WO2016064092A1 - New design of model eye lens for visual refractometer correction, and correction method - Google Patents

New design of model eye lens for visual refractometer correction, and correction method Download PDF

Info

Publication number
WO2016064092A1
WO2016064092A1 PCT/KR2015/009694 KR2015009694W WO2016064092A1 WO 2016064092 A1 WO2016064092 A1 WO 2016064092A1 KR 2015009694 W KR2015009694 W KR 2015009694W WO 2016064092 A1 WO2016064092 A1 WO 2016064092A1
Authority
WO
WIPO (PCT)
Prior art keywords
model eye
eye lens
standard model
lens
standard
Prior art date
Application number
PCT/KR2015/009694
Other languages
French (fr)
Korean (ko)
Inventor
서호성
정돈영
윤세원
김병섭
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2016064092A1 publication Critical patent/WO2016064092A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • A61B3/04Trial frames; Sets of lenses for use therewith
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes

Definitions

  • the present invention relates to a new design of a model eye lens for calibrating an optometry refractometer, and more particularly to calibrating an optometry refractometer, a device having a continuous or digital reading device, which is used when measuring the refractive power of an eye.
  • Ophthalmologic examinations include visual acuity, tonometry, and autorefraction.
  • the visual acuity test is a test for measuring how far vision is at a distance.
  • the visual acuity or correction visual acuity of a subject is measured.
  • An intraocular pressure test is a test that measures the change in the surface reflection of the cornea using compressed air. This intraocular pressure test selects glaucoma by measuring a constant intraocular pressure maintained by the inside of the eye.
  • the autorefraction test measures the spherical refractive power, the circular refractive power, the astigmatism side direction, and is a test for correcting visual acuity by checking hyperopia, myopia and astigmatism.
  • Fundus photography is an examination of the retina, the back of the eye.
  • a slit lamp microscope is a test to check the conjunctiva, cornea, anterior, lens, vitreous body, etc. by adjusting the angle of each other with respect to the eye to be examined together with the observation microscope while changing the width and length of the illumination light.
  • the refractive power of the eye measured by the visual refractometer in the automatic refraction test is measured by the value of diopter (P, diopter, unit: D) which is the inverse of the object distance of the eye (distance from the object to the lens).
  • Optometry refractometers are used to test the refractive power of these eyes.
  • the diopter of the eye of the box is specified. Light from an object's distance passes through the lens or lens and refracts to collect at a point on the retina behind the lens. According to this imaging optical principle, the closer the near object is to the retina, the greater the refractive power of the eye lens and the higher the diopter. If light from an object passes 1 m past the lens or lens and then focuses on the retina, the focal length is 1 m and the refractive power is 1 diopter. A focal length of 2 m results in 0.5 diopters. The larger the absolute value of the diopter, the stronger the refractive power of the lens or lens.
  • the optometry optometry refractometer 1 includes an image source 10, an objective lens 20, an aperture 30, an light source 40, a slit 50, a CCD camera 60. It can be configured as.
  • astigmatism non-astigmatism
  • diopter diameter between holes.
  • FIG. 2 is a photograph showing a six-point form of six pinhole images observed by the CCD camera 60
  • FIG. 3 is an astigmatism and diopter using a Nathan image in the six-dot form observed by the CCD camera 60.
  • FIG. It is a schematic diagram showing the principle of measuring.
  • the human eye means that the greater the absolute value of the diopter, the greater the myopia or hyperopia.
  • Hyperopia is corrected by focusing with a convex lens (+), and myopia is corrected by focusing with a concave lens (-).
  • myopia is represented by negative diopters and hyperopia as positive diopters.
  • myopia In the case of myopia, it is classified as mild myopia if it is -3D or less, moderate myopia if -3D to -6D, or high myopia if it is -6D or more. 0D for on-time without wearing glasses.
  • hyperopia it is classified as mild hyperopia if less than + 3D, moderate hyperopia if + 3D to + 6D, and highly hyperopia if more than + 6D.
  • FIG. 4 is a photograph showing a conventional model eye lens
  • Figure 5 is a side cross-sectional view showing a conventional model eye lens.
  • the standard model eye lens can be made of polymethyl methacrylate (PMMA) or optical glass.
  • the front surface is also polished to correspond to the optical finish.
  • the conventional model eye lens may have a cylindrical shape having a refractive surface of about R8 (mm) on the front surface thereof, and a toric contact lens having a semicircular shape as shown in b of FIG. 5 ( It may be configured in the form of a toric contact lens.
  • the rear plane of the standard lens has been defined in KS P ISO 10342: 2002 and ISO 10342: 2003 to be rough polished in a lightly frosted (paint dark gray) so as to serve as a retina.
  • FIG. 6 is a schematic diagram showing a state in which the model eye lens 3 is mounted and tested on an optometry refractometer.
  • a model eye lens 3 having a reference diopter value that can replace a human eye is used to make and correct a measurement to ensure the accuracy of spherical vertex refractive power measurement of an opto-optic refractometer. do.
  • the refractive power of the model eye lens is also a function of its lens length (L), the radius of the front spherical surface (R), the refractive index of the material (n) and the wavelength of light ( ⁇ ).
  • L lens length
  • R radius of the front spherical surface
  • n refractive index of the material
  • wavelength of light
  • the refractive power is measured using an optometry refractometer.
  • the refractive power P of the model eye lens is expressed by the following equation.
  • the cylindrical body is configured so that the incident light incident to the front or rear portion can be transmitted in the longitudinal direction, is provided in the front portion of the main body, is configured in a hemispherical configuration so that the incident light can be refracted
  • a standard model eye lens is provided and is provided on one side of the main body, and includes a reticle in the form of a scale configured on an optical axis of the incident light, and is used to calibrate an optometry refractometer. Can be.
  • the organic coupling of the body, the refraction and the reticle has the effect of precisely measuring the focal length of the standard model eye lens.
  • the reticle is formed on the rear portion of the body
  • the reticle is formed on the rear surface, the effect that the reticle phase can be more clearly formed is generated.
  • the reticle has a plurality of scales having a specific thickness in the form of crosses.
  • the reticle including the cross-shaped scale is easy to find the center on the reticle, the effect can be measured more precisely the focal length.
  • the reticle has a plurality of scales having a specific thickness in the form of cross
  • the cross scale to be formed and at least one scale having a specific thickness may include a circle scale configured in a circle shape.
  • the reticle in which the circle scale and the cross scale are combined makes it easy to find the center of the reticle and determine whether the focus is formed, and the effect of measuring the focal length more precisely occurs.
  • the rear surface of the main body may be optically polished to allow the incident light to pass therethrough, and the incident light may be incident from the rear side of the main body to proceed to the front side of the main body.
  • the rear part of the main body is optically polished (polished)
  • an effect of measuring a focal length based on straight light instead of reflected light is generated.
  • optically polished back side of the body can directly attach or coat the reticle.
  • the rear portion of the main body may be characterized in that rough grinding
  • the rear part of the body is rough-polished, the rear part of the rough-grinded body can replace the actual retina of the eye, and the reticle can measure the focal length precisely while creating an environment similar to the measurement of the refractive power of the actual eye. The effect is to be generated.
  • the rough ground back portion of the main body can be directly attached or coated with a reticle.
  • the surface of the rough-grinded rear surface of the main body is adhered via a reticle-coated parallel plate via a refraction matching oil thin film (thickness: W) to produce an effect of precisely measuring a focal length.
  • the diopter measurement error related to the focal length change due to the thickness of the matching oil thin film is corrected. Should give.
  • the present invention has the following effects.
  • the focal length of the standard model eye lens can be measured accurately.
  • 1 is a schematic diagram showing the principle of the optometry refractometer.
  • FIG. 2 is a photograph showing six dot-shaped pinhole images observed by the CCD camera 60 of an optometry refractometer.
  • FIG. 3 is a schematic diagram illustrating the principle of measuring astigmatism and diopter with a pinhole image in the form of six dots observed by the CCD camera 60.
  • FIG. 4 is a photograph showing a conventional model eye lens.
  • FIG. 5 is a side cross-sectional view showing a conventional model eye lens.
  • FIG. 6 is a schematic diagram showing a state in which a model eye lens is mounted and tested on an optometry refractometer.
  • FIG. 7 is a side cross-sectional view illustrating a model eye lens according to an embodiment of the present invention.
  • FIG. 8 is an embodiment of a reticle attached or coated to a rear surface of a model eye lens according to an embodiment of the present invention.
  • FIG. 9 is an embodiment of a model eye lens having a parallel plate coated with a separate reticle on a rear surface of a model eye lens according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram illustrating a diopter measuring apparatus of a model eye lens according to a first embodiment of the present invention.
  • FIG. 11 is a schematic diagram illustrating a diopter measuring apparatus of a model eye lens according to a second exemplary embodiment of the present invention.
  • FIG. 12 is a schematic diagram illustrating a diopter measuring apparatus of a model eye lens according to a third embodiment of the present invention.
  • FIG. 13 is a schematic diagram illustrating definition of diopter values of a model eye lens of the present invention.
  • FIG. 7 is a side cross-sectional view illustrating a model eye lens according to an embodiment of the present invention.
  • the model eye lens 5 according to the exemplary embodiment of the present invention may have a cylindrical shape, and one surface may have a hemispherical surface providing refractive power.
  • the other surface of the model eye lens 5 according to an embodiment of the present invention may be configured not only in the rough grinding of the prior art, but also optical polishing (polishing) to allow the light to pass through, in one embodiment of the present invention It is proposed a method of attaching the reticle to both the rough-polished rear plane and the optically polished rear plane of to form an image of the reticle to measure the position of the image plane.
  • FIGS. 7C and 7D illustrate a standard in which the rear part is optically polished (polished) and attached to the reticle on its face according to an embodiment of the present invention.
  • a model eye lens is shown.
  • a reticle 7 may be formed or coupled to one surface or the other surface of the standard model eye lens 5 according to the exemplary embodiment of the present invention.
  • 8 is a schematic diagram showing a reticle according to an embodiment of the present invention. As shown in FIG. 8, the reticle 7 according to an embodiment of the present invention may be configured in various forms. As the reticle 7 is formed or coupled to at least one of one surface and the other surface of the standard model eye lens 5, the refractive power of the diopter measuring device of the following standard model eye lens can be more easily measured.
  • the reticle 7 of the standard lens 5 may have a cross shape having a thickness and an interval of 10 ⁇ m.
  • the reticle (Fig. 7) of the standard model eye lens (Fig. 5 or Fig. 9) according to an embodiment of the present invention as shown in Fig. 8 (b) has a thickness of 10 ⁇ m and a diameter of 4 mm, 8 mm It may further comprise a circular scale consisting of.
  • Table 1 describes an embodiment of a focal length, a vertex distance, a diopter value when the VD length is 0 mm, and a length.
  • the length of the standard model eye lens is obtained by calculating the minimum square root focus using geometric optical simulation software.
  • the diopter value is changed according to Equation 2, and the corrected lens length value may be changed.
  • FIG. 10 a standard model eye lens diopter measuring apparatus (FIG. 10) using a standard model eye lens (FIG. 5 or FIG. 9) according to an exemplary embodiment will be described.
  • Diopter measuring device of standard model eye lens Diopter measuring device of standard model eye lens
  • FIG. 10 is a schematic diagram showing the diopter measuring apparatus of the standard lens according to the first embodiment of the present invention.
  • the diopter measuring apparatus of the standard model eye lens according to the first embodiment of the present invention may include an adjusting telescope 120, a light source 110, a collimator 100, and the like.
  • a standard model eye lens 3 used in the diopter measuring apparatus of the standard lens according to the first embodiment a standard model eye lens having an optical polishing on the rear surface may be used.
  • the light source 110 is configured to irradiate light such as LED light or laser light in the longitudinal direction of the standard model eye lens 3 to the rear surface of the standard model eye lens 3.
  • Light irradiated from the light source 110 can be passed through the rear surface of the polished standard model eye lens 3 to the spherical front surface of the standard model eye lens 3, and the light source 110 is passed through the standard model eye lens 3.
  • the adjusting telescope 120 can easily measure the diopter of the standard model eye lens 3.
  • the collimator 100 is an optical device for forming parallel rays by being disposed in front of the LED light source where the dispersion of light occurs.
  • the LED light passing through the relimer 100 is formed close to the parallel light and is irradiated to the rear portion of the standard model eye lens 3.
  • the LED light near the parallel light passes through the zero diopter standard model eye lens 3, it still proceeds to the parallel light.
  • Passage through standard model eye lenses, rather than zero diopters, produces divergent light that is either focused on a focal plane or from a flat plane of distance.
  • the adjusting telescope 120 is an optical component which checks whether the standard model eye lens 3 is focused by using the light passing through the standard model eye lens 3 in the longitudinal direction.
  • the adjusting telescope 120 may check whether the target light is focused by the naked eye or a CCD camera, and the user may image the hyperplane point of the adjusting telescope 120 by the surface of the standard model eye lens 3 and the LED light illuminated on the reticle.
  • the focal length of the standard model eye lens 3 can be confirmed by measuring the distance between the points.
  • Figure 10 11 is a schematic diagram showing a diopter measuring apparatus of the standard lens according to the second embodiment of the present invention.
  • the diopter measuring apparatus of the standard model eye lens according to the second exemplary embodiment of the present invention is the same as the first exemplary embodiment of the present invention, the adjusting telescope 120, the light source 110, and the collimator 100.
  • the diopter measuring apparatus of the standard model eye lens according to the second embodiment of the present invention in which the reticle is attached to the rear surface of the standard model eye lens 3 to which the reticle is additionally attached, may be included.
  • the rear part may be used for a standard lens which is optically polished (polished) and a reticle is attached to the rear part.
  • the user can more accurately check the focal length of the standard model eye lens 3.
  • FIG. 12 is a schematic diagram showing the diopter measuring apparatus of the standard lens according to the third embodiment of the present invention.
  • the diopter measuring apparatus for the standard lens according to the third exemplary embodiment of the present invention is similar to the first exemplary embodiment of the present invention, such as an adjusting telescope 120, a light source 110, a collimator 100, and the like. It may be included, in addition, a device for measuring the distance with a laser interferometer (140, laser interferometer) or a linear scale may be further formed. According to the third embodiment of the present invention, if the interferometer is used as the moving distance of the reticle 130, the user can more accurately check the focal length of the standard lens 3.
  • a laser interferometer 140, laser interferometer
  • FIG. 12 is a schematic diagram of calculating the diopter of the standard lens by using a diopter measuring apparatus of the standard model eye lens according to an embodiment of the present invention.
  • the focal length d of the standard model eye lens is precisely measured by the diopter measuring apparatus of the standard lens according to the exemplary embodiment of the present invention, and the inverse of the measured focal length d is taken.
  • the diopter P can be calculated.

