WO2016063947A1 - Distributed power storage system, power control method, and program - Google Patents

Distributed power storage system, power control method, and program Download PDF

Info

Publication number
WO2016063947A1
WO2016063947A1 PCT/JP2015/079826 JP2015079826W WO2016063947A1 WO 2016063947 A1 WO2016063947 A1 WO 2016063947A1 JP 2015079826 W JP2015079826 W JP 2015079826W WO 2016063947 A1 WO2016063947 A1 WO 2016063947A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage system
power storage
power
discharge
load
Prior art date
Application number
PCT/JP2015/079826
Other languages
French (fr)
Japanese (ja)
Inventor
隆之 静野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016510863A priority Critical patent/JPWO2016063947A1/en
Publication of WO2016063947A1 publication Critical patent/WO2016063947A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a distributed power storage system, a power control method, and a program.
  • Patent Document 1 discloses a technique for controlling charging / discharging operations of a plurality of storage batteries (secondary batteries) based on power supply and demand prediction information.
  • each storage battery is one of the factors that affect the effective life of the entire system. Therefore, it is desirable to be able to control each discharge power flexibly when considering the effective life of the entire system.
  • An object of the present invention is to provide a technique for controlling the discharge operation of a secondary battery.
  • the first power storage system is Using the power necessary for the first load managed by the first power storage system and the power necessary for the second load managed by the second power storage system, the discharge power of the second power storage system is determined and A notification means for notifying the second power storage system;
  • a distributed power storage system is provided.
  • a power control method for controlling power of a first power storage system and a second power storage system connected to a distribution line connected to a system The first power storage system is Using the power necessary for the first load managed by the first power storage system and the power necessary for the second load managed by the second power storage system, the discharge power of the second power storage system is determined and Notify the second power storage system; A power control method is provided.
  • the discharge operation of the secondary battery can be controlled as desired.
  • each component of the distributed power storage system 1 indicates a functional unit block, not a hardware unit configuration.
  • the notification unit 42 is realized by an arbitrary combination of hardware and software centering on a CPU of any computer, a memory, a program loaded in the memory, various storage media for storing the program, a network connection interface, and the like.
  • FIG. 1 is a diagram conceptually showing the processing configuration of the distributed power storage system 1 in the first embodiment.
  • the distributed power storage system 1 includes a main power storage system 20 that manages a main load 30, a sub power storage system 22 that manages a sub load 32, and a notification unit 42.
  • the main power storage system 20, the sub power storage system 22, the main load 30, and the sub load 32 are each connected to the distribution line 12 connected to the system 10.
  • Each of the main power storage system 20 and the sub power storage system 22 includes a chargeable / dischargeable main power storage unit 204 and a sub power storage unit 224 including, for example, a lithium ion secondary battery or a nickel hydride secondary battery.
  • the main power storage system 20 and the sub power storage system 22 use power conversion means such as an AC (Alternating Current) -DC (Direct Current) converter or a DC-DC converter (not shown) to supply power supplied via the distribution line 12. It is converted into charging power of direct current and a predetermined voltage and stored in each power storage unit. Further, the main power storage system 20 and the sub power storage system 22 convert the power stored in each power storage unit into predetermined discharge power using the power conversion means (not shown) and supply the power via the distribution line 12.
  • AC Alternating Current
  • DC-DC converter Direct Current converter
  • DC-DC converter DC-DC converter
  • the main system control unit 202 of the main power storage system 20 manages the power necessary for the main load 30 and basically controls the main load 30 to supply the power of the main power storage unit 204 to the main load 30. .
  • the subsystem control unit 222 of the sub power storage system 22 manages the power necessary for the sub load 32, and basically controls so that the power of the sub power storage unit 224 is supplied to the sub load 32.
  • the main load 30 is, for example, a load installed in a shared part of a building such as a tenant building (for example, shared lighting, an elevator, or network equipment in a tenant building).
  • the sub load 32 is, for example, a load installed for each floor or section of the building (for example, occupied lighting or OA equipment used in each tenant space).
  • the use of the distributed power storage system 1 is not limited to this example.
  • the notification unit 42 is provided in at least one of the main power storage system 20 and the sub power storage system 22. For example, as shown in FIG. 1A and FIG. 1B, at least one of the main system control unit 202 of the main power storage system 20 or the subsystem control unit 222 of the main power storage system 20 is notified by the notification unit 42. Function as.
  • the notification unit 42 uses another power storage system connected to the distribution line 12 in the same manner as the power storage system provided with the notification unit 42 using the power required for the main load 30 and the power required for the subload 32. The discharge power is determined and notified.
  • first storage system the storage system on the side that determines and notifies the discharge power of the other storage system
  • second storage system the storage system that is notified of the discharge power
  • the load managed by the first power storage system is also referred to as “first load”
  • the load managed by the second power storage system is also referred to as “second load”.
  • the main power storage system 20 is the first power storage system
  • the main load 30 is the “first load”
  • the sub load 32 is the “second load”.
  • the sub load 32 is the “first load”
  • main load 30 the “second load”.
  • the main system control unit 202 and the subsystem control unit 222 are both configured to function as the notification unit 42 as a combination of FIG. 1 (a) and FIG. 1 (b). It may be. In this case, both notification units 42 may notify the discharge power substantially simultaneously. In such a case, for example, the operation of each power storage system is controlled according to a predetermined priority order, for example, priority is given to notification from the main power storage system 20 side.
  • FIG. 2 is a flowchart showing the flow of processing of the distributed power storage system 1 in the first embodiment.
  • the processing described later depends on, for example, the monitoring result of the state of each power storage system (for example, the free capacity or remaining capacity of the power storage unit of each power storage system, the temperature state of the power storage unit, etc.), the charge / discharge schedule of each power storage system, etc. Executed.
  • the notification unit 42 acquires power required for the first load and power required for the second load (S102). Specifically, the notification unit 42 acquires power necessary for the main load 30 from the main power storage system 20 and acquires power required for the sub load 32 from the sub power storage system 22.
  • the notification unit 42 determines the charge / discharge operation to be performed by the first power storage system (S104). Regarding the charge / discharge operation to be performed by the first power storage system, the notification unit 42 can make a determination based on the state of each power storage system, for example. Specifically, the notification unit 42 acquires state information of at least one of the first power storage system and the second power storage system, and uses the acquired state information to charge / discharge the first power storage system to perform. The operation (charging, discharging, charging / discharging stop) is determined.
  • the SOC State of Charge
  • the SOC of the power storage unit can be an index for determining whether or not the power storage unit should be charged or discharged, for example.
  • the temperature of the power storage unit can be an index for determining whether or not to stop the charge / discharge operation of the power storage unit, for example.
  • the notification unit 42 can determine that the power storage unit should be charged when, for example, the SOC of the power storage unit is smaller than a predetermined charging threshold.
  • the notification part 42 can judge that it should discharge from the said electrical storage part, for example, when SOC of an electrical storage part is larger than a predetermined discharge threshold value.
  • the notification part 42 can judge that the charging / discharging operation
  • the state information used in the present embodiment is not limited to these.
  • the notification unit 42 determines the charge / discharge operation to be performed by the power storage system based on the state information of the one power storage system, and then performs the other power storage system based on the charge / discharge operation of the one power storage system. The charge / discharge operation can also be determined.
  • the notification unit 42 determines that the charge / discharge operation of one power storage system is “charge” or “charge / discharge stop”, and when power is required for a load managed by one power storage system, the other power storage The charge / discharge operation to be performed by the system can be determined as “discharge”. Further, when the notification unit 42 determines that the charge / discharge operation of one power storage system is “discharge”, in order to increase the discharge amount of the one power storage system, the charge / discharge operation to be performed by the other power storage system is “charged” It can be judged as “or“ charge / discharge stop ”. Moreover, the notification part 42 can also judge based on the charging / discharging schedule etc. of each electrical storage system regarding not only state information, such as SOC and temperature of an electrical storage part, regarding the charging / discharging operation
  • the notification unit 42 determines the discharge power of the second power storage system based on the charge / discharge operation of the first power storage system obtained as a result of the determination in S104. Specifically, when the first power storage system does not discharge (S106: NO), the notification unit 42 uses the sum of the power necessary for the first load and the second load acquired in S102 as the discharge power of the second power storage system. Determine (S108). In this example, “when the first power storage system does not discharge” refers to a case where the charge / discharge operation of the first power storage system is determined to be “charge” or “charge / discharge stop”.
  • the notification unit 42 determines whether or not the first power storage system can cover all the electric power necessary for each load acquired in S102. Is determined (S110). Specifically, the notification unit 42 includes a sum of power required for the first load and power required for the second load, and an upper limit value of power that can be output from the first power storage system (for example, rated output power). To determine whether or not all necessary power can be covered by the first power storage system.
  • the notification unit 42 sends the shortage of power to the second power storage system.
  • the discharge power is determined (S112).
  • the power shortage is calculated by the difference between the sum of the power required for the first load and the power required for the second load acquired in S102 and the upper limit value of the power that can be output from the first power storage system.
  • the first electric power storage system I can cover everything. That is, since there is no need to discharge from the second power storage system, the notification unit 42 determines the discharge power of the second power storage system to be 0 (S114).
  • the notification part 42 notifies the 2nd electrical storage system of the discharge electric power determined by S108, S112, or S114 (S116).
  • the second power storage system that has received the notification in S116 controls its own discharge power based on the notified discharge power (S118). For example, when the second power storage system can cover all the discharge power notified in S116, the second power storage system performs the discharge operation with the notified discharge power. Note that when the notification of “discharge power 0” is acquired in S116, the second power storage system does not execute the discharge operation. In addition, when the second power storage system cannot cover all the discharge power notified in S116, the second power storage system performs a discharge operation with discharge power that can be output (for example, rated output power) among the notified discharge power.
  • the second power storage system continues the discharge operation until the power stored in the second power storage system is depleted or the discharge end condition is satisfied such that the use of power at the first load and the second load ends.
  • the discharge power of the second power storage system is determined by the first power storage system using the power required for the load of the first power storage system and the power required for the load of the second power storage system. . Then, the discharge power of the second power storage system determined by the first power storage system is notified to the second power storage system, and the discharge operation of the second power storage system is controlled based on the notified discharge power. Thus, by controlling the discharge power of the second power storage system, the discharge power of the first power storage system can be relatively adjusted.
  • the discharge amount of the second power storage system is suppressed, and when the discharge power of the first power storage system is to be suppressed, the discharge amount of the second power storage system is To increase.
  • the discharge power of each power storage system it is possible to appropriately control the discharge power of each power storage system so as to improve the effective life of the entire system.
  • FIG. 3 is a diagram conceptually showing the processing configuration of the distributed power storage system 1 in the second embodiment.
  • the distributed power storage system 1 of this embodiment further includes a distributed power source 14 in addition to the configurations of the above-described embodiments.
  • the main power storage system 20 and the sub power storage system 22 of the present embodiment are the same as those of the first embodiment, and therefore the detailed configuration thereof is omitted in the drawing.
  • the distributed power source 14 is a power generation device that generates power using, for example, sunlight, wind power, gas, or the like.
  • the distributed power source 14 may be provided between the main power storage system 20 and the sub power storage system 22. Further, in FIG. 5, a plurality of distributed power sources 14 may be provided. For example, another distributed power source 14 may be further provided between the main power storage system 20 and the sub power storage system 22.
  • the notification unit 42 of the present embodiment uses the difference between the sum of the power necessary for the first load and the power necessary for the second load and the power that can be supplied from the distributed power supply 14 to discharge the second power storage system. Determine the power. In other words, the notification unit 42 of the present embodiment preferentially uses the power that can be supplied from the distributed power supply 14 over the power that can be supplied from the first or second power storage system.
  • FIG. 4 is a flowchart showing a process flow of the distributed power storage system 1 in the second embodiment.
  • the notification unit 42 determines whether or not all of the electric power necessary for each load acquired in S102 can be covered with electric power that can be supplied from the distributed power supply 14 (S202). Specifically, the notification unit 42 compares the sum of the power required for the first load and the power required for the second load with the generated power of the distributed power source 14 and distributes all the required power to the distributed power source. 14 determines whether supply is possible. When the sum of the power required for each load is equal to or less than the generated power of the distributed power source 14 (S202: YES), the notification unit 42 does not discharge each power storage system because it is not necessary to output power from each power storage system.
  • the notification unit 42 determines that the shortage of power (the sum of the power required for each load and the distributed power source 14). (Difference from the generated power) is calculated (S204). Then, the process proceeds to S104. In the process of S108 in the present embodiment, the notification unit 42 determines the insufficient power calculated in S204 as the discharge power of the second power storage system. In the process of S110 in the present embodiment, the notification unit 42 determines whether or not the first power storage system can cover all of the shortage of power calculated in S204.
  • the power that can be supplied from the distributed power supply 14 is preferentially used over the power that can be supplied from the first power storage system. Then, when the power required for the first load and the second load exceeds the power that can be supplied from the distributed power source 14, the processing described in the first embodiment is executed. Thereby, the effect similar to 1st Embodiment can be acquired, reducing the power purchase amount from the system
  • the notification unit 42 may determine the discharge power of the second power storage system without using the power that can be supplied from the distributed power supply 14.
  • the distributed power storage system 1 of the present modification does not execute the processes of S202 and S204. That is, the flow of processing in the distributed power storage system 1 of this modification is the same as that in FIG. By controlling in this way, the power that can be supplied from the distributed power source 14 becomes surplus power and can be supplied to the grid 10 side.
  • the present modification it is possible to obtain the same effect as that of the first embodiment while obtaining a profit by selling the surplus power of the distributed power source 14.
  • the SOC of each power storage unit can be controlled to reciprocate within a desired range (for example, a range in which the degree of deterioration when charging / discharging is repeated is minimum). it can. In this embodiment, the operation will be described.
  • FIG. 5 is a diagram conceptually showing the processing configuration of the distributed power storage system 1 of the third embodiment.
  • the distributed power storage system 1 of the present embodiment further includes a charge / discharge direction switching unit 44 in addition to the configuration of the first embodiment as illustrated in FIG. 1.
  • the distributed power storage system 1 of the present embodiment may further include a distributed power source 14 as in the second embodiment.
  • the charge / discharge direction switching unit 44 holds the current charge / discharge operation direction (charge direction or discharge direction) of the power storage system. Charging / discharging direction switching unit 44 switches the direction of the held charging / discharging operation using a predetermined lower limit value and upper limit value of SOC. Specifically, the charge / discharge direction switching unit 44 switches the direction of the charge / discharge operation to the “discharge direction” when the SOC of the power storage unit reaches the upper limit value of the SOC during the charge operation. In other words, when the charging operation of the first power storage system is performed, the discharging operation of the first power storage system is not performed until the SOC of the power storage unit reaches the upper limit value of the SOC.
  • the charging / discharging direction switching unit 44 switches the direction of the charging / discharging operation to the “charging direction”. In other words, when the discharging operation of the first power storage system is performed, the charging operation of the first power storage system is not performed until the SOC of the power storage unit reaches the lower limit value of the SOC.
  • the main system control unit 202 determines whether to charge or discharge the main power storage unit 204 based on the direction of the charge / discharge operation held by the charge / discharge direction switching unit 44.
  • the main system control unit 202 ends the charge operation of the main power storage system 20.
  • the main electrical storage system 20 will be in the state which discharges electric power according to the request
  • the charging / discharging direction switching unit 44 switches the direction of the charging / discharging operation to “charging direction”
  • the main system control unit 202 ends the discharging operation of the main power storage system 20 and executes the charging operation.
  • the charge / discharge direction switching unit 44 and the main system control unit 202 may be collectively referred to as a charge / discharge direction control unit.
  • FIG. 6 is a flowchart showing a process flow of the distributed power storage system 1 according to the third embodiment. Each process described below is executed independently in parallel with each process shown in the flowchart of FIG.
  • the charge / discharge direction switching unit 44 determines whether the power storage system is performing a charging operation or a discharging operation (S302). When the power storage system is performing a charging operation (S302: charging), the process proceeds to S304. On the other hand, when the power storage system is performing a discharge operation (S302: discharge), the process proceeds to process S310.
  • the charge / discharge direction switching unit 44 measures the SOC of the power storage unit (S304). Then, the charge / discharge direction switching unit 44 determines whether or not the measured SOC of the power storage unit is equal to or lower than the upper limit value (S306). When the measured SOC of the power storage unit is equal to or lower than the upper limit value (S306: YES), the charge / discharge direction switching unit 44 maintains the current charge / discharge operation direction until the SOC of the power storage unit reaches the upper limit value. continue.
  • the charge / discharge direction switching unit 44 switches the direction of the charge / discharge operation to “discharge” (S308). Thereby, the charging operation of the power storage system is terminated, and the power storage system enters a state of discharging power in response to a request from the load.
  • the charge / discharge direction switching unit 44 measures the SOC of the power storage unit (S310). Then, the charge / discharge direction switching unit 44 determines whether or not the measured SOC of the power storage unit is equal to or higher than the lower limit value (S312). When the measured SOC of the power storage unit is equal to or higher than the lower limit value (S312: YES), the charge / discharge direction switching unit 44 maintains the current charge / discharge operation direction until the SOC of the power storage unit becomes less than the lower limit value. Perform as necessary.
  • the charge / discharge direction switching unit 44 switches the direction of the charge / discharge operation to “charge” (S314). Thereby, the discharging operation of the power storage system is completed, and the charging operation of the power storage system is executed.
  • the notification unit 42 determines and notifies the discharge power of the second power storage system in accordance with the direction of the charge / discharge operation held by the charge / discharge direction switching unit 44. Specifically, when the direction of the charge / discharge operation of the first power storage system is “charging” (when it is desired to bring the first power storage system in the charging direction), the power required for the first load and the second load Thus, the discharge power of the second power storage system is determined as the sum of the necessary power. Thereby, even if it is a situation where electric power is required by the 1st load, the charge operation of the 1st electrical storage system can be maintained without a problem.
  • the first power storage system when the direction of the charge / discharge operation of the first power storage system is “discharge” (when it is desired to bring the first power storage system in the direction of discharging), the first power storage system is necessary with the first load as much as possible.
  • the amount of power that cannot be covered by the first power storage system is provided as the discharge power of the second power storage system. Thereby, the electric power discharged by the second power storage system can be assigned to the first power storage system, and the discharge power from the first power storage system can be increased.
  • a desired SOC range is determined for the power storage system, and the charge / discharge operation of the power storage system is controlled so as to reciprocate in the range.
  • the power storage system can be operated, for example, in a range where the degree of deterioration is minimized when charging and discharging are repeated, and the effect of improving the life of the power storage system can be expected.
  • a temperature measuring unit (not shown) that measures the temperature of the power storage unit is further provided, and in the above-described operation during charging and discharging, the main system control unit 202 performs the power storage unit based on the measured temperature.
  • the charging / discharging operation may be stopped. For example, depending on whether or not the measured temperature falls within a predetermined temperature range, the charge / discharge direction switching unit 44 switches the direction of the charge / discharge operation to “stop”, and the main system control unit 202 switches to “stop”.
  • the charging / discharging operation is stopped using the switching as a trigger. Thereby, the charge / discharge operation under an abnormal temperature outside the predetermined temperature range can be suppressed, and the effect of improving the life of the power storage system can be enhanced.
  • the sub power storage system 22 may also have the charge / discharge direction switching unit 44.
  • the first power storage system is Using the power necessary for the first load managed by the first power storage system and the power necessary for the second load managed by the second power storage system, the discharge power of the second power storage system is determined and
  • the notifying means acquires state information of at least one of the first power storage system or the second power storage system, and further determines the discharge power of the second power storage system using the acquired state information.
  • At least one of SOC (State of Charge) and temperature of power storage means included in the first power storage system or the second power storage system is used.
  • the notification means includes Determining discharge power of the second power storage system without using power that can be supplied from the distributed power source; 1. To 3. The distributed electrical storage system as described in any one of these. 5.
  • the notification means includes Determining the discharge power of the second power storage system using the difference between the sum of the power required for the first load and the power required for the second load and the power that can be supplied from the distributed power source; 1. To 3. The distributed electrical storage system as described in any one of these. 6).
  • the first power storage system further comprises charge / discharge operation control means for controlling the charge / discharge operation of the power storage means of the first power storage system
  • the charge / discharge operation control means includes: When charging the power storage means, control so as not to perform the discharge operation until the SOC (State Of Charge) of the power storage means reaches an upper limit value of a predetermined SOC range, When discharging the power storage means, control so as not to perform the charging operation until the SOC of the power storage means reaches the lower limit value of the SOC range, 1. To 5.
  • the distributed electrical storage system as described in any one of these. 7).
  • a power control method for controlling power of a first power storage system and a second power storage system connected to a distribution line connected to a system The first power storage system is Using the power necessary for the first load managed by the first power storage system and the power necessary for the second load managed by the second power storage system, the discharge power of the second power storage system is determined and Notify the second power storage system; A power control method. 8).
  • the first power storage system acquires state information of at least one of the first power storage system or the second power storage system, and further determines the discharge power of the second power storage system using the acquired state information; Further includes: The power control method described in 1. 9.
  • At least one of SOC (State of Charge) and temperature of power storage means included in the first power storage system or the second power storage system is used. Further includes: The power control method described in 1. 10. A distributed power supply is further provided, The first power storage system is Determining discharge power of the second power storage system without using power that can be supplied from the distributed power source; Further includes: To 9. The power control method according to any one of the above. 11. A distributed power supply is further provided, The first power storage system is Determining the discharge power of the second power storage system using the difference between the sum of the power required for the first load and the power required for the second load and the power that can be supplied from the distributed power source; Further includes: To 9. The power control method according to any one of the above.
  • the first power storage system is Controlling the charge / discharge operation of the power storage means of the first power storage system; When charging the power storage means, control so as not to perform the discharge operation until the SOC (State Of Charge) of the power storage means reaches an upper limit value of a predetermined SOC range, When discharging the power storage means, control so as not to perform the charging operation until the SOC of the power storage means reaches the lower limit value of the SOC range, Further includes: To 11. The power control method according to any one of the above.
  • At least one of SOC (State of Charge) and temperature of power storage means included in the first power storage system or the second power storage system is used. 14 The program described in. 16. A distributed power supply is further provided, The notification means includes Determining discharge power of the second power storage system without using power that can be supplied from the distributed power source; 13 To 15. The program as described in any one of these. 17. A distributed power supply is further provided, The notification means includes Determining the discharge power of the second power storage system using the difference between the sum of the power required for the first load and the power required for the second load and the power that can be supplied from the distributed power source; 13 To 15. The program as described in any one of these. 18.
  • the computer Further functioning as charge / discharge operation control means for controlling the charge / discharge operation of the power storage means of the first power storage system,
  • the charge / discharge operation control means includes: When charging the power storage means, control so as not to perform the discharge operation until the SOC (State Of Charge) of the power storage means reaches an upper limit value of a predetermined SOC range, When discharging the power storage means, control so as not to perform the charging operation until the SOC of the power storage means reaches the lower limit value of the SOC range, 13 To 17.
  • the program as described in any one of these.

