WO2016063389A1 - Microfluidic device, analysis method using same, and analysis device - Google Patents

Microfluidic device, analysis method using same, and analysis device Download PDF

Info

Publication number
WO2016063389A1
WO2016063389A1 PCT/JP2014/078160 JP2014078160W WO2016063389A1 WO 2016063389 A1 WO2016063389 A1 WO 2016063389A1 JP 2014078160 W JP2014078160 W JP 2014078160W WO 2016063389 A1 WO2016063389 A1 WO 2016063389A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic beads
microfluidic device
magnet
flow path
analysis
Prior art date
Application number
PCT/JP2014/078160
Other languages
French (fr)
Japanese (ja)
Inventor
峻 熊野
長谷川 英樹
谷口 伸一
橋本 雄一郎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/078160 priority Critical patent/WO2016063389A1/en
Publication of WO2016063389A1 publication Critical patent/WO2016063389A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a method and apparatus for analyzing chemical substances.
  • Micro-TAS Micro Total Analytical System
  • PDMS Polydimethylsiloxane
  • the amount of samples, reagents, waste liquids, etc. can be reduced. Moreover, since the volume of the reaction solution is small, the reaction efficiency is high and the measurement time can be shortened. In addition, benefits such as cost reduction and portability are shown.
  • ELISA Enzyme-Linked ImmunoSorbent Assay
  • Patent Document 1 describes a technique for improving the efficiency of ELISA on Micro-TAS.
  • microbeads to which an antibody is bound are used.
  • a bead flow blocking portion such as a dam structure exists in the flow path of the microfluidic device.
  • the dam structure the channel height is narrower than other channels, and the channel height is smaller than the bead diameter.
  • fluid can pass through the dam structure, but the beads stop at the dam structure. For this reason, beads are concentrated near the dam structure.
  • Patent Document 2 As a technology having a dam structure in a microfluidic device.
  • Patent Document 2 describes a method for discarding beads introduced into a microfluidic device. In the analysis method using beads, it is necessary to refill the beads in order to repeatedly use the microfluidic device. For this reason, after analyzing one sample, it is necessary to first discard the beads introduced into the device.
  • a common disposal method is backwashing. In the backwashing method, the beads are pushed out of the microfluidic device by flowing a washing solution in a direction opposite to that when beads are introduced.
  • Patent Document 2 in order to solve this problem, a bead discarding flow path is connected to a dam structure portion that blocks beads. When the beads are introduced into the microfluidic device, the beads are concentrated near the dam structure by closing the valve of the bead disposal flow path and opening the valve at the downstream outlet of the dam structure.
  • the valve at the downstream outlet of the dam structure is closed, the valve of the bead discarding channel is opened, and the cleaning liquid is introduced to push the beads out of the microfluidic device through the discarding channel.
  • the liquid feeding pump may be installed only on the inlet side of the microfluidic device.
  • Patent Document 3 also describes a method for discarding beads.
  • This document proposes a microfluidic device having a variable channel cross-sectional area. A valve body that slides in the microfluidic device is installed, and the flow path cross-sectional area is changed by moving the valve body with a motor or the like. In a state in which the cross-sectional area is narrowed, the valve body plays the role of the above-described dam structure portion, and the beads can be stopped. After the analysis, slide the valve body to widen the cross-sectional area and allow the beads to pass through and discard. Also in this method, the liquid feeding pump may be installed only on the inlet side of the microfluidic device.
  • magnetic beads may be introduced into the microfluidic device.
  • magnetic beads to which target molecules are bound are introduced into a microfluidic device and transported to the vicinity of an electrophoresis gel.
  • the magnetic beads can be trapped by a magnet installed outside the microfluidic device.
  • magnetic beads are concentrated near the dam structure by a magnet.
  • micro beads are trapped using a dam structure.
  • the height of the dam opening needs to be smaller than the diameter of the bead. Since the manufacture becomes difficult as the height is narrowed, the height of the dam opening is generally about 10 to 20 ⁇ m, and the diameter of the beads is 30 ⁇ m or more. For example, consider an analysis in which an antibody is bound to the bead surface and reacted with an antigen in a sample.
  • the collision probability between the antibody and the antigen is improved, and the reaction rate can be increased.
  • the simplest method for increasing the bead surface area is to make the beads smaller, but there is a problem that the bead diameter is limited by the height of the dam opening as described above.
  • magnetic beads can be trapped by the force of a magnet installed outside the microfluidic device.
  • the beads can be trapped without a dam structure, the beads can be miniaturized.
  • the diameter of magnetic beads generally used is about 3 ⁇ m. The problem with this approach is that the flow rate in the microfluidic device is limited.
