等の外乱で光切断線を示すパターンTXに、図4に示すように、揺らぎ部分TAあるいは欠け部分TBが発生しているときは、1回の撮像で取り出せる複数の座標データに基づいて、それらの揺らぎ部分TAあるいは欠け部分TBについて近似補完などの演算を行うことで、パターンX分を連続した線分にする画像補正を行う。 Next, the image recognition unit 33 performs an operation of removing disturbance factor noise from the image showing the light cutting line (step S12). As shown in FIG. 4, when the fluctuation portion TA or the chipped portion TB is generated in the pattern TX showing the light cutting line due to the heat generation of the slab 10, water vapor, smoke or the like, it can be taken out by one imaging. Based on a plurality of coordinate data, an operation such as approximate complement is performed on the fluctuation portion TA or the missing portion TB, thereby performing image correction that makes the pattern X segment a continuous line segment.
 また、水滴や蒸気に基づくノイズは点状や塊状に分布していることが多いので、画像データを平滑化処理することで、ノイズ成分を除去する。平滑化処理としては、移動平均フィルタ、ガウシアンフィルタ、メディアンフィルタ等を使用することができる。平滑化処理の後には、必要に応じて処理画像を2値化してから収縮/膨張処理を行うことで、小パターンノイズを除去する。 Also, since noise based on water droplets and steam is often distributed in the form of dots or lumps, the noise component is removed by smoothing the image data. As the smoothing process, a moving average filter, a Gaussian filter, a median filter, or the like can be used. After the smoothing process, small pattern noise is removed by binarizing the processed image as necessary and then performing a contraction / expansion process.
 収縮処理は注目画素の周辺に1画素でも黒い画素があれば全ての周辺画素を黒に置き換える処理であり、膨張処理は注目画素の周辺に1画素でも白い画素があれば全ての周辺画素を白に置き換える処理である。これらにより、パターンTXをさらに鮮明にすることができる。 Shrinkage processing is processing that replaces all surrounding pixels with black if there is even one pixel around the pixel of interest, and expansion processing is whitening if there is even one pixel around the pixel of interest and white pixels. It is a process to replace with. As a result, the pattern TX can be further clarified.
 また、必要に応じて細線化処理を行う。この細線化処理は、パターンTXの連続性を確保するための処理であり、この細線化処理によって光切断線を構成するパターンTXの1画素のみが残され、他の画素は削除され、連続線が抽出される。 Also, thinning processing is performed as necessary. This thinning process is a process for ensuring the continuity of the pattern TX. By this thinning process, only one pixel of the pattern TX that constitutes the light cutting line is left, and the other pixels are deleted. Is extracted.
 次いで、画像認識ユニット33は、光切断線を抽出する(ステップS13)。画像認識ユニット33は、図5で示したような光切断線を示すパターンTXが得られたら、その連続線のパターンTXの各位置の座標データから、光切断線を抽出する。 Next, the image recognition unit 33 extracts a light cutting line (step S13). When the pattern TX indicating the light cutting line as shown in FIG. 5 is obtained, the image recognition unit 33 extracts the light cutting line from the coordinate data of each position of the continuous line pattern TX.
 次いで、画像認識ユニット33は、抽出した光切断線の形状から、対象物である鋳片10の上面11と右側面12の形状等を演算する(ステップS14)。この演算では、図6に示すように、パターンTXから抽出した光切断線T1,T2の座標データのうちの頂点座標Q1と端点座標Q2,Q3を結んだ直線の長さL1,L2を求める。 Next, the image recognition unit 33 calculates the shapes and the like of the upper surface 11 and the right side surface 12 of the cast slab 10 as the object from the extracted shape of the optical cutting line (step S14). In this calculation, as shown in FIG. 6, the lengths L1 and L2 of straight lines connecting the vertex coordinates Q1 and the end point coordinates Q2 and Q3 in the coordinate data of the light cutting lines T1 and T2 extracted from the pattern TX are obtained.
 L1,L2は、光源21のスリット光P1の中心光軸P0の仮想面Mに対する傾斜角度θと、中心光軸P0と撮像装置22の光軸との挟み角度ηと、撮像装置22から鋳片20における角部15までの距離とから、求められる。L1は鋳片10の上面11の幅の値を示し、L2は鋳片10の右側面12の幅の値を示す。 L1 and L2 are an inclination angle θ of the slit light P1 of the light source 21 with respect to the virtual surface M of the central optical axis P0, a sandwich angle η between the central optical axis P0 and the optical axis of the imaging device 22, and a slab from the imaging device 22 20 from the distance to the corner 15. L <b> 1 indicates the width value of the upper surface 11 of the slab 10, and L <b> 2 indicates the width value of the right side surface 12 of the slab 10.
 また、座標Q1とQ2を通る光切断線T1を1次式で近似した傾斜ラインR1を求め、座標Q1とQ3を通る光切断線T2を1次式で近似した傾斜ラインR2を求めて、得られた両ラインR1,R2の挟み角度φを求める。この角度φは、鋳片10の上面11と右側面12との境界を形成する角部15の角度である。さらに、座標Q1とQ3を結ぶ直線長L3を求めることで、鋳片10の角部16と角部18の間の対角線長を求める。 Further, an inclined line R1 approximating the optical cutting line T1 passing through the coordinates Q1 and Q2 by a linear expression is obtained, and an inclined line R2 approximating the optical cutting line T2 passing through the coordinates Q1 and Q3 by a linear expression is obtained. The sandwiching angle φ between the two lines R1, R2 is obtained. This angle φ is the angle of the corner 15 that forms the boundary between the upper surface 11 and the right side surface 12 of the slab 10. Furthermore, the diagonal length between the corner | angular part 16 and the corner | angular part 18 of the slab 10 is calculated | required by calculating | requiring the linear length L3 which connects the coordinate Q1 and Q3.
 以上の長さL1,L2,L3や角度φを、鋳片10の予め設定した基準値と比較する。これらの処理を、鋳片10がY方向に搬送される際に、単位搬送距離毎に実施することによって、鋳片10の上面11と右側面12の部分についての形状歪を求めることができる。 The above lengths L1, L2, L3 and angle φ are compared with a preset reference value of the slab 10. By performing these processes for each unit transport distance when the slab 10 is transported in the Y direction, the shape distortion of the upper surface 11 and the right side surface 12 of the slab 10 can be obtained.
 本実施例では、光センサ20を、そのスリット光P1の中心光軸P0の傾斜角度θが、鋳片10の上面11に平行な仮想面Mに対して、図1に示したように、45°になるように設定して配置し、鋳片10の上面11と右側面12の幅方向の形状を取得した。これにより得られた鋳片10の角部15の角度φについての演算結果を示す特性図を図7に示す。 In the present embodiment, the optical sensor 20 has an inclination angle θ of the central optical axis P0 of the slit light P1 with respect to a virtual plane M parallel to the upper surface 11 of the slab 10, as shown in FIG. It set so that it might become (degree), and the shape of the width direction of the upper surface 11 and the right side surface 12 of the slab 10 was acquired. FIG. 7 shows a characteristic diagram showing the calculation results for the angle φ of the corner 15 of the slab 10 obtained in this way.
 ここでは、鋳片10として、その角部15の角度φが90°のものを対象としているので、図7に示す特性図では、鋳片10を750msecの時間だけ搬送させ10msec毎(単位搬送距離10mm毎)に得た角度φの平均値が89.99°となっている。つまり、その角度φの最大誤差は0.1°以下となっている。スリット光P1を構成するレーザ光線は、輝度にスペックノイズによるバラツキが発生するが、図7の特性図からわかるように、センサ20の傾斜角度θを45°で配置した場合は、角部15の角度φの測定誤差は極めて小さくなっている。 Here, since the slab 10 is intended for the corner 15 having an angle φ of 90 °, the slab 10 is transported only for a time of 750 msec in the characteristic diagram shown in FIG. 7 (unit transport distance). The average value of the angles φ obtained every 10 mm) is 89.99 °. That is, the maximum error of the angle φ is 0.1 ° or less. The laser beam constituting the slit light P1 varies in luminance due to spec noise. As can be seen from the characteristic diagram of FIG. 7, when the inclination angle θ of the sensor 20 is 45 °, The measurement error of the angle φ is extremely small.
