WO2016064013A1 - Residual melt removing method - Google Patents
Residual melt removing method Download PDFInfo
- Publication number
- WO2016064013A1 WO2016064013A1 PCT/KR2014/010203 KR2014010203W WO2016064013A1 WO 2016064013 A1 WO2016064013 A1 WO 2016064013A1 KR 2014010203 W KR2014010203 W KR 2014010203W WO 2016064013 A1 WO2016064013 A1 WO 2016064013A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- residual melt
- heater
- quartz crucible
- melt
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 65
- 239000013078 crystal Substances 0.000 claims abstract description 59
- 239000010453 quartz Substances 0.000 claims abstract description 48
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 48
- 238000007598 dipping method Methods 0.000 claims abstract description 8
- 230000001174 ascending effect Effects 0.000 claims abstract description 4
- 238000001816 cooling Methods 0.000 claims description 8
- 239000007791 liquid phase Substances 0.000 claims description 6
- 238000010899 nucleation Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 abstract 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/10—Crucibles or containers for supporting the melt
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/20—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
Definitions
- the present invention relates to a method for removing residual melt after single crystal ingot growth by Czochralski method.
- single crystal ingots are prepared by Czochralski crystal growth method (CZ method). More specifically, the crucible installed in the hot zone region is filled with a solid raw material such as polysilicon, heated and melted with an electrothermal heater to form a melt, and then a single crystal seed is suspended in the seed connector to contact the melt. Rotate and raise slowly. The seed connector is then pulled up in the order of a neck part, a shoulder part with increasing diameter, and a body part having a cylindrical shape with a constant diameter, and finally a tail with decreasing diameter. A single crystal ingot ending part) is obtained.
- CZ method Czochralski crystal growth method
- the multi-growth Czochralski method which produces a plurality of ingots in the Czochralski method several times in one quartz crucible, has a smaller cost than the conventional Czochralski method. It is able to produce and is attracting new attention.
- One embodiment of the present invention is to provide a residual melt removal method that can prevent the degradation of the single crystal ingot by effectively removing the residual melt inside the quartz crucible after the single crystal ingot growth by Czochralski method.
- the residual melt present in the quartz crucible by raising the temperature of the heater to a first temperature Maintaining the liquid phase, (b) dipping the seed in the residual melt, (c) controlling the temperature of the heater within a second temperature range to crystallize the residual melt, (d) the temperature of the heater Providing a third melt temperature to separate the crystals from the quartz crucible and (e) pulling the seed associated with the crystals at a predetermined rate of rise to remove the crystals.
- the step (e) may include the step of (e-1) cooling the crystal by a shielding member positioned on the interface of the residual melt and the hollow portion formed therein.
- the first temperature may be 1500 degrees or more and 1600 degrees or less.
- the second temperature range may be 30% or more and 60% or less of the first temperature.
- step (c) may include (c-1) dipping the seed in the residual melt so that the temperature of the heater is 30% of the first temperature.
- the step (c) may include the step (c-2) to make the temperature of the heater to 60% of the first temperature when 50% of the residual melt is crystallized.
- the third temperature may be higher than the first temperature.
- step (d) may include the step of (d-1) the temperature of the heater to the third temperature when the residual melt is crystallized 80%.
- the rising speed in the step (e) may be less than 10mm / min 60mm / min.
- the distance between the lower surface of the shield member and the interface of the residual melt may be 100mm or more and 150mm or less.
- step (e) if the residual melt present in the quartz crucible after step (e) exceeds 100g it can be repeated to step (a) to (e).
- Residual melt removal method after the single crystal ingot growth by the Czochralski method according to an embodiment of the present invention to prevent the degradation of the quality of the single crystal ingot by effectively removing the residual melt by controlling the rate of rise of the seed and the reduction of the heater power. Can be.
- FIG. 1 is a flow chart illustrating a residual melt removal method according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view of a side view of an ingot growth apparatus that may be used to implement a method of removing residual melt in accordance with one embodiment of the present invention.
- FIG 3 is a cross-sectional view of a portion of an ingot growth apparatus that may be used to implement a method for removing residual melt according to an embodiment of the present invention.
- FIG. 4 is a cross-sectional view showing an initial state for performing the residual melt removal method according to an embodiment of the present invention.
- Figure 5 is a schematic diagram showing the first removal of the residual melt by performing the residual melt removal method according to an embodiment of the present invention.
- FIG. 6 is a schematic view showing a second removal of the residual melt by performing the residual melt removal method according to an embodiment of the present invention.
- 1 is a flow chart illustrating a residual melt removal method according to an embodiment of the present invention.
- 2 is a cross-sectional view of a side view of an ingot growth apparatus that may be used to implement a method of removing residual melt in accordance with one embodiment of the present invention.
- 3 is a cross-sectional view of a portion of an ingot growth apparatus that may be used to implement a method of removing residual melt in accordance with one embodiment of the present invention.
- the residual melt removal method is to continuously produce a single crystal ingot growth by the Czochralski method and to remove the residual melt present in the quartz crucible after separating the grown single crystal ingot It is possible to improve the quality of single crystal ingots. This is because the residual melt usually contains many impurities.
- a single crystal ingot 43 is grown by an ingot growth apparatus 10 that can be used to perform the residual melt removal method according to an embodiment of the present invention.
- the ingot growth apparatus 10 for growing the single crystal ingot 43 by the Czochralski method will be described below before explaining the method of removing the residual melt according to the exemplary embodiment of the present invention.
- the ingot growth apparatus 10 may include a base 20, a main chamber 30, a dome chamber 90, a full chamber 70, and a driver 50.
- the base 20 may be installed on the bottom surface on which the ingot growth apparatus is placed and has a form in which a plurality of frames are combined to support the ingot growth apparatus 10.
- the main chamber support 33 may be installed on the base 20, and the main chamber 30 may be installed on the main chamber support 33. 2 and 3, the main chamber 30 may be formed in a cylindrical shape, but is not limited thereto.
- the main chamber 30 has a crucible 35 capable of accommodating a raw material, for example, polysilicon, and a heater 31 for melting the raw material by heating the crucible on the outer surface of the crucible. Can be installed.
- a raw material for example, polysilicon
- the crucible 35 may include a quartz crucible 35a capable of melting polysilicon to accommodate the silicon melt 39 and a graphite crucible 35b surrounding the outer circumferential surface of the quartz crucible to support the quartz crucible.
- the heater 31 is located on the outer surface of the graphite crucible 35b to supply thermal energy necessary for growth of the single crystal ingot 43 as radiant heat.
- the dome chamber 90 is installed on the top of the crucible 35, the lower portion of the dome chamber may be made of a dome shape and the upper portion may be formed in a cylindrical shape.
- a cooling device (not shown) for cooling the ingot 43 growing in the crucible 35 may be installed inside the dome chamber 90.
- the cooling device may be formed to circulate the cooling water therein.
- the full chamber 70 may be installed above the dome chamber 90, and the full chamber may have a tubular shape extending upward. Referring to FIG. 3, the full chamber 70 passes through the full chamber while the growing ingot 43 rises along the seed cable 57. That is, the full chamber 70 serves as a passage through which the ingot can pass.
- the door 71 is installed on the circumferential surface of the full chamber 70 to check the growth of the ingot 43 or to clean the inside of the full chamber 70 when the ingot 43 is separated in the finished state. It can be used for the purpose.
- the driving unit 50 is installed above the full chamber 70, and includes a housing 51, a supporting roller 55, a drum 53, a driving motor 59, and a seed cable ( 57).
- the driving unit 50 moves the seed cable 57 supported by the support roller 55 in the vertical direction to draw out the ingot 43 to the outside of the crucible 35.
- the housing 51 is cylindrical and installed on the upper portion of the full chamber 70, and the inside of the housing 51 may be maintained in a vacuum state.
- the support roller 55 may be installed inside the housing 51 to support the seed cable 57, and a lifting hole 52 may be formed under the support roller 55 to allow the seed cable to rise and fall.
- the seed cable 57 is rotated and hung in the outer circumferential groove of the support roller 55, and wound around the surface of the drum 53 to descend to the upper portion of the silicon melt 39 through the lifting hole 52.