  • magnetic beads oriented parallel to the flow path is the force F f applied from the fluid expressed by the following equation.
  • is the density of the fluid
  • v is the flow velocity
  • A is the cross-sectional area of collision of the magnetic beads with the fluid.
  • mu is the coefficient of friction with magnetic beads and the microchannel wall
  • F M attraction of the magnet the F M attraction of the magnet
  • theta is the angle of the suction force and the wall.
  • the magnetic beads are trapped without being pushed away by the fluid only when F m > F f .
  • F m > F f is satisfied in many cases.
  • the number of magnetic beads to be used affects the reaction rate and the signal at the time of analysis, and the flow rate is a factor that determines the introduction rate of the magnetic beads and affects the throughput of the analysis. Even if it is desired to increase the number of magnetic beads in order to increase the reaction rate, since A becomes large and F m > F f does not hold, there may be a problem that the magnetic beads cannot be increased. Further, if the flow rate is increased to increase the throughput, F f increases, and there is a possibility that the magnetic beads cannot be trapped.
  • Patent Document 1 it is necessary to use the backwash method.
  • the beads are pushed out of the microfluidic device by flowing a washing solution in a direction opposite to that when beads are introduced.
  • a liquid feed pump it is necessary to connect a liquid feed pump to both the inlet side and the outlet side of the microfluidic device in advance, or to replace the pump as necessary, and the operation is complicated. .
  • a flow path for bead disposal is provided in order to avoid the backwashing method.
  • the bead discarding channel works as a dead volume.
  • a target molecule is bound to a bead and then introduced into a microfluidic device, and magnetic beads are trapped and concentrated, and then the target molecule is eluted from the bead and analyzed.
  • the target molecule diffuses not only to the analysis channel but also to the bead disposal channel, which causes a problem that the concentration of the target molecule in the analysis channel decreases.
  • Patent Document 3 proposes changing the cross-sectional area of the flow path. For example, when a sliding valve body is used, the degree of sealing of the slide portion is poor, and the probability of liquid leakage increases when the internal pressure inside the microfluidic device increases. On the other hand, the microfluidic device itself can be deformed to change the cross-sectional area of the channel, but it cannot be applied to materials that are difficult to deform, such as glass.
  • a microfluidic device that uses magnetic beads introduced into a microchannel used in the present invention includes an introduction channel in which magnetic beads are introduced together with a solution, and an analysis channel that branches from the introduction channel at a branching portion.
  • a dam structure that has a waste flow path, and whose flow path height is narrower than the flow path height of the branch part at the connection part between the analysis flow path and the branch part of at least one of the waste flow paths The flow path height narrowed by the dam structure is larger than the diameter of the magnetic beads.
  • the magnetic beads adsorbing the target molecules are trapped by the force of the dam structure in the microfluidic device and the magnet installed outside.
  • the magnetic beads can get over the dam structure by controlling the movement by magnetic force. Therefore, in one aspect, after the analysis is completed, the magnetic beads are efficiently discarded by controlling the movement of the magnetic beads by the magnetic force and getting over the dam structure. As a result, high-throughput and robust measurement is possible.
  • the schematic diagram which shows the structural example of a microfluidic device Schematic which shows an example of the drive sequence in the analysis method using a microfluidic device.
  • the plane schematic diagram which shows the example of the flow-path structure of the microfluidic device which has several flow paths for analysis.
  • Example 1 is an example in which when target molecules are measured by a mass spectrometer, the target molecules are concentrated and ionized using a microfluidic device.
  • magnetic beads having target molecules adsorbed are introduced into a microfluidic device, and the magnetic beads are trapped and concentrated by an external magnet. Subsequently, target molecules are eluted from the magnetic beads and ionized by electrospray ionization (ESI).
  • ESI electrospray ionization
  • FIG. 1 is a schematic diagram showing a configuration example of a microfluidic device of this example
  • FIG. 1 (a) is a schematic plan view showing a channel structure
  • FIG. 1 (b) is a cross-sectional view taken along line BB in FIG. 1 (a). It is a cross-sectional schematic diagram of the device corresponding to a cross section.
  • the material of the microfluidic device 4 is glass, PDMS, or the like. In general, the microfluidic device 4 is manufactured by bonding two plates. Glass has higher adhesion than PDMS, resulting in higher pressure resistance. The size varies depending on the analysis method, but is generally about 30 mm ⁇ 70 mm.
  • the magnetic beads in the microfluidic device 4 are controlled by the magnetic force of the magnet, it is better to bring the magnet as close to the magnetic beads as possible.
