WO2016065640A1 - 一种随机接入方法和设备 - Google Patents
一种随机接入方法和设备 Download PDFInfo
- Publication number
- WO2016065640A1 WO2016065640A1 PCT/CN2014/090113 CN2014090113W WO2016065640A1 WO 2016065640 A1 WO2016065640 A1 WO 2016065640A1 CN 2014090113 W CN2014090113 W CN 2014090113W WO 2016065640 A1 WO2016065640 A1 WO 2016065640A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- random access
- prach
- bandwidth value
- base station
- coverage level
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000013507 mapping Methods 0.000 claims abstract description 41
- 238000005259 measurement Methods 0.000 claims abstract description 41
- 230000000977 initiatory effect Effects 0.000 claims description 12
- 230000005540 biological transmission Effects 0.000 abstract description 5
- 238000004891 communication Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 238000004590 computer program Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 101001090074 Homo sapiens Small nuclear protein PRAC1 Proteins 0.000 description 1
- 102100034766 Small nuclear protein PRAC1 Human genes 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
Definitions
- the present invention relates to the field of wireless communication technologies, and in particular, to a random access method and device.
- M2M Machine to Machine communication
- Chinese machine communication
- PRACH (English: Physical Random Access Channel; Chinese: Physical Random Access Channel) corresponds to a specific bandwidth (200 KHz).
- PRACH is expressed in the form of AB (English: Access Burst; Chinese: Access Burst Sequence).
- the structure of AB is: contains the first TB (English: Tail symbols; Chinese: tail symbols) for 8 symbols; TSC (English: Training Sequence Code; Chinese: training sequence code) for 41 symbols; Data for 36 symbols After TB occupies 3 symbols; GP (English: Guard Period; Chinese: protection time) accounts for 68.25 symbols.
- GP is generally a fixed value.
- the communication system used by M2M belongs to a narrowband communication system.
- the system bandwidth of the narrowband communication system is smaller than the system bandwidth of the GSM, and the system bandwidth of the narrowband communication system is smaller than the system bandwidth of the GSM.
- the bandwidth is narrowed, the symbols occupied by each part of the AB become longer, and the same coverage distance is reached in the M2M.
- the PRACH in the GSM system is continued, the GP resources are wasted.
- M2M supports a variety of different bandwidths. Therefore, a new type of PRACH format is needed to meet the requirements of narrowband communication systems and to solve the problem of GP resource waste.
- the embodiment of the present invention provides a random access method and device for solving the problem of waste of GP resources existing at present.
- a random access method comprising:
- the user terminal measures the signal coverage level of the base station before initiating random access
- the user terminal determines, according to the determined bandwidth value, a physical random access channel PRACH that satisfies the bandwidth value, where different bandwidth values correspond to PRACHs of different formats, and the smaller the bandwidth value, the corresponding PRACH The fewer the number of symbols occupied by the guard interval GP included in the format;
- the user terminal sends a random access request to the base station by using the determined PRACH.
- the user equipment measures the signal coverage level of the base station, including:
- the user terminal measures the reference information sent by the base station, and determines the signal coverage level of the base station according to the strength of the measured reference information.
- the user equipment measures the signal coverage level of the base station, including:
- the user terminal repeatedly measures the broadcast signal sent by the base station, and when the broadcast signal obtained by the measurement is correctly parsed, counts the number of times the repeated measurement obtains the broadcast signal that is correctly parsed;
- the user terminal obtains a signal coverage level corresponding to the number of times of statistics as a signal coverage level of the base station according to a mapping relationship between the preset number of repeated measurements and the signal coverage level.
- the user terminal determines, according to the determined bandwidth value, a physical random access channel PRACH that satisfies the bandwidth value, including:
- the user terminal obtains a time-frequency resource for carrying the PRACH that meets the determined bandwidth value according to the mapping relationship between the preset bandwidth value and the time-frequency resource for carrying the PRACH, where one bandwidth value corresponds to at least A time-frequency resource for carrying PRACH.
- determining a physical random access channel PRACH that meets the bandwidth value includes:
- the user terminal selects one of the available time-frequency resources for carrying the PRACH when the obtained number of time-frequency resources for carrying the PRACH that meet the determined bandwidth value is at least two.
- the method further includes:
- the user terminal selects a new bandwidth value when the random access fails after the random access is initiated by using the determined PRACH, where the new bandwidth value is smaller than the PRACH used for the last random access failure.
- Corresponding bandwidth value ;
- the user terminal determines, according to the new bandwidth value, a PRACH that satisfies the new bandwidth, and sends a random access request to the base station again by using the determined PRACH that satisfies the new bandwidth.
- a random access device including:
- a measuring module configured to measure a signal coverage level of the base station before initiating random access
- a determining module configured to determine, according to a mapping relationship between a preset signal coverage level and a bandwidth value, a bandwidth value corresponding to the measured signal coverage level; and determining, according to the determined bandwidth value, a physical randomness that satisfies the bandwidth value
- the access channel PRACH where different bandwidth values correspond to different formats of the PRACH, the smaller the bandwidth value, the smaller the number of symbols occupied by the guard interval GP included in the corresponding PRACH format;
- a random access module configured to send a random access request to the base station by using the determined PRACH.
- the measuring module is specifically configured to measure reference information sent by the base station, and determine the base station according to the strength of the measured reference information. Signal coverage level.
- the measuring module is specifically configured to perform repeated measurement on a broadcast signal sent by a base station, and correctly parse the measured broadcast signal. And counting the number of times the repeated measurement obtains the broadcast signal correctly parsed;
- the user terminal obtains a signal coverage level corresponding to the number of times of statistics as a signal coverage level of the base station according to a mapping relationship between the preset number of repeated measurements and the signal coverage level.
- the determining module is specifically configured to obtain a time-frequency resource for carrying the PRACH that meets the determined bandwidth value according to a mapping relationship between a preset bandwidth value and a time-frequency resource for carrying the PRACH.
- the bandwidth value corresponds to at least one time-frequency resource used to carry the PRACH.
- the determining module determines a physical random access channel (PRACH) that meets the bandwidth value, specifically for:
- PRACH physical random access channel
- the obtained number of time-frequency resources for carrying the PRACH that satisfy the determined bandwidth value is at least two, one of the available time-frequency resources for carrying the PRACH is selected.
- the random access device further includes: a selection module, where:
- a selecting module configured to select a new bandwidth value after determining a random access failure by using the determined PRACH to initiate a random access, where the new bandwidth value is smaller than a last used random access failure The bandwidth value corresponding to the PRACH;
- the determining module is specifically configured to determine, according to the new bandwidth value, a PRACH that satisfies the new bandwidth
- the random access module is specifically configured to send a random access request to the base station again by using the determined PRACH that satisfies the new bandwidth.
- a random access device comprising: a signal receiver, a processor, and a signal transmitter, wherein:
- a signal receiver configured to measure a signal coverage level of the base station before initiating random access
- a processor configured to determine, according to a mapping relationship between a preset signal coverage level and a bandwidth value, a bandwidth value corresponding to the measured signal coverage level; and determine, according to the determined bandwidth value, a physical randomness that satisfies the bandwidth value
- the access channel PRACH where different bandwidth values correspond to different formats of the PRACH, the smaller the bandwidth value, the smaller the number of symbols occupied by the guard interval GP included in the corresponding PRACH format;
- a signal transmitter configured to send a random access request to the base station by using the determined PRACH.
- the signal transmitter is specifically configured to measure reference information sent by a base station, and determine the strength according to the measured strength of the reference information.
- the signal coverage level of the base station is specifically configured to measure reference information sent by a base station, and determine the strength according to the measured strength of the reference information.