Abstract

A distributed power storage system (1) comprising a main power storage system (20), a sub-power storage system (22), and a notification unit (42) which are connected to wiring (12) connected to a grid (10). The notification unit (42) uses power required by a load (first load) managed by one of the power storage systems (first power storage system) and power required by a load (second load) managed by the other power storage system (second power storage system) to determine the power discharged by the second power storage system and notifies the second power storage system.

Description

分散蓄電システム、電力制御方法、及びプログラムDistributed power storage system, power control method, and program
 本発明は、分散蓄電システム、電力制御方法、及びプログラムに関する。 The present invention relates to a distributed power storage system, a power control method, and a program.
 近年、系統と連携する蓄電システムが様々な場所で利用されている。 In recent years, power storage systems linked to the grid have been used in various places.
 このような蓄電システムの一例が、下記特許文献1に開示されている。下記特許文献1には、電力系統の需給予測情報を基に、複数の蓄電池(二次電池)の充放電動作を制御する技術が開示されている。 An example of such a power storage system is disclosed in Patent Document 1 below. Patent Document 1 below discloses a technique for controlling charging / discharging operations of a plurality of storage batteries (secondary batteries) based on power supply and demand prediction information.
特開2013-106372号公報JP 2013-106372 A
 このような蓄電システムにおいて、各々の蓄電池の放電深度はシステム全体の実効寿命を左右する要素の1つである。よって、システム全体の実効寿命を考えた場合に、各々の放電電力を柔軟に制御できることが望ましい。 In such a power storage system, the discharge depth of each storage battery is one of the factors that affect the effective life of the entire system. Therefore, it is desirable to be able to control each discharge power flexibly when considering the effective life of the entire system.
 本発明の目的は、二次電池の放電動作を制御する技術を提供することにある。 An object of the present invention is to provide a technique for controlling the discharge operation of a secondary battery.
 本発明によれば、
 系統に接続されている配電線に対して接続されている、第1蓄電システムおよび第2蓄電システムを有し、
 前記第1蓄電システムが、
  前記第1蓄電システムによって管理される第1負荷で必要な電力および前記第2蓄電システムによって管理される第2負荷で必要な電力を用いて、前記第2蓄電システムの放電電力を決定して前記第2蓄電システムに通知する通知手段を備える、
 分散蓄電システムが提供される。
According to the present invention,
A first power storage system and a second power storage system connected to a distribution line connected to the grid;
The first power storage system is
Using the power necessary for the first load managed by the first power storage system and the power necessary for the second load managed by the second power storage system, the discharge power of the second power storage system is determined and A notification means for notifying the second power storage system;
A distributed power storage system is provided.
 本発明によれば、
 系統に接続されている配電線に対して接続されている、第1蓄電システムおよび第2蓄電システムの電力を制御する電力制御方法であって、
 前記第1蓄電システムが、
  前記第1蓄電システムによって管理される第1負荷で必要な電力および前記第2蓄電システムによって管理される第2負荷で必要な電力を用いて、前記第2蓄電システムの放電電力を決定して前記第2蓄電システムに通知する、
 ことを含む電力制御方法が提供される。
According to the present invention,
A power control method for controlling power of a first power storage system and a second power storage system connected to a distribution line connected to a system,
The first power storage system is
Using the power necessary for the first load managed by the first power storage system and the power necessary for the second load managed by the second power storage system, the discharge power of the second power storage system is determined and Notify the second power storage system;
A power control method is provided.
 本発明によれば、
 系統に接続されている配電線に対して接続されている、第1蓄電システムおよび第2蓄電システムの電力を制御する電力制御方法を実行させるためのプログラムであって、
 前記第1蓄電システムに含まれるコンピュータを、
  前記第1蓄電システムによって管理される第1負荷で必要な電力および前記第2蓄電システムによって管理される第2負荷で必要な電力を用いて、前記第2蓄電システムの放電電力を決定して前記第2蓄電システムに通知する通知手段、
 として機能させるためのプログラムが提供される。
According to the present invention,
A program for executing a power control method for controlling power of a first power storage system and a second power storage system connected to a distribution line connected to a system,
A computer included in the first power storage system;
Using the power necessary for the first load managed by the first power storage system and the power necessary for the second load managed by the second power storage system, the discharge power of the second power storage system is determined and Notification means for notifying the second power storage system;
A program for functioning as a server is provided.
 本発明によれば、二次電池の放電動作を所望するように制御することができる。 According to the present invention, the discharge operation of the secondary battery can be controlled as desired.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1実施形態における分散蓄電システムの処理構成を概念的に示す図である。It is a figure which shows notionally the processing structure of the distributed electrical storage system in 1st Embodiment. 第1実施形態における分散蓄電システムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the distributed electrical storage system in 1st Embodiment. 第2実施形態における分散蓄電システムの処理構成を概念的に示す図である。It is a figure which shows notionally the processing structure of the distributed electrical storage system in 2nd Embodiment. 第2実施形態における分散蓄電システムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the distributed electrical storage system in 2nd Embodiment. 第3実施形態の分散蓄電システムの処理構成を概念的に示す図である。It is a figure which shows notionally the processing structure of the distributed electrical storage system of 3rd Embodiment. 第3実施形態における分散蓄電システムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the distributed electrical storage system in 3rd Embodiment.
 以下、本発明の実施形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 なお、以下の説明において、分散蓄電システム1の各構成要素は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。例えば通知部42は、任意のコンピュータのCPU、メモリ、メモリにロードされたプログラム、そのプログラムを格納する各種記憶メディア、ネットワーク接続用インタフェース等を中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置には様々な変形例がある。 In the following description, each component of the distributed power storage system 1 indicates a functional unit block, not a hardware unit configuration. For example, the notification unit 42 is realized by an arbitrary combination of hardware and software centering on a CPU of any computer, a memory, a program loaded in the memory, various storage media for storing the program, a network connection interface, and the like. The There are various modifications of the implementation method and apparatus.
 [第1実施形態]
 〔処理構成〕
 図1は、第1実施形態における分散蓄電システム1の処理構成を概念的に示す図である。図1に示されるように、分散蓄電システム1は、メイン負荷30を管理するメイン蓄電システム20、サブ負荷32を管理するサブ蓄電システム22、及び通知部42を有する。メイン蓄電システム20、サブ蓄電システム22、メイン負荷30、及びサブ負荷32は、系統10に接続されている配電線12にそれぞれ接続されている。
[First Embodiment]
[Processing configuration]
FIG. 1 is a diagram conceptually showing the processing configuration of the distributed power storage system 1 in the first embodiment. As illustrated in FIG. 1, the distributed power storage system 1 includes a main power storage system 20 that manages a main load 30, a sub power storage system 22 that manages a sub load 32, and a notification unit 42. The main power storage system 20, the sub power storage system 22, the main load 30, and the sub load 32 are each connected to the distribution line 12 connected to the system 10.
 メイン蓄電システム20およびサブ蓄電システム22の各々は、例えばリチウムイオン二次電池やニッケル水素二次電池などを含む充放電可能なメイン蓄電部204およびサブ蓄電部224をそれぞれ備えている。メイン蓄電システム20およびサブ蓄電システム22は、配電線12を介して供給される電力を、図示しないAC(Alternating Current)-DC(Direct Current)コンバータやDC-DCコンバータ等の電力変換手段を用いて直流かつ所定の電圧の充電電力に変換し、各々の蓄電部に蓄える。また、メイン蓄電システム20およびサブ蓄電システム22は、各々の蓄電部に蓄えた電力を、上述の図示しない電力変換手段を用いて所定の放電電力に変換し、配電線12を介して供給する。メイン蓄電システム20のメインシステム制御部202はメイン負荷30で必要な電力を管理しており、基本的には、メイン負荷30に対してメイン蓄電部204の電力を供給するように制御している。また、サブ蓄電システム22のサブシステム制御部222はサブ負荷32で必要な電力を管理しており、基本的には、サブ負荷32に対してサブ蓄電部224の電力を供給するように制御している。メイン負荷30は、例えば、テナントビル等の建物の共有部分に設置される負荷など(例えば、テナントビルの共用照明、エレベーター、またはネットワーク設備など)である。また、サブ負荷32は、例えば、当該建物のフロアや区画毎に設置される負荷など(例えば、各テナントスペースで利用される占有照明やOA機器など)である。但し、分散蓄電システム1の用途はこの例に限定されない。 Each of the main power storage system 20 and the sub power storage system 22 includes a chargeable / dischargeable main power storage unit 204 and a sub power storage unit 224 including, for example, a lithium ion secondary battery or a nickel hydride secondary battery. The main power storage system 20 and the sub power storage system 22 use power conversion means such as an AC (Alternating Current) -DC (Direct Current) converter or a DC-DC converter (not shown) to supply power supplied via the distribution line 12. It is converted into charging power of direct current and a predetermined voltage and stored in each power storage unit. Further, the main power storage system 20 and the sub power storage system 22 convert the power stored in each power storage unit into predetermined discharge power using the power conversion means (not shown) and supply the power via the distribution line 12. The main system control unit 202 of the main power storage system 20 manages the power necessary for the main load 30 and basically controls the main load 30 to supply the power of the main power storage unit 204 to the main load 30. . In addition, the subsystem control unit 222 of the sub power storage system 22 manages the power necessary for the sub load 32, and basically controls so that the power of the sub power storage unit 224 is supplied to the sub load 32. ing. The main load 30 is, for example, a load installed in a shared part of a building such as a tenant building (for example, shared lighting, an elevator, or network equipment in a tenant building). The sub load 32 is, for example, a load installed for each floor or section of the building (for example, occupied lighting or OA equipment used in each tenant space). However, the use of the distributed power storage system 1 is not limited to this example.
