WO2016063865A1 - Film pack battery and battery module provided with same - Google Patents

Film pack battery and battery module provided with same Download PDF

Info

Publication number
WO2016063865A1
WO2016063865A1 PCT/JP2015/079548 JP2015079548W WO2016063865A1 WO 2016063865 A1 WO2016063865 A1 WO 2016063865A1 JP 2015079548 W JP2015079548 W JP 2015079548W WO 2016063865 A1 WO2016063865 A1 WO 2016063865A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
film
separator
clad
positive electrode
Prior art date
Application number
PCT/JP2015/079548
Other languages
French (fr)
Japanese (ja)
Inventor
登 吉田
志村 健一
井上 和彦
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016555227A priority Critical patent/JP6597631B2/en
Publication of WO2016063865A1 publication Critical patent/WO2016063865A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a film-clad battery and the like, and in particular, the separator is not deformed due to heat during operation of the redox shuttle agent, and the positive electrode and the negative electrode are not short-circuited, and the redox shuttle agent can efficiently consume energy.
  • the present invention relates to a film-clad battery or the like that has improved safety.
  • Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have already been put to practical use as batteries for notebook computers and mobile phones due to their advantages such as high energy density, low self-discharge, and excellent long-term reliability. Yes.
  • electronic devices have been enhanced in functionality and used in electric vehicles, and development of lithium ion secondary batteries with higher energy density has been demanded.
  • a positive electrode such as NCA (lithium nickel cobalt aluminum oxide) or LNO (lithium nickel oxide).
  • NCA lithium nickel cobalt aluminum oxide
  • LNO lithium nickel oxide
  • these positive electrodes may cause thermal runaway with oxygen release during overcharge or high temperature.
  • a technique using a redox shuttle agent has been proposed.
  • the overcharge prevention mechanism using the redox shuttle agent is roughly as follows. In other words, by adding a redox shuttle agent that reacts at a higher voltage than the normal operating voltage of the cell to the electrolyte, the redox shuttle agent consumes current when the cell voltage rises during overcharge. This is to prevent the active material from being overcharged.
  • a battery as disclosed in Patent Document 1 can be cited as an example.
  • the redox shuttle agent since the redox shuttle agent generates heat during operation, if the melting point of the separator is low, the separator may melt and the positive electrode and the negative electrode may be short-circuited. In addition, it is desirable that energy consumption by the redox shuttle agent be efficiently continued even under overcharge conditions.
  • an object of the present invention relates to a film-clad battery using a redox shuttle agent, and the separator is not deformed due to heat during operation of the redox shuttle agent, so that the positive electrode and the negative electrode are not short-circuited.
  • the object is to provide a film-clad battery or the like that can be consumed and has improved safety.
  • a battery according to an embodiment of the present invention is as follows: A battery element having a positive electrode and a negative electrode laminated via a separator; A non-aqueous electrolyte containing a lithium salt; A film exterior body for housing them, a: the non-aqueous electrolyte includes a redox shuttle agent that consumes excess energy when overcharged; b: The separator is (B1) Its melting point is 180 ° C. or higher, (B2) Gurley value is 100 [sec / 100cc] or less, Film outer battery.
  • a “film-clad battery” refers to a battery in which a battery element is accommodated in a film-clad body together with an electrolytic solution, and generally has a flat shape as a whole.
  • a battery for an electric vehicle is required to have a large capacity, a low internal resistance, a high heat dissipation, and the like, and a film-covered battery is advantageous in these respects.
  • One film-clad battery may be referred to as a “battery cell” or simply a “cell”.
  • -“Film exterior” refers to an exterior that is made of a flexible film and contains battery elements, and seals battery elements by placing two films facing each other and welding them together. Alternatively, the battery element may be sealed by folding back one film and welding the opposed surfaces.
  • the range “a to b” means the range from a to b.
  • the present invention relates to a film-clad battery or the like using a redox shuttle agent, so that the separator is not deformed due to heat during operation of the redox shuttle agent and the positive electrode and the negative electrode are short-circuited.
  • a film-clad battery or the like that can be consumed and has improved safety can be provided.
  • FIG. 1 It is a perspective view which shows the basic structure of the film-clad battery of one form of this invention. It is sectional drawing which shows a part of cross section of the battery of FIG. It is a schematic diagram for demonstrating the internal structure of a film-clad battery (plan view). It is sectional drawing which shows the internal structure of a film-clad battery typically. It is a schematic diagram of the battery module which accommodated the film exterior battery in the module container. It is a figure which shows typically the mechanism which applies a pressure with respect to a film-clad battery.
  • the film-clad battery 50 includes a battery element 20, a film-clad body 10 that accommodates the battery element 20 together with a non-aqueous electrolyte, and a battery element 20 that is connected to the outside of the film-clad body 10.
  • a positive electrode tab 21 and a negative electrode tab 25 are provided.
  • the battery element 20 is formed by alternately laminating a plurality of positive electrodes and a plurality of negative electrodes made of metal foils each coated with an electrode material on both sides of a separator.
  • the overall external shape of the battery element 20 is not particularly limited, in this example, it is a flat and substantially rectangular parallelepiped. Details of each part constituting the battery element 20 will be described later.
  • the material of the film outer package any material may be used as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property.
  • a laminate film of aluminum and resin as the outer package.
  • An exterior body may be comprised with a single member and may be comprised combining several members.
  • the film outer package 10 may be composed of a first film 11 and a second film 12 disposed to face the first film 11.
  • the outline shape of the film outer package 10 is not particularly limited, but may be a quadrangle, which is a rectangle in this example. Both the films 11 and 12 are heat-welded to each other around the battery element 20 and joined. Thereby, the peripheral part of the film exterior body 10 becomes the heat welding part 15. A positive electrode tab 21 and a negative electrode tab 25 are drawn from one side of the short side of the heat-welded portion 15. Various materials can be adopted as the electrode tabs 21 and 25. As an example, the positive electrode tab 21 is aluminum or an aluminum alloy, and the negative electrode tab 25 is copper or nickel. When the material of the negative electrode tab 25 is copper, the surface may be nickel-plated.
  • the tab may be pulled out from one side of the long side.
  • the positive electrode tab 21 and the negative electrode tab 25 may be pulled out from different sides. As this example, the structure by which the positive electrode tab 21 and the negative electrode tab 25 are pulled out in the opposite direction from the opposing side is mentioned.
  • each of the positive electrode and the negative electrode may have an extension part (see reference numerals 31 a and 35 a) partially protruding from a part of the outer periphery, and the positive electrode extension part and the negative electrode extension part Are arranged in staggered positions so that they do not interfere with each other when the positive and negative electrodes are stacked.
  • the extension portions of the positive electrodes are stacked and connected to each other to form a current collector 31a, and the positive electrode tab 21 is connected to the current collector 31a.
  • the extension portions are stacked and connected to each other to form the current collecting portion 35a, and the negative electrode tab 25 is connected to the current collecting portion 35a.
  • the connection between the electrode tab and the current collector may be performed by welding, for example.
  • FIG. 4 is a cross-sectional view schematically showing the internal structure of the film-clad battery, in which a state in which the positive electrode 31 and the negative electrode 35 are stacked via the separator 38 is depicted.
  • a plurality of positive electrodes 31 and negative electrodes 35 are alternately stacked via separators 38.
  • the separator in this embodiment a separator having a melting point of 180 ° C. or higher and high air permeability is used.
  • the Gurley value (sec / 100 cc) is preferably 100 or less, more preferably 50 or less, and even more preferably 20 or less with respect to the air permeability.
  • Examples of materials having a melting point of 180 ° C. or higher include polyethylene terephthalate (PET), cellulose, aramid, polyimide, polyphenylene sulfide (PPS) and the like as polymer materials. Moreover, glass fiber is mentioned with an inorganic material.
  • PET polyethylene terephthalate
  • cellulose cellulose
  • aramid polyimide
  • PPS polyphenylene sulfide
  • glass fiber is mentioned with an inorganic material.
  • a high air permeability separator made of a porous film, a woven fabric, or a nonwoven fabric made of these materials can be suitably used in the present invention.
  • a separator made of woven fabric or non-woven fabric is particularly preferable because of high air permeability.
  • a glass fiber, an aramid fiber, a polyimide fiber, etc. are mentioned.
  • the separator may have a coat layer made of a material having higher heat resistance than the base material.
  • a material for the coating layer a high heat resistant resin, an oxide such as aluminum, silicon, titanium, or a nitride can be used.
  • the thickness of the separator is preferably in the range of 12 ⁇ m to 40 ⁇ m, for example.
  • strength of a separator falls and handleability at the time of manufacture etc. will fall.
  • the thickness exceeds 40 ⁇ m, the energy density of the battery is lowered.
  • the redox shuttle agent is used, and the energy consumption effect by the shuttle agent is lowered. there is a possibility. This is due to the following reason. That is, the redox shuttle agent performs an oxidation-reduction reaction while repeating reciprocating movement between the positive electrode (reference numeral 31 in FIG. 4) and the negative electrode (reference numeral 35 in FIG.
  • the thickness of the separator is preferably 30 ⁇ m or less, and preferably 20 ⁇ m or less.
  • the redox shuttle agent moves and reacts in the separator between the electrodes.
  • the thickness of the separator is not too thick and the air permeability of the separator is sufficiently high. Therefore, it is preferable that the separator has the above thickness and air permeability in that efficient energy consumption by the shuttle agent can be realized.
  • a parameter of “thickness” ⁇ “Gurley value” can be used as an index.
  • this value is preferably in the range of 10 to 1500 (sec / 100 cc ⁇ ⁇ m), and more preferably in the range of 10 to 500 (sec / 100 cc ⁇ ⁇ m).
  • the negative electrode has a negative electrode current collector formed of a metal foil, and a negative electrode active material coated on both surfaces of the negative electrode current collector.
  • the negative electrode active material is bound so as to cover the negative electrode current collector with a negative electrode binder.
  • the negative electrode current collector is formed to have an extension connected to the negative electrode terminal, and the negative electrode active material is not applied to the extension.
  • the negative electrode active material in the present embodiment is not particularly limited.
  • a carbon material that can occlude and release lithium ions a metal that can be alloyed with lithium, a metal oxide that can occlude and release lithium ions, and the like. Is mentioned.
  • Examples of the carbon material include carbon, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof.
  • carbon with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • a negative electrode containing a metal or metal oxide is preferable in that it can improve the energy density and increase the capacity per unit weight or unit volume of the battery.
  • the metal examples include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and alloys of two or more thereof. Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may contain one or more non-metallic elements.
  • the metal oxide examples include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof.
  • tin oxide or silicon oxide is included as a negative electrode active material, and it is more preferable that silicon oxide is included. This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds.
  • one or more elements selected from nitrogen, boron and sulfur may be added to the metal oxide, for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide can be improved.
  • the negative electrode active material can be used by mixing a plurality of materials without using a single material.
  • the same kind of materials such as graphite and amorphous carbon may be mixed, or different kinds of materials such as graphite and silicon may be mixed.
  • the binder for the negative electrode is not particularly limited.
  • polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer Rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, polyacrylic acid, or the like can be used.
  • the amount of the binder for the negative electrode used is 0.5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. Is preferred.
  • the negative electrode current collector aluminum, nickel, stainless steel, chromium, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • the shape include foil, flat plate, and mesh.
  • the positive electrode has a positive electrode current collector formed of a metal foil, and a positive electrode active material coated on both surfaces of the positive electrode current collector.
  • the positive electrode active material is bound so as to cover the positive electrode current collector with a positive electrode binder.
  • the positive electrode current collector is formed to have an extension connected to the positive electrode terminal, and the positive electrode active material is not applied to the extension.
  • the positive electrode active material is not particularly limited as long as it is a material that can occlude and release lithium, and can be selected from several viewpoints. From the viewpoint of increasing the energy density, it is preferable to include a high-capacity compound.
  • the high-capacity compound include nickel-lithium oxide (LiNiO 2 ) or lithium-nickel composite oxide obtained by substituting a part of nickel in nickel-lithium oxide with another metal element.
  • the layered structure represented by the following formula (A) Lithium nickel composite oxide is preferred.
  • the Ni content is high, that is, in the formula (A), x is preferably less than 0.5, and more preferably 0.4 or less.
  • LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
  • the Ni content does not exceed 0.5, that is, in the formula (A), x is 0.5 or more. It is also preferred that the number of specific transition metals does not exceed half.
  • LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
  • two or more compounds represented by the formula (A) may be used as a mixture.
  • NCM532 or NCM523 and NCM433 range from 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1).
  • a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
  • the positive electrode active material for example, LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) Lithium manganate having a layered structure or spinel structure such as LiCoO 2 or a part of these transition metals replaced with another metal; Li in these lithium transition metal oxides more than the stoichiometric composition And those having an olivine structure such as LiFePO 4 .
  • any of the positive electrode active materials described above can be used alone or in combination of two or more.
  • radical materials or the like can be used as the positive electrode active material.
  • the positive electrode binder the same as the negative electrode binder can be used.
  • the amount of the positive electrode binder to be used is preferably 2 to 15 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
  • the positive electrode current collector for example, aluminum, nickel, silver, or an alloy thereof can be used.
  • the shape of the positive electrode current collector include a foil, a flat plate, and a mesh.
  • an aluminum foil can be suitably used.
  • the electrolytic solution in the present embodiment is a non-aqueous electrolytic solution including a lithium salt (supporting salt) and a non-aqueous solvent that dissolves the supporting salt, and the ratio of the low boiling point solvent is set to be relatively low. It is preferable. This is because when gas is generated between the electrodes due to vaporization of the low boiling point solvent, the redox shuttle agent cannot move at that location, and energy consumption by the shuttle agent is not performed.
  • the electrolyte solution preferably contains 20% by volume or more of a solvent having a boiling point of 160 ° C. or higher, and more preferably 30% or more when the volume of all the solvents is 100%. Preferably, it contains 50% or more.
  • non-aqueous solvent examples include carbonic acid esters (chain or cyclic carbonates), carboxylic acid esters (chain or cyclic carboxylic acid esters), ethers (chain or cyclic ethers), or fluorine-substituted compounds thereof, phosphoric acid esters, and the like.
  • Protic organic solvents can be used.
  • carbonate solvents examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. (EMC), chain carbonates such as dipropyl carbonate (DPC); and propylene carbonate derivatives.
  • PC propylene carbonate
  • EC ethylene carbonate
  • BC butylene carbonate
  • VVC vinylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • propylene carbonate derivatives examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate
  • carboxylic acid ester solvent examples include aliphatic carboxylic acid esters such as methyl formate, methyl acetate, and ethyl propionate; and lactones such as ⁇ -butyrolactone.
  • phosphate ester examples include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, trioctyl phosphate, triphenyl phosphate, and the like.
  • solvents that can be contained in the non-aqueous electrolyte include, for example, ethylene sulfite (ES), propane sultone (PS), butane sultone (BS), dioxathilane-2,2-dioxide (DD), and sulfolene.
  • ES ethylene sulfite
  • PS propane sultone
  • BS butane sultone
  • DD dioxathilane-2,2-dioxide
  • sulfolene sulfolene
  • the fluorinated carbonate is represented by the formula (1).
  • R 1 and R 2 each independently represents an alkyl group or a fluorine-substituted alkyl group, and at least one of R 1 and R 2 Is a fluorine-substituted alkyl group.
  • R 1 and R 2 there are bis (2,2,2-trifluoroethyl) carbonate in which a part of hydrogen in DEC is substituted with fluorine, and fluoroethylene carbonate (FEC) in which a part of hydrogen in EC is substituted with fluorine.
  • fluorinated carboxylic acid ester examples include, for example, ethyl pentafluoropropionate, ethyl 3,3,3-trifluoropropionate, methyl 2,2,3,3-tetrafluoropropionate, acetic acid 2, 2-difluoroethyl, methyl heptafluoroisobutyrate, methyl 2,3,3,3-tetrafluoropropionate, methyl pentafluoropropionate, methyl 2- (trifluoromethyl) -3,3,3-trifluoropropionate , Ethyl heptafluorobutyrate, methyl 3,3,3-trifluoropropionate, 2,2,2-trifluoroethyl acetate, isopropyl trifluoroacetate, tert-butyl trifluoroacetate, 4,4,4-trifluorobutyric acid Ethyl, methyl 4,4,4-trifluorobutyrate, 2,2-
  • the chain fluorinated ether compound is represented by the formula (2).
  • R a and R b each independently represents an alkyl group or a fluorine-substituted alkyl group, and at least one of Ra and Rb Is a fluorine-substituted alkyl group.
  • LiPF 6 LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN ( CF 3 SO 2) 2 normal lithium salt which can be used in lithium ion batteries or the like can be used.
  • the supporting salt can be used alone or in combination of two or more.
  • Redox shuttle agent a compound that can be uniformly dissolved or dispersed in the non-aqueous electrolyte and has an oxidation potential higher than the maximum (SOC 100%) potential normally used for the positive electrode active material is used. it can.
  • the redox shuttle agent is preferably selected as appropriate according to the maximum potential used by the positive electrode active material.
  • the oxidation potential of the redox shuttle agent is preferably 0.1 to 2 V higher than the maximum potential of the positive electrode, and more preferably 0.2 to 1 V higher.
  • the reaction of the redox shuttle agent can be suppressed when the secondary battery is operated at a normal voltage, and the redox shuttle agent can be quickly reduced in the event of an abnormality such as overcharge.
  • the shuttle agent reacts to stop the operation of the secondary battery.
  • redox shuttle agents examples include aromatic compounds, heterocyclic complexes, metallocene complexes such as ferrocene, Ce compounds, and radical compounds. Moreover, a redox shuttle agent can also be used individually by 1 type, or can also be used in combination of 2 or more type.
  • the compound examples include 3,4-difluoroanisole, 2,4-difluoroanisole, 1-methoxy-2,3,4,5,6-pentafluorobenzene, 2,3,5,6-tetra Fluoroanisole, 4- (trifluoromethoxy) anisole, 3,4-dimethoxybenzonitrile, 1,2,3,4-tetrachloro-5,6-dimethoxybenzene, 1,2,4,5-tetrachloro-3 , 6-Dimethoxybenzene 4-fluoro-1,2-dimethoxybenzene, 4-bromo-1,2-dimethoxybenzene, 2-bromo-1,4-dimethylbenzene, 1-bromo-3-fluoro-4-methoxybenzene 2-bromo-1,3-difluoro-5-methoxybenzene, 4,5-difluoro-1,2-dimethoxybenzene, 2,5-diflu B-1,4-dimethoxybenzene, 1,2,
  • aromatic compounds having one or more alkoxy groups can be preferably used. Since these compounds are excellent in the chemical stability of the oxidant produced by the oxidation reaction, it is possible to suppress a decrease in battery performance due to side reactions or the like. Moreover, the compound which has a halogen atom can be used more preferably. Such a compound can be applied to a positive electrode having a high oxidation potential and a higher redox potential, that is, a secondary battery having a higher energy density.
  • the battery capacity of the film-clad battery is preferably 4 Ah or more, more preferably 6 Ah or more, and further preferably 8 Ah or more.
  • a large battery capacity means a large charging current at the time of charging. When charging is performed with a large current, the battery tends to be hot. Therefore, the technical idea of the present invention can be particularly suitably applied to such a large film-clad battery.
  • the heat dissipation of the film-clad battery is too high, the battery will not rise to a predetermined temperature (the trigger temperature at which the safety mechanism operates) unless the charging voltage is increased to some extent. From the viewpoint of safety, it is preferable to raise the battery to a predetermined temperature and operate the safety mechanism while the voltage is relatively low (in other words, in a relatively safe state). Based on this concept, it is also preferable to design the heat dissipation of the film-clad battery to be relatively low. Therefore, the surface area per capacity of the battery may be set to 5000 mm 2 / Ah or less, preferably 4000 mm 2 / Ah or less, more preferably 2500 mm 2 / Ah or less.
  • said "surface area” means the surface area (a seal part of a peripheral part is included) of a film exterior body.
  • the end face of the film also has an area, but since the proportion of the entire surface area is extremely small, the area of the end face may not be included in the “surface area”.
  • FIG. 5 shows an example of a battery module using the film-exterior battery of the present embodiment.
  • the battery module 1 includes one or a plurality of film-clad batteries 50 and a module container 71 that accommodates them.
  • the module container 71 may be configured as a hard case, and the material may be any of resin, metal, a combination thereof, and the like.
  • the module container 71 may be made of a nonflammable material.
  • the module container 71 may be configured as an incombustible container such as an aluminum alloy.
  • the arrangement of the film-clad battery 50 in the container is not particularly limited, and various arrangements can be made. For example, it may be arranged in a single layer state as shown in FIG. Or you may arrange
  • the battery module 1 includes pressing members 61 and 62 (see FIG. 5A) for pressing the battery in the thickness direction in order to prevent the film-clad battery 50 from expanding. It may be a thing.
  • the holding members 61 and 62 may have any size and shape as long as they have a pressing surface for pressing at least a part of the outer surface of the film-clad battery 50.
  • the pressing surface may be such that it entirely contacts the outer surface of the film-clad battery (precisely, the flat surface of the raised portion corresponding to the shape of the battery element).
  • the pressing surface is formed as a flat surface by way of example.
  • the pressing members 61 and 62 may be plate members.
  • the pressing surface may be formed in an uneven shape.
  • the pressing members 61 and 62 do not necessarily have to be pressed against the film-clad battery 50 (biased by a biasing member such as a spring). In the initial state, the pressing members 61 and 62 are simply in contact with or close to the film-clad battery 50, and when the film-clad battery 50 begins to expand, they are in close contact to prevent further deformation of the battery. If it is. Even if it is such a structure, it is because the expansion
  • one pressing member 62 may be disposed between the film-clad batteries 50 and 50, and the pressing members 61 and 63 may be disposed on both sides thereof.
  • the above description regarding the pressing members 61 and 62 can be used as it is.
  • the configuration in which the pressing members are arranged on both sides of the film-clad battery 50 has been described, but one or both are omitted and the outer surface of the film-clad battery 50 is pressed by the inner surface of the module container 71. It is also possible.
  • the outer surface of the film exterior battery 50 is pressed by the pressing members 61 and 62 when the expansion of the film exterior body 10 starts, thereby The deformation of the electrode laminate (battery element 20 in FIG. 2) inside the battery is prevented.
  • the film-clad body 10 and the battery element 20 can expand to some extent freely.
  • the distance between the electrodes is increased by the gas generated between the electrodes.
  • An increase in the distance between the electrodes means that the energy consumption function of the redox shuttle agent in that portion is reduced.
  • the pressing member may be a member whose pressing surface abuts against the entire outer surface (maximum area surface) of the film exterior body, but as another aspect, for example, 50% or more of the same surface, preferably It may be one that suppresses an area of 75% or more.
  • FIG. 5 as an example, it is illustrated that both sides of the vertically mounted film-covered battery 50 are held by pressing members 61, 62, etc., but the film-covered battery 50 can be pressed from the outside to prevent its expansion. As long as it is a thing, various other mechanisms are employable.
  • FIG. 6 schematically shows a mechanism for applying pressure to the film-clad battery 50.
  • the film-clad battery 50 is disposed on the first member 65, and the second member 69 that holds the battery is disposed on the film-clad battery 50.
  • the film-clad battery 50 is placed horizontally, but here, it is not an essential difference whether the battery is placed horizontally or vertically. It is a more important point whether to do or to energize.
  • the member corresponding to the first member 65 for example, a module case, another laminated film battery, or a base member constituting a part of a device on which the battery is mounted may be used.
  • stacked, the pressing member which presses a film-clad battery, etc. may be sufficient, for example, it is a film using together biasing means, such as a spring. It is also preferable that the outer battery is pressed.
  • stacking a film-clad battery since a lower film-clad battery will be pressed by the dead weight of a battery, it may not be necessary to use an urging means together.
  • the battery since the redox shuttle agent is included in the electrolyte, the battery is in a charged state that causes overcharge. Even in such a case, excessive current is consumed by the action of the redox shuttle agent, so that the positive electrode active material is not overcharged.
  • the separator Even if the electrolyte becomes hot due to the operation of the redox shuttle agent, the separator has a melting point of 180 ° C. or higher, so that the separator is not deformed or melted. Safety is ensured without a short circuit.
  • the separator has a Gurley value of air permeability of 100 (sec / 100 cc) or less, the redox shuttle agent operates well in the separator and can consume excessive current well. .
  • Example 1 ⁇ Negative electrode> Natural graphite was used as the negative electrode active material.
  • SBR the rubber particle dispersion (solid content 40 mass%) was used, and it measured and used so that the solid content of the binder might become the said mass ratio.
  • the negative electrode slurry was prepared. After applying the negative electrode slurry to a copper foil having a thickness of 10 ⁇ m, it was dried by performing a heat treatment at 80 ° C. for 8 hours in a nitrogen atmosphere. The obtained negative electrode was stored in an environment with a dew point of ⁇ 10 ° C. for 3 hours to obtain a negative electrode.
  • LiNi 0.8 Co 0.15 Al 0.05 O 2 was used as the positive electrode active material.
  • This positive electrode active material, carbon black as a conductive auxiliary material, and polyvinylidene fluoride as a positive electrode binder were weighed at a mass ratio of 90: 5: 5. These were mixed with N-methylpyrrolidone to prepare a positive electrode slurry. The positive electrode slurry was applied to an aluminum foil having a thickness of 20 ⁇ m, dried, and further pressed to produce a positive electrode.
  • ⁇ Separator> Aramid having a nonwoven fabric structure with a thickness of 25 ⁇ m, a porosity of 70%, and a Gurley value of 1.4 seconds / 100 cc was used.
  • the thermal decomposition temperature of aramid is 400 ° C. or higher.
  • Electrode laminate The obtained positive electrode and negative electrode were laminated via a separator. The ends of the positive electrode current collector not covered with the positive electrode active material and the negative electrode current collector not covered with the negative electrode active material were welded. Furthermore, the positive electrode terminal made from aluminum and the negative electrode terminal made from nickel were each welded to the welding location, and the electrode laminated body which has a planar laminated structure was obtained. The number of layers was adjusted so that the initial charge capacity of the cell was 10 Ah.
  • LiPF 6 as a supporting salt was added so that the concentration in the electrolyte was 1M.
  • 1,2-difluoro-4,5-dimethoxybenzene was added as a redox shuttle agent so that the concentration in the electrolytic solution was 0.1 M, to prepare an electrolytic solution.
  • the electrode laminate was accommodated in an aluminum laminate film as an exterior body, and an electrolyte solution was injected into the exterior body. Thereafter, the outer package was sealed while reducing the pressure to 0.1 atm, and a lithium ion secondary battery was produced.
  • the surface area of the secondary battery was 36000 mm 2 .
  • Example 2 Aramid having a microporous structure having a thickness of 15 ⁇ m, a porosity of 65%, and a Gurley value of 90 seconds / 100 cc was used as a separator. Other than that, a secondary battery was prepared and evaluated in the same procedure as in Example 1. The results are shown in Table 1.
  • Example 3 As the separator, cellulose having a nonwoven fabric structure with a thickness of 25 ⁇ m, a porosity of 70%, and a Gurley value of 2.2 seconds / 100 cc was used. Other than that, a secondary battery was prepared and evaluated in the same procedure as in Example 1. The thermal decomposition temperature of cellulose is about 300 ° C. The results are shown in Table 1.
  • Example 4 A microporous polyimide having a thickness of 20 ⁇ m, a porosity of 80%, and a Gurley value of 60 seconds / 100 cc was used as a separator. Other than that, a secondary battery was prepared and evaluated in the same procedure as in Example 1. The thermal decomposition temperature of polyimide is about 500 ° C. or higher. The results are shown in Table 1.
  • Comparative Example 1 As the separator, polypropylene having a nonwoven fabric structure having a thickness of 25 ⁇ m, a porosity of 70%, and a Gurley value of 1.7 seconds / 100 cc was used. Other than that, a secondary battery was prepared and evaluated in the same procedure as in Example 1. The melting point of polypropylene is 160 ° C. The results are shown in Table 1.
  • Example 2 A microporous polypropylene having a thickness of 25 ⁇ m, a porosity of 55%, and a Gurley value of 200 seconds / 100 cc was used as a separator. Other than that, a secondary battery was prepared and evaluated in the same procedure as in Example 1. The results are shown in Table 1.
  • a secondary battery (Examples 1 and 2) including a separator made of aramid having a pyrolysis temperature exceeding 400 ° C. and having a Gurley value of 100 seconds / 100 cc or less, or cellulose having a pyrolysis temperature of about 300 ° C.
  • a secondary battery comprising a separator made of (Example 3) and a secondary battery comprising a polyimide separator having a thermal decomposition temperature of 500 ° C. or higher, the ultimate temperature is only about 130 ° C., and smoke is seen from the laminate outer package. I could't. This is presumably because the short circuit between the positive and negative electrodes was suppressed because the redox shuttle agent normally consumed current and the separator did not melt or shrink.
  • a battery module comprising the film-clad battery according to any one of 1 to 6 above and a module container that accommodates the battery (also referred to as “assembled battery”).
  • a pressing member (61, 62, etc.) that is disposed in contact with or close to the film-clad battery and that prevents the battery element from being deformed by pressing the battery from the outside when gas is generated inside the battery.
  • the secondary battery according to one embodiment of the present invention can be used in, for example, all industrial fields that require a power source.
  • it can be used as a power source for mobile devices such as mobile phones and laptop computers; it can be used as a power source for electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles; transport for transportation such as trains, satellites, and submarines
  • electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles
  • transport for transportation such as trains, satellites, and submarines
  • It can be used as a power source for mediums; it can be used as a power storage system for storing electric power.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

