WO2016063406A1 - Optical imaging probe - Google Patents
Optical imaging probe Download PDFInfo
- Publication number
- WO2016063406A1 WO2016063406A1 PCT/JP2014/078274 JP2014078274W WO2016063406A1 WO 2016063406 A1 WO2016063406 A1 WO 2016063406A1 JP 2014078274 W JP2014078274 W JP 2014078274W WO 2016063406 A1 WO2016063406 A1 WO 2016063406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- optical fiber
- optical imaging
- vibrator
- light beam
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/26—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
Definitions
- the present invention relates to a three-dimensional scanning optical imaging probe necessary for stereoscopically capturing and observing light reflected and reflected from a subject in a medical device or the like.
- Diagnostic imaging technology is a technology that is widely used in the field of inspections of various machine parts, devices, equipment, etc., and medical care.
- X-ray CT that can take tomographic images and three-dimensional tomographic images in addition to general camera observation and ultrasonic diagnostic equipment as a diagnostic technique in medical and precision equipment manufacturing sites.
- methods such as nuclear magnetic resonance and OCT images (optical coherence tomography) using light coherence have been studied and utilized.
- OCT image diagnostic technique that can obtain the finest captured image among these methods for the tomographic image and the three-dimensional tomographic image capturing.
- OCT images often use near-infrared light with a wavelength of about 1300 nanometers as a light source, but near-infrared light is transmissive and non-invasive to living organisms, and has superior spatial resolution because it has a shorter wavelength than ultrasound. ing.
- this tomographic imaging method is incorporated into an endoscope, and especially in the medical field, the trachea and gallbladder of the human body
- An endoscope is inserted into a blood vessel such as an arterial flow, and is expected to be used for finding, diagnosing, and treating an affected area.
- a typical structure of an OCT endoscope to which this OCT image technology is applied is as shown in Patent Document 1, for example.
- the rotational force of the motor is transmitted to a rotating shaft through a belt, and further from an optical fiber or the like passing through a tubular optical sheath. This is transmitted to the lens unit via a flexible shaft.
- abrasion powder may be generated due to rubbing between the inner peripheral surface of the optical sheath and the flexible shaft.
- the analysis image obtained due to the rotation transmission delay, the torque loss fluctuation, etc. due to the flexible shaft rubbing, bending, twisting, elastic deformation of the belt, etc. is disturbed, and the space required according to the purpose In some cases, resolution could not be obtained.
- an elongated tube-like catheter is inserted into the annular guide catheter shown in FIG. 1 in the document, and the inside of the catheter is rotatable and slidable.
- OCT which has an optically connected drive shaft and an optical fiber or a core, and rotates the optical fiber and moves it in the length direction as shown in FIG.
- This is a 3D image system.
- this configuration has a problem that abrasion powder is generated due to rubbing between the inner peripheral surface of the catheter and the outer peripheral surface of the drive shaft.
- rotation transmission delay, torque loss fluctuation, etc. occur, resulting in disturbed analysis images and the required spatial resolution depending on the purpose cannot be obtained. was there.
- a reflecting mirror is directly connected to the tip of the rotating shaft of the motor illustrated in FIG.
- the motor body since the motor body is located on the front side of the reflector, it is necessary to draw the power supply wiring for the motor toward the optical fiber side, and this power supply wiring is located on the side of the reflector. Since it must be positioned, the power supply wiring blocks light reflected by the reflecting mirror. Therefore, when the reflecting mirror rotates all around and performs all around scanning, a part of it becomes a shadow, and 360 degrees all around cannot be observed.
- the motor protrudes in front of the reflecting mirror, when the affected part is scanned, the motor part comes into contact with the subject to be observed, and the light beam of the reflecting mirror located behind the motor is applied to the subject.
- near infrared rays did not reach and the imaging range in the endoscope probe axial direction was limited, causing problems such as inability to observe.
- the present invention has been made in view of the above-described conventional circumstances, and it is an object of the present invention to reduce the occurrence of cosmetic, torque loss, and wear of the rotating portion of the optical fiber, to prevent rotation transmission delay, and to prevent the optical transmission with respect to the axis.
- This is a probe for optical imaging that realizes three-dimensional scanning by emitting a light beam 360 degrees around the circumference and in a three-dimensional manner by providing a combination of an actuator for changing the radiation angle and an optical path changing means at the tip of the lens.
- One means for solving the above problems is an optical fiber having a condensing lens on the tip side, a vibrator that generates a displacement when a voltage is applied, and an optical path changing means that changes the radiation angle of the light beam emitted from the condensing lens.
- the optical imaging probe is configured to change the angle of the light beam irradiated from the condenser lens to the optical path changing means by giving the bending angle to the distal end side of the optical fiber.
- the present invention it is not necessary to rotate the optical fiber in a tube of an endoscope apparatus or the like, and the radiation angle and the radiation direction with respect to the axis of the light beam are changed. Therefore, occurrence of rotation transmission delay, torque loss, and the like can be eradicated. Furthermore, by raising and lowering the voltage applied to the vibrator and arranging the optical path changing means in front of the light beam, the light beam is radiated 360 degrees in the entire circumferential direction, and the radiation angle is changed to radiate three-dimensionally, A compact optical imaging probe for obtaining a three-dimensional observation image can be obtained.
- the perspective view of the probe for optical imaging concerning the 1st Embodiment of this invention Applied voltage timing chart of the same optical imaging probe Rotation explanatory diagram of the same optical imaging probe Explanatory diagram of voltage and angle of probe for optical imaging Explanation of change in applied voltage of probe for optical imaging Explanatory drawing of scanning angle of probe for optical imaging Explanation of scanning range of probe for optical imaging Endoscopic imaging device configuration diagram using the same optical imaging probe
- swiveling body part concerning the 5th Embodiment of this invention The perspective view of the rocking
- the first feature of the optical imaging probe of the present embodiment is that an optical fiber having a condensing lens on the tip side, a vibrator that generates displacement when a voltage is applied, and a radiation angle of a light beam emitted from the condensing lens.
- Optical path changing means for changing.
- the displacement generated by the vibrator gives a bending angle to the distal end side of the optical fiber, thereby changing the angle of the light beam irradiated from the condenser lens to the optical path changing means.
- a compact optical imaging probe that can obtain a three-dimensional observation image by raising and lowering the voltage applied to the transducer and arranging the optical path changing means in front of the light beam to change the circumferential direction and radiation angle of the light beam. Obtainable.
- the optical path changing means is configured as a substantially conical or shell-shaped three-dimensional mirror that emits light rays emitted from the condenser lens in the entire circumferential direction with respect to the axis. According to this configuration, the light beam emitted from the condenser lens is reflected by the stereoscopic mirror, and the optical imaging probe can three-dimensionally observe the region in the cylindrical direction with respect to the optical axis.
- a concave lens is provided between the condenser lens and the optical path changing means, and the light beam emitted from the condenser lens is irradiated to the optical path changing means through the concave lens.
- At least two vibrators are arranged so as to expand and contract in the X direction and the Y direction, respectively, and the expansion and contraction of the oscillators radiates the optical fiber and the condenser lens at different angles with respect to the axis. Configured to do. Also with this configuration, the angle of the condenser lens can be changed in the axial direction and the direction of the light beam can be changed, and three-dimensional observation can be performed with a compact configuration.
- the optical path changing means is configured to be slidable on the same line, and is configured to vary the distance from the axis to the in-focus observation point by sliding.
- a sixth feature is that the vibrator is a plurality of plate-like piezoelectric elements or electrostrictive elements, and is disposed on at least a plurality of outer peripheral surfaces of the substantially polygonal column structure.
- the optical fiber penetrates the center of the structure, and the displacement generated by the vibrator changes the angle in the axial direction to the structure, the optical fiber, and the condenser lens, and emits light. With this configuration, the direction of the light beam can be changed over a wide range, and three-dimensional observation can be performed with a compact configuration.
- the seventh feature is that the voltage waveform applied to the vibrator that applies displacement in the X direction and the vibrator that applies displacement in the Y direction is sequentially applied by shifting the voltage phase by a substantially sine wave in the adjacent order of the vibrator.
- the optical fiber and the condensing lens were swung, and the angle of the optical fiber was changed with respect to the axis by gradually increasing or decreasing the voltage of the sine wave.
- the light emitted from the condenser lens is emitted in a circle, and the light gradually changes its angle in the axial direction. Therefore, when the reflected light is analyzed by the computer, a computer is created. This makes it easy to calculate and smooth image display.
- FIG. 1 is a perspective view of an optical imaging probe according to the first embodiment of the present invention.
- the vicinity of the tip of the optical fiber 3 passes through the substantial center of the substantially prismatic oscillating body 1, and the most distal portion of the optical fiber 3 is provided so as to protrude from the oscillating body 1.
- Thin plate-like piezoelectric elements (or electrostrictive elements) 2 a, 2 b, 2 c, 2 d having a pattern-like electrode 22 as a vibrator are attached to a plurality of outer peripheral surfaces of the substantially prismatic oscillator 1. Are wired by electric wires 21.
- a three-dimensional mirror 4 as an optical path changing means is arranged substantially on the axis (on a virtual line when the tip side of the optical fiber 3 is linearly extended), and the reflecting surface of this three-dimensional mirror 4 is It has a cannonball shape or a substantially conical shape.
- the oscillating body 1 and the three-dimensional mirror 4 are housed in a soft or hard tube 13 having a translucent portion 13a near the tip.
- the oscillating body 1 is a free end that oscillates on the side facing the three-dimensional mirror on its substantially axis, the opposite side (rear side) is a fixed end, and this fixed end is integrated with the tube 13. It is fixed.
- a near-infrared ray or the like emitted from the rear of the optical fiber 3 is emitted from the distal end portion 3a of the optical fiber 3 toward the three-dimensional mirror 4, and the light ray has an angular direction of about 30 degrees to about 90 degrees from the central axis.
- the subject a diseased part around a blood vessel or bile duct in a medical endoscope, a cylindrical measurement surface in an industrial endoscope, etc.
- the reflected light beam is again reflected by the three-dimensional mirror 4 through the translucent part 13a, and returns to the analyzer 16 shown in FIG.
- FIG. 2 shows a timing chart of voltages applied to the piezoelectric elements 2a, 2b, 2c and 2d of the optical imaging probe of the present invention.
- Pa to Pd in FIG. 2 indicate substantially sinusoidal voltages applied to the piezoelectric elements 2a, 2b, 2c, and 2d in FIG.
- the oscillating body 1 performs a rotating motion as indicated by an arrow in FIG.
- the light beam is emitted 360 degrees in the outer circumferential direction of the three-dimensional mirror-4.
- the tube 13 is inserted into the blood vessel of the human body, the light beam is transmitted through the blood vessel.
- the light beam is focused in the range of about 2 to 6 millimeters in diameter on the outer periphery, and the cross-sectional tomography in those states can be observed by capturing the reflected light from the lesion or fat.
- the symbol S in FIG. 2 is a pulse generated once per rotation from the apparatus main body 16, and this is used as a trigger signal to generate a tomographic image of a general rotary radar as shown in the monitor 20 in FIG. Can be drawn to.
- the piezoelectric elements 2a, 2b, 2c, and 2d shown in FIG. 1 are substantially proportional to the voltage applied to the piezoelectric elements 2a, 2b, 2c, and 2d, as shown in FIG.
- the turning diameter increases.
- the radiation angle changes in the range of the symbols ⁇ 1 to ⁇ 2 shown in FIG. 1, so that the radiation angle of the light beam changes as indicated by the symbol ⁇ .
- the voltage waveform applied to the piezoelectric elements 2a, 2b, 2c and 2d is a continuous sine wave whose voltage gradually changes as shown in FIG. 5, the light beam is three-dimensional as shown in FIG. Radiated to range.
