WO2016063499A1 - Intermittent air generation device - Google Patents

Intermittent air generation device Download PDF

Info

Publication number
WO2016063499A1
WO2016063499A1 PCT/JP2015/005202 JP2015005202W WO2016063499A1 WO 2016063499 A1 WO2016063499 A1 WO 2016063499A1 JP 2015005202 W JP2015005202 W JP 2015005202W WO 2016063499 A1 WO2016063499 A1 WO 2016063499A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
pilot
valve
pilot chamber
air
Prior art date
Application number
PCT/JP2015/005202
Other languages
French (fr)
Japanese (ja)
Inventor
浩二 石毛
丈司 上間
Original Assignee
クロダニューマティクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クロダニューマティクス株式会社 filed Critical クロダニューマティクス株式会社
Priority to JP2016555073A priority Critical patent/JP6557246B2/en
Priority to TW105101701A priority patent/TWI671484B/en
Publication of WO2016063499A1 publication Critical patent/WO2016063499A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/005Nozzles or other outlets specially adapted for discharging one or more gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/02Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery
    • B05B12/06Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery for effecting pulsating flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/12Fluid oscillators or pulse generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston

Definitions

  • the present invention relates to an intermittent air generating device, and more particularly to an intermittent air generating device used for an air blowing device or the like.
  • Compressed air is frequently used in facilities such as factories. Compressed air is often used as a power source for driving pneumatic cylinders and turbines, but most of the compressed air used in factories and the like is consumed as air blowing air. Air for air blowing is widely used, for example, for blowing off foreign matters such as cutting powder removal, draining, drying, cooling, product conveyance, and the like.
  • intermittent injection of compressed air is employed.
  • the purpose of air blowing can be suitably achieved, and the consumption of compressed air can be reduced.
  • the instantaneous wind speed or air volume of compressed air is important for enhancing the foreign matter removal ability, but the average wind speed or air volume is known to be less important. Yes.
  • air blow may be used for the purpose of transporting a collection of PET bottles.
  • air blow when compressed air is blown continuously, a state in which PET bottles and the like compete and adjacent PET bottles mesh with each other appears, which may hinder the transport of PET bottles and the like. .
  • Such a problem is solved when compressed air is blown intermittently in such conveyance.
  • the intermittent air blow can be realized by providing an electromagnetic on-off valve in the compressed air passage and supplying an on-off signal to the electromagnetic on-off valve from the outside.
  • a programmable controller By using a programmable controller, timing and duty can be arbitrarily adjusted.
  • electric wiring is required for the electromagnetic on-off valve, and a programmable controller is required to send an on-off signal to the electromagnetic on-off valve, which requires a great deal of cost and is newly introduced into existing equipment. With great difficulty.
  • Patent Document 1 requires a plurality of valve bodies that operate in association with each other and a complicated pilot passage structure for repeated opening and closing operations, and is not practical. is there.
  • an object of the present invention is to eliminate the need for a pilot pressure type on-off valve having a complicated configuration, and to provide an economical intermittent air generator that is excellent in practicality by a simple configuration. Is to provide.
  • the intermittent air generator comprises a pilot chamber (84), an inlet port (22) connected to a pneumatic source (10), an outlet port (24), an exhaust port (26), and the pilot chamber ( 84) is less than a predetermined value, the inlet port (22) and the outlet port (24) are connected to close the exhaust port (26), and the pressure in the pilot chamber (84) is a predetermined value.
  • the passage switching valve (20) having a valve body (74) that closes the inlet port (22) and connects the outlet port (24) and the exhaust port (26), and the pilot chamber A pilot passage (56A, 56B) for connecting (84) to the air pressure source (10), a throttle element (60) provided in the middle of the pilot passage (56A, 56B), and the pie Tsu Doo chamber (84) or the pilot passage (56A, 56B) of, and a exhaust passage connecting (58) to the exhaust port downstream (26) of the throttling element (60).
  • An intermittent air generator comprises a pilot chamber (184), an inlet port (122) connected to a pneumatic source (10), an outlet port (124), an exhaust port (126), and the pilot chamber ( When the pressure of 184) is less than a predetermined value, the inlet port (122) and the outlet port (124) are shut off and the exhaust port (126) is closed, and the pressure of the pilot chamber (184) is predetermined.
  • a passage switching valve (120) having a valve body (174) for communicating the inlet port (122) and the outlet port (124) and opening the exhaust port (126) when the value is equal to or greater than the value;
  • a pilot passage (156A, 156B) connecting a pilot chamber (184) to the air pressure source (10), and a pilot passage (156A, 156B) An exhaust for connecting the throttle element (160) provided therein and the pilot chamber (184) or the pilot passage (156A, 156B) downstream of the throttle element (160) to the exhaust port (126) And a passage (158).
  • a normally closed type passage switching valve (120) having a simple structure with a two-position type pilot valve and a simple passage configuration of compressed air, such as an intermittent air blow excellent in practicality due to a simple configuration. Therefore, an intermittent air generator is obtained.
  • the throttle elements (60, 160) are in a fully closed state in which the pilot passages (56A, 156A) are selectively closed.
  • the normally open type passage switching valve (20) can also perform continuous air blow by continuous injection, and the normally closed type passage switching valve (120) provides an injection stop state.
  • the intermittent air generator according to the present invention preferably has an on-off valve (200, 230) for selectively opening the pilot chamber (84, 184) to the atmosphere.
  • the normally open type passage switching valve (20) can also perform continuous air blow by continuous injection, and the normally closed type passage switching valve (120) provides an injection stop state.
  • the intermittent air generating device preferably has on-off valves (220, 240) for opening and closing the pilot passages (56B, 156B).
  • the normally open type passage switching valve (20) can also perform continuous air blow by continuous injection, and the normally closed type passage switching valve (120) provides an injection stop state.
  • the throttle element (60, 160) is constituted by a variable throttle element (60, 160) capable of changing the throttle degree.
  • the intermittent air blowing time can be variably set by changing the degree of restriction of the restriction elements (60, 160).
  • the intermittent air generator according to the present invention preferably further includes an air reservoir (90) connected to the pilot chamber (84, 184).
  • the intermittent air blowing stop time can be variably set according to the internal volume of the air reservoir (90).
  • the intermittent air generator according to the present invention preferably further includes a throttle element (88) provided in the middle of the exhaust passage (58).
  • the stop time of the intermittent air can be variably set according to the throttle degree of the throttle element (88).
  • the passage switching valve (20) is operated by an equilibrium relationship between a load due to the pressure of the pilot chamber (84) and a spring load of the compression coil spring (82).
  • a mechanism (110, 112) for variably installing the preload of the compression coil spring (82) is incorporated in the passage switching valve (20).
  • the intermittent air blowing time and stop time can be variably set.
  • the intermittent air generator according to the present invention is preferably capable of changing the internal volume of the pilot chamber (184, 185).
  • the intermittent air stop time can be variably set according to the internal volume of the pilot chamber (184, 185).
  • the intermittent air generator according to the present invention is preferably a valve in which at least a part of the throttle element (60), the pilot passage (56A, 56B) and the exhaust passage (58) accommodates the valve body (74). It is installed in the housing (28).
  • This configuration eliminates the need for external piping and allows further simplification.
  • a pilot pressure type on-off valve having a complicated structure is not required, and an intermittent operation excellent in practicality by a simple structure by a simple structure of a passage switching valve and a simple passage structure of compressed air.
  • An air generator is obtained.
  • FIG. 3 is a circuit diagram showing an air blow-out state of the air blow device according to the first embodiment. Sectional drawing which shows the 1st position state of the specific structural example of the channel
  • FIG. Sectional drawing which shows the 1st position state of the specific structural example of the channel
  • FIG. Sectional drawing which similarly shows the 2nd position state.
  • Sectional drawing of the valve closing state which shows the specific structural example of the channel
  • FIG. Sectional drawing of the valve opening state which shows the specific structural example of the channel
  • FIG. The circuit diagram which shows Embodiment 4 which applied the intermittent air generator by this invention as an air blower.
  • FIG. 4 Sectional drawing of the valve opening state which shows the specific structural example of the channel
  • FIG. 5 which applied the intermittent air generator by this invention as an air blower.
  • the circuit diagram which shows Embodiment 6 which applied the intermittent air generator by this invention as an air blower.
  • FIG. 1 which shows other embodiment which applied the intermittent air generator by this invention as an air blower.
  • FIG. 4 which shows other embodiment which applied the intermittent air generator by this invention as an air blower.
  • Embodiment 1 in which the intermittent air generating device according to the present invention is applied as an air blowing device will be described with reference to FIGS.
  • the air pressure source 10 may include a compressor, a filter, a regulator, and an on-off valve (not shown) in a known manner.
  • the compressed air output portion of the air pressure source 10 is connected to the inlet port 22 of the passage switching valve 20 by the inlet pipe 12.
  • the passage switching valve 20 is a three-port two-position pilot valve, and has the above-described inlet port 22, outlet port 24, and exhaust port 26.
  • the outlet port 24 is connected to an air gun 100 for air blowing by an outlet pipe 14 made of a hose or the like.
  • the air gun 100 has an air blow nozzle 102 for injecting compressed air to the outside, and a trigger valve 104 for opening and closing a flow path to the air blow nozzle 102.
  • the trigger valve 104 is a normally closed on-off valve that is normally closed by a spring, and is opened when the trigger lever 106 provided on the air gun 100 is pulled by hand against the spring force.
  • the first pilot passage 56A is branched from the inlet pipe 12 and connected to the inlet end of the throttle element 60.
  • the outlet end of the throttle element 60 is connected to the pilot chamber 84 of the passage switching valve 20 by the second pilot passage 56B.
  • the pilot chamber 84 is connected to the exhaust port 26 by an exhaust passage 58.
  • the passage switching valve 20 has a valve housing 28.
  • a cylindrical chamber 30 is formed in the valve housing 28.
  • the cylindrical chamber 30 has a closed first (right side) end and an open second (left side) end, in which a sleeve 36 is disposed.
  • the sleeve 36 is configured by a cylindrical body having an outer diameter slightly smaller than the inner diameter of the cylindrical chamber 30, and forms a cylindrical main valve chamber 38 on the inner side.
  • the sleeve 36 is sandwiched between an end wall 42 that defines the first end of the cylindrical chamber 30 and a plug 40 that is fitted into the opened second end of the cylindrical chamber 30, and is axially (see FIG. It is fixed to the valve housing 28 so that it cannot move in the left-right direction).
  • Each of the ports 22, 24, 26 is formed by a plurality of through holes that are formed so as to penetrate the wall of the sleeve 36 in the radial direction and are spaced apart in the circumferential direction.
  • annular grooves are formed on the outer periphery of the sleeve 36, and an O-ring 46 is fitted in each annular groove. These O-rings 46 are in contact with the inner peripheral surface of the cylindrical chamber 30. This forms a seal between adjacent ports 22, 24, 26. Further, the through holes constituting the ports 22, 24, and 26 communicate with each other in common by an annular passage formed between adjacent O-rings 46 on the outer periphery of the sleeve 36.
  • the valve housing 28 communicates with the outlet port 24 through an inlet passage 52 provided in the valve housing 28 and communicates with the inlet port 22, and through an outlet passage 54 also provided in the valve housing 28. And an outlet opening 50 is provided.
  • the inlet opening 48 and the outlet opening 50 form a recess provided with an internal thread, but may also form a cylindrical extension.
  • the valve housing 28 is provided with a cylindrical needle valve hole 62 parallel to the cylindrical chamber 30. Needle valve hole 62 has an outer end that opens at the outer surface of valve housing 28, and an inner end that is narrowed and communicates with inlet opening 48 via first pilot passage 56A.
  • a pilot chamber 84 located in the center and radial grooves 86A and 86B extending in the diametrical direction so as to communicate with the pilot chamber 84 are provided.
  • the radial groove 86A communicates with the needle valve hole 62 via a second pilot passage 56B formed in the valve housing 28.
  • the radial groove 86 ⁇ / b> B communicates with the exhaust port 26 through an exhaust passage 58 provided in the valve housing 28. Accordingly, the radial groove 86A forms an extension of the second pilot passage 56B, and the radial groove 86B forms an extension of the exhaust passage 58.
  • the needle valve body 64 is screwed into the needle valve hole 62.
  • the inner end 64 ⁇ / b> A of the needle valve body 64 is tapered, and enters the constricted portion of the needle valve hole 62 (the opening end of the first pilot passage 56 ⁇ / b> A with respect to the needle valve hole 62) so that the inner end 64 ⁇ / b> A of the needle valve hole 62
  • the throttle element 60 is configured. In this way, the throttle element 60 is incorporated in the valve housing 28 as a variable throttle valve.
  • the downstream end of the throttle element 60 is connected to the pilot chamber 84 via the second pilot passage 56B and the radial groove 86A. Therefore, a throttle element 60 for restricting the flow is provided between the two sections of the pilot passage.
  • the needle valve body 64 is screwed and retreated in the needle valve hole 62, and a tool engaging portion such as a hexagonal hole for adjusting the degree of throttling in the throttling element 60 is provided. (Not shown) is provided.
  • An O-ring 72 for holding the needle valve body 64 in the needle valve hole 62 in an airtight state is provided at an intermediate portion of the needle valve body 64.
  • a main valve body 74 having a cylindrical body is fitted so as to be movable in the axial direction.
  • An annular recess 76 in the central portion in the axial direction and a pair of lands 78 and 80 located on both sides in the axial direction of the annular recess 76 are formed on the outer periphery of the main valve body 74.
  • the inlet port 22 and the outlet port 24 are communicated with each other by the annular recess 76.
  • the exhaust port 26 is closed by the land 78.
  • the main valve body 74 is in the second position in contact with the right end wall 42 in the drawing as shown in FIG. 26, the inlet port 22 is closed by the land 80.
  • a circular central recess 68 is provided at the right end of the main valve body 74, and a corresponding central recess 44 is provided in the end wall 42 of the opposing valve housing 28.
  • a compression coil spring 82 is sandwiched between the central recesses 68 and 44. The compression coil spring 82 is biased in the direction in which the main valve body 74 abuts against the opposing surface of the plug 40 (leftward).
  • the valve housing 28 is provided with an air vent hole 45 in the central recess 44.
  • the pressure in the pilot chamber 84 acts on the main valve body 74 as a force that urges the main valve body 74 to the second position side (right side) against the compression coil spring 82.
  • the main valve body 74 operates by an equilibrium relationship between the load due to the pilot pressure and the spring load of the compression coil spring 82.
  • the pressure in the pilot chamber 84 is less than a predetermined value, the spring force of the compression coil spring 82
  • the valve moves to the right against the spring force of the compression coil spring 82 and moves to the right. In the second position (see FIG. 5).
  • the passage switching valve 20 forms a normally open type switching valve.
  • FIG. 1 shows a state where the air pressure source 10 is stopped and compressed air is not supplied.
  • Compressed air when the trigger valve 104 is closed and the main valve element 74 of the passage switching valve 20 is in the first position (see FIG. 4) (the pressure in the pilot chamber 84 is less than a predetermined value).
  • the compressed air passes through the passage switching valve 20 and is supplied to the outlet pipe 14.
  • compressed air is supplied to the pilot chamber 84 through the first pilot passage 56A, the throttle element 60, the second pilot passage 56B, etc., so that the pressure in the pilot chamber 84 is not increased instantaneously. It gradually rises under the action.
  • the main valve body 74 When the pressure in the pilot chamber 84 exceeds a predetermined value, the main valve body 74 is displaced to the second position (see FIG. 5) against the spring force of the compression coil spring 82, as shown in FIG. Then, the outlet port 24 communicates with the exhaust port 26 and the inlet port 22 is closed.
  • the trigger valve 104 When the trigger valve 104 is opened by operating the trigger lever 106 in this state, the state shown in FIG. 2 is reached, and the compressed air in the pilot chamber 84 is supplied to the exhaust passage 58, the passage switching valve 20, and the outlet pipe 14. The air is discharged from the air blow nozzle 102 through the trigger valve 104. However, due to the action of the throttle element 60, the amount of air discharged from the air blow nozzle 102 at this time is such that the main valve body 74 of the passage switching valve 20 is in the first position (see FIG. 4). It is a little compared with the jet flow rate.
  • the pressure in the pilot chamber 84 decreases.
  • the main valve body 74 of the passage switching valve 20 returns to the first position by the spring force of the compression coil spring 82, and the outlet port 24 becomes the inlet port 22.
  • the exhaust port 26 is closed and the state shown in FIG. 3 is obtained.
  • the compressed air from the air pressure source 10 passes through the passage switching valve 20 and the trigger valve 104 and is ejected from the air blow nozzle 102 to the outside with a large flow rate.
  • the exhaust port 26 since the exhaust port 26 is closed, a part of the compressed air is supplied from the inlet opening 48 to the pilot chamber 84 through the first pilot passage 56A, the throttle element 60, the second pilot passage 56B, and the like. Then, the pressure in the pilot chamber 84 gradually increases under the action of the throttle element 60.
  • the main valve element 74 is positioned at the second position again, and the outlet port 24 communicates with the exhaust port 26 as shown in FIG.
  • the blow time of the air blow is determined by the throttle degree of the throttle element 60 and the internal volume of the pilot chamber 84 that determine the rate of increase of the pressure in the pilot chamber 84.
  • the higher the throttle degree of the throttle element 60 the larger the internal volume of the pilot chamber 84.
  • the air blow stop time is determined by the internal volume of the pilot chamber 84. The larger the internal volume of the pilot chamber 84, the longer it takes to discharge the compressed air from the pilot chamber 84 until the pressure in the pilot chamber 84 becomes less than a predetermined value.
  • the air blow stop time becomes longer as the inner volume of the pilot chamber 84 is larger.
  • the blow time and stop time of the air blow are also determined by the preload and spring constant of the compression coil spring 82 of the passage switching valve 20, and the larger the preload and spring constant of the compression coil spring 82, the longer the blow time. Stop time is shortened. In this way, the blow time, stop time, and duty ratio of the air blow are variably set by changing the throttle degree of the throttle element 60, the internal volume of the pilot chamber 84, the spring force of the compression coil spring 82, and the spring constant. Can do.
  • the first embodiment there is no need for a pilot pressure type on-off valve having a complicated configuration, and a simple structure of the passage switching valve 20 using a 3-port 2-position type pilot valve and the compressed air With the simple passage configuration, an intermittent air generation device having a simple configuration and excellent in practicality can be obtained. Further, since the throttle element 60, the first pilot passage 56A, the second pilot passage 56B, and the exhaust passage 58 are provided in the valve housing 28, external piping for them is not required, and the number of parts is reduced. This further simplifies the process.
  • the throttle element 60 has a structure in which the inner end 64 ⁇ / b> A of the needle valve body 64 comes into contact with a portion defining the narrowed portion of the needle valve hole 62 so that the first pilot passage 56 ⁇ / b> A can be fully closed. be able to.
  • the air pressure source 10 may include a compressor, a filter, a regulator, and an on-off valve (not shown) in a known manner.
  • the compressed air output of the air pressure source 10 is connected to the inlet port 122 of the passage switching valve 120 by the inlet pipe 12.
  • the passage switching valve 120 is a 4-port 2-position pilot valve, and has the above-described inlet port 122, first outlet port 124, exhaust port 126, and second outlet port 127.
  • the first outlet port 124 is connected to an air gun 100 for air blowing by an outlet pipe 14 made of a hose or the like.
  • the air gun 100 has an air blow nozzle 102 for injecting compressed air to the outside, and a trigger valve 104 for opening and closing a flow path to the air blow nozzle 102.
  • the trigger valve 104 is a normally closed on-off valve that is normally closed by a spring, and is opened when the trigger lever 106 provided on the air gun 100 is pulled by hand against the spring force.
  • the second outlet port 127 is connected to the outlet pipeline 14 by an outlet passage 129.
  • a throttle element 131 is provided in the middle of the outlet passage 129.
  • the first pilot passage 156A branches from the inlet pipe 12 and is connected to the inlet end of the throttle element 160.
  • the outlet end of the throttle element 160 is connected to the pilot chamber 184 of the passage switching valve 120 via the second pilot passage 156B.
  • the pilot chamber 184 is connected to the exhaust port 126 via the exhaust passage 158.
  • the passage switching valve 120 has a valve housing 128.
  • a cylindrical chamber 130 is formed in the valve housing 128.
  • the cylindrical chamber 130 has a closed first (right side) end and an open second (left side) end, and a sleeve 136 is disposed therein.
  • the sleeve 136 is formed of a cylindrical body having an outer diameter slightly smaller than the inner diameter of the cylindrical chamber 130, and forms a cylindrical main valve chamber 138 on the inner side.
  • the sleeve 136 is sandwiched between an end wall 142 that defines a first end of the cylindrical chamber 130, a plug 140 fitted into the opened second end of the cylindrical chamber 130, and a washer-shaped rubber packing 141.
  • the valve housing 128 is fixed so that it cannot move in the axial direction (left and right in the figure).
  • the sleeve 136 has three ports in the axial direction so as to correspond to the inlet port 122, the first outlet port 124, and the second outlet port 127 described above with reference to FIG. Is formed.
  • Each port 122, 124, 127 is formed by a plurality of through holes that are formed so as to penetrate the wall of the sleeve 136 in the radial direction and are spaced apart in the circumferential direction. Further, an opening for a pilot chamber 184 described later of the sleeve 136 forms an exhaust port 126.
  • annular grooves are formed on the outer periphery of the sleeve 136, and an O-ring 146 is fitted in each annular groove. These O-rings 146 are in contact with the inner peripheral surface of the cylindrical chamber 130. This forms a seal between adjacent ports 122, 124, 127. Further, the through holes constituting each port 122, 124, 127 communicate with each other in common by an annular passage formed between adjacent O-rings 146 on the outer periphery of the sleeve 136.
  • the valve housing 128 has an inlet opening 148 communicating with the inlet port 122 via an inlet passage 152 provided in the valve housing 128, and a first outlet port 124 via an outlet passage 154 also provided in the valve housing 128. And an outlet opening 150 that communicates with the second outlet port 127 via the outlet passage 129.
  • the outlet passage 129 has a passage sectional area smaller than that of the outlet passage 154 and the like, so that the outlet passage 129 itself forms the throttle element 131 in FIGS.
  • the valve housing 128 is provided with a cylindrical needle valve hole 162 parallel to the cylindrical chamber 130. Needle valve hole 162 has an outer end that opens at the outer surface of valve housing 128, and an inner end that is narrowed and communicates with inlet opening 148 via first pilot passage 156A.
  • the needle valve body 164 is screwed into the needle valve hole 162.
  • the inner end 164A of the needle valve body 164 is tapered, and enters the constricted portion of the needle valve hole 162 (the opening end of the first pilot passage 156A with respect to the needle valve hole 162) to the inner end of the needle valve hole 162.
  • the throttle element 160 is configured. In this way, the throttle element 160 is incorporated in the valve housing 128 as a variable throttle valve.
  • the end surface of the plug 140 that contacts the opposite end of the sleeve 136 is provided with a pilot chamber 184 located in the center and a radial groove 186 that extends in the diametrical direction so as to communicate with the pilot chamber 184.
  • the radial groove 186 communicates with the needle valve hole 162 via a second pilot passage 156 ⁇ / b> B formed in the valve housing 128.
  • the downstream end of the throttle element 160 is connected to the pilot chamber 184 via the second pilot passage 156B and the radial groove 186. Therefore, a throttle element 160 for restricting the flow is provided between the two sections of the pilot passage.
  • a tool engagement portion such as a hexagonal hole for adjusting the degree of throttling in the throttling element 160 by screwing and screwing the needle valve body 164 into the needle valve hole 162. (Not shown) is provided.
  • An O-ring 172 for holding the needle valve body 64 in the needle valve hole 62 in an airtight state is provided at an intermediate portion of the needle valve body 164.
  • a hole 192 is formed in the plug 140.
  • Hole 192 has an outer end that opens at the outer surface of valve housing 128 and an inner end that opens into pilot chamber 184.
  • a movable plug 193 is screwed into the hole 192.
  • the movable plug 193 closes the outer end of the hole 192 and defines an extended pilot chamber 185 on the inner end side.
  • the movable plug 193 is provided with a tool engaging portion 194 such as a hexagonal hole for screwing and retracting the movable plug 193 in the hole 192 to increase or decrease the internal volume of the expansion pilot chamber 185.
  • An O-ring 195 for holding the movable plug 193 in the hole 192 in an airtight state is provided on the distal end side of the movable plug 193.
  • a main valve body 174 forming a cylindrical body is fitted so as to be movable in the axial direction.
  • An annular recess 176 at the center in the axial direction and a pair of lands 178 and 180 located on both sides in the axial direction of the annular recess 176 are formed on the outer periphery of the main valve body 174.
  • the land 178 closes the inlet port 122 and The communication between the exhaust port 126 and the second outlet port 127 is blocked by 180.
  • a circular center recess 168 is provided at the right end of the main valve body 174, and a corresponding center recess 144 is provided in the end wall 142 of the opposing valve housing 128.
  • a compression coil spring 182 is sandwiched between the central recesses 168 and 144. The compression coil spring 182 urges the main valve body 174 in a direction in which the main valve body 174 abuts against the opposing surface of the rubber packing 141 (to the left).
  • the valve housing 128 is formed with an air vent hole 145 in the central recess 144.
  • the pressure in the pilot chamber 184 acts on the main valve body 174 as a force that biases the main valve body 174 against the compression coil spring 182 to the second position side (right side).
  • the main valve body 174 operates according to an equilibrium relationship between the load due to the pilot pressure and the spring load of the compression coil spring 182, and when the pressure in the pilot chamber 184 is less than a predetermined value, the spring force of the compression coil spring 182 causes
  • the pressure in the pilot chamber 184 is equal to or higher than a predetermined value
  • the valve moves to the right against the spring force of the compression coil spring 182 and moves to the right.
  • the second position (see FIG. 10).
  • the passage switching valve 120 forms a normally closed switching valve.
  • the pilot chamber 184 communicates directly with the second outlet port 127 without requiring a special passage by the main valve chamber 138, so that the exhaust passage 158 in FIGS. 6 and 7 does not exist. .
  • FIG. 6 shows a state where the air pressure source 10 is stopped and compressed air is not supplied.
  • Compressed air when the trigger valve 104 is closed and the main valve body 174 of the passage switching valve 120 is in the first position (see FIG. 9) (the pressure in the pilot chamber 184 is less than a predetermined value).
  • the inlet port 122 is closed, so that the flow of compressed air that flows from the inlet port 122 to the outlet pipe 14 is blocked by the passage switching valve 120.
  • the exhaust port 126 is closed, and the flow of compressed air that flows from the exhaust port 126 to the outlet passage 129 is also blocked by the passage switching valve 120. Therefore, the first pilot passage 156A, the throttle element 160, the pressure in the pilot chamber 184 gradually rises under the action of the throttle element 160 by the compressed air supplied to the pilot chamber 184 through the second pilot passage 156B and the like.
  • the main valve body 174 When the pressure in the pilot chamber 184 exceeds a predetermined value, the main valve body 174 is displaced to the second position against the spring force of the compression coil spring 182 as shown in FIG. And the first outlet port 124 communicate with each other, and the exhaust port 126 and the second outlet port 127 communicate with each other.
  • the pressure in the pilot chamber 184 decreases.
  • the main valve body 174 of the passage switching valve 120 is in the state shown in FIG. 8 by the spring force of the compression coil spring 182.
  • the blow time of the air blow is determined by the throttle degree of the throttle elements 160 and 131 that determine the rate of increase in the pressure of the pilot chamber 184 and the internal volume of the pilot chamber 184.
  • the air blow stop time is determined by the internal volume of the pilot chamber 184.
  • the blow time and stop time of the air blow are also determined by the preload and spring constant of the compression coil spring 182 of the passage switching valve 120. The larger the preload and spring constant of the compression coil spring 182, the longer the blow time. Stop time is shortened. In this way, the blow time, stop time, and duty ratio of the air blow are variably set by changing the throttle degree of the throttle elements 160 and 131, the internal volume of the pilot chamber 184, the spring force of the compression coil spring 182 and the spring constant. can do.
  • the internal volume of the pilot chamber 184 can be variably set by changing the internal volume of the extended pilot chamber 185 by the movable plug 193.
  • the second embodiment there is no need for a pilot pressure type on-off valve having a complicated configuration, and a simple structure of the passage switching valve 120 and the compressed air of the 4-port 2-position type pilot valve is used.
  • a simple passage configuration an intermittent air generation device having a simple configuration and excellent in practicality can be obtained.
  • the throttle elements 160 and 131, the first pilot passage 156A, and the second pilot passage 156B are provided in the valve housing 128, external piping for them becomes unnecessary, and the number of parts is reduced. In this way, further simplification is achieved.
  • the throttle element 160 has a structure in which the inner end 164A of the needle valve body 164 comes into contact with a portion that defines the narrowed portion of the needle valve hole 162 so that the first pilot passage 156A can be fully closed. be able to.
  • FIG. 11 parts corresponding to those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof is omitted.
  • 12 and FIG. 13 parts corresponding to those in FIG. 4 are denoted by the same reference numerals as those in FIG. 4, and description thereof is omitted.
  • the plug 40 of the normally open type passage switching valve 20 in the first embodiment is provided with an on-off valve 200 that selectively opens the pilot chamber 84 to the atmosphere.
  • the on-off valve 200 is disposed in a valve chamber 202 formed in the plug 40, and is a columnar shape that can move between the valve closing position shown in FIG. 12 and the valve opening position shown in FIG.
  • the valve body 204 is provided.
  • the valve body 204 is restricted to move in the axial direction between the valve closing position and the valve opening position by the engagement with the stopper pin 206, and the O-ring 208 is inside the valve chamber 202 at the valve closing position.
  • the sealing performance of the pilot chamber 84 is maintained, and at the valve opening position, the O-ring 208 is separated from the inner peripheral surface of the valve chamber 202 by contact, thereby making the pilot chamber 84 the outer peripheral surface of the valve body 204.
  • the pilot chamber 84 is opened to the atmosphere by a gap 210 between the valve chamber 202 and the inner peripheral surface of the valve chamber 202.
  • the flow rate of compressed air discharged from the pilot chamber 84 by the on-off valve 200 is larger than the flow rate of compressed air in the throttle element 60.
  • the valve body 204 is urged toward the valve closing position by the spring force of the compression coil spring 212, and against the spring force of the compression coil spring 212 by pressing a button 214 provided on the outer end. Located in the open position.
  • the valve body 204 may be connected to an alternate mechanism (not shown) that selectively self-holds at either the valve closing position or the valve opening position.
  • valve body 204 When the valve body 204 is in the valve open position shown in FIG. 13 and the pilot chamber 84 is opened to the atmosphere in the on-off valve 200, the compressed air that has entered the pilot chamber 84 from the inlet opening 48 enters the atmosphere from the on-off valve 200. Therefore, the pressure in the pilot chamber 84 does not rise above a predetermined value, and the main valve body 74 is maintained in the first position.
  • continuous air blow is performed in which compressed air from the air pressure source 10 passes through the passage switching valve 20 and the trigger valve 104 and is continuously ejected from the air blow nozzle 102 with a large flow rate.
  • the air blow mode can be easily switched between the intermittent air blow and the continuous air blow only by opening and closing the on-off valve 200 incorporated in the passage switching valve 20.
  • FIGS. 14 parts corresponding to those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof is omitted.
  • 15 and FIG. 16 parts corresponding to those in FIG. 4 are denoted by the same reference numerals as those in FIG. 4, and description thereof is omitted.
  • the passage switching valve 20 in the first embodiment is provided with an on-off valve 220 for connecting and blocking the second pilot passage 56B.
  • the on-off valve 220 is disposed in a valve chamber 222 formed in the valve housing 28, and is a spool that is movable between a valve opening position shown in FIG. 15 and a valve closing position shown in FIG. It has a valve body 224.
  • the spool valve body 224 has a communication hole 225, establishes communication of the second pilot passage 56B by the communication hole 225 at the valve opening position, and blocks communication of the second pilot passage 56B at the valve closing position.
  • the spool valve body 224 is positioned at the valve opening position or the valve closing position by manual operation of the operation element 226 provided at the outer end, and is selectively held at any position by an alternate mechanism (not shown). Note that the on-off valve 220 formed by the spool valve body 224 is provided with a seal 227 for preventing air leakage.
  • continuous air blow is performed in which compressed air from the air pressure source 10 passes through the passage switching valve 20 and the trigger valve 104 and is continuously ejected from the air blow nozzle 102 with a large flow rate.
  • the air blow mode can be easily switched between the intermittent air blow and the continuous air blow simply by opening and closing the on-off valve 220 incorporated in the passage switching valve 20.
  • the on-off valve 220 may open and close the first pilot passage 56A on the upstream side of the throttle element 60.
  • FIG. 17 parts corresponding to those in FIG. 6 are denoted by the same reference numerals as those in FIG.
  • an on-off valve 230 that selectively opens the pilot chamber 184 of the normally closed passage switching valve 120 in the second embodiment to the atmosphere is provided.
  • the on-off valve 230 may be equivalent to the on-off valve 200 of the third embodiment.
  • the pilot chamber 184 When the pilot chamber 184 is opened to the atmosphere by the on-off valve 230, the pressure in the pilot chamber 184 does not exceed a predetermined value. As a result, the passage switching valve 120 is maintained in a closed state, and the compressed air from the air pressure source 10 is stopped from being ejected from the air blow nozzle 102 to the outside.
  • FIG. 18 parts corresponding to those in FIG. 6 are denoted by the same reference numerals as those in FIG.
  • an on-off valve 240 is provided to communicate and block the second pilot passage 156B of the normally closed passage switching valve 120 in the second embodiment.
  • the on-off valve 240 may be equivalent to the on-off valve 220 of the fourth embodiment.
  • the on-off valve 240 may be provided in the first pilot passage 156A.
  • the exhaust passage 58 is branched from the pilot chamber 84 (via the radial groove 86), but from the second pilot passage 56B downstream of the throttle element 60 (pilot chamber 84 side).
  • a branched passage may be used. If necessary, all or part of the throttle elements 60, 160, the first pilot passage 56A, the second pilot passage 56B, and the exhaust passage 58 can be provided outside the valve housing 28 or 128.
  • the second outlet port 127 may be a port open to the atmosphere.
  • the throttle elements 60 and 160 may be fixed throttles, or may consist of simple narrow passages or narrow passages. If desired, an air reservoir 90 can be connected to increase the effective volume of the pilot chambers 84, 184, as shown by phantom lines in FIGS. 1-3, 6-8.
  • a throttle element 88 may be provided in the middle of the exhaust passage 58.
  • the throttle element 88 serves to reduce the speed at which the compressed air in the pilot chamber 84 is discharged from the air blow nozzle 102 through the exhaust passage 58, the passage switching valve 20, the outlet pipe 14, and the trigger valve 104, The higher the aperture of the aperture element 88, the longer the air blow stop time.
  • the aperture of the aperture element 88 is required to be lower than the aperture of the aperture element 60.
  • the compression coil springs 82 and 182 can be exchanged and the spring constant can be selected and set. Further, as shown in FIG. 20, the axial position of the spring retainer 110 that forms the spring end receiving portion on the valve housing 28 side with respect to the valve housing 28 is configured to be displaceable by the adjusting screw 112, whereby the compression coil The preload of the spring 82 can be variably set. As a result, the blowing time and stop time can be changed or variably set.
  • the intermittent air generating device is not limited to the application to the air blowing device, and a drive device such as an air cylinder device and various pneumatic devices such as a diaphragm device and a pump device are connected to the outlet port 24. It can also be applied to various air devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Multiple-Way Valves (AREA)
  • Fluid-Driven Valves (AREA)
  • Portable Nailing Machines And Staplers (AREA)

Abstract

[Problem] To provide an intermittent air generation device excelling in applicability using a simple structure, without the need for a pilot pressure-type on-off valve using a complicated structure. [Solution] A passage switching valve (20) with a three-port two-position pilot valve, which connects an inlet port (22) and an outlet port (24) and closes an exhaust port (26) when the pressure in a pilot chamber (84) is less than a prescribed value, and which closes the inlet port (22) and connects the outlet port (24) and the exhaust port (26) when the pressure in the pilot chamber (84) is equal to or greater than the prescribed value, is used. A throttle element (60) is provided between a first pilot passage (56A) and a second pilot passage (56B) which connect the pilot chamber (84) of the passage switching valve (20) to an air pressure source (10). The second pilot passage (56B) on the downstream side of the pilot chamber (84) or the throttle element (60) is connected to the exhaust port (26) of the passage switching valve (20) by an exhaust passage (58).