- a seed 61 and a seed chuck may be installed at an end portion of the seed cable 57 so as to raise the growing ingot 43.
- the drum 53 rotates by the drive motor 59
- the seed cable 57 is wound around the drum, and the growing ingot 43 rises while rotating slowly.
- a cylindrical shielding member 37 having a hollow portion formed therein may be installed at an upper portion of the interface of the silicon melt 39, but the shape of the shielding member is not limited thereto.
- the shield member 37 blocks heat emitted from the silicon melt 39 for cooling the grown silicon ingot 43.
- the single crystal ingot is separated from the ingot growth apparatus 10. At this time, the residual melt 39 remains inside the quartz crucible 35a.
- Residual melt removal method is effective to remove the residual melt (39) remaining in the quartz crucible (35a) after the single crystal ingot growth by Czochralski method by adjusting the rate of rise of the seed and the power of the heater. This improves the quality of the single crystal ingot 43.
- the residual melt removing method to increase the temperature of the heater to the first temperature to maintain the residual melt present in the quartz crucible in the liquid phase (S10), dipping the seed in the residual melt Step S20, controlling the temperature of the heater within the second temperature range to crystallize the residual melt (S30), raising the temperature of the heater to a third temperature to separate the crystal from the quartz crucible (S40), and It may include the step (S50) to remove the crystals by pulling the connected seeds at a predetermined rate.
- step (S10) of maintaining the residual melt present in the quartz crucible by raising the temperature of the heater according to an embodiment of the present invention to the first temperature in the liquid phase temperature of the heater by controlling the power of the heater
- the first temperature that is, 1500 to 1600 or less so that the residual melt 39 is maintained in the liquid phase so that the residual melt does not cool.
- the seed 61 is mounted on the seed cable 57 of the ingot growth apparatus 10, and the seed is lowered to contact the seed with the residual melt 39.
- the temperature of the heater 31 is adjusted by adjusting the heater power.
- the temperature is lowered to 30% of the first temperature, and the seeds 61 are dipped in the residual melt 39, the seed crystallizes gradually from the contacting melt portion.
- the crystallization of the melt 39 gradually propagates from the top to the bottom of the residual melt and from the center to the outside over time, and after a certain time, the entire remaining melt turns into a crystal, so that the upper and lower temperature gradients of the crystal are natural. .
- 50% of the residual melt may be 50% of the initial volume, but is not limited thereto.
- the quartz crucible 35a is heated. Since the temperature of the quartz crucible is increased, the residual melt removing method according to an embodiment of the present invention can shorten the time required.
- the residual melt in the step (S30) of crystallizing the residual melt by controlling the heater within the second temperature range, the residual melt is cooled to the second temperature, at which time, the second temperature May be greater than or equal to 30% and less than or equal to 60% of the first temperature, for example, less than or equal to 1400 degrees.
- the residual melt 39 is drawn out to the outside from the quartz crucible 35a and is set to a condition such that an up-down temperature gradient that can solidify in the residual melt can be naturally formed.
- the first temperature and the second temperature of the heater are not limited thereto and may be changed according to the diameter (not shown) of the quartz crucible 35a, the amount and temperature of the residual melt, and the like.
- the crystal in the step (S40) of separating the crystal from the quartz crucible by raising the temperature of the heater to a third temperature, the crystal may be smoothly separated from the quartz crucible 35a.
- the power of the heater is adjusted to raise the temperature of the heater to heat the quartz crucible.
- 80% of the residual melt may be 80% of the initial volume, but is not limited thereto.
- the temperature of the heater rises higher than the third temperature, that is, the first temperature, so that the crystal can be smoothly separated from the quartz crucible.
- the third temperature is a temperature, for example, 1600 degrees or more, which can be obtained by increasing the power of the heater in a normal melting process.
- the crystal size is smaller than the size of the hollow portion inside the shielding member, ie, when 80% of the residual melt 39 is crystallized. If it is raised, it may not be interfered with by the shielding member.
- Residual melt removal method when the diameter of the hollow portion of the shield member is 250mm diameter of the crystal is 200mm may be 50mm difference, but is not limited to this.
- the seed 61 in the step of removing the crystal by pulling the seed connected to the crystal at a predetermined rising rate (S50), the seed 61 is raised at a predetermined rising rate, that is, for example, The crystals are removed by pulling them to 10mm / min or more and 60mm / min or less. As such, when the rising speed of the seed 61 is raised at a low speed, the crystal 41 does not fall from the seed, thereby removing as much residual melt 39 as possible.
- the predetermined ascent rate is set to a condition such that the residual melt 39 is withdrawn from the quartz crucible 35a so that an up-down temperature gradient that can solidify in the residual melt can be naturally formed.
- the ascending speed is not limited thereto and may be changed depending on the diameter of the quartz crucible 35a, the amount and temperature of the remaining melt, and the like.
- Residual melt removal method may include the step of cooling the crystals by the shielding member located on the interface of the residual melt and the hollow formed therein.
- the shielding member is located above the interface of the residual melt, for example, the distance between the interface of the residual melt and the shielding member may be 100 mm or more and 150 mm or less, and a hollow part may be formed therein.
- the shielding member 37 remains in the quartz crucible 35a so that the crystal 41 does not melt.
- FIG. 4 is a cross-sectional view showing an initial state for performing the residual melt removal method according to an embodiment of the present invention.
- Figure 5 is a schematic diagram showing the first removal of the residual melt by performing the residual melt removal method according to an embodiment of the present invention.
- 6 is a schematic view showing a second removal of the residual melt by performing the residual melt removal method according to an embodiment of the present invention.
- 40 to 50% of the residual melt may be 40 to 50% of the initial volume, but is not limited thereto.
- the residual melt present in the quartz crucible is repeatedly performed when the residual melt present in the quartz crucible exceeds 100 g (S60).
- the temperature of the heater is raised to a first temperature until the temperature is 100 g or less, thereby maintaining the residual melt in the quartz crucible in a liquid phase (S10), dipping the seed in the residual melt (S20), and heating the temperature of the heater.
- the step (S60) if the residual melt present in the quartz crucible exceeds 100 g, the residual melt is removed until the residual melt reaches 100 g or less, and a plurality of ingots of the Czochralski method are produced in one quartz crucible.
- the ingot is produced by the multi-growth Czochralski method (MP-CZ), the quality of the single crystal ingot can be improved.
- the residual melt present in the quartz crucible is less than 100g, when the single crystal ingot is produced, impurities contained in the residual melt will be small and will not affect the quality of the single crystal ingot.
- Residual melt removal method can prevent the degradation of the single crystal ingot by effectively removing the residual melt from the quartz crucible.
- Residual melt removal method after the single crystal ingot growth by the Czochralski method according to an embodiment of the present invention to prevent the degradation of the quality of the single crystal ingot by effectively removing the residual melt by controlling the rate of rise of the seed and the reduction of the heater power. Can be.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
A residual melt removing method is provided. The residual melt removing method is a method for removing a residual melt, which exists in a quartz crucible, after monocrystalline ingot growth by the Czochralski method, the method comprising the steps of: (a) raising the temperature of a heater to a first temperature, thereby maintaining the residual melt, which exists in the quartz crucible, in a liquid state; (b) dipping a seed into the residual melt; (c) controlling the temperature of the heater within a second temperature range, thereby crystallizing the residual melt; (d) raising the temperature of the heater to a third temperature, thereby separating crystals from the quartz crucible; and (e) lifting the seed, which is connected to the crystals, at a predetermined ascending rate, thereby removing the crystals.
Description
본 발명은 쵸크랄스키법에 의한 단결정 잉곳 성장 후 잔류 융액 제거 방법에 관한 것이다.The present invention relates to a method for removing residual melt after single crystal ingot growth by Czochralski method.