- near-infrared rays emitted from the apparatus main body 16 of FIG. 8 are guided to the optical fiber 3 and radiated forward from the tip portion 3a shown in FIG. 1, and the radiation angle is converted by the optical path conversion means 4, Since the light beam is rotated by the piezoelectric actuator 2, the light beam is radiated in the entire 360 direction of the outer periphery in the drawing. This light beam passes through the translucent part 13a and is irradiated to a subject such as an affected part of the human body, and the reflected light from the subject is in a direction opposite to the direction in which the light beam is guided, in the optical path changing means 4 and the optical fiber 3. And return to the apparatus main body 16. As a result, the apparatus body 16 can capture a three-dimensional tomographic image of the entire 360 ° circumference.
- FIG. 8 is a block diagram of an endoscopic image apparatus using an optical imaging probe.
- a tube 13 is attached to an apparatus main body 16 together with a guide catheter 15, and a CCD camera 23 is attached to the distal end of the guide catheter.
- the device main body 16 includes a driver circuit 17 for the piezoelectric element 2, an optical interference analysis unit 18, and an image analysis computer 19.
- the monitor 20 includes an image of the CCD camera 23 and optical interference generated by analysis by the computer 19. Both three-dimensional tomographic images are displayed.
- the optical fiber 3 that penetrates the inside of the tube 13 is a glass fiber that can be bent freely and has a diameter of about 0.2 to 0.4 mm.
- the translucent part 13a is made of transparent plastics or glass or the like, but has a coating on the surface in order to increase the light transmittance and prevent reflection.
- a ball lens 5 is used as the condensing lens 5, but a conical condensing lens or prism may be used.
- the oscillating body 1 Since the oscillating body 1 has a spring property and is desired to be easily deformed, it is processed into a prismatic shape or a thin box shape with stainless steel, zirconia ceramics, or the like.
- the optical fiber 3 does not rub inside the long tube 13 because it does not need to be rotated inside the tube 13 from the rear to the tip, and rotation transmission delay, torque loss, etc. occur. Will be reduced.
- the piezoelectric element 2 which is a vibrator gives a rotational motion to the tip of the optical fiber 3, and the light beam is irradiated and reflected on the optical path changing means such as the three-dimensional mirror 4 to irradiate the light beam of 360 degrees all around.
- the signal line and the electric wire are not provided within the scanning range of 360 degrees, it is possible to obtain an image that is not missing all around 360 degrees.
- the voltage applied to the piezoelectric element 2 it is possible to emit a light beam in a three-dimensional range.
- the optical imaging probe can be configured compactly.
- the most important required performance in 3D operation image diagnostic equipment is to increase the spatial resolution of 3D images, but the factors that hinder the spatial resolution include uneven rotation speed, shake accuracy and vibration of the mechanism, and condenser lens. There are surface accuracy of parts such as 5. Among these, the influence of the rotation speed is large, but the present invention is a method in which the optical fiber is not rotated by incorporating the oscillating body 1 at the distal end portion of the tube 13, so that the sliding resistance of the fiber is reduced. Change and torsional vibration do not occur at all, and as a result, the rotation accuracy is high, so that the apparatus main body 16 can display a precise observation image capable of obtaining a high three-dimensional spatial resolution of, for example, 10 micrometers or less.
- FIG. 9 is a perspective view of the rocking body 7 according to the second embodiment of the present invention.
- the second embodiment is the same as the first embodiment except for the configuration of the piezoelectric element 12 and the rocking body 7. It is.
- the oscillating body 7 includes a fixed portion 7a, a spring portion 7b, and a rotating portion 7c. One end of each of the piezoelectric elements 12b and 12d is fixed to the spring portion 7b, and the free end of the other end is fixed to the rotating portion 7c.
- the portion 7a is attached and fixed inside the tube 13.
- the piezoelectric elements 12a and 12c are fixed to the fixed portion 7a, and their free ends are in contact with the rotating portion 7c but not fixed.
- the optical fiber 3 passes through substantially the center of the oscillating body 7, and a condensing lens 5 is attached to the tip side as necessary.
- the piezoelectric elements 12a, 12b, 12c, and 12d are sequentially applied to the piezoelectric elements 12a, 12b, 12c, and 12d as shown in FIGS. 2 and 5, the piezoelectric elements 12a, 12b, 12c, and 12d are bent in order, and turn as shown in FIG. Produce. Thereafter, the same movement as in the first embodiment shown in FIG. 1 is performed, and the light beam is emitted to the three-dimensional range as shown in FIG. 7, and the apparatus main body 16 can display a three-dimensional image.
- the force in the bending direction generated from the piezoelectric element 12 is substantially proportional to the area, voltage, and number of the piezoelectric elements 12 that are pasted. Therefore, considering this principle, the shape, size, and number of the piezoelectric elements 12 are considered. If necessary, design measures such as stacking two piezoelectric elements are made.
- the force generated in the piezoelectric element 12 can be increased, the displacement of the oscillating body and the rotation diameter of the optical fiber 3 can be increased, and a three-dimensional stereoscopic image can be obtained over the inner and outer ranges in the axial direction.
- FIG. 10 is a perspective view of an oscillating body according to the third embodiment of the present invention.
- a concave lens 18 is provided between the optical fiber 3 and the three-dimensional mirror 4 which is an optical path changing means.
- Other configurations are the same as those of the first embodiment shown in FIG.
- FIG. 10 when voltages are sequentially applied to the piezoelectric elements 2a, 2b, 2c, and 2d as shown in FIGS. 2 and 5, the piezoelectric elements 2a, 2b, 2c, and 2d are bent in order, as shown in FIG. As shown in FIG. 7, the light beam is emitted in a three-dimensional range by the same movement as that of the first embodiment shown in FIG. In FIG. 10, since the concave lens 18 is disposed between the optical fiber 3 and the three-dimensional mirror 4, the light beam is bent at a larger angle and radiated in a long range in the axial direction. An image can be displayed.
- FIG. 11 is a perspective view of an oscillating body according to the third embodiment of the present invention.
- the X-direction multilayer piezoelectric element 10 and the Y-direction multilayer piezoelectric element 11 are fixed to the case 9a, and the optical fiber 3 is fixed to the case fixing portion 9b and the multilayer piezoelectric elements 10 and 11. 5 is attached.
- the multilayer piezoelectric elements 10 and 11 expand and contract in order, and the condenser lens 5 rotates as shown in FIG. Causes dynamic movement. Thereafter, the same movement as in the first embodiment shown in FIG. 1 is performed, and the light beam is emitted to the three-dimensional range as shown in FIG. 7, and the apparatus main body 16 can display a three-dimensional image.
- the piezoelectric elements 10 and 11 are multi-layer piezoelectric elements, a large force is generated even at a low voltage. Therefore, even when the optical fiber 3 is thick and difficult to bend, a sufficiently large rotational motion is given to the condenser lens 5. be able to.
- FIG. 12 is a sectional view of an oscillating body according to the fifth embodiment of the present invention.
- the three-dimensional mirror 4 which is an optical path changing means is configured to be slidable between 4a and 4b on a substantially axial line in the figure.
- the light beam is focused, for example, in the vicinity of a radius of 3 millimeters from the axis, so that a tomographic image of an object having a radius of about 2 to 4 millimeters is being worked on.
- the stereoscopic mirror slides to the position 4b, the light beam is focused around a radius of 5 millimeters, and the light beam reflected from the object having a radius of about 4 to 6 millimeters can be captured and a tomographic image of the object can be taken.
- the three-dimensional mirror 4 is slid manually or electrically with a screw or the like to focus the light beam.
- FIG. 13 is a perspective view of a rocking body according to the sixth embodiment of the present invention.
- the optical path changing device is configured to correspond to the concave lens 8, and the light beam emitted from the optical fiber 3 is radiated forward by the concave lens 8 while further expanding the radiation angle.
- FIG. 13 when voltages are sequentially applied to the piezoelectric elements 2a, 2b, 2c, and 2d as shown in FIGS. 2 and 5, the piezoelectric elements 2a, 2b, 2c, and 2d are sequentially bent, as shown in FIG. 1 is rotated, and moves in the same manner as in the first embodiment of FIG. 1, and the light beam is emitted in a three-dimensional range so as to draw a round spiral in front.
- the light beam emitted from the optical fiber 3 is emitted forward while the radiation angle is further widened by the concave lens 8, irradiates the subject in front, and the reflected light passes through the concave lens 8 in the direction opposite to the radiation. Is taken into the optical fiber.
- near-infrared rays emitted from the apparatus main body 16 in FIG. 8 are irradiated to a subject such as an affected part of a human body, and reflected light from the subject is a concave lens in a direction opposite to the direction in which the rays are guided. 8.
- the apparatus main body 16 can capture a three-dimensional tomographic image in the forward direction.
- the voltage waveforms applied to the piezoelectric elements 2a, 2b, 2c, and 2d are not necessarily shown in FIGS. 2 and 5, for example, the piezoelectric elements 2b and 2d vibrate about 525 times in the Y direction.
- the piezoelectric elements 2a and 2c so as to vibrate slowly in one reciprocating motion, a rectangular screen scan similar to a general television screen is performed instead of the round spiral operation described above. Also good.
- a CCD camera and a scalpel are put in the affected area while opening a fat mass covered in the body, When cutting and suturing the affected area, avoiding blood vessels that are hidden in the fat mass and avoiding the blood vessels that are difficult to see, the blood vessels hidden only by experienced veteran doctors can be found.
- the risk of damaging and bleeding blood vessels that are difficult to see has been an important issue, but surgery should be performed while viewing the image of the optical imaging probe of this embodiment in parallel with the image of the CCD camera 23.
- the reflected light transmitted through the fat mass neatly displays the blood vessels in the fat mass on the screen, and the doctor can safely operate.
- the present invention it is not necessary to rotate an optical fiber in a tube of an endoscope apparatus or the like, and light beams are radiated and rotated by a turning movement of a piezoelectric actuator. Can be eradicated. Furthermore, the voltage applied to the piezoelectric element or the electrostrictive element is raised and lowered, and the optical path changing means is arranged in front of the light beam to radiate the light beam three-dimensionally by changing the whole circumference direction and the radiation angle, and the reflected light is tertiary. A compact optical imaging probe for obtaining an original observation image can be obtained.
- the three-dimensional scanning optical imaging probe of the present invention is provided by rotating and scanning a light emitting means and an optical path changing means that are rotated by an actuator near the tip of the tube without rotating the optical fiber in the long tube.
- an actuator near the tip of the tube without rotating the optical fiber in the long tube.
- Three-dimensional scanning can be realized by combining the actuator that gives the turning motion to the tip of the optical fiber with respect to the axis and the optical path changing means to radiate light rays in three dimensions.
- Three-dimensional scanning and observation allow observation and diagnosis of the affected area inside the human body without incision surgery, and high resolution and precision that were impossible with conventional diagnostic devices such as X-ray CT and nuclear magnetic resonance. Diagnosis is possible.
- it can be configured compactly with a small diameter, it is expected to be applied to medical sites, observation of small and precise mechanical parts, and application to precision measuring instruments.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Radiology & Medical Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Astronomy & Astrophysics (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Endoscopes (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
Abstract
[Problem] To provide an optical imaging probe which reduces an occurrence of such as rotation transmission delay or torque loss, and is capable of obtaining a three-dimensional observational image by radiating a light ray across all 360 degrees of circumference direction and allowing changing the radiation angle with respect to an axis. [Solution] Provided is an optical imaging probe, wherein: an optical fiber which transmits light between a leading end side and an aft side of a probe comprises a condenser lens on the leading end side thereof; the probe is provided with piezoelectric elements or electrostrictive elements which impart, to the optical fiber in proximity to the condenser lens, an angle relative to the axis of the optical fiber; an optical path conversion means is positioned at the leading end of the condenser lens upon the same axis; and a light ray is radiated from the condenser lens with the radiation angle thereof being changed with the optical path conversion means. Thus, it is possible to stereoscopically radiate the light ray and carry out three-dimensional scanning.