This film pack secondary battery is provided with: a battery element which comprises a positive electrode and a negative electrode that are laminated with a separator being interposed therebetween; a nonaqueous electrolyte which contains a lithium salt; and a film package which contains the battery element and the nonaqueous electrolyte. a: The nonaqueous electrolyte contains a redox shuttle agent that consumes excess energy at the time of overcharging. b: The separator has (b1) a melting point of 180°C or more and (b2) a Gurley value of 100 [sec/100 cc] or less.

Description

フィルム外装電池およびそれを備えた電池モジュールFilm exterior battery and battery module including the same
 本発明は、フィルム外装電池等に関し、特に、レドックスシャトル剤の作動時の熱によりセパレータが変形して正極および負極が短絡することがなく、しかもレドックスシャトル剤による効率的なエネルギー消費を行うことが可能な、安全性をより向上させたフィルム外装電池等に関する。 The present invention relates to a film-clad battery and the like, and in particular, the separator is not deformed due to heat during operation of the redox shuttle agent, and the positive electrode and the negative electrode are not short-circuited, and the redox shuttle agent can efficiently consume energy. The present invention relates to a film-clad battery or the like that has improved safety.
 リチウムイオン二次電池などの非水電解質二次電池は、エネルギー密度が高い、自己放電が小さい、長期信頼性に優れる等の利点により、ノート型パソコンや携帯電話などの電池としてすでに実用化されている。しかし、近年では電子機器の高機能化や電気自動車への利用が進み、よりエネルギー密度の高いリチウムイオン二次電池の開発が求められている。 Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have already been put to practical use as batteries for notebook computers and mobile phones due to their advantages such as high energy density, low self-discharge, and excellent long-term reliability. Yes. However, in recent years, electronic devices have been enhanced in functionality and used in electric vehicles, and development of lithium ion secondary batteries with higher energy density has been demanded.
 エネルギー密度が高いセルを実現するためには、例えばNCA(リチウムニッケルコバルトアルミニウム酸化物)やLNO(リチウムニッケル酸化物)などの正極を用いることが有効である。しかしながら、これらの正極は過充電や高温時等に酸素放出を伴い熱暴走を起こす可能性がある。過充電時の安全性を担保する技術の一つとして、従来、レドックスシャトル剤を用いるものが提案されている。 In order to realize a cell having a high energy density, it is effective to use a positive electrode such as NCA (lithium nickel cobalt aluminum oxide) or LNO (lithium nickel oxide). However, these positive electrodes may cause thermal runaway with oxygen release during overcharge or high temperature. As one of techniques for ensuring safety during overcharge, a technique using a redox shuttle agent has been proposed.
 レドックスシャトル剤を利用した過充電防止のメカニズムは概略次のとおりである。すなわち、セルの通常使用電圧より高電圧で反応するレドックスシャトル剤を電解液に添加しておくことで、過充電時にセル電圧が上昇した際、レドックスシャトル剤が電流を消費することとなり、これにより活物質が過充電状態になることが防止されるというものである。こうしたレドックスシャトル剤による過充電防止機構を利用した二次電池としては、一例で特許文献1のようなものが挙げられる。 The overcharge prevention mechanism using the redox shuttle agent is roughly as follows. In other words, by adding a redox shuttle agent that reacts at a higher voltage than the normal operating voltage of the cell to the electrolyte, the redox shuttle agent consumes current when the cell voltage rises during overcharge. This is to prevent the active material from being overcharged. As a secondary battery using such an overcharge prevention mechanism using a redox shuttle agent, a battery as disclosed in Patent Document 1 can be cited as an example.
特開2007-287445号JP 2007-287445 A
 しかしながら、レドックスシャトル剤は、動作時に熱を発生することから、セパレータの融点が低い場合、セパレータが溶けて正極および負極が短絡する可能性がある。また、過充電の状況下であっても、レドックスシャトル剤によるエネルギー消費が効率的に継続されるようになっていることが望ましい。 However, since the redox shuttle agent generates heat during operation, if the melting point of the separator is low, the separator may melt and the positive electrode and the negative electrode may be short-circuited. In addition, it is desirable that energy consumption by the redox shuttle agent be efficiently continued even under overcharge conditions.
 そこで本発明の目的は、レドックスシャトル剤を用いるフィルム外装電池に関し、レドックスシャトル剤の作動時の熱によりセパレータが変形して正極および負極が短絡することがなく、しかもレドックスシャトル剤による効率的なエネルギー消費を行うことが可能な、安全性をより向上させたフィルム外装電池等を提供することにある。 Accordingly, an object of the present invention relates to a film-clad battery using a redox shuttle agent, and the separator is not deformed due to heat during operation of the redox shuttle agent, so that the positive electrode and the negative electrode are not short-circuited. The object is to provide a film-clad battery or the like that can be consumed and has improved safety.
 上記目的を達成するための本発明の一形態に係る電池は、次のとおりである:
 セパレータを介して積層された正極および負極を有する電池要素と、
 リチウム塩を含有する非水電解質と、
 それらを収容するフィルム外装体と、を備え、
a:前記非水電解質が、過充電時に過剰なエネルギーを消費するレドックスシャトル剤を含み、
b:前記セパレータは、
(b1)その融点が180℃以上であり、
(b2)ガーレー値が100〔sec/100cc〕以下である、
 フィルム外装電池。
In order to achieve the above object, a battery according to an embodiment of the present invention is as follows:
A battery element having a positive electrode and a negative electrode laminated via a separator;
A non-aqueous electrolyte containing a lithium salt;
A film exterior body for housing them,
a: the non-aqueous electrolyte includes a redox shuttle agent that consumes excess energy when overcharged;
b: The separator is
(B1) Its melting point is 180 ° C. or higher,
(B2) Gurley value is 100 [sec / 100cc] or less,
Film outer battery.
(用語の説明)
・「フィルム外装電池」とは、電池要素を電解液とともにフィルム外装体に収容した電池のことをいい、一般的には、全体として偏平な形状をしている。例えば電動車両用の電池では、容量が大きいこと、内部抵抗が低いこと、放熱性が高いこと等が要求されるところ、フィルム外装電池はこれらの点で有利である。1つのフィルム外装電池を「電池セル」または単に「セル」を称することもある。
・「フィルム外装体」とは、可撓性を有するフィルムで構成され電池要素を収容する外装体のことをいい、2枚のフィルムを対向配置して互いに溶着することにより電池要素を密閉するものであってもよいし、1枚のフィルムを折り返して対向した面どうしを溶着することにより電池要素を密閉するものであってもよい。
・数値範囲に関して例えば「a~b」の範囲などと言った場合には、a以上b以下の範囲のことを意味する。
(Explanation of terms)
A “film-clad battery” refers to a battery in which a battery element is accommodated in a film-clad body together with an electrolytic solution, and generally has a flat shape as a whole. For example, a battery for an electric vehicle is required to have a large capacity, a low internal resistance, a high heat dissipation, and the like, and a film-covered battery is advantageous in these respects. One film-clad battery may be referred to as a “battery cell” or simply a “cell”.
-“Film exterior” refers to an exterior that is made of a flexible film and contains battery elements, and seals battery elements by placing two films facing each other and welding them together. Alternatively, the battery element may be sealed by folding back one film and welding the opposed surfaces.
-Regarding the numerical range, for example, the range “a to b” means the range from a to b.
 本発明によれば、レドックスシャトル剤を用いるフィルム外装電池等に関し、レドックスシャトル剤の作動時の熱によりセパレータが変形して正極および負極が短絡することがなく、しかもレドックスシャトル剤による効率的なエネルギー消費を行うことが可能な、安全性をより向上させたフィルム外装電池等を提供できる。 The present invention relates to a film-clad battery or the like using a redox shuttle agent, so that the separator is not deformed due to heat during operation of the redox shuttle agent and the positive electrode and the negative electrode are short-circuited. A film-clad battery or the like that can be consumed and has improved safety can be provided.
本発明の一形態のフィルム外装電池の基本的構造を示す斜視図である。It is a perspective view which shows the basic structure of the film-clad battery of one form of this invention. 図1の電池の断面の一部を示す断面図である。It is sectional drawing which shows a part of cross section of the battery of FIG. フィルム外装電池の内部構造を説明するための模式図である(平面視)。It is a schematic diagram for demonstrating the internal structure of a film-clad battery (plan view). フィルム外装電池の内部構造を模式的に示す断面図である。It is sectional drawing which shows the internal structure of a film-clad battery typically. フィルム外装電池をモジュール容器内に収容した電池モジュールの模式図である。It is a schematic diagram of the battery module which accommodated the film exterior battery in the module container. フィルム外装電池に対して圧力を加える機構を模式的に示す図である。It is a figure which shows typically the mechanism which applies a pressure with respect to a film-clad battery.
1.フィルム外装電池の基本的な構成
 本発明の一形態に係るフィルム外装電池50の基本的構成について図1、図2を参照して説明する。なお、本発明のフィルム外装電池50としては、当然ながら他の構造(例えばガス放出機構等)を備えていてもよいが、図1および図2では電池の基本的構成のみを示す。
1. Basic structure of film-clad battery A basic structure of a film-clad battery 50 according to an embodiment of the present invention will be described with reference to FIGS. As a matter of course, the film-clad battery 50 of the present invention may have other structures (for example, a gas release mechanism), but only the basic configuration of the battery is shown in FIGS.
 フィルム外装電池50は、図1、図2に示すように、電池要素20と、それを非水電解質とともに収容するフィルム外装体10と、電池要素20に接続されるとともにフィルム外装体10の外部に引き出された正極タブ21および負極タブ25(以下、これらを単に「電極タブ」ともいう)とを備えている。 As shown in FIGS. 1 and 2, the film-clad battery 50 includes a battery element 20, a film-clad body 10 that accommodates the battery element 20 together with a non-aqueous electrolyte, and a battery element 20 that is connected to the outside of the film-clad body 10. A positive electrode tab 21 and a negative electrode tab 25 (hereinafter simply referred to as “electrode tabs”) are provided.
 電池要素20は、それぞれ電極材料が両面に塗布された金属箔からなる複数の正極と複数の負極とがセパレータを間に挟んで交互に積層されたものである。電池要素20の全体的な外形は、特に限定されるものではないが、この例では偏平な略直方体である。電池要素20を構成する各部の詳細については後述するものとする。 The battery element 20 is formed by alternately laminating a plurality of positive electrodes and a plurality of negative electrodes made of metal foils each coated with an electrode material on both sides of a separator. Although the overall external shape of the battery element 20 is not particularly limited, in this example, it is a flat and substantially rectangular parallelepiped. Details of each part constituting the battery element 20 will be described later.
<フィルム外装体等>
 フィルム外装体の材質としては、電解液に安定で、かつ十分な水蒸気バリア性を持つものであれば、どのような材質であっても構わない。例えば、積層ラミネート型の二次電池の場合、外装体としては、アルミニウムと樹脂のラミネートフィルムを用いることが一例として好ましい。外装体は、単一の部材で構成してもよいし、複数の部材を組み合わせて構成してもよい。本実施形態では、図1に示すように、フィルム外装体10は、第1のフィルム11とそれに対向配置された第2のフィルム12とで構成されるものであってもよい。
<Film outer package>
As the material of the film outer package, any material may be used as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property. For example, in the case of a laminated laminate type secondary battery, it is preferable to use, as an example, a laminate film of aluminum and resin as the outer package. An exterior body may be comprised with a single member and may be comprised combining several members. In the present embodiment, as shown in FIG. 1, the film outer package 10 may be composed of a first film 11 and a second film 12 disposed to face the first film 11.
 フィルム外装体10の輪郭形状は特に限定されるものではないが、四角形であってもよく、この例では長方形となっている。両フィルム11、12は、電池要素20の周囲で互いに熱溶着されて接合されている。これにより、フィルム外装体10の周縁部が熱溶着部15となっている。熱溶着部15のうち短辺側の一辺から、正極タブ21および負極タブ25が引き出されている。電極タブ21、25としては種々の材質を採用しうるが、一例として、正極タブ21がアルミニウムまたはアルミニウム合金で、負極タブ25が銅またはニッケルである。負極タブ25の材質が銅の場合、表面にニッケルめっきが施されてもよい。 The outline shape of the film outer package 10 is not particularly limited, but may be a quadrangle, which is a rectangle in this example. Both the films 11 and 12 are heat-welded to each other around the battery element 20 and joined. Thereby, the peripheral part of the film exterior body 10 becomes the heat welding part 15. A positive electrode tab 21 and a negative electrode tab 25 are drawn from one side of the short side of the heat-welded portion 15. Various materials can be adopted as the electrode tabs 21 and 25. As an example, the positive electrode tab 21 is aluminum or an aluminum alloy, and the negative electrode tab 25 is copper or nickel. When the material of the negative electrode tab 25 is copper, the surface may be nickel-plated.
 なお、電極タブ21、25の引出し位置について、タブが長辺側の一辺から引き出されていてもよい。また、正極タブ21と負極タブ25とが別々の辺から引き出されていてもよい。この例としては、正極タブ21と負極タブ25とが対向する辺から反対向きに引き出される構成が挙げられる。 In addition, about the extraction position of the electrode tabs 21 and 25, the tab may be pulled out from one side of the long side. Moreover, the positive electrode tab 21 and the negative electrode tab 25 may be pulled out from different sides. As this example, the structure by which the positive electrode tab 21 and the negative electrode tab 25 are pulled out in the opposite direction from the opposing side is mentioned.
 図3に例示するように、正極および負極はそれぞれ外周の一部に部分的に突出した延長部(符号31a、35a参照)を有していてもよく、正極の延長部と負極の延長部とは、正極および負極を積層したときに互いに干渉しないように位置をずらして互い違いに配置されている。正極の延長部どうしが積層され互いに接続されることで集電部31aが形成され、その集電部31aに正極タブ21が接続される。同様に、負極に関しても、延長部どうしが積層され互いに接続されることで集電部35aが形成され、その集電部35aに負極タブ25が接続される。電極タブと集電部との接続は例えば溶接によって行なわれてもよい。 As illustrated in FIG. 3, each of the positive electrode and the negative electrode may have an extension part (see reference numerals 31 a and 35 a) partially protruding from a part of the outer periphery, and the positive electrode extension part and the negative electrode extension part Are arranged in staggered positions so that they do not interfere with each other when the positive and negative electrodes are stacked. The extension portions of the positive electrodes are stacked and connected to each other to form a current collector 31a, and the positive electrode tab 21 is connected to the current collector 31a. Similarly, regarding the negative electrode, the extension portions are stacked and connected to each other to form the current collecting portion 35a, and the negative electrode tab 25 is connected to the current collecting portion 35a. The connection between the electrode tab and the current collector may be performed by welding, for example.
 図4はフィルム外装電池の内部構造の模式的に表した断面図であり、正極31および負極35がセパレータ38を介して積層された状態が描かれている。なお、実際のフィルム外装電池では、複数の正極31および負極35がセパレータ38を介して交互に積層されることとなる。 FIG. 4 is a cross-sectional view schematically showing the internal structure of the film-clad battery, in which a state in which the positive electrode 31 and the negative electrode 35 are stacked via the separator 38 is depicted. In an actual film-clad battery, a plurality of positive electrodes 31 and negative electrodes 35 are alternately stacked via separators 38.
 電池要素の各要素に関しては、具体的には以下のようなものを採用してもよい。
<セパレータ>
 本実施形態におけるセパレータとしては、融点が180℃以上で通気度が高いものが用いられる。具体的には、通気度に関し、ガーレー値(sec/100cc)が100以下のものが好ましく、50以下のものがより好ましく、20以下のものがさらに好ましい。
For each element of the battery element, specifically, the following may be adopted.
<Separator>