Abstract

The present invention relates to a standard model eye lens for an optometric visual refractometer and, more specifically, to a standard model eye lens to be used when correcting the optometric visual refractometer, which is a device having a continuous or digital reading device to be used when measuring the refraction of the eyes. To this end, the present invention can provide: a standard model eye lens of which the rear surface part is rough-polished and a reticle is attached or coated on the rough-polished surface thereof; or a standard model eye lens of which the rear surface part is optically polished and a reticle is attached or coated on the optically polished surface thereof. Therefore, the present invention provides an effect of enabling the precise measurement of the focal distance of a standard model eye lens.

Description

시력굴절력계 교정용 모델아이 렌즈의 새 디자인 및 교정법New Design and Correction of Eye Lens Correction Model
본 발명은 검안용 굴절력계를 교정하기 위한 모델아이렌즈 의 새로운 디자인에 관한 것으로서, 보다 상세하게는 안구의 굴절력을 측정할 때 사용되는, 연속 또는 디지털 판독 장치를 가진 기기인 검안용 굴절력계를 교정할 때 이용되는 모델아이 렌즈의 새 구조에 관한 것이다.The present invention relates to a new design of a model eye lens for calibrating an optometry refractometer, and more particularly to calibrating an optometry refractometer, a device having a continuous or digital reading device, which is used when measuring the refractive power of an eye. The new structure of the model eye lens used when
안과검사에는 크게 시력검사, 안압검사(Tonometry), 자동굴절검사Ophthalmologic examinations include visual acuity, tonometry, and autorefraction.
(굴절력 검사, Measurement of corneal curvature), 안저촬영(Fundus photography), 세극등현미경(Silt lamp)가 있다. 시력검사는 먼 거리를 보는 시력이 어느 정도인지 측정하는 검사로서, 피검사자의 나안시력이나 교정시력를 측정하는 것이다. 안압검사는 압축 공기를 이용하여 각막의 표면 반사가 변화하는 것을 측정하는 검사이다. 이러한 안압검사는 안구의 내부가 유지하는 일정한 안압을 측정하여 녹내장을 선별한다. 자동굴절검사는 안구의 구면 굴절력, 원구 굴절력, 난시측 방향 등을 측정하며 원시, 근시, 난시 등을 확인하여 시력을 보정하기 위한 검사이다. 안저촬영은 안구 내부의 뒤쪽인 망막을 보는 검사이다. 세극등현미경은 조명광 속의 폭과 길이를 변화시키면서 관찰용 현미경과 함께 검사할 눈에 대하여 서로의 각도를 조정하여 결막, 각막, 전방, 수정체, 유리체 등을 확인하기 위한 검사이다.(Measurement of refraction, measurement of corneal curvature), fundus photography, and a slit lamp. The visual acuity test is a test for measuring how far vision is at a distance. The visual acuity or correction visual acuity of a subject is measured. An intraocular pressure test is a test that measures the change in the surface reflection of the cornea using compressed air. This intraocular pressure test selects glaucoma by measuring a constant intraocular pressure maintained by the inside of the eye. The autorefraction test measures the spherical refractive power, the circular refractive power, the astigmatism side direction, and is a test for correcting visual acuity by checking hyperopia, myopia and astigmatism. Fundus photography is an examination of the retina, the back of the eye. A slit lamp microscope is a test to check the conjunctiva, cornea, anterior, lens, vitreous body, etc. by adjusting the angle of each other with respect to the eye to be examined together with the observation microscope while changing the width and length of the illumination light.
이때 자동굴절검사에서 시력굴절력계에서 측정되는 안구의 굴절력은 안구의 물체거리(물체에서 수정체까지의 거리)의 역수인 디옵터(P, diopter, 단위 : D)라는 값으로 측정되게 된다.In this case, the refractive power of the eye measured by the visual refractometer in the automatic refraction test is measured by the value of diopter (P, diopter, unit: D) which is the inverse of the object distance of the eye (distance from the object to the lens).
검안용 시력굴절력계는 이러한 안구의 굴절력 검사에 이용되며 검사 대Optometry refractometers are used to test the refractive power of these eyes.
상자의 안구의 디옵터를 특정하게 된다. 물체가 놓인 거리에서 온 빛은 렌즈나 수정체를 통과, 굴절하여 수정체 후방의 망막의 한 점에 모이게 된다. 이러한 결상광학 원리에 따라, 점점 가까운 근거리의 물체가 망막에 초점이 맺힐수록 안구 수정체의 굴절력이 점점 커지고 디옵터가 높아진다. 만약, 물체에서 나온 빛이 1 m 를 지나 렌즈나 수정체를 통과한 후 망막에 초첨이 맺힌다면 초점거리는 1 m 이고 굴절력은 1 디옵터가 된다. 초점거리가 2 m 라면 0.5 디옵터가 된다. 이러한 디옵터의 절대값이 클수록 렌즈나 수정체의 굴절력이 강한 것을 의미한다.The diopter of the eye of the box is specified. Light from an object's distance passes through the lens or lens and refracts to collect at a point on the retina behind the lens. According to this imaging optical principle, the closer the near object is to the retina, the greater the refractive power of the eye lens and the higher the diopter. If light from an object passes 1 m past the lens or lens and then focuses on the retina, the focal length is 1 m and the refractive power is 1 diopter. A focal length of 2 m results in 0.5 diopters. The larger the absolute value of the diopter, the stronger the refractive power of the lens or lens.
도 1은 검안용 시력굴절력계의 원리를 도시한 모식도이다. 도 1에 도시된 바와 같이 검안용 시력굴절력계(1)는 이미지 소스(10), 대물렌즈(20), 어퍼쳐(30), 광소스(40), 슬릿(50), CCD 카메라(60)로 구성될 수 있다. 검안용 굴절력계의 일측에 검사 대상의 안구(2)를 위치시키면, CCD 카메라(60)에서 관찰되는 슬릿(50)의 6개의 핀홀 이미지의 형태와 핀홀 이미지 사이의 직경을 통하여 난시(비-점수차)와 디옵터(홀 사이의 직경)를 측정하게 된다. 도 2는 CCD 카메라(60)에서 관찰되는 6개의 핀홀 이미지의 6점 형태를 도시한 사진이고, 도 3은 CCD 카메라(60)에서 관찰되는 6개의 점 형태로 나나탄 이미지를 이용하여 난시와 디옵터를 측정하는 원리를 나타낸 모식도이다.1 is a schematic diagram showing the principle of the optometry refractometer. As shown in FIG. 1, the optometry optometry refractometer 1 includes an image source 10, an objective lens 20, an aperture 30, an light source 40, a slit 50, a CCD camera 60. It can be configured as. When the eye 2 to be examined is placed on one side of the optometry refractometer, astigmatism (non-astigmatism) is obtained through the diameter between the shape of the six pinhole images of the slit 50 observed from the CCD camera 60 and the pinhole images. ) And diopter (diameter between holes). FIG. 2 is a photograph showing a six-point form of six pinhole images observed by the CCD camera 60, and FIG. 3 is an astigmatism and diopter using a Nathan image in the six-dot form observed by the CCD camera 60. FIG. It is a schematic diagram showing the principle of measuring.
사람의 눈은, 그 디옵터의 절대값이 클수록 근시(近視) 또는 원시(遠視)가 심해짐을 의미하므로 이에 맞는 도수를 갖는 안경을 맞춰야 한다. 원시는 볼록렌즈(+)로 초점을 맞추어 보정을 하며, 근시는 오목렌즈(-)로 초점을 맞추어 보정을 한다. 따라서 근시는 마이너스(-) 디옵터로, 원시는 플러스(+) 디옵터로 표시하게 된다.The human eye means that the greater the absolute value of the diopter, the greater the myopia or hyperopia. Hyperopia is corrected by focusing with a convex lens (+), and myopia is corrected by focusing with a concave lens (-). Thus myopia is represented by negative diopters and hyperopia as positive diopters.
근시의 경우, -3D 이하이면 경도 근시, -3D 내지 -6D이면 중등도 근시, -6D 이상이면 고도 근시로 분류된다. 안경을 쓸 필요가 없는 정시의 경우는 0D 이다. 원시의 경우 +3D 이하이면 경도 원시, +3D 내지 +6D이면 중등도 원시, +6D 이상이면 고도 원시로 분류된다.In the case of myopia, it is classified as mild myopia if it is -3D or less, moderate myopia if -3D to -6D, or high myopia if it is -6D or more. 0D for on-time without wearing glasses. In the case of hyperopia, it is classified as mild hyperopia if less than + 3D, moderate hyperopia if + 3D to + 6D, and highly hyperopia if more than + 6D.