- the signal transmitter is specifically configured to perform repeated measurement on a broadcast signal sent by a base station, where the broadcast signal obtained by the measurement is correct At the time of parsing, counting the number of times the repeated measurement obtains the broadcast signal correctly parsed;
- the signal coverage level corresponding to the number of statistics is obtained as the signal coverage level of the base station.
- the processor is specifically configured to obtain a time-frequency resource for carrying the PRACH that meets the determined bandwidth value according to a mapping relationship between a preset bandwidth value and a time-frequency resource for carrying the PRACH.
- the bandwidth value corresponds to at least one time-frequency resource used to carry the PRACH.
- the processor determines a physical random access channel (PRACH) that meets the bandwidth value, specifically for:
- PRACH physical random access channel
- the obtained number of time-frequency resources for carrying the PRACH that satisfy the determined bandwidth value is at least two, one of the available time-frequency resources for carrying the PRACH is selected.
- the processor is further configured to use the determined PRACH After the random access is initiated, when the random access fails, the new bandwidth value is selected, where the new bandwidth value is smaller than the bandwidth value corresponding to the PRACH used by the last random access failure; according to the new bandwidth. a value, determining a PRACH that satisfies the new bandwidth;
- the signal transmitter is further configured to send a random access request to the base station again by using the determined PRACH that satisfies the new bandwidth.
- the signal coverage level of the base station is measured before the user terminal initiates the random access; the user terminal determines the measured signal coverage level according to the mapping relationship between the preset signal coverage level and the bandwidth value.
- the user equipment terminal determines, according to the determined bandwidth value, a physical random access channel PRACH that satisfies the bandwidth value, where different bandwidth values correspond to different formats of PRACH, and the bandwidth value is smaller, corresponding to The number of symbols occupied by the guard interval GP included in the PRACH format is smaller; the user terminal sends a random access request to the base station by using the determined PRACH, and the user terminal initiates random access by using the user terminal.
- the appropriate bandwidth value is selected according to the signal coverage level of the base station, and the random access is initiated by using the PRACH that satisfies the bandwidth value.
- the PRACH is for different bandwidth values.
- the number of GP occupied symbols in the subframe structure is correspondingly reduced, so that the resources for transmitting data are increased, and the number of resources is effectively improved. Random access efficiency.
- FIG. 1 is a schematic flowchart of a random access method according to Embodiment 1 of the present invention
- FIG. 2 is a schematic structural diagram of a random access device according to Embodiment 2 of the present invention.
- FIG. 3 is a schematic structural diagram of a random access device according to Embodiment 3 of the present invention.
- an embodiment of the present invention provides a random access method and device, where a user terminal measures a signal coverage level of a base station before initiating random access; and the user terminal according to a preset signal coverage level. Determining a bandwidth value corresponding to the measured signal coverage level, and determining, by the user terminal, the physical random access channel PRACH that satisfies the bandwidth value according to the determined bandwidth value, where different a different format of the PRACH corresponding to the bandwidth value, the smaller the bandwidth value, the fewer the number of symbols occupied by the guard interval GP included in the corresponding PRACH format; the user terminal uses the determined PRACH to the base station When the random access request is sent, the user terminal selects an appropriate bandwidth value according to the signal coverage level of the base station when the user terminal initiates the random access, and initiates the random access by using the PRACH that satisfies the bandwidth value, because the single carrier transmission is simultaneously performed.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- FIG. 1 is a schematic flowchart diagram of a random access method according to Embodiment 1 of the present invention.
- the method can be as follows.
- Step 101 The user terminal measures the signal coverage level of the base station before initiating random access.
- the signal coverage level is determined by the measured base station signal coverage strength compared to the base station signal coverage standard strength increase or decrease.
- step 101 before the user terminal initiates the random access, the user equipment needs to measure the signal coverage level of the base station side, and select the accessed serving cell according to the measurement result.
- the signal coverage level of the base station is measured.
- the methods measured here include but are not limited to:
- the user terminal measures the reference information sent by the base station, and determines the signal coverage level of the base station according to the strength of the measured reference information.
- the reference information herein may be a pilot frequency signal, and may also refer to a synchronization sequence or an energy of a base station, etc., and the reference information is not specifically limited herein.
- the user terminal repeatedly measures the broadcast signal sent by the base station, and when the broadcast signal obtained by the measurement is correctly parsed, counts the number of times the repeated measurement obtains the broadcast signal that is correctly parsed;
- the user terminal obtains a signal coverage level corresponding to the number of times of statistics as a signal coverage level of the base station according to a mapping relationship between the preset number of repeated measurements and the signal coverage level.
- the user terminal Since the user terminal initiates measurement of the broadcast signal sent by the base station before initiating random access, but is affected by external factors, it is necessary to perform repeated measurement on the broadcast signal of the base station, and determine the broadcast signal obtained by the measurement. When parsing correctly, the measurement is ended, and the number of times the repeated measurement is performed to obtain the broadcast signal correctly parsed is counted.
- the correct parsing may be performed by acquiring a base station side parameter, such as synchronization information, from the broadcast signal, and ensuring that the user terminal synchronizes with the base station side by using the parsed base station side parameter.
- a base station side parameter such as synchronization information
- the base station repeats the existing GSM network in order to improve the utilization of spectrum resources. Deploy a multi-bandwidth communication system.
- the bandwidth of these communication systems is much smaller than the bandwidth of the GSM network system.
- the base station can divide the bandwidth of the GSM network system according to the spectrum resources required by the service, and obtain multiple different bandwidth values, each of which has a bandwidth. The value can correspond to a communication system.
- 200KHz is divided into: 60KHz, 15KHz, 3.75KHz, and the like.
- Each bandwidth value corresponds to a signal coverage level.
- mapping relationship between signal coverage level and bandwidth value is as follows:
- the signal coverage level described in Table 1 is 20 dB, indicating that in a communication network with a bandwidth of 3.75 KHz, the signal coverage strength of the base station is 20 KHz higher than the signal coverage standard strength.
- the mapping relationship between the signal coverage level determined by the base station and the bandwidth value may be stored in advance on the user terminal side.
- Step 102 The user terminal determines, according to a mapping relationship between a preset signal coverage level and a bandwidth value, a bandwidth value corresponding to the measured signal coverage level.
- step 102 after measuring the signal coverage level of the base station, the user terminal determines the bandwidth value corresponding to the measured signal coverage level by using a mapping relationship between the preset signal coverage level and the bandwidth value.
- the mapping relationship between the preset signal coverage level and the bandwidth value may be pre-established and stored locally in the user terminal according to the experimental data, or may be obtained by the user terminal in the actual measurement, where the mapping relationship is The establishment method is not specifically limited.
- Step 103 The user terminal determines, according to the determined bandwidth value, a physical random access channel PRACH that satisfies the bandwidth value.
- the PRACH of different formats corresponding to the different bandwidth values the smaller the bandwidth value, the smaller the number of symbols occupied by the guard interval GP included in the corresponding PRACH format.
- step 103 the user equipment obtains a time-frequency resource for carrying the PRACH that meets the determined bandwidth value according to the mapping relationship between the preset bandwidth value and the time-frequency resource for carrying the PRACH, where A bandwidth value corresponds to at least one time-frequency resource for carrying the PRACH.
- the user terminal selects one of the available time-frequency resources for carrying the PRACH when the obtained number of time-frequency resources for carrying the PRACH that meet the determined bandwidth value is at least two.
- the mapping between the preset bandwidth value and the time-frequency resource used to carry the PRACH can be determined by:
- the base station divides the configured time-frequency resources into different time-frequency resource blocks according to the signal coverage level, and one signal coverage level may correspond to multiple time-frequency resource blocks.
- Each time-frequency resource block corresponds to a PRACH format.
- the PRACH format is determined to be different according to the bandwidth value.
- the PRACH of different formats corresponding to different bandwidths the smaller the bandwidth value, the fewer the number of symbols occupied by the guard interval GP included in the corresponding PRACH format, so that the number of symbols saved by the GP can be allocated to the pilot sequence. Or a data sequence that increases the amount of data transferred.