일반적으로 단결정 잉곳(Ingot)은 쵸크랄스키(Czochralski) 결정 성장법(CZ 법)으로 제조된다. 보다 구체적으로, 핫존 영역에 설치되는 도가니에 폴리 실리콘 등의 고체 원료를 충전하고 전열히터로 가열 및 용융시켜 융액(Melt)을 만든 다음, 단결정 시드(seed)를 시드 커넥터에 매달아 융액에 접촉시킨 후 서서히 회전 및 인상시킨다. 그러면 시드 커넥터에는 네크부(neck part), 직경이 증가하는 숄더부(shoulder part), 직경이 일정한 원기둥 형태의 바디부(body part)의 순서로 인상되고, 마지막으로 직경이 감소하는 테일부(tail part)를 끝으로 하는 단결정 잉곳이 얻어진다.Generally, single crystal ingots are prepared by Czochralski crystal growth method (CZ method). More specifically, the crucible installed in the hot zone region is filled with a solid raw material such as polysilicon, heated and melted with an electrothermal heater to form a melt, and then a single crystal seed is suspended in the seed connector to contact the melt. Rotate and raise slowly. The seed connector is then pulled up in the order of a neck part, a shoulder part with increasing diameter, and a body part having a cylindrical shape with a constant diameter, and finally a tail with decreasing diameter. A single crystal ingot ending part) is obtained.
또한, 쵸크랄스키법 중 복수개의 잉곳을 하나의 석영도가니에서 수회 생산하는 다중성장형 쵸크랄스키법(MP-CZ:Multi Pulling-CZochralski)은 기존의 쵸크랄스키법에 비하여 더 작은 원가로 잉곳을 생산할 수 있어 새롭게 각광받고 있다.In addition, the multi-growth Czochralski method (MP-CZ), which produces a plurality of ingots in the Czochralski method several times in one quartz crucible, has a smaller cost than the conventional Czochralski method. It is able to produce and is attracting new attention.
그런데, 종래의 쵸크랄스키법은 단결정 잉곳 성장 후 일부 융액이 석영 도가니에 잔류하게 되는데 이 잔류 융액은 통상 많은 불순물을 포함하고 있어 단결정 잉곳의 품질을 저하시킨다. However, in the conventional Czochralski method, after the single crystal ingot growth, some of the melt remains in the quartz crucible, and this residual melt usually contains a large amount of impurities, thereby degrading the quality of the single crystal ingot.
본 발명의 일 실시예는 쵸크랄스키법에 의해 단결정 잉곳 성장 후 석영 도가니 내부에 있는 잔류 융액을 효과적으로 제거함으로써 단결정 잉곳의 품질저하를 방지할 수 있는 잔류 융액 제거 방법을 제공하고자 한다.One embodiment of the present invention is to provide a residual melt removal method that can prevent the degradation of the single crystal ingot by effectively removing the residual melt inside the quartz crucible after the single crystal ingot growth by Czochralski method.
본 발명의 일 측면에 따르면 쵸크랄스키법에 의한 단결정 잉곳 성장 후 석영 도가니에 존재하는 잔류 융액 제거 방법에 있어서, (a)히터의 온도를 제1 온도로 상승시켜 상기 석영 도가니에 존재하는 잔류 융액을 액상으로 유지시키는 단계, (b)상기 잔류 융액에 시드를 디핑시키는 단계, (c)상기 히터의 온도를 제2 온도 범위 내로 제어하여 상기 잔류 융액을 결정화시키는 단계, (d)상기 히터의 온도를 제3 온도로 상승시켜 상기 결정을 상기 석영 도가니와 분리시키는 단계 및 (e)상기 결정과 연결된 상기 시드를 소정의 상승 속도로 인상시켜 상기 결정을 제거하는 단계를 포함하는 잔류 융액 제거 방법이 제공된다.According to an aspect of the present invention, in the method of removing residual melt present in a quartz crucible after single crystal ingot growth by Czochralski method, (a) the residual melt present in the quartz crucible by raising the temperature of the heater to a first temperature Maintaining the liquid phase, (b) dipping the seed in the residual melt, (c) controlling the temperature of the heater within a second temperature range to crystallize the residual melt, (d) the temperature of the heater Providing a third melt temperature to separate the crystals from the quartz crucible and (e) pulling the seed associated with the crystals at a predetermined rate of rise to remove the crystals. do.
이때, 상기 (e) 단계는 (e-1)상기 잔류 융액의 계면 상부에 위치하고 내부에 중공부가 형성된 차폐부재에 의해 상기 결정을 냉각시키는 단계를 포함할 수 있다.In this case, the step (e) may include the step of (e-1) cooling the crystal by a shielding member positioned on the interface of the residual melt and the hollow portion formed therein.
이때, 상기 (a)단계에서 상기 제1 온도는 1500도 이상 1600도 이하일 수 있다.In this case, in the step (a), the first temperature may be 1500 degrees or more and 1600 degrees or less.
이때, 상기 (c)단계에서 상기 제2 온도 범위는 상기 제1 온도의 30%이상 60%이하일 수 있다.In this case, in the step (c), the second temperature range may be 30% or more and 60% or less of the first temperature.
이때, 상기 (c)단계는 (c-1) 상기 잔류 융액에 시드를 디핑시킨 후 상기 히터의 온도를 상기 제1 온도의 30%가 되도록 하는 단계를 포함할 수 있다.In this case, step (c) may include (c-1) dipping the seed in the residual melt so that the temperature of the heater is 30% of the first temperature.
이때, 상기 (c)단계는 (c-2) 상기 잔류 융액의 50%가 결정화될 때 상기 히터의 온도를 상기 제1 온도의 60%가 되도록 하는 단계를 포함할 수 있다.In this case, the step (c) may include the step (c-2) to make the temperature of the heater to 60% of the first temperature when 50% of the residual melt is crystallized.
이때, 상기 (d)단계에서 상기 제3 온도는 상기 제1 온도보다 높을 수 있다.In this case, in the step (d), the third temperature may be higher than the first temperature.
이때, 상기 (d)단계는 (d-1) 상기 잔류 융액이 80%가 결정화될 때 상기 히터의 온도를 상기 제3 온도가 되도록 하는 단계를 포함할 수 있다.In this case, step (d) may include the step of (d-1) the temperature of the heater to the third temperature when the residual melt is crystallized 80%.
이때, 상기 (e)단계에서 상기 상승 속도는 10mm/min이상 60mm/min이하일 수 있다.At this time, the rising speed in the step (e) may be less than 10mm / min 60mm / min.
이때, 상기 (e-1)단계에서 상기 차폐부재의 하부면과 상기 잔류 융액의 계면간의 거리는 100mm이상 150mm이하일 수 있다.At this time, in the step (e-1), the distance between the lower surface of the shield member and the interface of the residual melt may be 100mm or more and 150mm or less.
이때, 상기 (e)단계 이후에 상기 석영 도가니에 존재하는 잔류 융액이 100g을 초과하면 상기 (a)단계 내지 상기 (e)단계까지를 반복할 수 있다.At this time, if the residual melt present in the quartz crucible after step (e) exceeds 100g it can be repeated to step (a) to (e).
본 발명의 일 실시예에 따른 쵸크랄스키법에 의해 단결정 잉곳 성장 후 잔류 융액 제거 방법은 시드의 상승 속도 및 히터 파워의 감소를 조절하여 잔류 융액을 효과적으로 제거함으로써 단결정 잉곳의 품질의 저하를 방지할 수 있다. Residual melt removal method after the single crystal ingot growth by the Czochralski method according to an embodiment of the present invention to prevent the degradation of the quality of the single crystal ingot by effectively removing the residual melt by controlling the rate of rise of the seed and the reduction of the heater power. Can be.
도 1은 본 발명의 일 실시예에 따른 잔류 융액 제거 방법을 도시한 순서도이다.1 is a flow chart illustrating a residual melt removal method according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 잔류 융액 제거 방법의 실시를 위해 사용될 수 있는 잉곳 성장 장치의 측면도를 도시한 단면도이다.2 is a cross-sectional view of a side view of an ingot growth apparatus that may be used to implement a method of removing residual melt in accordance with one embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 잔류 융액 제거 방법의 실시를 위해 사용될 수 있는 잉곳 성장 장치의 일부를 도시한 단면도이다.3 is a cross-sectional view of a portion of an ingot growth apparatus that may be used to implement a method for removing residual melt according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 잔류 융액 제거 방법을 실시하기 위한 초기 상태를 도시한 단면도이다.4 is a cross-sectional view showing an initial state for performing the residual melt removal method according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 잔류 융액 제거 방법을 실시하여 잔류 융액을 첫 번째로 제거한 것을 도시한 개략도이다.Figure 5 is a schematic diagram showing the first removal of the residual melt by performing the residual melt removal method according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 잔류 융액 제거 방법을 실시하여 잔류 융액을 두 번째로 제거한 것을 도시한 개략도이다.6 is a schematic view showing a second removal of the residual melt by performing the residual melt removal method according to an embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like elements throughout the specification.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "아래에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.In this specification, terms such as "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, parts, or combinations thereof. In addition, when a part such as a layer, film, region, plate, etc. is said to be "on" another part, this includes not only when the other part is "right on" but also another part in the middle. Conversely, when a part such as a layer, film, region, plate, etc. is "below" another part, this includes not only the other part "below" but also another part in the middle.