  • the microfluidic device 4 of the present embodiment has three ports connected to the outside, which are an introduction port 2, a disposal port 1, and an ESI chip connection port 9, respectively.
  • the diameter of the general introduction port 2, the disposal port 1, and the ESI chip connection port 9 is about 100 to 1000 ⁇ m, but is not limited to this range.
  • the connection piping to the introduction port 2 and the disposal port 1 and the ESI chip are not shown.
  • the introduction channel 3 communicates with the introduction port 2, and magnetic beads are introduced from the introduction port 2 together with the solution.
  • the end of the analysis channel 6 communicates with the ESI chip connection port 9, and the magnetic beads moved to the analysis channel 6 are detected or processed. In this embodiment, a process for eluting target molecules from the magnetic beads in the analysis flow path 6 is performed.
  • the discard channel 8 magnetic beads that are communicated with the discard port 1 and discarded are flowed.
  • the introduction flow path 3 branches into the analysis flow path 6 and the waste flow path 8 at the branching portion, and the flow path height is smaller than the flow path height of the branching portion at the connection portion with the branching portion of the waste flow path 8.
  • the dam structure 7 is provided.
  • the dam structure 7 is disposed on the inlet side of a channel having a large conductance during use among the channels branched from the introduction channel 3.
  • the dam structure 7 is disposed on the waste flow path 8 side of the intersection where the three micro flow paths 3, 6, and 8 intersect.
  • the dam structure 7 of the embodiment shown in FIG. 1 is configured by a baffle plate that projects to the full width of the flow path from the bottom wall to the top wall of the flow path.
  • the cross section of the flow path is narrowed by the dam structure 7, and in particular, the height direction dimension of the flow path is limited to the dam opening above the dam structure at the position of the dam structure 7.
  • the flow path height narrowed by the dam structure 7 is larger than the diameter of the magnetic beads, so that the magnetic beads can pass through the dam opening above the dam structure.
  • the channel has a width of about 100 to 5000 ⁇ m and a depth of about 50 to 300 ⁇ m.
  • the height of the dam opening of the dam structure 7 must be at least larger than the diameter of the magnetic beads to be used, and is preferably at least twice the diameter of the magnetic beads.
  • a typical dam opening has a height of about 20 ⁇ m. Since the diameter of a typical magnetic bead is about 1 to 10 ⁇ m, it can pass through a dam opening having a height of 20 ⁇ m.
  • magnetic beads pass through the dam opening.
  • the height of the dam structure 7 is a value obtained by subtracting the height of the dam opening from the channel depth. Since the typical flow path depth is about 100 ⁇ m, the typical height of the dam structure 7 is about 80 ⁇ m.
  • the introduced magnetic beads are trapped in the magnetic bead trap part 5 near the dam structure by a magnetic force, and then transported to the analysis channel 6 by applying the magnetic force. It is necessary to introduce all the magnetic beads trapped by the magnetic bead trap section 5 into the analysis flow path 6.
  • the volume of the analysis flow path 6 be equal to or larger than the volume of the trapped magnetic beads, that is, the volume of the magnetic beads introduced into the microfluidic device.
  • the amount of magnetic beads required depends on the amount of target molecules, and the volume of the analysis flow path 6 is designed accordingly. Considering the elution efficiency of the target molecule and the diffusion after the elution, it is desirable to design so that the entire analysis channel 6 is filled with the trapped magnetic beads.
  • the branch part of the flow path described above corresponds to the intersection part of the flow path, and a magnetic force is applied thereto to trap the magnetic beads, so that the branch part of the flow path also overlaps with the magnetic bead trap part 5. That is, the branch part of the flow path, the crossing part of the flow path, and the magnetic bead trap part 5 indicate substantially the same region.
  • FIG. 2 is a schematic diagram showing an example of a driving sequence in the analysis method using the microfluidic device of this example.
  • the magnetic beads 13, the magnets 11 and 12, and the ESI chip 14 are added to the schematic cross-sectional view of the microfluidic device 4.
  • illustration of a microfluidic device holder and a magnet driving mechanism which will be described later is omitted.
  • One magnet 11, 12 is installed on each of the upper surface side and the bottom surface side of the microfluidic device 4. However, it does not necessarily have to be one by one, and there is no problem even if there is a plurality.
  • the plane on the side where the base of the dam structure 7 is provided is referred to as the bottom surface
  • the plane on the opposite side is referred to as the top surface.
  • the lower magnet 12 on the bottom surface side of the microfluidic device 4 is installed near the microfluidic device 4, and the upper magnet on the upper surface side. 11 is installed at a position away from the microfluidic device 4.