이러한 검안용 시력굴절력계의 교정을 위해서는 특정 디옵터의 기준 값을 나타내는 모델아이(Model eye) 렌즈가 요구된다. 도 4는 종래의 모델아이 렌즈를 도시한 사진, 도 5는 종래의 모델아이 렌즈를 도시한 측단면도이다. 도 4, 5에 도시된 바와 같이 표준 모델아이 렌즈는 폴리메틸메타크릴레이트(PMMA) 또는 광학 유리로 만들 수 있다. 또한 전면 표면은 광학적 마무리에 해당하도록 연마(polishing)하게 된다. 도 5의 a에 도시된 바와 같이 종래의 모델아이 렌즈는 전면에 R8(mm) 정도의 굴절면이 있는 원기둥 형태로 구성될 수 있고, 도 5의 b에 도시된 바와 같이 반원 형태의 토릭 콘택트 렌즈(난시 교정용, Toric contact lens) 형태로 구성될 수 있다.In order to calibrate the optometry optometry, a model eye lens indicating a reference value of a specific diopter is required. 4 is a photograph showing a conventional model eye lens, Figure 5 is a side cross-sectional view showing a conventional model eye lens. As shown in Figs. 4 and 5, the standard model eye lens can be made of polymethyl methacrylate (PMMA) or optical glass. The front surface is also polished to correspond to the optical finish. As shown in FIG. 5A, the conventional model eye lens may have a cylindrical shape having a refractive surface of about R8 (mm) on the front surface thereof, and a toric contact lens having a semicircular shape as shown in b of FIG. 5 ( It may be configured in the form of a toric contact lens.
또한 종래에는 이러한 표준렌즈의 후평면이 망막의 역할을 할 수 있게 간유리 상태(lightly frosted, paint dark gray)로 황삭 연마되도록 KS P ISO 10342:2002와 ISO 10342:2003에 규정되어 있었던 실정이다.In addition, in the related art, the rear plane of the standard lens has been defined in KS P ISO 10342: 2002 and ISO 10342: 2003 to be rough polished in a lightly frosted (paint dark gray) so as to serve as a retina.
도 6은 검안용 시력굴절력계에 모델아이 렌즈(3)를 장착하여 시험하는 상태를 도시한 모식도이다. 도 6에 도시된 바와 같이 사람의 안구를 대신할 수 있는 기준 디옵터 값을 갖는의 모델아이 렌즈(3)를 이용하여 검안용 시력굴절력계의 구면 정점굴절력 측정의 정확성을 보증하는 측정을 하여 교정하게 된다.6 is a schematic diagram showing a state in which the model eye lens 3 is mounted and tested on an optometry refractometer. As shown in FIG. 6, a model eye lens 3 having a reference diopter value that can replace a human eye is used to make and correct a measurement to ensure the accuracy of spherical vertex refractive power measurement of an opto-optic refractometer. do.
또한 모델아이 렌즈의 굴절력은 그 렌즈 길이(L), 전면 구형 표면의 반지름(R), 재료의 굴절률(n) 및 빛의 파장(λ)의 함수이며, 이를 이용하여 모델아이 렌즈의 굴절력을 도출 할 수 있지만, 모델아이 렌즈의 구면수차 때문에, 종래의 ISO 규정에서는 모델아이 렌즈의 굴절력을 다음과 같은 방법으로 예측하도록 규정하고 있었다.The refractive power of the model eye lens is also a function of its lens length (L), the radius of the front spherical surface (R), the refractive index of the material (n) and the wavelength of light (λ). However, because of the spherical aberration of the model eye lens, the conventional ISO regulations stipulate that the refractive power of the model eye lens is predicted by the following method.
a) 옵티컬 벤치 또는 굴절 헤드를 부착한 광학계에 결합시킨 정밀a) precision coupled to an optical bench or optical system with a refractive head
검영 굴절 검사기를 사용하여 굴절력을 측정한다.The refractive power is measured using an optometry refractometer.
b) 길이, 전면 표면의 구면 지름, 재료의 굴절률을 측정하고, 다음b) measure the length, the spherical diameter of the front surface, the refractive index of the material, and
과 같은 방법으로 광선 추적을 사용하여 굴절력을 측정한다. 광학적 축에 있으면서 시험 기구의 굴절 표면에 접하는 평면에서 3 mm 지름이 동공을 채우는 광속이 시험 기구의 산란광 후면의 최소 평방근(rms) 초점을 형성하는 한 점을 찾아낸다. 그러면 모델아이 렌즈의 굴절력 P 는 다음 수학식과 같다.Measure the refractive power using ray tracing in the same way. Find the point where the luminous flux of 3 mm diameter filling the pupil in the plane on the optical axis and in contact with the refractive surface of the test instrument forms the focal point of the minimum square root of rms behind the scattered light of the test instrument. Then, the refractive power P of the model eye lens is expressed by the following equation.
Figure PCTKR2015009694-appb-M000001
Figure PCTKR2015009694-appb-M000001
여기서, P는 표시되는 표준렌즈의 굴절력(디옵터), d 는 모델아이 렌즈의 굴절 표면으로부터 점광원까지의 거리(m)이다. (KS P ISO 10342:2002, ISO 10342:2003).Where P is the refractive power (diopter) of the standard lens to be displayed, and d is the distance (m) from the refractive surface of the model eye lens to the point light source. (KS P ISO 10342: 2002, ISO 10342: 2003).
그러나 위의 표준렌즈 굴절력 측정은 예측값에 불과하기 때문에 정However, since the above standard lens refractive power measurement is only an estimate,
확하지 않은 문제가 있었다. 또한 표준렌즈의 후평면이 간유리 상태로 구성되면 반사광이 명확하지 않기 때문에 검안용 굴절력계의 교정이 어려운 문제가 있었다. 또한 표준렌즈의 후평면이 간유리 상태로 구성되어 표준렌즈의 초점거리 또는 디옵터를 정확하게 측정하는 데에도 문제점이 있었다.There was an unclear problem. In addition, when the rear plane of the standard lens is composed of a sinter glass state, since the reflected light is not clear, the correction of the optometry refractometer has been difficult. In addition, since the rear surface of the standard lens is composed of a glazed state, there is a problem in accurately measuring the focal length or diopter of the standard lens.
따라서 본 발명은 상기 제시된 문제점을 개선하기 위하여 창안되었Accordingly, the present invention was devised to remedy the problems presented above.
다.All.
본 발명의 목적은, 황삭연마된 후평면에 레티클(Reticle)을 부착 또는 코팅하거나 후평면을 광학연마(폴리싱)하고 그 연마된 후면에 레티클을 부착 또는 코팅하거나 레티클이 코팅된 평행평판의 코팅면을 수 um 뚜께의 굴절률 매칭오일을 이용하여 후평면에 접착하여 사용하는 방법을 제안하는 것이다. 즉, 전술한 레티클에서 나온 광이 결상되도록 하여 렌즈의 곡률 표면에서 이 결상면까지 거리를 측정하여 이 모델아이 렌즈의 디옵터 값을 정확하게 측정할 수 있는 레티클 부착형의 표준 모델아이 렌즈를 제공하는 데에 본 발명의 목적이 있다. It is an object of the present invention to attach or coat a reticle to a roughly ground back surface or to optically polish (polish) a rear surface and to attach or coat a reticle to the polished back surface or to coat a surface of a parallel plane coated with a reticle. It is to propose a method of bonding to the back plane using a refractive index matching oil of a few um thickness. In other words, to provide a standard reticle-attached standard model eye lens capable of accurately measuring the diopter value of the model eye lens by measuring the distance from the curvature surface of the lens to this image plane by allowing the light from the reticle to form an image. There is an object of the present invention.
이하 본 발명의 목적을 달성하기 위한 구체적 수단에 대하여 설명한다.Hereinafter, specific means for achieving the object of the present invention will be described.
본 발명의 목적은, 전면부 또는 후면부로 입사되는 입사광이 길이방향으로 투과 진행될 수 있도록 구성되는 원기둥형의 본체, 상기 본체의 전면부에 구비되고, 반구형으로 구성되어 상기 입사광이 굴절될 수 있도록 구성되는 굴절부 및 상기 본체의 일측에 형성되고, 상기 입사광의 광축에 구성되는 눈금 형태의 레티클을 포함하고, 검안용 시력굴절력계의 교정에 이용되는 것을 특징으로 하는 표준 모델아이 렌즈가 제공되어 달성될 수 있다. 본체, 굴절부 및 레티클의 유기적 결합에 의해 표준 모델아이 렌즈의 초점거리를 정밀하게 측정할 수 있는 효과가 있다.An object of the present invention, the cylindrical body is configured so that the incident light incident to the front or rear portion can be transmitted in the longitudinal direction, is provided in the front portion of the main body, is configured in a hemispherical configuration so that the incident light can be refracted A standard model eye lens is provided and is provided on one side of the main body, and includes a reticle in the form of a scale configured on an optical axis of the incident light, and is used to calibrate an optometry refractometer. Can be. The organic coupling of the body, the refraction and the reticle has the effect of precisely measuring the focal length of the standard model eye lens.
또한 상기 레티클은 상기 본체의 후면부에 형성되는 것을 특징으로In addition, the reticle is formed on the rear portion of the body
할 수 있다. 레티클이 후면부에 형성되는 경우, 레티클 상이 보다 명확하게 맺힐 수 있는 효과가 발생된다.can do. When the reticle is formed on the rear surface, the effect that the reticle phase can be more clearly formed is generated.
또한 상기 레티클은, 특정 두께인 복수개의 눈금이 십자 형태로 구In addition, the reticle has a plurality of scales having a specific thickness in the form of crosses.
성되는 십자 눈금을 포함하는 것을 특징으로 할 수 있다. 이때 본 발명의 일 실시 예에서는 상기 특정 두께를 10 μm로 구성하였다. 이러한 십자 형태의 눈금을 포함하는 레티클은 레티클 상의 중심을 찾기가 용이하고, 초점거리를 더욱 정밀하게 측정할 수 있는 효과가 발생된다.It may be characterized by including a cross scale. At this time, in one embodiment of the present invention configured the specific thickness of 10 μm. The reticle including the cross-shaped scale is easy to find the center on the reticle, the effect can be measured more precisely the focal length.