이하에서는 도면을 참조하여 본 발명의 일 실시예에 따른 잔류 융액 제거 방법을 보다 상세히 설명하도록 한다.Hereinafter, a residual melt removing method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 잔류 융액 제거 방법을 도시한 순서도이다. 도 2는 본 발명의 일 실시예에 따른 잔류 융액 제거 방법의 실시를 위해 사용될 수 있는 잉곳 성장 장치의 측면도를 도시한 단면도이다. 도 3은 본 발명의 일 실시예에 따른 잔류 융액 제거 방법의 실시를 위해 사용될 수 있는 잉곳 성장 장치의 일부분을 도시한 단면도이다.1 is a flow chart illustrating a residual melt removal method according to an embodiment of the present invention. 2 is a cross-sectional view of a side view of an ingot growth apparatus that may be used to implement a method of removing residual melt in accordance with one embodiment of the present invention. 3 is a cross-sectional view of a portion of an ingot growth apparatus that may be used to implement a method of removing residual melt in accordance with one embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 잔류 융액 제거 방법은 쵸크랄스키법에 의한 단결정 잉곳 성장 및 성장한 단결정 잉곳을 분리한 후 석영 도가니에 존재하는 잔류 융액을 제거하여 연속적으로 생산하는 단결정 잉곳의 품질을 향상시킬 수 있다. 이는 잔류 융액에는 통상적으로 많은 불순물을 포함하고 있기 때문이다.Referring to Figure 1, the residual melt removal method according to an embodiment of the present invention is to continuously produce a single crystal ingot growth by the Czochralski method and to remove the residual melt present in the quartz crucible after separating the grown single crystal ingot It is possible to improve the quality of single crystal ingots. This is because the residual melt usually contains many impurities.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 잔류 융액 제거 방법의 실시를 위해 사용될 수 있는 잉곳 성장 장치(10)에 의해 단결정 잉곳(43)이 성장한다. 1 to 3, a single crystal ingot 43 is grown by an ingot growth apparatus 10 that can be used to perform the residual melt removal method according to an embodiment of the present invention.
따라서, 본 발명의 일 실시예에 따른 잔류 융액 제거 방법을 설명하기 앞서 쵸크랄스키법에 의한 단결정 잉곳(43)을 성장시키는 잉곳 성장 장치(10)에 대해 이하 설명한다. Therefore, the ingot growth apparatus 10 for growing the single crystal ingot 43 by the Czochralski method will be described below before explaining the method of removing the residual melt according to the exemplary embodiment of the present invention.
도 2를 참조하면, 잉곳 성장 장치(10)는 베이스(20), 메인 챔버(30), 돔 챔버(90), 풀 챔버(70) 및 구동부(50)를 포함할 수 있다. 한편, 베이스(20)는 잉곳 성장 장치가 놓이는 바닥면에 설치되고 복수의 프레임이 결합된 형태로 이루어져 잉곳 성장 장치(10)를 지지할 수 있다. Referring to FIG. 2, the ingot growth apparatus 10 may include a base 20, a main chamber 30, a dome chamber 90, a full chamber 70, and a driver 50. On the other hand, the base 20 may be installed on the bottom surface on which the ingot growth apparatus is placed and has a form in which a plurality of frames are combined to support the ingot growth apparatus 10.
이때, 베이스(20) 상에는 메인 챔버 지지대(33)가 설치되며 메인 챔버 지지대(33) 상에는 메인 챔버(30)가 설치될 수 있다. 도 2 및 도 3에 도시된 바와 같이, 메인 챔버(30)는 원통형으로 이루어질 수 있으나 이에 한정되지는 않는다.In this case, the main chamber support 33 may be installed on the base 20, and the main chamber 30 may be installed on the main chamber support 33. 2 and 3, the main chamber 30 may be formed in a cylindrical shape, but is not limited thereto.
도 3을 참조하면, 메인 챔버(30) 내부에는 원료 물질 예를 들어 폴리 실리콘 등을 수용할 수 있는 도가니(35)와 도가니의 외측면에 도가니를 가열시켜 원료 물질을 용융시키는 히터(31)가 설치될 수 있다.Referring to FIG. 3, the main chamber 30 has a crucible 35 capable of accommodating a raw material, for example, polysilicon, and a heater 31 for melting the raw material by heating the crucible on the outer surface of the crucible. Can be installed.
이때, 도가니(35)는 폴리 실리콘을 용융시켜 실리콘 융액(39)을 수용할 수 있는 석영 도가니(35a) 및 석영 도가니의 외주면을 감싸서 석영 도가니를 지지하는 흑연 도가니(35b)를 포함할 수 있다.At this time, the crucible 35 may include a quartz crucible 35a capable of melting polysilicon to accommodate the silicon melt 39 and a graphite crucible 35b surrounding the outer circumferential surface of the quartz crucible to support the quartz crucible.
한편, 히터(31)는 흑연 도가니(35b)의 외측면에 위치하여 단결정 잉곳(43) 성장에 필요한 열에너지를 복사열로 공급한다.On the other hand, the heater 31 is located on the outer surface of the graphite crucible 35b to supply thermal energy necessary for growth of the single crystal ingot 43 as radiant heat.
도 2 및 도 3을 참조하면, 돔 챔버(90)는 도가니(35)의 상부에 설치되고, 돔 챔버의 하부는 돔 형태로 이루어지며 상부는 통 형상으로 이루어질 수 있다. 돔 챔버(90) 내부에는 도가니(35)에서 성장하는 잉곳(43)을 냉각시키는 냉각장치(도면 미기재)가 설치될 수 있다. 냉각장치는 내부에 냉각수가 순환할 수 있도록 형성될 수 있다. 2 and 3, the dome chamber 90 is installed on the top of the crucible 35, the lower portion of the dome chamber may be made of a dome shape and the upper portion may be formed in a cylindrical shape. Inside the dome chamber 90, a cooling device (not shown) for cooling the ingot 43 growing in the crucible 35 may be installed. The cooling device may be formed to circulate the cooling water therein.
도 2를 참조하면, 풀 챔버(70)는 돔 챔버(90)의 상부에 설치되고, 풀 챔버는 상측 방향으로 연장된 관형으로 이루어질 수 있다. 도 3을 참조하면, 풀 챔버(70)는 성장하는 잉곳(43)이 시드 케이블(57)을 따라 상승하면서 풀 챔버 내부를 통과한다. 즉, 풀 챔버(70)는 잉곳이 지나갈 수 있는 통로 역할을 한다.Referring to FIG. 2, the full chamber 70 may be installed above the dome chamber 90, and the full chamber may have a tubular shape extending upward. Referring to FIG. 3, the full chamber 70 passes through the full chamber while the growing ingot 43 rises along the seed cable 57. That is, the full chamber 70 serves as a passage through which the ingot can pass.
이때, 풀 챔버(70)의 둘레 면에는 도어(71)가 설치되어 잉곳(43)의 성장을 확인하거나 또는 공정이 마무리된 상태에서 잉곳(43)이 분리되면 풀 챔버(70) 내부를 청소하기 위한 용도로 사용될 수 있다. At this time, the door 71 is installed on the circumferential surface of the full chamber 70 to check the growth of the ingot 43 or to clean the inside of the full chamber 70 when the ingot 43 is separated in the finished state. It can be used for the purpose.