 通知部42は、メイン蓄電システム20およびサブ蓄電システム22の少なくともいずれか一方に備えられる。例えば、図1(a)および図1(b)に示されるように、メイン蓄電システム20のメインシステム制御部202、または、メイン蓄電システム20のサブシステム制御部222の少なくとも一方が、通知部42として機能する。通知部42は、メイン負荷30で必要な電力およびサブ負荷32で必要な電力を用いて、当該通知部42が備えられた蓄電システムと同様に配電線12に接続されている、他の蓄電システムの放電電力を決定して通知する。なお、以降の説明において、他の蓄電システムの放電電力を決定して通知する側の蓄電システムを「第1蓄電システム」と、放電電力を通知される側の蓄電システムを「第2蓄電システム」と表記する。また、以降の説明において、第1蓄電システムが管理する負荷を「第1負荷」と、第2蓄電システムが管理する負荷を「第2負荷」とも表記する。具体的には、メイン蓄電システム20が第1蓄電システムとなる場合、メイン負荷30が「第1負荷」、サブ負荷32が「第2負荷」となる。一方、サブ蓄電システム22が第1蓄電システムとなる場合、サブ負荷32が「第1負荷」、メイン負荷30が「第2負荷」となる。また、図示されていないが、図1(a)と図1(b)を合わせた構成として、メインシステム制御部202およびサブシステム制御部222の双方がそれぞれ通知部42として機能するように構成されていてもよい。この場合、双方の通知部42が略同時に放電電力を通知する可能性もある。このような場合には、例えば、メイン蓄電システム20側からの通知が優先される等、予め決められた優先順位に従って各蓄電システムの動作が制御される。 The notification unit 42 is provided in at least one of the main power storage system 20 and the sub power storage system 22. For example, as shown in FIG. 1A and FIG. 1B, at least one of the main system control unit 202 of the main power storage system 20 or the subsystem control unit 222 of the main power storage system 20 is notified by the notification unit 42. Function as. The notification unit 42 uses another power storage system connected to the distribution line 12 in the same manner as the power storage system provided with the notification unit 42 using the power required for the main load 30 and the power required for the subload 32. The discharge power is determined and notified. In the following description, the storage system on the side that determines and notifies the discharge power of the other storage system is referred to as “first storage system”, and the storage system that is notified of the discharge power is referred to as “second storage system”. Is written. In the following description, the load managed by the first power storage system is also referred to as “first load”, and the load managed by the second power storage system is also referred to as “second load”. Specifically, when the main power storage system 20 is the first power storage system, the main load 30 is the “first load” and the sub load 32 is the “second load”. On the other hand, when the sub power storage system 22 is the first power storage system, the sub load 32 is the “first load” and the main load 30 is the “second load”. Although not shown, the main system control unit 202 and the subsystem control unit 222 are both configured to function as the notification unit 42 as a combination of FIG. 1 (a) and FIG. 1 (b). It may be. In this case, both notification units 42 may notify the discharge power substantially simultaneously. In such a case, for example, the operation of each power storage system is controlled according to a predetermined priority order, for example, priority is given to notification from the main power storage system 20 side.
 〔動作例〕
 図2を用いて、本実施形態における分散蓄電システム1の動作例を説明する。図2は、第1実施形態における分散蓄電システム1の処理の流れを示すフローチャートである。後述の処理は、例えば、各蓄電システムの状態(例えば各蓄電システムの蓄電部の空き容量または残容量、当該蓄電部の温度状態など)の監視結果や各蓄電システムの充放電スケジュールなどに応じて実行される。
[Operation example]
An operation example of the distributed power storage system 1 in this embodiment will be described with reference to FIG. FIG. 2 is a flowchart showing the flow of processing of the distributed power storage system 1 in the first embodiment. The processing described later depends on, for example, the monitoring result of the state of each power storage system (for example, the free capacity or remaining capacity of the power storage unit of each power storage system, the temperature state of the power storage unit, etc.), the charge / discharge schedule of each power storage system, etc. Executed.
 まず、通知部42は、第1負荷で必要な電力および第2負荷でそれぞれ必要な電力を取得する(S102)。詳細には、通知部42は、メイン蓄電システム20からメイン負荷30で必要な電力を取得し、サブ蓄電システム22からサブ負荷32で必要な電力を取得する。 First, the notification unit 42 acquires power required for the first load and power required for the second load (S102). Specifically, the notification unit 42 acquires power necessary for the main load 30 from the main power storage system 20 and acquires power required for the sub load 32 from the sub power storage system 22.
 次いで、通知部42は、第1蓄電システムが行うべき充放電動作について判定する(S104)。第1蓄電システムが行うべき充放電動作に関して、通知部42は、例えば各蓄電システムの状態を基に判断できる。具体的には、通知部42は、第1蓄電システムまたは第2蓄電システムの少なくともいずれか一方の状態情報を取得し、当該取得された状態情報を用いて、第1蓄電システムが行うべき充放電動作(充電、放電、充放電停止)を判定する。 Next, the notification unit 42 determines the charge / discharge operation to be performed by the first power storage system (S104). Regarding the charge / discharge operation to be performed by the first power storage system, the notification unit 42 can make a determination based on the state of each power storage system, for example. Specifically, the notification unit 42 acquires state information of at least one of the first power storage system and the second power storage system, and uses the acquired state information to charge / discharge the first power storage system to perform. The operation (charging, discharging, charging / discharging stop) is determined.
 状態情報としては、例えば、第1蓄電システムまたは第2蓄電システムに備えられる蓄電部のSOC(State of Charge)および温度などを用いることができる。蓄電部のSOCは、例えば、当該蓄電部を充電すべきか否か、或いは、放電すべきか否かを判断する指標となり得る。また蓄電部の温度は、例えば、当該蓄電部の充放電動作を停止すべきか否かを判断する指標となり得る。より具体的には、通知部42は、例えば蓄電部のSOCが所定の充電閾値よりも小さい場合に当該蓄電部を充電すべきと判断できる。また、通知部42は、例えば蓄電部のSOCが所定の放電閾値よりも大きい場合に当該蓄電部から放電すべきと判断できる。また、通知部42は、例えば蓄電部の温度が所定の温度閾値よりも高い場合には、当該蓄電部の充放電動作を停止すべきと判断できる。但し、本実施形態で用いられる状態情報はこれらに制限されない。また、通知部42は、一方の蓄電システムの状態情報を基に当該蓄電システムが行うべき充放電動作を判断した後、当該一方の蓄電システムの充放電動作を基に他方の蓄電システムが行うべき充放電動作を判断することもできる。例えば、通知部42は、一方の蓄電システムの充放電動作を"充電"または"充放電停止"と判断した場合、かつ、一方の蓄電システムが管理する負荷で電力が必要な場合、他方の蓄電システムが行うべき充放電動作を"放電"と判断できる。また、通知部42は、一方の蓄電システムの充放電動作を"放電"と判断した場合、当該一方の蓄電システムの放電量を増やすために、他方の蓄電システムが行うべき充放電動作を"充電"または"充放電停止"と判断できる。また、通知部42は、第1蓄電システムが行うべき充放電動作に関して、蓄電部のSOCや温度といった状態情報に限らず、各蓄電システムの充放電スケジュール等に基づいて判断することもできる。 As the state information, for example, the SOC (State of Charge) and temperature of the power storage unit provided in the first power storage system or the second power storage system can be used. The SOC of the power storage unit can be an index for determining whether or not the power storage unit should be charged or discharged, for example. The temperature of the power storage unit can be an index for determining whether or not to stop the charge / discharge operation of the power storage unit, for example. More specifically, the notification unit 42 can determine that the power storage unit should be charged when, for example, the SOC of the power storage unit is smaller than a predetermined charging threshold. Moreover, the notification part 42 can judge that it should discharge from the said electrical storage part, for example, when SOC of an electrical storage part is larger than a predetermined discharge threshold value. Moreover, the notification part 42 can judge that the charging / discharging operation | movement of the said electrical storage part should be stopped, for example, when the temperature of an electrical storage part is higher than a predetermined temperature threshold value. However, the state information used in the present embodiment is not limited to these. The notification unit 42 determines the charge / discharge operation to be performed by the power storage system based on the state information of the one power storage system, and then performs the other power storage system based on the charge / discharge operation of the one power storage system. The charge / discharge operation can also be determined. For example, the notification unit 42 determines that the charge / discharge operation of one power storage system is “charge” or “charge / discharge stop”, and when power is required for a load managed by one power storage system, the other power storage The charge / discharge operation to be performed by the system can be determined as “discharge”. Further, when the notification unit 42 determines that the charge / discharge operation of one power storage system is “discharge”, in order to increase the discharge amount of the one power storage system, the charge / discharge operation to be performed by the other power storage system is “charged” It can be judged as “or“ charge / discharge stop ”. Moreover, the notification part 42 can also judge based on the charging / discharging schedule etc. of each electrical storage system regarding not only state information, such as SOC and temperature of an electrical storage part, regarding the charging / discharging operation | movement which a 1st electrical storage system should perform.
 次いで、通知部42は、S104の判定の結果として得られる第1蓄電システムの充放電動作を基に、第2蓄電システムの放電電力を決定する。具体的には、第1蓄電システムが放電しない場合(S106:NO)、通知部42は、S102で取得した第1負荷および第2負荷で必要な電力の和を第2蓄電システムの放電電力として決定する(S108)。なお、"第1蓄電システムが放電しない場合"とは、この例では、第1蓄電システムの充放電動作が"充電"または"充放電停止"と判定された場合である。 Next, the notification unit 42 determines the discharge power of the second power storage system based on the charge / discharge operation of the first power storage system obtained as a result of the determination in S104. Specifically, when the first power storage system does not discharge (S106: NO), the notification unit 42 uses the sum of the power necessary for the first load and the second load acquired in S102 as the discharge power of the second power storage system. Determine (S108). In this example, “when the first power storage system does not discharge” refers to a case where the charge / discharge operation of the first power storage system is determined to be “charge” or “charge / discharge stop”.
 一方、S104の判定の結果、第1蓄電システムが放電する場合(S106:YES)、通知部42は、S102で取得された各負荷で必要な電力の全てを、第1蓄電システムで賄えるか否かを判定する(S110)。具体的には、通知部42は、第1負荷で必要な電力および第2負荷で必要な電力の和と、第1蓄電システムから出力可能な電力の上限値(例えば、定格出力電力など)とを比較して、必要な電力の全てを第1蓄電システムで賄えるか否かを判定する。第1負荷および第2負荷で必要な電力の和が第1蓄電システムから出力可能な電力の上限値を超える場合(S110:NO)、通知部42は、不足分の電力を第2蓄電システムの放電電力として決定する(S112)。不足分の電力は、S102で取得された第1負荷で必要な電力と第2負荷で必要な電力の和と第1蓄電システムから出力可能な電力の上限値との差分により算出される。また、第1負荷および第2負荷で必要な電力の和が第1蓄電システムから出力可能な電力の上限値以下である場合(S110:YES)、第1蓄電システムは各負荷で必要な電力の全てを賄うことができる。即ち、第2蓄電システムから放電する必要がないため、通知部42は、第2蓄電システムの放電電力を0に決定する(S114)。 On the other hand, as a result of the determination in S104, when the first power storage system is discharged (S106: YES), the notification unit 42 determines whether or not the first power storage system can cover all the electric power necessary for each load acquired in S102. Is determined (S110). Specifically, the notification unit 42 includes a sum of power required for the first load and power required for the second load, and an upper limit value of power that can be output from the first power storage system (for example, rated output power). To determine whether or not all necessary power can be covered by the first power storage system. When the sum of the power necessary for the first load and the second load exceeds the upper limit value of the power that can be output from the first power storage system (S110: NO), the notification unit 42 sends the shortage of power to the second power storage system. The discharge power is determined (S112). The power shortage is calculated by the difference between the sum of the power required for the first load and the power required for the second load acquired in S102 and the upper limit value of the power that can be output from the first power storage system. Moreover, when the sum of the electric power required by the first load and the second load is equal to or lower than the upper limit value of the electric power that can be output from the first electric power storage system (S110: YES), the first electric power storage system I can cover everything. That is, since there is no need to discharge from the second power storage system, the notification unit 42 determines the discharge power of the second power storage system to be 0 (S114).