- the mapping relationship between the bandwidth value, the signal coverage level, and the time-frequency resource block is determined according to a mapping relationship between the signal coverage level and the bandwidth value, and a correspondence between the signal coverage level and the time-frequency resource block.
- time-frequency resource blocks corresponding to different bandwidths carry different formats of PRACH, and the higher the coverage level, the smaller the bandwidth value, and the protection included in the PRACH format carried on the corresponding time-frequency resource block.
- the mapping relationship between the bandwidth value and the time-frequency resource block may be stored in advance locally in the user terminal.
- the manner in which the user terminal determines the physical random access channel PRACH that meets the bandwidth value after the determined bandwidth value further includes:
- the user terminal sends the determined bandwidth value to the base station, and after receiving the bandwidth value sent by the user terminal, the base station determines the time frequency that satisfies the bandwidth value according to the mapping relationship between the bandwidth value and the time-frequency resource block.
- the resource block sends the determined time-frequency resource block to the user terminal.
- the time-frequency resource blocks that are not used are selected, and the unused time-frequency resource blocks are sent to the user terminal.
- the base station may preferentially select an unused time-frequency resource block with a small number according to the number of the unused time-frequency resource block.
- Step 104 The user terminal sends a random access request to the base station by using the determined PRACH.
- step 104 the method further includes:
- the user terminal selects a new bandwidth value when the random access fails after the random access is initiated by using the determined PRACH, where the new bandwidth value is smaller than the PRACH used for the last random access failure.
- the corresponding bandwidth value is smaller than the PRACH used for the last random access failure.
- the user terminal determines a PRACH that satisfies the new bandwidth according to the new bandwidth value, and sends a random access request to the base station again by using the determined PRAC that satisfies the new bandwidth.
- the method further includes:
- the user terminal selects the maximum bandwidth value to send a random access request.
- the user terminal measures the signal coverage level of the base station before initiating the random access; the user terminal determines the measured relationship according to the mapping relationship between the preset signal coverage level and the bandwidth value. a bandwidth value corresponding to the signal coverage level; the user terminal determines, according to the determined bandwidth value, a physical random access channel PRACH that satisfies the bandwidth value, where different bandwidth values correspond to different formats of PRACH, the bandwidth value The smaller the number of symbols occupied by the guard interval GP included in the corresponding PRACH format, the smaller the number of symbols used by the corresponding user in the PRACH format; the user terminal sends a random access request to the base station by using the determined PRACH, in the embodiment of the present invention, through the user terminal.
- the appropriate bandwidth value is selected according to the signal coverage level of the base station, and the random access is initiated by using the PRACH that satisfies the bandwidth value, because in the case of multiple signal coverage levels in the single carrier transmission, different The bandwidth value, the number of GP occupied symbols in the PRACH subframe structure is correspondingly reduced, so that the resources for transmitting data are increased. , effectively improve the efficiency of random access.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- FIG. 2 is a schematic structural diagram of a random access device according to Embodiment 2 of the present invention.
- the random access device includes: a measurement module 21, a determining module 22, and a random access module 23, where:
- the measuring module 21 is configured to measure a signal coverage level of the base station before initiating random access
- the determining module 22 is configured to determine, according to a mapping relationship between a preset signal coverage level and a bandwidth value, a bandwidth value corresponding to the measured signal coverage level, and determine, according to the determined bandwidth value, a physics that satisfies the bandwidth value.
- a random access channel PRACH
- PRACH random access channel
- the random access module 23 is configured to send a random access request to the base station by using the determined PRACH.
- the measurement module 21 is specifically configured to measure reference information sent by the base station, and determine a signal coverage level of the base station according to the measured strength of the reference information.
- the measurement module 21 is specifically configured to repeatedly test a broadcast signal sent by a base station. And, when correctly correcting the measured broadcast signal, counting the number of times the repeated measurement obtains the broadcast signal correctly parsed;
- the user terminal obtains a signal coverage level corresponding to the number of times of statistics as a signal coverage level of the base station according to a mapping relationship between the preset number of repeated measurements and the signal coverage level.
- the determining module 22 is specifically configured to obtain a time-frequency resource for carrying the PRACH that meets the determined bandwidth value according to a mapping relationship between a preset bandwidth value and a time-frequency resource for carrying the PRACH. Wherein, one bandwidth value corresponds to at least one time-frequency resource for carrying the PRACH.
- the determining module 22 determines a physical random access channel PRACH that satisfies the bandwidth value, specifically for:
- the obtained number of time-frequency resources for carrying the PRACH that satisfy the determined bandwidth value is at least two, one of the available time-frequency resources for carrying the PRACH is selected.
- the random access device further includes: a selecting module 24, where:
- the selecting module 24 is configured to select a new bandwidth value when the random access fails after the random access is initiated by using the determined PRACH, where the new bandwidth value is smaller than the last time the random access failure is sent.
- the determining module 22 is specifically configured to determine, according to the new bandwidth value, a PRACH that satisfies the new bandwidth.
- the random access module 23 is specifically configured to send a random access request to the base station again by using the determined PRACH that satisfies the new bandwidth.
- the random access device in the embodiment of the present invention may be a logical component integrated in the user terminal, or may be a network device that is independent of the user device, and may be implemented by hardware or software. limited.
- Embodiment 3 is a diagrammatic representation of Embodiment 3
- FIG. 3 is a schematic structural diagram of a random access device according to Embodiment 3 of the present invention.
- the random access device includes: a signal receiver 31, a processor 32, and a signal transmitter 33, where:
- the signal receiver 31 is configured to measure the signal coverage of the base station, etc. before initiating the random access. level;
- the processor 32 is configured to determine, according to a mapping relationship between a preset signal coverage level and a bandwidth value, a bandwidth value corresponding to the measured signal coverage level, and determine, according to the determined bandwidth value, a physics that satisfies the bandwidth value.
- PRACH random access channel
- the signal transmitter 33 is configured to send a random access request to the base station by using the determined PRACH.
- the signal transmitter 33 is specifically configured to measure reference information sent by the base station, and determine a signal coverage level of the base station according to the measured strength of the reference information.
- the signal transmitter 33 is specifically configured to repeatedly measure the broadcast signal sent by the base station, and when the broadcast signal obtained by the measurement is correctly parsed, count the number of times the repeated measurement obtains the broadcast signal that is correctly parsed;
- the signal coverage level corresponding to the number of statistics is obtained as the signal coverage level of the base station.
- the processor 32 is configured to obtain a time-frequency resource for carrying the PRACH that meets the determined bandwidth value according to a mapping relationship between a preset bandwidth value and a time-frequency resource used for carrying the PRACH. Wherein, one bandwidth value corresponds to at least one time-frequency resource for carrying the PRACH.
- the processor 32 determines a physical random access channel PRACH that satisfies the bandwidth value, specifically for:
- the obtained number of time-frequency resources for carrying the PRACH that satisfy the determined bandwidth value is at least two, one of the available time-frequency resources for carrying the PRACH is selected.
- the processor 32 is further configured to: when a random access is determined by using the determined PRACH to determine a random access failure, select a new bandwidth value, where the new bandwidth value is smaller than a last transmission. a bandwidth value corresponding to the PRACH used by the random access failure; determining, according to the new bandwidth value, a PRACH that satisfies the new bandwidth;
- the signal transmitter 33 is further configured to utilize the determined PRACH that satisfies the new bandwidth.
- the random access request is sent to the base station.
- the processor 32 may be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention.