Description

間歇エア発生装置Intermittent air generator
 本発明は、間歇エア発生装置に関し、更に詳細には、エアブロー装置等に用いられる間歇エア発生装置に関する。 The present invention relates to an intermittent air generating device, and more particularly to an intermittent air generating device used for an air blowing device or the like.
 工場等の設備に於いて、圧縮空気が多用されている。圧縮空気は、空気圧シリンダやタービンを駆動するための動力源として使用されることも多いが、工場などで使用される圧縮空気の多くの部分がエアブロー用の空気として消費されている。エアブロー用の空気は、例えば、切削粉除去等の異物の吹き飛ばし、水切り、乾燥、冷却、製品の搬送等に広く利用されている。 Compressed air is frequently used in facilities such as factories. Compressed air is often used as a power source for driving pneumatic cylinders and turbines, but most of the compressed air used in factories and the like is consumed as air blowing air. Air for air blowing is widely used, for example, for blowing off foreign matters such as cutting powder removal, draining, drying, cooling, product conveyance, and the like.
 エアブローの用途に於ける圧縮空気の消費量を削減するために、圧縮空気を間歇的に噴射することが採用されている。圧縮空気を間歇的に噴射することにより、エアブローの目的を好適に達成し、しかも圧縮空気の消費量を削減することができる。異物を除去する目的を達成するためには、圧縮空気の瞬間的な風速或いは風量が異物除去能力を高めるために重要である半面、平均的な風速或いは風量は、それほど重要でないことが知られている。 In order to reduce the consumption of compressed air in air blow applications, intermittent injection of compressed air is employed. By intermittently injecting compressed air, the purpose of air blowing can be suitably achieved, and the consumption of compressed air can be reduced. In order to achieve the purpose of removing foreign matter, the instantaneous wind speed or air volume of compressed air is important for enhancing the foreign matter removal ability, but the average wind speed or air volume is known to be less important. Yes.
 また、ペットボトル等の集合を搬送する目的で、エアブローを利用することがある。このような搬送において、圧縮空気を連続的に吹き出すようにすると、ペットボトル等が競り合って、隣り合うペットボトル同士が互いに噛み合う状態が出現し、ペットボトル等の搬送に支障を来す場合がある。このような搬送において圧縮空気を間歇的に吹き出すようにすると、そのような問題が解消される。 Also, air blow may be used for the purpose of transporting a collection of PET bottles. In such transport, when compressed air is blown continuously, a state in which PET bottles and the like compete and adjacent PET bottles mesh with each other appears, which may hinder the transport of PET bottles and the like. . Such a problem is solved when compressed air is blown intermittently in such conveyance.
 エアブローを間歇的に吹き出すことは、圧縮空気の通路に電磁開閉弁を設け、外部から電磁開閉弁に開閉信号を供給することにより実現することができる。プログラマブル・コントローラを用いることにより、タイミング及びデューティを任意に調整することができる。しかしながら、電磁開閉弁に対して電気配線を行い、電磁開閉弁に開閉信号を送るためにプログラマブル・コントローラ等を必要とし、多大なコストが必要であり、しかも既存の設備に新たに導入するためには多大な困難が伴う。 The intermittent air blow can be realized by providing an electromagnetic on-off valve in the compressed air passage and supplying an on-off signal to the electromagnetic on-off valve from the outside. By using a programmable controller, timing and duty can be arbitrarily adjusted. However, electric wiring is required for the electromagnetic on-off valve, and a programmable controller is required to send an on-off signal to the electromagnetic on-off valve, which requires a great deal of cost and is newly introduced into existing equipment. With great difficulty.
 このことに対処すべく、エアブロー装置の空気圧系に、フィードバック要素を組み込むことにより引き起こされる開閉弁の繰り返しの開閉動作によってエアブロー(圧縮空気)を間歇的に吹き出すことが提案されている(例えば、特許文献1)。 In order to cope with this, it has been proposed that air blow (compressed air) be intermittently blown out by repeated opening and closing operations of the on-off valve caused by incorporating a feedback element into the pneumatic system of the air blowing device (for example, patents) Reference 1).
日本国特許庁 特許第3978659号公報Japanese Patent Office Patent No. 3978659
 しかしながら、特許文献1に示されている開閉弁は、繰り返しの開閉動作のために、互いに関連し合って動作する複数個の弁体や複雑なパイロット通路構造を必要とし、実用性に欠けるものである。 However, the on-off valve shown in Patent Document 1 requires a plurality of valve bodies that operate in association with each other and a complicated pilot passage structure for repeated opening and closing operations, and is not practical. is there.
 このような従来技術の問題点に鑑み、本発明の目的は、複雑な構成によるパイロット圧式の開閉弁を必要とすることがなく、簡素な構成による実用性に優れ、経済的な間歇エア発生装置を提供することにある。 In view of the problems of the prior art, an object of the present invention is to eliminate the need for a pilot pressure type on-off valve having a complicated configuration, and to provide an economical intermittent air generator that is excellent in practicality by a simple configuration. Is to provide.
 本発明による間歇エア発生装置は、パイロット室(84)と、空気圧源(10)に接続される入口ポート(22)と、出口ポート(24)と、排気ポート(26)と、前記パイロット室(84)の圧力が所定値未満であるときには前記入口ポート(22)と前記出口ポート(24)とを連通させて前記排気ポート(26)を閉塞し、前記パイロット室(84)の圧力が所定値以上であるときには前記入口ポート(22)を閉塞して前記出口ポート(24)と前記排気ポート(26)とを連通させる弁体(74)とを有する通路切換弁(20)と、前記パイロット室(84)を前記空気圧源(10)に接続するパイロット通路(56A、56B)と、前記パイロット通路(56A、56B)の途中に設けられた絞り要素(60)と、前記パイロット室(84)或いは前記パイロット通路(56A、56B)の、前記絞り要素(60)の下流側を前記排気ポート(26)に接続する排気通路(58)とを具備している。 The intermittent air generator according to the present invention comprises a pilot chamber (84), an inlet port (22) connected to a pneumatic source (10), an outlet port (24), an exhaust port (26), and the pilot chamber ( 84) is less than a predetermined value, the inlet port (22) and the outlet port (24) are connected to close the exhaust port (26), and the pressure in the pilot chamber (84) is a predetermined value. When this is the case, the passage switching valve (20) having a valve body (74) that closes the inlet port (22) and connects the outlet port (24) and the exhaust port (26), and the pilot chamber A pilot passage (56A, 56B) for connecting (84) to the air pressure source (10), a throttle element (60) provided in the middle of the pilot passage (56A, 56B), and the pie Tsu Doo chamber (84) or the pilot passage (56A, 56B) of, and a exhaust passage connecting (58) to the exhaust port downstream (26) of the throttling element (60).
 この構成によれば、2位置型のパイロット弁による簡単な構造のノーマルオープン型の通路切換弁(20)と圧縮空気の簡単な通路構成とによって簡素な構成による実用性に優れた間歇エアブロー等のための間歇エア発生装置が得られる。 According to this configuration, a normally open type passage switching valve (20) having a simple structure with a two-position type pilot valve and a simple passage configuration of compressed air, such as an intermittent air blow excellent in practicality due to a simple configuration. Therefore, an intermittent air generator is obtained.
 本発明による間歇エア発生装置は、パイロット室(184)と、空気圧源(10)に接続される入口ポート(122)と、出口ポート(124)と、排気ポート(126)と、前記パイロット室(184)の圧力が所定値未満であるときには前記入口ポート(122)と前記出口ポート(124)とを遮断し、且つ前記排気ポート(126)を閉塞し、前記パイロット室(184)の圧力が所定値以上であるときには前記入口ポート(122)と前記出口ポート(124)とを連通させ、且つ前記排気ポート(126)を開放する弁体(174)とを有する通路切換弁(120)と、前記パイロット室(184)を前記空気圧源(10)に接続するパイロット通路(156A、156B)と、前記パイロット通路(156A、156B)の途中に設けられた絞り要素(160)と、前記パイロット室(184)或いは前記パイロット通路(156A、156B)の、前記絞り要素(160)の下流側を、前記排気ポート(126)に接続する排気通路(158)とを具備している。 An intermittent air generator according to the present invention comprises a pilot chamber (184), an inlet port (122) connected to a pneumatic source (10), an outlet port (124), an exhaust port (126), and the pilot chamber ( When the pressure of 184) is less than a predetermined value, the inlet port (122) and the outlet port (124) are shut off and the exhaust port (126) is closed, and the pressure of the pilot chamber (184) is predetermined. A passage switching valve (120) having a valve body (174) for communicating the inlet port (122) and the outlet port (124) and opening the exhaust port (126) when the value is equal to or greater than the value; A pilot passage (156A, 156B) connecting a pilot chamber (184) to the air pressure source (10), and a pilot passage (156A, 156B) An exhaust for connecting the throttle element (160) provided therein and the pilot chamber (184) or the pilot passage (156A, 156B) downstream of the throttle element (160) to the exhaust port (126) And a passage (158).
 この構成によれば、2位置型のパイロット弁による簡単な構造のノーマルクローズ型の通路切換弁(120)と圧縮空気の簡単な通路構成とによって簡素な構成による実用性に優れた間歇エアブロー等のための間歇エア発生装置が得られる。 According to this configuration, a normally closed type passage switching valve (120) having a simple structure with a two-position type pilot valve and a simple passage configuration of compressed air, such as an intermittent air blow excellent in practicality due to a simple configuration. Therefore, an intermittent air generator is obtained.
 本発明による間歇エア発生装置は、好ましくは、前記絞り要素(60、160)は選択的に前記パイロット通路(56A、156A)を閉塞する全閉状態をとる。 In the intermittent air generator according to the present invention, preferably, the throttle elements (60, 160) are in a fully closed state in which the pilot passages (56A, 156A) are selectively closed.
 この構成によれば、ノーマルオープン型の通路切換弁(20)では連続噴射による連続エアブローを行うこともでき、ノーマルクローズ型の通路切換弁(120)では、噴射停止状態が得られる。 According to this configuration, the normally open type passage switching valve (20) can also perform continuous air blow by continuous injection, and the normally closed type passage switching valve (120) provides an injection stop state.
 本発明による間歇エア発生装置は、好ましくは、前記パイロット室(84、184)を選択的に大気中に開放する開閉弁(200、230)を有する。 The intermittent air generator according to the present invention preferably has an on-off valve (200, 230) for selectively opening the pilot chamber (84, 184) to the atmosphere.
 この構成によれば、ノーマルオープン型の通路切換弁(20)では連続噴射による連続エアブローを行うこともでき、ノーマルクローズ型の通路切換弁(120)では、噴射停止状態が得られる。 According to this configuration, the normally open type passage switching valve (20) can also perform continuous air blow by continuous injection, and the normally closed type passage switching valve (120) provides an injection stop state.
 本発明による間歇エア発生装置は、好ましくは、前記パイロット通路(56B、156B)を開閉する開閉弁(220、240)を有する。 The intermittent air generating device according to the present invention preferably has on-off valves (220, 240) for opening and closing the pilot passages (56B, 156B).
 この構成によれば、ノーマルオープン型の通路切換弁(20)では連続噴射による連続エアブローを行うこともでき、ノーマルクローズ型の通路切換弁(120)では、噴射停止状態が得られる。 According to this configuration, the normally open type passage switching valve (20) can also perform continuous air blow by continuous injection, and the normally closed type passage switching valve (120) provides an injection stop state.
 本発明による間歇エア発生装置は、好ましくは、前記絞り要素(60、160)が絞り度を変更可能な可変絞り要素(60、160)によって構成されている。 In the intermittent air generating device according to the present invention, preferably, the throttle element (60, 160) is constituted by a variable throttle element (60, 160) capable of changing the throttle degree.
 この構成によれば、絞り要素(60、160)の絞り度を変更することにより、間歇エアの吹き出し時間を可変設定することができる。 According to this configuration, the intermittent air blowing time can be variably set by changing the degree of restriction of the restriction elements (60, 160).
 本発明による間歇エア発生装置は、好ましくは、更に、前記パイロット室(84、184)に接続されたエアリザーバ(90)を有する。 The intermittent air generator according to the present invention preferably further includes an air reservoir (90) connected to the pilot chamber (84, 184).
 この構成によれば、エアリザーバ(90)の内容積に応じて間歇エアの吹き出し停止時間を可変設定することができる。 According to this configuration, the intermittent air blowing stop time can be variably set according to the internal volume of the air reservoir (90).
 本発明による間歇エア発生装置は、好ましくは、更に、前記排気通路(58)の途中に設けられた絞り要素(88)を有する。 The intermittent air generator according to the present invention preferably further includes a throttle element (88) provided in the middle of the exhaust passage (58).
 この構成によれば、絞り要素(88)の絞り度に応じて間歇エアの停止時間を可変設定することができる。 According to this configuration, the stop time of the intermittent air can be variably set according to the throttle degree of the throttle element (88).
 本発明による間歇エア発生装置は、好ましくは、更に、前記通路切換弁(20)は、前記パイロット室(84)の圧力による荷重と圧縮コイルばね(82)のばね荷重との平衡関係によって動作するものであり、前記通路切換弁(20)には前記圧縮コイルばね(82)の予荷重を可変設置する機構(110、112)が組み込まれている。 In the intermittent air generating device according to the present invention, preferably, the passage switching valve (20) is operated by an equilibrium relationship between a load due to the pressure of the pilot chamber (84) and a spring load of the compression coil spring (82). A mechanism (110, 112) for variably installing the preload of the compression coil spring (82) is incorporated in the passage switching valve (20).
 この構成によれば、間歇エアの吹き出し時間および停止時間を可変設定することができる。 According to this configuration, the intermittent air blowing time and stop time can be variably set.
 本発明による間歇エア発生装置は、好ましくは、前記パイロット室(184、185)の内容積を変更可能である。 The intermittent air generator according to the present invention is preferably capable of changing the internal volume of the pilot chamber (184, 185).
 この構成によれば、パイロット室(184、185)の内容積に応じて間歇エアの停止時間を可変設定することができる。 According to this configuration, the intermittent air stop time can be variably set according to the internal volume of the pilot chamber (184, 185).
 本発明による間歇エア発生装置は、好ましくは、前記絞り要素(60)、前記パイロット通路(56A、56B)及び前記排気通路(58)の少なくとも一部が、前記弁体(74)を収容する弁ハウジング(28)に内設されている。 The intermittent air generator according to the present invention is preferably a valve in which at least a part of the throttle element (60), the pilot passage (56A, 56B) and the exhaust passage (58) accommodates the valve body (74). It is installed in the housing (28).
 この構成によれば、外部配管が不要になり、更なる簡素化を図ることができる。 This configuration eliminates the need for external piping and allows further simplification.
 本発明によれば、複雑な構成によるパイロット圧式の開閉弁を必要とすることがなく、簡単な構造の通路切換弁と圧縮空気の簡単な通路構成とによって簡素な構成による実用性に優れた間歇エア発生装置が得られる。 According to the present invention, a pilot pressure type on-off valve having a complicated structure is not required, and an intermittent operation excellent in practicality by a simple structure by a simple structure of a passage switching valve and a simple passage structure of compressed air. An air generator is obtained.
本発明による間歇エア発生装置をエアブロー装置として適用した実施形態1の初期状態を示す回路図。The circuit diagram which shows the initial state of Embodiment 1 which applied the intermittent air generator by this invention as an air blower. 実施形態1によるエアブロー装置のエアブロー停止状態を示す回路図。The circuit diagram which shows the air blow stop state of the air blow apparatus by Embodiment 1. FIG. 実施形態1によるエアブロー装置のエアブロー吹き出し状態を示す回路図。FIG. 3 is a circuit diagram showing an air blow-out state of the air blow device according to the first embodiment. 実施形態1によるエアブロー装置に用いられる通路切換弁の具体的構成例の第1の位置状態を示す断面図。Sectional drawing which shows the 1st position state of the specific structural example of the channel | path switching valve used for the air blow apparatus by Embodiment 1. FIG. 同じく第2の位置状態を示す断面図。Sectional drawing which similarly shows the 2nd position state. 本発明による間歇エア発生装置をエアブロー装置として適用した実施形態2の初期状態を示す回路図。The circuit diagram which shows the initial state of Embodiment 2 which applied the intermittent air generator by this invention as an air blower. 実施形態2によるエアブロー装置のエアブロー吹き出し状態を示す回路図。The circuit diagram which shows the air blow blowing state of the air blow apparatus by Embodiment 2. FIG. 実施形態2によるエアブロー装置のエアブロー停止状態を示す回路図。The circuit diagram which shows the air blow stop state of the air blow apparatus by Embodiment 2. FIG. 実施形態2によるエアブロー装置に用いられる通路切換弁の具体的構成例の第1の位置状態を示す断面図。Sectional drawing which shows the 1st position state of the specific structural example of the channel | path switching valve used for the air blower by Embodiment 2. FIG. 同じく第2の位置状態を示す断面図。Sectional drawing which similarly shows the 2nd position state. 本発明による間歇エア発生装置をエアブロー装置として適用した実施形態3を示す回路図。The circuit diagram which shows Embodiment 3 which applied the intermittent air generator by this invention as an air blower. 実施形態3によるエアブロー装置に用いられる通路切換弁の具体的構成例を示す閉弁状態の断面図。Sectional drawing of the valve closing state which shows the specific structural example of the channel | path switching valve used for the air blower by Embodiment 3. FIG. 実施形態3によるエアブロー装置に用いられる通路切換弁の具体的構成例を示す開弁状態の断面図。Sectional drawing of the valve opening state which shows the specific structural example of the channel | path switching valve used for the air blower by Embodiment 3. FIG. 本発明による間歇エア発生装置をエアブロー装置として適用した実施形態4を示す回路図。The circuit diagram which shows Embodiment 4 which applied the intermittent air generator by this invention as an air blower. 実施形態4によるエアブロー装置に用いられる通路切換弁の具体的構成例を示す開弁状態の断面図。Sectional drawing of the valve opening state which shows the specific structural example of the channel | path switching valve used for the air blow apparatus by Embodiment 4. FIG. 実施形態4によるエアブロー装置に用いられる通路切換弁の具体的構成例を示す閉弁状態の断面図。Sectional drawing of the valve closing state which shows the specific structural example of the channel | path switching valve used for the air blow apparatus by Embodiment 4. FIG. 本発明による間歇エア発生装置をエアブロー装置として適用した実施形態5を示す回路図。The circuit diagram which shows Embodiment 5 which applied the intermittent air generator by this invention as an air blower. 本発明による間歇エア発生装置をエアブロー装置として適用した実施形態6を示す回路図。The circuit diagram which shows Embodiment 6 which applied the intermittent air generator by this invention as an air blower. 本発明による間歇エア発生装置をエアブロー装置として適用した他の実施形態を示す図1と同様の図。The figure similar to FIG. 1 which shows other embodiment which applied the intermittent air generator by this invention as an air blower. 本発明による間歇エア発生装置をエアブロー装置として適用した他の実施形態を示す図4と同様の図。The figure similar to FIG. 4 which shows other embodiment which applied the intermittent air generator by this invention as an air blower.