 そして、通知部42は、S108、S112、またはS114で決定された放電電力を、第2蓄電システムに通知する(S116)。S116の通知を受けた第2蓄電システムは、当該通知された放電電力に基づいて、自身の放電電力を制御する(S118)。例えば、第2蓄電システムは、S116で通知された放電電力を全て賄える場合、通知された放電電力で放電動作を実行する。なお、S116で"放電電力0"の通知を取得した場合、第2蓄電システムは放電動作を実行しない。また、第2蓄電システムは、S116で通知された放電電力を全て賄えない場合、当該通知された放電電力のうち出力可能な放電電力(例えば定格出力電力)で放電動作を実行する。なお、ここで不足する電力は、系統10から電力が供給可能であれば、系統10から供給される。第2蓄電システムは、第2蓄電システムに蓄えられた電力が枯渇する、または、第1負荷および第2負荷で電力の使用が終了するといった放電終了条件を満たすまで、放電動作を継続する。 And the notification part 42 notifies the 2nd electrical storage system of the discharge electric power determined by S108, S112, or S114 (S116). The second power storage system that has received the notification in S116 controls its own discharge power based on the notified discharge power (S118). For example, when the second power storage system can cover all the discharge power notified in S116, the second power storage system performs the discharge operation with the notified discharge power. Note that when the notification of “discharge power 0” is acquired in S116, the second power storage system does not execute the discharge operation. In addition, when the second power storage system cannot cover all the discharge power notified in S116, the second power storage system performs a discharge operation with discharge power that can be output (for example, rated output power) among the notified discharge power. Note that the power shortage here is supplied from the grid 10 if power can be supplied from the grid 10. The second power storage system continues the discharge operation until the power stored in the second power storage system is depleted or the discharge end condition is satisfied such that the use of power at the first load and the second load ends.
 〔第1実施形態の作用と効果〕
 以上、本実施形態では、第2蓄電システムの放電電力が、当該第1蓄電システムの負荷で必要な電力と第2蓄電システムの負荷で必要な電力とを用いて第1蓄電システムによって決定される。そして、第1蓄電システムで決定された第2蓄電システムの放電電力は第2蓄電システムに通知され、この通知された放電電力に基づいて第2蓄電システムの放電動作が制御される。このように第2蓄電システムの放電電力を制御することにより、第1蓄電システムの放電電力が相対的に調整できる。具体的には、第1蓄電システムをより放電させたい場合には、第2蓄電システムの放電量が抑制され、第1蓄電システムの放電電力を抑制したい場合は、第2蓄電システムの放電量が増加する。結果として、本実施形態によれば、システム全体の実効寿命を向上させるように各々の蓄電システムの放電電力を適切に制御することが可能となる。
[Operation and Effect of First Embodiment]
As described above, in the present embodiment, the discharge power of the second power storage system is determined by the first power storage system using the power required for the load of the first power storage system and the power required for the load of the second power storage system. . Then, the discharge power of the second power storage system determined by the first power storage system is notified to the second power storage system, and the discharge operation of the second power storage system is controlled based on the notified discharge power. Thus, by controlling the discharge power of the second power storage system, the discharge power of the first power storage system can be relatively adjusted. Specifically, when it is desired to further discharge the first power storage system, the discharge amount of the second power storage system is suppressed, and when the discharge power of the first power storage system is to be suppressed, the discharge amount of the second power storage system is To increase. As a result, according to the present embodiment, it is possible to appropriately control the discharge power of each power storage system so as to improve the effective life of the entire system.
 [第2実施形態]
 〔処理構成〕
 図3は、第2実施形態における分散蓄電システム1の処理構成を概念的に示す図である。図3に示されるように、本実施形態の分散蓄電システム1は、上述の各実施形態の構成に加えて、分散型電源14を更に有する。なお、本実施形態のメイン蓄電システム20およびサブ蓄電システム22は第1実施形態と同様であるため、本図ではその詳細な構成は省略している。
[Second Embodiment]
[Processing configuration]
FIG. 3 is a diagram conceptually showing the processing configuration of the distributed power storage system 1 in the second embodiment. As shown in FIG. 3, the distributed power storage system 1 of this embodiment further includes a distributed power source 14 in addition to the configurations of the above-described embodiments. Note that the main power storage system 20 and the sub power storage system 22 of the present embodiment are the same as those of the first embodiment, and therefore the detailed configuration thereof is omitted in the drawing.
 分散型電源14は、例えば、太陽光、風力、ガスなどを利用して発電する発電装置である。なお、分散型電源14はメイン蓄電システム20とサブ蓄電システム22との間に備えられていてもよい。また、図5において、複数の分散型電源14が備えられていてもよい。例えば、メイン蓄電システム20とサブ蓄電システム22との間に、他の分散型電源14が更に備えられていてもよい。 The distributed power source 14 is a power generation device that generates power using, for example, sunlight, wind power, gas, or the like. The distributed power source 14 may be provided between the main power storage system 20 and the sub power storage system 22. Further, in FIG. 5, a plurality of distributed power sources 14 may be provided. For example, another distributed power source 14 may be further provided between the main power storage system 20 and the sub power storage system 22.
 本実施形態の通知部42は、第1負荷で必要な電力および第2負荷で必要な電力の和と、分散型電源14から供給可能な電力との差分を用いて、第2蓄電システムの放電電力を決定する。言い換えると、本実施形態の通知部42は、分散型電源14から供給可能な電力を、第1または第2蓄電システムから供給可能な電力よりも優先的に利用する。 The notification unit 42 of the present embodiment uses the difference between the sum of the power necessary for the first load and the power necessary for the second load and the power that can be supplied from the distributed power supply 14 to discharge the second power storage system. Determine the power. In other words, the notification unit 42 of the present embodiment preferentially uses the power that can be supplied from the distributed power supply 14 over the power that can be supplied from the first or second power storage system.
 〔動作例〕
 図4を用いて、本実施形態における分散蓄電システム1の動作例を説明する。図4は、第2実施形態における分散蓄電システム1の処理の流れを示すフローチャートである。
[Operation example]
An operation example of the distributed power storage system 1 in the present embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing a process flow of the distributed power storage system 1 in the second embodiment.
 通知部42は、S102で取得された各負荷で必要な電力の全てを、分散型電源14から供給可能な電力で賄えるか否かを判定する(S202)。具体的には、通知部42は、第1負荷で必要な電力および第2負荷で必要な電力の和と、分散型電源14の発電電力とを比較し、必要な電力の全てを分散型電源14から供給可能か否かを判定する。各負荷で必要な電力の和が分散型電源14の発電電力以下である場合(S202:YES)、各蓄電システムから電力を出力する必要がないため、通知部42は各蓄電システムを放電させない。 The notification unit 42 determines whether or not all of the electric power necessary for each load acquired in S102 can be covered with electric power that can be supplied from the distributed power supply 14 (S202). Specifically, the notification unit 42 compares the sum of the power required for the first load and the power required for the second load with the generated power of the distributed power source 14 and distributes all the required power to the distributed power source. 14 determines whether supply is possible. When the sum of the power required for each load is equal to or less than the generated power of the distributed power source 14 (S202: YES), the notification unit 42 does not discharge each power storage system because it is not necessary to output power from each power storage system.
 一方、各負荷で必要な電力の和が分散型電源14の発電電力を超える場合(S202:NO)、通知部42は、不足分の電力(各負荷で必要な電力の和と分散型電源14の発電電力との差分)を算出する(S204)。そして、処理はS104へ遷移する。なお、本実施形態におけるS108の処理では、通知部42は、S204で算出された不足分の電力を第2蓄電システムの放電電力として決定する。また、本実施形態におけるS110の処理では、通知部42は、S204で算出された不足分の電力の全てを第1蓄電システムで賄えるか否かを判定する。 On the other hand, when the sum of the power required for each load exceeds the generated power of the distributed power source 14 (S202: NO), the notification unit 42 determines that the shortage of power (the sum of the power required for each load and the distributed power source 14). (Difference from the generated power) is calculated (S204). Then, the process proceeds to S104. In the process of S108 in the present embodiment, the notification unit 42 determines the insufficient power calculated in S204 as the discharge power of the second power storage system. In the process of S110 in the present embodiment, the notification unit 42 determines whether or not the first power storage system can cover all of the shortage of power calculated in S204.
 〔第2実施形態の作用と効果〕
 以上、本実施形態では、分散型電源14から供給可能な電力が、第1蓄電システムから供給可能な電力よりも優先的に利用される。そして、第1負荷および第2負荷で必要な電力が分散型電源14から供給可能な電力を超過する場合に、第1実施形態で説明した処理が実行される。これにより、系統10からの買電量を低減させつつ、第1実施形態と同様の効果を得ることができる。
[Operation and Effect of Second Embodiment]
As described above, in the present embodiment, the power that can be supplied from the distributed power supply 14 is preferentially used over the power that can be supplied from the first power storage system. Then, when the power required for the first load and the second load exceeds the power that can be supplied from the distributed power source 14, the processing described in the first embodiment is executed. Thereby, the effect similar to 1st Embodiment can be acquired, reducing the power purchase amount from the system | strain 10. FIG.
 〔第2実施形態の変形例〕
 また、本実施形態において、通知部42は、分散型電源14から供給可能な電力を用いずに第2蓄電システムの放電電力を決定してもよい。この場合、本変形例の分散蓄電システム1はS202およびS204の処理を実行しない。即ち、本変形例の分散蓄電システム1における処理の流れは、図2と同様の流れになる。このように制御することで分散型電源14から供給可能な電力は余剰電力となり系統10側に供給可能となる。結果として、本変形例によれば、分散型電源14の余剰電力の売電による利益を得つつ、第1実施形態と同様の効果を得ることができる。
[Modification of Second Embodiment]
In the present embodiment, the notification unit 42 may determine the discharge power of the second power storage system without using the power that can be supplied from the distributed power supply 14. In this case, the distributed power storage system 1 of the present modification does not execute the processes of S202 and S204. That is, the flow of processing in the distributed power storage system 1 of this modification is the same as that in FIG. By controlling in this way, the power that can be supplied from the distributed power source 14 becomes surplus power and can be supplied to the grid 10 side. As a result, according to the present modification, it is possible to obtain the same effect as that of the first embodiment while obtaining a profit by selling the surplus power of the distributed power source 14.
 〔第3実施形態〕
 上述の各実施形態の分散蓄電システム1によれば、各蓄電部のSOCが所望の範囲(例えば、充放電を繰り返した場合の劣化度合が最も小さくなる範囲)を往復するように制御することもできる。本実施形態では、その動作について説明する。
[Third Embodiment]
According to the distributed power storage system 1 of each of the embodiments described above, the SOC of each power storage unit can be controlled to reciprocate within a desired range (for example, a range in which the degree of deterioration when charging / discharging is repeated is minimum). it can. In this embodiment, the operation will be described.
 〔処理構成〕
 図5は、第3実施形態の分散蓄電システム1の処理構成を概念的に示す図である。図5に示されるように、本実施形態の分散蓄電システム1は、図1に示されるような第1実施形態の構成に加え、充放電方向切替部44を更に有する。また、本実施形態の分散蓄電システム1は、第2実施形態と同様に分散型電源14を更に有していてもよい。
[Processing configuration]
FIG. 5 is a diagram conceptually showing the processing configuration of the distributed power storage system 1 of the third embodiment. As illustrated in FIG. 5, the distributed power storage system 1 of the present embodiment further includes a charge / discharge direction switching unit 44 in addition to the configuration of the first embodiment as illustrated in FIG. 1. Further, the distributed power storage system 1 of the present embodiment may further include a distributed power source 14 as in the second embodiment.