As the separator in this embodiment, a separator having a melting point of 180 ° C. or higher and high air permeability is used. Specifically, the Gurley value (sec / 100 cc) is preferably 100 or less, more preferably 50 or less, and even more preferably 20 or less with respect to the air permeability.
 融点が180℃以上の材料としては、高分子材料では、ポリエチレンテレフタレート(PET)、セルロース、アラミド、ポリイミド、ポリフェニレンサルファイド(PPS)などが挙げられる。また、無機材料ではガラス繊維が挙げられる。 Examples of materials having a melting point of 180 ° C. or higher include polyethylene terephthalate (PET), cellulose, aramid, polyimide, polyphenylene sulfide (PPS) and the like as polymer materials. Moreover, glass fiber is mentioned with an inorganic material.
 これらの材料による多孔膜や織布、不織布による、高通気度セパレータが本発明に好適に採用できる。なかでも織布や不織布によるセパレータが、通気度が特に高く好ましい。具体的には、ガラス繊維、アラミド繊維、またはポリイミド繊維などが挙げられる。 A high air permeability separator made of a porous film, a woven fabric, or a nonwoven fabric made of these materials can be suitably used in the present invention. Among them, a separator made of woven fabric or non-woven fabric is particularly preferable because of high air permeability. Specifically, a glass fiber, an aramid fiber, a polyimide fiber, etc. are mentioned.
 セパレータの表面に、基材よりも耐熱性が高い材料によるコート層を有してもよい。コート層の材料として、高耐熱性樹脂や、アルミニウム、シリコン、チタンなどの酸化物や窒化物を用いることができる。 The separator may have a coat layer made of a material having higher heat resistance than the base material. As a material for the coating layer, a high heat resistant resin, an oxide such as aluminum, silicon, titanium, or a nitride can be used.
 セパレータの厚みは、例えば12μm~40μmの範囲であることが好ましい。厚みが12μmを下回るような場合、セパレータの強度が下がり、製造時等の取扱い性が低下することとなる。一方、厚みが40μmを上回るような場合、電池のエネルギー密度が低下することとなるのに加え、特に、本発明ではレドックスシャトル剤を利用するものであるところそのシャトル剤によるエネルギー消費作用が低下する可能性がある。これは次のような理由による。すなわち、レドックスシャトル剤は、電解液中で正極(図4の符号31)と負極(図4の符号35)との間で往復移動を繰り返しながら酸化還元反応をすることで、過充電時の電流を消費するものである。したがって、セパレータが厚すぎる場合(言い換えれば電極間の距離が離れるほど)電極間におけるレドックスシャトル剤の移動・反応が低減し、その結果、シャトル剤によるエネルギー消費作用が低下するためである。このようなシャトル剤とセパレータ厚みとの関係に鑑みれば、セパレータの厚みは30μm以下であることも好ましく、20μm以下であることも好ましい。 The thickness of the separator is preferably in the range of 12 μm to 40 μm, for example. When thickness is less than 12 micrometers, the intensity | strength of a separator falls and handleability at the time of manufacture etc. will fall. On the other hand, when the thickness exceeds 40 μm, the energy density of the battery is lowered. In particular, in the present invention, the redox shuttle agent is used, and the energy consumption effect by the shuttle agent is lowered. there is a possibility. This is due to the following reason. That is, the redox shuttle agent performs an oxidation-reduction reaction while repeating reciprocating movement between the positive electrode (reference numeral 31 in FIG. 4) and the negative electrode (reference numeral 35 in FIG. 4) in the electrolyte solution, so that the current during overcharge is reduced. Is to consume. Therefore, when the separator is too thick (in other words, the distance between the electrodes is increased), the movement / reaction of the redox shuttle agent between the electrodes is reduced, and as a result, the energy consumption effect of the shuttle agent is reduced. In view of the relationship between the shuttle agent and the separator thickness, the thickness of the separator is preferably 30 μm or less, and preferably 20 μm or less.
 本発明では、電極間のセパレータ内においてレドックスシャトル剤が移動し反応することが重要となる。レドックスシャトル剤が電極間で良好に往復移動してその作用を発揮するためには、セパレータの厚みが厚すぎないこと、および、セパレータの通気度が十分に高いことが必要である。したがって、セパレータが上記のような厚みかつ通気度であることは、シャトル剤による効率的なエネルギー消費を実現できる点で好適である。 In the present invention, it is important that the redox shuttle agent moves and reacts in the separator between the electrodes. In order for the redox shuttle agent to reciprocate well between the electrodes and exert its effect, it is necessary that the thickness of the separator is not too thick and the air permeability of the separator is sufficiently high. Therefore, it is preferable that the separator has the above thickness and air permeability in that efficient energy consumption by the shuttle agent can be realized.
 上記特性については「厚み」×「ガーレー値」というパラメータを指標とすることもできる。一例として、この値は10~1500(sec/100cc・μm)の範囲内であることが好ましく、10~500(sec/100cc・μm)の範囲内であることがより好ましい。 For the above characteristics, a parameter of “thickness” × “Gurley value” can be used as an index. As an example, this value is preferably in the range of 10 to 1500 (sec / 100 cc · μm), and more preferably in the range of 10 to 500 (sec / 100 cc · μm).
<負極>
 負極は、金属箔で形成される負極集電体と、負極集電体の両面に塗工された負極活物質とを有する。負極活物質は負極用結着材によって負極集電体を覆うように結着される。負極集電体は、負極端子と接続する延長部を有して形成され、この延長部には負極活物質は塗工されない。
<Negative electrode>
The negative electrode has a negative electrode current collector formed of a metal foil, and a negative electrode active material coated on both surfaces of the negative electrode current collector. The negative electrode active material is bound so as to cover the negative electrode current collector with a negative electrode binder. The negative electrode current collector is formed to have an extension connected to the negative electrode terminal, and the negative electrode active material is not applied to the extension.
 本実施形態における負極活物質は、特に制限されるものではなく、例えば、リチウムイオンを吸蔵、放出し得る炭素材料、リチウムと合金可能な金属、およびリチウムイオンを吸蔵、放出し得る金属酸化物等が挙げられる。 The negative electrode active material in the present embodiment is not particularly limited. For example, a carbon material that can occlude and release lithium ions, a metal that can be alloyed with lithium, a metal oxide that can occlude and release lithium ions, and the like. Is mentioned.
 炭素材料としては、例えば、炭素、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物等が挙げられる。ここで、結晶性の高い炭素は、電気伝導性が高く、銅などの金属からなる負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。 Examples of the carbon material include carbon, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof. Here, carbon with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper. On the other hand, since amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
 金属や金属酸化物を含有する負極は、エネルギー密度を向上でき、電池の単位重量あたり、あるいは単位体積あたりの容量を増やすことができる点で好ましい。 A negative electrode containing a metal or metal oxide is preferable in that it can improve the energy density and increase the capacity per unit weight or unit volume of the battery.
 金属としては、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上の合金等が挙げられる。また、これらの金属又は合金は2種以上混合して用いてもよい。また、これらの金属又は合金は1種以上の非金属元素を含んでもよい。 Examples of the metal include Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and alloys of two or more thereof. Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may contain one or more non-metallic elements.
 金属酸化物としては、例えば、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物等が挙げられる。本実施形態では、負極活物質として酸化スズ若しくは酸化シリコンを含むことが好ましく、酸化シリコンを含むことがより好ましい。これは、酸化シリコンは、比較的安定で他の化合物との反応を引き起こしにくいからである。また、金属酸化物に、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物の電気伝導性を向上させることができる。 Examples of the metal oxide include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof. In this embodiment, it is preferable that tin oxide or silicon oxide is included as a negative electrode active material, and it is more preferable that silicon oxide is included. This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds. In addition, one or more elements selected from nitrogen, boron and sulfur may be added to the metal oxide, for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide can be improved.
 また、負極活物質は、単独の材料を用いずに、複数の材料を混合して用いることもできる。例えば、黒鉛と非晶質炭素のように、同種の材料同士を混合しても良いし、黒鉛とシリコンのように、異種の材料を混合しても構わない。 Also, the negative electrode active material can be used by mixing a plurality of materials without using a single material. For example, the same kind of materials such as graphite and amorphous carbon may be mixed, or different kinds of materials such as graphite and silicon may be mixed.
 負極用結着剤としては、特に制限されるものではないが、例えば、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、ポリアクリル酸等を用いることができる。使用する負極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、負極活物質100質量部に対して、0.5~25質量部が好ましい。 The binder for the negative electrode is not particularly limited. For example, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer Rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, polyacrylic acid, or the like can be used. The amount of the binder for the negative electrode used is 0.5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. Is preferred.
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、ステンレス、クロム、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。 As the negative electrode current collector, aluminum, nickel, stainless steel, chromium, copper, silver, and alloys thereof are preferable in view of electrochemical stability. Examples of the shape include foil, flat plate, and mesh.
 <正極>
 正極は、金属箔で形成される正極集電体と、正極集電体の両面に塗工された正極活物質とを有する。正極活物質は正極用結着剤によって正極集電体を覆うように結着される。正極集電体は、正極端子と接続する延長部を有して形成され、この延長部には正極活物質は塗工されない。
<Positive electrode>
The positive electrode has a positive electrode current collector formed of a metal foil, and a positive electrode active material coated on both surfaces of the positive electrode current collector. The positive electrode active material is bound so as to cover the positive electrode current collector with a positive electrode binder. The positive electrode current collector is formed to have an extension connected to the positive electrode terminal, and the positive electrode active material is not applied to the extension.
 正極活物質としては、リチウムを吸蔵放出し得る材料であれば特に限定されず、いくつかの観点から選ぶことができる。高エネルギー密度化の観点からは、高容量の化合物を含むことが好ましい。高容量の化合物としては、リチウム酸ニッケル(LiNiO)またはリチウム酸ニッケルのNiの一部を他の金属元素で置換したリチウムニッケル複合酸化物が挙げられ、下式(A)で表される層状リチウムニッケル複合酸化物が好ましい。 The positive electrode active material is not particularly limited as long as it is a material that can occlude and release lithium, and can be selected from several viewpoints. From the viewpoint of increasing the energy density, it is preferable to include a high-capacity compound. Examples of the high-capacity compound include nickel-lithium oxide (LiNiO 2 ) or lithium-nickel composite oxide obtained by substituting a part of nickel in nickel-lithium oxide with another metal element. The layered structure represented by the following formula (A) Lithium nickel composite oxide is preferred.
 LiNi(1-x)   (A)
(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素である。)
Li y Ni (1-x) M x O 2 (A)
(However, 0 ≦ x <1, 0 <y ≦ 1.2, and M is at least one element selected from the group consisting of Co, Al, Mn, Fe, Ti, and B.)
 高容量の観点では、Niの含有量が高いこと、即ち式(A)において、xが0.5未満が好ましく、さらに0.4以下が好ましい。このような化合物としては、例えば、LiαNiβCoγMnδ(0≦α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiαNiβCoγAlδ(0≦α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.6好ましくはβ≧0.7、γ≦0.2)などが挙げられ、特に、LiNiβCoγMnδ(0.75≦β≦0.85、0.05≦γ≦0.15、0.10≦δ≦0.20)が挙げられる。より具体的には、例えば、LiNi0.8Co0.05Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.1Al0.1等を好ましく用いることができる。 From the viewpoint of high capacity, the Ni content is high, that is, in the formula (A), x is preferably less than 0.5, and more preferably 0.4 or less. Examples of such compounds include Li α Ni β Co γ Mn δ O 2 (0 ≦ α ≦ 1.2, preferably 1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0. .2), Li α Ni β Co γ Al δ O 2 (0 ≦ α ≦ 1.2, preferably 1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.6, preferably β ≧ 0.7, γ ≦ 0.2), etc., especially LiNi β Co γ Mn δ O 2 (0.75 ≦ β ≦ 0.85, 0.05 ≦ γ ≦ 0.15, 0.10 ≦ δ ≦ 0.20). ). More specifically, for example, LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
 また、熱安定性の観点では、Niの含有量が0.5を超えないこと、即ち、式(A)において、xが0.5以上であることも好ましい。また特定の遷移金属が半数を超えないことも好ましい。このような化合物としては、LiαNiβCoγMnδ(0≦α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、0.2≦β≦0.5、0.1≦γ≦0.4、0.1≦δ≦0.4)が挙げられる。より具体的には、LiNi0.4Co0.3Mn0.3(NCM433と略記)、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3(NCM523と略記)、LiNi0.5Co0.3Mn0.2(NCM532と略記)など(但し、これらの化合物においてそれぞれの遷移金属の含有量が10%程度変動したものも含む)を挙げることができる。 From the viewpoint of thermal stability, it is also preferable that the Ni content does not exceed 0.5, that is, in the formula (A), x is 0.5 or more. It is also preferred that the number of specific transition metals does not exceed half. Such compounds include Li α Ni β Co γ Mn δ O 2 (0 ≦ α ≦ 1.2, preferably 1 ≦ α ≦ 1.2, β + γ + δ = 1, 0.2 ≦ β ≦ 0.5, 0 0.1 ≦ γ ≦ 0.4, 0.1 ≦ δ ≦ 0.4). More specifically, LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
 また、式(A)で表される化合物を2種以上混合して使用してもよく、例えば、NCM532またはNCM523とNCM433とを9:1~1:9の範囲(典型的な例として、2:1)で混合して使用することも好ましい。さらに、式(A)においてNiの含有量が高い材料(xが0.4以下)と、Niの含有量が0.5を超えない材料(xが0.5以上、例えばNCM433)とを混合することで、高容量で熱安定性の高い電池を構成することもできる。 In addition, two or more compounds represented by the formula (A) may be used as a mixture. For example, NCM532 or NCM523 and NCM433 range from 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1). Furthermore, in the formula (A), a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
 上記以外にも正極活物質として、例えば、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;LiCoOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;及びLiFePOなどのオリビン構造を有するもの等が挙げられる。さらに、これらの金属酸化物をAl、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。上記に記載した正極活物質はいずれも、1種を単独で、または2種以上を組合せて用いることができる。 Other than the above, as the positive electrode active material, for example, LiMnO 2 , Li x Mn 2 O 4 (0 <x <2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 <x < 2) Lithium manganate having a layered structure or spinel structure such as LiCoO 2 or a part of these transition metals replaced with another metal; Li in these lithium transition metal oxides more than the stoichiometric composition And those having an olivine structure such as LiFePO 4 . Furthermore, a material in which these metal oxides are partially substituted with Al, Fe, P, Ti, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, etc. Can also be used. Any of the positive electrode active materials described above can be used alone or in combination of two or more.
 また、ラジカル材料等を正極活物質として用いることも可能である。 Also, radical materials or the like can be used as the positive electrode active material.