 以下に、本発明による間歇エア発生装置をエアブロー装置として適用した実施形態1を、図1~図5を参照して説明する。 Hereinafter, Embodiment 1 in which the intermittent air generating device according to the present invention is applied as an air blowing device will be described with reference to FIGS.
 図1~図3に示されているエアブロー装置の実施形態に於いて、空気圧源10は、公知の態様でコンプレッサ、フィルタ、レギュレータ及び開閉弁(図示せず)を含むものであってよい。空気圧源10の圧縮空気出力部は入口管路12によって通路切換弁20の入口ポート22に接続されている。 1 to 3, the air pressure source 10 may include a compressor, a filter, a regulator, and an on-off valve (not shown) in a known manner. The compressed air output portion of the air pressure source 10 is connected to the inlet port 22 of the passage switching valve 20 by the inlet pipe 12.
 通路切換弁20は、3ポート2位置型のパイロット弁であり、前述の入口ポート22と、出口ポート24と、排気ポート26とを有する。出口ポート24はホース等からなる出口管路14によってエアブローのためのエアガン100に接続されている。エアガン100は、圧縮空気を外部に噴射するためのエアブローノズル102と、エアブローノズル102に至る流路を開閉するトリガ弁104とを有する。トリガ弁104は、通常ばねにより閉じられる常閉型の開閉弁であり、エアガン100に設けられたトリガレバー106がばね力に抗して手によって引かれることにより開弁する。 The passage switching valve 20 is a three-port two-position pilot valve, and has the above-described inlet port 22, outlet port 24, and exhaust port 26. The outlet port 24 is connected to an air gun 100 for air blowing by an outlet pipe 14 made of a hose or the like. The air gun 100 has an air blow nozzle 102 for injecting compressed air to the outside, and a trigger valve 104 for opening and closing a flow path to the air blow nozzle 102. The trigger valve 104 is a normally closed on-off valve that is normally closed by a spring, and is opened when the trigger lever 106 provided on the air gun 100 is pulled by hand against the spring force.
 第1パイロット通路56Aは入口管路12より分岐して絞り要素60の入口端に接続されている。絞り要素60の出口端は第2パイロット通路56Bによって通路切換弁20のパイロット室84に接続されている。パイロット室84は排気通路58によって排気ポート26に接続されている。 The first pilot passage 56A is branched from the inlet pipe 12 and connected to the inlet end of the throttle element 60. The outlet end of the throttle element 60 is connected to the pilot chamber 84 of the passage switching valve 20 by the second pilot passage 56B. The pilot chamber 84 is connected to the exhaust port 26 by an exhaust passage 58.
 次に、図4、図5を参照して通路切換弁20の具体的な構成を説明する。 Next, a specific configuration of the passage switching valve 20 will be described with reference to FIGS.
 通路切換弁20は弁ハウジング28を有する。弁ハウジング28には円筒室30が形成されている。円筒室30は、閉じられた第1の(右側)端部と、開かれた第2の(左側)端部とを有し、その内部にはスリーブ36が配置されている。スリーブ36は、円筒室30の内径より少し小さい外径の円筒体により構成され、内側に円筒形状の主弁室38を形成している。スリーブ36は、円筒室30の第1の端部を画定する端壁42と円筒室30の開かれた第2の端部に嵌入されているプラグ40とに挟まれて軸線方向(図にて左右方向)に移動できないように弁ハウジング28に固定されている。 The passage switching valve 20 has a valve housing 28. A cylindrical chamber 30 is formed in the valve housing 28. The cylindrical chamber 30 has a closed first (right side) end and an open second (left side) end, in which a sleeve 36 is disposed. The sleeve 36 is configured by a cylindrical body having an outer diameter slightly smaller than the inner diameter of the cylindrical chamber 30, and forms a cylindrical main valve chamber 38 on the inner side. The sleeve 36 is sandwiched between an end wall 42 that defines the first end of the cylindrical chamber 30 and a plug 40 that is fitted into the opened second end of the cylindrical chamber 30, and is axially (see FIG. It is fixed to the valve housing 28 so that it cannot move in the left-right direction).
 スリーブ36には、図にて左側から順に、図1について前述した入口ポート22と出口ポート24と排気ポート26とに対応するように3つのポートが、軸線方向に間隔をおいて形成されている。各ポート22、24、26は、各々、スリーブ36の壁を径方向に貫通するように穿設され、且つ周方向に間隔をおいて配置された複数の貫通孔によって形成されている。 Three ports are formed in the sleeve 36 at intervals in the axial direction so as to correspond to the inlet port 22, the outlet port 24, and the exhaust port 26 described above with reference to FIG. . Each of the ports 22, 24, 26 is formed by a plurality of through holes that are formed so as to penetrate the wall of the sleeve 36 in the radial direction and are spaced apart in the circumferential direction.
 スリーブ36の外周には4本の環状溝が形成されており、各環状溝にはOリング46が嵌め入れられている。これらのOリング46は円筒室30の内周面と当接する。これにより、隣接するポート22、24、26間のシールが形成される。また、各ポート22、24、26を構成する貫通孔は、スリーブ36の外周に於ける、隣接するOリング46間に形成される環状通路により互いに共通に連通する。 Four annular grooves are formed on the outer periphery of the sleeve 36, and an O-ring 46 is fitted in each annular groove. These O-rings 46 are in contact with the inner peripheral surface of the cylindrical chamber 30. This forms a seal between adjacent ports 22, 24, 26. Further, the through holes constituting the ports 22, 24, and 26 communicate with each other in common by an annular passage formed between adjacent O-rings 46 on the outer periphery of the sleeve 36.
 弁ハウジング28には、該弁ハウジング28に設けられた入口通路52を介して入口ポート22に連通する入口開口48と、同じく弁ハウジング28に設けられた出口通路54を介して出口ポート24に連通する出口開口50とが設けられている。図示された実施例では、入口開口48及び出口開口50は、内ねじが設けられた凹部をなしているが、筒状の延出部をなしていてもよい。 The valve housing 28 communicates with the outlet port 24 through an inlet passage 52 provided in the valve housing 28 and communicates with the inlet port 22, and through an outlet passage 54 also provided in the valve housing 28. And an outlet opening 50 is provided. In the illustrated embodiment, the inlet opening 48 and the outlet opening 50 form a recess provided with an internal thread, but may also form a cylindrical extension.
 弁ハウジング28には円筒形のニードル弁孔62が円筒室30に対して平行に設けられている。ニードル弁孔62は、弁ハウジング28の外面にて開口する外端と、狭窄され、第1パイロット通路56Aを介して入口開口48に連通する内端とを有する。 The valve housing 28 is provided with a cylindrical needle valve hole 62 parallel to the cylindrical chamber 30. Needle valve hole 62 has an outer end that opens at the outer surface of valve housing 28, and an inner end that is narrowed and communicates with inlet opening 48 via first pilot passage 56A.
 プラグ40の、スリーブ36の対向端に当接する端面には、中央に位置するパイロット室84と、パイロット室84に連通するように直径方向に延在する径方向溝86A、86Bとが設けられている。径方向溝86Aは、弁ハウジング28に形成された第2パイロット通路56Bを介してニードル弁孔62に連通している。径方向溝86Bは、弁ハウジング28に内設された排気通路58を介して排気ポート26に連通している。従って、径方向溝86Aは第2パイロット通路56Bの延長部をなし、径方向溝86Bは排気通路58の延長部をなす。 On the end surface of the plug 40 that contacts the opposite end of the sleeve 36, a pilot chamber 84 located in the center and radial grooves 86A and 86B extending in the diametrical direction so as to communicate with the pilot chamber 84 are provided. Yes. The radial groove 86A communicates with the needle valve hole 62 via a second pilot passage 56B formed in the valve housing 28. The radial groove 86 </ b> B communicates with the exhaust port 26 through an exhaust passage 58 provided in the valve housing 28. Accordingly, the radial groove 86A forms an extension of the second pilot passage 56B, and the radial groove 86B forms an extension of the exhaust passage 58.
 ニードル弁体64がニードル弁孔62に捩じ込まれている。ニードル弁体64の内端64Aは、先細にされており、ニードル弁孔62の狭窄部分(第1パイロット通路56Aのニードル弁孔62に対する開口端)に突入してニードル弁孔62の内端の狭窄部分と協働することにより、絞り要素60を構成している。このようにして、絞り要素60が可変絞り弁として弁ハウジング28に組み込まれている。 The needle valve body 64 is screwed into the needle valve hole 62. The inner end 64 </ b> A of the needle valve body 64 is tapered, and enters the constricted portion of the needle valve hole 62 (the opening end of the first pilot passage 56 </ b> A with respect to the needle valve hole 62) so that the inner end 64 </ b> A of the needle valve hole 62 By cooperating with the constriction portion, the throttle element 60 is configured. In this way, the throttle element 60 is incorporated in the valve housing 28 as a variable throttle valve.
 絞り要素60の下流端は、第2パイロット通路56B及び径方向溝86Aを介してパイロット室84に接続されている。従って、流れを絞るための絞り要素60が、パイロット通路の2つの区間の間に設けられている。ニードル弁体64の後端には、ニードル弁体64をニードル弁孔62内で螺進螺退させ、絞り要素60に於ける絞りの程度を調節するための6角孔などの工具係合部(不図示)が設けられている。ニードル弁体64の中間部には、ニードル弁体64をニードル弁孔62内に気密状態で保持するためのOリング72が設けられている。 The downstream end of the throttle element 60 is connected to the pilot chamber 84 via the second pilot passage 56B and the radial groove 86A. Therefore, a throttle element 60 for restricting the flow is provided between the two sections of the pilot passage. At the rear end of the needle valve body 64, the needle valve body 64 is screwed and retreated in the needle valve hole 62, and a tool engaging portion such as a hexagonal hole for adjusting the degree of throttling in the throttling element 60 is provided. (Not shown) is provided. An O-ring 72 for holding the needle valve body 64 in the needle valve hole 62 in an airtight state is provided at an intermediate portion of the needle valve body 64.
 主弁室38には円柱体をなす主弁体74が軸線方向に移動可能に嵌入されている。主弁体74の外周部には、軸方向中央部の円環凹部76と、円環凹部76の軸線方向の両側に位置する1対のランド78、80とが形成されている。主弁体74が、図4に示されているように、図にて左側のプラグ40に当接する第1の位置にあるときには円環凹部76によって入口ポート22と出口ポート24とを連通させてランド78によって排気ポート26を閉塞する。これに対して、主弁体74が、図5に示されているように、図にて右側の端壁42に当接する第2の位置にあるときには円環凹部76によって出口ポート24と排気ポート26とを連通させてランド80によって入口ポート22を閉塞する。 In the main valve chamber 38, a main valve body 74 having a cylindrical body is fitted so as to be movable in the axial direction. An annular recess 76 in the central portion in the axial direction and a pair of lands 78 and 80 located on both sides in the axial direction of the annular recess 76 are formed on the outer periphery of the main valve body 74. As shown in FIG. 4, when the main valve body 74 is in the first position in contact with the left plug 40 in the figure, the inlet port 22 and the outlet port 24 are communicated with each other by the annular recess 76. The exhaust port 26 is closed by the land 78. On the other hand, when the main valve body 74 is in the second position in contact with the right end wall 42 in the drawing as shown in FIG. 26, the inlet port 22 is closed by the land 80.
 主弁体74の右端には、円形の中心凹部68が設けられ、対向する弁ハウジング28の端壁42には、対応する中心凹部44が設けられている。圧縮コイルばね82が両中心凹部68、44間に挟設されている。圧縮コイルばね82は、主弁体74をプラグ40の対向面に当接する向きに(左方向に)付勢される。なお、弁ハウジング28には中心凹部44の空気抜き孔45が穿設されている。 A circular central recess 68 is provided at the right end of the main valve body 74, and a corresponding central recess 44 is provided in the end wall 42 of the opposing valve housing 28. A compression coil spring 82 is sandwiched between the central recesses 68 and 44. The compression coil spring 82 is biased in the direction in which the main valve body 74 abuts against the opposing surface of the plug 40 (leftward). The valve housing 28 is provided with an air vent hole 45 in the central recess 44.
 パイロット室84の圧力、つまりパイロット圧は主弁体74を圧縮コイルばね82に抗して第2の位置側(右側)に付勢する力として主弁体74に作用する。これにより、主弁体74は、パイロット圧による荷重と圧縮コイルばね82のばね荷重との平衡関係によって動作し、パイロット室84の圧力が所定値未満であるときには、圧縮コイルばね82のばね力によって左側に移動して前述の第1の位置(図4参照)に位置し、パイロット室84の圧力が所定値以上であるときには、圧縮コイルばね82のばね力に抗して右側に移動して前述の第2の位置(図5参照)に位置する。かくして、通路切換弁20はノーマルオープン型の切換弁をなす。 The pressure in the pilot chamber 84, that is, the pilot pressure, acts on the main valve body 74 as a force that urges the main valve body 74 to the second position side (right side) against the compression coil spring 82. As a result, the main valve body 74 operates by an equilibrium relationship between the load due to the pilot pressure and the spring load of the compression coil spring 82. When the pressure in the pilot chamber 84 is less than a predetermined value, the spring force of the compression coil spring 82 When the pressure in the pilot chamber 84 is equal to or higher than a predetermined value, the valve moves to the right against the spring force of the compression coil spring 82 and moves to the right. In the second position (see FIG. 5). Thus, the passage switching valve 20 forms a normally open type switching valve.
 次に上述の構成によるエアブロー装置の作用について説明する。 Next, the operation of the air blow device having the above configuration will be described.
 図1は、空気圧源10が停止していて圧縮空気の供給が行われていない状態を示している。トリガ弁104が閉弁していて、通路切換弁20の主弁体74が第1の位置(図4参照)に位置している状態(パイロット室84の圧力が所定値未満)で、圧縮空気の供給が開始されると、圧縮空気が通路切換弁20を通過して出口管路14まで供給される。同時に圧縮空気が第1パイロット通路56A、絞り要素60、第2パイロット通路56B等を通ってパイロット室84に供給され、パイロット室84の圧力が、(瞬時に増大するのではなく)絞り要素60の作用のもとに徐々に上昇する。 FIG. 1 shows a state where the air pressure source 10 is stopped and compressed air is not supplied. Compressed air when the trigger valve 104 is closed and the main valve element 74 of the passage switching valve 20 is in the first position (see FIG. 4) (the pressure in the pilot chamber 84 is less than a predetermined value). Is started, the compressed air passes through the passage switching valve 20 and is supplied to the outlet pipe 14. At the same time, compressed air is supplied to the pilot chamber 84 through the first pilot passage 56A, the throttle element 60, the second pilot passage 56B, etc., so that the pressure in the pilot chamber 84 is not increased instantaneously. It gradually rises under the action.
 パイロット室84の圧力が所定値以上になると、図5に示されているように、主弁体74が、圧縮コイルばね82のばね力に抗して第2の位置(図5参照)に変位し、出口ポート24が排気ポート26に連通して入口ポート22が閉塞する。 When the pressure in the pilot chamber 84 exceeds a predetermined value, the main valve body 74 is displaced to the second position (see FIG. 5) against the spring force of the compression coil spring 82, as shown in FIG. Then, the outlet port 24 communicates with the exhaust port 26 and the inlet port 22 is closed.
 この状態で、トリガレバー106の操作によってトリガ弁104が開弁すると、図2に示されている状態になり、パイロット室84の圧縮空気が、排気通路58、通路切換弁20、出口管路14、トリガ弁104を通ってエアブローノズル102より外部に排出される。しかしながら、絞り要素60の作用により、このときにエアブローノズル102より排出される空気の量は、通路切換弁20の主弁体74が第1の位置(図4参照)に位置している状態下の噴出流量に比して僅かである。 When the trigger valve 104 is opened by operating the trigger lever 106 in this state, the state shown in FIG. 2 is reached, and the compressed air in the pilot chamber 84 is supplied to the exhaust passage 58, the passage switching valve 20, and the outlet pipe 14. The air is discharged from the air blow nozzle 102 through the trigger valve 104. However, due to the action of the throttle element 60, the amount of air discharged from the air blow nozzle 102 at this time is such that the main valve body 74 of the passage switching valve 20 is in the first position (see FIG. 4). It is a little compared with the jet flow rate.
 パイロット室84の圧縮空気が、排気通路58、通路切換弁20、出口管路14、トリガ弁104を通ってエアブローノズル102より外部に排出されるに従って、パイロット室84の圧力が低下する。その結果、パイロット室84の圧力が所定値未満になると、圧縮コイルばね82のばね力により、通路切換弁20の主弁体74が第1の位置に復帰し、出口ポート24が入口ポート22に連通して排気ポート26が閉塞して図3に示されている状態になる。 As the compressed air in the pilot chamber 84 is exhausted from the air blow nozzle 102 through the exhaust passage 58, the passage switching valve 20, the outlet pipe 14, and the trigger valve 104, the pressure in the pilot chamber 84 decreases. As a result, when the pressure in the pilot chamber 84 becomes less than a predetermined value, the main valve body 74 of the passage switching valve 20 returns to the first position by the spring force of the compression coil spring 82, and the outlet port 24 becomes the inlet port 22. As a result, the exhaust port 26 is closed and the state shown in FIG. 3 is obtained.