 充放電方向切替部44は、蓄電システムの現在の充放電動作の方向(充電方向あるいは放電方向)を保持している。また、充放電方向切替部44は、保持されている充放電動作の方向を、予め定められたSOCの下限値と上限値とを用いて切り替える。具体的には、充放電方向切替部44は、充電動作中に蓄電部のSOCが上記SOCの上限値に到達した場合、充放電動作の方向を"放電方向"に切り替える。言い換えると、第1蓄電システムの充電動作が実行された場合、蓄電部のSOCが上記SOCの上限値に到達するまで、第1蓄電システムの放電動作は実行されない。また、充放電方向切替部44は、放電動作中に蓄電部のSOCが上記SOCの下限値に到達した場合、充放電動作の方向を"充電方向"に切り替える。言い換えると、第1蓄電システムの放電動作が実行された場合、蓄電部のSOCが上記SOCの下限値に到達するまで、第1蓄電システムの充電動作は実行されない。 The charge / discharge direction switching unit 44 holds the current charge / discharge operation direction (charge direction or discharge direction) of the power storage system. Charging / discharging direction switching unit 44 switches the direction of the held charging / discharging operation using a predetermined lower limit value and upper limit value of SOC. Specifically, the charge / discharge direction switching unit 44 switches the direction of the charge / discharge operation to the “discharge direction” when the SOC of the power storage unit reaches the upper limit value of the SOC during the charge operation. In other words, when the charging operation of the first power storage system is performed, the discharging operation of the first power storage system is not performed until the SOC of the power storage unit reaches the upper limit value of the SOC. In addition, when the SOC of the power storage unit reaches the lower limit value of the SOC during the discharging operation, the charging / discharging direction switching unit 44 switches the direction of the charging / discharging operation to the “charging direction”. In other words, when the discharging operation of the first power storage system is performed, the charging operation of the first power storage system is not performed until the SOC of the power storage unit reaches the lower limit value of the SOC.
 本実施形態において、メインシステム制御部202は、充放電方向切替部44により保持されている充放電動作の方向に基づいて、メイン蓄電部204を充電するか、或いは、放電するかを判断する。充放電方向切替部44によって充放電動作の方向が"放電方向"に切り替えられた場合、メインシステム制御部202はメイン蓄電システム20の充電動作を終了する。これにより、メイン蓄電システム20は各負荷からの要求に応じて電力を放電する状態となる。また、充放電方向切替部44によって充放電動作の方向が"充電方向"に切り替えられた場合、メインシステム制御部202はメイン蓄電システム20の放電動作を終了し、充電動作を実行する。本実施形態において、充放電方向切替部44とメインシステム制御部202を併せて充放電方向制御部と呼ぶこともできる。 In the present embodiment, the main system control unit 202 determines whether to charge or discharge the main power storage unit 204 based on the direction of the charge / discharge operation held by the charge / discharge direction switching unit 44. When the charge / discharge direction switching unit 44 switches the direction of the charge / discharge operation to the “discharge direction”, the main system control unit 202 ends the charge operation of the main power storage system 20. Thereby, the main electrical storage system 20 will be in the state which discharges electric power according to the request | requirement from each load. When the charging / discharging direction switching unit 44 switches the direction of the charging / discharging operation to “charging direction”, the main system control unit 202 ends the discharging operation of the main power storage system 20 and executes the charging operation. In the present embodiment, the charge / discharge direction switching unit 44 and the main system control unit 202 may be collectively referred to as a charge / discharge direction control unit.
 〔動作例〕
 図6を用いて本実施形態における分散蓄電システム1の処理の流れを説明する。図6は、第3実施形態における分散蓄電システム1の処理の流れを示すフローチャートである。以下で説明する各処理は、図2のフローチャートで示される各処理と並行して独立に実行される。
[Operation example]
A processing flow of the distributed power storage system 1 in the present embodiment will be described with reference to FIG. FIG. 6 is a flowchart showing a process flow of the distributed power storage system 1 according to the third embodiment. Each process described below is executed independently in parallel with each process shown in the flowchart of FIG.
 充放電方向切替部44は、蓄電システムが充電動作および放電動作のいずれを行っているかを判定する(S302)。蓄電システムが充電動作を行っている場合(S302:充電)、S304に遷移する。一方、蓄電システムが放電動作を行っている場合(S302:放電)、処理S310に遷移する。 The charge / discharge direction switching unit 44 determines whether the power storage system is performing a charging operation or a discharging operation (S302). When the power storage system is performing a charging operation (S302: charging), the process proceeds to S304. On the other hand, when the power storage system is performing a discharge operation (S302: discharge), the process proceeds to process S310.
 <充電時の処理の流れ>
 充放電方向切替部44は、蓄電部のSOCを測定する(S304)。そして、充放電方向切替部44は、測定した蓄電部のSOCが上限値以下であるか否かを判定する(S306)。測定した蓄電部のSOCが上限値以下である場合(S306:YES)、充放電方向切替部44は蓄電部のSOCが上限値に達するまで現在の充放電動作の方向を維持して充電動作を継続する。一方、測定した蓄電部のSOCが上限値を超える場合(S306:NO)、充放電方向切替部44は充放電動作の方向を"放電"に切り替える(S308)。これにより、蓄電システムの充電動作が終了され、当該蓄電システムは負荷からの要求に応じて電力を放電する状態となる。
<Flow of processing during charging>
The charge / discharge direction switching unit 44 measures the SOC of the power storage unit (S304). Then, the charge / discharge direction switching unit 44 determines whether or not the measured SOC of the power storage unit is equal to or lower than the upper limit value (S306). When the measured SOC of the power storage unit is equal to or lower than the upper limit value (S306: YES), the charge / discharge direction switching unit 44 maintains the current charge / discharge operation direction until the SOC of the power storage unit reaches the upper limit value. continue. On the other hand, when the measured SOC of the power storage unit exceeds the upper limit value (S306: NO), the charge / discharge direction switching unit 44 switches the direction of the charge / discharge operation to “discharge” (S308). Thereby, the charging operation of the power storage system is terminated, and the power storage system enters a state of discharging power in response to a request from the load.
 <放電時の処理の流れ>
 充放電方向切替部44は、蓄電部のSOCを測定する(S310)。そして、充放電方向切替部44は、測定した蓄電部のSOCが下限値以上であるか否かを判定する(S312)。測定した蓄電部のSOCが下限値以上である場合(S312:YES)、充放電方向切替部44は蓄電部のSOCが下限値未満となるまで現在の充放電動作の方向を維持して放電動作を必要に応じて実行する。一方、測定した蓄電部のSOCが下限値未満の場合(S312:NO)、充放電方向切替部44は充放電動作の方向を"充電"に切り替える(S314)。これにより、蓄電システムの放電動作が終了し、当該蓄電システムの充電動作が実行される。
<Flow of treatment during discharge>
The charge / discharge direction switching unit 44 measures the SOC of the power storage unit (S310). Then, the charge / discharge direction switching unit 44 determines whether or not the measured SOC of the power storage unit is equal to or higher than the lower limit value (S312). When the measured SOC of the power storage unit is equal to or higher than the lower limit value (S312: YES), the charge / discharge direction switching unit 44 maintains the current charge / discharge operation direction until the SOC of the power storage unit becomes less than the lower limit value. Perform as necessary. On the other hand, when the measured SOC of the power storage unit is less than the lower limit (S312: NO), the charge / discharge direction switching unit 44 switches the direction of the charge / discharge operation to “charge” (S314). Thereby, the discharging operation of the power storage system is completed, and the charging operation of the power storage system is executed.
 また、図2のフローチャートのS106において、通知部42は、充放電方向切替部44で保持される充放電動作の方向に応じて、第2蓄電システムの放電電力を決定して通知する。具体的には、第1蓄電システムの充放電動作の方向が"充電"である場合(第1蓄電システムを充電する方向に持っていきたい場合)、第1負荷で必要な電力と第2負荷で必要な電力との和が第2蓄電システムの放電電力が決定される。これにより、第1負荷で電力が必要な状況であっても第1蓄電システムの充電動作を問題なく維持することができる。また、第1蓄電システムの充放電動作の方向が"放電"である場合(第1蓄電システムを放電する方向に持っていきたい場合)、第1蓄電システムは可能な範囲において第1負荷で必要な電力と第2負荷で必要な電力とを賄い、第1蓄電システムで賄いきれない分の電力が第2蓄電システムの放電電力として決定される。これにより、第2蓄電システムで放電する電力を第1蓄電システムに担当させ、第1蓄電システムからの放電電力を増やすことができる。 2, the notification unit 42 determines and notifies the discharge power of the second power storage system in accordance with the direction of the charge / discharge operation held by the charge / discharge direction switching unit 44. Specifically, when the direction of the charge / discharge operation of the first power storage system is “charging” (when it is desired to bring the first power storage system in the charging direction), the power required for the first load and the second load Thus, the discharge power of the second power storage system is determined as the sum of the necessary power. Thereby, even if it is a situation where electric power is required by the 1st load, the charge operation of the 1st electrical storage system can be maintained without a problem. Further, when the direction of the charge / discharge operation of the first power storage system is “discharge” (when it is desired to bring the first power storage system in the direction of discharging), the first power storage system is necessary with the first load as much as possible. The amount of power that cannot be covered by the first power storage system is provided as the discharge power of the second power storage system. Thereby, the electric power discharged by the second power storage system can be assigned to the first power storage system, and the discharge power from the first power storage system can be increased.
 〔第3実施形態の作用と効果〕
 以上、本実施形態では、蓄電システムに対して所望のSOCの範囲が定められており、当該範囲を往復するように蓄電システムの充放電動作が制御される。これにより、蓄電システムを、例えば、充放電を繰り返した場合の劣化度合が最も小さくなる範囲などで動作させることができ、蓄電システムの寿命を向上させる効果が見込める。
[Operation and effect of the third embodiment]
As described above, in the present embodiment, a desired SOC range is determined for the power storage system, and the charge / discharge operation of the power storage system is controlled so as to reciprocate in the range. As a result, the power storage system can be operated, for example, in a range where the degree of deterioration is minimized when charging and discharging are repeated, and the effect of improving the life of the power storage system can be expected.
 また、蓄電部の温度を測定する温度測定部(図示せず)が更に備えられており、上述の充電および放電時の動作において、メインシステム制御部202は、測定された温度に基づいて蓄電部の充放電動作を停止させるように構成されていてもよい。例えば、測定された温度が所定の温度範囲に収まるか否かに応じて、充放電方向切替部44が充放電動作の方向を"停止"に切り替え、メインシステム制御部202は、"停止"に切り替えられたことをトリガとして、充放電動作を停止する。これにより、所定の温度範囲外の異常温度下での充放電動作を抑制し、蓄電システムの寿命を向上させる効果を高めることができる。 In addition, a temperature measuring unit (not shown) that measures the temperature of the power storage unit is further provided, and in the above-described operation during charging and discharging, the main system control unit 202 performs the power storage unit based on the measured temperature. The charging / discharging operation may be stopped. For example, depending on whether or not the measured temperature falls within a predetermined temperature range, the charge / discharge direction switching unit 44 switches the direction of the charge / discharge operation to “stop”, and the main system control unit 202 switches to “stop”. The charging / discharging operation is stopped using the switching as a trigger. Thereby, the charge / discharge operation under an abnormal temperature outside the predetermined temperature range can be suppressed, and the effect of improving the life of the power storage system can be enhanced.
 また、本実施形態では、メイン蓄電システム20のみが充放電方向切替部44を有する例を示したが、サブ蓄電システム22も充放電方向切替部44を有していてもよい。 Further, in the present embodiment, an example in which only the main power storage system 20 has the charge / discharge direction switching unit 44 is shown, but the sub power storage system 22 may also have the charge / discharge direction switching unit 44.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