 正極用結着剤としては、負極用結着剤と同様のものと用いることができる。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~15質量部が好ましい。 As the positive electrode binder, the same as the negative electrode binder can be used. The amount of the positive electrode binder to be used is preferably 2 to 15 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. .
 正極集電体としては、例えば、アルミニウム、ニッケル、銀、又はそれらの合金を用いることができる。正極集電体の形状としては、例えば、箔、平板状、メッシュ状が挙げられる。正極集電体としては、アルミニウム箔を好適に用いることができる。 As the positive electrode current collector, for example, aluminum, nickel, silver, or an alloy thereof can be used. Examples of the shape of the positive electrode current collector include a foil, a flat plate, and a mesh. As the positive electrode current collector, an aluminum foil can be suitably used.
<電解液>
 本実施形態における電解液は、リチウム塩(支持塩)と、この支持塩を溶解する非水溶媒を含む非水電解液であって、低沸点溶媒の割合が比較的低く設定されたものであることが好ましい。低沸点溶媒の気化によって電極間にガスが発生すると、その場所ではレドックスシャトル剤が移動できなくなり、シャトル剤によるエネルギー消費が行われなくなるためである。
<Electrolyte>
The electrolytic solution in the present embodiment is a non-aqueous electrolytic solution including a lithium salt (supporting salt) and a non-aqueous solvent that dissolves the supporting salt, and the ratio of the low boiling point solvent is set to be relatively low. It is preferable. This is because when gas is generated between the electrodes due to vaporization of the low boiling point solvent, the redox shuttle agent cannot move at that location, and energy consumption by the shuttle agent is not performed.
 具体的には、電解液は、全溶媒の体積を100%としたときに、沸点が160℃以上の溶媒を20体積%以上含有するものであることが好ましく、30%以上含有することがより好ましく、50%以上含有することがさらに好ましい。 Specifically, the electrolyte solution preferably contains 20% by volume or more of a solvent having a boiling point of 160 ° C. or higher, and more preferably 30% or more when the volume of all the solvents is 100%. Preferably, it contains 50% or more.
 非水溶媒としては、炭酸エステル(鎖状又は環状カーボネート)、カルボン酸エステル(鎖状又は環状カルボン酸エステル)、エーテル(鎖状または環状エーテル)またはこれらのフッ素置換化合物、リン酸エステル等の非プロトン性有機溶媒を用いることができる。 Examples of the non-aqueous solvent include carbonic acid esters (chain or cyclic carbonates), carboxylic acid esters (chain or cyclic carboxylic acid esters), ethers (chain or cyclic ethers), or fluorine-substituted compounds thereof, phosphoric acid esters, and the like. Protic organic solvents can be used.
 炭酸エステル溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体が挙げられる。 Examples of carbonate solvents include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. (EMC), chain carbonates such as dipropyl carbonate (DPC); and propylene carbonate derivatives.
 カルボン酸エステル溶媒としては、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;γ-ブチロラクトン等のラクトン類が挙げられる。 Examples of the carboxylic acid ester solvent include aliphatic carboxylic acid esters such as methyl formate, methyl acetate, and ethyl propionate; and lactones such as γ-butyrolactone.
 これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の炭酸エステル(環状または鎖状カーボネート類)が好ましい。 Among these, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dipropyl carbonate Carbonic acid esters (cyclic or chain carbonates) such as (DPC) are preferred.
 リン酸エステルとしては、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリオクチル、リン酸トリフェニル等が挙げられる。 Examples of the phosphate ester include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, trioctyl phosphate, triphenyl phosphate, and the like.
 また、非水電解液に含有できる溶媒としては、その他にも、例えば、エチレンサルファイト(ES)、プロパンサルトン(PS)、ブタンスルトン(BS)、Dioxathiolane-2,2-dioxide(DD)、スルホレン、3-メチルスルホレン、スルホラン(SL)、無水コハク酸(SUCAH)、無水プロピオン酸、無水酢酸、無水マレイン酸、ジアリルカーボネート(DAC)、2,5-ジオキサヘキサンニ酸ジメチル、2,5-ジオキサヘキサンニ酸ジメチル、フラン、2,5-ジメチルフラン、ジフェニルジサルファイド(DPS)、ジメトキシエタン(DME)、ジメトキシメタン(DMM)、ジエトキシエタン(DEE)、エトキシメトキシエタン、クロロエチレンカーボネート、ジメチルエーテル、メチルエチルエーテル、メチルプロピルエーテル、エチルプロピルエーテル、ジプロピルエーテル、メチルブチルエーテル、ジエチルエーテル、フェニルメチルエーテル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeTHF)、テトラヒドロピラン(THP)、1,4-ジオキサン(DIOX)、1,3-ジオキソラン(DOL)、メチルアセテート、エチルアセテート、プロピルアセテート、イソプロピルアセテート、ブチルアセテート、メチルジフルオロアセテート、メチルプロピオネート、エチルプロピオネート、プロピルプロピオネート、メチルフォルメイト、エチルフォルメイト、エチルブチレート、イソプロピルブチレート、メチルイソブチレート、メチルシアノアセテート、ビニルアセテート、ジフェニルジスルフィド、ジメチルスルフィド、ジエチルスルフィド、アジポニトリル、バレロニトリル、グルタロニトリル、マロノニトリル、スクシノニトリル、ピメロニトリル、スベロニトリル、イソブチロニトリル、ビフェニル、チオフェン、メチルエチルケトン、フルオロベンゼン、ヘキサフルオロベンゼン、グライム、エーテル、アセトニトリル、プロピオンニトリル、γ-ブチロラクトン、γ-バレロラクトン、ジメチルスルホキシド(DMSO)イオン液体、ホスファゼン、がある。 Other solvents that can be contained in the non-aqueous electrolyte include, for example, ethylene sulfite (ES), propane sultone (PS), butane sultone (BS), dioxathilane-2,2-dioxide (DD), and sulfolene. 3-methylsulfolene, sulfolane (SL), succinic anhydride (SUCAH), propionic anhydride, acetic anhydride, maleic anhydride, diallyl carbonate (DAC), dimethyl 2,5-dioxahexanoate, 2,5 Dimethyl hexane hexanoate, furan, 2,5-dimethylfuran, diphenyl disulfide (DPS), dimethoxyethane (DME), dimethoxymethane (DMM), diethoxyethane (DEE), ethoxymethoxyethane, chloroethylene carbonate , Dimethyl ether, methyl Tyl ether, methyl propyl ether, ethyl propyl ether, dipropyl ether, methyl butyl ether, diethyl ether, phenyl methyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), tetrahydropyran (THP), 1,4-dioxane (DIOX), 1,3-dioxolane (DOL), methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, methyl difluoroacetate, methyl propionate, ethyl propionate, propyl propionate, methyl formate , Ethyl formate, ethyl butyrate, isopropyl butyrate, methyl isobutyrate, methyl cyanoacetate, vinyl acetate, diphe Rudisulfide, dimethyl sulfide, diethyl sulfide, adiponitrile, valeronitrile, glutaronitrile, malononitrile, succinonitrile, pimonitrile, suberonitrile, isobutyronitrile, biphenyl, thiophene, methyl ethyl ketone, fluorobenzene, hexafluorobenzene, glyme, ether, There are acetonitrile, propiononitrile, γ-butyrolactone, γ-valerolactone, dimethyl sulfoxide (DMSO) ionic liquid, phosphazene.
 フッ素化炭酸エステルは、式(1)で表され、式(1)において、R及びRは、それぞれ独立に、アルキル基又はフッ素置換アルキル基を示し、R及びRの少なくとも一つはフッ素置換アルキル基である。例えば、DECの水素の一部をフッ素で置換した、ビス(2,2,2-トリフルオロエチル)カーボネートや、ECの水素の一部をフッ素で置換したフルオロエチレンカーボネート(FEC)がある。 The fluorinated carbonate is represented by the formula (1). In the formula (1), R 1 and R 2 each independently represents an alkyl group or a fluorine-substituted alkyl group, and at least one of R 1 and R 2 Is a fluorine-substituted alkyl group. For example, there are bis (2,2,2-trifluoroethyl) carbonate in which a part of hydrogen in DEC is substituted with fluorine, and fluoroethylene carbonate (FEC) in which a part of hydrogen in EC is substituted with fluorine.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 フッ素化カルボン酸エステルとしては、具体的には、例えば、ペンタフルオロプロピオン酸エチル、3,3,3-トリフルオロプロピオン酸エチル、2,2,3,3-テトラフルオロプロピオン酸メチル、酢酸2,2-ジフルオロエチル、ヘプタフルオロイソ酪酸メチル、2,3,3,3-テトラフルオロプロピオン酸メチル、ペンタフルオロプロピオン酸メチル、2-(トリフルオロメチル)-3,3,3-トリフルオロプロピオン酸メチル、ヘプタフルオロ酪酸エチル、3,3,3-トリフルオロプロピオン酸メチル、酢酸2,2,2-トリフルオロエチル、トリフルオロ酢酸イソプロピル、トリフルオロ酢酸tert-ブチル、4,4,4-トリフルオロ酪酸エチル、4,4,4-トリフルオロ酪酸メチル、2,2-ジフルオロ酢酸ブチル、ジフルオロ酢酸エチル、トリフルオロ酢酸n-ブチル、酢酸2,2,3,3-テトラフルオロプロピル、3-(トリフルオロメチル)酪酸エチル、テトラフルオロ-2-(メトキシ)プロピオン酸メチル、3,3,3-トリフルオロプロピオン酸3,3,3トリフルオロプロピル、ジフルオロ酢酸メチル、トリフルオロ酢酸2,2,3,3-テトラフルオロプロピル、酢酸1H,1H-ヘプタフルオロブチル、ヘプタフルオロ酪酸メチル、トリフルオロ酢酸エチル、エチル3,3,3-トリフルオロプロピオネートなどが挙げられる。 Specific examples of the fluorinated carboxylic acid ester include, for example, ethyl pentafluoropropionate, ethyl 3,3,3-trifluoropropionate, methyl 2,2,3,3-tetrafluoropropionate, acetic acid 2, 2-difluoroethyl, methyl heptafluoroisobutyrate, methyl 2,3,3,3-tetrafluoropropionate, methyl pentafluoropropionate, methyl 2- (trifluoromethyl) -3,3,3-trifluoropropionate , Ethyl heptafluorobutyrate, methyl 3,3,3-trifluoropropionate, 2,2,2-trifluoroethyl acetate, isopropyl trifluoroacetate, tert-butyl trifluoroacetate, 4,4,4-trifluorobutyric acid Ethyl, methyl 4,4,4-trifluorobutyrate, 2,2-difluoroacetic acid Chill, ethyl difluoroacetate, n-butyl trifluoroacetate, 2,2,3,3-tetrafluoropropyl acetate, ethyl 3- (trifluoromethyl) butyrate, methyl tetrafluoro-2- (methoxy) propionate, 3, 3,3-trifluoropropionic acid 3,3,3 trifluoropropyl, methyl difluoroacetate, 2,2,3,3-tetrafluoropropyl trifluoroacetate, 1H, 1H-heptafluorobutyl acetate, methyl heptafluorobutyrate, Examples thereof include ethyl trifluoroacetate and ethyl 3,3,3-trifluoropropionate.
 鎖状フッ素化エーテル化合物は、式(2)で表され、式(2)において、R及びRは、それぞれ独立に、アルキル基又はフッ素置換アルキル基を示し、Ra及びRbの少なくとも一つはフッ素置換アルキル基である。例えば、CF3OCH3、CF3OC26、F(CF22OCH3、F(CF22OC25、F(CF23OCH3、F(CF23OC25、F(CF24OCH3、F(CF24OC25、F(CF25OCH3、F(CF25OC25、F(CF2)8OCH3、F(CF2)8OC25、F(CF2)9OCH3、CF3CH2OCH3、CF3CH2OCHF2、CF3CF2CH2OCH3、CF3CF2CH2OCHF2、CF3CF2CH2O(CF22H,CF3CF2CH2O(CF22F、HCF2CH2OCH3,H(CF22OCH2CH3、H(CF22OCH2CF3,H(CF22CH2OCHF2、H(CF22CH2O(CF22H、H(CF22CH2O(CF23H、H(CF23CH2O(CF22H、(CF32CHOCH3、(CF32CHCF2OCH3、CF3CHFCF2OCH3、CF3CHFCF2OCH2CH3、CF3CHFCF2CH2OCHF2、H(CF22CH2OCF2CHFCF3、CHF2-CH2-O-CF2CFH-CF3、F(CF22CH2OCF2CFHCF3などが挙げられる。 The chain fluorinated ether compound is represented by the formula (2). In the formula (2), R a and R b each independently represents an alkyl group or a fluorine-substituted alkyl group, and at least one of Ra and Rb Is a fluorine-substituted alkyl group. For example, CF 3 OCH 3 , CF 3 OC 2 H 6 , F (CF 2 ) 2 OCH 3 , F (CF 2 ) 2 OC 2 H 5 , F (CF 2 ) 3 OCH 3 , F (CF 2 ) 3 OC 2 H 5, F (CF 2 ) 4 OCH 3, F (CF 2) 4 OC 2 H 5, F (CF 2) 5 OCH 3, F (CF 2) 5 OC 2 H 5, F (CF 2) 8OCH 3, F (CF 2) 8OC 2 H 5, F (CF 2) 9OCH 3, CF 3 CH 2 OCH 3, CF 3 CH 2 OCHF 2, CF 3 CF 2 CH 2 OCH 3, CF 3 CF 2 CH 2 OCHF 2 , CF 3 CF 2 CH 2 O (CF 2 ) 2 H, CF 3 CF 2 CH 2 O (CF 2 ) 2 F, HCF 2 CH 2 OCH 3 , H (CF 2 ) 2 OCH 2 CH 3 , H ( CF 2) 2 OCH 2 CF 3 , H (CF 2) 2 CH 2 OCHF 2, H (CF 2) 2 CH 2 O (CF 2) 2 H, H (CF 2) 2 CH 2 (CF 2) 3 H, H (CF 2) 3 CH 2 O (CF 2) 2 H, (CF 3) 2 CHOCH 3, (CF 3) 2 CHCF 2 OCH 3, CF 3 CHFCF 2 OCH 3, CF 3 CHFCF 2 OCH 2 CH 3 , CF 3 CHFCF 2 CH 2 OCHF 2 , H (CF 2 ) 2 CH 2 OCF 2 CHFCF 3 , CHF 2 —CH 2 —O—CF 2 CFH—CF 3 , F (CF 2 ) 2 such as CH 2 OCF 2 CFHCF 3 and the like.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本実施形態における支持塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO等の通常のリチウムイオン電池に使用可能なリチウム塩を用いることができる。支持塩は、一種を単独で、または二種以上を組み合わせて使用することができる。 As the supporting salt in the present embodiment, LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN ( CF 3 SO 2) 2 normal lithium salt which can be used in lithium ion batteries or the like can be used. The supporting salt can be used alone or in combination of two or more.
<レドックスシャトル剤>
 レドックスシャトル剤としては、非水電解質中に均一に溶解もしくは分散し得る化合物であって、正極活物質の通常使用する最大の(SOC100%の)電位よりも高い酸化電位を有する化合物を用いることができる。ただし、レドックスシャトル剤は正極活物質の使用する最大の電位に応じて適宜選択することが好ましい。レドックスシャトル剤の酸化電位は、正極の最大電位より0.1~2V高いことが好ましく、0.2~1V高いことが更に好ましい。レドックスシャトル剤の酸化電位が上記の範囲内にある場合、二次電池を通常の電圧で動作させている時にはレドックスシャトル剤の反応を抑制することができ、かつ過充電などの異常時には速やかにレドックスシャトル剤が反応し、二次電池の動作を停止させることができる。
<Redox shuttle agent>
As the redox shuttle agent, a compound that can be uniformly dissolved or dispersed in the non-aqueous electrolyte and has an oxidation potential higher than the maximum (SOC 100%) potential normally used for the positive electrode active material is used. it can. However, the redox shuttle agent is preferably selected as appropriate according to the maximum potential used by the positive electrode active material. The oxidation potential of the redox shuttle agent is preferably 0.1 to 2 V higher than the maximum potential of the positive electrode, and more preferably 0.2 to 1 V higher. When the oxidation potential of the redox shuttle agent is within the above range, the reaction of the redox shuttle agent can be suppressed when the secondary battery is operated at a normal voltage, and the redox shuttle agent can be quickly reduced in the event of an abnormality such as overcharge. The shuttle agent reacts to stop the operation of the secondary battery.
 レドックスシャトル剤としては、芳香族化合物、複素環錯体、フェロセン等のメタロセン錯体、Ce化合物、ラジカル化合物などが挙げられる。また、レドックスシャトル剤は一種のみを単独で用いることもでき、または二種以上を組み合わせて用いることもできる。 Examples of redox shuttle agents include aromatic compounds, heterocyclic complexes, metallocene complexes such as ferrocene, Ce compounds, and radical compounds. Moreover, a redox shuttle agent can also be used individually by 1 type, or can also be used in combination of 2 or more type.
 具体的な化合物としては、例えば、3,4-ジフルオロアニソール、2,4-ジフルオロアニソール、1-メトキシ-2,3,4,5,6-ペンタフルオロベンゼン、2,3,5,6-テトラフルオロアニソール、4-(トリフルオロメトキシ)アニソール、3,4-ジメトキシベンゾニトリル、1,2,3,4-テトラクロロ-5,6-ジメトキシベンゼン、1,2,4,5-テトラクロロ-3,6-ジメトキシベンゼン4-フルオロ-1,2-ジメトキシベンゼン、4-ブロモ-1,2-ジメトキシベンゼン、2-ブロモ-1,4-ジメチルベンゼン、1-ブロモ-3-フルオロ-4-メトキシベンゼン、2-ブロモ-1,3-ジフルオロ-5-メトキシベンゼン、4,5-ジフルオロ-1,2-ジメトキシベンゼン、2,5-ジフルオロ-1,4-ジメトキシベンゼン、1,2,3,4-テトラクロロ-5,5-ジメトキシシクロペンタジエン、1,2,4-トリメトキシベンゼン、1,2,3-トリメトキシベンゼン、2,5-ジ-tert-ブチル-1,4-ジメトキシベンゼン、4-tert-ブチル-1,2-ジメトキシベンゼン、1,4-ジテトラブチル-2,5-トリフルオロメトキシベンゼン、1,2-ジテトラブチル-4,5-トリフルオロメトキシベンゼン、等の1つ以上の電子吸引性もしくは電子供与性の置換基を有する単素環式化合物;4-クロロ-1,2-メチレンジオキシベンゼン、4-ブロモ-1,2-メチレンジオキシベンゼン、3,4-メチレンジオキシベンゾニトリル、4-ニトロ-1,2-メチレンジオキシベンゼン、2-クロロ-5-メトキシピラジン等の複素環式化合物;ニトロキシルラジカル化合物等のラジカル化合物;硝酸セリウム等のセリウム化合物;フェロセン錯体等のメタロセン錯体;等のうち、1種または2種以上を混合して用いることができる。 Specific examples of the compound include 3,4-difluoroanisole, 2,4-difluoroanisole, 1-methoxy-2,3,4,5,6-pentafluorobenzene, 2,3,5,6-tetra Fluoroanisole, 4- (trifluoromethoxy) anisole, 3,4-dimethoxybenzonitrile, 1,2,3,4-tetrachloro-5,6-dimethoxybenzene, 1,2,4,5-tetrachloro-3 , 6-Dimethoxybenzene 4-fluoro-1,2-dimethoxybenzene, 4-bromo-1,2-dimethoxybenzene, 2-bromo-1,4-dimethylbenzene, 1-bromo-3-fluoro-4-methoxybenzene 2-bromo-1,3-difluoro-5-methoxybenzene, 4,5-difluoro-1,2-dimethoxybenzene, 2,5-diflu B-1,4-dimethoxybenzene, 1,2,3,4-tetrachloro-5,5-dimethoxycyclopentadiene, 1,2,4-trimethoxybenzene, 1,2,3-trimethoxybenzene, 2, 5-di-tert-butyl-1,4-dimethoxybenzene, 4-tert-butyl-1,2-dimethoxybenzene, 1,4-ditetrabutyl-2,5-trifluoromethoxybenzene, 1,2-ditetrabutyl-4 Monocyclic compounds having one or more electron-withdrawing or electron-donating substituents such as 4-chloro-1,2-methylenedioxybenzene, 4-bromo-1 , 2-methylenedioxybenzene, 3,4-methylenedioxybenzonitrile, 4-nitro-1,2-methylenedioxybenzene, 2-chloro- -A heterocyclic compound such as methoxypyrazine; a radical compound such as a nitroxyl radical compound; a cerium compound such as cerium nitrate; a metallocene complex such as a ferrocene complex; it can.