 図8はそのとき得られた撮像画像(図6とは左右上下が逆となっている)である。これによれば、光切断線T1,T2が明確に撮像されていて、光量分布PQは頂点座標Q1が最高値となっている。また、光切断線T1,T2の全光量は計測限界光量PL(この計測限界光量PLを下回るときはノイズの影響を大きく受けて判別が困難になる)を上回っていることが分かる。また、光切断線T1,T2の端点座標Q2,Q3の画像も安定して撮像できている。端点Q3の端点位置PEも明確となっている。 FIG. 8 is a captured image obtained at that time (left and right and up and down are reversed from those in FIG. 6). According to this, the light cutting lines T1 and T2 are clearly imaged, and the vertex coordinate Q1 of the light quantity distribution PQ has the highest value. It can also be seen that the total light quantity of the light cutting lines T1 and T2 exceeds the measurement limit light quantity PL (when it is below this measurement limit light quantity PL, it is greatly affected by noise and difficult to discriminate). Further, the images of the end point coordinates Q2 and Q3 of the light cutting lines T1 and T2 can be stably captured. The end point position PE of the end point Q3 is also clear.
 図9は、光センサ20を、そのスリット光P1の中心光軸P0の傾斜角度θが、鋳片10の上面11に平行な仮想面Mに対して、45°+25°になるように設定して配置し、そのとき検出した角部15の角度φの演算結果を示す特性図である。ここでも、鋳片10を750msecの時間だけ搬送させ10msec毎(単位搬送距離10mm毎)に得た角度φの平均値が90.05°となっていて、角度φの最大誤差は0.1°以下となっている。 In FIG. 9, the optical sensor 20 is set so that the inclination angle θ of the central optical axis P0 of the slit light P1 is 45 ° + 25 ° with respect to a virtual surface M parallel to the upper surface 11 of the slab 10. FIG. 6 is a characteristic diagram showing the calculation result of the angle φ of the corner 15 detected at that time. Also here, the average value of the angle φ obtained by conveying the slab 10 for a time of 750 msec every 10 msec (unit conveyance distance 10 mm) is 90.05 °, and the maximum error of the angle φ is 0.1 °. It is as follows.
 図10はそのとき得られた撮像画像である。これによれば、鋳片10の右側面12の光切断線T2が薄くなっているが、頂点座標Q1の光量分布は明確となっている。また、光切断線T1,T2の光量分布PQにおける全光量は計測限界光量PLを上回っていることが分かる。また、光切断線T1,T2の端点座標Q2,Q3の画像も安定して撮像できている。端点Q3の端点位置PEも明確となっている。 FIG. 10 is a captured image obtained at that time. According to this, although the light cutting line T2 of the right side surface 12 of the slab 10 is thin, the light quantity distribution of the vertex coordinate Q1 is clear. It can also be seen that the total light quantity in the light quantity distribution PQ of the light cutting lines T1, T2 exceeds the measurement limit light quantity PL. Further, the images of the end point coordinates Q2 and Q3 of the light cutting lines T1 and T2 can be stably captured. The end point position PE of the end point Q3 is also clear.
 図11は、光センサ20を、そのスリット光P1の中心光軸P0の傾斜角度θが、鋳片10の上面11に平行な仮想面Mに対して、45°+30°になるように設定して配置し、そのとき検出した角部15の角度φの演算結果を示す特性図である。ここでも、鋳片10としてその角部15の角度が90°のものを対象としているが、鋳片10を750msecの時間だけ搬送させ10msec毎(単位搬送距離10mm毎)に得た角度φの平均値が90.00°となっていて、角度φの最大誤差は0.5°程度となっている。 In FIG. 11, the optical sensor 20 is set so that the inclination angle θ of the central optical axis P0 of the slit light P1 is 45 ° + 30 ° with respect to a virtual surface M parallel to the upper surface 11 of the slab 10. FIG. 6 is a characteristic diagram showing the calculation result of the angle φ of the corner 15 detected at that time. Here, the slab 10 is intended for the corner 15 having an angle of 90 °, but the slab 10 is transported for a time of 750 msec and the average angle φ obtained every 10 msec (unit transport distance 10 mm) is obtained. The value is 90.00 °, and the maximum error of the angle φ is about 0.5 °.
 図12はそのとき得られた撮像画像である。ここでは、鋳片10の上面11の反射光は十分明確に得られていて光切断線T1は明確になっているが、右側面12の反射光はかろうじて撮像されていて、座標Q1とQ3の間の光切断線T2はかなり薄くなっている。図6で説明したように、座標Q1とQ2、座標Q1とQ3を結んだ近似線R1,R2で角部15の角度φを求めているため、計測は可能であるが、鋳片10の搬送途中で生じる反射光量の変動により光切断線T2について正しく近似線R2を求めることができないときに、0.5°近くの誤差が発生している。 FIG. 12 is a captured image obtained at that time. Here, the reflected light of the upper surface 11 of the slab 10 is obtained sufficiently clearly and the light cutting line T1 is clear, but the reflected light of the right side surface 12 is barely imaged, and the coordinates Q1 and Q3 The light cutting line T2 between them is considerably thin. As described with reference to FIG. 6, since the angle φ of the corner 15 is obtained by the approximate lines R1 and R2 connecting the coordinates Q1 and Q2 and the coordinates Q1 and Q3, measurement is possible, but the slab 10 is conveyed. When the approximate line R2 cannot be obtained correctly with respect to the light cutting line T2 due to fluctuations in the amount of reflected light that occurs in the middle, an error of approximately 0.5 ° has occurred.
 図13は、光センサ20を、そのスリット光P1の中心光軸P0の傾斜角度θが、鋳片10の上面11に平行な仮想面Mに対して、45°+35°になるように設定して配置し、そのとき検出した角部15の角度φの演算結果を示す特性図である。ここでも、鋳片10としてその角部15の角度が90°のものを対象としているが、鋳片10を750msecの時間だけ搬送させ10msec毎(単位搬送距離10mm毎)に得た結果での角度φの平均値が90.36°となっていて、角度φの最大誤差は0.5°程度となっている。 In FIG. 13, the optical sensor 20 is set so that the inclination angle θ of the central optical axis P0 of the slit light P1 is 45 ° + 35 ° with respect to a virtual surface M parallel to the upper surface 11 of the slab 10. FIG. 6 is a characteristic diagram showing the calculation result of the angle φ of the corner 15 detected at that time. Here, the slab 10 is intended for the corner 15 having an angle of 90 °, but the slab 10 is transported for a time of 750 msec and the angle obtained as a result obtained every 10 msec (unit transport distance 10 mm). The average value of φ is 90.36 °, and the maximum error of the angle φ is about 0.5 °.
 図14はそのとき得られた撮像画像である。ここでは、鋳片10の上面11の反射光は十分明確に得られていて光切断線T1は明確になっているが、右側面12の反射光の光量が計測限界PLを下回り非常に少なくなっていて、その部分の光量分布も計測が困難となっている。図6で説明したように、座標Q1とQ2、座標Q1とQ3を結んだ近似線R1,R2で角部15の角度φを求めているため、近似線R2が安定せず、複数時点で大きな誤差が発生している。 FIG. 14 is a captured image obtained at that time. Here, the reflected light on the upper surface 11 of the slab 10 is sufficiently clearly obtained and the light cutting line T1 is clear, but the amount of reflected light on the right side surface 12 is less than the measurement limit PL and is very small. Therefore, it is difficult to measure the light amount distribution in that portion. As described with reference to FIG. 6, since the angle φ of the corner portion 15 is obtained by the approximate lines R1 and R2 connecting the coordinates Q1 and Q2 and the coordinates Q1 and Q3, the approximate line R2 is not stable and is large at a plurality of points in time. An error has occurred.