 また、上述の説明で用いた複数のフローチャートでは、複数の工程(処理)が順番に記載されているが、各実施形態で実行される工程の実行順序は、その記載の順番に制限されない。各実施形態では、図示される工程の順番を内容的に支障のない範囲で変更することができる。また、上述の各実施形態は、内容が相反しない範囲で組み合わせることができる。 In the plurality of flowcharts used in the above description, a plurality of steps (processes) are described in order, but the execution order of the steps executed in each embodiment is not limited to the description order. In each embodiment, the order of the illustrated steps can be changed within a range that does not hinder the contents. Moreover, each above-mentioned embodiment can be combined in the range in which the content does not conflict.
 以下、参考形態の例を付記する。
1.
 系統に接続されている配電線に対して接続されている、第1蓄電システムおよび第2蓄電システムを有し、
 前記第1蓄電システムが、
  前記第1蓄電システムによって管理される第1負荷で必要な電力および前記第2蓄電システムによって管理される第2負荷で必要な電力を用いて、前記第2蓄電システムの放電電力を決定して前記第2蓄電システムに通知する通知手段を備える、
 分散蓄電システム。
2.
 前記通知手段は、前記第1蓄電システムまたは前記第2蓄電システムのうち少なくとも一方の状態情報を取得し、当該取得された状態情報をさらに用いて第2蓄電システムの放電電力を決定する、
 1.に記載の分散蓄電システム。
3.
 前記状態情報として、前記第1蓄電システムまたは前記第2蓄電システムに含まれる蓄電手段のSOC(State of Charge)および温度のうち少なくともいずれか一方が用いられる、
 2.に記載の分散蓄電システム。
4.
 分散型電源を更に備え、
 前記通知手段は、
  前記分散型電源から供給可能な電力を用いずに前記第2蓄電システムの放電電力を決定する、
 1.から3.のいずれか1つに記載の分散蓄電システム。
5.
 分散型電源を更に備え、
 前記通知手段は、
  前記第1負荷で必要な電力および前記第2負荷で必要な電力の和と、前記分散型電源から供給可能な電力との差分を用いて、前記第2蓄電システムの放電電力を決定する、
 1.から3.のいずれか1つに記載の分散蓄電システム。
6.
 前記第1蓄電システムは、当該第1蓄電システムの蓄電手段の充放電動作を制御する充放電動作制御手段を更に備え、
 前記充放電動作制御手段は、
  前記蓄電手段を充電する場合、前記蓄電手段のSOC(State Of Charge)が所定のSOC範囲の上限値に到達するまで放電動作を実行しないように制御し、
  前記蓄電手段を放電する場合、前記蓄電手段のSOCが、前記SOC範囲の下限値に到達するまで充電動作を実行しないように制御する、
 1.から5.のいずれか1つに記載の分散蓄電システム。
7.
 系統に接続されている配電線に対して接続されている、第1蓄電システムおよび第2蓄電システムの電力を制御する電力制御方法であって、
 前記第1蓄電システムが、
  前記第1蓄電システムによって管理される第1負荷で必要な電力および前記第2蓄電システムによって管理される第2負荷で必要な電力を用いて、前記第2蓄電システムの放電電力を決定して前記第2蓄電システムに通知する、
 ことを含む電力制御方法。
8.
 前記第1蓄電システムが、前記第1蓄電システムまたは前記第2蓄電システムのうち少なくとも一方の状態情報を取得し、当該取得された状態情報をさらに用いて第2蓄電システムの放電電力を決定する、
 ことを更に含む7.に記載の電力制御方法。
9.
 前記状態情報として、前記第1蓄電システムまたは前記第2蓄電システムに含まれる蓄電手段のSOC(State of Charge)および温度のうち少なくともいずれか一方が用いられる、
 ことを更に含む8.に記載の電力制御方法。
10.
 分散型電源が更に備えられており、
 前記第1蓄電システムが、
  前記分散型電源から供給可能な電力を用いずに前記第2蓄電システムの放電電力を決定する、
 ことを更に含む7.から9.のいずれか1つに記載の電力制御方法。
11.
 分散型電源が更に備えられており、
 前記第1蓄電システムが、
  前記第1負荷で必要な電力および前記第2負荷で必要な電力の和と、前記分散型電源から供給可能な電力との差分を用いて、前記第2蓄電システムの放電電力を決定する、
 ことを更に含む7.から9.のいずれか1つに記載の電力制御方法。
12.
 前記第1蓄電システムが、
  当該第1蓄電システムの蓄電手段の充放電動作を制御し、
  前記蓄電手段を充電する場合、前記蓄電手段のSOC(State Of Charge)が所定のSOC範囲の上限値に到達するまで放電動作を実行しないように制御し、
  前記蓄電手段を放電する場合、前記蓄電手段のSOCが、前記SOC範囲の下限値に到達するまで充電動作を実行しないように制御する、
 ことを更に含む7.から11.のいずれか1つに記載の電力制御方法。
13.
 系統に接続されている配電線に対して接続されている、第1蓄電システムおよび第2蓄電システムの電力を制御する電力制御方法を実行させるためのプログラムであって、
 前記第1蓄電システムに含まれるコンピュータを、
  前記第1蓄電システムによって管理される第1負荷で必要な電力および前記第2蓄電システムによって管理される第2負荷で必要な電力を用いて、前記第2蓄電システムの放電電力を決定して前記第2蓄電システムに通知する通知手段、
 として機能させるためのプログラム。
14.
 前記通知手段は、前記第1蓄電システムまたは前記第2蓄電システムのうち少なくとも一方の状態情報を取得し、当該取得された状態情報をさらに用いて第2蓄電システムの放電電力を決定する、
 13.に記載のプログラム。
15.
 前記状態情報として、前記第1蓄電システムまたは前記第2蓄電システムに含まれる蓄電手段のSOC(State of Charge)および温度のうち少なくともいずれか一方が用いられる、
 14.に記載のプログラム。
16.
 分散型電源が更に備えられており、
 前記通知手段は、
  前記分散型電源から供給可能な電力を用いずに前記第2蓄電システムの放電電力を決定する、
 13.から15.のいずれか1つに記載のプログラム。
17.
 分散型電源が更に備えられており、
 前記通知手段は、
  前記第1負荷で必要な電力および前記第2負荷で必要な電力の和と、前記分散型電源から供給可能な電力との差分を用いて、前記第2蓄電システムの放電電力を決定する、
 13.から15.のいずれか1つに記載のプログラム。
18.
 前記コンピュータを、
  前記第1蓄電システムの蓄電手段の充放電動作を制御する充放電動作制御手段として更に機能させ、
 前記充放電動作制御手段は、
  前記蓄電手段を充電する場合、前記蓄電手段のSOC(State Of Charge)が所定のSOC範囲の上限値に到達するまで放電動作を実行しないように制御し、
  前記蓄電手段を放電する場合、前記蓄電手段のSOCが、前記SOC範囲の下限値に到達するまで充電動作を実行しないように制御する、
 13.から17.のいずれか1つに記載のプログラム。
Hereinafter, examples of the reference form will be added.
1.
A first power storage system and a second power storage system connected to a distribution line connected to the grid;
The first power storage system is
Using the power necessary for the first load managed by the first power storage system and the power necessary for the second load managed by the second power storage system, the discharge power of the second power storage system is determined and A notification means for notifying the second power storage system;
Distributed power storage system.
2.
The notifying means acquires state information of at least one of the first power storage system or the second power storage system, and further determines the discharge power of the second power storage system using the acquired state information.
1. The distributed power storage system described in 1.
3.
As the state information, at least one of SOC (State of Charge) and temperature of power storage means included in the first power storage system or the second power storage system is used.
2. The distributed power storage system described in 1.
4).
It further includes a distributed power source,
The notification means includes
Determining discharge power of the second power storage system without using power that can be supplied from the distributed power source;
1. To 3. The distributed electrical storage system as described in any one of these.
5.
It further includes a distributed power source,
The notification means includes
Determining the discharge power of the second power storage system using the difference between the sum of the power required for the first load and the power required for the second load and the power that can be supplied from the distributed power source;
1. To 3. The distributed electrical storage system as described in any one of these.
6).
The first power storage system further comprises charge / discharge operation control means for controlling the charge / discharge operation of the power storage means of the first power storage system,
The charge / discharge operation control means includes:
When charging the power storage means, control so as not to perform the discharge operation until the SOC (State Of Charge) of the power storage means reaches an upper limit value of a predetermined SOC range,
When discharging the power storage means, control so as not to perform the charging operation until the SOC of the power storage means reaches the lower limit value of the SOC range,
1. To 5. The distributed electrical storage system as described in any one of these.
7).
A power control method for controlling power of a first power storage system and a second power storage system connected to a distribution line connected to a system,
The first power storage system is
Using the power necessary for the first load managed by the first power storage system and the power necessary for the second load managed by the second power storage system, the discharge power of the second power storage system is determined and Notify the second power storage system;
A power control method.
8).
The first power storage system acquires state information of at least one of the first power storage system or the second power storage system, and further determines the discharge power of the second power storage system using the acquired state information;
Further includes: The power control method described in 1.
9.
As the state information, at least one of SOC (State of Charge) and temperature of power storage means included in the first power storage system or the second power storage system is used.
Further includes: The power control method described in 1.
10.
A distributed power supply is further provided,
The first power storage system is
Determining discharge power of the second power storage system without using power that can be supplied from the distributed power source;
Further includes: To 9. The power control method according to any one of the above.
11.
A distributed power supply is further provided,
The first power storage system is
Determining the discharge power of the second power storage system using the difference between the sum of the power required for the first load and the power required for the second load and the power that can be supplied from the distributed power source;
Further includes: To 9. The power control method according to any one of the above.
12
The first power storage system is
Controlling the charge / discharge operation of the power storage means of the first power storage system;
When charging the power storage means, control so as not to perform the discharge operation until the SOC (State Of Charge) of the power storage means reaches an upper limit value of a predetermined SOC range,
When discharging the power storage means, control so as not to perform the charging operation until the SOC of the power storage means reaches the lower limit value of the SOC range,
Further includes: To 11. The power control method according to any one of the above.
13
A program for executing a power control method for controlling power of a first power storage system and a second power storage system connected to a distribution line connected to a system,
A computer included in the first power storage system;
Using the power necessary for the first load managed by the first power storage system and the power necessary for the second load managed by the second power storage system, the discharge power of the second power storage system is determined and Notification means for notifying the second power storage system;
Program to function as.
14
The notifying means acquires state information of at least one of the first power storage system or the second power storage system, and further determines the discharge power of the second power storage system using the acquired state information.
13 The program described in.
15.
As the state information, at least one of SOC (State of Charge) and temperature of power storage means included in the first power storage system or the second power storage system is used.
14 The program described in.
16.
A distributed power supply is further provided,
The notification means includes
Determining discharge power of the second power storage system without using power that can be supplied from the distributed power source;
13 To 15. The program as described in any one of these.
17.
A distributed power supply is further provided,
The notification means includes
Determining the discharge power of the second power storage system using the difference between the sum of the power required for the first load and the power required for the second load and the power that can be supplied from the distributed power source;
13 To 15. The program as described in any one of these.
18.
The computer,
Further functioning as charge / discharge operation control means for controlling the charge / discharge operation of the power storage means of the first power storage system,
The charge / discharge operation control means includes:
When charging the power storage means, control so as not to perform the discharge operation until the SOC (State Of Charge) of the power storage means reaches an upper limit value of a predetermined SOC range,
When discharging the power storage means, control so as not to perform the charging operation until the SOC of the power storage means reaches the lower limit value of the SOC range,
13 To 17. The program as described in any one of these.
 この出願は、2014年10月23日に出願された日本出願特願2014-216259号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-216259 filed on October 23, 2014, the entire disclosure of which is incorporated herein.