  • the lower magnet 12 is closer to the microfluidic device 4 than the upper magnet 11 is. There is no specification for the direction of the pole of the magnet.
  • the magnetic force of the lower magnet 12 acts on the magnetic bead trap portion 5 of the microfluidic device 4.
  • the magnetic beads 13 When the magnetic beads 13 are introduced together with the solution from the introduction port 2 in this magnet installed state, the magnetic beads 13 are attracted to the inner wall of the flow path by the magnetic force of the lower magnet 12 as shown in FIG. Be trapped.
  • the solution introduced from the introduction port 2 flows toward the disposal port 1 and the ESI chip connection port 9 as indicated by arrows.
  • the diameter of the introduction port 2, the disposal port 1, and the ESI chip connection port 9 is about 100 to 1000 ⁇ m, but the tip diameter of the ESI chip 14 is smaller than that. That is, the conductance from the introduction port 2 to the disposal port 1 is larger than the conductance from the introduction port 2 to the tip of the ESI chip. Or it is better to design the device structure to be larger.
  • the conductance from the introduction port 2 to the disposal port 1 is designed to be 100 times the conductance from the introduction port 2 to the tip of the ESI chip.
  • the solution flows at about 100 ⁇ L / min on the disposal port side and at about 1 ⁇ L / min on the ESI chip connection port side.
  • the dam structure 7 is installed on the waste flow path side where most of the magnetic beads 13 flow due to such a flow rate difference, that is, on the connection portion with the flow path branching portion of the waste flow path 8.
  • the magnetic beads 13 are introduced, the magnetic beads 13 are attracted to the bottom surface of the flow path by the lower magnet 12.
  • the dam structure 7 is arranged on the waste flow path 8 side of the magnetic bead trap unit 5. Therefore, even if F f > F m, the dam structure 7 is present, so that the magnetic beads 13 do not slide due to the force of the fluid.
  • the dam structure 7 By installing the dam structure 7, it becomes possible to trap the magnetic beads 13 in the magnetic bead trap unit 5 even when the flow rate is increased compared with the case where the dam structure 7 is not installed, and the analysis throughput can be improved. Since the solution flowing in the analysis channel 6 has a low flow rate, the magnetic beads receiving the magnetic attraction force are not pushed toward the analysis channel 6.
  • the lower magnet 12 After trapping the magnetic beads 13 as shown in FIG. 2A, the lower magnet 12 is slid along the surface of the microfluidic device 4 as shown in FIG. While attracting to the inner wall of the path 6 by magnetic force, it is moved to the vicinity of the ESI chip 14 to be dense. In this state, the eluate is introduced into the microfluidic device 4, the target molecules are eluted from the magnetic beads 13, introduced into the ESI chip 14, and ionized. In order to move the magnetic beads 13 efficiently, the inlet of the analysis flow path 6 is preferably chamfered as shown in FIG.
  • a general technique for concentrating target molecules using the magnetic beads 13 is to add the magnetic beads 13 to the sample solution containing the target molecules to adsorb the target molecules to the magnetic beads 13, and then to detach the magnetic beads 13. Release. Subsequently, the target molecules are eluted from the magnetic beads 13 by mixing the magnetic beads 13 and the eluate. That is, the target molecule can be concentrated as the amount of the elution solution is smaller than the sample solution. In the technique of adding the magnetic beads 13 to a 1.5 mL microtube or the like and adding the eluate thereto to elute the target molecules, it is difficult to reduce the amount of the eluate due to handling problems.
  • the obtained eluate is usually introduced into a mass spectrometer with a sample injector or the like and analyzed.
  • the problem arises that the target molecules diffuse in the pipe from the sample injector to the ESI chip 14 and the concentration becomes low.
  • the target molecules are eluted from the magnetic beads 13 and analyzed, and then the lower magnet 12 is moved to move the magnetic beads 13 to the vicinity of the dam structure 7 along the inner wall of the analysis flow path 6. transport.
  • the lower magnet 12 and the upper magnet 11 are moved as shown in FIG. That is, the lower magnet 12 is separated from the microfluidic device 4 so that the magnetic force of the lower magnet 12 does not reach the magnetic beads 13.
  • the magnetic beads 13 are moved to the inner wall on the upper magnet 11 side.
  • the magnetic beads 13 are stuck to the upper wall of the flow path, when the upper magnet 11 is moved along the microfluidic device 4 as shown in FIGS.
  • the magnetic beads 13 can be transported to the waste flow path 8 over the distance.
  • the magnetic force applied to the magnetic beads is reduced by moving the magnet to a position away from the waste flow path 8, and the magnetic beads 13 are released from the magnetic force.