 以上は、光センサ20を、そのスリット光P1の中心光軸P0の傾斜角度θが、鋳片10の上面11に平行な仮想面Mに対して、傾斜角度θを45°、45°+25°、45°+30°、45°+35°となるように設定した各場合についてである。これと逆に、傾斜角度θを45°-25°、45°-30°、45°-35°となるように設定した場合では、傾斜角度θが小さくなるほど上面11の反射光の量が不十分になり、同様な傾向を得ることができる。 As described above, the optical sensor 20 has an inclination angle θ of 45 °, 45 ° + 25 ° with respect to a virtual plane M in which the inclination angle θ of the central optical axis P0 of the slit light P1 is parallel to the upper surface 11 of the slab 10. , 45 ° + 30 ° and 45 ° + 35 °. On the other hand, when the inclination angle θ is set to 45 ° -25 °, 45 ° -30 °, 45 ° -35 °, the amount of reflected light on the upper surface 11 decreases as the inclination angle θ decreases. Sufficient and similar tendency can be obtained.
 以上の実験から、光センサ20を、スリット光P1の中心光軸P0が、鋳片10の角部15に仮想面Mに対する傾斜角度θの許容最大値が45°±25°になるように配置すれば、鋳片10の上面11と右側面12の光切断線T1,T2を明確な状態で得ることできることが判明した。このように本発明は、傾斜角度θの許容最大値が45°±25°であることを究明したものである。このようにすると、鋳片10の上面11と右側面12の搬送方向に直交する方向の幅、つまり長さL1,L2や、角部15の角度φ、および対角線長L3を正確に計測することが可能になり、鋳片10が搬送される際にその単位搬送距離毎に順次その計測を行うことで、鋳片10の上面11と右側面12に形状歪がある場合に、その形状歪を正確に計測することが可能となることが分かる。 From the above experiment, the optical sensor 20 is arranged so that the center optical axis P0 of the slit light P1 is at the corner 15 of the slab 10 and the allowable maximum value of the inclination angle θ with respect to the virtual plane M is 45 ° ± 25 °. It was found that the optical cutting lines T1 and T2 on the upper surface 11 and the right side surface 12 of the slab 10 can be obtained in a clear state. As described above, the present invention has been made to investigate that the allowable maximum value of the inclination angle θ is 45 ° ± 25 °. In this way, the width in the direction perpendicular to the conveying direction of the upper surface 11 and the right side surface 12 of the slab 10, that is, the lengths L1 and L2, the angle φ of the corner 15 and the diagonal length L3 are accurately measured. When the slab 10 is transported, the measurement is performed sequentially for each unit transport distance, so that when the top surface 11 and the right side surface 12 of the slab 10 have a shape distortion, the shape distortion is reduced. It can be seen that accurate measurement is possible.
<第2の実施例>
 図15に第2の実施例の計測方法の構成を示す。本実施例では、2個の光センサ20A,20Bを使用する。光センサ20Aは、鋳片10の上面11に平行な仮想面M1に対するスリット光P1の中心光軸P0の傾斜角度がθ1となるように配置する。光センサ20Bは、下面13に平行な仮想面M2に対するスリット光P1の中心光軸P0の傾斜角度がθ2となるように配置する。このとき、傾斜角度θ1,θ2はその最大許容値が45°±25°となるようにする。これら光センサ20A,20Bは、内蔵する光源のそれぞれのスリット光が、鋳片10の搬送方向に対して直交する面に重なるように配置され、同一の計測タイミングで鋳片10の上面11、右側面12、下面13、左側面14の搬送方向に直交方向の同一のラインについて、スリット光P1の照射と撮像を行う。
<Second embodiment>
FIG. 15 shows the configuration of the measurement method of the second embodiment. In this embodiment, two optical sensors 20A and 20B are used. The optical sensor 20A is arranged so that the inclination angle of the central optical axis P0 of the slit light P1 with respect to the virtual plane M1 parallel to the upper surface 11 of the slab 10 is θ1. The optical sensor 20B is arranged so that the inclination angle of the central optical axis P0 of the slit light P1 with respect to the virtual surface M2 parallel to the lower surface 13 is θ2. At this time, the inclination angles θ1 and θ2 are set such that the maximum allowable value is 45 ° ± 25 °. These optical sensors 20A and 20B are arranged so that each slit light of a built-in light source overlaps a surface orthogonal to the conveying direction of the slab 10, and at the same measurement timing, the upper surface 11 and the right side of the slab 10 Irradiation and imaging of the slit light P <b> 1 are performed on the same line orthogonal to the conveying direction of the surface 12, the lower surface 13, and the left side surface 14.
 このように光センサ20A,20Bを配置することで、光センサ20Aによって鋳片10の上面11と右側面12の光切断線を取得でき、光センサ20Bによって鋳片10の下面13と左側面14の光切断線が取得できるので、1回の計測タイミングで鋳片10の全周にわたる光切断線を得ることができる。 By arranging the optical sensors 20A and 20B in this way, the optical sensor 20A can acquire the optical cutting lines of the upper surface 11 and the right side surface 12 of the slab 10, and the optical sensor 20B can acquire the lower surface 13 and the left side surface 14 of the slab 10. Since the optical cutting line can be obtained, the optical cutting line over the entire circumference of the slab 10 can be obtained at one measurement timing.
 図16は同一構成の2個の光センサ20A,20Bの制御と、そこで得られた画像データを処理する計測制御装置30Aの構成を示す図である。光センサ20Aは光源21Aと撮像装置22Aとフィルタ23Aを備え、光センサ20Bは光源21Bと撮像装置22Bとフィルタ23Bを備える。 FIG. 16 is a diagram showing the control of two optical sensors 20A and 20B having the same configuration and the configuration of a measurement control device 30A for processing image data obtained there. The optical sensor 20A includes a light source 21A, an imaging device 22A, and a filter 23A, and the optical sensor 20B includes a light source 21B, an imaging device 22B, and a filter 23B.
 計測御装置30Aは、光センサ20A,20Bの光源21A,21Bと撮像装置22A,22Bを制御する撮像ユニット31Aと、撮像装置22A,22Bで撮像した画像データを保存するメモリ32Aと、得られた画像データに基づいて図17に示す処理を行う画像認識ユニット33Aと、得られた画像データや処理結果を表示するディスプレイ34Aを備える。これら、撮像ユニット31A、メモリ32A、画像認識ユニット33A、ディスプレイ34Aは、図2で説明した撮像ユニット310、メモリ320、画像認識ユニット330、ディスプレイ340とほぼ同様であるので、詳しい説明は省略する。 The measurement control device 30A is obtained with the light sources 21A and 21B of the optical sensors 20A and 20B, the imaging unit 31A that controls the imaging devices 22A and 22B, and the memory 32A that stores image data captured by the imaging devices 22A and 22B. An image recognition unit 33A that performs the processing shown in FIG. 17 based on the image data, and a display 34A that displays the obtained image data and processing results are provided. The imaging unit 31A, the memory 32A, the image recognition unit 33A, and the display 34A are substantially the same as the imaging unit 310, the memory 320, the image recognition unit 330, and the display 340 described in FIG.