Claims (8)

  1.  系統に接続されている配電線に対して接続されている、第1蓄電システムおよび第2蓄電システムを有し、
     前記第1蓄電システムが、
      前記第1蓄電システムによって管理される第1負荷で必要な電力および前記第2蓄電システムによって管理される第2負荷で必要な電力を用いて、前記第2蓄電システムの放電電力を決定して前記第2蓄電システムに通知する通知手段を備える、
     分散蓄電システム。
    A first power storage system and a second power storage system connected to a distribution line connected to the grid;
    The first power storage system is
    Using the power necessary for the first load managed by the first power storage system and the power necessary for the second load managed by the second power storage system, the discharge power of the second power storage system is determined and A notification means for notifying the second power storage system;
    Distributed power storage system.
  2.  前記通知手段は、前記第1蓄電システムまたは前記第2蓄電システムのうち少なくとも一方の状態情報を取得し、当該取得された状態情報をさらに用いて第2蓄電システムの放電電力を決定する、
     請求項1に記載の分散蓄電システム。
    The notifying means acquires state information of at least one of the first power storage system or the second power storage system, and further determines the discharge power of the second power storage system using the acquired state information.
    The distributed power storage system according to claim 1.
  3.  前記状態情報として、前記第1蓄電システムまたは前記第2蓄電システムに含まれる蓄電手段のSOC(State of Charge)および温度のうち少なくともいずれか一方が用いられる、
     請求項2に記載の分散蓄電システム。
    As the state information, at least one of SOC (State of Charge) and temperature of power storage means included in the first power storage system or the second power storage system is used.
    The distributed power storage system according to claim 2.
  4.  分散型電源を更に備え、
     前記通知手段は、
      前記分散型電源から供給可能な電力を用いずに前記第2蓄電システムの放電電力を決定する、
     請求項1から3のいずれか1項に記載の分散蓄電システム。
    It further includes a distributed power source,
    The notification means includes
    Determining discharge power of the second power storage system without using power that can be supplied from the distributed power source;
    The distributed electrical storage system of any one of Claim 1 to 3.
  5.  分散型電源を更に備え、
     前記通知手段は、
      前記第1負荷で必要な電力および前記第2負荷で必要な電力の和と、前記分散型電源から供給可能な電力との差分を用いて、前記第2蓄電システムの放電電力を決定する、
     請求項1から3のいずれか1項に記載の分散蓄電システム。
    It further includes a distributed power source,
    The notification means includes
    Determining the discharge power of the second power storage system using the difference between the sum of the power required for the first load and the power required for the second load and the power that can be supplied from the distributed power source;
    The distributed electrical storage system of any one of Claim 1 to 3.
  6.  前記第1蓄電システムは、当該第1蓄電システムの蓄電手段の充放電動作を制御する充放電動作制御手段を更に備え、
     前記充放電動作制御手段は、
      前記蓄電手段を充電する場合、前記蓄電手段のSOC(State Of Charge)が所定のSOC範囲の上限値に到達するまで放電動作を実行しないように制御し、
      前記蓄電手段を放電する場合、前記蓄電手段のSOCが、前記SOC範囲の下限値に到達するまで充電動作を実行しないように制御する、
     請求項1から5のいずれか1項に記載の分散蓄電システム。
    The first power storage system further comprises charge / discharge operation control means for controlling the charge / discharge operation of the power storage means of the first power storage system,
    The charge / discharge operation control means includes:
    When charging the power storage means, control so as not to perform the discharge operation until the SOC (State Of Charge) of the power storage means reaches an upper limit value of a predetermined SOC range,
    When discharging the power storage means, control so as not to perform the charging operation until the SOC of the power storage means reaches the lower limit value of the SOC range,
    The distributed electrical storage system of any one of Claim 1 to 5.
  7.  系統に接続されている配電線に対して接続されている、第1蓄電システムおよび第2蓄電システムの電力を制御する電力制御方法であって、
     前記第1蓄電システムが、
      前記第1蓄電システムによって管理される第1負荷で必要な電力および前記第2蓄電システムによって管理される第2負荷で必要な電力を用いて、前記第2蓄電システムの放電電力を決定して前記第2蓄電システムに通知する、
     ことを含む電力制御方法。
    A power control method for controlling power of a first power storage system and a second power storage system connected to a distribution line connected to a system,
    The first power storage system is
    Using the power necessary for the first load managed by the first power storage system and the power necessary for the second load managed by the second power storage system, the discharge power of the second power storage system is determined and Notify the second power storage system;
    A power control method.
  8.  系統に接続されている配電線に対して接続されている、第1蓄電システムおよび第2蓄電システムの電力を制御する電力制御方法を実行させるためのプログラムであって、
     前記第1蓄電システムに含まれるコンピュータを、
      前記第1蓄電システムによって管理される第1負荷で必要な電力および前記第2蓄電システムによって管理される第2負荷で必要な電力を用いて、前記第2蓄電システムの放電電力を決定して前記第2蓄電システムに通知する通知手段、
     として機能させるためのプログラム。
    A program for executing a power control method for controlling power of a first power storage system and a second power storage system connected to a distribution line connected to a system,
    A computer included in the first power storage system;
    Using the power necessary for the first load managed by the first power storage system and the power necessary for the second load managed by the second power storage system, the discharge power of the second power storage system is determined and Notification means for notifying the second power storage system;
    Program to function as.
PCT/JP2015/079826 2014-10-23 2015-10-22 Distributed power storage system, power control method, and program WO2016063947A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016510863A JPWO2016063947A1 (en) 2014-10-23 2015-10-22 Distributed power storage system, power control method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-216259 2014-10-23
JP2014216259 2014-10-23