  • the magnetic beads 13 released from the magnetic force ride on the flow of the solution and are discarded from the disposal port 1 to the outside of the microfluidic device 4.
  • the solution flow is flowing from the inlet 2 toward the waste port 1 or the ESI chip connection port 9 even when the magnetic beads 13 are discarded. That is, it is possible to discard the magnetic beads 13 without using the problematic backwashing method.
  • the magnet After discarding the magnetic beads 13, the magnet is returned to the position as shown in FIG. 2 (h) and waits for the next measurement.
  • the state transitions to the state of FIG.
  • FIG. 3 is a schematic diagram showing the positional relationship between the microfluidic device and the mass spectrometer.
  • the microfluidic device 4 is fixed to the magnet drive mechanism 17 so as to have a predetermined positional relationship. Details of the magnet drive mechanism 17 will be described later.
  • a DC voltage of about 1 to 5 kV is generally applied to the ESI chip 14 connected to the analysis flow path 6.
  • Charged droplets are sprayed from the ESI chip 14 due to a potential difference from the pore 15 portion of the mass spectrometer 16, and molecules inside the droplets are ionized.
  • the ions are separated and analyzed by the mass-to-charge ratio inside the mass spectrometer 16.
  • a voltage can be applied by wiring the ESI chip 14 itself.
  • PEEK Polyetheretherketone
  • a method of applying a voltage to the solution is often used. If a part of piping that contacts the solution flowing to the ESI chip 14 is made of metal and a voltage is applied to the pipe, the potential is transmitted to the tip of the ESI chip, and electrospray ionization can be performed.
  • the assumed risk in this embodiment is that the magnetic beads 13 flow into the tip side of the ESI chip 14 and become clogged with the chip.
  • position so that the dam structure 7 side and the waste outlet 1 side may become a lower side with respect to the ESI chip
  • gravity acting on the magnetic beads 13 works in a direction away from the ESI chip 14. For example, even if the magnet is moved at a speed that the magnetic beads 13 cannot follow, the magnetic beads 13 move away from the ESI chip 14 due to gravity if the solution is not flowing or the flow rate of the solution is very slow. To do.
  • the arrangement of the microfluidic device 4 may be limited by the structure around the pore 15 of the mass spectrometer 16.
  • FIG. 4 is a schematic diagram showing an example of an analysis system including a microfluidic device.
  • the analysis system includes a microfluidic device 4, a magnet drive mechanism 17, a mass spectrometer 16, a sample injector 24, a liquid feed pump 25, a waste liquid valve 23, a high-voltage power supply 20, and a control computer 18.
  • the microchannel, magnetic beads, etc. are not shown.
  • the microfluidic device 4 has been described with reference to FIGS.
  • the magnet drive mechanism 17 includes a magnet, and is configured by a motor or a circuit that moves the magnet.
  • the sample injector 24 and the liquid feeding pump 25 are coupled together, the magnetic beads 13 are introduced together with the solution by the sample injector 24, and the solution is fed by the liquid feeding pump 25.
  • the sample injector 24 and the liquid feed pump 25 are not special special ones, and a general liquid chromatography (LC) system may be used. However, a system capable of delivering the solution at least at about 100 nL / min is desirable. In addition, the system needs to be able to send multiple types of solutions.
  • LC liquid chromatography
  • the magnetic beads 13 introduced from the sample injector 24 pass through the introduction pipe 21 and are introduced into the microfluidic device 4. After completing the mass analysis in the drive sequence as shown in FIG. 2, the magnetic beads 13 are discarded from the waste flow path 8 to the waste liquid tank 26 through the waste pipe 22 and the waste liquid valve 23.
  • Any type of mass spectrometer 16 may be used, such as a triple quadrupole mass spectrometer, an ion trap, and a time-of-flight mass spectrometer.
  • the target molecule is ionized by ESI, it is not necessary to be a mass spectrometer as long as it is an apparatus for analyzing ions. For example, it is possible to analyze with an ion mobility meter.
  • the surface of the magnetic bead 13 is modified in some way so that target molecules can be adsorbed.
  • the target molecules are adsorbed in a solution containing a large amount of H 2 O under, for example, serum or phosphate buffered saline (PBS).
  • PBS phosphate buffered saline
  • the magnetic beads 13 are added to the organic solvent, the target molecules are eluted into the organic solvent.
  • the magnetic beads 13 on which the target molecules are adsorbed are introduced into the microfluidic device 4 through the sample injector 24 together with the aqueous solution.
  • the flow rate at that time is, for example, 100 ⁇ L / min.
  • the aqueous solution is, for example, PBS.