도 2 및 도 3을 참조하면, 구동부(50)는 풀 챔버(70)의 상부에 설치되고, 하우징(51), 지지 롤러(55), 드럼(53), 구동 모터(59) 및 시드 케이블(57)을 포함할 수 있다. 2 and 3, the driving unit 50 is installed above the full chamber 70, and includes a housing 51, a supporting roller 55, a drum 53, a driving motor 59, and a seed cable ( 57).
이때, 구동부(50)는 지지 롤러(55)에 의하여 지지되는 시드 케이블(57)을 상하 방향으로 이동시켜 잉곳(43)을 도가니(35) 외부로 인출시킨다. 하우징(51)은 원통형으로 풀 챔버(70)의 상부에 설치되며 내부가 진공상태로 유지될 수 있다. At this time, the driving unit 50 moves the seed cable 57 supported by the support roller 55 in the vertical direction to draw out the ingot 43 to the outside of the crucible 35. The housing 51 is cylindrical and installed on the upper portion of the full chamber 70, and the inside of the housing 51 may be maintained in a vacuum state.
한편, 지지 롤러(55)는 하우징(51) 내부에 설치되고 시드 케이블(57)을 지지하며 지지 롤러(55) 하부에는 시드 케이블이 상승 및 하강할 수 있도록 승강 홀(52)이 형성될 수 있다. 시드 케이블(57)은 지지 롤러(55)의 외주홈에 회전되어 걸려 있고, 드럼(53)의 표면에 감겨있어 승강 홀(52)을 통하여 실리콘 융액(39) 상부까지 하강할 수 있다. Meanwhile, the support roller 55 may be installed inside the housing 51 to support the seed cable 57, and a lifting hole 52 may be formed under the support roller 55 to allow the seed cable to rise and fall. . The seed cable 57 is rotated and hung in the outer circumferential groove of the support roller 55, and wound around the surface of the drum 53 to descend to the upper portion of the silicon melt 39 through the lifting hole 52.
도 3을 참조하면, 시드 케이블(57)의 단부에는 성장되는 잉곳(43)을 상승시킬 수 있게 시드(61) 및 시드척(도면 미도시)이 설치될 수 있다. 이때, 구동 모터(59)에 의해 드럼(53)이 회전하면 시드 케이블(57)이 드럼에 감겨 성장 중인 잉곳(43)은 천천히 회전하면서 상승한다.Referring to FIG. 3, a seed 61 and a seed chuck (not shown) may be installed at an end portion of the seed cable 57 so as to raise the growing ingot 43. At this time, when the drum 53 rotates by the drive motor 59, the seed cable 57 is wound around the drum, and the growing ingot 43 rises while rotating slowly.
도 3에 도시된 바와 같이, 실리콘 융액(39)의 계면 상부에는 내부에 중공부가 형성된 원통형상의 차폐부재(37)가 설치될 수 있으나 차폐부재의 형상은 이에 한정되지는 않는다. 차폐부재(37)는 성장된 실리콘 잉곳(43)의 냉각을 위해 실리콘 융액(39)에서 방출되는 열을 차단한다. As illustrated in FIG. 3, a cylindrical shielding member 37 having a hollow portion formed therein may be installed at an upper portion of the interface of the silicon melt 39, but the shape of the shielding member is not limited thereto. The shield member 37 blocks heat emitted from the silicon melt 39 for cooling the grown silicon ingot 43.
한편, 단결정 잉곳(43)의 성장이 완료되면 단결정 잉곳을 잉곳 성장 장치(10)로부터 분리한다. 이때, 석영 도가니(35a) 내부에는 잔류 융액(39)이 남는다. On the other hand, when the growth of the single crystal ingot 43 is completed, the single crystal ingot is separated from the ingot growth apparatus 10. At this time, the residual melt 39 remains inside the quartz crucible 35a.
본 발명의 일 실시예에 따른 잔류 융액 제거 방법은 시드의 상승 속도 및 히터의 파워를 조절하여 쵸크랄스키법에 의한 단결정 잉곳 성장 후 석영 도가니(35a)에 남아있는 잔류 융액(39)을 효과적으로 제거하여 단결정 잉곳(43)의 품질을 향상시킨다.Residual melt removal method according to an embodiment of the present invention is effective to remove the residual melt (39) remaining in the quartz crucible (35a) after the single crystal ingot growth by Czochralski method by adjusting the rate of rise of the seed and the power of the heater. This improves the quality of the single crystal ingot 43.
이를 위하여, 본 발명의 일 실시예에 따른 잔류 융액 제거 방법은 히터의 온도를 제1 온도로 상승시켜 석영 도가니에 존재하는 잔류 융액을 액상으로 유지시키는 단계(S10), 잔류 융액에 시드를 디핑시키는 단계(S20), 히터의 온도를 제2 온도 범위 내로 제어하여 잔류 융액을 결정화시키는 단계(S30), 히터의 온도를 제3 온도로 상승시켜 결정을 석영 도가니와 분리시키는 단계(S40) 및 결정과 연결된 시드를 소정의 속도로 인상시켜 결정을 제거하는 단계(S50)를 포함할 수 있다.To this end, the residual melt removing method according to an embodiment of the present invention to increase the temperature of the heater to the first temperature to maintain the residual melt present in the quartz crucible in the liquid phase (S10), dipping the seed in the residual melt Step S20, controlling the temperature of the heater within the second temperature range to crystallize the residual melt (S30), raising the temperature of the heater to a third temperature to separate the crystal from the quartz crucible (S40), and It may include the step (S50) to remove the crystals by pulling the connected seeds at a predetermined rate.
도 1을 참조하면, 본 발명의 일 실시예에 따른 히터의 온도를 제1 온도로 상승시켜 석영 도가니에 존재하는 잔류 융액을 액상으로 유지시키는 단계(S10)에서는 히터의 파워를 조절하여 히터의 온도를 제1 온도 즉 예를 들어 잔류 융액(39)이 액상으로 유지되도록 1500이상 1600이하로 하여 잔류 융액이 식지 않도록 한다. Referring to Figure 1, in step (S10) of maintaining the residual melt present in the quartz crucible by raising the temperature of the heater according to an embodiment of the present invention to the first temperature in the liquid phase temperature of the heater by controlling the power of the heater The first temperature, that is, 1500 to 1600 or less so that the residual melt 39 is maintained in the liquid phase so that the residual melt does not cool.
한편, 잔류 융액에 시드를 디핑시키는 단계(S20)에서는 잉곳 성장 장치(10)의 시드 케이블(57)에 시드(61)를 장착하고 시드를 하강시켜 잔류 융액(39)에 시드를 접촉시킨다.Meanwhile, in the step S20 of dipping the seed into the residual melt, the seed 61 is mounted on the seed cable 57 of the ingot growth apparatus 10, and the seed is lowered to contact the seed with the residual melt 39.
본 발명의 일 실시예에 따른 잔류 융액 제거 방법에 있어서, 히터의 온도를 제2 온도 범위 내로 제어하여 잔류 융액을 결정화시키는 단계(S30)에서는 먼저, 히터 파워를 조절하여 히터(31)의 온도를 제1 온도의 30%까지 낮추고 잔류 융액(39)에 시드(61)를 디핑시킨 상태로 대기하면 시드는 접촉하는 융액 부위부터 융액의 결정화가 서서히 진행된다.In the residual melt removing method according to an embodiment of the present invention, in the step (S30) of controlling the temperature of the heater within the second temperature range to crystallize the residual melt, first, the temperature of the heater 31 is adjusted by adjusting the heater power. When the temperature is lowered to 30% of the first temperature, and the seeds 61 are dipped in the residual melt 39, the seed crystallizes gradually from the contacting melt portion.
이러한, 융액(39)의 결정화는 시간이 지남에 따라 잔류 융액의 상부에서부터 하부로 또한 중심에서부터 외부로 서서히 전파되어 일정한 시간이 경과되면 잔류 융액 전체가 결정으로 변화되어 결정의 상하 온도 구배가 자연스럽다. As such, the crystallization of the melt 39 gradually propagates from the top to the bottom of the residual melt and from the center to the outside over time, and after a certain time, the entire remaining melt turns into a crystal, so that the upper and lower temperature gradients of the crystal are natural. .