또한 상기 레티클은, 특정 두께인 복수개의 눈금이 십자 형태로 구In addition, the reticle has a plurality of scales having a specific thickness in the form of cross
성되는 십자 눈금 및 특정 두께인 적어도 하나의 눈금이 원 형태로 구성되는 원 눈금을 포함하는 것을 특징으로 할 수 있다. 이러한 원 형태의 눈금과 십자 형태의 눈금이 결합되는 레티클은 레티클 상의 중심을 찾는 것과 초점 형성 여부를 판단하기가 용이하고, 초점거리를 더욱 정밀하게 측정할 수 있는 효과가 발생된다.The cross scale to be formed and at least one scale having a specific thickness may include a circle scale configured in a circle shape. The reticle in which the circle scale and the cross scale are combined makes it easy to find the center of the reticle and determine whether the focus is formed, and the effect of measuring the focal length more precisely occurs.
또한 상기 본체의 후면부는 상기 입사광이 투과될 수 있도록 광학연마(Polishing)되어, 상기 입사광이 상기 본체의 후면부에서 입사되어 상기 본체의 전면부로 진행되도록 구성되는 것을 특징으로 할 수 있다. 본체의 후면부가 광학연마(폴리싱)되는 경우, 반사광이 아닌 직진광을 토대로 초점거리를 측정할 수 있게 되는 효과가 발생된다.The rear surface of the main body may be optically polished to allow the incident light to pass therethrough, and the incident light may be incident from the rear side of the main body to proceed to the front side of the main body. When the rear part of the main body is optically polished (polished), an effect of measuring a focal length based on straight light instead of reflected light is generated.
또한 상기 본체의 광학연마(Polishing)된 후면부는 직접 레티클을 부착하거나 코팅할 수가 있다.In addition, the optically polished back side of the body can directly attach or coat the reticle.
또한 상기 본체의 후면부는 황삭연마되는 것을 특징으로 할 수In addition, the rear portion of the main body may be characterized in that rough grinding
있다. 본체의 후면부가 황삭연마되는 경우, 황삭연마된 본체의 후면부가 실제 안구의 망막 역할을 대신할 수 있고, 실제 안구의 굴절력 측정과 유사한 환경을 구현하면서도, 레티클에 의해 초점거리의 정밀한 측정이 가능할 수 있게 되는 효과가 발생된다.have. If the rear part of the body is rough-polished, the rear part of the rough-grinded body can replace the actual retina of the eye, and the reticle can measure the focal length precisely while creating an environment similar to the measurement of the refractive power of the actual eye. The effect is to be generated.
또한 상기 본체의 황삭연마된 후면부에는 직접 레티클을 부착하거나 코팅할 수가 있다.In addition, the rough ground back portion of the main body can be directly attached or coated with a reticle.
또한 상기 본체의 황삭연마된 후면부에는 레티클이 코팅된 평행판의 레이클이 굴절절 매칭 오일 박막(두께 : W)을 매개로하여 접착되어 초점거리를 정밀 측정할 수 있는 효과가 발생한다.In addition, the surface of the rough-grinded rear surface of the main body is adhered via a reticle-coated parallel plate via a refraction matching oil thin film (thickness: W) to produce an effect of precisely measuring a focal length.
이 때 굴절률 매칭오일 박막의 두께가 0 아 아닌 경우에는, 즉, 후평면과 레티클 사이의 간격에 의한 디옵터 측정오차가 생기고, 이 매칭오일 박막 두께에 의한 초점거리 변화량에 관련된 디옵터 측정오차는 보정해 주어야 한다.In this case, when the thickness of the refractive index matching oil thin film is not zero, that is, a diopter measurement error occurs due to the gap between the rear plane and the reticle, the diopter measurement error related to the focal length change due to the thickness of the matching oil thin film is corrected. Should give.
상기한 바와 같이, 본 발명에 의하면 이하와 같은 효과가 있다.As described above, the present invention has the following effects.
첫째, 본 발명의 일 실시예에 따르면 표준 모델아이 렌즈의 초점거리를 정밀하게 측정할 수 있는 효과가 있다.First, according to one embodiment of the present invention, the focal length of the standard model eye lens can be measured accurately.
둘째, 본 발명의 일 실시예에 따르면 검안용 시력굴절력계의 교정을 정밀하게 수행할 수 있는 효과가 있다.Secondly, according to an embodiment of the present invention, there is an effect that can accurately perform the correction of the optometry refractometer.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예The following drawings attached to the present specification are preferred embodiments of the present invention.
를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다. The present invention is intended to further illustrate the technical spirit of the present invention together with the detailed description of the invention, and therefore the present invention should not be construed as being limited to the matters described in such drawings.
도 1은 검안용 시력굴절력계의 원리를 도시한 모식도이다.1 is a schematic diagram showing the principle of the optometry refractometer.
도 2는 검안용 시력굴절력계의 CCD 카메라(60)에서 관찰되는 6개의 점 형태의 핀홀 이미지를 도시한 사진이다.FIG. 2 is a photograph showing six dot-shaped pinhole images observed by the CCD camera 60 of an optometry refractometer.
도 3은 CCD 카메라(60)에서 관찰되는 6개의 점 형태인 핀홀 이미지로 난시와 디옵터를 측정하는 원리를 나타낸 모식도이다. FIG. 3 is a schematic diagram illustrating the principle of measuring astigmatism and diopter with a pinhole image in the form of six dots observed by the CCD camera 60.
도 4는 종래의 모델아이(Model Eye)렌즈를 도시한 사진이다.4 is a photograph showing a conventional model eye lens.
도 5는 종래의 모델아이(Model Eye)렌즈를 도시한 측단면도이다. 5 is a side cross-sectional view showing a conventional model eye lens.
도 6은 검안용 시력굴절력계에 모델아이(Model Eye) 렌즈를 장착하여 시험하는 상태를 도시한 모식도이다.6 is a schematic diagram showing a state in which a model eye lens is mounted and tested on an optometry refractometer.
도 7은 본 발명의 일 실시예에 따른 모델아이(Model Eye) 렌즈를 도시한 측단면도이다.7 is a side cross-sectional view illustrating a model eye lens according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 모델아이(Model Eye)렌즈의 후면부에 부착 또는 코팅되는 레티클의 일 실시예이다.FIG. 8 is an embodiment of a reticle attached or coated to a rear surface of a model eye lens according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 모델아이(Model Eye)렌즈의 후면부에 별도의 레티클이 코팅된 평행판이 부착된 모델아이(Model Eye)렌즈의 일 실시예이다.FIG. 9 is an embodiment of a model eye lens having a parallel plate coated with a separate reticle on a rear surface of a model eye lens according to an embodiment of the present invention.
도 10은 본 발명의 제1실시예에 따른 모델아이(Model Eye)렌즈의 디옵터 측정 장치를 도시한 모식도이다.FIG. 10 is a schematic diagram illustrating a diopter measuring apparatus of a model eye lens according to a first embodiment of the present invention.
도 11은 본 발명의 제2실시예에 따른 모델아이(Model Eye)렌즈의 디옵터 측정 장치를 도시한 모식도이다.FIG. 11 is a schematic diagram illustrating a diopter measuring apparatus of a model eye lens according to a second exemplary embodiment of the present invention.
도 12는 본 발명의 제3실시예에 따른 모델아이(Model Eye)렌즈의 디옵터 측정 장치를 도시한 모식도이다.12 is a schematic diagram illustrating a diopter measuring apparatus of a model eye lens according to a third embodiment of the present invention.
도 13은 본 발명의 모델아이(Model Eye)렌즈의 디옵터 값의 정의를 도시한 모식도이다.FIG. 13 is a schematic diagram illustrating definition of diopter values of a model eye lens of the present invention. FIG.
이하 첨부된 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 쉽게 실시할 수 있는 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예에 대한 동작원리를 상세하게 설명함에 있어서 관련된 공지기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in describing in detail the principle of operation of the preferred embodiment of the present invention, if it is determined that the detailed description of the related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다. 명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, the same reference numerals are used for parts having similar functions and functions throughout the drawings. Throughout the specification, when a part is connected to another part, this includes not only the case where it is directly connected, but also the case where it is indirectly connected with another element in between. In addition, the inclusion of any component does not exclude other components unless specifically stated otherwise, it means that may further include other components.