 これにより、空気圧源10からの圧縮空気が通路切換弁20及びトリガ弁104を通過して、エアブローノズル102より外部に大流量をもって噴出する。このときには、排気ポート26が閉塞していることにより、圧縮空気の一部が、入口開口48から、第1パイロット通路56A、絞り要素60、第2パイロット通路56B等を通ってパイロット室84に供給され、パイロット室84の圧力が絞り要素60の作用のもとに徐々に上昇する。パイロット室84の圧力が所定値以上になると、主弁体74が再び第2の位置に位置し、図2に示されているように、出口ポート24が排気ポート26に連通して入口ポート22が閉塞し、エアブローノズル102よりの圧縮空気の大流量の噴出が停止すると共に、再び、パイロット室84の圧縮空気が、排気通路58、通路切換弁20、出口管路14、トリガ弁104を通ってエアブローノズル102より外部に排出され始める。 Thereby, the compressed air from the air pressure source 10 passes through the passage switching valve 20 and the trigger valve 104 and is ejected from the air blow nozzle 102 to the outside with a large flow rate. At this time, since the exhaust port 26 is closed, a part of the compressed air is supplied from the inlet opening 48 to the pilot chamber 84 through the first pilot passage 56A, the throttle element 60, the second pilot passage 56B, and the like. Then, the pressure in the pilot chamber 84 gradually increases under the action of the throttle element 60. When the pressure in the pilot chamber 84 becomes a predetermined value or more, the main valve element 74 is positioned at the second position again, and the outlet port 24 communicates with the exhaust port 26 as shown in FIG. Is blocked, the injection of a large flow rate of compressed air from the air blow nozzle 102 stops, and the compressed air in the pilot chamber 84 again passes through the exhaust passage 58, the passage switching valve 20, the outlet conduit 14, and the trigger valve 104. Then, the air starts to be discharged from the air blow nozzle 102.
 以降、通路切換弁20の切換作用のもとにパイロット室84の圧力の降下と上昇とが繰り返されることにより、圧縮空気の噴出と停止が繰り返され、間歇エアブローが行われる。エアブローの吹き出し時間はパイロット室84の圧力の上昇速度を決める絞り要素60の絞り度及びパイロット室84の内容積によって決まり、絞り要素60の絞り度が高いほど、またパイロット室84の内容積が大きいほど、エアブローの吹き出し時間が長くなる。エアブローの停止時間は、パイロット室84の内容積によって決まり、パイロット室84の内容積が大きいほど、パイロット室84の圧力が所定値未満になるまでのパイロット室84の圧縮空気の排出に時間がかかるので、パイロット室84の内容積が大きいほど、エアブローの停止時間は長くなる。また、エアブローの吹き出し時間と停止時間とは、通路切換弁20の圧縮コイルばね82の予荷重及びばね定数によっても決まり、圧縮コイルばね82の予荷重及びばね定数が大きいほど吹き出し時間が長くなると共に停止時間が短くなる。このようにして、エアブローの吹き出し時間、停止時間及びデューティ比は、絞り要素60の絞り度、パイロット室84の内容積及び圧縮コイルばね82のばね力、ばね定数を変更することにより可変設定することができる。 Thereafter, the pressure drop and rise in the pilot chamber 84 are repeated under the switching action of the passage switching valve 20, whereby the compressed air is repeatedly ejected and stopped, and intermittent air blow is performed. The blow time of the air blow is determined by the throttle degree of the throttle element 60 and the internal volume of the pilot chamber 84 that determine the rate of increase of the pressure in the pilot chamber 84. The higher the throttle degree of the throttle element 60, the larger the internal volume of the pilot chamber 84. The longer the blow time of the air blow becomes. The air blow stop time is determined by the internal volume of the pilot chamber 84. The larger the internal volume of the pilot chamber 84, the longer it takes to discharge the compressed air from the pilot chamber 84 until the pressure in the pilot chamber 84 becomes less than a predetermined value. Therefore, the air blow stop time becomes longer as the inner volume of the pilot chamber 84 is larger. The blow time and stop time of the air blow are also determined by the preload and spring constant of the compression coil spring 82 of the passage switching valve 20, and the larger the preload and spring constant of the compression coil spring 82, the longer the blow time. Stop time is shortened. In this way, the blow time, stop time, and duty ratio of the air blow are variably set by changing the throttle degree of the throttle element 60, the internal volume of the pilot chamber 84, the spring force of the compression coil spring 82, and the spring constant. Can do.
 上述したように、実施形態1によれば、複雑な構成によるパイロット圧式の開閉弁を必要とすることがなく、3ポート2位置型のパイロット弁による簡単な構造の通路切換弁20と圧縮空気の簡単な通路構成とによって簡素な構成による実用性に優れた間歇エア発生装置が得られる。また、絞り要素60、第1パイロット通路56A、第2パイロット通路56B及び排気通路58が弁ハウジング28に内設されていることにより、これらのための外部配管が不要になり、部品点数が低減され、このことによって更なる簡素化が図られる。 As described above, according to the first embodiment, there is no need for a pilot pressure type on-off valve having a complicated configuration, and a simple structure of the passage switching valve 20 using a 3-port 2-position type pilot valve and the compressed air With the simple passage configuration, an intermittent air generation device having a simple configuration and excellent in practicality can be obtained. Further, since the throttle element 60, the first pilot passage 56A, the second pilot passage 56B, and the exhaust passage 58 are provided in the valve housing 28, external piping for them is not required, and the number of parts is reduced. This further simplifies the process.
 絞り要素60は、ニードル弁体64の内端64Aがニードル弁孔62の狭窄部分を画定する部分に接触することにより、第1パイロット通路56Aを閉塞する全閉状態をとることができる構造にすることができる。 The throttle element 60 has a structure in which the inner end 64 </ b> A of the needle valve body 64 comes into contact with a portion defining the narrowed portion of the needle valve hole 62 so that the first pilot passage 56 </ b> A can be fully closed. be able to.
 絞り要素60によって第1パイロット通路56Aが閉じられると、入口開口48からパイロット室84に圧縮空気が供給されなくなるので、パイロット室84の圧力が所定値未満の状態が維持される。これにより、通路切換弁20の主弁体74が第1の位置(図4参照)に位置している状態が維持される。 When the first pilot passage 56A is closed by the throttle element 60, compressed air is not supplied from the inlet opening 48 to the pilot chamber 84, so that the pressure in the pilot chamber 84 is maintained below a predetermined value. Thereby, the state in which the main valve body 74 of the passage switching valve 20 is located at the first position (see FIG. 4) is maintained.
 この場合には、つまり、絞り要素60が全閉状態に設定されると、空気圧源10からの圧縮空気が通路切換弁20及びトリガ弁104を通過してエアブローノズル102より外部に大流量をもって連続噴出される。 In this case, that is, when the throttle element 60 is set to the fully closed state, the compressed air from the air pressure source 10 passes through the passage switching valve 20 and the trigger valve 104 and continuously from the air blow nozzle 102 with a large flow rate. Erupted.
 これにより、絞り要素60の開閉だけで、エアブローモードを間歇エアブローと連続エアブローとを簡単に切り替えることができる。 This makes it possible to easily switch the air blow mode between intermittent air blow and continuous air blow simply by opening and closing the throttle element 60.
 つぎに、本発明による間歇エア発生装置をエアブロー装置として適用した実施形態2を、図6~図10を参照して説明する。なお、図6~図8において、図1~図3に対応する部分は、図1~図3に付した符号と同一の符号を付けて説明する。 Next, a second embodiment in which the intermittent air generating device according to the present invention is applied as an air blowing device will be described with reference to FIGS. 6 to 8, parts corresponding to those in FIGS. 1 to 3 are denoted by the same reference numerals as those in FIGS. 1 to 3.
 図6~図8に示されているエアブロー装置の実施形態に於いて、空気圧源10は、公知の態様でコンプレッサ、フィルタ、レギュレータ及び開閉弁(図示せず)を含むものであってよい。空気圧源10の圧縮空気出力部は入口管路12によって通路切換弁120の入口ポート122に接続されている。 6 to 8, the air pressure source 10 may include a compressor, a filter, a regulator, and an on-off valve (not shown) in a known manner. The compressed air output of the air pressure source 10 is connected to the inlet port 122 of the passage switching valve 120 by the inlet pipe 12.
 通路切換弁120は、4ポート2位置型のパイロット弁であり、前述の入口ポート122と、第1出口ポート124と、排気ポート126と、第2出口ポート127とを有する。 The passage switching valve 120 is a 4-port 2-position pilot valve, and has the above-described inlet port 122, first outlet port 124, exhaust port 126, and second outlet port 127.
 第1出口ポート124はホース等からなる出口管路14によってエアブローのためのエアガン100に接続されている。エアガン100は、圧縮空気を外部に噴射するためのエアブローノズル102と、エアブローノズル102に至る流路を開閉するトリガ弁104とを有する。トリガ弁104は、通常ばねにより閉じられる常閉型の開閉弁であり、エアガン100に設けられたトリガレバー106がばね力に抗して手によって引かれることにより開弁する。 The first outlet port 124 is connected to an air gun 100 for air blowing by an outlet pipe 14 made of a hose or the like. The air gun 100 has an air blow nozzle 102 for injecting compressed air to the outside, and a trigger valve 104 for opening and closing a flow path to the air blow nozzle 102. The trigger valve 104 is a normally closed on-off valve that is normally closed by a spring, and is opened when the trigger lever 106 provided on the air gun 100 is pulled by hand against the spring force.
 第2出口ポート127は出口通路129によって出口管路14に接続されている。出口通路129の途中には絞り要素131が設けられている。 The second outlet port 127 is connected to the outlet pipeline 14 by an outlet passage 129. A throttle element 131 is provided in the middle of the outlet passage 129.
 第1パイロット通路156Aは入口管路12より分岐して絞り要素160の入口端に接続されている。絞り要素160の出口端は第2パイロット通路156Bを介して通路切換弁120のパイロット室184に接続されている。パイロット室184は排気通路158を介して排気ポート126に接続されている。 The first pilot passage 156A branches from the inlet pipe 12 and is connected to the inlet end of the throttle element 160. The outlet end of the throttle element 160 is connected to the pilot chamber 184 of the passage switching valve 120 via the second pilot passage 156B. The pilot chamber 184 is connected to the exhaust port 126 via the exhaust passage 158.
 次に、図9、図10を参照して通路切換弁120の具体的な構成を説明する。 Next, a specific configuration of the passage switching valve 120 will be described with reference to FIGS.
 通路切換弁120は弁ハウジング128を有する。弁ハウジング128には円筒室130が形成されている。円筒室130は、閉じられた第1の(右側)端部と、開かれた第2の(左側)端部とを有し、その内部にはスリーブ136が配置されている。スリーブ136は、円筒室130の内径より少し小さい外径の円筒体により構成され、内側に円筒形状の主弁室138を形成している。スリーブ136は、円筒室130の第1の端部を画定する端壁142と円筒室130の開かれた第2の端部に嵌入されているプラグ140及び座金形状のゴムパッキン141とに挟まれて軸線方向(図にて左右方向)に移動できないように弁ハウジング128に固定されている。 The passage switching valve 120 has a valve housing 128. A cylindrical chamber 130 is formed in the valve housing 128. The cylindrical chamber 130 has a closed first (right side) end and an open second (left side) end, and a sleeve 136 is disposed therein. The sleeve 136 is formed of a cylindrical body having an outer diameter slightly smaller than the inner diameter of the cylindrical chamber 130, and forms a cylindrical main valve chamber 138 on the inner side. The sleeve 136 is sandwiched between an end wall 142 that defines a first end of the cylindrical chamber 130, a plug 140 fitted into the opened second end of the cylindrical chamber 130, and a washer-shaped rubber packing 141. Thus, the valve housing 128 is fixed so that it cannot move in the axial direction (left and right in the figure).
 スリーブ136には、図にて右側から順に、図1について前述した入口ポート122と第1出口ポート124と第2出口ポート127とに対応するように3つのポートが、軸線方向に間隔をおいて形成されている。各ポート122、124、127は、各々、スリーブ136の壁を径方向に貫通するように穿設され、且つ周方向に間隔をおいて配置された複数の貫通孔によって形成されている。更に、スリーブ136の後述するパイロット室184に対する開口が排気ポート126をなしている。 The sleeve 136 has three ports in the axial direction so as to correspond to the inlet port 122, the first outlet port 124, and the second outlet port 127 described above with reference to FIG. Is formed. Each port 122, 124, 127 is formed by a plurality of through holes that are formed so as to penetrate the wall of the sleeve 136 in the radial direction and are spaced apart in the circumferential direction. Further, an opening for a pilot chamber 184 described later of the sleeve 136 forms an exhaust port 126.
 スリーブ136の外周には3本の環状溝が形成されており、各環状溝にはOリング146が嵌め入れられている。これらのOリング146は円筒室130の内周面と当接する。これにより、隣接するポート122、124、127間のシールが形成される。また、各ポート122、124、127を構成する貫通孔は、スリーブ136の外周に於ける、隣接するOリング146間に形成される環状通路により互いに共通に連通する。 Three annular grooves are formed on the outer periphery of the sleeve 136, and an O-ring 146 is fitted in each annular groove. These O-rings 146 are in contact with the inner peripheral surface of the cylindrical chamber 130. This forms a seal between adjacent ports 122, 124, 127. Further, the through holes constituting each port 122, 124, 127 communicate with each other in common by an annular passage formed between adjacent O-rings 146 on the outer periphery of the sleeve 136.
 弁ハウジング128には、該弁ハウジング128に設けられた入口通路152を介して入口ポート122に連通する入口開口148と、同じく弁ハウジング128に設けられた出口通路154を介して第1出口ポート124に連通すると共に出口通路129を介して第2出口ポート127に連通する出口開口150とが設けられている。出口通路129は、通路断面積が出口通路154等に比して小さいことにより、当該出口通路129自身が図6~図8における絞り要素131をなしている。 The valve housing 128 has an inlet opening 148 communicating with the inlet port 122 via an inlet passage 152 provided in the valve housing 128, and a first outlet port 124 via an outlet passage 154 also provided in the valve housing 128. And an outlet opening 150 that communicates with the second outlet port 127 via the outlet passage 129. The outlet passage 129 has a passage sectional area smaller than that of the outlet passage 154 and the like, so that the outlet passage 129 itself forms the throttle element 131 in FIGS.
 弁ハウジング128には円筒形のニードル弁孔162が円筒室130に対して平行に設けられている。ニードル弁孔162は、弁ハウジング128の外面にて開口する外端と、狭窄され、第1パイロット通路156Aを介して入口開口148に連通する内端とを有する。 The valve housing 128 is provided with a cylindrical needle valve hole 162 parallel to the cylindrical chamber 130. Needle valve hole 162 has an outer end that opens at the outer surface of valve housing 128, and an inner end that is narrowed and communicates with inlet opening 148 via first pilot passage 156A.
 ニードル弁孔162にはニードル弁体164が捩じ込まれている。ニードル弁体164の内端164Aは、先細にされており、ニードル弁孔162の狭窄部分(第1パイロット通路156Aのニードル弁孔162に対する開口端)に突入してニードル弁孔162の内端の狭窄部分と協働することにより、絞り要素160を構成している。このようにして、絞り要素160が可変絞り弁として弁ハウジング128に組み込まれている。 The needle valve body 164 is screwed into the needle valve hole 162. The inner end 164A of the needle valve body 164 is tapered, and enters the constricted portion of the needle valve hole 162 (the opening end of the first pilot passage 156A with respect to the needle valve hole 162) to the inner end of the needle valve hole 162. By cooperating with the constriction portion, the throttle element 160 is configured. In this way, the throttle element 160 is incorporated in the valve housing 128 as a variable throttle valve.
 プラグ140の、スリーブ136の対向端に当接する端面には、中央に位置するパイロット室184と、パイロット室184に連通するように直径方向に延在する径方向溝186とが設けられている。径方向溝186は、弁ハウジング128に形成された第2パイロット通路156Bを介してニードル弁孔162に連通している。 The end surface of the plug 140 that contacts the opposite end of the sleeve 136 is provided with a pilot chamber 184 located in the center and a radial groove 186 that extends in the diametrical direction so as to communicate with the pilot chamber 184. The radial groove 186 communicates with the needle valve hole 162 via a second pilot passage 156 </ b> B formed in the valve housing 128.
 絞り要素160の下流端は、第2パイロット通路156B及び径方向溝186を介してパイロット室184に接続されている。従って、流れを絞るための絞り要素160が、パイロット通路の2つの区間の間に設けられている。ニードル弁体164の後端には、ニードル弁体164をニードル弁孔162内で螺進螺退させ、絞り要素160に於ける絞りの程度を調節するための6角孔などの工具係合部(不図示)が設けられている。ニードル弁体164の中間部には、ニードル弁体64をニードル弁孔62内に気密状態で保持するためのOリング172が設けられている。 The downstream end of the throttle element 160 is connected to the pilot chamber 184 via the second pilot passage 156B and the radial groove 186. Therefore, a throttle element 160 for restricting the flow is provided between the two sections of the pilot passage. At the rear end of the needle valve body 164, a tool engagement portion such as a hexagonal hole for adjusting the degree of throttling in the throttling element 160 by screwing and screwing the needle valve body 164 into the needle valve hole 162. (Not shown) is provided. An O-ring 172 for holding the needle valve body 64 in the needle valve hole 62 in an airtight state is provided at an intermediate portion of the needle valve body 164.
 プラグ140には孔192が形成されている。孔192は弁ハウジング128の外面にて開口する外端と、パイロット室184に開口する内端とを有する。孔192には可動プラグ193が捩じ込まれている。可動プラグ193は、孔192の外端を塞ぐものであり、内端の側に拡張パイロット室185を画定している。可動プラグ193には、可動プラグ193を孔192内で螺進螺退させ、拡張パイロット室185の内容積を増減するための6角孔などの工具係合部194が設けられている。可動プラグ193の先端側には、可動プラグ193を孔192内に気密状態で保持するためのOリング195が設けられている。 A hole 192 is formed in the plug 140. Hole 192 has an outer end that opens at the outer surface of valve housing 128 and an inner end that opens into pilot chamber 184. A movable plug 193 is screwed into the hole 192. The movable plug 193 closes the outer end of the hole 192 and defines an extended pilot chamber 185 on the inner end side. The movable plug 193 is provided with a tool engaging portion 194 such as a hexagonal hole for screwing and retracting the movable plug 193 in the hole 192 to increase or decrease the internal volume of the expansion pilot chamber 185. An O-ring 195 for holding the movable plug 193 in the hole 192 in an airtight state is provided on the distal end side of the movable plug 193.