 なかでも、1つ以上のアルコキシ基を有する芳香族化合物(メトキシベンゼン類やジメトキベンゼン類)を好ましく用いることができる。これらの化合物は、酸化反応により生じる酸化体の化学的安定性が優れているため、副反応等で電池性能が低下することを抑制し得る。また、ハロゲン原子を有する化合物をより好ましく用いることができる。このような化合物は、酸化電位が高く、より酸化還元電位の高い正極、すなわちより高エネルギー密度の二次電池に適用することができる。 Of these, aromatic compounds (methoxybenzenes and dimethoxybenzenes) having one or more alkoxy groups can be preferably used. Since these compounds are excellent in the chemical stability of the oxidant produced by the oxidation reaction, it is possible to suppress a decrease in battery performance due to side reactions or the like. Moreover, the compound which has a halogen atom can be used more preferably. Such a compound can be applied to a positive electrode having a high oxidation potential and a higher redox potential, that is, a secondary battery having a higher energy density.
<電池容量>
 フィルム外装電池の電池容量は、一形態において、4Ah以上であることが好ましく、6Ah以上であることがより好ましく、8Ah以上であることがさらに好ましい。電池容量が大きいということは充電時の充電電流も大きいことを意味し、大電流で充電が行われる場合には電池が高温となり易い。したがって、本発明の技術的思想はこのような大型のフィルム外装電池に特に好適に適用することができる。
<Battery capacity>
In one embodiment, the battery capacity of the film-clad battery is preferably 4 Ah or more, more preferably 6 Ah or more, and further preferably 8 Ah or more. A large battery capacity means a large charging current at the time of charging. When charging is performed with a large current, the battery tends to be hot. Therefore, the technical idea of the present invention can be particularly suitably applied to such a large film-clad battery.
<放熱性の観点>
 フィルム外装電池の放熱性が高過ぎる場合、充電電圧がある程度高くならない限り、電池は所定の温度(安全機構が作動するトリガ温度)にまで上昇しない。電圧が比較的低いうちに(換言すれば比較的安全な状態のうちに)、電池を所定の温度にまで上昇させ、安全機構を作動させることが、安全性の面から好ましい。このような考え方に基けば、フィルム外装電池の放熱性を比較的低く設計することも好ましい。したがって、電池の容量あたりの表面積は5000mm/Ah以下、好ましくは4000mm/Ah以下、さらに好ましくは2500mm/Ah以下に設定されていてもよい。
<Viewpoint of heat dissipation>
If the heat dissipation of the film-clad battery is too high, the battery will not rise to a predetermined temperature (the trigger temperature at which the safety mechanism operates) unless the charging voltage is increased to some extent. From the viewpoint of safety, it is preferable to raise the battery to a predetermined temperature and operate the safety mechanism while the voltage is relatively low (in other words, in a relatively safe state). Based on this concept, it is also preferable to design the heat dissipation of the film-clad battery to be relatively low. Therefore, the surface area per capacity of the battery may be set to 5000 mm 2 / Ah or less, preferably 4000 mm 2 / Ah or less, more preferably 2500 mm 2 / Ah or less.
 なお、上記の「表面積」とは、フィルム外装体の表面積(周縁部のシール部も含む)のことを意味する。フィルム外装体においては、フィルムの端面も面積を有しているが、表面積全体に占める割合が極小さいものであるので、端面の面積は「表面積」に含めなくても構わない。 In addition, said "surface area" means the surface area (a seal part of a peripheral part is included) of a film exterior body. In the film outer package, the end face of the film also has an area, but since the proportion of the entire surface area is extremely small, the area of the end face may not be included in the “surface area”.
2.フィルム外装電池の容器への収納
 図5に、本実施形態のフィルム外装電池を利用した電池モジュールの一例を示す。この電池モジュール1は、1つまたは複数のフィルム外装電池50と、それを収容するモジュール容器71とを備えている。
2. Storage of Film-Exterior Battery in Container FIG. 5 shows an example of a battery module using the film-exterior battery of the present embodiment. The battery module 1 includes one or a plurality of film-clad batteries 50 and a module container 71 that accommodates them.
 モジュール容器71は、ハードケースとして構成されたものであってもよく、材質は、樹脂、金属、それらの組合せ等のいずれであってもよい。また、モジュール容器71としては不燃性材料で作製されたものであってもよい。一例として、モジュール容器71は、アルミニウム合金などの不燃性容器として構成されたものであってもよい。 The module container 71 may be configured as a hard case, and the material may be any of resin, metal, a combination thereof, and the like. The module container 71 may be made of a nonflammable material. As an example, the module container 71 may be configured as an incombustible container such as an aluminum alloy.
 容器内でのフィルム外装電池50の配置についても、特に限定されるものではなく、種々の配置とすることができる。例えば、図5(a)のような単層の状態で配置してもよい。または、図5(b)のような積層状態で配置してもよい。フィルム外装電池50の向きに関し、電池モジュール1の使用時姿勢で、フィルム外装電池50が略水平となるような向き(横置き)としてもよいし、略垂直となるような向き(縦置き)としてもよいし、傾斜していてもよいし、さらにそれらの組合せであってもよい。 The arrangement of the film-clad battery 50 in the container is not particularly limited, and various arrangements can be made. For example, it may be arranged in a single layer state as shown in FIG. Or you may arrange | position in the lamination | stacking state like FIG.5 (b). With respect to the orientation of the film-clad battery 50, the battery module 1 may be in an orientation when in use, such that the film-clad battery 50 may be substantially horizontal (horizontal placement), or may be substantially vertical (vertical placement). Or may be inclined or a combination thereof.
 さらに、本発明の一形態の電池モジュール1としては、フィルム外装電池50が膨張するのを防止するために、該電池を厚み方向に押さえる押さえ部材61、62(図5(a)参照)を有するものであってもよい。押さえ部材61、62は、フィルム外装電池50の外面の少なくとも一部を押さえる押圧面を有するものであれば、その大きさや形状はどのようなものであってもよい。押圧面は、フィルム外装電池の外面(正確には電池要素の形状に対応して盛り上がった部分の平坦面)に全面的に当接するようなものであってもよい。押圧面は、一例で平坦面として形成される。具体的な一例として、押さえ部材61、62は板状部材であってもよい。なお、一実施態様として、押圧面を凹凸状に形成してもよい。 Furthermore, the battery module 1 according to one embodiment of the present invention includes pressing members 61 and 62 (see FIG. 5A) for pressing the battery in the thickness direction in order to prevent the film-clad battery 50 from expanding. It may be a thing. The holding members 61 and 62 may have any size and shape as long as they have a pressing surface for pressing at least a part of the outer surface of the film-clad battery 50. The pressing surface may be such that it entirely contacts the outer surface of the film-clad battery (precisely, the flat surface of the raised portion corresponding to the shape of the battery element). The pressing surface is formed as a flat surface by way of example. As a specific example, the pressing members 61 and 62 may be plate members. As an embodiment, the pressing surface may be formed in an uneven shape.
 押さえ部材61、62は、必ずしも当該部材がフィルム外装電池50に対して押し付けられている(バネなどの付勢部材により付勢されている)必要はない。初期状態では、押さえ部材61、62がフィルム外装電池50に単に当接または近接しており、フィルム外装電池50が膨張し始めた際に密着して電池のそれ以上の変形を防止するようなものであればよい。このような構成であったとしても、後述する、ガス発生にともなう電池内部の電極積層体の膨張を防ぐことができるためである。 The pressing members 61 and 62 do not necessarily have to be pressed against the film-clad battery 50 (biased by a biasing member such as a spring). In the initial state, the pressing members 61 and 62 are simply in contact with or close to the film-clad battery 50, and when the film-clad battery 50 begins to expand, they are in close contact to prevent further deformation of the battery. If it is. Even if it is such a structure, it is because the expansion | swelling of the electrode laminated body inside a battery accompanying gas generation mentioned later can be prevented.
 図5(b)のような電池の配置の場合、フィルム外装電池50、50の間に1つの押さえ部材62を配置するとともに、その両側に押さえ部材61、63を配置するようにしてもよい。押さえ部材63の形状等については押さえ部材61、62に関する上記説明をそのまま流用しうる。なお、以上の説明では、フィルム外装電池50の両側に押さえ部材を配置する構成について説明したが、一方または両方を省略して、モジュール容器71の内面でフィルム外装電池50の外面を押さえるようにすることも可能である。 In the case of the battery arrangement as shown in FIG. 5B, one pressing member 62 may be disposed between the film-clad batteries 50 and 50, and the pressing members 61 and 63 may be disposed on both sides thereof. Regarding the shape and the like of the pressing member 63, the above description regarding the pressing members 61 and 62 can be used as it is. In the above description, the configuration in which the pressing members are arranged on both sides of the film-clad battery 50 has been described, but one or both are omitted and the outer surface of the film-clad battery 50 is pressed by the inner surface of the module container 71. It is also possible.
 上記のような押さえ部材61、62等が設けられていることにより、フィルム外装体電池50の外面は、フィルム外装体10の膨張が始まった時に、押さえ部材61、62等によって押さえられ、それにより、電池内部の電極積層体(図2の電池要素20)の変形が防止される。仮に、フィルム外装電池50の外形を拘束する部材が何ら設けられていない場合、フィルム外装体10や電池要素20がある程度の自由に膨張できることとなり、例えば電極間で発生したガスによって電極間の距離が広がってしまう可能性もある。電極間の距離が広がるということはその部分におけるレドックスシャトル剤のエネルギー消費機能が低下することを意味する。これに対して、本実施形態のようにフィルム外装電池50の外面を押さえ、変形を防止する押さえ部材が設けられている場合、ガスが発生するような状況においても電極間の距離を所定範囲内に保つことができ、ひいてはレドックスシャトル剤によるエネルギー消費機能を良好に保つことが可能となる。押さえ部材は、その押圧面がフィルム外装体の外面(最大面積面)の全面に当接して押さえるものであってもよいが、他の態様としては、例えば、同面の50%以上、好ましくは75%以上の領域を押さえるものであってもよい。 By providing the pressing members 61 and 62 as described above, the outer surface of the film exterior battery 50 is pressed by the pressing members 61 and 62 when the expansion of the film exterior body 10 starts, thereby The deformation of the electrode laminate (battery element 20 in FIG. 2) inside the battery is prevented. If no member for constraining the outer shape of the film-clad battery 50 is provided, the film-clad body 10 and the battery element 20 can expand to some extent freely. For example, the distance between the electrodes is increased by the gas generated between the electrodes. There is also the possibility of spreading. An increase in the distance between the electrodes means that the energy consumption function of the redox shuttle agent in that portion is reduced. On the other hand, when a pressing member that holds the outer surface of the film-clad battery 50 and prevents deformation is provided as in this embodiment, the distance between the electrodes is within a predetermined range even in a situation where gas is generated. Therefore, the energy consumption function by the redox shuttle agent can be kept good. The pressing member may be a member whose pressing surface abuts against the entire outer surface (maximum area surface) of the film exterior body, but as another aspect, for example, 50% or more of the same surface, preferably It may be one that suppresses an area of 75% or more.
 図5では一例として、縦置きのフィルム外装電池50に対してその両側を押さえ部材61、62等で保持することが描かれているが、フィルム外装電池50を外部から押さえてその膨張を防止できるものであれば、他にも種々の機構を採用可能である。 In FIG. 5, as an example, it is illustrated that both sides of the vertically mounted film-covered battery 50 are held by pressing members 61, 62, etc., but the film-covered battery 50 can be pressed from the outside to prevent its expansion. As long as it is a thing, various other mechanisms are employable.
 図6はフィルム外装電池50に対して圧力を加える機構を模式的に表したものである。具体的には、第1の部材65上にフィルム外装電池50が配置され、フィルム外装電池50上に該電池を押さえる第2の部材69が配置された構成となっている。なお、図6ではフィルム外装電池50を横置きとしているが、ここでは、電池を横置きとするか縦置きとするかは本質的な違いではなく、フィルム外装電池50をどのような部材で押圧するかや、付勢するか否か等がより重要な点である。 FIG. 6 schematically shows a mechanism for applying pressure to the film-clad battery 50. Specifically, the film-clad battery 50 is disposed on the first member 65, and the second member 69 that holds the battery is disposed on the film-clad battery 50. In FIG. 6, the film-clad battery 50 is placed horizontally, but here, it is not an essential difference whether the battery is placed horizontally or vertically. It is a more important point whether to do or to energize.
 第1の部材65に相当するものとしては、例えば、モジュールケース、積層された他のフィルム外装電池、または、電池が搭載される機器の一部を構成するベース部材等であってもよい。 As the member corresponding to the first member 65, for example, a module case, another laminated film battery, or a base member constituting a part of a device on which the battery is mounted may be used.
 第2の部材69に相当するものとしては、積層された他のフィルム外装電池、フィルム外装電池を押圧する押圧部材等であってもよく、また、例えばバネ等の付勢手段を併用してフィルム外装電池を押圧する構成とすることも好ましい。なお、フィルム外装電池を積層する場合には、電池の自重により、下方のフィルム外装電池が押圧されることとなるので、付勢手段を併用しなくてもよい場合もある。 As what corresponds to the 2nd member 69, the other film-clad battery laminated | stacked, the pressing member which presses a film-clad battery, etc. may be sufficient, for example, it is a film using together biasing means, such as a spring. It is also preferable that the outer battery is pressed. In addition, when laminating | stacking a film-clad battery, since a lower film-clad battery will be pressed by the dead weight of a battery, it may not be necessary to use an urging means together.
 なお、第1の部材と第2の部材との両方を電池に対して押し付ける構成としてもよい。一方、これとは反対に、初期状態では、第1の部材および/または第2の部材はフィルム外装電池に密着していない(例えば、若干の隙間を開けて配置されている)が、フィルム外装電池が膨張し始めると密着して、実質的に、押さえ部材としての機能を果たすような構成としてもよい。 In addition, it is good also as a structure which presses both a 1st member and a 2nd member with respect to a battery. On the other hand, in the initial state, the first member and / or the second member are not in close contact with the film-clad battery (for example, arranged with a slight gap), It is good also as a structure which closely_contact | adheres when a battery begins to expand | swell, and fulfill | performs the function as a pressing member substantially.
 以上のように構成された本発明の一形態に係るフィルム外装電池によれば、(i)電解液にレドックスシャトル剤が含まれているので、電池に過充電を引き起こすような充電状態となった際であっても、過剰な電流についてレドックスシャトル剤の作用によって消費されるので、正極活物質を過充電状態にすることがない。
(ii)また、レドックスシャトル剤の作動により電解液が高温になったとしても、セパレータはその融点が180℃以上のものであるので、セパレータが変形、溶融するといったこともなく、したがって電極間が短絡することもなく、安全性が確保される。
(iii)さらに、セパレータはガーレー値で100(sec/100cc)以下という通気度を有するものであるので、セパレータ内においてレドックスシャトル剤が良好に作動し、過剰な電流を良好に消費することができる。
According to the film-clad battery according to an embodiment of the present invention configured as described above, (i) since the redox shuttle agent is included in the electrolyte, the battery is in a charged state that causes overcharge. Even in such a case, excessive current is consumed by the action of the redox shuttle agent, so that the positive electrode active material is not overcharged.
(Ii) Even if the electrolyte becomes hot due to the operation of the redox shuttle agent, the separator has a melting point of 180 ° C. or higher, so that the separator is not deformed or melted. Safety is ensured without a short circuit.
(Iii) Furthermore, since the separator has a Gurley value of air permeability of 100 (sec / 100 cc) or less, the redox shuttle agent operates well in the separator and can consume excessive current well. .
 以上、本発明の一態様としての構成を幾つか説明したが、上記に説明したそれぞれ事項(技術的特徴)は本発明の範囲を逸脱しない範囲内で適宜組み合せることができる。 Although several configurations as one aspect of the present invention have been described above, the items (technical features) described above can be combined as appropriate without departing from the scope of the present invention.