  • the waste liquid valve 23 connected to the waste flow path 8 is in an open state, and the solution introduced from the introduction port 2 flows out of the microfluidic device 4 through the waste port 1 and the ESI chip 14. To do.
  • An organic solvent is introduced from the feed pump 25 into the microfluidic device 4 as an eluent.
  • methanol For example, methanol.
  • the organic solvent need not necessarily be 100%, and may be a 50% aqueous methanol solution.
  • the waste liquid valve 23 may be introduced in an open state or may be introduced in a closed state. Alternatively, the waste liquid valve 23 may be closed after a certain amount of organic solvent is introduced.
  • the waste flow path 8 side is filled with the organic solvent before the organic solvent is introduced into the entire analysis flow path 6. It is desirable to close the waste liquid valve 23 when the waste flow path 8 side is filled with the organic solvent.
  • the introduction flow rate is adjusted so that the flow rate flowing to the ESI chip 14 side is about 1 ⁇ L / min.
  • the liquid feed amount of the liquid feed pump 25 is set to about 1 ⁇ L / min, and when the target molecule is eluted while the waste liquid valve 23 is open, the waste outlet 1 side and the ESI chip
  • the flow rate is determined based on the conductance ratio on the 14th side.
  • the target molecules adsorbed on the magnetic beads 13 are eluted by the contact between the organic solvent and the magnetic beads 13.
  • the eluted molecules are introduced into the ESI chip 14 and ionized by ESI.
  • ESI is applied as an ionization method, but this embodiment is not limited to ESI.
  • a thermospray ionization method using no voltage may be used.
  • the eluate may be vaporized and then ionized.
  • APCI atmospheric pressure chemical ionization
  • PI photoionization
  • DBDI barrier discharge ionization
  • SESI secondary electrospray ionization
  • desorption electrospray ionization DESI
  • matrix-assisted laser desorption / ionization MALDI
  • FIG. 5 is a schematic diagram showing an example of a method for driving a magnet in a direction perpendicular to the surface of the microfluidic device.
  • the upper magnet 11 and the lower magnet 12 held by the magnet drive mechanism are coupled via a magnet holder 27 and are driven by a rack and pinion mechanism 29 in synchronization with a direction perpendicular to the device surface. That is, the two magnets 11 and 12 arranged with the microfluidic device 4 interposed therebetween are driven so that when one magnet approaches the microfluidic device 4, the other magnet moves away.
  • the magnet drive mechanism drives the two magnets 11 and 12 so that when one magnet acts on the microchannel of the microfluidic device 4, the other magnet stops acting.
  • the rotational motion by the DC motor is converted into the vertical motion of the magnet. It is desirable to monitor the position of the magnet with an optical sensor or the like and control the rotation of the DC motor.
  • the distance between the magnets 11 and 12 should be changed according to the magnitude of the magnetic force.
  • both magnetic forces act on the magnetic beads 13.
  • the distance between the two magnets is equal to the magnetic bead 13
  • the magnetic bead 13 cannot be brought to one side of the flow path as shown in FIG.
  • the other magnet is sufficiently separated from the microfluidic device 4 and the magnetic force from the one magnet is mainly acting on the magnetic beads 13. Need to produce.
  • the fact that the distance between the magnets increases means that the driving distance of the magnets increases, and a problem arises that the size of the entire apparatus increases.
  • the distance between the magnets may be about 10 to 30 mm.
  • the range is not limited to this range, and the distance between the magnets is not limited as long as the magnetic beads 13 can be moved as in the sequence of FIG.
  • the moving method of the magnet is not limited to the rack and pinion mechanism 29, and any method can be used as long as it can be controlled by computer control, such as a stepping motor. If the control system becomes uncontrollable due to a software error or the like, the magnet may collide with the microfluidic device 4. For this reason, it is desirable to prepare a physical stopper so that the magnet does not collide with the microfluidic device 4 even when control becomes impossible.
  • FIG. 5 also shows the microfluidic device holder 28.
  • the microfluidic device holder 28 is divided into upper and lower parts, one has a concave structure into which the microfluidic device 4 can be inserted and is fixed to the magnet drive mechanism 17, and the other is a pressing plate for fixing the microfluidic device 4. It is. In a state where the microfluidic device 4 is inserted into the recess of the microfluidic device holder, the microfluidic device 4 is fixed by, for example, screwing the holding plate. Although the microfluidic device holder 28 is omitted in other drawings, it is usually used together with the microfluidic device 4.
  • the magnet cannot be brought closer to the microfluidic device 4 by the thickness of the holder.