Description
本発明は、医療機器等において被検体に放射し反射させた光を立体的に取り込んで観察するために必要な三次元走査型の光イメージング用プローブに関するものである。
The present invention relates to a three-dimensional scanning optical imaging probe necessary for stereoscopically capturing and observing light reflected and reflected from a subject in a medical device or the like.
The present invention relates to a three-dimensional scanning optical imaging probe necessary for stereoscopically capturing and observing light reflected and reflected from a subject in a medical device or the like.
画像診断技術(光イメージング技術)は、各種機械部品、装置、設備等の検査、医療などの現場において広く利用されている技術である。例えば、医療現場や精密機器などの製造現場において、画像診断の手法として、一般的なカメラ観察や超音波診断装置に加えて、断層画像や三次元断層画像を撮影する事が可能なX線CT、核磁気共鳴、光の干渉性を利用したOCT画像(光干渉断層撮影)などの方式が研究されると共に活用されている。近年、この断層画像や三次元断層画像撮影はこれら方式の中で最も微細な撮影画像が得られるOCT画像診断技術の開発が注目されている。
Diagnostic imaging technology (optical imaging technology) is a technology that is widely used in the field of inspections of various machine parts, devices, equipment, etc., and medical care. For example, X-ray CT that can take tomographic images and three-dimensional tomographic images in addition to general camera observation and ultrasonic diagnostic equipment as a diagnostic technique in medical and precision equipment manufacturing sites. Further, methods such as nuclear magnetic resonance and OCT images (optical coherence tomography) using light coherence have been studied and utilized. In recent years, attention has been paid to the development of an OCT image diagnostic technique that can obtain the finest captured image among these methods for the tomographic image and the three-dimensional tomographic image capturing.
OCT画像は光源として波長1300ナノメートル程度の近赤外線を用いる事が多いが、近赤外線は生体に対して透過可能かつ非侵襲性であり、また超音波よりも波長が短いために空間分解能に優れている。加えて、およそ10マイクロメータ(超音波診断装置の50分の1以下)の識別が可能となることから、この断層画像方式を内視鏡に組込み、特に医療現場で人体の気管部、胆のう部、動脈流等の血管部に内視鏡を挿入して、患部の発見、診断及び治療への活用が期待されている。このOCT画像技術を適用したOCT内視鏡の代表的な構造は、例えば、特許文献1に示されている通りである。
OCT images often use near-infrared light with a wavelength of about 1300 nanometers as a light source, but near-infrared light is transmissive and non-invasive to living organisms, and has superior spatial resolution because it has a shorter wavelength than ultrasound. ing. In addition, since it is possible to identify approximately 10 micrometers (less than 1/50 of an ultrasonic diagnostic apparatus), this tomographic imaging method is incorporated into an endoscope, and especially in the medical field, the trachea and gallbladder of the human body An endoscope is inserted into a blood vessel such as an arterial flow, and is expected to be used for finding, diagnosing, and treating an affected area. A typical structure of an OCT endoscope to which this OCT image technology is applied is as shown in Patent Document 1, for example.
ところで、特許文献1に示すOCT内視鏡では、該文献中図8に示すようにモータの回転力を、ベルトを介して回転シャフトに伝達し、さらにチューブ状の光学シース内を通る光ファイバー等からなるフレキシブルシャフトを介してレンズユニットへ伝達するようにしている。そのため、光学シースの内周面とフキシブルシャフトとの擦れにより摩耗粉が発生する事があった。また、フレキシブルシャフトの擦れ、撓み、ねじれ、及び前記ベルトの弾性変形等に起因して、回転伝達遅れ、トルク損失の変動等を生じるため得られる解析画像が乱れ、目的に応じて要求される空間分解能が得られない場合があった。
By the way, in the OCT endoscope shown in Patent Document 1, as shown in FIG. 8 in the document, the rotational force of the motor is transmitted to a rotating shaft through a belt, and further from an optical fiber or the like passing through a tubular optical sheath. This is transmitted to the lens unit via a flexible shaft. For this reason, abrasion powder may be generated due to rubbing between the inner peripheral surface of the optical sheath and the flexible shaft. In addition, the analysis image obtained due to the rotation transmission delay, the torque loss fluctuation, etc. due to the flexible shaft rubbing, bending, twisting, elastic deformation of the belt, etc. is disturbed, and the space required according to the purpose In some cases, resolution could not be obtained.
また、特許文献2に示すOCT内視鏡では、該文献中図1に示される環状のガイドカテーテルの内部に細長のチューブ状のカテーテルが挿入され、カテーテル内部には、回転および摺動可能で光学的に接続された駆動軸と光ファイバーまたはコアを有し、前記光ファイバーを回転させると共に、文献中図3に示すように長さ方向に移動させて身体組織に照射を行い、解析画像を観察するOCTの三次元画像システムである。しかしながらこの構成では、カテーテルの内周面と駆動軸外周面との擦れにより摩耗粉が発生する問題があった。また、駆動軸の擦れ、撓み、ねじれ、に起因して、回転伝達遅れ、トルク損失の変動等を生じるため、得られる解析画像が乱れ、目的に応じて要求される空間分解能が得られない場合があった。
Further, in the OCT endoscope shown in Patent Document 2, an elongated tube-like catheter is inserted into the annular guide catheter shown in FIG. 1 in the document, and the inside of the catheter is rotatable and slidable. OCT which has an optically connected drive shaft and an optical fiber or a core, and rotates the optical fiber and moves it in the length direction as shown in FIG. This is a 3D image system. However, this configuration has a problem that abrasion powder is generated due to rubbing between the inner peripheral surface of the catheter and the outer peripheral surface of the drive shaft. In addition, when the drive shaft is rubbed, bent, or twisted, rotation transmission delay, torque loss fluctuation, etc. occur, resulting in disturbed analysis images and the required spatial resolution depending on the purpose cannot be obtained. was there.
また、特許文献3に示される内視鏡プローブでは、該文献中図2に示されるモータの回転軸の先端に反射鏡を直結するようにしている。しかしながら、この発明では、モータの本体が、反射鏡よりも前方側に位置するため、モータ用の給電配線が光ファイバー側に向けて引きまわす必要があり、この給電配線が前記反射鏡の側部に位置せざるを得ないため、給電配線が反射鏡によって反射された光を遮ってしまう。その為、反射鏡が全周回転し全周走査を行う場合、その一部が影となり360度全周の観察ができなかった。また、反射鏡よりも前方側にモータが突出するため、患部を走査する場合このモータ部が観察すべき被検体に当接してしまい、モータより後方に位置する前記反射鏡の光線が被検体に近赤外光線が届かず、内視鏡プローブ軸方向の撮像範囲が制限され、観察できない等の不具合を生じる場合があった。
Further, in the endoscope probe disclosed inPatent Document 3, a reflecting mirror is directly connected to the tip of the rotating shaft of the motor illustrated in FIG. However, in the present invention, since the motor body is located on the front side of the reflector, it is necessary to draw the power supply wiring for the motor toward the optical fiber side, and this power supply wiring is located on the side of the reflector. Since it must be positioned, the power supply wiring blocks light reflected by the reflecting mirror. Therefore, when the reflecting mirror rotates all around and performs all around scanning, a part of it becomes a shadow, and 360 degrees all around cannot be observed. Further, since the motor protrudes in front of the reflecting mirror, when the affected part is scanned, the motor part comes into contact with the subject to be observed, and the light beam of the reflecting mirror located behind the motor is applied to the subject. There was a case in which near infrared rays did not reach and the imaging range in the endoscope probe axial direction was limited, causing problems such as inability to observe.
Further, in the endoscope probe disclosed in
本発明は上記従来事情に鑑みてなされたものであり、その課題とするところは、光ファイバー回転部のコスレ、トルク損失、摩耗の発生を軽減し、回転伝達遅れを防ぐと共に、軸線に対して光ファイバーの先端部に放射角度を変えるアクチュエータと光路変換手段を組合せて設けることにより、光線を360度全周方向、かつ立体的に放射して、三次元走査を実現する光イメージング用プローブである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described conventional circumstances, and it is an object of the present invention to reduce the occurrence of cosmetic, torque loss, and wear of the rotating portion of the optical fiber, to prevent rotation transmission delay, and to prevent the optical transmission with respect to the axis. This is a probe for optical imaging that realizes three-dimensional scanning by emitting a light beam 360 degrees around the circumference and in a three-dimensional manner by providing a combination of an actuator for changing the radiation angle and an optical path changing means at the tip of the lens.
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described conventional circumstances, and it is an object of the present invention to reduce the occurrence of cosmetic, torque loss, and wear of the rotating portion of the optical fiber, to prevent rotation transmission delay, and to prevent the optical transmission with respect to the axis. This is a probe for optical imaging that realizes three-dimensional scanning by emitting a light beam 360 degrees around the circumference and in a three-dimensional manner by providing a combination of an actuator for changing the radiation angle and an optical path changing means at the tip of the lens.
上記課題を解決するための一手段は、先端側に集光レンズを備える光ファイバーと、電圧を加えると変位を生じる振動子と、集光レンズから放射される光線の放射角度を変化させる光路変換手段とを備え、振動子が生じる変位が光ファイバーの先端側に曲げ角度を与えることにより、集光レンズから光路変換手段に照射される光線の角度を変化させるように光イメージング用プローブを構成する。
この構成により光ファイバーが長いチューブ内を回転する必要がなくなるので、回転伝達遅れやトルク損失等の発生を皆無にすると共に、光線を360度全周方向に放射し、さらに放射角度と放射方向の変更を可能にして三次元の観察画像を得ることができる。
One means for solving the above problems is an optical fiber having a condensing lens on the tip side, a vibrator that generates a displacement when a voltage is applied, and an optical path changing means that changes the radiation angle of the light beam emitted from the condensing lens. And the optical imaging probe is configured to change the angle of the light beam irradiated from the condenser lens to the optical path changing means by giving the bending angle to the distal end side of the optical fiber.
This configuration eliminates the need for the optical fiber to rotate in a long tube, thus eliminating the occurrence of rotational transmission delays, torque loss, etc., and radiating light rays 360 degrees around the circumference, and changing the radiation angle and radiation direction. And a three-dimensional observation image can be obtained.
この構成により光ファイバーが長いチューブ内を回転する必要がなくなるので、回転伝達遅れやトルク損失等の発生を皆無にすると共に、光線を360度全周方向に放射し、さらに放射角度と放射方向の変更を可能にして三次元の観察画像を得ることができる。
One means for solving the above problems is an optical fiber having a condensing lens on the tip side, a vibrator that generates a displacement when a voltage is applied, and an optical path changing means that changes the radiation angle of the light beam emitted from the condensing lens. And the optical imaging probe is configured to change the angle of the light beam irradiated from the condenser lens to the optical path changing means by giving the bending angle to the distal end side of the optical fiber.
This configuration eliminates the need for the optical fiber to rotate in a long tube, thus eliminating the occurrence of rotational transmission delays, torque loss, etc., and radiating light rays 360 degrees around the circumference, and changing the radiation angle and radiation direction. And a three-dimensional observation image can be obtained.