 以下、本発明の実施形態を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the embodiments of the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
(実施例1)
 <負極>
 負極活物質として、天然黒鉛を用いた。この負極活物質と、負極結着剤としてのスチレン-ブタジエン共重合ゴム(SBR)と、増粘剤としてカルボキシメチルセルロース(CMC)と、導電補助材としてのアセチレンブラックとを、96:2:1:1の質量比で計量した。なお、SBRとしては、ゴム粒子分散体(固形分40質量%)を用い、結着材の固形分が上記質量比となるように計量して用いた。
(Example 1)
<Negative electrode>
Natural graphite was used as the negative electrode active material. 96: 2: 1: This negative electrode active material, styrene-butadiene copolymer rubber (SBR) as a negative electrode binder, carboxymethyl cellulose (CMC) as a thickener, and acetylene black as a conductive auxiliary material. Weighed at a mass ratio of 1. In addition, as SBR, the rubber particle dispersion (solid content 40 mass%) was used, and it measured and used so that the solid content of the binder might become the said mass ratio.
 そして、これらを水と混合して、負極スラリーを調製した。負極スラリーを厚さ10μmの銅箔に塗布した後に、窒素雰囲気下で80℃の熱処理を8時間行うことで乾燥させた。そして、得られた負極を露点-10℃の環境に3時間保存し、負極を得た。 And these were mixed with water and the negative electrode slurry was prepared. After applying the negative electrode slurry to a copper foil having a thickness of 10 μm, it was dried by performing a heat treatment at 80 ° C. for 8 hours in a nitrogen atmosphere. The obtained negative electrode was stored in an environment with a dew point of −10 ° C. for 3 hours to obtain a negative electrode.
 <正極>
 正極活物質として、LiNi0.8Co0.15Al0.05を用いた。この正極活物質と、導電補助材としてのカーボンブラックと、正極結着剤としてのポリフッ化ビニリデンとを、90:5:5の質量比で計量した。そして、これらをN-メチルピロリドンと混合して、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミ箔に塗布した後に乾燥し、さらにプレスすることで、正極を作製した。
<Positive electrode>
LiNi 0.8 Co 0.15 Al 0.05 O 2 was used as the positive electrode active material. This positive electrode active material, carbon black as a conductive auxiliary material, and polyvinylidene fluoride as a positive electrode binder were weighed at a mass ratio of 90: 5: 5. These were mixed with N-methylpyrrolidone to prepare a positive electrode slurry. The positive electrode slurry was applied to an aluminum foil having a thickness of 20 μm, dried, and further pressed to produce a positive electrode.
<セパレータ>
 厚さ25μm、空孔率70%、ガーレー値1.4秒/100ccの不織布構造のアラミドを用いた。アラミドの熱分解温度は400℃以上である。
<Separator>
Aramid having a nonwoven fabric structure with a thickness of 25 μm, a porosity of 70%, and a Gurley value of 1.4 seconds / 100 cc was used. The thermal decomposition temperature of aramid is 400 ° C. or higher.
 <電極積層体>
 得られた正極と負極を、セパレータを介して積層した。正極活物質に覆われていない正極集電体および負極活物質に覆われていない負極集電体の端部をそれぞれ溶接した。さらに、その溶接箇所に、アルミニウム製の正極端子およびニッケル製の負極端子をそれぞれ溶接して、平面的な積層構造を有する電極積層体を得た。セルの初回充電容量が10Ahになるように積層数を調整した。
<Electrode laminate>
The obtained positive electrode and negative electrode were laminated via a separator. The ends of the positive electrode current collector not covered with the positive electrode active material and the negative electrode current collector not covered with the negative electrode active material were welded. Furthermore, the positive electrode terminal made from aluminum and the negative electrode terminal made from nickel were each welded to the welding location, and the electrode laminated body which has a planar laminated structure was obtained. The number of layers was adjusted so that the initial charge capacity of the cell was 10 Ah.
 <電解液>
 非水溶媒としてECとDECの混合溶媒(体積比:EC/DEC=30/70)を用いた。その中に、支持塩としてのLiPFを電解液中の濃度が1Mとなるように添加した。さらに、レドックスシャトル剤として1、2-ジフルオロ-4,5-ジメトキシベンゼンを、電解液中の濃度が0.1Mになるように添加し、電解液を調製した。
<Electrolyte>
A mixed solvent of EC and DEC (volume ratio: EC / DEC = 30/70) was used as the non-aqueous solvent. Into this, LiPF 6 as a supporting salt was added so that the concentration in the electrolyte was 1M. Further, 1,2-difluoro-4,5-dimethoxybenzene was added as a redox shuttle agent so that the concentration in the electrolytic solution was 0.1 M, to prepare an electrolytic solution.
 <二次電池>
 電極積層体を外装体としてのアルミニウムラミネートフィルム内に収容し、外装体内部に電解液を注入した。その後、0.1気圧まで減圧しつつ外装体を封止し、リチウムイオン二次電池を作製した。二次電池の表面積は36000mmとした。
<Secondary battery>
The electrode laminate was accommodated in an aluminum laminate film as an exterior body, and an electrolyte solution was injected into the exterior body. Thereafter, the outer package was sealed while reducing the pressure to 0.1 atm, and a lithium ion secondary battery was produced. The surface area of the secondary battery was 36000 mm 2 .
 <評価>
 (過充電試験)
 作製した二次電池に対し、1Cで10Vまで定電流で充電する過充電試験を行った。電池の積層体部分を平板な押さえ板で、電池の厚みに合わせて定寸で固定した状態で試験を行った。試験前には、押さえ板による積層体に対する圧力は加わっていない。セル表面の最高到達温度と、二次電池からの発煙の有無を表1にまとめる。
<Evaluation>
(Overcharge test)
An overcharge test in which the manufactured secondary battery was charged at a constant current up to 10 V at 1 C was performed. The test was performed in a state where the battery laminate was fixed at a fixed size according to the thickness of the battery with a flat pressing plate. Prior to the test, no pressure was applied to the laminate by the pressing plate. Table 1 summarizes the maximum temperature reached on the cell surface and the presence or absence of smoke from the secondary battery.
(実施例2)
 セパレータとして厚さ15μm、空孔率65%、ガーレー値90秒/100ccの微多孔構造のアラミドを用いた。それ以外は、実施例1と同様の手順で二次電池を作製し、評価した。結果を表1に示す。
(Example 2)
Aramid having a microporous structure having a thickness of 15 μm, a porosity of 65%, and a Gurley value of 90 seconds / 100 cc was used as a separator. Other than that, a secondary battery was prepared and evaluated in the same procedure as in Example 1. The results are shown in Table 1.
(実施例3)
 セパレータとして厚さ25μm、空孔率70%、ガーレー値2.2秒/100ccの不織布構造のセルロースを用いた。それ以外は、実施例1と同様の手順で二次電池を作製し、評価した。セルロースの熱分解温度は約300℃である。結果を表1に示す。
(Example 3)
As the separator, cellulose having a nonwoven fabric structure with a thickness of 25 μm, a porosity of 70%, and a Gurley value of 2.2 seconds / 100 cc was used. Other than that, a secondary battery was prepared and evaluated in the same procedure as in Example 1. The thermal decomposition temperature of cellulose is about 300 ° C. The results are shown in Table 1.
(実施例4)
 セパレータとして厚さ20μm、空孔率80%、ガーレー値60秒/100ccの微多孔構造のポリイミドを用いた。それ以外は、実施例1と同様の手順で二次電池を作製し、評価した。ポリイミドの熱分解温度は約500℃以上である。結果を表1に示す。
Example 4
A microporous polyimide having a thickness of 20 μm, a porosity of 80%, and a Gurley value of 60 seconds / 100 cc was used as a separator. Other than that, a secondary battery was prepared and evaluated in the same procedure as in Example 1. The thermal decomposition temperature of polyimide is about 500 ° C. or higher. The results are shown in Table 1.
(比較例1)
 セパレータとして厚さ25μm、空孔率70%、ガーレー値1.7秒/100ccの不織布構造のポリプロピレンを用いた。それ以外は、実施例1と同様の手順で二次電池を作製し、評価した。ポリプロピレンの融点は160℃である。結果を表1に示す。
(Comparative Example 1)
As the separator, polypropylene having a nonwoven fabric structure having a thickness of 25 μm, a porosity of 70%, and a Gurley value of 1.7 seconds / 100 cc was used. Other than that, a secondary battery was prepared and evaluated in the same procedure as in Example 1. The melting point of polypropylene is 160 ° C. The results are shown in Table 1.
(比較例2)
 セパレータとして厚さ25μm、空孔率55%、ガーレー値200秒/100ccの微多孔構造のポリプロピレンを用いた。それ以外は、実施例1と同様の手順で二次電池を作製し、評価した。結果を表1に示す。
(Comparative Example 2)
A microporous polypropylene having a thickness of 25 μm, a porosity of 55%, and a Gurley value of 200 seconds / 100 cc was used as a separator. Other than that, a secondary battery was prepared and evaluated in the same procedure as in Example 1. The results are shown in Table 1.
(比較例3)
 セパレータとして厚さ45μm、空孔率65%、ガーレー値270秒/100ccの微多孔構造のアラミドを用いた。それ以外は、実施例1と同様の手順で二次電池を作製し、評価した。結果を表1に示す。
(Comparative Example 3)
Aramid having a microporous structure having a thickness of 45 μm, a porosity of 65%, and a Gurley value of 270 seconds / 100 cc was used as a separator. Other than that, a secondary battery was prepared and evaluated in the same procedure as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示される通り、融点が160℃であるポリプロピレンセパレータを備える二次電池(比較例1、2)においては、セルの表面温度が270℃程度まで上昇し、ラミネート外装体から発煙が見られた。これはセルの内部温度が160℃に到達し、セパレータが溶融・収縮し、正負極がショートしたためである。 As shown in Table 1, in the secondary battery (Comparative Examples 1 and 2) having a polypropylene separator having a melting point of 160 ° C., the cell surface temperature rose to about 270 ° C., and smoke was seen from the laminate outer package. It was. This is because the internal temperature of the cell reached 160 ° C., the separator melted and contracted, and the positive and negative electrodes were short-circuited.
 また、熱分解温度が400℃を越えるアラミド微多孔セパレータであっても、膜厚が45μmでガーレー値が270秒/100ccのものを備える二次電池(比較例3)においては、セルの表面温度が280℃まで上昇し、ラミネート外装体から発煙が見られた。これは膜厚とガーレー値の増加によって、レドックスシャトル剤の動作性が低下して、正極が過充電状態になり熱暴走したためである。 Further, even in the case of an aramid microporous separator having a thermal decomposition temperature exceeding 400 ° C., in the secondary battery having a film thickness of 45 μm and a Gurley value of 270 seconds / 100 cc (Comparative Example 3), the cell surface temperature Rose to 280 ° C., and smoke was seen from the laminate outer package. This is because the operability of the redox shuttle agent is reduced due to the increase in the film thickness and the Gurley value, the positive electrode is overcharged, and thermal runaway occurs.
 一方で、熱分解温度が400℃を越えるアラミドからなり、かつガーレー値が100秒/100cc以下であるセパレータを備える二次電池(実施例1、2)や、熱分解温度が300℃程度のセルロースからなるセパレータを備える二次電池(実施例3)、熱分解温度が500℃以上であるポリイミドセパレータを備える二次電池においては、到達温度が130℃程度にとどまり、ラミネート外装体からの発煙が見られなかった。これは、レドックスシャトル剤が正常に電流を消費し、かつセパレータの溶融・収縮が起こらなかったことで正負極のショートが抑制されたためと考えられる。 On the other hand, a secondary battery (Examples 1 and 2) including a separator made of aramid having a pyrolysis temperature exceeding 400 ° C. and having a Gurley value of 100 seconds / 100 cc or less, or cellulose having a pyrolysis temperature of about 300 ° C. In a secondary battery comprising a separator made of (Example 3) and a secondary battery comprising a polyimide separator having a thermal decomposition temperature of 500 ° C. or higher, the ultimate temperature is only about 130 ° C., and smoke is seen from the laminate outer package. I couldn't. This is presumably because the short circuit between the positive and negative electrodes was suppressed because the redox shuttle agent normally consumed current and the separator did not melt or shrink.
(付記)
 本出願は、以下の発明を開示する。
1.セパレータを介して積層された正極および負極を有する電池要素と、リチウム塩を含有する非水電解質と、それらを収容するフィルム外装体と、を備え、
a:上記非水電解質が、過充電時に過剰なエネルギーを消費するレドックスシャトル剤を含み、
b:上記セパレータは、
(b1)その融点が180℃以上であり、
(b2)ガーレー値が100〔sec/100cc〕以下である、フィルム外装電池。
なお、セパレータは、「その融点が180℃以上である」ものに代えて、「その融点または熱分解温度が180℃以上である」ものであってもよい。
(Appendix)
The present application discloses the following inventions.
1. A battery element having a positive electrode and a negative electrode laminated via a separator, a non-aqueous electrolyte containing a lithium salt, and a film outer package containing them,
a: The non-aqueous electrolyte contains a redox shuttle agent that consumes excess energy when overcharged,
b: The separator is
(B1) Its melting point is 180 ° C. or higher,
(B2) A film-clad battery having a Gurley value of 100 [sec / 100 cc] or less.
Note that the separator may be “whose melting point or thermal decomposition temperature is 180 ° C. or higher” instead of “the melting point is 180 ° C. or higher”.
2.上記セパレータの厚みが、12μm~40μmの範囲内である、上記1に記載のフィルム外装電池。 2. 2. The film-clad battery according to 1 above, wherein the separator has a thickness in the range of 12 μm to 40 μm.
3.上記セパレータが、織布または不織布である、上記1または2に記載のフィルム外装電池。 3. 3. The film-clad battery according to 1 or 2, wherein the separator is a woven fabric or a nonwoven fabric.
4.上記セパレータが、ガラス繊維、アラミド繊維、ポリイミド繊維の中から選ばれる、上記3に記載のフィルム外装電池。 4). 4. The film-clad battery according to 3 above, wherein the separator is selected from glass fiber, aramid fiber, and polyimide fiber.
5.容量あたりのフィルム外装体の表面積が、5000mm/Ah以下である、上記1~4のいずれかに記載のフィルム外装電池。 5. 5. The film-clad battery according to any one of 1 to 4 above, wherein the surface area of the film-clad body per capacity is 5000 mm 2 / Ah or less.
6.容量が4Ah以上である、上記1~5のいずれかに記載のフィルム外装電池。 6). 6. The film-clad battery according to any one of 1 to 5 above, having a capacity of 4 Ah or more.
7.上記1~6のいずれかに記載のフィルム外装電池と、それを収容するモジュール容器と、を備える電池モジュール(「組電池」と称することもできる)。 7). A battery module comprising the film-clad battery according to any one of 1 to 6 above and a module container that accommodates the battery (also referred to as “assembled battery”).
8. さらに、上記フィルム外装電池に当接しまたは近接した状態で配置され、電池内部でガスが発生した場合に当該電池を外部から押さえて上記電池要素の変形を防止する押さえ部材(61、62等)を備える、上記7に記載の電池モジュール。 8). Further, a pressing member (61, 62, etc.) that is disposed in contact with or close to the film-clad battery and that prevents the battery element from being deformed by pressing the battery from the outside when gas is generated inside the battery. 8. The battery module according to 7 above.
 本発明の一形態に係る二次電池は、例えば、電源を必要とするあらゆる産業分野に利用可能である。一例として、携帯電話、ノートパソコンなどのモバイル機器の電源として利用でき;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車などの電動車両の電源として利用でき;電車や衛星や潜水艦などの移動用輸送用媒体の電源として利用でき;電力を貯める蓄電システムとして利用できる。 The secondary battery according to one embodiment of the present invention can be used in, for example, all industrial fields that require a power source. As an example, it can be used as a power source for mobile devices such as mobile phones and laptop computers; it can be used as a power source for electric vehicles such as electric cars, hybrid cars, electric bikes, and electric assist bicycles; transport for transportation such as trains, satellites, and submarines It can be used as a power source for mediums; it can be used as a power storage system for storing electric power.
1 電池モジュール
10 フィルム外装体
11、12 フィルム
15 熱溶着部
18 ガス放出機構
20 電池要素
21、25 電極タブ
31 正極
35 負極
31a、35b 集電体
38 セパレータ
50 フィルム外装電池
61~63 押さえ部材
65、69 部材
71 モジュールケース
DESCRIPTION OF SYMBOLS 1 Battery module 10 Film exterior body 11, 12 Film 15 Heat welding part 18 Gas discharge | release mechanism 20 Battery element 21, 25 Electrode tab 31 Positive electrode 35 Negative electrode 31a, 35b Current collector 38 Separator 50 Film exterior battery 61-63 Holding member 65, 69 member 71 module case