  • the holder of the present embodiment is scraped according to the shape of the magnet only at the portion where the magnet approaches, and has a structure in which the magnet is as close to the microfluidic device 4 as possible.
  • FIG. 6 is a schematic diagram showing an example of a method of sliding a magnet in a direction parallel to the surface of the microfluidic device.
  • the ESI chip 14 and the magnetic beads 13 are not shown.
  • the magnet drive mechanism 17 causes the two magnets 11 and 12 to perform a synchronized slide and independent slide along the surface of the microfluidic device 4.
  • One magnet 12 is coupled to a drive stage 30 driven by a stepping motor.
  • the other magnet since the upper magnet 11 and the lower magnet 12 are coupled, when one magnet slides with the drive stage 30, the other magnet also slides in synchronization.
  • FIG. 2B when the magnetic beads 13 are transported to the ESI chip 14 side, only the lower magnet 12 slides and the upper magnet 11 does not slide. This is because if the upper magnet 11 is also slid, the upper magnet 11 collides with the ESI chip 14.
  • the slider 31, the conston spring 32, and the stopper 45 are installed so that the upper magnet 11 does not follow the lower magnet 12.
  • a stopper 45 exists on the ESI chip side, and the stopper 45 and the magnet 11 collide so that the magnet cannot advance ahead of the stopper 45.
  • the slide in the reverse direction is restrained by the conston spring 32.
  • the method for adjusting the position of the magnet is not limited to the method described in FIG. 6, and any method may be used as long as the movement as shown in FIG. 2 is possible.
  • the magnet used in this embodiment may be anything as long as it can apply a magnetic force to the magnetic beads 13.
  • permanent magnets neodymium magnets are strong and easy to use.
  • an electromagnet may be used as shown in FIG. It is a general electromagnet to wind a coil 34 around a bar having a high magnetic permeability such as an iron core 33. If an electromagnet is used in contrast to the case where a permanent magnet is used, a drive mechanism as shown in FIG. 5 is not necessary. Since an electromagnet generates a magnetic force only when an electric current is flowing, it is only necessary to pass an electric current through the coil 34 of the upper magnet 11 and the lower magnet 12 to be used.
  • the magnet drive mechanism 17 stops energizing the electromagnet on the other side when energizing the electromagnet on the other side, that is, with respect to the microchannel of the microfluidic device.
  • the electromagnet on one side applies a magnetic force
  • the two electromagnets are driven so that the electromagnet on the other side stops the action.
  • FIG. 8 is a schematic diagram showing an example of the structure of a magnet. Only the tip as shown in FIG. 8A may have a spherical shape, a rectangular parallelepiped as shown in FIG. 8B, or a triangular pyramid as shown in FIG. 8C.
  • the magnetic beads gather at the portion where the magnetic force is the strongest. However, when there are a plurality of corners such as a rectangular parallelepiped, there arises a problem that the locations where the magnetic beads 13 are concentrated are dispersed.
  • FIG. 9 is a schematic sectional view showing an example of a dam structure.
  • FIGS. 9A to 9E are schematic partial cross-sectional views showing only the portion corresponding to the dam structure 7 of FIG. 1B in an enlarged manner. This shows a state of being trapped in a branch portion of the magnetic beads, that is, a magnetic bead trap portion.
  • the dam structure 7 can have various shapes.
  • FIG. 9A shows the dam structure 7 shown so far, and has a rectangular cross section.
  • FIG. 9B shows a dam structure having an inverted triangular cross section in which the width of the dam bottom is narrower than the top.
  • the magnetic beads 13 inserted in the gaps at the bottom do not move even if the flow rate increases. That is, the trap efficiency is increased.
  • the dam structure 7 shown in FIG. 9C has a trapezoidal cross section. Even if the structure shown in FIG. 9A is to be manufactured, the structure shown in FIG.
  • the magnetic beads 13 may slide up the dam structure 7 when the flow velocity increases.
  • FIG. 9 (d) there is a structure in which a recess is provided in the microchannel, and the wall of the recess constitutes a barrier that must be overcome for the magnetic beads entering the recess to escape from the recess.
  • the portion of the vertical wall on the left side of the recess illustrated in FIG. 9D corresponds to the connection portion between the branch portion of the micro flow channel and the waste flow channel, and the location of the vertical wall on the right side of the recess is the micro flow channel. Corresponds to the connection between the branch and the analysis flow path.
  • the structure in which the flow path height is changed stepwise also acts as the dam structure 7 of the present invention to prevent the magnetic beads from being washed away by the fluid.
  • the portion of the vertical wall on the left side of the depression shown in FIG. 9 (e) corresponds to the connection portion between the branch portion of the microchannel and the waste channel.