- CPU general purpose central processing unit
- ASIC application-specific integrated circuit
- embodiments of the present invention can be provided as a method, apparatus (device), or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
- a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种随机接入方法和设备,包括:用户终端在发起随机接入之前,测量得到基站的信号覆盖等级;根据预设的信号覆盖等级与带宽值之间的映射关系,确定测量得到的信号覆盖等级对应的带宽值;根据确定的带宽值,确定满足带宽值的物理随机接入信道PRACH,不同带宽值对应的不同格式的PRACH,带宽值越小,对应的PRACH格式中包含的保护间隔GP占用的符号数越少;利用确定的PRACH,向所述基站发送随机接入请求,通过用户终端在发起随机接入时,根据基站的信号覆盖等级选择合适的带宽值,利用满足该带宽值的PRACH发起随机接入,针对不同带宽值,PRACH子帧结构中的GP占用符号数相应减少,使得用于传输数据的资源增多,有效提升了随机接入效率。
Description
本发明涉及无线通信技术领域,尤其涉及一种随机接入方法和设备。
随着M2M(英文:Machine to Machine communication;中文:机器通信)的应用越来越广泛,例如:汽车远程通讯、消费电子、车队管理、智能计量等等,但是由于业务不同,不同业务对数据速率的要求不同,这就需要M2M系统支持不同的带宽。
目前,在GSM(英文:Global System for Mobile communications;中文:全球移动通信系统)中,PRACH(英文:Physical Random Access Channel;中文:物理随机接入信道)对应一种特定的带宽(200KHz)。PRACH以AB(英文:Access Burst;中文:接入突发脉冲序列)的形式表现。AB的结构为:包含了前TB(英文:Tail个符号;中文:尾符号)占8个符号;TSC(英文:Training Sequence Code;中文:训练序列码)占41个符号;Data占36个符号;后TB占3个符号;GP(英文:Guard Period;中文:保护时间)占68.25个符号。
由于GP长度值与小区覆盖范围、信道时延有关,而小区覆盖范围越大,信道时延越长。但是在GSM中,GP一般为一个固定值。
M2M所使用的通信系统属于窄带通信系统,窄带通信系统的系统带宽与GSM的系统带宽相比,窄带通信系统的系统带宽小于GSM的系统带宽。由于带宽变窄,AB中每一部分占用的符号变长,那么在M2M中达到相同的覆盖距离,继续使用GSM系统中的PRACH时,将导致GP资源的浪费。
同时,M2M支持多种不同带宽,因此,亟需一种新型的PRACH格式,以满足窄带通信系统的要求,并解决GP资源浪费的问题。
发明内容
有鉴于此,本发明实施例提供了一种随机接入方法和设备,用于解决目前存在的GP资源浪费的问题。
根据本发明的第一方面,提供了一种随机接入方法,包括:
用户终端在发起随机接入之前,测量得到基站的信号覆盖等级;
所述用户终端根据预设的信号覆盖等级与带宽值之间的映射关系,确定测量得到的信号覆盖等级对应的带宽值;
所述用户终端根据确定的所述带宽值,确定满足所述带宽值的物理随机接入信道PRACH,其中,不同带宽值对应的不同格式的PRACH,所述带宽值越小,对应的所述PRACH格式中包含的保护间隔GP占用的符号数越少;
所述用户终端利用确定的所述PRACH,向所述基站发送随机接入请求。
结合本发明第一方面可能的实施方式,在第一种可能的实施方式中,用户终端测量得到基站的信号覆盖等级,包括:
用户终端对基站发送的参考信息进行测量,根据测量得到的参考信息的强度确定所述基站的信号覆盖等级。
结合本发明第一方面可能的实施方式,在第二种可能的实施方式中,用户终端测量得到基站的信号覆盖等级,包括:
用户终端对基站发送的广播信号进行重复测量,在对测量得到的所述广播信号正确解析时,统计重复测量得到正确解析的所述广播信号的次数;
所述用户终端根据预设的重复测量次数与信号覆盖等级之间的映射关系,得到统计的次数对应的信号覆盖等级作为测量得到基站的信号覆盖等级。
结合本发明第一方面可能的实施方式,或者结合本发明第一方面的第一种可能的实施方式,或者结合本发明第一方面的第二种可能的实施方式,在第三种可能的实施方式中,所述用户终端根据确定的所述带宽值,确定满足所述带宽值的物理随机接入信道PRACH,包括:
所述用户终端根据预设的带宽值与用于承载PRACH的时频资源之间的映射关系,得到满足确定的所述带宽值的用于承载PRACH的时频资源,其中,一个带宽值对应至少一个用于承载PRACH的时频资源。
结合本发明第一方面的第三种可能的实施方式,在第四种可能的实施方式中,确定满足所述带宽值的物理随机接入信道PRACH,包括:
所述用户终端在得到的满足确定的所述带宽值的用于承载PRACH的时频资源的个数为至少两个时,选择其中一个可用的用于承载PRACH的时频资源。
结合本发明第一方面可能的实施方式,或者结合本发明第一方面的第一种可能的实施方式,或者结合本发明第一方面的第二种可能的实施方式,或者结合本发明第一方面的第三种可能的实施方式,或者结合本发明第一方面的第四种可能的实施方式,在第五种可能的实施方式中,所述方法还包括:
所述用户终端在利用确定的所述PRACH发起随机接入后、确定随机接入失败时,选择新的带宽值,其中,所述新的带宽值小于最近一次发送随机接入失败所使用的PRACH对应的带宽值;
所述用户终端根据所述新的带宽值,确定满足所述新的带宽的PRACH,并利用确定的满足所述新的带宽的PRACH再次向所述基站发送随机接入请求。
根据本发明的第二方面,提供了一种随机接入设备,包括:
测量模块,用于在发起随机接入之前,测量得到基站的信号覆盖等级;
确定模块,用于根据预设的信号覆盖等级与带宽值之间的映射关系,确定测量得到的信号覆盖等级对应的带宽值;根据确定的所述带宽值,确定满足所述带宽值的物理随机接入信道PRACH,其中,不同带宽值对应的不同格式的PRACH,所述带宽值越小,对应的所述PRACH格式中包含的保护间隔GP占用的符号数越少;
随机接入模块,用于利用确定的所述PRACH,向所述基站发送随机接入请求。
结合本发明第二方面可能的实施方式,在第一种可能的实施方式中,所述测量模块,具体用于对基站发送的参考信息进行测量,根据测量得到的参考信息的强度确定所述基站的信号覆盖等级。
结合本发明第二方面可能的实施方式,在第二种可能的实施方式中,所述测量模块,具体用于对基站发送的广播信号进行重复测量,在对测量得到的所述广播信号正确解析时,统计重复测量得到正确解析的所述广播信号的次数;
所述用户终端根据预设的重复测量次数与信号覆盖等级之间的映射关系,得到统计的次数对应的信号覆盖等级作为测量得到基站的信号覆盖等级。
结合本发明第二方面可能的实施方式,或者结合本发明第二方面的第一种可能的实施方式,或者结合本发明第二方面的第二种可能的实施方式,在第三种可能的实施方式中,所述确定模块,具体用于根据预设的带宽值与用于承载PRACH的时频资源之间的映射关系,得到满足确定的所述带宽值的用于承载PRACH的时频资源,其中,一个带宽值对应至少一个用于承载PRACH的时频资源。
结合本发明第二方面的第三种可能的实施方式,在第四种可能的实施方式中,所述确定模块确定满足所述带宽值的物理随机接入信道PRACH,具体用于:
在得到的满足确定的所述带宽值的用于承载PRACH的时频资源的个数为至少两个时,选择其中一个可用的用于承载PRACH的时频资源。
结合本发明第二方面可能的实施方式,或者结合本发明第二方面的第一种可能的实施方式,或者结合本发明第二方面的第二种可能的实施方式,或者结合本发明第二方面的第三种可能的实施方式,或者结合本发明第二方面的第四种可能的实施方式,在第五种可能的实施方式中,所述随机接入设备还包括:选择模块,其中:
选择模块,用于在利用确定的所述PRACH发起随机接入后、确定随机接入失败时,选择新的带宽值,其中,所述新的带宽值小于最近一次发送随机接入失败所使用的PRACH对应的带宽值;