本発明によれば、内視鏡装置等のチューブ内において、光ファイバーは回転させる必要がなく、光線の軸線に対する放射角と放射方向を変えるので、回転伝達遅れやトルク損失等の発生を撲滅できる。更に振動子に印加する電圧を昇降させることと、光線の前方に光路変換手段を配置することで光線を360度全周方向に放射し、さらに放射角度に変化を与えて立体的に放射し、三次元観察画像を得るコンパクトな光イメージングプローブを得ることができる。
According to the present invention, it is not necessary to rotate the optical fiber in a tube of an endoscope apparatus or the like, and the radiation angle and the radiation direction with respect to the axis of the light beam are changed. Therefore, occurrence of rotation transmission delay, torque loss, and the like can be eradicated. Furthermore, by raising and lowering the voltage applied to the vibrator and arranging the optical path changing means in front of the light beam, the light beam is radiated 360 degrees in the entire circumferential direction, and the radiation angle is changed to radiate three-dimensionally, A compact optical imaging probe for obtaining a three-dimensional observation image can be obtained.
According to the present invention, it is not necessary to rotate the optical fiber in a tube of an endoscope apparatus or the like, and the radiation angle and the radiation direction with respect to the axis of the light beam are changed. Therefore, occurrence of rotation transmission delay, torque loss, and the like can be eradicated. Furthermore, by raising and lowering the voltage applied to the vibrator and arranging the optical path changing means in front of the light beam, the light beam is radiated 360 degrees in the entire circumferential direction, and the radiation angle is changed to radiate three-dimensionally, A compact optical imaging probe for obtaining a three-dimensional observation image can be obtained.
本実施の形態の光イメージング用プローブの第一の特徴は、先端側に集光レンズを備える光ファイバーと、電圧を加えると変位を生じる振動子と、集光レンズから放射される光線の放射角度を変化させる光路変換手段とを備える。そして、振動子が生じる変位が光ファイバーの先端側に曲げ角度を与えることにより、集光レンズから光路変換手段に照射される光線の角度を変化させるようにしている。
この構成によれば、内視鏡装置等のチューブ内で光ファイバーを回転させる必要がなく、振動子が光線の放射方向を変化させるので、回転伝達遅れやトルク損失等の発生を撲滅できる。更に振動子に印加する電圧を昇降させる事と、光線の前方に光路変換手段を配置することで光線を全周方向および放射角度を変化させて三次元観察画像が得られるコンパクトな光イメージングプローブを得ることができる。 The first feature of the optical imaging probe of the present embodiment is that an optical fiber having a condensing lens on the tip side, a vibrator that generates displacement when a voltage is applied, and a radiation angle of a light beam emitted from the condensing lens. Optical path changing means for changing. The displacement generated by the vibrator gives a bending angle to the distal end side of the optical fiber, thereby changing the angle of the light beam irradiated from the condenser lens to the optical path changing means.
According to this configuration, it is not necessary to rotate the optical fiber in a tube of an endoscope apparatus or the like, and the vibrator changes the radiation direction of the light beam, so that it is possible to eliminate the occurrence of rotation transmission delay, torque loss, and the like. Furthermore, a compact optical imaging probe that can obtain a three-dimensional observation image by raising and lowering the voltage applied to the transducer and arranging the optical path changing means in front of the light beam to change the circumferential direction and radiation angle of the light beam. Obtainable.
この構成によれば、内視鏡装置等のチューブ内で光ファイバーを回転させる必要がなく、振動子が光線の放射方向を変化させるので、回転伝達遅れやトルク損失等の発生を撲滅できる。更に振動子に印加する電圧を昇降させる事と、光線の前方に光路変換手段を配置することで光線を全周方向および放射角度を変化させて三次元観察画像が得られるコンパクトな光イメージングプローブを得ることができる。 The first feature of the optical imaging probe of the present embodiment is that an optical fiber having a condensing lens on the tip side, a vibrator that generates displacement when a voltage is applied, and a radiation angle of a light beam emitted from the condensing lens. Optical path changing means for changing. The displacement generated by the vibrator gives a bending angle to the distal end side of the optical fiber, thereby changing the angle of the light beam irradiated from the condenser lens to the optical path changing means.
According to this configuration, it is not necessary to rotate the optical fiber in a tube of an endoscope apparatus or the like, and the vibrator changes the radiation direction of the light beam, so that it is possible to eliminate the occurrence of rotation transmission delay, torque loss, and the like. Furthermore, a compact optical imaging probe that can obtain a three-dimensional observation image by raising and lowering the voltage applied to the transducer and arranging the optical path changing means in front of the light beam to change the circumferential direction and radiation angle of the light beam. Obtainable.
第2の特徴としては、光路変換手段は略円錐状または砲弾形状の立体鏡として、集光レンズから放射される光線を軸線に対し全周方向に放射されるよう構成している。
この構成によれば、集光レンズから放射された光線は立体鏡に反射され、光イメージング用プローブは光軸線に対して円筒方向の領域を三次元観察することができる。 As a second feature, the optical path changing means is configured as a substantially conical or shell-shaped three-dimensional mirror that emits light rays emitted from the condenser lens in the entire circumferential direction with respect to the axis.
According to this configuration, the light beam emitted from the condenser lens is reflected by the stereoscopic mirror, and the optical imaging probe can three-dimensionally observe the region in the cylindrical direction with respect to the optical axis.
この構成によれば、集光レンズから放射された光線は立体鏡に反射され、光イメージング用プローブは光軸線に対して円筒方向の領域を三次元観察することができる。 As a second feature, the optical path changing means is configured as a substantially conical or shell-shaped three-dimensional mirror that emits light rays emitted from the condenser lens in the entire circumferential direction with respect to the axis.
According to this configuration, the light beam emitted from the condenser lens is reflected by the stereoscopic mirror, and the optical imaging probe can three-dimensionally observe the region in the cylindrical direction with respect to the optical axis.
第3の特徴としては、集光レンズと光路変換手段の間に凹レンズを設け、この集光レンズから放射される光線は凹レンズを通して光路変換手段に照射されるように構成した。
この構成によって光線が変化する軸角度を広くでき、より軸方向に長い範囲の三次元観察を行うことができる。 As a third feature, a concave lens is provided between the condenser lens and the optical path changing means, and the light beam emitted from the condenser lens is irradiated to the optical path changing means through the concave lens.
With this configuration, the axial angle at which the light beam changes can be widened, and three-dimensional observation in a longer range in the axial direction can be performed.
この構成によって光線が変化する軸角度を広くでき、より軸方向に長い範囲の三次元観察を行うことができる。 As a third feature, a concave lens is provided between the condenser lens and the optical path changing means, and the light beam emitted from the condenser lens is irradiated to the optical path changing means through the concave lens.
With this configuration, the axial angle at which the light beam changes can be widened, and three-dimensional observation in a longer range in the axial direction can be performed.
第4の特徴としては、振動子は、少なくとも2つが、各々X方向、Y方向に伸縮するように配置されており、振動子の伸縮が光ファイバーおよび集光レンズを軸線に対し角度を変えて放射するように構成した。
この構成によっても集光レンズに軸方向に角度を変え、光線の方向を変えることができ、コンパクトな構成で三次元観察を行うことができる。 As a fourth feature, at least two vibrators are arranged so as to expand and contract in the X direction and the Y direction, respectively, and the expansion and contraction of the oscillators radiates the optical fiber and the condenser lens at different angles with respect to the axis. Configured to do.
Also with this configuration, the angle of the condenser lens can be changed in the axial direction and the direction of the light beam can be changed, and three-dimensional observation can be performed with a compact configuration.
この構成によっても集光レンズに軸方向に角度を変え、光線の方向を変えることができ、コンパクトな構成で三次元観察を行うことができる。 As a fourth feature, at least two vibrators are arranged so as to expand and contract in the X direction and the Y direction, respectively, and the expansion and contraction of the oscillators radiates the optical fiber and the condenser lens at different angles with respect to the axis. Configured to do.
Also with this configuration, the angle of the condenser lens can be changed in the axial direction and the direction of the light beam can be changed, and three-dimensional observation can be performed with a compact configuration.
第5の特徴としては、光路変換手段は同一線上にスライド可能に構成し、スライドすることにより軸線からピントが合う観察点までの距離を可変させるよう構成した。
この構成により、光線は半径方向に広範囲にピントを合わすことが可能になり、半径方向により広範囲に三次元観察を行うことができる。 As a fifth feature, the optical path changing means is configured to be slidable on the same line, and is configured to vary the distance from the axis to the in-focus observation point by sliding.
With this configuration, the light beam can be focused in a wide range in the radial direction, and three-dimensional observation can be performed in a wide range in the radial direction.
この構成により、光線は半径方向に広範囲にピントを合わすことが可能になり、半径方向により広範囲に三次元観察を行うことができる。 As a fifth feature, the optical path changing means is configured to be slidable on the same line, and is configured to vary the distance from the axis to the in-focus observation point by sliding.
With this configuration, the light beam can be focused in a wide range in the radial direction, and three-dimensional observation can be performed in a wide range in the radial direction.
第6の特徴は、振動子は、複数の板状の圧電素子または電歪素子であって、略多角柱の構造体の外周面の少なくとも複数の面に配置している。そして、光ファイバーは、構造体の中央部を貫通しており、振動子が生じる変位が構造体と光ファイバーおよび集光レンズに軸方向の角度を変えて、光線を放射するように構成した。
この構成によっても広い範囲に光線の方向を変えることができ、コンパクトな構成で三次元観察を行うことができる。 A sixth feature is that the vibrator is a plurality of plate-like piezoelectric elements or electrostrictive elements, and is disposed on at least a plurality of outer peripheral surfaces of the substantially polygonal column structure. The optical fiber penetrates the center of the structure, and the displacement generated by the vibrator changes the angle in the axial direction to the structure, the optical fiber, and the condenser lens, and emits light.
With this configuration, the direction of the light beam can be changed over a wide range, and three-dimensional observation can be performed with a compact configuration.
この構成によっても広い範囲に光線の方向を変えることができ、コンパクトな構成で三次元観察を行うことができる。 A sixth feature is that the vibrator is a plurality of plate-like piezoelectric elements or electrostrictive elements, and is disposed on at least a plurality of outer peripheral surfaces of the substantially polygonal column structure. The optical fiber penetrates the center of the structure, and the displacement generated by the vibrator changes the angle in the axial direction to the structure, the optical fiber, and the condenser lens, and emits light.
With this configuration, the direction of the light beam can be changed over a wide range, and three-dimensional observation can be performed with a compact configuration.
第7の特徴は、X方向に変位を与える振動子とY方向に変位を与える振動子に与える電圧波形は、該振動子の隣接する順序で略正弦波で電圧位相をずらせて順次印加して、光ファイバーと集光レンズに旋回運動を与えるとともに、略正弦波の電圧を徐々に増減させることで光ファイバーに軸線に対して角度を変えるよう構成した。
この構成によれば、前記集光レンズから放出される光線は円を描いて放出され、また光線は軸線方向に徐々に角度を変えるので反射光をコンピュータで解析して立体画像を作る際にコンピュータの演算が容易になり、スムーズな画像表示が行える。
The seventh feature is that the voltage waveform applied to the vibrator that applies displacement in the X direction and the vibrator that applies displacement in the Y direction is sequentially applied by shifting the voltage phase by a substantially sine wave in the adjacent order of the vibrator. The optical fiber and the condensing lens were swung, and the angle of the optical fiber was changed with respect to the axis by gradually increasing or decreasing the voltage of the sine wave.
According to this configuration, the light emitted from the condenser lens is emitted in a circle, and the light gradually changes its angle in the axial direction. Therefore, when the reflected light is analyzed by the computer, a computer is created. This makes it easy to calculate and smooth image display.
この構成によれば、前記集光レンズから放出される光線は円を描いて放出され、また光線は軸線方向に徐々に角度を変えるので反射光をコンピュータで解析して立体画像を作る際にコンピュータの演算が容易になり、スムーズな画像表示が行える。
The seventh feature is that the voltage waveform applied to the vibrator that applies displacement in the X direction and the vibrator that applies displacement in the Y direction is sequentially applied by shifting the voltage phase by a substantially sine wave in the adjacent order of the vibrator. The optical fiber and the condensing lens were swung, and the angle of the optical fiber was changed with respect to the axis by gradually increasing or decreasing the voltage of the sine wave.