모델아이(model eye) 렌즈Model eye lenses
모델아이 렌즈와 관련하여, 도 7는 본 발명의 일 실시예에 따른 모델아이 렌즈를 도시한 측단면도이다. 도 7에 도시된 바와 같이 본 발명의 일 실시예에 따른 모델아이 렌즈(5)는 원기둥형으로 구성될 수 있고, 일면이 굴절력을 제공하는 반구면으로 구성될 수 있다. 또한 본 발명의 일 실시예에 따른 모델아이 렌즈(5)의 타면은 종래 기술의 황삭연마 뿐만 아니라, 빛이 통과할 수 있도록 광학연마(폴리싱) 구성될 수 있으며, 본 발명의 일 실시예에서는 기존의 황삭연마된 후평면 뿐만 아니라 광학연마된 후평면에 모두 레티클을 부착하여, 레티클의 이미지를 결상함으로써 결상면의 위치를 측정하도록 하는 방법을 제안하는 것이다.With respect to the model eye lens, FIG. 7 is a side cross-sectional view illustrating a model eye lens according to an embodiment of the present invention. As shown in FIG. 7, the model eye lens 5 according to the exemplary embodiment of the present invention may have a cylindrical shape, and one surface may have a hemispherical surface providing refractive power. In addition, the other surface of the model eye lens 5 according to an embodiment of the present invention may be configured not only in the rough grinding of the prior art, but also optical polishing (polishing) to allow the light to pass through, in one embodiment of the present invention It is proposed a method of attaching the reticle to both the rough-polished rear plane and the optically polished rear plane of to form an image of the reticle to measure the position of the image plane.
도 7의 a), b)는 본 발명의 일 실시예에 따라 후면부가 황삭연마되7 a) and b) of the back surface rough grinding according to an embodiment of the present invention
고 그 면에 레티클이 부착되는 표준 모델아이 렌즈가 도시된 것이고, 도 7의 c), d)는 본 발명의 일 실시예에 따라 후면부가 광학연마(폴리싱)되고 그 면에 레티클에 부착되는 표준 모델아이 렌즈가 도시된 것이다.A standard model eye lens is shown with a reticle attached to its face, and FIGS. 7C and 7D illustrate a standard in which the rear part is optically polished (polished) and attached to the reticle on its face according to an embodiment of the present invention. A model eye lens is shown.
또한 본 발명의 일 실시예에 따른 표준 모델아이 렌즈(5)의 일면 또는 타면에는 레티클(7, Reticle)이 형성되거나 결합될 수 있다. 도 8는 본 발명의 일 실시예에 따른 레티클을 도시한 모식도이다. 도 8에 도시된 바와 같이 본 발명의 일 실시예에 따른 레티클(7)은 다양한 형태로 구성될 수 있다. 레티클(7)이 표준 모델아이 렌즈(5)의 일면 및 타면 중 적어도 하나 이상에 형성되거나 결합됨에 따라 이하의 표준 모델아이 렌즈의 디옵터 측정장치의 굴절력 측정이 보다 용이해지는 효과가 있다.In addition, a reticle 7 may be formed or coupled to one surface or the other surface of the standard model eye lens 5 according to the exemplary embodiment of the present invention. 8 is a schematic diagram showing a reticle according to an embodiment of the present invention. As shown in FIG. 8, the reticle 7 according to an embodiment of the present invention may be configured in various forms. As the reticle 7 is formed or coupled to at least one of one surface and the other surface of the standard model eye lens 5, the refractive power of the diopter measuring device of the following standard model eye lens can be more easily measured.
도 8의 (a)에 도시된 바와 같이 본 발명의 일 실시예에 따른 표준렌즈(5)의 레티클(7)은 10 μm의 두께와 간격으로 구성된 십자형태로 구성될 수 있다. 또한 도 8의 (b)에 도시된 바와 같이 본 발명의 일 실시예에 따른 표준모델아이렌즈(도5 또는 도9)의 레티클(도7)은 10 μm의 두께와 4 mm, 8 mm의 직경으로 구성된 원형 눈금을 더 포함할 수 있다.As shown in (a) of FIG. 8, the reticle 7 of the standard lens 5 according to the exemplary embodiment of the present invention may have a cross shape having a thickness and an interval of 10 μm. In addition, the reticle (Fig. 7) of the standard model eye lens (Fig. 5 or Fig. 9) according to an embodiment of the present invention as shown in Fig. 8 (b) has a thickness of 10 μm and a diameter of 4 mm, 8 mm It may further comprise a circular scale consisting of.
이러한 표준 모델아이 렌즈의 구체적인 일 실시예와 관련하여, 이하 표 1 에 표준 모델아이 렌즈의 초점 거리, Vertex distance, VD 길이가 0 mm 일 때의 디옵터 값, 길이의 일 실시예가 기재되어 있다. In relation to a specific embodiment of such a standard model eye lens, Table 1 below describes an embodiment of a focal length, a vertex distance, a diopter value when the VD length is 0 mm, and a length.
VD 가 12 mm 이거나 또 다른 값을 나타낼 때의 디옵터 보정식은 다음과 같이 되고 When VD is 12 mm or represents another value, the diopter correction equation is
VD =12 mm 에 따른 디옵터 값 보정식Correction formula for diopter value according to VD = 12 mm
Figure PCTKR2015009694-appb-M000002
Figure PCTKR2015009694-appb-M000002
와 같이 된다. Becomes
또, 일반식은 In addition, the general formula
Figure PCTKR2015009694-appb-M000003
Figure PCTKR2015009694-appb-M000003
여기서 D0 은 VD = 0 mm 일 때의 디옵터 값이다. 이때, 표준 모델아이 렌즈의 길이는 기하광학적 시뮬레이션 소프트웨어를 이용하여 최소평방근 초점을 계산하여 얻어진 값이다.Where D0 is the diopter value when VD = 0 mm. In this case, the length of the standard model eye lens is obtained by calculating the minimum square root focus using geometric optical simulation software.
VD 가 달라질 경우에는 '수학식 2' 에 따라 디옵터 값이 달라지고 이에 따른 보정된 렌즈 길이 값은 달라질 수가 있다.When the VD is changed, the diopter value is changed according to Equation 2, and the corrected lens length value may be changed.
초첨거리, cmFocusing distance, cm D0, 디옵터( VD = 0 mm)D 0 , diopter (VD = 0 mm) 표준 모델아이 렌즈 길이, mm Standard model eye lens length, mm
1One +100/30+100/30 +30+30 16.009416.0094
22 +4+4 +25+25 16.896816.8968
33 +5+5 +20+20 17.887617.8876
44 +(100/15)+ (100/15) +15+15 19.001119.0011
55 +10+10 +10+10 20.261320.2613
66 +20+20 +5.0+5.0 21.699521.6995
77 +40+40 +2.5+2.5 22.497422.4974
88 무한대 infinity 00 23.355923.3559
99 -40-40 -2.5-2.5 24.282124.2821
1010 -20-20 -5.0-5.0 25.284325.2843
1111 -10-10 -10-10 27.557627.5576
1212 -100/15-100/15 -15-15 30.277330.2773
1313 -5-5 -20-20 33.589033.5890
1414 -4-4 -25-25 37.709437.7094
1515 -100/30-100/30 -30-30 42.975942.9759
이하에서는 본 발명의 일 실시예에 따른 표준모델아이렌즈(도5, 또는 도 9)를 이용한 표준모델아이렌즈 디옵터측정장치(도10)를 설명하도록 한다.Hereinafter, a standard model eye lens diopter measuring apparatus (FIG. 10) using a standard model eye lens (FIG. 5 or FIG. 9) according to an exemplary embodiment will be described.
표준모델아이렌즈의 디옵터 측정장치Diopter measuring device of standard model eye lens
제1실시예에 따른 표준모델아이렌즈의 디옵터 측정장치와 관련하여, 도10은 본 발명의 제1실시예에 따른 표준렌즈의 디옵터 측정 장치를 도시한 모식도이다.Regarding the diopter measuring apparatus of the standard model eye lens according to the first embodiment, FIG. 10 is a schematic diagram showing the diopter measuring apparatus of the standard lens according to the first embodiment of the present invention.
도 10에 도시된 바와 같이 본 발명의 제1실시예에 따른 표준모델아이렌즈의 디옵터 측정 장치는 조정망원경(120), 광원(110), 콜리메이터(100, Collimator) 등이 포함될 수 있다. 제1실시예에 따른 표준렌즈의 디옵터 측정장치에 이용되는 표준모델아이렌즈(3)는 후면부가 광학연마된 표준모델아이렌즈가 이용될 수 있다.As shown in FIG. 10, the diopter measuring apparatus of the standard model eye lens according to the first embodiment of the present invention may include an adjusting telescope 120, a light source 110, a collimator 100, and the like. As the standard model eye lens 3 used in the diopter measuring apparatus of the standard lens according to the first embodiment, a standard model eye lens having an optical polishing on the rear surface may be used.