Claims (8)

  1.  セパレータを介して積層された正極および負極を有する電池要素と、
     リチウム塩を含有する非水電解質と、
     それらを収容するフィルム外装体と、を備え、
    a:前記非水電解質が、過充電時に過剰なエネルギーを消費するレドックスシャトル剤を含み、
    b:前記セパレータは、
    (b1)その融点が180℃以上であり、
    (b2)ガーレー値が100〔sec/100cc〕以下である、
     フィルム外装電池。
    A battery element having a positive electrode and a negative electrode laminated via a separator;
    A non-aqueous electrolyte containing a lithium salt;
    A film exterior body for housing them,
    a: the non-aqueous electrolyte includes a redox shuttle agent that consumes excess energy when overcharged;
    b: The separator is
    (B1) Its melting point is 180 ° C. or higher,
    (B2) Gurley value is 100 [sec / 100cc] or less,
    Film outer battery.
  2.  前記セパレータの厚みが、12μm~40μmの範囲内である、請求項1に記載のフィルム外装電池。 2. The film-clad battery according to claim 1, wherein the separator has a thickness in the range of 12 μm to 40 μm.
  3.  前記セパレータが、織布または不織布である、請求項1または2に記載のフィルム外装電池。 The film-clad battery according to claim 1 or 2, wherein the separator is a woven fabric or a non-woven fabric.
  4.  前記セパレータが、ガラス繊維、アラミド繊維、ポリイミド繊維の中から選ばれる、請求項3に記載のフィルム外装電池。 The film-clad battery according to claim 3, wherein the separator is selected from glass fiber, aramid fiber, and polyimide fiber.
  5.  容量あたりのフィルム外装体の表面積が、5000mm/Ah以下である、請求項1~4のいずれか一項に記載のフィルム外装電池。 The film-clad battery according to any one of claims 1 to 4, wherein the surface area of the film-clad body per capacity is 5000 mm 2 / Ah or less.
  6.  容量が4Ah以上である、請求項1~5のいずれか一項に記載のフィルム外装電池。 The film-clad battery according to any one of claims 1 to 5, having a capacity of 4 Ah or more.
  7.  請求項1~6のいずれか一項に記載のフィルム外装電池と、
     それを収容するモジュール容器と、
     を備える電池モジュール。
    The film-clad battery according to any one of claims 1 to 6,
    A module container for housing it,
    A battery module comprising:
  8.  さらに、
     前記フィルム外装電池に当接しまたは近接した状態で配置され、電池内部でガスが発生した場合に当該電池を外部から押さえて前記電池要素の変形を防止する押さえ部材を備える、
     請求項7に記載の電池モジュール。
    further,
    It is disposed in contact with or close to the film-clad battery, and includes a pressing member that prevents the battery element from being deformed by pressing the battery from the outside when gas is generated inside the battery.
    The battery module according to claim 7.
PCT/JP2015/079548 2014-10-21 2015-10-20 Film pack battery and battery module provided with same WO2016063865A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016555227A JP6597631B2 (en) 2014-10-21 2015-10-20 Film exterior battery and battery module including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014214610 2014-10-21
JP2014-214610 2014-10-21
JP2015043797 2015-03-05
JP2015-043797 2015-03-05