According to this configuration, the light emitted from the condenser lens is emitted in a circle, and the light gradually changes its angle in the axial direction. Therefore, when the reflected light is analyzed by the computer, a computer is created. This makes it easy to calculate and smooth image display.
次に本発明の好適な実施形態について図面を参照しながら説明する。
Next, preferred embodiments of the present invention will be described with reference to the drawings.
Next, preferred embodiments of the present invention will be described with reference to the drawings.
図1~図8本発明に係る光イメージング用プローブの実施形態1を示している。
図1は本発明の第1の実施形態に係わる光イメージング用プローブの斜視図である。図1において、光ファイバー3の先端近傍は略角柱形状の揺動体1の略中心を貫通し光ファイバー3の最先端部分は揺動体1から突出するよう設けられている。略角柱形状の揺動体1の複数の外周面には、振動子としてパターン状の電極22を有する薄板状の圧電素子(または電歪素子)2a、2b、2c、2dが貼り付けられ、電極22は電線21により配線されている。 1 to 8show Embodiment 1 of an optical imaging probe according to the present invention.
FIG. 1 is a perspective view of an optical imaging probe according to the first embodiment of the present invention. In FIG. 1, the vicinity of the tip of theoptical fiber 3 passes through the substantial center of the substantially prismatic oscillating body 1, and the most distal portion of the optical fiber 3 is provided so as to protrude from the oscillating body 1. Thin plate-like piezoelectric elements (or electrostrictive elements) 2 a, 2 b, 2 c, 2 d having a pattern-like electrode 22 as a vibrator are attached to a plurality of outer peripheral surfaces of the substantially prismatic oscillator 1. Are wired by electric wires 21.
図1は本発明の第1の実施形態に係わる光イメージング用プローブの斜視図である。図1において、光ファイバー3の先端近傍は略角柱形状の揺動体1の略中心を貫通し光ファイバー3の最先端部分は揺動体1から突出するよう設けられている。略角柱形状の揺動体1の複数の外周面には、振動子としてパターン状の電極22を有する薄板状の圧電素子(または電歪素子)2a、2b、2c、2dが貼り付けられ、電極22は電線21により配線されている。 1 to 8
FIG. 1 is a perspective view of an optical imaging probe according to the first embodiment of the present invention. In FIG. 1, the vicinity of the tip of the
光ファイバー3の先端部3aの前方には光路変換手段として立体ミラー4を略軸線上(光ファイバー3の先端側を直線的に延長した場合の仮想線上)に配置し、この立体ミラー4の反射面は砲弾形状、または略円錐形状をしている。また、揺動体1、立体ミラー4は透光部13aを先端近傍に有する軟質または硬質のチューブ13の中に収納されている。また、揺動体1は、その略軸線上の立体ミラーに面する側が揺動する自由端であり、その反対側(後方側)は固定端であり、さらにこの固定端はチューブ13と一体的に固定されている。
In front of the tip 3a of the optical fiber 3, a three-dimensional mirror 4 as an optical path changing means is arranged substantially on the axis (on a virtual line when the tip side of the optical fiber 3 is linearly extended), and the reflecting surface of this three-dimensional mirror 4 is It has a cannonball shape or a substantially conical shape. Further, the oscillating body 1 and the three-dimensional mirror 4 are housed in a soft or hard tube 13 having a translucent portion 13a near the tip. The oscillating body 1 is a free end that oscillates on the side facing the three-dimensional mirror on its substantially axis, the opposite side (rear side) is a fixed end, and this fixed end is integrated with the tube 13. It is fixed.
図1から図8の光イメージング用プローブの動作について以下に説明する。
The operation of the optical imaging probe shown in FIGS. 1 to 8 will be described below.
図1において光ファイバー3の後方から放射された近赤外等の光線は、光ファイバー3の先端部3aから立体ミラー4に向け放射され、光線は、中心軸線から約30度~約90度の角度方向に反射し、透光部13aを通過して外部向けて放出され、被検体(医療用内視鏡では血管や胆管周辺の患部、工業用内視鏡では円筒状の被測定面、等)から反射した光線は、再び透光部13aを通して立体ミラー4で反射し、光ファイバー3を経由して図8に示す分析装置16に戻るよう構成されている。
In FIG. 1, a near-infrared ray or the like emitted from the rear of the optical fiber 3 is emitted from the distal end portion 3a of the optical fiber 3 toward the three-dimensional mirror 4, and the light ray has an angular direction of about 30 degrees to about 90 degrees from the central axis. From the subject (a diseased part around a blood vessel or bile duct in a medical endoscope, a cylindrical measurement surface in an industrial endoscope, etc.) The reflected light beam is again reflected by the three-dimensional mirror 4 through the translucent part 13a, and returns to the analyzer 16 shown in FIG.
図2は本発明光イメージング用プローブの圧電素子2a、2b、2c、2dに印加される電圧のタイミングチャートを示している。図2において、図中PaからPdは図1における圧電素子2a、2b、2c、2dにそれぞれ印加されるほぼ正弦波状の電圧を示している。また、これらPaからPdの電圧波形は位相角を一定角度ずつ、ずらせているため、図3の矢印に示すように、揺動体1は回動運動を行う。この回動運動が生じると、図1において、光線は立体ミラ-4の外周方向の360度全周に放射され、例えばチューブ13が人体の血管内に挿入された場合は血管を光線が透過し、その外周の約直径2~6ミリメートルの範囲に光線にピントが合い、病巣や脂肪からの反射光をとらえてそれらの状態の断面断層を観察することができる。
FIG. 2 shows a timing chart of voltages applied to the piezoelectric elements 2a, 2b, 2c and 2d of the optical imaging probe of the present invention. In FIG. 2, Pa to Pd in FIG. 2 indicate substantially sinusoidal voltages applied to the piezoelectric elements 2a, 2b, 2c, and 2d in FIG. In addition, since the voltage waveforms of Pa to Pd are shifted in phase angle by a certain angle, the oscillating body 1 performs a rotating motion as indicated by an arrow in FIG. When this rotational movement occurs, in FIG. 1, the light beam is emitted 360 degrees in the outer circumferential direction of the three-dimensional mirror-4. For example, when the tube 13 is inserted into the blood vessel of the human body, the light beam is transmitted through the blood vessel. The light beam is focused in the range of about 2 to 6 millimeters in diameter on the outer periphery, and the cross-sectional tomography in those states can be observed by capturing the reflected light from the lesion or fat.
図2の記号Sは1回転に1回のパルスを装置本体16から発生しているものであり、これをトリガー信号にして一般的な回転型レーダーの画像状の断層画像を図8のモニター20に描くことができる。
The symbol S in FIG. 2 is a pulse generated once per rotation from the apparatus main body 16, and this is used as a trigger signal to generate a tomographic image of a general rotary radar as shown in the monitor 20 in FIG. Can be drawn to.
図1の圧電素子2a、2b、2c、2dは、これに印加される電圧にほぼ比例して図4に示すように図1のθ1に示す揺動角度、または図3に示す揺動体1の回動径は大きくなる。これにより放射角度は図1に示す記号θ1からθ2の範囲で変化することにより、光線の放射角度は記号αのように変化する。
The piezoelectric elements 2a, 2b, 2c, and 2d shown in FIG. 1 are substantially proportional to the voltage applied to the piezoelectric elements 2a, 2b, 2c, and 2d, as shown in FIG. The turning diameter increases. As a result, the radiation angle changes in the range of the symbols θ1 to θ2 shown in FIG. 1, so that the radiation angle of the light beam changes as indicated by the symbol α.
さらに圧電素子2a、2b、2c、2dに印加される電圧波形が図5に示すように徐々に電圧が変化する連続的な正弦波であった場合は、光線は図7に示すように三次元範囲に放射される。
Further, when the voltage waveform applied to the piezoelectric elements 2a, 2b, 2c and 2d is a continuous sine wave whose voltage gradually changes as shown in FIG. 5, the light beam is three-dimensional as shown in FIG. Radiated to range.
図8の装置本体16から発光された例えば近赤外光線は、光ファイバー3に導光され、図1に示す先端部3aから前方に放射され、光路変換手段4により放射角が変換され、また、光線は圧電式アクチュエータ2により回動させられるため、光線は図中外周方向の360全周方向に放射される。この光線は透光部13aを通過し、人体の患部等の被検体に照射され、被検体からの反射光は、光線が導光された方向とは反対方向に、光路変換手段4、光ファイバー3を通って、装置本体16に戻っていく。これにより装置本体16は360度全周の三次元の断層画像を取り込むことができる。
For example, near-infrared rays emitted from the apparatus main body 16 of FIG. 8 are guided to the optical fiber 3 and radiated forward from the tip portion 3a shown in FIG. 1, and the radiation angle is converted by the optical path conversion means 4, Since the light beam is rotated by the piezoelectric actuator 2, the light beam is radiated in the entire 360 direction of the outer periphery in the drawing. This light beam passes through the translucent part 13a and is irradiated to a subject such as an affected part of the human body, and the reflected light from the subject is in a direction opposite to the direction in which the light beam is guided, in the optical path changing means 4 and the optical fiber 3. And return to the apparatus main body 16. As a result, the apparatus body 16 can capture a three-dimensional tomographic image of the entire 360 ° circumference.
図8は光イメージング用プローブを用いた内視鏡画像装置構成図であり、チューブ13はガイドカテーテル15と共に装置本体16に取り付けられ、ガイドカテーテル先端にはCCDカメラ23が付けられている。装置本体16には圧電式素子2のドライバー回路17、光干渉解析部18、画像解析コンピュータ19が内蔵されモニター20には、CCDカメラ23の画像と、コンピュータ19で解析して作られた光干渉三次元断層画像の両方が表示される。
FIG. 8 is a block diagram of an endoscopic image apparatus using an optical imaging probe. A tube 13 is attached to an apparatus main body 16 together with a guide catheter 15, and a CCD camera 23 is attached to the distal end of the guide catheter. The device main body 16 includes a driver circuit 17 for the piezoelectric element 2, an optical interference analysis unit 18, and an image analysis computer 19. The monitor 20 includes an image of the CCD camera 23 and optical interference generated by analysis by the computer 19. Both three-dimensional tomographic images are displayed.
チューブ13の内部に貫通する光ファイバー3は、屈曲自在なグラスファイバーであり直径は0.2~0.4ミリメートル程度のものを使っている。
The optical fiber 3 that penetrates the inside of the tube 13 is a glass fiber that can be bent freely and has a diameter of about 0.2 to 0.4 mm.
透光部13aは、透明なプラスチックス又はガラス等で構成されるが、光線の透過率を高め、反射を防ぐために表面にコーティングを施している。
The translucent part 13a is made of transparent plastics or glass or the like, but has a coating on the surface in order to increase the light transmittance and prevent reflection.
なお、集光レンズ5は例えば図6に示すようにボールレンズ5が使われているが、円錐状の集光レンズやプリズムを用いても同じである。
For example, as shown in FIG. 6, a ball lens 5 is used as the condensing lens 5, but a conical condensing lens or prism may be used.
揺動体1はバネ性を有し、容易に変形し易いことが望まれるため、ステンレス鋼、またはジルコニヤセラミックス等により角柱形状、または薄板箱状に加工される。
Since the oscillating body 1 has a spring property and is desired to be easily deformed, it is processed into a prismatic shape or a thin box shape with stainless steel, zirconia ceramics, or the like.
図1および図2において、チューブ13の後方から先端までの全長に渡る内部で光ファイバー3は、長いチューブ13の中で回転させる必要が無いため擦れる事がなく、回転伝達遅れやトルク損失等の発生を軽減される。
In FIG. 1 and FIG. 2, the optical fiber 3 does not rub inside the long tube 13 because it does not need to be rotated inside the tube 13 from the rear to the tip, and rotation transmission delay, torque loss, etc. occur. Will be reduced.