그 후, 잔류 융액(39)의 50%가 결정화되었을 때 즉 석영 도가니에 존재하던 잔류 융액의 최초부피 중 50%가 결정화되었을 때 히터(31)의 온도를 제1 온도의 60%로 상승시켜 히터로부터 석영 도가니(35a)로 열에너지를 전달한다. 이때, 석영 도가니 내부에 존재하는 잔류 융액(39)은 여전히 결정화가 진행된다. Thereafter, when 50% of the residual melt 39 is crystallized, that is, when 50% of the initial volume of the residual melt existing in the quartz crucible is crystallized, the temperature of the heater 31 is raised to 60% of the first temperature. Heat energy is transferred from the quartz crucible 35a. At this time, the remaining melt 39 existing inside the quartz crucible is still crystallized.
이때, 본 발명의 일 실시예에 따른 잔류 융액 제거 방법에 있어서, 잔류 융액의 50%는 최초부피의 50%일 수 있으나 이에 한정하지는 않는다.At this time, in the residual melt removal method according to an embodiment of the present invention, 50% of the residual melt may be 50% of the initial volume, but is not limited thereto.
이때, 히터의 온도를 제1 온도의 60%로 상승시켜 먼저 석영 도가니(35a)를 가열시켰기 때문에 이후 히터의 온도를 제1 온도보다 높은 제3 온도로 석영 도가니(35a)를 가열시킬 때 좀더 빨리 석영 도가니의 온도가 상승하게 되므로 본 발명의 일 실시예에 따른 잔류 융액 제거 방법은 소요되는 시간을 단축할 수 있다.At this time, since the temperature of the heater is raised to 60% of the first temperature to heat the quartz crucible 35a first, when the temperature of the heater is subsequently heated to the third temperature higher than the first temperature, the quartz crucible 35a is heated. Since the temperature of the quartz crucible is increased, the residual melt removing method according to an embodiment of the present invention can shorten the time required.
한편, 본 발명의 일 실시예에 따른 잔류 융액 제거 방법에 있어서, 히터를 제2 온도 범위 내로 제어하여 잔류 융액을 결정화시키는 단계(S30)에서는 잔류 융액을 제2 온도까지 냉각시키는데 이때, 제2 온도는 제1 온도의 30%이상 60%이하일 수 있고 예를 들어 1400도 이하일 수 있다. Meanwhile, in the residual melt removing method according to an embodiment of the present invention, in the step (S30) of crystallizing the residual melt by controlling the heater within the second temperature range, the residual melt is cooled to the second temperature, at which time, the second temperature May be greater than or equal to 30% and less than or equal to 60% of the first temperature, for example, less than or equal to 1400 degrees.
이때, 잔류 융액(39)이 석영 도가니(35a)로부터 외부로 인출되면서 잔류 융액에서 응고가 이루어질 수 있는 상하 온도 구배가 자연스럽게 형성될 수 있도록 하는 조건으로 설정한다.At this time, the residual melt 39 is drawn out to the outside from the quartz crucible 35a and is set to a condition such that an up-down temperature gradient that can solidify in the residual melt can be naturally formed.
다만, 히터의 제1 온도 및 제2 온도는 이에 한정되지 않으며 석영 도가니(35a)의 직경(미도시), 잔류 융액의 양과 온도 등에 따라 변경이 가능하다.However, the first temperature and the second temperature of the heater are not limited thereto and may be changed according to the diameter (not shown) of the quartz crucible 35a, the amount and temperature of the residual melt, and the like.
본 발명의 일 실시예에 따른 잔류 융액 제거 방법에 있어서, 히터의 온도를 제3 온도로 상승시켜 결정을 석영 도가니와 분리시키는 단계(S40)에서는 결정이 석영 도가니(35a)로부터 원활하게 분리될 수 있도록 잔류 융액(39)의 80%가 결정화되었을 때 즉 석영 도가니에 존재하던 잔류 융액의 최초부피 중 80%가 제거되었을 때 히터의 파워를 조절하여 히터의 온도를 상승시켜 석영 도가니를 가열한다. In the method of removing residual melt according to an embodiment of the present invention, in the step (S40) of separating the crystal from the quartz crucible by raising the temperature of the heater to a third temperature, the crystal may be smoothly separated from the quartz crucible 35a. When 80% of the residual melt 39 is crystallized, that is, when 80% of the initial volume of the residual melt existing in the quartz crucible is removed, the power of the heater is adjusted to raise the temperature of the heater to heat the quartz crucible.
이때, 본 발명의 일 실시예에 따른 잔류 융액 제거 방법에 있어서, 잔류 융액의 80%는 최초부피의 80%일 수 있으나 이에 한정하지는 않는다.At this time, in the residual melt removal method according to an embodiment of the present invention, 80% of the residual melt may be 80% of the initial volume, but is not limited thereto.
한편, 히터의 온도는 제3 온도 즉 제1 온도보다 높게 상승시켜 결정을 석영 도가니로부터 원활하게 분리할 수 있다. 이때, 제3 온도는 통상의 용융 공정에서 히터의 파워를 높여 얻을 수 있는 온도 예를 들어 1600도 이상이다. On the other hand, the temperature of the heater rises higher than the third temperature, that is, the first temperature, so that the crystal can be smoothly separated from the quartz crucible. At this time, the third temperature is a temperature, for example, 1600 degrees or more, which can be obtained by increasing the power of the heater in a normal melting process.
이때, 결정은 차폐부재의 내부에 형성된 중공부(미도시)를 통과하므로 결정의 크기는 차폐부재 내부의 중공부의 크기보다는 작을 때 즉 예를 들어 잔류 융액(39)의 80%가 결정화될 때 결정을 인상하면 차폐부재로 인한 간섭을 받지 않을 수 있다. At this time, since the crystal passes through the hollow portion (not shown) formed inside the shielding member, the crystal size is smaller than the size of the hollow portion inside the shielding member, ie, when 80% of the residual melt 39 is crystallized. If it is raised, it may not be interfered with by the shielding member.
본 발명의 일 실시예에서 따른 잔류 융액 제거 방법은 차폐부재의 중공부의 지름이 250mm일 때 결정의 지름은 200mm여서 50mm의 차이가 날 수 있으나 이에 한정되지는 않는다.Residual melt removal method according to an embodiment of the present invention when the diameter of the hollow portion of the shield member is 250mm diameter of the crystal is 200mm may be 50mm difference, but is not limited to this.
본 발명의 일 실시예에 따른 잔류 융액 제거 방법에 있어서, 결정과 연결된 시드를 소정의 상승 속도로 인상시켜 결정을 제거하는 단계(S50)에서는 시드(61)를 소정의 상승 속도 즉, 예를 들어 10mm/min이상 60mm/min이하로 인상시켜 결정을 제거한다. 이처럼 시드(61)의 상승 속도를 저속으로 인상시키면 결정(41)이 시드에서 떨어지지 않아 최대한 많은 잔류 융액(39)을 제거할 수 있다. In the method of removing the residual melt according to an embodiment of the present invention, in the step of removing the crystal by pulling the seed connected to the crystal at a predetermined rising rate (S50), the seed 61 is raised at a predetermined rising rate, that is, for example, The crystals are removed by pulling them to 10mm / min or more and 60mm / min or less. As such, when the rising speed of the seed 61 is raised at a low speed, the crystal 41 does not fall from the seed, thereby removing as much residual melt 39 as possible.
한편, 소정의 상승 속도는 잔류 융액(39)이 석영 도가니(35a)로부터 인출되면서 잔류 융액에서 응고가 이루어질 수 있는 상하 온도 구배가 자연스럽게 형성될 수 있도록 하는 조건으로 설정한다.On the other hand, the predetermined ascent rate is set to a condition such that the residual melt 39 is withdrawn from the quartz crucible 35a so that an up-down temperature gradient that can solidify in the residual melt can be naturally formed.
다만, 상승 속도는 이에 한정되지 않으며 석영 도가니(35a)의 직경, 잔류 융액의 양과 온도 등에 따라 변경이 가능하다.However, the ascending speed is not limited thereto and may be changed depending on the diameter of the quartz crucible 35a, the amount and temperature of the remaining melt, and the like.