 図17は第2の実施例の計測方法の動作を示すフローチャートである。このフローチャートにおいて、ステップS21~S23は個々の光センサ20A,20Bで得られた画像データに基づいて個々に処理する点を除けば、図3で説明したフローチャートのステップS11~S13と同じである。 FIG. 17 is a flowchart showing the operation of the measurement method of the second embodiment. In this flowchart, steps S21 to S23 are the same as steps S11 to S13 in the flowchart described with reference to FIG. 3 except that the processes are individually performed based on the image data obtained by the individual optical sensors 20A and 20B.
 本実施例では、鋳片10の上面11、右側面12、下面13、および左側面14の幅方向(搬送方向に直交する方向)についての光切断線をそれぞれ取得できる。図17のフローチャートのステップS24の形状演算処理では、それらの光切断線を使用することで、鋳片10の上面11、右側面12、下面13、左側面14の幅方向の形状と長さ、角部15,17の角度φ1,φ2を演算する。角部15と17の間の対角線長は2重に得ることができるので、その一方又は平均値を使用することができる。 In the present embodiment, it is possible to obtain optical cutting lines in the width direction (direction perpendicular to the conveying direction) of the upper surface 11, the right side surface 12, the lower surface 13, and the left side surface 14 of the slab 10. In the shape calculation process of step S24 in the flowchart of FIG. 17, the shape and length in the width direction of the upper surface 11, the right side surface 12, the lower surface 13, and the left side surface 14 of the slab 10 by using those optical cutting lines, The angles φ1 and φ2 of the corner portions 15 and 17 are calculated. Since the diagonal length between the corners 15 and 17 can be doubled, one or the average value can be used.
 なお、角部16の角度φ3および角部18の角度φ4については、直接求めることはできないが、計測された角部15の角度φ1および角部17の角度φ2の加算値を360°から減算して、1/2にすることで求めることができる。 Note that the angle φ3 of the corner 16 and the angle φ4 of the corner 18 cannot be directly obtained, but the added value of the measured angle φ1 of the corner 15 and the angle φ2 of the corner 17 is subtracted from 360 °. Thus, it can be obtained by halving.
 したがって、以上から、鋳片10の断面形状や断面積を求めることができる。 Therefore, from the above, the cross-sectional shape and cross-sectional area of the slab 10 can be obtained.
 ステップS25では、搬送中の鋳片10の計測タイミング毎(前記例では1msec毎)に発生するパルスの数を計数して、そのパルス数と1個のパルス当たりの単位搬送距離とを乗算することで、鋳片10が所定長だけ搬送されたことを確認する。 In step S25, the number of pulses generated at each measurement timing of the slab 10 being conveyed (every 1 msec in the above example) is counted, and the number of pulses is multiplied by the unit conveyance distance per pulse. Then, it is confirmed that the slab 10 is conveyed by a predetermined length.
 ステップS26では、ステップS25で得られた鋳片100の所定長さ分だけ、断面積を積分することで、鋳片10の体積を演算する。例えば、前記した単位搬送距離について断面積は同一であるとして単位体積を求め、各計測タイミング毎に得られたその単位体積を、前記所定長に相当するパルス数分について加算することで、当該所定長の体積を演算することができる。そして、得られた体積に鋳片10の比重を乗算することで、所定長さ分の鋳片10の重量を演算することができる。 In step S26, the volume of the slab 10 is calculated by integrating the cross-sectional area by the predetermined length of the slab 100 obtained in step S25. For example, the unit volume is obtained by assuming that the cross-sectional areas are the same for the unit transport distance described above, and the unit volume obtained at each measurement timing is added for the number of pulses corresponding to the predetermined length. A long volume can be calculated. And the weight of the slab 10 for predetermined length is computable by multiplying the specific gravity of the slab 10 by the obtained volume.
 以上により、本実施例によれば、鋳造直後の鋳片10の各面11~14の幅方向の長さ、対角線長、各角部15~18の角度φ1~φ4、形状歪の程度等を、鋳片10の搬送方向に沿って単位搬送距離ごとに連続的に計測することができることはもとより、鋳片10の長さや重量を求めることもでき、鋳片10を単品化する際の切断位置の設定も行うことができる。 As described above, according to the present embodiment, the length in the width direction of each surface 11 to 14 of the slab 10 immediately after casting, the diagonal length, the angles φ1 to φ4 of the corners 15 to 18, the degree of shape distortion, and the like. The length and weight of the slab 10 can be obtained as well as being able to be continuously measured along the transport direction of the slab 10 for each unit transport distance, and the cutting position when the slab 10 is made into a single product Can also be set.
<第3の実施例>
 図18に第3の実施例の計測方法を示す。本実施例では、4個の光センサ20A~20Dを使用する。光センサ20A,20Bは、図15で説明した第2の実施例における配置と同様である。光センサ20Cは、右側面12に平行な仮想面M3に対するスリット光P1の中心光軸P0の角度がθ3となるように配置する。また、光センサ20Dは、左側面14に平行な仮想面M4に対するスリット光P1の中心光軸P0の角度がθ4となるように配置する。
<Third embodiment>
FIG. 18 shows the measuring method of the third embodiment. In this embodiment, four photosensors 20A to 20D are used. The optical sensors 20A and 20B are the same as the arrangement in the second embodiment described with reference to FIG. The optical sensor 20C is arranged such that the angle of the central optical axis P0 of the slit light P1 with respect to the virtual surface M3 parallel to the right side surface 12 is θ3. The optical sensor 20D is arranged so that the angle of the central optical axis P0 of the slit light P1 with respect to the virtual surface M4 parallel to the left side surface 14 is θ4.
 このとき、傾斜角度θ3,θ4は、その最大許容値が45°±25°となるようにする。これら光センサ20C,20Dは、それぞれのスリット光P1が、鋳片10の搬送方向に対して直交する面に重なり、且つ光センサ20A,20Bによるそれぞれのスリット光P1の面には重ならないように、鋳片10の搬送方向に単位搬送距離の2倍又は3倍以上ずらして配置する。 At this time, the inclination angles θ3 and θ4 are set such that the maximum allowable value is 45 ° ± 25 °. The optical sensors 20C and 20D are configured so that the slit light P1 overlaps the surface orthogonal to the conveying direction of the slab 10 and does not overlap the surface of the slit light P1 by the optical sensors 20A and 20B. The slab 10 is shifted in the transport direction of the slab 10 by two or three times the unit transport distance.
 このように光センサ20A~20Dを配置することで、光センサ20Aによって鋳片10の上面11と右側面12の光切断線を取得でき、光センサ20Bによって鋳片10の下面13と左側面14の光切断線が取得でき、光センサ20Cによって鋳片10の右側面12と下面13の光切断線を取得でき、光センサ20Dによって鋳片10の左側面14と上面11の光切断線が取得できる。 By arranging the optical sensors 20A to 20D in this way, the optical sensor 20A can acquire the optical cutting lines of the upper surface 11 and the right side surface 12 of the slab 10, and the lower surface 13 and the left side surface 14 of the slab 10 by the optical sensor 20B. Can be obtained, the optical sensor 20C can obtain the optical cutting lines on the right side surface 12 and the lower surface 13 of the slab 10, and the optical sensor 20D can obtain the optical cutting lines on the left side surface 14 and the upper surface 11 of the slab 10. it can.
 図16は同一構成の4個の光センサ20A~20Dの制御と、そこで撮像した画像データを処理する計測制御装置30Bの構成を示す図である。光センサ20Cは光源21Cと撮像装置22Cとフィルタ23Cを備え、光センサ20Dは光源21Dと撮像装置22Dとフィルタ23Dを備える。 FIG. 16 is a diagram showing the control of four photosensors 20A to 20D having the same configuration and the configuration of a measurement control device 30B that processes image data captured there. The optical sensor 20C includes a light source 21C, an imaging device 22C, and a filter 23C, and the optical sensor 20D includes a light source 21D, an imaging device 22D, and a filter 23D.