本発明によれば、振動子である圧電素子2が光ファイバー3の先端に回動運動を与え、立体ミラー4等の光路変換手段事に光線が照射され反射して360度全周の光線の照射と走査が行われるが、360度の走査範囲内に信号線や電線を設けない構成であるため、360度全周に欠落に無い画像を得ることができる。さらに圧電素子2に印加する電圧に変化を与えることにより光線を三次元範囲に放射することができる。また、圧電素子2が1個だけて三次元方向にを行うので光イメージングプローブがコンパクトに構成できる。
According to the present invention, the piezoelectric element 2 which is a vibrator gives a rotational motion to the tip of the optical fiber 3, and the light beam is irradiated and reflected on the optical path changing means such as the three-dimensional mirror 4 to irradiate the light beam of 360 degrees all around. However, since the signal line and the electric wire are not provided within the scanning range of 360 degrees, it is possible to obtain an image that is not missing all around 360 degrees. Further, by changing the voltage applied to the piezoelectric element 2, it is possible to emit a light beam in a three-dimensional range. In addition, since only one piezoelectric element 2 is used in the three-dimensional direction, the optical imaging probe can be configured compactly.
三次元操作画像診断装置において最も重要な要求性能は三次元画像の空間分解能を高める事であるが、空間分解能を阻害する要因には、回転速度ムラ、機構部の振れ精度や振動、集光レンズ5等の部品の表面精度等がある。これらの中で影響度が大きいのは回転速度ムラであるが、本発明は、チューブ13の先端部に揺動体1を内蔵することで、光ファイバーを回転させない方式であるため、ファイバーの摺動抵抗の変化や、ねじり振動が全く発生せず、その結果回転精度が高いので、装置本体16はたとえば10マイクロメータ以下の高い三次元の空間分解能を得られる精密な観察画像を表示することができる。
The most important required performance in 3D operation image diagnostic equipment is to increase the spatial resolution of 3D images, but the factors that hinder the spatial resolution include uneven rotation speed, shake accuracy and vibration of the mechanism, and condenser lens. There are surface accuracy of parts such as 5. Among these, the influence of the rotation speed is large, but the present invention is a method in which the optical fiber is not rotated by incorporating theoscillating body 1 at the distal end portion of the tube 13, so that the sliding resistance of the fiber is reduced. Change and torsional vibration do not occur at all, and as a result, the rotation accuracy is high, so that the apparatus main body 16 can display a precise observation image capable of obtaining a high three-dimensional spatial resolution of, for example, 10 micrometers or less.
The most important required performance in 3D operation image diagnostic equipment is to increase the spatial resolution of 3D images, but the factors that hinder the spatial resolution include uneven rotation speed, shake accuracy and vibration of the mechanism, and condenser lens. There are surface accuracy of parts such as 5. Among these, the influence of the rotation speed is large, but the present invention is a method in which the optical fiber is not rotated by incorporating the
次に、本発明に係わる光イメージング用プローブの実施形態2について説明する。
図9は、本発明の第2の実施例の形態に係わる揺動体7の斜視図であり、第2の実施形態はこの圧電素子12、揺動体7の構成以外は第1の実施形態と同じである。 Next, a second embodiment of the optical imaging probe according to the present invention will be described.
FIG. 9 is a perspective view of the rockingbody 7 according to the second embodiment of the present invention. The second embodiment is the same as the first embodiment except for the configuration of the piezoelectric element 12 and the rocking body 7. It is.
図9は、本発明の第2の実施例の形態に係わる揺動体7の斜視図であり、第2の実施形態はこの圧電素子12、揺動体7の構成以外は第1の実施形態と同じである。 Next, a second embodiment of the optical imaging probe according to the present invention will be described.
FIG. 9 is a perspective view of the rocking
揺動体7は固定部7a、バネ部7b、回動部7cから構成され、圧電素子12b、12dは一端がバネ部7bに固定され、他端の自由端側が回動部7cに固定され、固定部7aはチューブ13の内部に取りつけられ固定されている。一方、圧電素子12a、12cは固定部7aに固定され、その自由端側は回動部7cに当接するが固定はしない状態にして構成している。光ファイバー3は揺動体7の略中央に貫通し、先端側には必要に応じて集光レンズ5が取り付けられる。
The oscillating body 7 includes a fixed portion 7a, a spring portion 7b, and a rotating portion 7c. One end of each of the piezoelectric elements 12b and 12d is fixed to the spring portion 7b, and the free end of the other end is fixed to the rotating portion 7c. The portion 7a is attached and fixed inside the tube 13. On the other hand, the piezoelectric elements 12a and 12c are fixed to the fixed portion 7a, and their free ends are in contact with the rotating portion 7c but not fixed. The optical fiber 3 passes through substantially the center of the oscillating body 7, and a condensing lens 5 is attached to the tip side as necessary.
図9の光イメージング用プローブの動作について以下に説明する。
The operation of the optical imaging probe of FIG. 9 will be described below.
圧電素子12a、12b、12c、12dに図2及び図5にように電圧が順次印加されると、圧電素子12a、12b、12c、12dは順番に撓みを生じ、図3にように回動運動を生じる。以降は図1の実施例1と同様の動きをし、光線は図7に示すように三次元範囲に放射され、装置本体16は三次元画像を表示することができる。
When the voltages are sequentially applied to the piezoelectric elements 12a, 12b, 12c, and 12d as shown in FIGS. 2 and 5, the piezoelectric elements 12a, 12b, 12c, and 12d are bent in order, and turn as shown in FIG. Produce. Thereafter, the same movement as in the first embodiment shown in FIG. 1 is performed, and the light beam is emitted to the three-dimensional range as shown in FIG. 7, and the apparatus main body 16 can display a three-dimensional image.
尚、圧電素子12から発生する撓み方向の力は、貼り付けられた圧電素子12の面積と電圧と枚数にほぼ比例するため、この原理を考慮して圧電素子12の形状や大きさ、及び枚数を決めており、必要な場合は圧電素子を2枚重ねにする等の設計上の工夫が行われる。
The force in the bending direction generated from the piezoelectric element 12 is substantially proportional to the area, voltage, and number of the piezoelectric elements 12 that are pasted. Therefore, considering this principle, the shape, size, and number of the piezoelectric elements 12 are considered. If necessary, design measures such as stacking two piezoelectric elements are made.
本発明によれば圧電素子12に発生する力を大きくし、揺動体に変位と光ファイバー3の回動径が大きくでき、軸線方向に内外範囲に渡る三次元立体画像が得られる。
According to the present invention, the force generated in the piezoelectric element 12 can be increased, the displacement of the oscillating body and the rotation diameter of theoptical fiber 3 can be increased, and a three-dimensional stereoscopic image can be obtained over the inner and outer ranges in the axial direction.
According to the present invention, the force generated in the piezoelectric element 12 can be increased, the displacement of the oscillating body and the rotation diameter of the
次に、本発明に係わる三次元走査型光イメージング用プローブの実施形態3について説明する。
図10は、本発明の第3の実施例の形態に係わる揺動体部の斜視図である。図10においては、光ファイバー3と光路変換手段である立体ミラー4の間に凹レンズ18を設けている。他の構成は図1の第1の実施形態と同じである。 Next, a third embodiment of the three-dimensional scanning optical imaging probe according to the present invention will be described.
FIG. 10 is a perspective view of an oscillating body according to the third embodiment of the present invention. In FIG. 10, aconcave lens 18 is provided between the optical fiber 3 and the three-dimensional mirror 4 which is an optical path changing means. Other configurations are the same as those of the first embodiment shown in FIG.
図10は、本発明の第3の実施例の形態に係わる揺動体部の斜視図である。図10においては、光ファイバー3と光路変換手段である立体ミラー4の間に凹レンズ18を設けている。他の構成は図1の第1の実施形態と同じである。 Next, a third embodiment of the three-dimensional scanning optical imaging probe according to the present invention will be described.
FIG. 10 is a perspective view of an oscillating body according to the third embodiment of the present invention. In FIG. 10, a
図10の光イメージング用プローブの動作について以下に説明する。
The operation of the optical imaging probe in FIG. 10 will be described below.
図10では、圧電素子2a、2b、2c、2dに図2及び図5にように電圧が順次印加されると、圧電素子2a、2b、2c、2dは順番に撓みを生じ、図3にように回動運動を生じ、図1の実施例1と同様の動きにより、光線は図7に示すように三次元範囲に放射される。図10においては光ファイバー3と立体ミラー4の間に凹レンズ18が配置されるため、光線はより大きな角度で曲げられ、軸線方向に長い範囲に放射されるため、装置本体16はより広範囲に三次元画像を表示できる。
In FIG. 10, when voltages are sequentially applied to the piezoelectric elements 2a, 2b, 2c, and 2d as shown in FIGS. 2 and 5, the piezoelectric elements 2a, 2b, 2c, and 2d are bent in order, as shown in FIG. As shown in FIG. 7, the light beam is emitted in a three-dimensional range by the same movement as that of the first embodiment shown in FIG. In FIG. 10, since the concave lens 18 is disposed between the optical fiber 3 and the three-dimensional mirror 4, the light beam is bent at a larger angle and radiated in a long range in the axial direction. An image can be displayed.
次に、本発明に係わる光イメージング用プローブの実施形態4について説明する。
図11は本発明の第3の実施例の形態に係わる揺動体部の斜視図である。
図11において、X方向多層圧電素子10と、Y方向多層圧電素子11はケース9aに固定され、光ファイバー3はケース固定部9b、多層圧電素子10、11に固定され、必要に応じて集光レンズ5を取り付けている。 Next, a fourth embodiment of the optical imaging probe according to the present invention will be described.
FIG. 11 is a perspective view of an oscillating body according to the third embodiment of the present invention.
In FIG. 11, the X-directionmultilayer piezoelectric element 10 and the Y-direction multilayer piezoelectric element 11 are fixed to the case 9a, and the optical fiber 3 is fixed to the case fixing portion 9b and the multilayer piezoelectric elements 10 and 11. 5 is attached.
図11は本発明の第3の実施例の形態に係わる揺動体部の斜視図である。
図11において、X方向多層圧電素子10と、Y方向多層圧電素子11はケース9aに固定され、光ファイバー3はケース固定部9b、多層圧電素子10、11に固定され、必要に応じて集光レンズ5を取り付けている。 Next, a fourth embodiment of the optical imaging probe according to the present invention will be described.
FIG. 11 is a perspective view of an oscillating body according to the third embodiment of the present invention.
In FIG. 11, the X-direction
図11の光イメージング用プローブの揺動体の動作について以下に説明する。
The operation of the oscillator of the optical imaging probe in FIG. 11 will be described below.
図11のX方向多層圧電素子10と、Y方向多層圧電素子11に、電圧が順次印加されると、多層圧電素子10、11は順番に伸縮し、集光レンズ5は図3にように回動運動を生じる。以降は図1の実施例1と同様の動きをし、光線は図7に示すように三次元範囲に放射され、装置本体16は三次元画像を表示することができる。
When voltages are sequentially applied to the X-direction multilayer piezoelectric element 10 and the Y-direction multilayer piezoelectric element 11 in FIG. 11, the multilayer piezoelectric elements 10 and 11 expand and contract in order, and the condenser lens 5 rotates as shown in FIG. Causes dynamic movement. Thereafter, the same movement as in the first embodiment shown in FIG. 1 is performed, and the light beam is emitted to the three-dimensional range as shown in FIG. 7, and the apparatus main body 16 can display a three-dimensional image.