광원(110)은 표준모델아이렌즈(3)의 후면부에 표준모델아이렌즈(3)의 길이방향으로 LED 광이나 레이저광과 같은 광을 조사하기 위한 구성이다. 광학연마(폴리싱)된 표준모델아이렌즈(3)의 후면부를 통해 광원(110)에서 조사된 빛이 표준모델아이렌즈(3)의 구형 전면부로 통과될 수 있고, 광원(110)이 표준모델아이렌즈(3)의 후면부에서 표준렌즈(3)의 구형 전면부로 광을 조사하게 됨으로써 조정 망원경(120)에서는 손쉽게 표준모델아이렌즈(3)의 디옵터를 측정할 수 있게 된다.The light source 110 is configured to irradiate light such as LED light or laser light in the longitudinal direction of the standard model eye lens 3 to the rear surface of the standard model eye lens 3. Light irradiated from the light source 110 can be passed through the rear surface of the polished standard model eye lens 3 to the spherical front surface of the standard model eye lens 3, and the light source 110 is passed through the standard model eye lens 3. By irradiating light from the rear part of the lens 3 to the spherical front part of the standard lens 3, the adjusting telescope 120 can easily measure the diopter of the standard model eye lens 3.
콜리메이터(100)는 빛의 분산이 일어나는 LED 광원의 전방에 배치되어 평행광선을 형성시키기 위한 광학장치이다. 리메이터(100)를 지난 LED 광은 평행광선에 가깝게 형성되어 표준모델아이렌즈(3)의 후면부로 조사되게 된다. 평행광선에 가까운 LED 광이 0 디옵터의 표준모델아이렌즈(3)를 통과하게 되면 여전히 평행광선으로 진행되게 된다. 0 디옵터가 아닌 표준모델아이렌즈를 통과학 경우에는 한 초점 평면에 집광되거나, 거리에 있는 촛평면에서 나온 것 같은 발산광을 만든다.The collimator 100 is an optical device for forming parallel rays by being disposed in front of the LED light source where the dispersion of light occurs. The LED light passing through the relimer 100 is formed close to the parallel light and is irradiated to the rear portion of the standard model eye lens 3. When the LED light near the parallel light passes through the zero diopter standard model eye lens 3, it still proceeds to the parallel light. Passage through standard model eye lenses, rather than zero diopters, produces divergent light that is either focused on a focal plane or from a flat plane of distance.
조정망원경(120)은 표준모델아이렌즈(3)를 길이방향으로 통과한 빛을 이용하여 표준모델아이렌즈(3)의 포커싱 여부를 확인하는 광학구성장치이다. 조정망원경(120)은 육안 또는 CCD 카메라로 대상 빛의 포커싱 여부를 확인할 수 있고, 사용자는 조정망원경(120)의 초평면점을 표준모델아이렌즈(3)의 표면과 레티클에 조명된 LED 광이 결상되는 점 사이의 거리를 측정하므로서 표준모델아이렌즈(3)의 초점 거리를 확인할 수 있다.The adjusting telescope 120 is an optical component which checks whether the standard model eye lens 3 is focused by using the light passing through the standard model eye lens 3 in the longitudinal direction. The adjusting telescope 120 may check whether the target light is focused by the naked eye or a CCD camera, and the user may image the hyperplane point of the adjusting telescope 120 by the surface of the standard model eye lens 3 and the LED light illuminated on the reticle. The focal length of the standard model eye lens 3 can be confirmed by measuring the distance between the points.
제2실시예에 따른 표준렌즈의 디옵터 측정장치와 관련하여, 도 10 11은 본 발명의 제2실시예에 따른 표준렌즈의 디옵터 측정 장치를 도시한 모식도이다. 도 10에 도시된 바와 같이 본 발명의 제2실시예에 따른 표준모델아이렌즈의 디옵터측정장치는 본 발명의 제1실시예와 마찬가지로 조정망원경(120), 광원(110), 콜리메이터(100, Collimator) 등이 포함될 수 있고, 이렇게 레티클이 추가 부착된 표준모델아이렌즈(3)의 후방면에 레티클이 부착되는 본 발명의 제2실시예에 따른 표준모델아이렌즈의 디옵터측정 장치는 본 발명의 일 실시예에 따른 후면부가 광학연마(폴리싱) 되고 후면부에 레티클이 부착된 표준렌즈에 이용될 수 있다.With reference to the diopter measuring apparatus of the standard lens according to the second embodiment, Figure 10 11 is a schematic diagram showing a diopter measuring apparatus of the standard lens according to the second embodiment of the present invention. As shown in FIG. 10, the diopter measuring apparatus of the standard model eye lens according to the second exemplary embodiment of the present invention is the same as the first exemplary embodiment of the present invention, the adjusting telescope 120, the light source 110, and the collimator 100. The diopter measuring apparatus of the standard model eye lens according to the second embodiment of the present invention, in which the reticle is attached to the rear surface of the standard model eye lens 3 to which the reticle is additionally attached, may be included. According to the embodiment, the rear part may be used for a standard lens which is optically polished (polished) and a reticle is attached to the rear part.
본 발명의 제2실시예에 따라 레티클(130)이 표준모델아이렌즈에 부착되어 구성되는 경우 사용자가 보다 정확하게 표준모델아이렌즈(3)의 초점 거리를 확인할 수 있는 효과가 있다.When the reticle 130 is attached to the standard model eye lens according to the second embodiment of the present invention, the user can more accurately check the focal length of the standard model eye lens 3.
제3실시예에 따른 표준렌즈의 디옵터 측정장치와 관련하여, 도 12은 본 발명의 제3실시예에 따른 표준렌즈의 디옵터 측정 장치를 도시한 모식도이다. 도 12에 도시된 바와 같이 본 발명의 제3실시예에 따른 표준렌즈의 디옵터 측정 장치는 본 발명의 제1실시예와 마찬가지로 조정망원경(120), 광원(110), 콜리메이터(100, Collimator) 등이 포함될 수 있고, 추가적으로 레이저 간섭계(140, Laser interferometer)나 리니어 스케일 등으로 거리를 측정하는 장치가 더 형성될 수 있다. 본 발명의 제3실시예에 따라 레티클(130)의 이동거리를 간섭계를 이용하면 사용자가 보다 정확하게 표준렌즈(3)의 초점 거리를 확인할 수 있는 효과가 있다.Regarding the diopter measuring apparatus of the standard lens according to the third embodiment, FIG. 12 is a schematic diagram showing the diopter measuring apparatus of the standard lens according to the third embodiment of the present invention. As shown in FIG. 12, the diopter measuring apparatus for the standard lens according to the third exemplary embodiment of the present invention is similar to the first exemplary embodiment of the present invention, such as an adjusting telescope 120, a light source 110, a collimator 100, and the like. It may be included, in addition, a device for measuring the distance with a laser interferometer (140, laser interferometer) or a linear scale may be further formed. According to the third embodiment of the present invention, if the interferometer is used as the moving distance of the reticle 130, the user can more accurately check the focal length of the standard lens 3.
표준모델아이렌즈의 디옵터 계산과 관련하여, 도 12는 본 발명의 일 실시예에 따른 표준모델아이렌즈의 디옵터 측정 장치를 이용하여 표준렌즈의 디옵터를 계산하는 모식도이다. 도 12에 도시된 바와 같이 본 발명의 일 실시예에 따른 표준렌즈의 디옵터 측정 장치에 의해 표준모델아이 렌즈의 초점거리(d)가 정밀하게 측정되고, 측정된 초점거리(d)의 역수를 취하여 디옵터(P)를 계산할 수 있다.Regarding the diopter calculation of the standard model eye lens, FIG. 12 is a schematic diagram of calculating the diopter of the standard lens by using a diopter measuring apparatus of the standard model eye lens according to an embodiment of the present invention. As shown in FIG. 12, the focal length d of the standard model eye lens is precisely measured by the diopter measuring apparatus of the standard lens according to the exemplary embodiment of the present invention, and the inverse of the measured focal length d is taken. The diopter P can be calculated.
이상에서 설명한 바와 같이, 본 발명이 속하는 기술 분야의 통상의As described above, in the art to which the present invention pertains,
기술자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. Those skilled in the art will appreciate that the present invention can be implemented in other specific forms without changing the technical spirit or essential features.
그러므로 상술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함하는 것으로 해석되어야 한다.Therefore, the above-described embodiments are to be understood in all respects as illustrative and not restrictive. The scope of the present invention is shown by the following claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts should be construed as being included in the scope of the present invention.
1: 디옵터 측정 장치1: diopter measuring device
2: 안구2: eyeball
3: 표준모델아이렌즈3: Standard Model Eye Lens
10: 이미지 소스10: image source
20: 대물렌즈20: objective lens
30: 어퍼쳐30: aperture
40: 광소스40: light source
50: 슬릿50: slit
60: CCD 카메라60: CCD camera
100: 콜리메이터100: collimator
110: 광원110: light source
120: 조정망원경120: adjusted telescope
130: 레티클130: reticle
140: 레이저 간섭계140: laser interferometer