본 발명의 일 실시예에 따른 잔류 융액 제거 방법은 잔류 융액의 계면 상부에 위치하고 내부에 중공부가 형성된 차폐부재에 의해 결정을 냉각시키는 단계를 포함할 수 있다.Residual melt removal method according to an embodiment of the present invention may include the step of cooling the crystals by the shielding member located on the interface of the residual melt and the hollow formed therein.
이때, 차폐부재는 잔류 융액의 계면 상부에 위치하고 예를 들어 잔류 융액의 계면과 차폐부재의 거리는 100mm이상 150mm이하일 수 있고, 내부에 중공부가 형성될 수 있다. At this time, the shielding member is located above the interface of the residual melt, for example, the distance between the interface of the residual melt and the shielding member may be 100 mm or more and 150 mm or less, and a hollow part may be formed therein.
한편, 잔류 융액의 계면 상부에 위치하고 내부에 중공부가 형성된 차폐부재에 의해 결정을 냉각시키는 단계에서는 차폐부재(37)가 결정(41)이 용융되지 않도록 석영 도가니(35a) 내부에 있는 잔류 융액(39)으로부터 방출되는 열을 차단한다.On the other hand, in the step of cooling the crystal by a shielding member positioned above the interface of the residual melt and having a hollow portion therein, the shielding member 37 remains in the quartz crucible 35a so that the crystal 41 does not melt. To block the heat released from
도 4는 본 발명의 일 실시예에 따른 잔류 융액 제거 방법을 실시하기 위한 초기 상태를 도시한 단면도이다. 도 5는 본 발명의 일 실시예에 따른 잔류 융액 제거 방법을 실시하여 잔류 융액을 첫 번째로 제거한 것을 도시한 개략도이다. 도 6은 본 발명의 일 실시예에 따른 잔류 융액 제거 방법을 실시하여 잔류 융액을 두 번째로 제거한 것을 도시한 개략도이다.4 is a cross-sectional view showing an initial state for performing the residual melt removal method according to an embodiment of the present invention. Figure 5 is a schematic diagram showing the first removal of the residual melt by performing the residual melt removal method according to an embodiment of the present invention. 6 is a schematic view showing a second removal of the residual melt by performing the residual melt removal method according to an embodiment of the present invention.
도 4 및 도 5를 참조하면, 본 발명의 일 실시예에 따른 잔류 융액 제거 방법을 통해 한번 실시하면 석영 도가니에 존재하는 잔류 융액의 최초 부피 중 40~50%정도 제거할 수 있다.Referring to Figures 4 and 5, once performed through the residual melt removal method according to an embodiment of the present invention can remove about 40 to 50% of the initial volume of the residual melt present in the quartz crucible.
이때, 본 발명의 일 실시예에 따른 잔류 융액 제거 방법에 있어서, 잔류 융액의 40~50%는 최초부피의 40~50%일 수 있으나 이에 한정되지는 않는다.At this time, in the residual melt removal method according to an embodiment of the present invention, 40 to 50% of the residual melt may be 40 to 50% of the initial volume, but is not limited thereto.
도 6을 참조하면, 따라서 본 발명의 일 실시예에 따른 잔류 융액 제거 방법에 있어서, 석영 도가니에 존재하는 잔류 융액이 100g을 초과하면 반복하여 수행하는 단계(S60)에서는 석영 도가니에 존재하는 잔류 융액이 100g이하가 될 때까지 히터의 온도를 제1 온도로 상승시켜 석영 도가니에 존재하는 잔류 융액을 액상으로 유지시키는 단계(S10), 잔류 융액에 시드를 디핑시키는 단계(S20), 히터의 온도를 제2 온도 범위 내로 제어하여 잔류 융액을 결정화시키는 단계(S30), 히터의 온도를 제3 온도로 상승시켜 결정을 석영 도가니와 분리시키는 단계(S40) 및 결정과 연결된 시드를 소정의 상승 속도로 인상시켜 결정을 제거하는 단계(S50)를 반복하여 수행할 수 있다.Referring to FIG. 6, therefore, in the residual melt removing method according to an embodiment of the present invention, the residual melt present in the quartz crucible is repeatedly performed when the residual melt present in the quartz crucible exceeds 100 g (S60). The temperature of the heater is raised to a first temperature until the temperature is 100 g or less, thereby maintaining the residual melt in the quartz crucible in a liquid phase (S10), dipping the seed in the residual melt (S20), and heating the temperature of the heater. Controlling within the second temperature range to crystallize the residual melt (S30), raising the temperature of the heater to a third temperature to separate the crystals from the quartz crucible (S40) and pulling the seeds connected to the crystals at a predetermined rate of rise; It may be carried out by repeating the step (S50) to remove the crystals.
석영 도가니에 존재하는 잔류 융액이 100g초과하면 반복하여 수행하는 단계(S60)에서는 잔류 융액이 100g이하가 될 때까지 잔류 융액을 제거하면 쵸크랄스키법 중 복수개의 잉곳을 하나의 석영도가니에서 수회 생산하는 다중 성장형 쵸크랄스키법(MP-CZ:Multi Pulling-CZochralski)에 의해 잉곳을 생산할 때 단결정 잉곳의 품질을 향상시킬 수 있다. In the step (S60), if the residual melt present in the quartz crucible exceeds 100 g, the residual melt is removed until the residual melt reaches 100 g or less, and a plurality of ingots of the Czochralski method are produced in one quartz crucible. When the ingot is produced by the multi-growth Czochralski method (MP-CZ), the quality of the single crystal ingot can be improved.
즉, 석영 도가니에 존재하는 잔류 융액이 100g이하가 되면 단결정 잉곳을 생산할 때 잔류 융액에 포함된 불순물은 소량이 되어 단결정 잉곳의 품질에 영향을 미치지 않을 것이다.That is, if the residual melt present in the quartz crucible is less than 100g, when the single crystal ingot is produced, impurities contained in the residual melt will be small and will not affect the quality of the single crystal ingot.
본 발명의 일 실시예에 따른 잔류 융액 제거 방법은 잔류 융액을 석영 도가니에서 효과적으로 제거함으로써 단결정 잉곳의 품질의 저하를 방지할 수 있다. Residual melt removal method according to an embodiment of the present invention can prevent the degradation of the single crystal ingot by effectively removing the residual melt from the quartz crucible.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments set forth herein, and those skilled in the art who understand the spirit of the present invention, within the scope of the same idea, the addition of components Other embodiments may be easily proposed by changing, deleting, adding, etc., but this will also be within the scope of the present invention.
본 발명의 일 실시예에 따른 쵸크랄스키법에 의해 단결정 잉곳 성장 후 잔류 융액 제거 방법은 시드의 상승 속도 및 히터 파워의 감소를 조절하여 잔류 융액을 효과적으로 제거함으로써 단결정 잉곳의 품질의 저하를 방지할 수 있다. Residual melt removal method after the single crystal ingot growth by the Czochralski method according to an embodiment of the present invention to prevent the degradation of the quality of the single crystal ingot by effectively removing the residual melt by controlling the rate of rise of the seed and the reduction of the heater power. Can be.
Claims (11)
- 쵸크랄스키법에 의한 단결정 잉곳 성장 후 석영 도가니에 존재하는 잔류 융액 제거 방법에 있어서,In the residual melt removal method which exists in a quartz crucible after single crystal ingot growth by Czochralski method,(a)히터의 온도를 제1 온도로 상승시켜 상기 석영 도가니에 존재하는 잔류 융액을 액상으로 유지시키는 단계;(a) raising the temperature of the heater to a first temperature to maintain the residual melt in the quartz crucible in the liquid phase;(b)상기 잔류 융액에 시드를 디핑시키는 단계;(b) dipping a seed in the residual melt;(c)상기 히터의 온도를 제2 온도 범위 내로 제어하여 상기 잔류 융액을 결정화시키는 단계;(c) controlling the temperature of the heater within a second temperature range to crystallize the residual melt;(d)상기 히터의 온도를 제3 온도로 상승시켜 상기 결정을 상기 석영 도가니와 분리시키는 단계 및(d) raising the temperature of the heater to a third temperature to separate the crystals from the quartz crucible; and(e)상기 결정과 연결된 상기 시드를 소정의 상승 속도로 인상시켜 상기 결정을 제거하는 단계를 포함하는 잔류 융액 제거 방법.(e) lifting the seed associated with the crystal at a predetermined rate of ascension to remove the crystal.