 主弁室138には円柱体をなす主弁体174が軸線方向に移動可能に嵌入されている。主弁体174の外周部には、軸方向中央部の円環凹部176と、円環凹部176の軸線方向の両側に位置する1対のランド178、180とが形成されている。主弁体174の端面175が、図9に示されているように、図にて左側のゴムパッキン141に当接する第1の位置にあるときには、ランド178によって入口ポート122を閉塞すると共に、ランド180によって排気ポート126と第2出口ポート127との連通を遮断する。なお、排気ポート126と第2出口ポート127との連通を遮断することは、排気ポート126を閉塞することと同じである。これに対して、主弁体174が、図10に示されているように、図にて右側の端壁142に当接する第2の位置にあるときには、円環凹部176によって入口ポート122と第1出口ポート124とを連通させると共に、排気ポート126を開いてパイロット室184と第2出口ポート127とを連通させる。 In the main valve chamber 138, a main valve body 174 forming a cylindrical body is fitted so as to be movable in the axial direction. An annular recess 176 at the center in the axial direction and a pair of lands 178 and 180 located on both sides in the axial direction of the annular recess 176 are formed on the outer periphery of the main valve body 174. As shown in FIG. 9, when the end surface 175 of the main valve body 174 is in the first position in contact with the left rubber packing 141 in the drawing, the land 178 closes the inlet port 122 and The communication between the exhaust port 126 and the second outlet port 127 is blocked by 180. Note that blocking communication between the exhaust port 126 and the second outlet port 127 is the same as closing the exhaust port 126. On the other hand, when the main valve body 174 is in the second position in contact with the right end wall 142 in the drawing as shown in FIG. The first outlet port 124 is communicated, and the exhaust port 126 is opened to allow the pilot chamber 184 and the second outlet port 127 to communicate.
 主弁体174の右端には、円形の中心凹部168が設けられ、対向する弁ハウジング128の端壁142には、対応する中心凹部144が設けられている。圧縮コイルばね182が両中心凹部168、144間に挟設されている。圧縮コイルばね182は主弁体174をゴムパッキン141の対向面に当接する向きに(左方向に)付勢している。なお、弁ハウジング128には中心凹部144の空気抜き孔145が穿設されている。 A circular center recess 168 is provided at the right end of the main valve body 174, and a corresponding center recess 144 is provided in the end wall 142 of the opposing valve housing 128. A compression coil spring 182 is sandwiched between the central recesses 168 and 144. The compression coil spring 182 urges the main valve body 174 in a direction in which the main valve body 174 abuts against the opposing surface of the rubber packing 141 (to the left). The valve housing 128 is formed with an air vent hole 145 in the central recess 144.
 パイロット室184の圧力、つまりパイロット圧は主弁体174を圧縮コイルばね182に抗して第2の位置側(右側)に付勢する力として主弁体174に作用する。これにより、主弁体174は、パイロット圧による荷重と圧縮コイルばね182のばね荷重との平衡関係によって動作し、パイロット室184の圧力が所定値未満であるときには、圧縮コイルばね182のばね力によって左側に移動して前述の第1の位置(図9参照)に位置し、パイロット室184の圧力が所定値以上であるときには、圧縮コイルばね182のばね力に抗して右側に移動して前述の第2の位置(図10参照)に位置する。かくして、通路切換弁120はノーマルクローズ型の切換弁をなす。なお、通路切換弁120においては、パイロット室184が主弁室138によって特別な通路を要することなく第2出口ポート127に直接的に連通するので、図6及び図7における排気通路158は存在しない。 The pressure in the pilot chamber 184, that is, the pilot pressure, acts on the main valve body 174 as a force that biases the main valve body 174 against the compression coil spring 182 to the second position side (right side). As a result, the main valve body 174 operates according to an equilibrium relationship between the load due to the pilot pressure and the spring load of the compression coil spring 182, and when the pressure in the pilot chamber 184 is less than a predetermined value, the spring force of the compression coil spring 182 causes When the pressure in the pilot chamber 184 is equal to or higher than a predetermined value, the valve moves to the right against the spring force of the compression coil spring 182 and moves to the right. The second position (see FIG. 10). Thus, the passage switching valve 120 forms a normally closed switching valve. In the passage switching valve 120, the pilot chamber 184 communicates directly with the second outlet port 127 without requiring a special passage by the main valve chamber 138, so that the exhaust passage 158 in FIGS. 6 and 7 does not exist. .
 次に上述の構成によるエアブロー装置の作用について説明する。 Next, the operation of the air blow device having the above configuration will be described.
 図6は、空気圧源10が停止していて圧縮空気の供給が行われていない状態を示している。トリガ弁104が閉弁していて、通路切換弁120の主弁体174が第1の位置(図9参照)に位置している状態(パイロット室184の圧力が所定値未満)で、圧縮空気の供給が開始されると、入口ポート122が閉塞されていることにより、入口ポート122より出口管路14へ流れようとする圧縮空気の流れが通路切換弁120によって遮断される。また、このときには、排気ポート126が閉塞されていて、排気ポート126より出口通路129へ流れようとする圧縮空気の流れも通路切換弁120によって遮断されているので、第1パイロット通路156A、絞り要素160、第2パイロット通路156B等を通ってパイロット室184に供給される圧縮空気によってパイロット室184の圧力が絞り要素160の作用のもとに徐々に上昇する。 FIG. 6 shows a state where the air pressure source 10 is stopped and compressed air is not supplied. Compressed air when the trigger valve 104 is closed and the main valve body 174 of the passage switching valve 120 is in the first position (see FIG. 9) (the pressure in the pilot chamber 184 is less than a predetermined value). Is started, the inlet port 122 is closed, so that the flow of compressed air that flows from the inlet port 122 to the outlet pipe 14 is blocked by the passage switching valve 120. At this time, the exhaust port 126 is closed, and the flow of compressed air that flows from the exhaust port 126 to the outlet passage 129 is also blocked by the passage switching valve 120. Therefore, the first pilot passage 156A, the throttle element 160, the pressure in the pilot chamber 184 gradually rises under the action of the throttle element 160 by the compressed air supplied to the pilot chamber 184 through the second pilot passage 156B and the like.
 パイロット室184の圧力が所定値以上になると、図10に示されているように、主弁体174が、圧縮コイルばね182のばね力に抗して第2の位置に変位し、入口ポート122と第1出口ポート124とが連通すると共に、排気ポート126と第2出口ポート127とが連通する。 When the pressure in the pilot chamber 184 exceeds a predetermined value, the main valve body 174 is displaced to the second position against the spring force of the compression coil spring 182 as shown in FIG. And the first outlet port 124 communicate with each other, and the exhaust port 126 and the second outlet port 127 communicate with each other.
 この状態で、トリガレバー106の操作によってトリガ弁104が開弁すると、図7に示されている状態になり、空気圧源10からの圧縮空気が通路切換弁120及びトリガ弁104を通過して、エアブローノズル102より外部に大流量をもって噴出する。これと同時に、拡張パイロット室185を含むパイロット室184の圧縮空気が、通路切換弁120、出口通路129、出口管路14、トリガ弁104を通ってエアブローノズル102より外部に排出される。この圧縮空気の排出は絞り要素131の作用によって徐々に行われる。 In this state, when the trigger valve 104 is opened by operating the trigger lever 106, the state shown in FIG. 7 is reached, and the compressed air from the air pressure source 10 passes through the passage switching valve 120 and the trigger valve 104, The air blow nozzle 102 is ejected with a large flow rate to the outside. At the same time, the compressed air in the pilot chamber 184 including the expanded pilot chamber 185 is discharged from the air blow nozzle 102 through the passage switching valve 120, the outlet passage 129, the outlet pipe 14, and the trigger valve 104. The compressed air is gradually discharged by the action of the throttle element 131.
 パイロット室184の圧縮空気が外部に排出されるに従って、パイロット室184の圧力が低下する。その結果、パイロット室184の圧力が所定値未満になると、圧縮コイルばね182のばね力により、通路切換弁120の主弁体174が図8に示されている状態になる。 As the compressed air in the pilot chamber 184 is discharged to the outside, the pressure in the pilot chamber 184 decreases. As a result, when the pressure in the pilot chamber 184 becomes less than a predetermined value, the main valve body 174 of the passage switching valve 120 is in the state shown in FIG. 8 by the spring force of the compression coil spring 182.
 これにより、エアブローノズル102よりの圧縮空気の大流量の噴出が停止すると共に、再び、パイロット室184の圧力が絞り要素160の作用のもとに徐々に上昇する。その後、再びパイロット室184の圧力が所定値以上になると、図10に示されているように、主弁体174が、圧縮コイルばね182のばね力に抗して第2の位置に変位し、入口ポート122と第1出口ポート124とが連通すると共に、排気ポート126と第2出口ポート127とが連通する。 Thereby, the ejection of a large flow rate of compressed air from the air blow nozzle 102 stops, and the pressure in the pilot chamber 184 gradually rises again under the action of the throttle element 160. Thereafter, when the pressure in the pilot chamber 184 again becomes a predetermined value or more, the main valve body 174 is displaced to the second position against the spring force of the compression coil spring 182 as shown in FIG. The inlet port 122 and the first outlet port 124 communicate with each other, and the exhaust port 126 and the second outlet port 127 communicate with each other.
 以降、通路切換弁120の切換作用のもとにパイロット室184の圧力の降下と上昇とが繰り返されることにより、圧縮空気の噴出と停止が繰り返され、間歇エアブローが行われる。エアブローの吹き出し時間はパイロット室184の圧力の上昇速度を決める絞り要素160及び131の絞り度とパイロット室184の内容積とによって決まり、絞り要素160及び131の絞り度が高いほど、またパイロット室184の内容積が大きいほど、エアブローの吹き出し時間が長くなる。エアブローの停止時間は、パイロット室184の内容積によって決まり、パイロット室184の内容積が大きいほど、パイロット室184の圧力が所定値未満になるまでのパイロット室184の圧縮空気の排出に時間がかかるので、パイロット室184の内容積が大きいほど、エアブローの停止時間は長くなる。また、エアブローの吹き出し時間と停止時間とは、通路切換弁120の圧縮コイルばね182の予荷重及びばね定数によっても決まり、圧縮コイルばね182の予荷重及びばね定数が大きいほど吹き出し時間が長くなると共に停止時間が短くなる。このようにして、エアブローの吹き出し時間、停止時間及びデューティ比は、絞り要素160及び131の絞り度、パイロット室184の内容積及び圧縮コイルばね182のばね力、ばね定数を変更することにより可変設定することができる。パイロット室184の内容積は、可動プラグ193によって拡張パイロット室185の内容積を変化させることにより、可変設定することができる。 Thereafter, the pressure drop and rise in the pilot chamber 184 are repeated under the switching action of the passage switching valve 120, whereby the compressed air is repeatedly ejected and stopped, and intermittent air blow is performed. The blow time of the air blow is determined by the throttle degree of the throttle elements 160 and 131 that determine the rate of increase in the pressure of the pilot chamber 184 and the internal volume of the pilot chamber 184. The higher the throttle degree of the throttle elements 160 and 131, the more the pilot chamber 184 The larger the internal volume, the longer the air blow-out time. The air blow stop time is determined by the internal volume of the pilot chamber 184. The larger the internal volume of the pilot chamber 184, the longer it takes to discharge the compressed air in the pilot chamber 184 until the pressure in the pilot chamber 184 becomes less than a predetermined value. Therefore, the larger the internal volume of the pilot chamber 184, the longer the air blow stop time. The blow time and stop time of the air blow are also determined by the preload and spring constant of the compression coil spring 182 of the passage switching valve 120. The larger the preload and spring constant of the compression coil spring 182, the longer the blow time. Stop time is shortened. In this way, the blow time, stop time, and duty ratio of the air blow are variably set by changing the throttle degree of the throttle elements 160 and 131, the internal volume of the pilot chamber 184, the spring force of the compression coil spring 182 and the spring constant. can do. The internal volume of the pilot chamber 184 can be variably set by changing the internal volume of the extended pilot chamber 185 by the movable plug 193.
 上述したように、実施形態2によれば、複雑な構成によるパイロット圧式の開閉弁を必要とすることがなく、4ポート2位置型のパイロット弁による簡単な構造の通路切換弁120と圧縮空気の簡単な通路構成とによって簡素な構成による実用性に優れた間歇エア発生装置が得られる。また、絞り要素160、131、第1パイロット通路156A、第2パイロット通路156Bが弁ハウジング128に内設されていることにより、これらのための外部配管が不要になり、部品点数が低減され、このことによって更なる簡素化が図られる。 As described above, according to the second embodiment, there is no need for a pilot pressure type on-off valve having a complicated configuration, and a simple structure of the passage switching valve 120 and the compressed air of the 4-port 2-position type pilot valve is used. With the simple passage configuration, an intermittent air generation device having a simple configuration and excellent in practicality can be obtained. In addition, since the throttle elements 160 and 131, the first pilot passage 156A, and the second pilot passage 156B are provided in the valve housing 128, external piping for them becomes unnecessary, and the number of parts is reduced. In this way, further simplification is achieved.
 絞り要素160は、ニードル弁体164の内端164Aがニードル弁孔162の狭窄部分を画定する部分に接触することにより、第1パイロット通路156Aを閉塞する全閉状態をとることができる構造にすることができる。 The throttle element 160 has a structure in which the inner end 164A of the needle valve body 164 comes into contact with a portion that defines the narrowed portion of the needle valve hole 162 so that the first pilot passage 156A can be fully closed. be able to.
 絞り要素160によって第1パイロット通路156Aが閉じられると、入口開口148からパイロット室184に圧縮空気が供給されなくなるので、パイロット室184の圧力が所定値未満になり、所定値未満の状態が維持される。これにより、通路切換弁120の主弁体174が第1の位置(図9参照)に位置している状態、つまり閉弁状態が維持される。 When the first pilot passage 156A is closed by the throttle element 160, compressed air is not supplied from the inlet opening 148 to the pilot chamber 184, so that the pressure in the pilot chamber 184 becomes less than a predetermined value and the state less than the predetermined value is maintained. The Thereby, the state in which the main valve body 174 of the passage switching valve 120 is located at the first position (see FIG. 9), that is, the valve closing state is maintained.
 この場合には、つまり、絞り要素160が全閉状態に設定されると、空気圧源10からの圧縮空気がエアブローノズル102より外部に噴出されない停止状態が得られる。 In this case, that is, when the throttle element 160 is set to the fully closed state, a stopped state in which the compressed air from the air pressure source 10 is not ejected from the air blow nozzle 102 is obtained.
 つぎに、本発明による間歇エア発生装置をエアブロー装置として適用した実施形態3を、図11~図13を参照して説明する。なお、図11において、図1に対応する部分は、図1に付した符号と同一の符号を付けて、その説明を省略する。また、図12、図13において、図4に対応する部分は、図4に付した符号と同一の符号を付けて、その説明を省略する。 Next, a third embodiment in which the intermittent air generating device according to the present invention is applied as an air blowing device will be described with reference to FIGS. In FIG. 11, parts corresponding to those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof is omitted. 12 and FIG. 13, parts corresponding to those in FIG. 4 are denoted by the same reference numerals as those in FIG. 4, and description thereof is omitted.
 実施形態3では、実施形態1におけるノーマルオープン型の通路切換弁20のプラグ40に、パイロット室84を選択的に大気開放する開閉弁200が設けられている。開閉弁200は、プラグ40に形成された弁室202に配置されて、図12に示されている閉弁位置と、図13に示されている開弁位置との間を移動可能な円柱状の弁体204を有する。 In the third embodiment, the plug 40 of the normally open type passage switching valve 20 in the first embodiment is provided with an on-off valve 200 that selectively opens the pilot chamber 84 to the atmosphere. The on-off valve 200 is disposed in a valve chamber 202 formed in the plug 40, and is a columnar shape that can move between the valve closing position shown in FIG. 12 and the valve opening position shown in FIG. The valve body 204 is provided.
 弁体204は、ストッパピン206との係合により、軸線方向の移動を閉弁位置と開弁位置との間の移動に制限されており、閉弁位置ではOリング208が弁室202の内周面に当接することにより、パイロット室84の密閉性を保ち、開弁位置ではOリング208が弁室202の内周面に当接より離れることにより、パイロット室84を弁体204の外周面と弁室202の内周面との間の間隙210によってパイロット室84を大気中に開放する。開閉弁200によるパイロット室84の圧縮空気の排出流量は絞り要素60における圧縮空気の流量より大きい。 The valve body 204 is restricted to move in the axial direction between the valve closing position and the valve opening position by the engagement with the stopper pin 206, and the O-ring 208 is inside the valve chamber 202 at the valve closing position. By making contact with the peripheral surface, the sealing performance of the pilot chamber 84 is maintained, and at the valve opening position, the O-ring 208 is separated from the inner peripheral surface of the valve chamber 202 by contact, thereby making the pilot chamber 84 the outer peripheral surface of the valve body 204. The pilot chamber 84 is opened to the atmosphere by a gap 210 between the valve chamber 202 and the inner peripheral surface of the valve chamber 202. The flow rate of compressed air discharged from the pilot chamber 84 by the on-off valve 200 is larger than the flow rate of compressed air in the throttle element 60.
 弁体204は 、圧縮コイルばね212のばね力によって閉弁位置に向けて付勢されており、外端に設けられたボタン214を押されることにより、圧縮コイルばね212のばね力に抗して開弁位置に位置する。弁体204には、閉弁位置および開弁位置の何れかに選択的に自己保持する不図示のオルタネイト機構が接続されていてよい。 The valve body 204 is urged toward the valve closing position by the spring force of the compression coil spring 212, and against the spring force of the compression coil spring 212 by pressing a button 214 provided on the outer end. Located in the open position. The valve body 204 may be connected to an alternate mechanism (not shown) that selectively self-holds at either the valve closing position or the valve opening position.