Claims (9)

  1. 전면부 또는 후면부로 입사되는 입사광이 길이방향으로 투과 진행될 수 있도록 구성되는 원기둥형의 본체, 상기 본체의 전면부에 구비되고, 반구형으로 구성되어 상기 입사광이 굴절될 수 있도록 구성되는 굴절부 및 상기 본체의 일측에 형성되고, 상기 입사광의 광축에 구성되는 눈금 형태의 레티클을 포함하고, 상기 레티클이 표준모델아이렌즈의 후평면에 부착되거나 또는 코팅되는 구조의 표준렌즈로서 검안용 시력굴절력계의 교정에 이용되는 것을 특징으로 하는 표준모델아이렌즈.A cylindrical main body configured to allow the incident light incident on the front or rear part to be transmitted in the longitudinal direction, and a refraction unit and the main body provided in the front part of the main body and configured to be refracted in the hemispherical shape. It is formed on one side of, and comprises a reticle of the form of a scale configured on the optical axis of the incident light, the reticle is attached to or coated on the rear plane of the standard model eye lens as a standard lens structure for correction of the optometry optometry Standard model eye lens, characterized in that used.
  2. 제1항에 있어서, 상기 레티클은 상기 표준렌즈의 본체의 후평면 부에 부착 또는 코팅되어 한 몸체로 형성되는 것을 특징으로 하는 표준모델아이렌즈.The standard model eye lens of claim 1, wherein the reticle is attached to or coated on a rear surface of the body of the standard lens to form a body.
  3. 제1항에 있어서, 상기 레티클은, 특정 두께인 복수개의 눈금이 십자 형태로 구성되는 십자 눈금을 포함하는 것을 특징으로 하는 표준모델아이렌즈.The standard model eye lens of claim 1, wherein the reticle includes a cross scale in which a plurality of scales having a specific thickness are formed in a cross shape.
  4. 제1항에 있어서, 상기 레티클은, 특정 두께인 복수개의 눈금이 십자 형태로 구성되는 십자 눈금 및 특정 두께인 적어도 하나의 눈금이 원 형태로 구성되는 원 눈금을 포함하는 것을 특징으로 하는 표준모델아이렌즈.The standard model eye of claim 1, wherein the reticle includes a cross scale having a plurality of scales having a specific thickness in a cross shape and a circle scale having at least one scale having a specific thickness in a circle shape. lens.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 표준렌즈 본체의 후평면부는 상기 입사광이 투과될 수 있도록 광학연마되어, 상기 입사광이 상기 본체의 후평면부에서 입사되어 상기 본체의 전면부로 진행되도록 구성되는 것을 특징으로 하는 표준모델아이렌즈.The rear planar portion of the standard lens body is optically polished to allow the incident light to pass therethrough, and the incident light is incident on the rear plane portion of the main body and proceeds to the front portion of the main body. Standard model eye lens, characterized in that configured to.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 본체의 후면부는 황삭연마되는 것을 특징으로 하는 표준모델아이렌즈.Standard model eye lens, characterized in that the rear portion of the body is rough grinding.
  7. 제1항에 있어서,The method of claim 1,
    광학유리의 굴절률, 곡률반경 8mm, 사용파장(547.1 nm), 길이 및 vertex distance, VD = 0 mm 을 고려하여 bk-7 광학유리를 사용할 경우, Considering the refractive index of the optical glass, the radius of curvature 8mm, the wavelength used (547.1 nm), the length and vertex distance, VD = 0 mm, when using bk-7 optical glass,
    상기 표준모델아이렌즈의 길이는 하기의 표1에 따라 결정되는 것을 특징으로 하는 표준모델아이렌즈.The length of the standard model eye lens is a standard model eye lens, characterized in that determined according to Table 1.
    Figure PCTKR2015009694-appb-I000001
    Figure PCTKR2015009694-appb-I000001
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 VD 가 0 mm 가 아닌 경우,If the VD is not 0 mm,
    하기의 수학식 2 또는 수학식 3에 따른 VD 값을 고려하여 상기 표준모델아이렌즈의 길이가 변경되는 것을 특징으로 하는 표준모델아이렌즈.A standard model eye lens, characterized in that the length of the standard model eye lens is changed in consideration of the VD value according to Equation 2 or Equation 3 below.
    수학식 2Equation 2
    D12(VD = 12 mm) = D0 / (1 + 0.0012*D0 ) D12 (VD = 12 mm) = D0 / (1 + 0.0012 * D0)
    수학식 3Equation 3
    Dx(VD = x mm) = D0 / (1 + (x/1000)*D0) Dx (VD = x mm) = D0 / (1 + (x / 1000) * D0)
    상기 수학식 2 및 3에서 D0 은 VD = 0 mm 일 때의 디옵터 값이다.In Equations 2 and 3, D0 is a diopter value when VD = 0 mm.
  9. 제2항에 있어서, The method of claim 2,
    상기 레티클은 상기 표준렌즈의 본체의 후평면 부에 부착 또는 코팅되어 한 몸체로 형성되고,The reticle is attached to or coated on the rear surface portion of the body of the standard lens is formed as a body
    상기 표준모델아이렌즈가 매칭오일을 매개로하여 한 몸체로 형성되는 경우, 상기 매칭오일 두께에 의한 디옵터 측정값을 보정하여 상기 검안용 시력굴절력계의 교정에 이용되는 것을 특징으로 하는 표준모델아이렌즈.When the standard model eye lens is formed as a body through a matching oil, the standard model eye lens is used to calibrate the opto-optic refractometer by correcting a diopter measurement value by the matching oil thickness. .
PCT/KR2015/009694 2014-10-24 2015-09-16 New design of model eye lens for visual refractometer correction, and correction method WO2016064092A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140145249A KR101538129B1 (en) 2014-10-24 2014-10-24 Standard lens for eye refractometer
KR10-2014-0145249 2014-10-24