本実施形態によれば圧電素子10,11が多層圧電素子であるため、低電圧でも大きな力を発生するため、光ファイバー3が太くて撓みにくい場合でも集光レンズ5に十分大きな回動運動を与えることができる。
According to the present embodiment, since the piezoelectric elements 10 and 11 are multi-layer piezoelectric elements, a large force is generated even at a low voltage. Therefore, even when the optical fiber 3 is thick and difficult to bend, a sufficiently large rotational motion is given to the condenser lens 5. be able to.
According to the present embodiment, since the
次に、本発明に係わる光イメージング用プローブの実施形態5について説明する。
図12は、本発明の第5の実施例の形態に係わる揺動体部の断面図である。 Next, a fifth embodiment of the optical imaging probe according to the present invention will be described.
FIG. 12 is a sectional view of an oscillating body according to the fifth embodiment of the present invention.
図12は、本発明の第5の実施例の形態に係わる揺動体部の断面図である。 Next, a fifth embodiment of the optical imaging probe according to the present invention will be described.
FIG. 12 is a sectional view of an oscillating body according to the fifth embodiment of the present invention.
図12において、光路変更手段である立体ミラー4は図中、略軸線上を4aから4bの間でスライド可能に構成している。立体ミラーが4aの位置では光線は軸線から例えば半径3ミリメートル付近で焦点が合うため、約半径2~4ミリメートル範囲の物体の断層画像を取り組んでいる。一方、立体ミラーが4bの位置にスライドすると、光線は半径5ミリメートル付近でピントが合い、約半径4~6ミリメートル範囲の物体から反射した光線を捉え、物体の断層画像を取組みことができる。立体ミラー4はネジ等で手動で、又は電動式でスライドさせられ、光線のピント合わせを行うようになっている。
12, the three-dimensional mirror 4 which is an optical path changing means is configured to be slidable between 4a and 4b on a substantially axial line in the figure. At the position where the stereoscopic mirror is 4a, the light beam is focused, for example, in the vicinity of a radius of 3 millimeters from the axis, so that a tomographic image of an object having a radius of about 2 to 4 millimeters is being worked on. On the other hand, when the stereoscopic mirror slides to the position 4b, the light beam is focused around a radius of 5 millimeters, and the light beam reflected from the object having a radius of about 4 to 6 millimeters can be captured and a tomographic image of the object can be taken. The three-dimensional mirror 4 is slid manually or electrically with a screw or the like to focus the light beam.
このように本実施形態によれば、光線のピントが範囲を広く変更できるため、光線に対して径方向に広範囲に三次元画像を取り組むことができる。
As described above, according to this embodiment, since the range of the focus of the light beam can be changed widely, it is possible to tackle a three-dimensional image in a wide range in the radial direction with respect to the light beam.
As described above, according to this embodiment, since the range of the focus of the light beam can be changed widely, it is possible to tackle a three-dimensional image in a wide range in the radial direction with respect to the light beam.
次に、本発明に係わるイメージング用プローブの実施形態6について説明する。
図13は、本発明の第6の実施例の形態に係わる揺動体部の斜視図である。 Next, a sixth embodiment of the imaging probe according to the present invention will be described.
FIG. 13 is a perspective view of a rocking body according to the sixth embodiment of the present invention.
図13は、本発明の第6の実施例の形態に係わる揺動体部の斜視図である。 Next, a sixth embodiment of the imaging probe according to the present invention will be described.
FIG. 13 is a perspective view of a rocking body according to the sixth embodiment of the present invention.
図13においては光路変換装置が凹レンズ8に該当するよう構成しており、光ファイバー3から放射された光線は凹レンズ8で放射角度をさらに広げつつ前方に放射される。
In FIG. 13, the optical path changing device is configured to correspond to the concave lens 8, and the light beam emitted from the optical fiber 3 is radiated forward by the concave lens 8 while further expanding the radiation angle.
図13の光イメージング用プローブの動作について以下に説明する。
The operation of the optical imaging probe of FIG. 13 will be described below.
図13では、圧電素子2a、2b、2c、2dに図2及び図5にように電圧が順次印加されると、圧電素子2a、2b、2c、2dは順番に撓みを生じ、図3にように回動運動を生じ、図1の実施例1と同様の動きをし、光線は前方に丸い渦巻きを描くように三次元範囲に放射される。図13においては、光ファイバー3から放射された光線は凹レンズ8で放射角度がさらに広げつつ前方に放射され、前方にある被検体に照射し、反射光を放射とは逆方向に凹レンズ8を通過して光ファイバーに取り込んでいる。
In FIG. 13, when voltages are sequentially applied to the piezoelectric elements 2a, 2b, 2c, and 2d as shown in FIGS. 2 and 5, the piezoelectric elements 2a, 2b, 2c, and 2d are sequentially bent, as shown in FIG. 1 is rotated, and moves in the same manner as in the first embodiment of FIG. 1, and the light beam is emitted in a three-dimensional range so as to draw a round spiral in front. In FIG. 13, the light beam emitted from the optical fiber 3 is emitted forward while the radiation angle is further widened by the concave lens 8, irradiates the subject in front, and the reflected light passes through the concave lens 8 in the direction opposite to the radiation. Is taken into the optical fiber.
図8の装置本体16から発光された例えば近赤外光線は、人体の患部等の被検体に照射され、被検体からの反射光は、光線が導光された方向とは反対方向に、凹レンズ8、光ファイバー3を通って、装置本体16に戻っていく。これにより装置本体16は前方方向の三次元の断層画像を取り込むことができる。
For example, near-infrared rays emitted from the apparatus main body 16 in FIG. 8 are irradiated to a subject such as an affected part of a human body, and reflected light from the subject is a concave lens in a direction opposite to the direction in which the rays are guided. 8. Return to the apparatus main body 16 through the optical fiber 3. As a result, the apparatus main body 16 can capture a three-dimensional tomographic image in the forward direction.
なお、図13において圧電素子2a、2b、2c、2dに印加される電圧波形は必ずしも図2及び図5に示すようでなくても、例えば、圧電素子2b、2dがY方向に約525回振動する間に、圧電素子2a、2cが1往復のゆっくりの振動をするように印加する事で前記した丸い渦巻き状の操作ではなく、一般のテレビジョン画面と同様の四角状の画面走査を行ってもよい。
In FIG. 13, the voltage waveforms applied to the piezoelectric elements 2a, 2b, 2c, and 2d are not necessarily shown in FIGS. 2 and 5, for example, the piezoelectric elements 2b and 2d vibrate about 525 times in the Y direction. In the meantime, by applying the piezoelectric elements 2a and 2c so as to vibrate slowly in one reciprocating motion, a rectangular screen scan similar to a general television screen is performed instead of the round spiral operation described above. Also good.
本実施形態によれば、光ファイバーの前方の三次元断層画像が得られるので、例えば、人体の内臓の手術において、体内に覆われた脂肪塊を切り開きつつ患部にCCDカメラとメスを入れて行き、患部の切除と縫合を行うに当り、脂肪塊の中に隠れて大変見えにくい血管を避けつつ脂肪塊を切り開く場合、従来は経験豊富なベテラン医師にしか隠れた血管が発見できず、若手医師には見えにくい血管に傷を付け、出血させてしまうリスクが高かく重要課題になっていたが、本実施形態の光イメージング用プローブの画像をCCDカメラ23の画像と平行して見ながら手術することで、脂肪塊を透過した反射光が脂肪塊内の血管をきれいに画面表示し、医師は安全に手術することが可能になる。
According to this embodiment, since a three-dimensional tomographic image in front of the optical fiber is obtained, for example, in the operation of the internal organs of the human body, a CCD camera and a scalpel are put in the affected area while opening a fat mass covered in the body, When cutting and suturing the affected area, avoiding blood vessels that are hidden in the fat mass and avoiding the blood vessels that are difficult to see, the blood vessels hidden only by experienced veteran doctors can be found. The risk of damaging and bleeding blood vessels that are difficult to see has been an important issue, but surgery should be performed while viewing the image of the optical imaging probe of this embodiment in parallel with the image of the CCD camera 23. Thus, the reflected light transmitted through the fat mass neatly displays the blood vessels in the fat mass on the screen, and the doctor can safely operate.
本発明によれば、内視鏡装置等のチューブ内で光ファイバーは回転させる必要がなく、圧電式アクチュエータが旋回運動する事で光線が回転放射されるので、回転伝達遅れやトルク損失等の発生を撲滅できる。更に圧電素子または電歪素子に印加する電圧を昇降させ、さらに光線の前方に光路変換手段を配置することで光線を全周方向および放射角度を変化させて立体的に放射し、反射光により三次元観察画像を得るコンパクトな光イメージングプローブを得ることができる。
According to the present invention, it is not necessary to rotate an optical fiber in a tube of an endoscope apparatus or the like, and light beams are radiated and rotated by a turning movement of a piezoelectric actuator. Can be eradicated. Furthermore, the voltage applied to the piezoelectric element or the electrostrictive element is raised and lowered, and the optical path changing means is arranged in front of the light beam to radiate the light beam three-dimensionally by changing the whole circumference direction and the radiation angle, and the reflected light is tertiary. A compact optical imaging probe for obtaining an original observation image can be obtained.
According to the present invention, it is not necessary to rotate an optical fiber in a tube of an endoscope apparatus or the like, and light beams are radiated and rotated by a turning movement of a piezoelectric actuator. Can be eradicated. Furthermore, the voltage applied to the piezoelectric element or the electrostrictive element is raised and lowered, and the optical path changing means is arranged in front of the light beam to radiate the light beam three-dimensionally by changing the whole circumference direction and the radiation angle, and the reflected light is tertiary. A compact optical imaging probe for obtaining an original observation image can be obtained.
本発明の三次元走査型光イメージング用プローブは、長いチューブ内の光ファイバーを回転させることなく、チューブの先端近傍にアクチュエータにより回動する光線の放射手段と光路変換手段を設けて回転走査することにより、回転部のコスレ、トルク損失、摩耗の発生を軽減することで光線を回転放射する部分回転伝達遅れを防ぐとともに、光線を360度全周方向に放射すると共に放射角度を変更可能にするため、軸線に対して光ファイバーの先端部に旋回運動を与えるアクチュエータと光路変換手段を組合せて光線を立体的に放射して、三次元走査を実現することができる。
三次元走査と観察により人体内部の患部の観察と診断が切開手術せずに行え、また、従来の診断装置であったX線CT、核磁気共鳴などでは不可能であった高分解能で緻密は診断が可能となる。また小径でコンパクトに構成できるため、特に医療現場や、小型精密な機械部品の観察や精密測定機に応用した取組みに期待されている。
The three-dimensional scanning optical imaging probe of the present invention is provided by rotating and scanning a light emitting means and an optical path changing means that are rotated by an actuator near the tip of the tube without rotating the optical fiber in the long tube. In order to prevent partial rotation transmission delay of rotating and radiating light rays by reducing the occurrence of cosmetics, torque loss, and wear of the rotating part, and to radiate light rays in 360 degrees all around and to change the radiation angle, Three-dimensional scanning can be realized by combining the actuator that gives the turning motion to the tip of the optical fiber with respect to the axis and the optical path changing means to radiate light rays in three dimensions.
Three-dimensional scanning and observation allow observation and diagnosis of the affected area inside the human body without incision surgery, and high resolution and precision that were impossible with conventional diagnostic devices such as X-ray CT and nuclear magnetic resonance. Diagnosis is possible. In addition, because it can be configured compactly with a small diameter, it is expected to be applied to medical sites, observation of small and precise mechanical parts, and application to precision measuring instruments.