 実施形態3では、弁体204が図12に示されている閉弁位置にあり、パイロット室84が開閉弁200において大気開放されていない状態にあるときには、実施形態1と同様に間歇エアブローが行われる。 In the third embodiment, when the valve body 204 is in the closed position shown in FIG. 12 and the pilot chamber 84 is not open to the atmosphere in the on-off valve 200, intermittent air blow is performed as in the first embodiment. Is called.
 弁体204が図13に示されている開弁位置にあり、パイロット室84が開閉弁200において大気開放されると、入口開口48からパイロット室84に入った圧縮空気は開閉弁200から大気中に排出されるので、パイロット室84の圧力が所定値以上に上昇することがなく、主弁体74は第1の位置に位置することを維持する。 When the valve body 204 is in the valve open position shown in FIG. 13 and the pilot chamber 84 is opened to the atmosphere in the on-off valve 200, the compressed air that has entered the pilot chamber 84 from the inlet opening 48 enters the atmosphere from the on-off valve 200. Therefore, the pressure in the pilot chamber 84 does not rise above a predetermined value, and the main valve body 74 is maintained in the first position.
 この場合には、空気圧源10からの圧縮空気が通路切換弁20及びトリガ弁104を通過してエアブローノズル102より外部に大流量をもって連続的に噴出する連続エアブローが行われる。これにより、通路切換弁20に組み込まれた開閉弁200の開閉だけで、エアブローモードを間歇エアブローと連続エアブローとを簡単に切り替えることができる。 In this case, continuous air blow is performed in which compressed air from the air pressure source 10 passes through the passage switching valve 20 and the trigger valve 104 and is continuously ejected from the air blow nozzle 102 with a large flow rate. Thereby, the air blow mode can be easily switched between the intermittent air blow and the continuous air blow only by opening and closing the on-off valve 200 incorporated in the passage switching valve 20.
 なお、連続エアブロー時には、圧縮空気が開閉弁200より大気中に排出されるロスがあるが、入口開口48からパイロット室84へ流れる圧縮空気の流量が絞り要素60によって制限されているから、圧縮空気のロス量は僅かである。 During continuous air blowing, there is a loss that compressed air is discharged into the atmosphere from the on-off valve 200. However, since the flow rate of compressed air flowing from the inlet opening 48 to the pilot chamber 84 is limited by the throttle element 60, the compressed air The amount of loss is small.
 つぎに、本発明による間歇エア発生装置をエアブロー装置として適用した実施形態4を、図14~図16を参照して説明する。なお、図14において、図1に対応する部分は、図1に付した符号と同一の符号を付けて、その説明を省略する。また、図15、図16において、図4に対応する部分は、図4に付した符号と同一の符号を付けて、その説明を省略する。 Next, a fourth embodiment in which the intermittent air generating device according to the present invention is applied as an air blowing device will be described with reference to FIGS. 14, parts corresponding to those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof is omitted. 15 and FIG. 16, parts corresponding to those in FIG. 4 are denoted by the same reference numerals as those in FIG. 4, and description thereof is omitted.
 実施形態4では、実施形態1における通路切換弁20に、第2パイロット通路56Bの連通と遮断を行う開閉弁220が設けられている。開閉弁220は、弁ハウジング28に形成された弁室222に配置されて、図15に示されている開弁位置と、図16に示されている閉弁位置との間を移動可能なスプール弁体224を有する。スプール弁体224は、連通孔225を有し、開弁位置では連通孔225によって第2パイロット通路56Bの連通を確立し、閉弁位置では第2パイロット通路56Bの連通を遮断する。スプール弁体224は、外端に設けられた操作子226の手操作によって開弁位置あるいは閉弁位置に位置し、不図示のオルタネイト機構によって何れかの位置に選択的に自己保持される。なお、スプール弁体224による開閉弁220には空気漏れを防止するシール227が設けられている。 In the fourth embodiment, the passage switching valve 20 in the first embodiment is provided with an on-off valve 220 for connecting and blocking the second pilot passage 56B. The on-off valve 220 is disposed in a valve chamber 222 formed in the valve housing 28, and is a spool that is movable between a valve opening position shown in FIG. 15 and a valve closing position shown in FIG. It has a valve body 224. The spool valve body 224 has a communication hole 225, establishes communication of the second pilot passage 56B by the communication hole 225 at the valve opening position, and blocks communication of the second pilot passage 56B at the valve closing position. The spool valve body 224 is positioned at the valve opening position or the valve closing position by manual operation of the operation element 226 provided at the outer end, and is selectively held at any position by an alternate mechanism (not shown). Note that the on-off valve 220 formed by the spool valve body 224 is provided with a seal 227 for preventing air leakage.
 実施形態4では、スプール弁体224が図15に示されている開弁位置にあり、第2パイロット通路56Bが連通状態にあるときには、入口開口48からパイロット室84へ圧縮空気が供給され、実施形態1と同様に間歇エアブローが行われる。 In the fourth embodiment, when the spool valve body 224 is in the open position shown in FIG. 15 and the second pilot passage 56B is in communication, compressed air is supplied from the inlet opening 48 to the pilot chamber 84, and the operation is performed. Similar to the first mode, intermittent air blow is performed.
 スプール弁体224が図16に示されている閉弁位置に位置し、第2パイロット通路56Bの連通が遮断されると、入口開口48からパイロット室84へ圧縮空気が供給されなくなるので、パイロット室84の圧力が所定値以上に上昇することがなく、主弁体74は第1の位置に位置することを維持する。 When the spool valve body 224 is located at the closed position shown in FIG. 16 and the communication of the second pilot passage 56B is blocked, compressed air is not supplied from the inlet opening 48 to the pilot chamber 84. The pressure of 84 does not rise above a predetermined value, and the main valve body 74 is maintained in the first position.
 この場合には、空気圧源10からの圧縮空気が通路切換弁20及びトリガ弁104を通過してエアブローノズル102より外部に大流量をもって連続的に噴出する連続エアブローが行われる。これにより、通路切換弁20に組み込まれた開閉弁220の開閉だけで、エアブローモードを間歇エアブローと連続エアブローとを簡単に切り替えることができる。 In this case, continuous air blow is performed in which compressed air from the air pressure source 10 passes through the passage switching valve 20 and the trigger valve 104 and is continuously ejected from the air blow nozzle 102 with a large flow rate. Thereby, the air blow mode can be easily switched between the intermittent air blow and the continuous air blow simply by opening and closing the on-off valve 220 incorporated in the passage switching valve 20.
 なお、開閉弁220は、絞り要素60の上流側において、第1パイロット通路56Aを開閉するものであってもよい。 The on-off valve 220 may open and close the first pilot passage 56A on the upstream side of the throttle element 60.
 つぎに、本発明による間歇エア発生装置をエアブロー装置として適用した実施形態5を、図17を参照して説明する。なお、図17において、図6に対応する部分は、図6に付した符号と同一の符号を付けて、その説明を省略する。 Next, a fifth embodiment in which the intermittent air generating device according to the present invention is applied as an air blowing device will be described with reference to FIG. In FIG. 17, parts corresponding to those in FIG. 6 are denoted by the same reference numerals as those in FIG.
 実施形態5では、実施形態2におけるノーマルクローズ型の通路切換弁120のパイロット室184を選択的に大気開放する開閉弁230が設けられている。開閉弁230は、実施形態3の開閉弁200と同等のものであってよい。 In the fifth embodiment, an on-off valve 230 that selectively opens the pilot chamber 184 of the normally closed passage switching valve 120 in the second embodiment to the atmosphere is provided. The on-off valve 230 may be equivalent to the on-off valve 200 of the third embodiment.
 開閉弁230によってパイロット室184が大気開放されると、パイロット室184の圧力が所定値以上になることがない。これにより、通路切換弁120は閉弁状態を維持し、空気圧源10からの圧縮空気がエアブローノズル102より外部に噴出されない停止状態になる。 When the pilot chamber 184 is opened to the atmosphere by the on-off valve 230, the pressure in the pilot chamber 184 does not exceed a predetermined value. As a result, the passage switching valve 120 is maintained in a closed state, and the compressed air from the air pressure source 10 is stopped from being ejected from the air blow nozzle 102 to the outside.
 つぎに、本発明による間歇エア発生装置をエアブロー装置として適用した実施形態6を、図18を参照して説明する。なお、図18において、図6に対応する部分は、図6に付した符号と同一の符号を付けて、その説明を省略する。 Next, a sixth embodiment in which the intermittent air generating device according to the present invention is applied as an air blowing device will be described with reference to FIG. In FIG. 18, parts corresponding to those in FIG. 6 are denoted by the same reference numerals as those in FIG.
 実施形態6では、実施形態2におけるノーマルクローズ型の通路切換弁120の第2パイロット通路156Bの連通と遮断を行う開閉弁240が設けられている。開閉弁240は、実施形態4の開閉弁220と同等のものであってよい。 In the sixth embodiment, an on-off valve 240 is provided to communicate and block the second pilot passage 156B of the normally closed passage switching valve 120 in the second embodiment. The on-off valve 240 may be equivalent to the on-off valve 220 of the fourth embodiment.
 開閉弁240によって第2パイロット通路156Bが遮断されると、パイロット室184の圧縮空気が供給されなくなるので、パイロット室184の圧力が所定値以上になることがない。これにより、通路切換弁120は閉弁状態を維持し、空気圧源10からの圧縮空気がエアブローノズル102より外部に噴出されない停止状態になる。 When the second pilot passage 156B is blocked by the on-off valve 240, the compressed air in the pilot chamber 184 is not supplied, so the pressure in the pilot chamber 184 does not exceed a predetermined value. As a result, the passage switching valve 120 is maintained in a closed state, and the compressed air from the air pressure source 10 is stopped from being ejected from the air blow nozzle 102 to the outside.
 なお、開閉弁240は第1パイロット通路156Aに設けられていてもよい。 The on-off valve 240 may be provided in the first pilot passage 156A.
 以上、本発明を、その好適な実施形態について説明したが、当業者であれば容易に理解できるように、本発明はこのような実施形態により限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 Although the present invention has been described above with reference to preferred embodiments thereof, the present invention is not limited to such embodiments and can be deviated from the spirit of the present invention, as will be readily understood by those skilled in the art. It is possible to change appropriately within the range not to be.
 例えば、上記実施例では、排気通路58は、パイロット室84(径方向溝86を介して)より分岐しているが、絞り要素60より下流側(パイロット室84側)の第2パイロット通路56Bより分岐した通路であってもよい。また、必要に応じて、絞り要素60、160、第1パイロット通路56A、第2パイロット通路56B及び排気通路58の全て又は一部を弁ハウジング28あるいは128の外部に設けることもできる。第2出口ポート127は、大気開放のポートであってもよい。 For example, in the above embodiment, the exhaust passage 58 is branched from the pilot chamber 84 (via the radial groove 86), but from the second pilot passage 56B downstream of the throttle element 60 (pilot chamber 84 side). A branched passage may be used. If necessary, all or part of the throttle elements 60, 160, the first pilot passage 56A, the second pilot passage 56B, and the exhaust passage 58 can be provided outside the valve housing 28 or 128. The second outlet port 127 may be a port open to the atmosphere.
 必要に応じて絞り要素60、160を固定絞りとすることもでき、或いは単なる細い通路又は狭窄した通路からなるものとすることもできる。所望に応じて、図1~図3、図6~図8に想像線によって示されているように、エアリザーバ90を接続して、パイロット室84、184の有効容積を増大させることもできる。 If necessary, the throttle elements 60 and 160 may be fixed throttles, or may consist of simple narrow passages or narrow passages. If desired, an air reservoir 90 can be connected to increase the effective volume of the pilot chambers 84, 184, as shown by phantom lines in FIGS. 1-3, 6-8.
 また、図19に示されているように、排気通路58の途中に絞り要素88が設けられていてもよい。絞り要素88は、パイロット室84の圧縮空気が、排気通路58、通路切換弁20、出口管路14、トリガ弁104を通ってエアブローノズル102より外部に排出される速度を遅くする働きをし、絞り要素88の絞り度が高いほど、エアブロー停止時間が長くなる。なお、絞り要素88の絞り度は絞り要素60の絞り度より低いことを要求される。 Further, as shown in FIG. 19, a throttle element 88 may be provided in the middle of the exhaust passage 58. The throttle element 88 serves to reduce the speed at which the compressed air in the pilot chamber 84 is discharged from the air blow nozzle 102 through the exhaust passage 58, the passage switching valve 20, the outlet pipe 14, and the trigger valve 104, The higher the aperture of the aperture element 88, the longer the air blow stop time. The aperture of the aperture element 88 is required to be lower than the aperture of the aperture element 60.
 圧縮コイルばね82、182は、交換可能で、ばね定数を選択設定できてよい。また、図20に示されているように、弁ハウジング28側のばね端受け部をなすばねリテーナ110の弁ハウジング28に対する軸線方向の位置が調節ねじ112によって変位可能に構成することにより、圧縮コイルばね82の予荷重を可変設定することもできる。これらのことにより、吹き出し時間および停止時間が変更可能あるいは可変設定可能になる。 The compression coil springs 82 and 182 can be exchanged and the spring constant can be selected and set. Further, as shown in FIG. 20, the axial position of the spring retainer 110 that forms the spring end receiving portion on the valve housing 28 side with respect to the valve housing 28 is configured to be displaceable by the adjusting screw 112, whereby the compression coil The preload of the spring 82 can be variably set. As a result, the blowing time and stop time can be changed or variably set.
 また、本発明による間歇エア発生装置は、エアブロー装置への適用に限られることはなく、出口ポート24にエアシリンダ装置等の駆動機器や、ダイヤフラム装置、ポンプ装置等の各種の空気圧機器が接続される各種のエア機器にも適用することができる。 In addition, the intermittent air generating device according to the present invention is not limited to the application to the air blowing device, and a drive device such as an air cylinder device and various pneumatic devices such as a diaphragm device and a pump device are connected to the outlet port 24. It can also be applied to various air devices.
 また、上記実施形態に示した構成要素は必ずしも全てが必須なものではなく、本発明の趣旨を逸脱しない限りにおいて適宜取捨選択することが可能である。 Further, all the components shown in the above embodiment are not necessarily essential, and can be appropriately selected without departing from the spirit of the present invention.
 本願のパリ条約に基づく優先権の基礎となる日本特許出願(2014年10月22日出願の特願2014-215517の開示内容は、ここで参照したことによりその全体が本願明細書に組み込まれる。 The Japanese patent application that serves as the basis for the priority under the Paris Convention of the present application (the disclosure of Japanese Patent Application No. 2014-215517 filed on October 22, 2014 is hereby incorporated by reference in its entirety.
 10  空気圧源
 12  入口管路
 14  出口管路
 20  通路切換弁
 22  ポート
 22  入口ポート
 24  出口ポート
 26  排気ポート
 28  弁ハウジング
 30  円筒室
 36  スリーブ
 38  主弁室
 40  プラグ
 42  端壁
 44  中心凹部
 46  Oリング
 48  入口開口
 50  出口開口
 52  入口通路
 54  出口通路
 56A 第1パイロット通路
 56B 第2パイロット通路
 58  排気通路
 60  絞り要素
 62  ニードル弁孔
 64  ニードル弁体
 64A 内端
 68  中心凹部
 72  Oリング
 74  主弁体
 76  円環凹部
 78  ランド
 80  ランド
 84  パイロット室
 86  径方向溝
 86A 径方向溝
 86B 径方向溝
 88  絞り要素
 90  エアリザーバ
 100 エアガン
 102 エアブローノズル
 104 トリガ弁
 106 トリガレバー
 110 リテーナ
 120 通路切換弁
 122 入口ポート
 124 第1出口ポート
 126 排気ポート
 127 第2出口ポート
 128 弁ハウジング
 129 出口通路
 130 円筒室
 131 絞り要素
 136 スリーブ
 138 主弁室
 140 プラグ
 141 ゴムパッキン
 142 端壁
 144 中心凹部
 146 Oリング
 148 入口開口
 150 出口開口
 152 入口通路
 154 出口通路
 156A 第1パイロット通路
 156B 第2パイロット通路
 158 排気通路
 160 絞り要素
 162 ニードル弁孔
 164 ニードル弁体
 164A 内端
 168 中心凹部
 172 Oリング
 174 主弁体
 175 端面
 176 円環凹部
 178 ランド
 184 パイロット室
 185 拡張パイロット室
 186 径方向溝
 192 孔
 193 可動プラグ
 194 工具係合部
 195 Oリング
 200 開閉弁
 202 弁室
 204 弁体
 206 ストッパピン
 208 Oリング
 210 間隙
 214 ボタン
 220 開閉弁
 222 弁室
 224 スプール弁体
 225 連通孔
 226 操作子
 230 開閉弁
 240 開閉弁
DESCRIPTION OF SYMBOLS 10 Air pressure source 12 Inlet pipe 14 Outlet pipe 20 Passage switching valve 22 Port 22 Inlet port 24 Outlet port 26 Exhaust port 28 Valve housing 30 Cylindrical chamber 36 Sleeve 38 Main valve chamber 40 Plug 42 End wall 44 Central recessed part 46 O ring 48 Inlet opening 50 Outlet opening 52 Inlet passage 54 Outlet passage 56A First pilot passage 56B Second pilot passage 58 Exhaust passage 60 Throttle element 62 Needle valve hole 64 Needle valve body 64A Inner end 68 Central recess 72 O-ring 74 Main valve body 76 Circle Ring recess 78 Land 80 Land 84 Pilot chamber 86 Radial groove 86A Radial groove 86B Radial groove 88 Throttle element 90 Air reservoir 100 Air gun 102 Air blow nozzle 104 Trigger valve 106 Trigger lever 110 Retainer 120 passage switching valve 122 inlet port 124 first outlet port 126 exhaust port 127 second outlet port 128 valve housing 129 outlet passage 130 cylindrical chamber 131 throttle element 136 sleeve 138 main valve chamber 140 plug 141 rubber packing 142 end wall 144 central recess 146 O-ring 148 Inlet opening 150 Outlet opening 152 Inlet passage 154 Outlet passage 156A First pilot passage 156B Second pilot passage 158 Exhaust passage 160 Throttle element 162 Needle valve hole 164 Needle valve body 164A Inner end 168 Central recess 172 O-ring 174 Main valve Body 175 End face 176 Annular recess 178 Land 184 Pilot chamber 185 Expanded pilot chamber 186 Radial groove 192 Hole 193 Movable plug 194 Tool engaging portion 195 O-ring 20 Close valve 202 valve chamber 204 valve body 206 stopper pin 208 O-ring 210 gap 214 button 220 on-off valve 222 valve chamber 224 valve spool 225 communication hole 226 operator 230 closing valve 240 off valve