Publications (1)

Publication Number Publication Date
WO2016063947A1 true WO2016063947A1 (en) 2016-04-28

Family

ID=55760977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079826 WO2016063947A1 (en) 2014-10-23 2015-10-22 Distributed power storage system, power control method, and program

Country Status (2)

Country Link
JP (1) JPWO2016063947A1 (en)
WO (1) WO2016063947A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053240A (en) * 2018-09-26 2020-04-02 本田技研工業株式会社 Lithium-ion battery control device, lithium-ion battery control method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209053A (en) * 2006-01-31 2007-08-16 Hitachi Ltd Ups switching control system
WO2011107846A1 (en) * 2010-03-01 2011-09-09 パナソニック電工株式会社 Electric power supply system
JP2013031321A (en) * 2011-07-29 2013-02-07 Daiwa House Industry Co Ltd Power supply system and method for building
JP2014030334A (en) * 2012-06-29 2014-02-13 Sekisui Chem Co Ltd Power management device, power management method, and program
JP2014079076A (en) * 2012-10-10 2014-05-01 Sharp Corp Power conditioner, method of controlling the same, and dc feed system
WO2014076832A1 (en) * 2012-11-19 2014-05-22 株式会社日立製作所 Storage battery control device and storage battery control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020645A1 (en) * 2012-07-31 2014-02-06 三洋電機株式会社 Power supply system and slave power storage system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209053A (en) * 2006-01-31 2007-08-16 Hitachi Ltd Ups switching control system
WO2011107846A1 (en) * 2010-03-01 2011-09-09 パナソニック電工株式会社 Electric power supply system
JP2013031321A (en) * 2011-07-29 2013-02-07 Daiwa House Industry Co Ltd Power supply system and method for building
JP2014030334A (en) * 2012-06-29 2014-02-13 Sekisui Chem Co Ltd Power management device, power management method, and program
JP2014079076A (en) * 2012-10-10 2014-05-01 Sharp Corp Power conditioner, method of controlling the same, and dc feed system
WO2014076832A1 (en) * 2012-11-19 2014-05-22 株式会社日立製作所 Storage battery control device and storage battery control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053240A (en) * 2018-09-26 2020-04-02 本田技研工業株式会社 Lithium-ion battery control device, lithium-ion battery control method, and program
US11309720B2 (en) 2018-09-26 2022-04-19 Honda Motor Co., Ltd. Lithium ion battery control device, and lithium ion battery control method

Also Published As

Publication number Publication date
JPWO2016063947A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
EP2985857B1 (en) Storage battery management system and storage battery management method
US8946929B2 (en) Method and apparatus for effective utilization of energy storage components within a microgid
US9948119B2 (en) Control of parallel battery utilization
JP6702311B2 (en) Distributed power storage system, power control method, and program
JP6011810B2 (en) Charging power control system
JP5909672B2 (en) Control device
KR20150106912A (en) Secondary cell system having plurality of cells, and method for distributing charge/discharge electric power
WO2016017425A1 (en) Control device, electrical storage device, control assistance device, control method, control assistance method, and recording medium
US10084314B2 (en) Storage battery equipment
JP6238023B2 (en) Power control method, power control apparatus, and power control system
KR102061308B1 (en) Control power supplying apparatus and method for battery management and energy stock system using the same
JP6299860B2 (en) Distributed power storage system, power control method, and program
JP2016116428A (en) Autonomous operation system for distributed power source
JP6712802B2 (en) Power storage system, control device, and power storage device
WO2016063947A1 (en) Distributed power storage system, power control method, and program
WO2017135170A1 (en) Power storage system and control method of same
JP2017093173A (en) Power storage device control system, condition notification device, and power storage device control method
US20210050738A1 (en) Direct current power supplying system
AU2022316768A1 (en) Off-grid power supply system and control method thereof
JP6902472B2 (en) Methods and systems for allocating power requests to multiple batteries connected in parallel
JP2023030289A (en) Control device for battery unit
JP5515083B2 (en) Power distribution apparatus, power distribution program, power distribution system, and power distribution method
JP5371462B2 (en) Power supply system and power supply method thereof
WO2016063948A1 (en) Distributed power storage system, power control method, and program
WO2012043133A1 (en) Storage battery charging/discharging control device and storage battery charging/discharging control method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016510863

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852363

Country of ref document: EP

Kind code of ref document: A1