所述确定模块,具体用于根据所述新的带宽值,确定满足所述新的带宽的PRACH;
所述随机接入模块,具体用于利用确定的满足所述新的带宽的PRACH再次向所述基站发送随机接入请求。
根据本发明的第三方面,提供了一种随机接入设备,所述随机接入设备包括:信号接收器、处理器和信号发射器,其中:
信号接收器,用于在发起随机接入之前,测量得到基站的信号覆盖等级;
处理器,用于根据预设的信号覆盖等级与带宽值之间的映射关系,确定测量得到的信号覆盖等级对应的带宽值;根据确定的所述带宽值,确定满足所述带宽值的物理随机接入信道PRACH,其中,不同带宽值对应的不同格式的PRACH,所述带宽值越小,对应的所述PRACH格式中包含的保护间隔GP占用的符号数越少;
信号发射器,用于利用确定的所述PRACH,向所述基站发送随机接入请求。
结合本发明第三方面可能的实施方式,在第一种可能的实施方式中,所述信号发射器,具体用于对基站发送的参考信息进行测量,根据测量得到的参考信息的强度确定所述基站的信号覆盖等级。
结合本发明第三方面可能的实施方式,在第二种可能的实施方式中,所述信号发射器,具体用于对基站发送的广播信号进行重复测量,在对测量得到的所述广播信号正确解析时,统计重复测量得到正确解析的所述广播信号的次数;
根据预设的重复测量次数与信号覆盖等级之间的映射关系,得到统计的次数对应的信号覆盖等级作为测量得到基站的信号覆盖等级。
结合本发明第三方面可能的实施方式,或者结合本发明第三方面的第一种可能的实施方式,或者结合本发明第三方面的第二种可能的实施方式,在第三种可能的实施方式中,所述处理器,具体用于根据预设的带宽值与用于承载PRACH的时频资源之间的映射关系,得到满足确定的所述带宽值的用于承载PRACH的时频资源,其中,一个带宽值对应至少一个用于承载PRACH的时频资源。
结合本发明第三方面的第三种可能的实施方式,在第四种可能的实施方式中,所述处理器确定满足所述带宽值的物理随机接入信道PRACH,具体用于:
在得到的满足确定的所述带宽值的用于承载PRACH的时频资源的个数为至少两个时,选择其中一个可用的用于承载PRACH的时频资源。
结合本发明第三方面可能的实施方式,或者结合本发明第三方面的第一种可能的实施方式,或者结合本发明第三方面的第二种可能的实施方式,或者结合本发明第三方面的第三种可能的实施方式,或者结合本发明第三方面的第四种可能的实施方式,在第五种可能的实施方式中,所述处理器,还用于在利用确定的所述PRACH发起随机接入后、确定随机接入失败时,选择新的带宽值,其中,所述新的带宽值小于最近一次发送随机接入失败所使用的PRACH对应的带宽值;根据所述新的带宽值,确定满足所述新的带宽的PRACH;
所述信号发射器,还用于利用确定的满足所述新的带宽的PRACH再次向所述基站发送随机接入请求。
本发明实施例通过用户终端在发起随机接入之前,测量得到基站的信号覆盖等级;所述用户终端根据预设的信号覆盖等级与带宽值之间的映射关系,确定测量得到的信号覆盖等级对应的带宽值;所述用户终端根据确定的所述带宽值,确定满足所述带宽值的物理随机接入信道PRACH,其中,不同带宽值对应的不同格式的PRACH,所述带宽值越小,对应的所述PRACH格式中包含的保护间隔GP占用的符号数越少;所述用户终端利用确定的所述PRACH,向所述基站发送随机接入请求,本发明实施例通过用户终端在发起随机接入时,根据基站的信号覆盖等级选择合适的带宽值,利用满足该带宽值的PRACH发起随机接入,由于在单载波传输同时又有多个信号覆盖等级的场景中,针对不同带宽值,PRACH子帧结构中的GP占用符号数相应减少,使得用于传输数据的资源增多,有效提升了随机接入效率。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的一种随机接入方法的流程示意图;
图2为本发明实施例二提供的一种随机接入设备的结构示意图;
图3为本发明实施例三提供的一种随机接入设备的结构示意图。
为了实现本发明的目的,本发明实施例提供了一种随机接入方法和设备,用户终端在发起随机接入之前,测量得到基站的信号覆盖等级;所述用户终端根据预设的信号覆盖等级与带宽值之间的映射关系,确定测量得到的信号覆盖等级对应的带宽值;所述用户终端根据确定的所述带宽值,确定满足所述带宽值的物理随机接入信道PRACH,其中,不同带宽值对应的不同格式的PRACH,所述带宽值越小,对应的所述PRACH格式中包含的保护间隔GP占用的符号数越少;所述用户终端利用确定的所述PRACH,向所述基站发送随机接入请求,本发明实施例通过用户终端在发起随机接入时,根据基站的信号覆盖等级选择合适的带宽值,利用满足该带宽值的PRACH发起随机接入,由于在单载波传输同时又有多个信号覆盖等级的场景中,针对不同带宽值,PRACH子帧结构中的GP占用符号数相应减少,使得用于传输数据的资源增多,有效提升了随机接入效率。
下面结合说明书附图对本发明各个实施例进行详细描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例一:
如图1所示,为本发明实施例一提供的一种随机接入方法的流程示意图。所述方法可以如下所述。
步骤101:用户终端在发起随机接入之前,测量得到基站的信号覆盖等级。
需要说明的是,信号覆盖等级是由测量得到的基站信号覆盖强度相比与基站信号覆盖标准强度增加或者减少的数值确定的。
在步骤101中,用户终端在发起随机接入之前,需要对基站侧的信号覆盖等级进行测量,根据测量结果选择接入的服务小区。
对于支持M2M的用户终端,在发起M2M业务时,对基站的信号覆盖等级进行测量。这里测量的方式包括但不限于:
第一种方式:
用户终端对基站发送的参考信息进行测量,根据测量得到的参考信息的强度确定所述基站的信号覆盖等级。
需要说明的是,这里的参考信息可以是指导频信号,还可以是指同步序列或者基站的能量等,这里对参考信息不做具体限定。
第二种方式:
用户终端对基站发送的广播信号进行重复测量,在对测量得到的所述广播信号正确解析时,统计重复测量得到正确解析的所述广播信号的次数;
所述用户终端根据预设的重复测量次数与信号覆盖等级之间的映射关系,得到统计的次数对应的信号覆盖等级作为测量得到基站的信号覆盖等级。
由于用户终端在发起随机接入之前,发起对基站发送的广播信号进行测量,但是受到外界因素的影响,需要对基站的广播信号进行多次重复测量,并且在确定对测量得到的所述广播信号正确解析时,结束测量,并统计重复测量得到正确解析的所述广播信号的次数。
需要说明的是,正确解析可以是指从广播信号中获取基站侧参数,例如同步信息等,保证用户终端通过解析出的基站侧参数实现与基站侧同步等。
此外,由于基站为了提升频谱资源的利用率,在现有的GSM网络上重复
部署多带宽的通信系统,这些通信系统的带宽远小于GSM网络系统的带宽,基站可以根据业务所需要的频谱资源,对GSM网络系统的带宽进行划分,得到多个不同带宽值,每一种带宽值可以对应一个通信系统。
例如:将200KHz划分成为:60KHz、15KHz、3.75KHz等等。
每一种带宽值对应一个信号覆盖等级,带宽值越小,对应的信号覆盖等级越大,信号覆盖范围越广。
如表1所示,为信号覆盖等级与带宽值之间的映射关系表:
带宽 | 3.75KHz | 15KHz | 60KHz |
信号覆盖等级 | 20dB | 15dB | 10dB |
表1
需要说明的是,表1中所记载的信号覆盖等级20dB,说明在带宽为3.75KHz的通信网络中,基站的信号覆盖强度比信号覆盖标准强度高20KHz。
基站确定的信号覆盖等级与带宽值之间的映射关系可以预先存储在用户终端侧。
步骤102:所述用户终端根据预设的信号覆盖等级与带宽值之间的映射关系,确定测量得到的信号覆盖等级对应的带宽值。
在步骤102中,所述用户终端在对基站的信号覆盖等级进行测量之后,利用预设的信号覆盖等级与带宽值之间的映射关系,确定测量得到的信号覆盖等级对应的带宽值。
其中,预设的信号覆盖等级与带宽值之间的映射关系可以是根据实验数据预先建立并存储在用户终端本地的,还可以是用户终端在实际测量中通过学习得到的,这里对于映射关系的建立方式不做具体限定。
步骤103:所述用户终端根据确定的所述带宽值,确定满足所述带宽值的物理随机接入信道PRACH。
其中,不同带宽值对应的不同格式的PRACH,所述带宽值越小,对应的所述PRACH格式中包含的保护间隔GP占用的符号数越少。