Claims (11)

  1.  パイロット室と、空気圧源に接続される入口ポートと、出口ポートと、排気ポートと、前記パイロット室の圧力が所定値未満であるときには前記入口ポートと前記出口ポートとを連通させて前記排気ポートを閉塞し、前記パイロット室の圧力が所定値以上であるときには前記入口ポートを閉塞して前記出口ポートと前記排気ポートとを連通させる弁体とを有する通路切換弁と、
     前記パイロット室を前記空気圧源に接続するパイロット通路と、
     前記パイロット通路の途中に設けられた絞り要素と、
     前記パイロット室或いは前記パイロット通路の、前記絞り要素の下流側を前記排気ポートに接続する排気通路とを具備することを特徴とする間歇エア発生装置。
    A pilot chamber, an inlet port connected to an air pressure source, an outlet port, an exhaust port, and when the pressure in the pilot chamber is less than a predetermined value, the inlet port and the outlet port communicate with each other to connect the exhaust port. A passage switching valve having a valve body that is closed and has a valve body that closes the inlet port and communicates the outlet port and the exhaust port when the pressure in the pilot chamber is equal to or higher than a predetermined value;
    A pilot passage connecting the pilot chamber to the air pressure source;
    A throttle element provided in the middle of the pilot passage;
    An intermittent air generating apparatus comprising: an exhaust passage that connects the pilot chamber or the pilot passage downstream of the throttle element to the exhaust port.
  2.  パイロット室と、空気圧源に接続される入口ポートと、出口ポートと、排気ポートと、前記パイロット室の圧力が所定値未満であるときには前記入口ポートと前記出口ポートとを遮断し、且つ前記排気ポートを閉塞し、前記パイロット室の圧力が所定値以上であるときには前記入口ポートと前記出口ポートとを連通させ、且つ前記排気ポートを開放する弁体とを有する通路切換弁と、
     前記パイロット室を前記空気圧源に接続するパイロット通路と、
     前記パイロット通路の途中に設けられた絞り要素と、
     前記パイロット室或いは前記パイロット通路の、前記絞り要素の下流側を、前記排気ポートに接続する排気通路とを具備することを特徴とする間歇エア発生装置。
    A pilot chamber, an inlet port connected to an air pressure source, an outlet port, an exhaust port, and when the pressure in the pilot chamber is less than a predetermined value, the inlet port and the outlet port are shut off, and the exhaust port A passage switching valve having a valve body that connects the inlet port and the outlet port and opens the exhaust port when the pressure in the pilot chamber is equal to or higher than a predetermined value;
    A pilot passage connecting the pilot chamber to the air pressure source;
    A throttle element provided in the middle of the pilot passage;
    An intermittent air generating device comprising: an exhaust passage connecting the pilot chamber or the pilot passage downstream of the throttle element to the exhaust port.
  3.  前記絞り要素は選択的に前記パイロット通路を閉塞する全閉状態をとる請求項1または2に記載の間歇エア発生装置。 The intermittent air generating device according to claim 1 or 2, wherein the throttle element is in a fully closed state that selectively closes the pilot passage.
  4.  前記パイロット室を選択的に大気中に開放する開閉弁を有する請求項1または2に記載の間歇エア発生装置。 The intermittent air generator according to claim 1 or 2, further comprising an on-off valve that selectively opens the pilot chamber to the atmosphere.
  5.  前記パイロット通路を開閉する開閉弁を有する請求項1または2に記載の間歇エア発生装置。 The intermittent air generator according to claim 1 or 2, further comprising an on-off valve that opens and closes the pilot passage.
  6.  前記絞り要素は絞り度を変更可能な可変絞り要素であることを特徴とする請求項1~5の何れか一項に記載の間歇エア発生装置。 The intermittent air generating device according to any one of claims 1 to 5, wherein the aperture element is a variable aperture element capable of changing an aperture degree.
  7.  前記パイロット室に接続されたエアリザーバを有することを特徴とする請求項1~6の何れか一項に記載の間歇エア発生装置。 The intermittent air generating device according to any one of claims 1 to 6, further comprising an air reservoir connected to the pilot chamber.
  8.  前記排気通路の途中に設けられた絞り要素を有することを特徴とする請求項1~7の何れか一項に記載の間歇エア発生装置。 The intermittent air generating device according to any one of claims 1 to 7, further comprising a throttle element provided in the middle of the exhaust passage.
  9.  前記通路切換弁は、前記パイロット室の圧力による荷重と圧縮コイルばねのばね荷重との平衡関係によって動作するものであり、前記通路切換弁には前記圧縮コイルばねの予荷重を可変設置する機構が組み込まれている請求項1~8の何れか一項に記載の間歇エア発生装置。 The passage switching valve is operated by an equilibrium relationship between the load due to the pressure in the pilot chamber and the spring load of the compression coil spring, and the passage switching valve has a mechanism for variably installing the preload of the compression coil spring. The intermittent air generating device according to any one of claims 1 to 8, which is incorporated.
  10.  前記パイロット室の内容積を変更可能である請求項1~9の何れか一項に記載の間歇エア発生装置。 The intermittent air generator according to any one of claims 1 to 9, wherein the internal volume of the pilot chamber is changeable.
  11.  前記絞り要素、前記パイロット通路及び前記排気通路の少なくとも一部が、前記弁体を収容する弁ハウジングに内設されていることを特徴とする請求項1~10の何れか一項に記載の間歇エア発生装置。 The intermittent member according to any one of claims 1 to 10, wherein at least a part of the throttle element, the pilot passage, and the exhaust passage is provided in a valve housing that accommodates the valve body. Air generator.
PCT/JP2015/005202 2014-10-22 2015-10-14 Intermittent air generation device WO2016063499A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016555073A JP6557246B2 (en) 2014-10-22 2015-10-14 Intermittent air generator
TW105101701A TWI671484B (en) 2014-10-22 2016-01-20 Intermittent air generating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014215517 2014-10-22
JP2014-215517 2014-10-22