 計測御装置30Bは、光センサ20A~20Dの光源21A~21Dと撮像装置22A~22Dを制御する撮像ユニット31Bと、撮像装置22A~22Dで撮像した画像データを保存するメモリ32Bと、得られた画像データに基づいて処理を行う画像認識ユニット33Bと、得られた画像データや処理結果を表示するディスプレイ34Bを備える。これら、撮像ユニット31B、メモリ32B、画像認識ユニット33B、ディスプレイ34Bは、図2で説明した撮像ユニット310、メモリ320、画像認識ユニット330、ディスプレイ340とほぼ同様である。 The measurement control device 30B is obtained with the light sources 21A to 21D of the optical sensors 20A to 20D, the imaging unit 31B that controls the imaging devices 22A to 22D, and the memory 32B that stores the image data captured by the imaging devices 22A to 22D. An image recognition unit 33B that performs processing based on image data and a display 34B that displays the obtained image data and processing results are provided. These imaging unit 31B, memory 32B, image recognition unit 33B, and display 34B are substantially the same as the imaging unit 310, memory 320, image recognition unit 330, and display 340 described in FIG.
 画像認識ユニット33Bでは、以下のような処理を行う。光センサ20C,20Dのスリット光P1が、光センサ20A,20Bのスリット光P1に対して鋳片10の搬送方向に例えば単位搬送距離だけずれている場合では、光センサ20C,20Dによる鋳片10の照射および撮像と、光センサ20C,20Dによる鋳片10の照射および撮像とを、単位搬送距離毎に交互に行い、鋳片10の各面11~14の全周にわたる光切断線を単位搬送距離毎に取得して、鋳片10の断面形状や断面積を求める。 The image recognition unit 33B performs the following processing. In the case where the slit light P1 of the optical sensors 20C and 20D is deviated by, for example, a unit transport distance in the transport direction of the slab 10 with respect to the slit light P1 of the optical sensors 20A and 20B, the slab 10 by the optical sensors 20C and 20D. Irradiation and imaging, and irradiation and imaging of the slab 10 by the optical sensors 20C and 20D are alternately performed for each unit conveyance distance, and the optical cutting line over the entire circumference of each surface 11 to 14 of the slab 10 is unit-conveyed. It acquires for every distance and calculates | requires the cross-sectional shape and cross-sectional area of the slab 10.
 なお、上記のように、光センサ20C,20Dのスリット光P1が、光センサ20A,20Bのスリット光P1に対して鋳片10の搬送方向に例えば単位搬送距離だけずれている場合では、光センサ20C,20Dによる鋳片10への照射および撮像と、光センサ20C,20Dによる鋳片10への照射および撮像とを、単位搬送距離毎に同時に行うこともできる。この場合は、鋳片10の各面11~14の全周にわたる単位搬送距離当たりの光切断線を2重に取得することができるので、その平均化により、鋳片10の搬送時の撮像光量変動の影響を軽減して、得られる光切断線の精度を高くすることができる。 As described above, when the slit light P1 of the optical sensors 20C and 20D is deviated from the slit light P1 of the optical sensors 20A and 20B, for example, by a unit transport distance in the transport direction of the slab 10, the optical sensor Irradiation and imaging of the slab 10 with 20C and 20D and irradiation and imaging of the slab 10 with the optical sensors 20C and 20D can be performed simultaneously for each unit transport distance. In this case, since the optical cutting lines per unit conveyance distance over the entire circumference of each surface 11 to 14 of the slab 10 can be obtained in duplicate, the amount of imaged light when the slab 10 is conveyed is averaged. It is possible to reduce the influence of fluctuations and increase the accuracy of the obtained light section line.
<その他の実施例>
 なお、第2の実施例において、光センサ20A,20Bは、光源21A,21Bのスリット光P1が、鋳片10の搬送方向に対して直交する同じ面に重なるようにしたが、鋳片10の搬送方向の単位搬送距離の2倍又は3倍以上互いにずらして配置して、重ならないようにもよい。
<Other examples>
In the second embodiment, the optical sensors 20A and 20B are configured such that the slit light P1 of the light sources 21A and 21B overlaps the same surface orthogonal to the conveyance direction of the slab 10, but It may be arranged so as not to overlap each other by being shifted from each other by 2 or 3 times the unit transport distance in the transport direction.
 この場合は、光センサ20Aの撮像装置22Aで撮像した画像から得た光切断線と、光センサ20Aの撮像装置22Aで撮像した画像から得た光切断線とが互いに異なる計測タイミングで得られるので、同一計測タイミングで得られた両方の光切断線を使用する。 In this case, the optical cutting line obtained from the image captured by the imaging device 22A of the optical sensor 20A and the optical cutting line obtained from the image captured by the imaging device 22A of the optical sensor 20A are obtained at different measurement timings. Both optical cutting lines obtained at the same measurement timing are used.
 また、第3の実施例において、光センサ20A~20Dによるそれぞれのスリット光P1が、鋳片20の搬送方向に対して直交する面に重なるように、光センサ20A~20Dを配置することもできる。 Further, in the third embodiment, the optical sensors 20A to 20D can be arranged so that the respective slit lights P1 from the optical sensors 20A to 20D overlap with a surface orthogonal to the conveying direction of the cast piece 20. .
 この場合は、隣接する2個の光センサの一方の光センサのスリット光が照射した面に、他方の光センサのスリット光が照射されることになり、一方の光センサの撮像装置が他方の光センサのスリット光の反射画像も撮像することになって、計測誤差が発生する。 In this case, the slit light of one of the two adjacent optical sensors is irradiated with the slit light of the other optical sensor, and the imaging device of one of the optical sensors is the other. Since a reflected image of the slit light of the optical sensor is also taken, a measurement error occurs.
 そこで、これを防止するには、光センサ20C,20Dの光源21C,21Dやフィルタ23C,23Dの波長を、光センサ20A,20Bの光源21A,21Bやフィルタ23A,23Bの波長と異ならせればよい。 Therefore, in order to prevent this, the wavelengths of the light sources 21C and 21D and the filters 23C and 23D of the optical sensors 20C and 20D may be different from the wavelengths of the light sources 21A and 21B and the filters 23A and 23B of the optical sensors 20A and 20B. .
 また、光センサ20、20A,20Bの光源としてスリット光を使用したが、スポット光を走査して得られる走査光を、スリット光に代えて使用することもできる。この場合は、その走査光の両端の中心を通る光軸が、被測定物の2面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記2面の内の一方の面に平行な仮想面に対して45°±25°になるよう設定すればよい。 Further, although the slit light is used as the light source of the optical sensors 20, 20A, 20B, the scanning light obtained by scanning the spot light can be used instead of the slit light. In this case, the optical axes passing through the centers of both ends of the scanning light are directed to the corners forming the boundary between the two surfaces of the object to be measured, and the allowable maximum inclination angle of the directivity is within the two surfaces. What is necessary is just to set so that it may become 45 degrees +/- 25 degrees with respect to the virtual surface parallel to one surface.
 また、以上の説明では被測定物として鋳片10を対象として説明したが、圧延機から繰り出される圧延材、その他の搬送物についても、同様の計測や処理を行うことができる。 In the above description, the slab 10 has been described as an object to be measured. However, the same measurement and processing can be performed on a rolled material fed from a rolling mill and other conveyed items.