在步骤103中,所述用户终端根据预设的带宽值与用于承载PRACH的时频资源之间的映射关系,得到满足确定的所述带宽值的用于承载PRACH的时频资源,其中,一个带宽值对应至少一个用于承载PRACH的时频资源。
所述用户终端在得到的满足确定的所述带宽值的用于承载PRACH的时频资源的个数为至少两个时,选择其中一个可用的用于承载PRACH的时频资源。
其中,预设的带宽值与用于承载PRACH的时频资源之间的映射关系可以通过以下方式确定:
基站根据信号覆盖等级将配置的时频资源划分成不同的时频资源块,一种信号覆盖等级可以对应多个时频资源块。每一个时频资源块对应一种PRACH格式。
需要说明的是,由于不同带宽对应的每一个符号的时间长度不同,那么根据带宽值,确定PRACH格式也不同。
其中,不同带宽对应的不同格式的PRACH,所述带宽值越小,对应的所述PRACH格式中包含的保护间隔GP占用的符号数越少,这样可以将GP节省的符号数分配给导频序列或者数据序列,提升数据传输量。
根据信号覆盖等级与带宽值之间的映射关系、以及信号覆盖等级与时频资源块之间的对应关系,确定带宽值、信号覆盖等级与时频资源块之间的映射关系。
如表2所示,为带宽值、信号覆盖等级与时频资源块之间的映射关系示意表:
表2
从表2中可以看出,不同带宽对应的时频资源块上承载不同格式的PRACH,覆盖等级越高,所述带宽值越小,对应的时频资源块上承载的PRACH格式中包含的保护间隔GP占用的符号数越少。
带宽值与时频资源块之间的映射关系可以预先存储在用户终端本地。
可选地,用户终端在确定的所述带宽值之后,确定满足所述带宽值的物理随机接入信道PRACH的方式还包括:
用户终端将确定的所述带宽值发送给基站,基站在接收到用户终端发送的所述带宽值之后,根据带宽值与时频资源块之间的映射关系,确定满足所述带宽值的时频资源块,并将确定的时频资源块发送给用户终端。
需要说明的是,若基站确定的满足该带宽的时频资源块为多个时,选择其中未被使用的时频资源块,将未被使用的时频资源块发送给该用户终端。
进一步地,基站在选择未被使用的时频资源块时,可以按照未被使用的时频资源块的编号,优先选择编号小的未被使用的时频资源块。
步骤104:所述用户终端利用确定的所述PRACH,向所述基站发送随机接入请求。
在步骤104中,所述方法还包括:
所述用户终端在利用确定的所述PRACH发起随机接入后、确定随机接入失败时,选择新的带宽值,其中,所述新的带宽值小于最近一次发送随机接入失败所使用的PRACH对应的带宽值。
所述用户终端根据所述新的带宽值,确定满足所述新的带宽的PRACH,并利用确定的满足所述新的带宽的PRAC再次向所述基站发送随机接入请求。
可选地,若用户终端未测量得到基站的信号覆盖等级时,所述方法还包括:
用户终端选择最大带宽值发送随机接入请求。
进一步地,若用户终端利用选择的最大带宽值发送随机接入请求失败时,自适应选择比最大带宽小的带宽再次发起随机接入请求,若依然失败,再次
选择更小带宽发起随机接入请求,依次进行。
通过本发明实施例一的方案,用户终端在发起随机接入之前,测量得到基站的信号覆盖等级;所述用户终端根据预设的信号覆盖等级与带宽值之间的映射关系,确定测量得到的信号覆盖等级对应的带宽值;所述用户终端根据确定的所述带宽值,确定满足所述带宽值的物理随机接入信道PRACH,其中,不同带宽值对应的不同格式的PRACH,所述带宽值越小,对应的所述PRACH格式中包含的保护间隔GP占用的符号数越少;所述用户终端利用确定的所述PRACH,向所述基站发送随机接入请求,本发明实施例通过用户终端在发起随机接入时,根据基站的信号覆盖等级选择合适的带宽值,利用满足该带宽值的PRACH发起随机接入,由于在单载波传输同时又有多个信号覆盖等级的场景中,针对不同带宽值,PRACH子帧结构中的GP占用符号数相应减少,使得用于传输数据的资源增多,有效提升了随机接入效率。
实施例二:
如图2所示,为本发明实施例二提供的一种随机接入设备的结构示意图,所述随机接入设备包括:测量模块21、确定模块22和随机接入模块23,其中:
测量模块21,用于在发起随机接入之前,测量得到基站的信号覆盖等级;
确定模块22,用于根据预设的信号覆盖等级与带宽值之间的映射关系,确定测量得到的信号覆盖等级对应的带宽值;根据确定的所述带宽值,确定满足所述带宽值的物理随机接入信道PRACH,其中,不同带宽值对应的不同格式的PRACH,所述带宽值越小,对应的所述PRACH格式中包含的保护间隔GP占用的符号数越少;
随机接入模块23,用于利用确定的所述PRACH,向所述基站发送随机接入请求。
具体地,所述测量模块21,具体用于对基站发送的参考信息进行测量,根据测量得到的参考信息的强度确定所述基站的信号覆盖等级。
具体地,所述测量模块21,具体用于对基站发送的广播信号进行重复测
量,在对测量得到的所述广播信号正确解析时,统计重复测量得到正确解析的所述广播信号的次数;
所述用户终端根据预设的重复测量次数与信号覆盖等级之间的映射关系,得到统计的次数对应的信号覆盖等级作为测量得到基站的信号覆盖等级。
具体地,所述确定模块22,具体用于根据预设的带宽值与用于承载PRACH的时频资源之间的映射关系,得到满足确定的所述带宽值的用于承载PRACH的时频资源,其中,一个带宽值对应至少一个用于承载PRACH的时频资源。
具体地,所述确定模块22确定满足所述带宽值的物理随机接入信道PRACH,具体用于:
在得到的满足确定的所述带宽值的用于承载PRACH的时频资源的个数为至少两个时,选择其中一个可用的用于承载PRACH的时频资源。
可选地,所述随机接入设备还包括:选择模块24,其中:
选择模块24,用于在利用确定的所述PRACH发起随机接入后、确定随机接入失败时,选择新的带宽值,其中,所述新的带宽值小于最近一次发送随机接入失败所使用的PRACH对应的带宽值;
所述确定模块22,具体用于根据所述新的带宽值,确定满足所述新的带宽的PRACH;
所述随机接入模块23,具体用于利用确定的满足所述新的带宽的PRACH再次向所述基站发送随机接入请求。
需要说明的是,本发明实施例所述的随机接入设备可以是集成在用户终端内部的逻辑部件,也可以是是独立与用户设备的网络设备,可以通过硬件或者软件方式实现,这里不做限定。
实施例三:
如图3所示,为本发明实施例三提供的一种随机接入设备的结构示意图,所述随机接入设备包括:信号接收器31、处理器32和信号发射器33,其中:
信号接收器31,用于在发起随机接入之前,测量得到基站的信号覆盖等
级;
处理器32,用于根据预设的信号覆盖等级与带宽值之间的映射关系,确定测量得到的信号覆盖等级对应的带宽值;根据确定的所述带宽值,确定满足所述带宽值的物理随机接入信道PRACH,其中,不同带宽值对应的不同格式的PRACH,所述带宽值越小,对应的所述PRACH格式中包含的保护间隔GP占用的符号数越少;
信号发射器33,用于利用确定的所述PRACH,向所述基站发送随机接入请求。
具体地,所述信号发射器33,具体用于对基站发送的参考信息进行测量,根据测量得到的参考信息的强度确定所述基站的信号覆盖等级。
具体地,所述信号发射器33,具体用于对基站发送的广播信号进行重复测量,在对测量得到的所述广播信号正确解析时,统计重复测量得到正确解析的所述广播信号的次数;
根据预设的重复测量次数与信号覆盖等级之间的映射关系,得到统计的次数对应的信号覆盖等级作为测量得到基站的信号覆盖等级。
具体地,所述处理器32,具体用于根据预设的带宽值与用于承载PRACH的时频资源之间的映射关系,得到满足确定的所述带宽值的用于承载PRACH的时频资源,其中,一个带宽值对应至少一个用于承载PRACH的时频资源。
具体地,所述处理器32确定满足所述带宽值的物理随机接入信道PRACH,具体用于:
在得到的满足确定的所述带宽值的用于承载PRACH的时频资源的个数为至少两个时,选择其中一个可用的用于承载PRACH的时频资源。
具体地,所述处理器32,还用于在利用确定的所述PRACH发起随机接入后、确定随机接入失败时,选择新的带宽值,其中,所述新的带宽值小于最近一次发送随机接入失败所使用的PRACH对应的带宽值;根据所述新的带宽值,确定满足所述新的带宽的PRACH;
所述信号发射器33,还用于利用确定的满足所述新的带宽的PRACH再
次向所述基站发送随机接入请求。
其中,处理器32可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