Publications (1)

Publication Number Publication Date
WO2016063865A1 true WO2016063865A1 (en) 2016-04-28

Family

ID=55760898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079548 WO2016063865A1 (en) 2014-10-21 2015-10-20 Film pack battery and battery module provided with same

Country Status (2)

Country Link
JP (1) JP6597631B2 (en)
WO (1) WO2016063865A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167316A1 (en) * 2015-04-14 2016-10-20 日本電気株式会社 Lithium-ion secondary cell
JP2020149763A (en) * 2019-03-11 2020-09-17 マクセルホールディングス株式会社 Nonaqueous electrolyte battery
JP2021034305A (en) * 2019-08-28 2021-03-01 トヨタ紡織株式会社 Battery system
US20210226297A1 (en) * 2018-12-18 2021-07-22 Ngk Insulators, Ltd. Lithium secondary cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096412A1 (en) * 2004-03-31 2005-10-13 Nec Lamilion Energy, Ltd. Electrical device with film covering, frame member, and housing system for electrical device with film covering
JP2006269345A (en) * 2005-03-25 2006-10-05 Nec Lamilion Energy Ltd Overvoltage detecting method, device, and battery pack
JP2007018746A (en) * 2005-07-05 2007-01-25 Toyota Motor Corp Film-coated lithium cell
JP2007173030A (en) * 2005-12-22 2007-07-05 Toyota Motor Corp Battery
JP2008124064A (en) * 2006-11-08 2008-05-29 Asahi Kasei Fibers Corp Separator for capacitor
JP2012003950A (en) * 2010-06-17 2012-01-05 Nissan Motor Co Ltd Pressure device for laminate type battery
JP2012009165A (en) * 2010-06-22 2012-01-12 Teijin Techno Products Ltd Separator formed of extra fine nonwoven fabric
JP2013232328A (en) * 2012-04-27 2013-11-14 Asahi Kasei Corp Redox shuttle reagent for nonaqueous secondary battery, nonaqueous electrolyte, and nonaqueous secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096412A1 (en) * 2004-03-31 2005-10-13 Nec Lamilion Energy, Ltd. Electrical device with film covering, frame member, and housing system for electrical device with film covering
JP2006269345A (en) * 2005-03-25 2006-10-05 Nec Lamilion Energy Ltd Overvoltage detecting method, device, and battery pack
JP2007018746A (en) * 2005-07-05 2007-01-25 Toyota Motor Corp Film-coated lithium cell
JP2007173030A (en) * 2005-12-22 2007-07-05 Toyota Motor Corp Battery
JP2008124064A (en) * 2006-11-08 2008-05-29 Asahi Kasei Fibers Corp Separator for capacitor
JP2012003950A (en) * 2010-06-17 2012-01-05 Nissan Motor Co Ltd Pressure device for laminate type battery
JP2012009165A (en) * 2010-06-22 2012-01-12 Teijin Techno Products Ltd Separator formed of extra fine nonwoven fabric
JP2013232328A (en) * 2012-04-27 2013-11-14 Asahi Kasei Corp Redox shuttle reagent for nonaqueous secondary battery, nonaqueous electrolyte, and nonaqueous secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167316A1 (en) * 2015-04-14 2016-10-20 日本電気株式会社 Lithium-ion secondary cell
US20210226297A1 (en) * 2018-12-18 2021-07-22 Ngk Insulators, Ltd. Lithium secondary cell
JP2020149763A (en) * 2019-03-11 2020-09-17 マクセルホールディングス株式会社 Nonaqueous electrolyte battery
JP7337515B2 (en) 2019-03-11 2023-09-04 マクセル株式会社 Non-aqueous electrolyte battery
JP2021034305A (en) * 2019-08-28 2021-03-01 トヨタ紡織株式会社 Battery system
JP7356079B2 (en) 2019-08-28 2023-10-04 トヨタ紡織株式会社 battery system

Also Published As

Publication number Publication date
JPWO2016063865A1 (en) 2017-08-03
JP6597631B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
US8828604B2 (en) Battery
US10741879B2 (en) Secondary battery and production method therefor
US20150171476A1 (en) Non-aqueous electrolyte solution for secondary batteries, and lithium ion secondary battery
US10587002B2 (en) Secondary battery, method for manufacturing secondary battery, electric vehicle and electricity storage system
JP2011150958A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2011150958A5 (en)
JP6865555B2 (en) Non-aqueous secondary battery
JP2009176534A (en) Non-aqueous electrolyte secondary battery
JP6868969B2 (en) Non-aqueous secondary battery and non-aqueous electrolyte used for it
WO2015087580A1 (en) Production method for secondary battery
JP2009140641A (en) Nonaqueous electrolyte, gel electrolyte, and secondary battery using the same
JP6547295B2 (en) Battery and method of manufacturing the same
JP6597631B2 (en) Film exterior battery and battery module including the same
JP5793411B2 (en) Lithium secondary battery
CN111033865A (en) Lithium secondary battery and nonaqueous electrolyte
JP2004363086A (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery
KR20080102998A (en) Electrolytic solution and battery
JP6601410B2 (en) Film exterior battery and battery module including the same
JP5499359B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JP2021111586A (en) Non-aqueous electrolyte and non-aqueous secondary battery
JP5251174B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4835022B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2022047197A (en) Non-aqueous electrolyte and non-aqueous secondary battery
JP7020818B2 (en) Non-aqueous electrolyte and non-aqueous secondary battery
JP5107118B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016555227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853314

Country of ref document: EP

Kind code of ref document: A1