 10:鋳片、11:上面、12:右側面、13:下面、14:左側面、15~18:角部
 20,20A~20D:光センサ、21,21A~21D:光源、22,22A~22D:撮像装置、23,23A~23D:フィルタ
 30,30A,30B:計測制御装置、31,31A,31B:撮像ユニット、32,32A,32B:メモリ、33,33A,33B:画像認識ユニット、34,34A,34B:ディスプレイ
 50:接触式センサ
 60:非接触距離計
 71:下部光源、72:ラインセンサカメラ、73:取付支柱、74:取付梁
 81:光源、82:カメラ、83:取付支柱、84:取付梁
 90:スキャン型距離計
 Q1:頂点座標、Q2,Q3:端点座標
 P0:中心光軸、P1:スリット光
 PQ:光量分布、PL:計測限界光量、PE:端点位置
 T1,T2:光切断線
 R1,R2:光切断線T1,T2に1次式で近似したライン
 L1:光切断線T1の長さ、L2:光切断線T2の長さ、L3:対角線長
 θ,θ1~θ4:鋳片の角部に指向する光センサの角度
 φ,φ1~φ4:鋳片の角部の角度
 η:光センサのスリット光と撮像装置の光軸の鋳片の面での挟み角
10: slab, 11: upper surface, 12: right side surface, 13: lower surface, 14: left side surface, 15-18: corner 20, 20, 20A-20D: optical sensor, 21, 21A-21D: light source, 22, 22A- 22D: imaging device, 23, 23A to 23D: filter 30, 30A, 30B: measurement control device, 31, 31A, 31B: imaging unit, 32, 32A, 32B: memory, 33, 33A, 33B: image recognition unit, 34 34A, 34B: Display 50: Contact type sensor 60: Non-contact distance meter 71: Lower light source, 72: Line sensor camera, 73: Mounting post, 74: Mounting beam 81: Light source, 82: Camera, 83: Mounting post, 84: Mounting beam 90: Scan type distance meter Q1: Vertex coordinates, Q2, Q3: End point coordinates P0: Center optical axis, P1: Slit light PQ: Light quantity distribution, PL: Measurement limit light , PE: end point position T1, T2: light cutting line R1, R2: line approximated to the light cutting line T1, T2 by a linear expression L1: length of the light cutting line T1, L2: length of the light cutting line T2, L3: Diagonal length θ, θ1 to θ4: Angle of the optical sensor directed to the corner of the slab φ, φ1 to φ4: Angle of the corner of the slab η: Cast of the slit light of the optical sensor and the optical axis of the imaging device Clip angle on one side

Claims (15)

  1.  周方向に向けて第1の面、第2の面、第3の面、および第4の面を順次有する断面四角形状で且つ長尺の被測定物に対し、該被測定物の長手方向への搬送方向と直交する方向から、前記第1の面と前記第2の面に向けて、第1の光源によりスリット光を照射し、前記第1の光源のスリット光の照射で生じた前記第1の面と前記第2の面における第1の光切断線の反射光を含む第1の撮像画像を、前記第1の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸を傾斜させた第1の撮像装置で取得する際に、
     前記第1の光源を、前記第1の光源のスリット光の中心光軸が、前記被測定物の前記第1の面と前記第2の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第1の面に平行な仮想面に対して45°±25°になるよう設定する、
     ことを特徴とする計測方法。
    In the longitudinal direction of the object to be measured with respect to a long object to be measured having a quadrangular cross section having a first surface, a second surface, a third surface, and a fourth surface in order in the circumferential direction. The slit light is emitted from the first light source toward the first surface and the second surface from the direction orthogonal to the transport direction of the first light source, and the first light source is generated by the slit light irradiation of the first light source. The first picked-up image including the reflected light of the first light cutting line on the first surface and the second surface is moved in the transport direction or at a predetermined sandwich angle with respect to the slit light surface of the first light source. When acquiring with the first imaging device in which the optical axis is inclined in the opposite direction,
    The central light axis of the slit light of the first light source is directed to the corner that forms the boundary between the first surface and the second surface of the object to be measured, and the first light source Setting the maximum allowable angle of directivity inclination to be 45 ° ± 25 ° with respect to a virtual plane parallel to the first surface;
    A measuring method characterized by this.
  2.  請求項1に記載の計測方法において、
     前記被測定物の長手方向への搬送方向と直交する方向から、前記第3の面と前記第4の面に向けて、第2の光源によりスリット光を照射し、前記第2の光源のスリット光の照射で生じた前記第3の面と前記第4の面における第2の光切断線の反射光を含む第2の撮像画像を、前記第2の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸を傾斜させた第2の撮像装置で取得する際に、
     前記第2の光源を、前記第2の光源のスリット光の中心光軸が、前記被測定物の前記第3の面と前記第4の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第3の面に平行な仮想面に対して45°±25°になるよう設定する、
     ことを特徴とする計測方法。
    The measurement method according to claim 1,
    A slit light is emitted from a second light source toward the third surface and the fourth surface from a direction orthogonal to the transport direction in the longitudinal direction of the object to be measured, and the slit of the second light source A second captured image including reflected light of the second light cutting line on the third surface and the fourth surface generated by light irradiation is predetermined with respect to the surface of the slit light of the second light source. When acquiring with the second imaging device in which the optical axis is inclined in the transport direction or the opposite direction at the sandwich angle of
    The center light axis of the slit light of the second light source is directed to the corner that forms the boundary between the third surface and the fourth surface of the object to be measured, and the second light source Setting the maximum allowable angle of directivity inclination to be 45 ° ± 25 ° with respect to a virtual plane parallel to the third surface;
    A measuring method characterized by this.
  3.  請求項2に記載の計測方法において、
     前記被測定物の長手方向への搬送方向と直交する方向から、前記第2の面と前記第3の面に向けて、第3の光源によりスリット光を照射し、前記第3の光源のスリット光の照射で生じた前記第2の面と前記第3の面における第3の光切断線の反射光を含む第3の撮像画像を、前記第3の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸を傾斜させた第3の撮像装置で取得する際に、
     前記第3の光源を、前記第3の光源のスリット光の中心光軸が、前記被測定物の前記第2の面と前記第3の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第2の面に平行な仮想面に対して45°±25°になるよう設定し、
     前記被測定物の長手方向への搬送方向と直交する方向から、前記第4の面と前記第1の面に向けて、第4の光源によりスリット光を照射し、前記第4の光源のスリット光の照射で生じた前記第4の面と前記第1の面における第4の光切断線の反射光を含む第4の撮像画像を、前記第4の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸を傾斜させた第4の撮像装置で取得する際に、
     前記第4の光源を、前記第4の光源のスリット光の中心光軸が、前記被測定物の前記第4の面と前記第1の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第4の面に平行な仮想面に対して45°±25°になるよう設定する、
     ことを特徴とする計測方法。
    The measurement method according to claim 2,
    A slit light is emitted from a third light source toward the second surface and the third surface from a direction orthogonal to the transport direction in the longitudinal direction of the object to be measured, and the slit of the third light source A third captured image including reflected light of the third light cutting line on the second surface and the third surface generated by light irradiation is predetermined with respect to the slit light surface of the third light source. When acquiring with the third imaging device in which the optical axis is inclined in the transport direction or the opposite direction at the sandwich angle of
    The center light axis of the slit light of the third light source is directed to the corner that forms the boundary between the second surface and the third surface of the device under test, and the third light source Set the maximum allowable angle of directivity inclination to be 45 ° ± 25 ° with respect to a virtual plane parallel to the second surface,
    The slit light of the fourth light source is irradiated with slit light from a fourth light source toward the fourth surface and the first surface from a direction orthogonal to the transport direction in the longitudinal direction of the object to be measured. A fourth captured image including reflected light of the fourth light cutting line on the fourth surface and the first surface generated by light irradiation is predetermined with respect to the surface of the slit light of the fourth light source. When acquiring with the fourth imaging device in which the optical axis is inclined in the transport direction or the opposite direction at the sandwich angle of
    The center light axis of the slit light of the fourth light source is directed to the corner that forms the boundary between the fourth surface and the first surface of the device under test, and the fourth light source Setting the maximum allowable angle of directivity inclination to be 45 ° ± 25 ° with respect to a virtual plane parallel to the fourth surface;
    A measuring method characterized by this.