本领域的技术人员应明白,本发明的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (18)
- 一种随机接入方法,其特征在于,包括:用户终端在发起随机接入之前,测量得到基站的信号覆盖等级;所述用户终端根据预设的信号覆盖等级与带宽值之间的映射关系,确定测量得到的信号覆盖等级对应的带宽值;所述用户终端根据确定的所述带宽值,确定满足所述带宽值的物理随机接入信道PRACH,其中,不同带宽值对应的不同格式的PRACH,所述带宽值越小,对应的所述PRACH格式中包含的保护间隔GP占用的符号数越少;所述用户终端利用确定的所述PRACH,向所述基站发送随机接入请求。
- 如权利要求1所述的随机接入方法,其特征在于,用户终端测量得到基站的信号覆盖等级,包括:用户终端对基站发送的参考信息进行测量,根据测量得到的参考信息的强度确定所述基站的信号覆盖等级。
- 如权利要求1所述的随机接入方法,其特征在于,用户终端测量得到基站的信号覆盖等级,包括:用户终端对基站发送的广播信号进行重复测量,在对测量得到的所述广播信号正确解析时,统计重复测量得到正确解析的所述广播信号的次数;所述用户终端根据预设的重复测量次数与信号覆盖等级之间的映射关系,得到统计的次数对应的信号覆盖等级作为测量得到基站的信号覆盖等级。
- 如权利要求1至3任一所述的随机接入方法,其特征在于,所述用户终端根据确定的所述带宽值,确定满足所述带宽值的物理随机接入信道PRACH,包括:所述用户终端根据预设的带宽值与用于承载PRACH的时频资源之间的映射关系,得到满足确定的所述带宽值的用于承载PRACH的时频资源,其中,一个带宽值对应至少一个用于承载PRACH的时频资源。
- 如权利要求4所述的随机接入方法,其特征在于,确定满足所述带宽 值的物理随机接入信道PRACH,包括:所述用户终端在得到的满足确定的所述带宽值的用于承载PRACH的时频资源的个数为至少两个时,选择其中一个可用的用于承载PRACH的时频资源。
- 如权利要求1至5任一所述的随机接入方法,其特征在于,所述方法还包括:所述用户终端在利用确定的所述PRACH发起随机接入后、确定随机接入失败时,选择新的带宽值,其中,所述新的带宽值小于最近一次发送随机接入失败所使用的PRACH对应的带宽值;所述用户终端根据所述新的带宽值,确定满足所述新的带宽的PRACH,并利用确定的满足所述新的带宽的PRACH再次向所述基站发送随机接入请求。
- 一种随机接入设备,其特征在于,包括:测量模块,用于在发起随机接入之前,测量得到基站的信号覆盖等级;确定模块,用于根据预设的信号覆盖等级与带宽值之间的映射关系,确定测量得到的信号覆盖等级对应的带宽值;根据确定的所述带宽值,确定满足所述带宽值的物理随机接入信道PRACH,其中,不同带宽值对应的不同格式的PRACH,所述带宽值越小,对应的所述PRACH格式中包含的保护间隔GP占用的符号数越少;随机接入模块,用于利用确定的所述PRACH,向所述基站发送随机接入请求。
- 如权利要求7所述的随机接入设备,其特征在于,所述测量模块,具体用于对基站发送的参考信息进行测量,根据测量得到的参考信息的强度确定所述基站的信号覆盖等级。
- 如权利要求7所述的随机接入设备,其特征在于,所述测量模块,具体用于对基站发送的广播信号进行重复测量,在对测量得到的所述广播信号正确解析时,统计重复测量得到正确解析的所述广播 信号的次数;所述用户终端根据预设的重复测量次数与信号覆盖等级之间的映射关系,得到统计的次数对应的信号覆盖等级作为测量得到基站的信号覆盖等级。
- 如权利要求7至9任一所述的随机接入设备,其特征在于,所述确定模块,具体用于根据预设的带宽值与用于承载PRACH的时频资源之间的映射关系,得到满足确定的所述带宽值的用于承载PRACH的时频资源,其中,一个带宽值对应至少一个用于承载PRACH的时频资源。
- 如权利要求10所述的随机接入设备,其特征在于,所述确定模块确定满足所述带宽值的物理随机接入信道PRACH,具体用于:在得到的满足确定的所述带宽值的用于承载PRACH的时频资源的个数为至少两个时,选择其中一个可用的用于承载PRACH的时频资源。
- 如权利要求7至11任一所述的随机接入设备,其特征在于,所述随机接入设备还包括:选择模块,其中:选择模块,用于在利用确定的所述PRACH发起随机接入后、确定随机接入失败时,选择新的带宽值,其中,所述新的带宽值小于最近一次发送随机接入失败所使用的PRACH对应的带宽值;所述确定模块,具体用于根据所述新的带宽值,确定满足所述新的带宽的PRACH;所述随机接入模块,具体用于利用确定的满足所述新的带宽的PRACH再次向所述基站发送随机接入请求。
- 一种随机接入设备,其特征在于,所述随机接入设备包括:信号接收器、处理器和信号发射器,其中:信号接收器,用于在发起随机接入之前,测量得到基站的信号覆盖等级;处理器,用于根据预设的信号覆盖等级与带宽值之间的映射关系,确定测量得到的信号覆盖等级对应的带宽值;根据确定的所述带宽值,确定满足所述带宽值的物理随机接入信道PRACH,其中,不同带宽值对应的不同格式的PRACH,所述带宽值越小,对应的所述PRACH格式中包含的保护间隔GP 占用的符号数越少;信号发射器,用于利用确定的所述PRACH,向所述基站发送随机接入请求。
- 如权利要求13所述的随机接入设备,其特征在于,所述信号发射器,具体用于对基站发送的参考信息进行测量,根据测量得到的参考信息的强度确定所述基站的信号覆盖等级。
- 如权利要求13所述的随机接入设备,其特征在于,所述信号发射器,具体用于对基站发送的广播信号进行重复测量,在对测量得到的所述广播信号正确解析时,统计重复测量得到正确解析的所述广播信号的次数;根据预设的重复测量次数与信号覆盖等级之间的映射关系,得到统计的次数对应的信号覆盖等级作为测量得到基站的信号覆盖等级。
- 如权利要求13至15任一所述的随机接入设备,其特征在于,所述处理器,具体用于根据预设的带宽值与用于承载PRACH的时频资源之间的映射关系,得到满足确定的所述带宽值的用于承载PRACH的时频资源,其中,一个带宽值对应至少一个用于承载PRACH的时频资源。
- 如权利要求16所述的随机接入设备,其特征在于,所述处理器确定满足所述带宽值的物理随机接入信道PRACH,具体用于:在得到的满足确定的所述带宽值的用于承载PRACH的时频资源的个数为至少两个时,选择其中一个可用的用于承载PRACH的时频资源。
- 如权利要求13至17任一所述的随机接入设备,其特征在于,所述处理器,还用于在利用确定的所述PRACH发起随机接入后、确定随机接入失败时,选择新的带宽值,其中,所述新的带宽值小于最近一次发送随机接入失败所使用的PRACH对应的带宽值;根据所述新的带宽值,确定满足所述新的带宽的PRACH;所述信号发射器,还用于利用确定的满足所述新的带宽的PRACH再次向所述基站发送随机接入请求。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/090113 WO2016065640A1 (zh) | 2014-10-31 | 2014-10-31 | 一种随机接入方法和设备 |
CN201480035538.4A CN105900515B (zh) | 2014-10-31 | 2014-10-31 | 一种随机接入方法和设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/090113 WO2016065640A1 (zh) | 2014-10-31 | 2014-10-31 | 一种随机接入方法和设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016065640A1 true WO2016065640A1 (zh) | 2016-05-06 |
Family
ID=55856451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/090113 WO2016065640A1 (zh) | 2014-10-31 | 2014-10-31 | 一种随机接入方法和设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105900515B (zh) |