Publications (1)

Publication Number Publication Date
WO2016064092A1 true WO2016064092A1 (en) 2016-04-28

Family

ID=53875521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009694 WO2016064092A1 (en) 2014-10-24 2015-09-16 New design of model eye lens for visual refractometer correction, and correction method

Country Status (2)

Country Link
KR (1) KR101538129B1 (en)
WO (1) WO2016064092A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10276985A (en) * 1997-03-27 1998-10-20 Carl Zeiss Jena Gmbh Inspection instrument for optical data of eyeball
JP2001095760A (en) * 1999-09-28 2001-04-10 Topcon Corp Optical characteristic measuring apparatus for eyes
KR20090012352A (en) * 2006-05-05 2009-02-03 코닝 인코포레이티드 Distortion tuning of a quasi-telecentric imaging lens
KR100923059B1 (en) * 2006-06-06 2009-10-22 후지논 가부시키가이샤 Eccentric amount measuring method
KR101299744B1 (en) * 2005-12-01 2013-08-23 가부시키가이샤 니데크 Lens meter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10276985A (en) * 1997-03-27 1998-10-20 Carl Zeiss Jena Gmbh Inspection instrument for optical data of eyeball
JP2001095760A (en) * 1999-09-28 2001-04-10 Topcon Corp Optical characteristic measuring apparatus for eyes
KR101299744B1 (en) * 2005-12-01 2013-08-23 가부시키가이샤 니데크 Lens meter
KR20090012352A (en) * 2006-05-05 2009-02-03 코닝 인코포레이티드 Distortion tuning of a quasi-telecentric imaging lens
KR100923059B1 (en) * 2006-06-06 2009-10-22 후지논 가부시키가이샤 Eccentric amount measuring method

Also Published As

Publication number Publication date
KR101538129B1 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
AU2002367536B2 (en) Custom eyeglass manufacturing method
US7434931B2 (en) Custom eyeglass manufacturing method
AU2010276507B2 (en) Custom contact lenses with fiducial markings
CN107647845B (en) Model eye for fundus detection and application method thereof
WO2016202311A2 (en) Handheld self vision testing apparatus and vision testing method
JP2015524284A (en) Apparatus and method for measuring objective eye refraction and at least one geometrical form parameter of a person
US3879113A (en) Photo-refractometer and methods for ophthalmic testing of young children
US20180103841A1 (en) Systems for visual field testing
CN108371541B (en) Tool for detecting and calibrating ophthalmic imaging and ophthalmic biological parameter measuring instrument
JPH11249086A (en) Artificial visual lens, artificial visual camera using the same and artificial visual device
WO2016064092A1 (en) New design of model eye lens for visual refractometer correction, and correction method
JP3387500B2 (en) Checkered plaseeding device
KR101597815B1 (en) Apparatus for vision inspection
Kannengießer et al. Individual IOL surface topography analysis by the WaveMaster Reflex UV
CN108594404A (en) Eyesight detection high definition optical lens
KR102660158B1 (en) Apparatus for inspecting contact lens fitting condition
CN113331782B (en) Computer optometry instrument
CN208367319U (en) Eyesight detection high definition optical lens
KR101597816B1 (en) Apparatus for vision inspection
US20230221578A1 (en) Method and apparatus to image a position and rotation of an ophthalmic lens worn on a human eye
CHASTON In-office measurements of soft contact lenses
JP2004216147A (en) Refractometer for ophthalmology
KR20230112992A (en) Apparatus for inspecting contact lens fitting condition
US2420032A (en) Trial frame
WO2022150448A1 (en) System and method to measure aberrations by imaging both the crescent and the halo of the crescent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852475

Country of ref document: EP

Kind code of ref document: A1