  4.  請求項3に記載の計測方法において、
     前記第1の光源および前記第2の光源のそれぞれのスリット光が、前記被測定物の搬送方向に対して直交する面に重なり、
     前記第3の光源および前記第4の光源のそれぞれのスリット光が、前記被測定物の搬送方向に対して直交する面に重なり、
     前記第1の光源および前記第2の光源のそれぞれのスリット光の前記被測定物の搬送方向に対して直交する面と前記第3の光源および前記第4の光源のそれぞれのスリット光の前記被測定物の搬送方向に対して直交する面がずれているように、
     前記第1乃至第4の光源を配置することを特徴とする計測方法。
    The measurement method according to claim 3,
    The slit light of each of the first light source and the second light source overlaps a plane orthogonal to the conveyance direction of the object to be measured,
    The slit light of each of the third light source and the fourth light source overlaps a plane orthogonal to the conveyance direction of the object to be measured,
    The surface perpendicular to the transport direction of the object to be measured of the slit light of each of the first light source and the second light source, and the subject of the slit light of each of the third light source and the fourth light source. So that the surface perpendicular to the conveyance direction of the measurement object is shifted,
    A measurement method comprising arranging the first to fourth light sources.
  5.  請求項3に記載の計測方法において、
     前記第1の光源乃至前記第4の光源のそれぞれのスリット光が、前記被測定物の搬送方向に対して直交する面に重なるように、前記第1乃至第4の光源を配置することを特徴とする計測方法。
    The measurement method according to claim 3,
    The first to fourth light sources are arranged so that the respective slit lights of the first to fourth light sources overlap with a plane orthogonal to the conveyance direction of the object to be measured. Measurement method.
  6.  請求項2乃至5のいずれか1つに記載の計測方法において、
     前記第1乃至第4の光切断線に基づき前記被測定物の断面積を求め、前記断面積を前記被測定物の前記長手方向に所定長だけ積分して前記被測定物の所定長当たりの体積を求め、該体積と前記被測定物の比重とに基づいて、前記被測定物の前記所定長当たりの重量を求めることを特徴とする計測方法。
    In the measuring method as described in any one of Claim 2 thru | or 5,
    A cross-sectional area of the object to be measured is obtained based on the first to fourth light cutting lines, and the cross-sectional area is integrated by a predetermined length in the longitudinal direction of the object to be measured to obtain a value per predetermined length of the object to be measured. A measuring method characterized in that a volume is obtained, and a weight per predetermined length of the object to be measured is obtained based on the volume and a specific gravity of the object to be measured.
  7.  請求項1乃至6のいずれか1つに記載の計測方法において、
     前記スリット光をスポット光を走査する走査光に置き換え、前記中心光軸を前記走査光の走査する範囲の両端間の中心を通る光軸に置き換えたことを特徴とする計測方法。
    In the measuring method according to any one of claims 1 to 6,
    A measuring method, wherein the slit light is replaced with scanning light that scans spot light, and the central optical axis is replaced with an optical axis that passes through the center between both ends of the scanning range of the scanning light.
  8.  請求項1乃至7のいずれか1つに記載の計測方法において、
     前記被測定物は、鋳片又は圧延材であることを特徴とする計測方法。
    In the measuring method according to any one of claims 1 to 7,
    The measurement object is a slab or a rolled material.
  9.  周方向に向けて第1の面、第2の面、第3の面、および第4の面を順次有する断面四角形状で且つ長尺の被測定物に対し、該被測定物の長手方向への搬送方向と直交する方向から、前記第1の面と前記第2の面に向けてスリット光を照射する第1の光源と、
     前記第1の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸が傾斜され、前記第1の光源のスリット光の照射で生じた前記第1の面と前記第2の面における第1の光切断線の反射光を含む第1の撮像画像を取得する第1の撮像装置を備え、
     前記第1の光源を、前記第1の光源のスリット光の中心光軸が、前記被測定物の前記第1の面と前記第2の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第1の面に平行な仮想面に対して45°±25°になるよう設定した、
     ことを特徴とする計測装置。
    In the longitudinal direction of the object to be measured with respect to a long object to be measured having a quadrangular cross section having a first surface, a second surface, a third surface, and a fourth surface in order in the circumferential direction. A first light source that irradiates slit light toward the first surface and the second surface from a direction orthogonal to the transport direction of
    The first surface generated by the irradiation of the slit light of the first light source with the optical axis inclined in the transport direction or the opposite direction at a predetermined sandwich angle with respect to the surface of the slit light of the first light source. And a first imaging device that acquires a first captured image that includes the reflected light of the first light cutting line on the second surface,
    The central light axis of the slit light of the first light source is directed to the corner that forms the boundary between the first surface and the second surface of the object to be measured, and the first light source The allowable maximum angle of directivity inclination was set to be 45 ° ± 25 ° with respect to a virtual surface parallel to the first surface,
    A measuring device characterized by that.
  10.  請求項9に記載の計測装置において、
     前記被測定物の長手方向への搬送方向と直交する方向から、前記第3の面と前記第4の面に向けてスリット光を照射する第2の光源と、
     前記第2の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸が傾斜され、前記第2の光源のスリット光の照射で生じた前記第3の面と前記第4の面における第2の光切断線の反射光を含む第2の撮像画像を取得する第2の撮像装置をさらに備え、
     前記第2の光源を、前記第2の光源のスリット光の中心光軸が、前記被測定物の前記第3の面と前記第4の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第3の面に平行な仮想面に対して45°±25°になるよう設定する、
     ことを特徴とする計測装置。
    In the measuring device according to claim 9,
    A second light source for irradiating slit light toward the third surface and the fourth surface from a direction orthogonal to the conveying direction in the longitudinal direction of the object to be measured;
    The third surface generated by the irradiation of the slit light of the second light source with the optical axis inclined in the transport direction or the opposite direction at a predetermined sandwich angle with respect to the surface of the slit light of the second light source. And a second imaging device that acquires a second captured image including the reflected light of the second light cutting line on the fourth surface,
    The center light axis of the slit light of the second light source is directed to the corner that forms the boundary between the third surface and the fourth surface of the object to be measured, and the second light source Setting the maximum allowable angle of directivity inclination to be 45 ° ± 25 ° with respect to a virtual plane parallel to the third surface;
    A measuring device characterized by that.