三次元走査と観察により人体内部の患部の観察と診断が切開手術せずに行え、また、従来の診断装置であったX線CT、核磁気共鳴などでは不可能であった高分解能で緻密は診断が可能となる。また小径でコンパクトに構成できるため、特に医療現場や、小型精密な機械部品の観察や精密測定機に応用した取組みに期待されている。
The three-dimensional scanning optical imaging probe of the present invention is provided by rotating and scanning a light emitting means and an optical path changing means that are rotated by an actuator near the tip of the tube without rotating the optical fiber in the long tube. In order to prevent partial rotation transmission delay of rotating and radiating light rays by reducing the occurrence of cosmetics, torque loss, and wear of the rotating part, and to radiate light rays in 360 degrees all around and to change the radiation angle, Three-dimensional scanning can be realized by combining the actuator that gives the turning motion to the tip of the optical fiber with respect to the axis and the optical path changing means to radiate light rays in three dimensions.
Three-dimensional scanning and observation allow observation and diagnosis of the affected area inside the human body without incision surgery, and high resolution and precision that were impossible with conventional diagnostic devices such as X-ray CT and nuclear magnetic resonance. Diagnosis is possible. In addition, because it can be configured compactly with a small diameter, it is expected to be applied to medical sites, observation of small and precise mechanical parts, and application to precision measuring instruments.
1、6 揺動体
2a、2b、2c、2d 圧電素子(電歪素子)
3 光ファイバー
3a 先端部
4a、4b 立体ミラー
5 集光レンズ
7 揺動体
7a 固定部
7b バネ部
7c 回動部
8、18 レンズ
9a ケース
9b ケース固定部
10 X方向多層圧電素子
11 Y方向多層圧電素子
12a、12b、12c、12d 圧電素子
13 チューブ
13a 透光部
14 MEMSスキャナー
15 ガイドカテーテル
16 装置本体
17 アクチュエータドライバー回路
18 光干渉解析部
19 コンピュータ
20 モニター
21 電線
22 パターン電極
23 CCDカメラ 1, 6 Oscillator
2a, 2b, 2c, 2d Piezoelectric element (electrostrictive element)
DESCRIPTION OFSYMBOLS 3 Optical fiber 3a Front-end | tip part 4a, 4b Stereoscopic mirror 5 Condensing lens 7 Oscillator 7a Fixing part 7b Spring part 7c Rotating part 8, 18 Lens 9a Case 9b Case fixing part 10 X direction multilayer piezoelectric element 11 Y direction multilayer piezoelectric element 12a , 12b, 12c, 12d Piezoelectric element 13 Tube 13a Translucent part 14 MEMS scanner 15 Guide catheter 16 Device main body 17 Actuator driver circuit 18 Optical interference analysis part 19 Computer 20 Monitor 21 Electric wire 22 Pattern electrode 23 CCD camera
2a、2b、2c、2d 圧電素子(電歪素子)
3 光ファイバー
3a 先端部
4a、4b 立体ミラー
5 集光レンズ
7 揺動体
7a 固定部
7b バネ部
7c 回動部
8、18 レンズ
9a ケース
9b ケース固定部
10 X方向多層圧電素子
11 Y方向多層圧電素子
12a、12b、12c、12d 圧電素子
13 チューブ
13a 透光部
14 MEMSスキャナー
15 ガイドカテーテル
16 装置本体
17 アクチュエータドライバー回路
18 光干渉解析部
19 コンピュータ
20 モニター
21 電線
22 パターン電極
23 CCDカメラ 1, 6 Oscillator
2a, 2b, 2c, 2d Piezoelectric element (electrostrictive element)
DESCRIPTION OF
Claims (7)
- 先端側に集光レンズを備える光ファイバーと、
電圧を加えると変位を生じる振動子と、
前記集光レンズから放射される光線の放射角度を変化させる光路変換手段とを備え、
前記振動子が生じる変位が、前記光ファイバーの先端側に曲げ角度を与えることにより、
前記集光レンズから前記光路変換手段に照射される光線の角度を変化させることを特徴とする光イメージング用プローブ。
An optical fiber having a condensing lens on the tip side;
A vibrator that produces a displacement when a voltage is applied;
An optical path changing means for changing a radiation angle of a light beam emitted from the condenser lens,
The displacement generated by the vibrator gives a bending angle to the tip side of the optical fiber,
An optical imaging probe, wherein an angle of a light beam applied to the optical path changing means from the condenser lens is changed.
- 前記光路変換手段は略円錐状または砲弾形状の立体鏡であり、前記集光レンズから放射される光線を軸線から全周方向に放射されることを特徴とする請求項1記載の光イメージング用プローブ。
2. The optical imaging probe according to claim 1, wherein the optical path changing means is a substantially conical or shell-shaped stereoscopic mirror, and the light beam emitted from the condensing lens is emitted from the axis line in the entire circumferential direction. .
- 前記集光レンズと前記光路変換手段との間に凹レンズを設け、前記集光レンズから放射される光線は前記凹レンズを通して前記光路変換手段に照射されることを特徴とする請求項1または2記載の光イメージング用プローブ。
The concave lens is provided between the said condensing lens and the said optical path conversion means, The light ray radiated | emitted from the said condensing lens is irradiated to the said optical path conversion means through the said concave lens, The Claim 1 or 2 characterized by the above-mentioned. Probe for optical imaging.
- 前記振動子は、少なくとも2つが、各々X方向、Y方向に伸縮するように配置されており、前記振動子の伸縮が前記光ファイバーおよび前記集光レンズに軸線に対し角度を変えて放射することを特徴とする請求項1から3何れか1項記載の光イメージング用プローブ。
At least two of the vibrators are arranged to expand and contract in the X direction and the Y direction, respectively, and the expansion and contraction of the vibrator radiates the optical fiber and the condenser lens at different angles with respect to the axis. The optical imaging probe according to any one of claims 1 to 3, wherein the probe is for optical imaging.
- 前記光路変換手段は同一線上にスライド可能に構成し、スライドすることにより軸線からピントが合う観察点までの距離を可変させることを特徴とする請求項1から4いずれか1項記載の光イメージング用プローブ。
5. The optical imaging apparatus according to claim 1, wherein the optical path changing means is configured to be slidable on the same line, and the distance from the axis to the observation point in focus is varied by sliding. probe.
- 前記振動子は、複数の板状の圧電素子または電歪素子であって、略多角柱の構造体の外周面の少なくとも複数の面に配置されており、
前記光ファイバーは、前記構造体の中央部を貫通しており、
前記振動子が生じる変位が前記構造体と前記光ファイバーおよび前記集光レンズに軸方向の角度を変えて、光線を放射することを特徴とする請求項1から5何れか1項記載の光イメージング用プローブ。
The vibrator is a plurality of plate-like piezoelectric elements or electrostrictive elements, and is disposed on at least a plurality of outer peripheral surfaces of a substantially polygonal column structure,
The optical fiber passes through the center of the structure,
6. The optical imaging according to claim 1, wherein the displacement generated by the vibrator changes the angle in the axial direction to the structure, the optical fiber, and the condenser lens to emit a light beam. 6. probe.
- X方向に変位を与える前記振動子とY方向に変位を与える前記振動子に与える電圧波形は、該振動子の隣接する順序で略正弦波で電圧位相をずらせて順次印加して、前記光ファイバーと集光レンズに旋回運動を与えるとともに、略正弦波の電圧を徐々に増減させることで前記光ファイバーに軸線に対して角度を変えることを特徴とする請求項6記載の光イメージング用プローブ。 The voltage waveform applied to the vibrator that applies displacement in the X direction and the vibrator that applies displacement in the Y direction is sequentially applied by shifting the voltage phase by a substantially sine wave in the adjacent order of the vibrator, The optical imaging probe according to claim 6, wherein a turning motion is given to the condensing lens and an angle of the optical fiber with respect to an axis is changed by gradually increasing or decreasing a voltage of a substantially sine wave.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/078274 WO2016063406A1 (en) | 2014-10-23 | 2014-10-23 | Optical imaging probe |
JP2016555025A JPWO2016063406A1 (en) | 2014-10-23 | 2014-10-23 | Optical imaging probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/078274 WO2016063406A1 (en) | 2014-10-23 | 2014-10-23 | Optical imaging probe |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016063406A1 true WO2016063406A1 (en) | 2016-04-28 |
Family
ID=55760473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/078274 WO2016063406A1 (en) | 2014-10-23 | 2014-10-23 | Optical imaging probe |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016063406A1 (en) |
WO (1) | WO2016063406A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003199701A (en) * | 2001-10-31 | 2003-07-15 | Olympus Optical Co Ltd | Optical scanning type observation apparatus, method of setting optical scanning type observation apparatus, and optical scanning probe apparatus |
JP2004198912A (en) * | 2002-12-20 | 2004-07-15 | Olympus Corp | Scanning optical system |
JP2010122472A (en) * | 2008-11-19 | 2010-06-03 | Hoya Corp | Scanning endoscope, scanning endoscope processor, and scanning endoscope apparatus |
JP2010520778A (en) * | 2007-03-09 | 2010-06-17 | ユニヴァーシティ オブ ワシントン | Side-view scope and imaging method thereof |
WO2013069382A1 (en) * | 2011-11-09 | 2013-05-16 | オリンパス株式会社 | Endoscope and endoscope device |
JP2013117621A (en) * | 2011-12-02 | 2013-06-13 | Olympus Corp | Endoscope with ranging function |
-
2014
- 2014-10-23 JP JP2016555025A patent/JPWO2016063406A1/en active Pending
- 2014-10-23 WO PCT/JP2014/078274 patent/WO2016063406A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003199701A (en) * | 2001-10-31 | 2003-07-15 | Olympus Optical Co Ltd | Optical scanning type observation apparatus, method of setting optical scanning type observation apparatus, and optical scanning probe apparatus |
JP2004198912A (en) * | 2002-12-20 | 2004-07-15 | Olympus Corp | Scanning optical system |
JP2010520778A (en) * | 2007-03-09 | 2010-06-17 | ユニヴァーシティ オブ ワシントン | Side-view scope and imaging method thereof |
JP2010122472A (en) * | 2008-11-19 | 2010-06-03 | Hoya Corp | Scanning endoscope, scanning endoscope processor, and scanning endoscope apparatus |
WO2013069382A1 (en) * | 2011-11-09 | 2013-05-16 | オリンパス株式会社 | Endoscope and endoscope device |
JP2013117621A (en) * | 2011-12-02 | 2013-06-13 | Olympus Corp | Endoscope with ranging function |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016063406A1 (en) | 2017-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6074580B2 (en) | Optical imaging probe | |
US9574870B2 (en) | Probe for optical imaging | |
US11835707B2 (en) | Scanning optical imaging device | |
US8099157B2 (en) | Medical scanning system and related method of scanning | |
US20140221747A1 (en) | Apparatus, systems and methods which include and/or utilize flexible forward scanning catheter | |
JP6117772B2 (en) | Probe and diagnostic imaging apparatus | |
JP2008529669A (en) | Apparatus and method for optical coherence tomography | |
JP6371418B2 (en) | Back reflection minimization for OCT probes | |
JP6549584B2 (en) | Two-dimensional forward scanning probe | |
JP2015008995A (en) | Optical imaging probe | |
JP6439098B2 (en) | Optical imaging probe | |
JP6281059B2 (en) | Optical imaging probe | |
JP2012085805A (en) | Optical tomographic imaging device | |
JP6609754B2 (en) | Ultrasonic probe and ultrasonic image display device using the same | |
WO2016063406A1 (en) | Optical imaging probe | |
JP5998395B2 (en) | Imaging probe | |
JP2015198743A (en) | Laser radiation treatment device | |
JP6980267B2 (en) | Probe for optical imaging | |
McCormick et al. | A three dimensional real-time MEMS based optical biopsy system for in-vivo clinical imaging | |
JP2015100569A (en) | Probe for optical imaging | |
JP2016144692A (en) | Imaging probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14904433 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016555025 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14904433 Country of ref document: EP Kind code of ref document: A1 |