Publications (1)

Publication Number Publication Date
WO2016063499A1 true WO2016063499A1 (en) 2016-04-28

Family

ID=55760559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005202 WO2016063499A1 (en) 2014-10-22 2015-10-14 Intermittent air generation device

Country Status (3)

Country Link
JP (1) JP6557246B2 (en)
TW (1) TWI671484B (en)
WO (1) WO2016063499A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109826997A (en) * 2019-03-26 2019-05-31 无锡凯尔克仪表阀门有限公司 Throttle structure for nozzle baffle type locator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145285A (en) * 2021-04-27 2021-07-23 重庆披荆斩棘科技有限公司 Anti-liquefaction device for crushing raw materials and using method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236907A (en) * 1985-04-10 1986-10-22 Shiyureedaa Beroozu Kk Air pulse generator
JPH01141208A (en) * 1987-11-25 1989-06-02 Nippon Valqua Ind Ltd Pulse generator
WO2005121562A2 (en) * 2004-06-09 2005-12-22 Bluewater Energy Services Bv Self-contained hydraulic pulsation valve
JP2007118953A (en) * 2005-10-25 2007-05-17 Ekusen Kk Intermittent hitting apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236907A (en) * 1985-04-10 1986-10-22 Shiyureedaa Beroozu Kk Air pulse generator
JPH01141208A (en) * 1987-11-25 1989-06-02 Nippon Valqua Ind Ltd Pulse generator
WO2005121562A2 (en) * 2004-06-09 2005-12-22 Bluewater Energy Services Bv Self-contained hydraulic pulsation valve
JP2007118953A (en) * 2005-10-25 2007-05-17 Ekusen Kk Intermittent hitting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109826997A (en) * 2019-03-26 2019-05-31 无锡凯尔克仪表阀门有限公司 Throttle structure for nozzle baffle type locator
CN109826997B (en) * 2019-03-26 2023-09-22 无锡凯尔克仪表阀门有限公司 Throttling structure for nozzle baffle type positioner

Also Published As

Publication number Publication date
TWI671484B (en) 2019-09-11
JPWO2016063499A1 (en) 2017-08-10
TW201713886A (en) 2017-04-16
JP6557246B2 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
WO2016098380A1 (en) Intermittent air discharge device
US8522818B2 (en) Booster valve
JP2013514568A (en) Multistage valve system
CN204062041U (en) By the automatic valve of strut buckling trigger action under superpressure operating mode
US20140299799A1 (en) Spool valve
JP6557246B2 (en) Intermittent air generator
RU2638255C2 (en) Starting valve for fluid medium machine and operating in a vacuum system
JP6193232B2 (en) Fluid valve having a plurality of fluid flow control members
US20150219089A1 (en) Air operated pump
JP4210588B2 (en) Low energy consumption solenoid valve
CN1995787A (en) Fluid-control system
RU2734590C1 (en) Intermittent air generation device
KR20220169409A (en) Ejector and vacuum generating device including the same
JP2003042134A (en) Vacuum generator
CN104847934A (en) Automatic valve triggered to act by instability of pressure rod under overpressure working condition
RU2584044C1 (en) Valve
RU2185652C2 (en) Liquid flowrate regulator
KR101505016B1 (en) Automatic pressure regulating control device for reciprocatable double acting booster
US11680650B2 (en) Four-position switching valve
JP5979772B2 (en) Fluid pressure actuator operation controller
KR20240049175A (en) Fluid circuit for intermittent air discharge
CN102996861A (en) Electromagnetic pilot-operated type high pressure double-channel control valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016555073

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853270

Country of ref document: EP

Kind code of ref document: A1