WO (1) | WO2016065640A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108811160A (zh) * | 2017-04-27 | 2018-11-13 | 普天信息技术有限公司 | 一种多子带系统的随机接入信号发送方法和装置 |
WO2018214720A1 (zh) * | 2017-05-26 | 2018-11-29 | 中兴通讯股份有限公司 | 覆盖等级的确定方法、基站及终端 |
WO2021203402A1 (en) * | 2020-04-10 | 2021-10-14 | Qualcomm Incorporated | Communication configuration based on random access bandwidth |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103220811A (zh) * | 2012-01-19 | 2013-07-24 | 中兴通讯股份有限公司 | 信息处理方法、mtc ue随机接入lte系统的方法 |
CN103260250A (zh) * | 2012-02-15 | 2013-08-21 | 华为技术有限公司 | 随机接入方法、基站及用户设备 |
CN103298136A (zh) * | 2012-02-29 | 2013-09-11 | 华为技术有限公司 | 一种随机接入方法、终端、基站及系统 |
CN103916867A (zh) * | 2012-12-31 | 2014-07-09 | 中国移动通信集团设计院有限公司 | 一种确定控制信道容量的方法和装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101087469B (zh) * | 2006-06-09 | 2010-06-23 | 大唐移动通信设备有限公司 | 一种实现用户设备随机接入的方法 |
CN103906260A (zh) * | 2012-12-28 | 2014-07-02 | 中兴通讯股份有限公司 | 随机接入前导处理方法及装置 |
-
2014
- 2014-10-31 CN CN201480035538.4A patent/CN105900515B/zh active Active
- 2014-10-31 WO PCT/CN2014/090113 patent/WO2016065640A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103220811A (zh) * | 2012-01-19 | 2013-07-24 | 中兴通讯股份有限公司 | 信息处理方法、mtc ue随机接入lte系统的方法 |
CN103260250A (zh) * | 2012-02-15 | 2013-08-21 | 华为技术有限公司 | 随机接入方法、基站及用户设备 |
CN103298136A (zh) * | 2012-02-29 | 2013-09-11 | 华为技术有限公司 | 一种随机接入方法、终端、基站及系统 |
CN103916867A (zh) * | 2012-12-31 | 2014-07-09 | 中国移动通信集团设计院有限公司 | 一种确定控制信道容量的方法和装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108811160A (zh) * | 2017-04-27 | 2018-11-13 | 普天信息技术有限公司 | 一种多子带系统的随机接入信号发送方法和装置 |
WO2018214720A1 (zh) * | 2017-05-26 | 2018-11-29 | 中兴通讯股份有限公司 | 覆盖等级的确定方法、基站及终端 |
CN108934023A (zh) * | 2017-05-26 | 2018-12-04 | 中兴通讯股份有限公司 | 一种覆盖等级的确定、基站及终端 |
CN108934023B (zh) * | 2017-05-26 | 2022-03-11 | 中兴通讯股份有限公司 | 一种覆盖等级的确定、基站及终端 |
WO2021203402A1 (en) * | 2020-04-10 | 2021-10-14 | Qualcomm Incorporated | Communication configuration based on random access bandwidth |
Also Published As
Publication number | Publication date |
---|---|
CN105900515A (zh) | 2016-08-24 |
CN105900515B (zh) | 2019-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105191356B (zh) | 寻呼方法和装置 | |
CN105323770B (zh) | 无线通信系统的扩容评估方法及装置 | |
US10299296B2 (en) | Data sending method, resource measurement method, apparatus, and device | |
CN107734511B (zh) | 网络扩容方法和接入网设备 | |
CN109275150B (zh) | 一种信道传输参数确定方法及设备 | |
US10674533B2 (en) | Data transmission method and apparatus | |
EP3672331A1 (en) | Method and device for sending and receiving uplink information | |
WO2016065640A1 (zh) | 一种随机接入方法和设备 | |
CN107453851A (zh) | 一种cqi测量方法、装置及无线通信系统 | |
CN106937302A (zh) | 一种确定lte-tdd小区业务支持容量的方法及装置 | |
CN103580836B (zh) | Ue类型上报、资源分配方法及装置、ue、基站 | |
US20200177355A1 (en) | Downlink Control Information Transmission Method, Apparatus, and System | |
KR20220051845A (ko) | 셀룰러 운송파 묶음에 걸친 다운링크 스케줄링 | |
CN106254038B (zh) | 通信方法与设备 | |
CN104348774B (zh) | 接入信道的方法和设备 | |
CN103703847B (zh) | 实现辅小区的时分双工配置的方法、基站及系统 | |
WO2021027619A1 (zh) | 节能方法及装置 | |
CN105850209B (zh) | 一种接入方法和设备 | |
CN111988859A (zh) | 下行链路控制信息传输方法 | |
EP3154209A1 (en) | Method and device for sending/receiving data transmission block | |
CN114222281A (zh) | 一种数据传输方法及通信装置 | |
CN110461038A (zh) | 一种资源分配的方法和装置 | |
CN111224761B (zh) | 一种上行调度方法及装置 | |
CN111602457B (zh) | 信息传输方法、通信装置及存储介质 | |
CN105611617B (zh) | 设置发送功率的方法、装置、基站和用户设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14905129 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14905129 Country of ref document: EP Kind code of ref document: A1 |