- 제1 항에 있어서,According to claim 1,상기 (e) 단계는 Step (e) is(e-1)상기 잔류 융액의 계면 상부에 위치하고 내부에 중공부가 형성된 차폐부재에 의해 상기 결정을 냉각시키는 단계를 포함하는 잔류 융액 제거 방법.(e-1) cooling the crystals by a shielding member positioned above the interface of the residual melt and having a hollow portion formed therein.
- 제1 항에 있어서,According to claim 1,상기 (a)단계에서 상기 제1 온도는 1500도 이상 1600도 이하인 잔류 융액 제거 방법.Residual melt removal method in the step (a) the first temperature is 1500 degrees or more and 1600 degrees or less.
- 제1 항에 있어서,According to claim 1,상기 (c)단계에서 상기 제2 온도 범위는 상기 제1 온도의 30%이상 60%이하인 잔류 융액 제거 방법.And wherein said second temperature range in step (c) is at least 30% and at most 60% of said first temperature.
- 제4 항에 있어서,The method of claim 4, wherein상기 (c)단계는 Step (c) is(c-1) 상기 잔류 융액에 시드를 디핑시킨 후 상기 히터의 온도를 상기 제1 온도의 30%가 되도록 하는 단계를 포함하는 잔류 융액 제거 방법.(c-1) dipping the residual melt and seeding the heater so that the temperature of the heater is 30% of the first temperature.
- 제5 항에 있어서,The method of claim 5,상기 (c)단계는 Step (c) is(c-2) 상기 잔류 융액의 50%가 결정화될 때 상기 히터의 온도를 상기 제1 온도의 60%가 되도록 하는 단계를 포함하는 잔류 융액 제거 방법.(c-2) causing the temperature of the heater to be 60% of the first temperature when 50% of the residual melt is crystallized.
- 제1 항에 있어서,According to claim 1,상기 (d)단계에서 상기 제3 온도는 상기 제1 온도보다 높은 잔류 융액 제거 방법.And the third temperature in step (d) is higher than the first temperature.
- 제1 항에 있어서,According to claim 1,상기 (d)단계는 Step (d)(d-1) 상기 잔류 융액이 80%가 결정화될 때 상기 히터의 온도를 상기 제3 온도가 되도록 하는 단계를 포함하는 잔류 융액 제거 방법.(d-1) Residual melt removal method comprising the step of bringing the temperature of the heater to the third temperature when the residual melt is crystallized 80%.
- 제1 항에 있어서,According to claim 1,상기 (e)단계에서 상기 상승 속도는 10mm/min이상 60mm/min이하인 잔류 융액 제거 방법.Residual melt removal method in the step (e) the ascending speed is more than 10mm / min 60mm / min.
- 제1 항에 있어서,According to claim 1,상기 (e)단계에서 상기 상승 속도는 10mm/min이상 60mm/min이하인 잔류 융액 제거 방법.Residual melt removal method in the step (e) the ascending speed is more than 10mm / min 60mm / min.
- 제1 항에 있어서,According to claim 1,상기 (e)단계 이후에 상기 석영 도가니에 존재하는 잔류 융액이 100g을 초과하면 상기 (a)단계 내지 상기 (e)단계까지를 반복하는 잔류 융액 제거 방법.After the step (e), if the residual melt present in the quartz crucible exceeds 100 g, the steps of (a) to (e) are repeated.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0144509 | 2014-10-23 | ||
KR1020140144509A KR101635946B1 (en) | 2014-10-23 | 2014-10-23 | Method for removing residual melt |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016064013A1 true WO2016064013A1 (en) | 2016-04-28 |
Family
ID=55761043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/010203 WO2016064013A1 (en) | 2014-10-23 | 2014-10-28 | Residual melt removing method |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101635946B1 (en) |
WO (1) | WO2016064013A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0570280A (en) * | 1991-09-13 | 1993-03-23 | Toshiba Ceramics Co Ltd | Discharging method for residual melt in single crystal lifting equipment |
JPH09286692A (en) * | 1996-04-22 | 1997-11-04 | Komatsu Electron Metals Co Ltd | Apparatus for producing semiconductor single crystal and production of semiconductor single crystal |
JP2995912B2 (en) * | 1991-06-11 | 1999-12-27 | 日本電気株式会社 | Method for removing residual raw material in crucible |
JP2008260649A (en) * | 2007-04-11 | 2008-10-30 | Shin Etsu Handotai Co Ltd | Method of solidification of residual melt in crucible |
KR101025652B1 (en) * | 2009-06-05 | 2011-03-30 | 주식회사 엘지실트론 | Method for manufacturing crystal for solar cell by recycling remaining melt |
-
2014
- 2014-10-23 KR KR1020140144509A patent/KR101635946B1/en active IP Right Grant
- 2014-10-28 WO PCT/KR2014/010203 patent/WO2016064013A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2995912B2 (en) * | 1991-06-11 | 1999-12-27 | 日本電気株式会社 | Method for removing residual raw material in crucible |
JPH0570280A (en) * | 1991-09-13 | 1993-03-23 | Toshiba Ceramics Co Ltd | Discharging method for residual melt in single crystal lifting equipment |
JPH09286692A (en) * | 1996-04-22 | 1997-11-04 | Komatsu Electron Metals Co Ltd | Apparatus for producing semiconductor single crystal and production of semiconductor single crystal |
JP2008260649A (en) * | 2007-04-11 | 2008-10-30 | Shin Etsu Handotai Co Ltd | Method of solidification of residual melt in crucible |
KR101025652B1 (en) * | 2009-06-05 | 2011-03-30 | 주식회사 엘지실트론 | Method for manufacturing crystal for solar cell by recycling remaining melt |
Also Published As
Publication number | Publication date |
---|---|
KR20160047935A (en) | 2016-05-03 |
KR101635946B1 (en) | 2016-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014204119A1 (en) | Silicon single crystal growing device and method of growing same | |
WO2015030408A1 (en) | Device for shielding heat, device for growing ingot comprising same, and method for growing ingot using same | |
WO2015037831A1 (en) | Cooling rate control apparatus and ingot growing apparatus including same | |
WO2011043552A2 (en) | Quartz crucible and method of manufacturing the same | |
KR102054184B1 (en) | Single crystal production device and single crystal production method | |
KR20070042971A (en) | A melter assembly and method for charging a crystal forming apparatus with molten source material | |
WO2014115935A1 (en) | Single-crystal ingot, apparatus and method for manufacturing the same | |
WO2013025024A4 (en) | Ingot growing apparatus and method of manufacturing ingot | |
WO2016163602A1 (en) | Device and method for growing silicon monocrystal ingot | |
WO2017111227A1 (en) | Growth device and growth method of silicon monocrystalline ingot | |
WO2011108830A2 (en) | Single crystal cooling apparatus and single crystal grower including the same | |
WO2013081378A1 (en) | Apparatus and method for growing ingots | |
WO2016064013A1 (en) | Residual melt removing method | |
WO2019156323A1 (en) | Silicon supply part, and device and method for growing silicon monocrystalline ingot comprising same | |
WO2014030866A1 (en) | Single crystal growing device, and raw material supplying device and raw material supplying method applied to same | |
JP2014080343A (en) | Apparatus and method for crystal production based on vertical boat method | |
WO2010058980A2 (en) | Single crystal growing apparatus | |
WO2017030275A1 (en) | Apparatus for growing single crystalline ingot and method for growing same | |
KR20110024866A (en) | Single crystal grower having structure for reducing quartz degradation and seed chuck structure thereof | |
WO2019143175A1 (en) | Silicon single crystal growth method and apparatus | |
WO2016167542A1 (en) | Apparatus and method for growing single crystal silicon ingot | |
WO2021141176A1 (en) | Apparatus and method for growing silicon single crystal ingot | |
WO2011099680A9 (en) | Single crystal cooler and single crystal grower including the same | |
WO2017082533A1 (en) | Crucible coating apparatus | |
KR20130007354A (en) | Apparatus for growing silicon crystal and method for growing silicon crystal using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14904404 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14904404 Country of ref document: EP Kind code of ref document: A1 |