  11.  請求項10に記載の計測装置において、
     前記被測定物の長手方向への搬送方向と直交する方向から、前記第2の面と前記第3の面に向けてスリット光を照射する第3の光源と、
     前記第3の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸が傾斜され、前記第3の光源のスリット光の照射で生じた前記第2の面と前記第3の面における第3の光切断線の反射光を含む第3の撮像画像を取得する第3の撮像装置と、
     前記被測定物の長手方向への搬送方向と直交する方向から、前記第4の面と前記第1の面に向けてスリット光を照射する第4の光源と、
     前記第4の光源のスリット光の面に対して所定の挟み角度で前記搬送方向又はその反対方向に光軸が傾斜され、前記第4の光源のスリット光の照射で生じた前記第4の面と前記第1の面における第4の光切断線の反射光を含む第4の撮像画像を取得する第4の撮像装置をさらに備え、
     前記第3の光源を、前記第3の光源のスリット光の中心光軸が、前記被測定物の前記第2の面と前記第3の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第2の面に平行な仮想面に対して45°±25°になるよう設定し、
     前記第4の光源を、前記第4の光源のスリット光の中心光軸が、前記被測定物の前記第4の面と前記第1の面の境界を形成する角部を指向し、且つ当該指向の傾きの許容最大角度が前記第4の面に平行な仮想面に対して45°±25°になるよう設定した、
     ことを特徴とする計測装置。
    The measuring device according to claim 10,
    A third light source that irradiates slit light toward the second surface and the third surface from a direction orthogonal to the transport direction in the longitudinal direction of the object to be measured;
    The second surface generated by irradiation of the slit light of the third light source with the optical axis inclined in the transport direction or the opposite direction at a predetermined sandwich angle with respect to the surface of the slit light of the third light source. And a third imaging device for acquiring a third captured image including the reflected light of the third light cutting line on the third surface;
    A fourth light source that irradiates slit light toward the fourth surface and the first surface from a direction orthogonal to the transport direction in the longitudinal direction of the object to be measured;
    The fourth surface generated by the irradiation of the slit light of the fourth light source with the optical axis inclined in the transport direction or the opposite direction at a predetermined sandwich angle with respect to the surface of the slit light of the fourth light source. And a fourth imaging device that acquires a fourth captured image including the reflected light of the fourth light cutting line on the first surface,
    The center light axis of the slit light of the third light source is directed to the corner that forms the boundary between the second surface and the third surface of the device under test, and the third light source Set the maximum allowable angle of directivity inclination to be 45 ° ± 25 ° with respect to a virtual plane parallel to the second surface,
    The center light axis of the slit light of the fourth light source is directed to the corner that forms the boundary between the fourth surface and the first surface of the device under test, and the fourth light source The maximum allowable angle of directivity inclination was set to be 45 ° ± 25 ° with respect to a virtual plane parallel to the fourth surface,
    A measuring device characterized by that.
  12.  請求項11に記載の計測装置において、
     前記第1の光源および前記第2の光源のそれぞれのスリット光が、前記被測定物の搬送方向に対して直交する面に重なり、
     前記第3の光源および前記第4の光源のそれぞれのスリット光が、前記被測定物の搬送方向に対して直交する面に重なり、
     前記第1の光源および前記第2の光源のそれぞれのスリット光の前記被測定物の搬送方向に対して直交する面と前記第3の光源および前記第4の光源のそれぞれのスリット光の前記被測定物の搬送方向に対して直交する面がずれているように、
     前記第1乃至第4の光源を配置したことを特徴とする計測装置。
    The measuring device according to claim 11,
    The slit light of each of the first light source and the second light source overlaps a plane orthogonal to the conveyance direction of the object to be measured,
    The slit light of each of the third light source and the fourth light source overlaps a plane orthogonal to the conveyance direction of the object to be measured,
    The surface perpendicular to the transport direction of the object to be measured of the slit light of each of the first light source and the second light source, and the subject of the slit light of each of the third light source and the fourth light source. So that the surface perpendicular to the conveyance direction of the measurement object is shifted,
    A measuring apparatus comprising the first to fourth light sources.
  13.  請求項11に記載の計測装置において、
     前記第1の光源乃至前記第4の光源のそれぞれのスリット光が、前記被測定物の搬送方向に対して直交する面に重なるように、前記第1乃至第4の光源を配置したことを特徴とする計測装置。
    The measuring device according to claim 11,
    The first to fourth light sources are arranged so that the respective slit lights of the first light source to the fourth light source overlap with a plane orthogonal to the conveyance direction of the object to be measured. A measuring device.
  14.  請求項9乃至13のいずれか1つに記載の計測装置において、
     前記スリット光をスポット光を走査する走査光に置き換え、前記中心光軸を前記走査光の走査する範囲の両端間の中心を通る光軸に置き換えたことを特徴とする計測装置。
    In the measuring device according to any one of claims 9 to 13,
    2. A measuring apparatus according to claim 1, wherein said slit light is replaced with scanning light for scanning spot light, and said central optical axis is replaced with an optical axis passing through a center between both ends of a scanning range of said scanning light.
  15.  請求項9乃至14のいずれか1つに記載の計測装置において、
     前記被測定物は、鋳片又は圧延材であることを特徴とする計測装置。
     
    In the measuring device according to any one of claims 9 to 14,
    The measuring device is a slab or a rolled material.
PCT/JP2014/078574 2014-10-28 2014-10-28 Measurement method and measurement device WO2016067357A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078574 WO2016067357A1 (en) 2014-10-28 2014-10-28 Measurement method and measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078574 WO2016067357A1 (en) 2014-10-28 2014-10-28 Measurement method and measurement device

Publications (1)

Publication Number Publication Date
WO2016067357A1 true WO2016067357A1 (en) 2016-05-06

Family

ID=55856751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078574 WO2016067357A1 (en) 2014-10-28 2014-10-28 Measurement method and measurement device

Country Status (1)

Country Link
WO (1) WO2016067357A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783635A (en) * 1993-09-14 1995-03-28 Sumitomo Metal Ind Ltd Measuring apparatus for profile of hot-rolled steel product
JPH07324915A (en) * 1994-04-04 1995-12-12 Hitachi Metals Ltd Method and apparatus for measuring sectional shape
JP2000326008A (en) * 1999-03-18 2000-11-28 Kawasaki Steel Corp Method and device for forming square steel tube
JP2012236215A (en) * 2011-05-12 2012-12-06 Daido Steel Co Ltd Surface inspection method and surface inspection device for scarfed steel material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783635A (en) * 1993-09-14 1995-03-28 Sumitomo Metal Ind Ltd Measuring apparatus for profile of hot-rolled steel product
JPH07324915A (en) * 1994-04-04 1995-12-12 Hitachi Metals Ltd Method and apparatus for measuring sectional shape
JP2000326008A (en) * 1999-03-18 2000-11-28 Kawasaki Steel Corp Method and device for forming square steel tube
JP2012236215A (en) * 2011-05-12 2012-12-06 Daido Steel Co Ltd Surface inspection method and surface inspection device for scarfed steel material

Similar Documents

Publication Publication Date Title
JP6314798B2 (en) Surface defect detection method and surface defect detection apparatus
JP5488953B2 (en) Method and apparatus for inspection of uneven surface
KR101576875B1 (en) Apparatus for detecting end portion position of strip-like body, and method for detecting end portion position of strip-like body
KR102246301B1 (en) Appearance inspection apparatus
JP6606441B2 (en) Inspection system and inspection method
JP5828817B2 (en) Shape inspection method for steel bars
JP2015132611A (en) Substrate edge part inspection device
KR20170136619A (en) Shape measuring device and shape measuring method
TWI468273B (en) Metrology system for imaging workpiece surfaces at high robot transfer speeds
WO2013051716A1 (en) Surface inspection system for semiconductor wafer
JP6178138B2 (en) 3D shape measuring device
JP5413271B2 (en) Surface inspection apparatus and surface inspection method
JP5448303B2 (en) Roller misalignment measuring device
CN110044280B (en) Laser triangulation thickness gauge adopting side focal line method and method
WO2016067357A1 (en) Measurement method and measurement device
JP5508303B2 (en) 3D shape measuring device
JPH08189821A (en) Bending measuring apparatus for long material and method therefor
JP2005134362A (en) Inspection method and inspection device for surface irregularity
JP5136108B2 (en) 3D shape measuring method and 3D shape measuring apparatus
JP6279907B2 (en) Image pickup head and three-dimensional shape measuring apparatus
JP3417708B2 (en) Cross-sectional shape measuring method and measuring device
JP6339493B2 (en) Method for measuring plate width of continuum and method for producing steel plate
CN113196006B (en) Non-contact thickness measurement
JP2005037211A (en) Outer diameter measuring method of measuring object, outer diameter measuring device, and peripheral surface grinding attachment
JPH07260429A (en) Method and apparatus for measuring dimensions of object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14904957

Country of ref document: EP

Kind code of ref document: A1