  • NanoESI chip is assumed as the ESI chip 14.
  • NanoESI chips generally have an outer diameter of about 350 ⁇ m and a tip inner diameter of about 10 to 100 ⁇ m.
  • the flow rate to flow to the chip side is preferably 5 ⁇ L / min or less.
  • a chip in which an LC column is included may be used.
  • a chip containing a monolithic column may be used.
  • LC separation can be performed at that portion.
  • the solution can be exchanged by using an LC column.
  • the adsorption method is not particularly limited as long as it can be eluted on the microfluidic device 4.
  • modify the polymer 36 around the magnetic beads 13 as shown in FIG. This acts as a general solid phase extraction agent. For example, it is modified with C18.
  • the target molecules move into the polymer 36.
  • the target molecules are eluted. This is a method utilizing the polarity of molecules.
  • the molecular template polymer selects molecules to be adsorbed rather than the solid phase extractant.
  • MIP Molecular imprinted polymer
  • Antibody 37 can adsorb molecules more specifically than MIP.
  • the antibody 37 may be bound to the surface of the magnetic bead 13 as shown in FIG.
  • a molecule capable of binding to the antibody 37 such as Protein A or Protein G is bound to the surface of the magnetic bead 13.
  • streptavidin is bound to the surface of the magnetic beads 13, and the biotinylated antibody 37 is bound thereto.
  • the target molecule is generally eluted by denaturing the antibody 37 with an acidic solution.
  • the acidic solution is not suitable for ESI, and thus the solution needs to be replaced before ESI.
  • the target molecule dissolved in the acidic solution is trapped with an LC column and eluted with an organic solvent.
  • FIG. 11 and FIG. 12 are schematic views showing respective manufacturing methods.
  • the microfluidic device 4 is manufactured by laminating two sheets.
  • both the upper plate 38 and the lower plate 39 are processed and bonded together. In this case, it is necessary to attach the upper plate 38 and the lower plate 39 with high accuracy.
  • the upper plate 38 is not processed, and only the lower plate 39 is processed.
  • FIG. 13 is a schematic diagram for explaining the removal of the microfluidic device.
  • the analysis method of this embodiment can perform a plurality of analyzes without replacing the microfluidic device 4. That is, the introduction, analysis, and disposal of the magnetic beads 13 are repeated.
  • it is preferable to replace the device when a large amount of analysis is performed and the microfluidic device 4 has deteriorated, it is preferable to replace the device. In this case, it is desirable that only the microfluidic device 4 and the ESI chip 14 are replaced as shown in FIG. 13, and the magnet and the magnet drive mechanism 17 are not replaced.
  • the magnet drive mechanism 17 also needs to be replaced, but the usable period is longer than that of the microfluidic device 4 and the ESI chip 14.
  • the microfluidic device 4 and the ESI chip 14 are not necessarily replaced at the same time, and may be replaced independently.
  • the microfluidic device 4 is fixed to the microfluidic device holder 28, and when it is desired to replace the microfluidic device 4, the microfluidic device holder 28 is generally replaced. is there. In this case, it is desirable that the magnet driving mechanism 17 and the microfluidic device holder 28 are not fixed by screws, but the microfluidic device holder 28 can be attached and detached from the magnet driving mechanism 17 with one touch.
  • the magnet drive mechanism 17 is fixed to a magnet drive mechanism fixing portion 48 via a fixing scaffold 49.
  • the fixing scaffold 49 is fixed to the mass spectrometer 16 or integrated with the mass spectrometer 16.
  • the feature of the present embodiment is that the trap efficiency of the magnetic beads 13 is increased by utilizing the dam structure 7 and the magnetic force, thereby enabling high-throughput analysis.
  • the high concentration target molecules can be ionized by transporting and concentrating the magnetic beads 13 to the vicinity of the ESI chip 14. Furthermore, by controlling the magnetic force applied to the magnetic bead 13, the dam structure 7 is moved over the magnetic bead 13 and efficient destruction of the magnetic bead 13 is realized, so that the robustness is high.
  • FIG. 14 is a schematic diagram showing another example of a driving sequence in an analysis method using a microfluidic device.
  • the microfluidic device 4 of the present embodiment has a structure similar to that of the first embodiment.
  • the difference from the first embodiment is that the dam structure 7 is not only the side of the waste flow path 8 of the magnetic bead trap part but also the flow path for analysis. It is also a point arranged on the 6 side. From the conductance ratio of the flow path on the waste flow path 8 side and the flow path on the ESI chip 14 side, most of the solution flows to the waste flow path 8 side. For this reason, there is a high probability that the magnetic beads also flow to the waste flow path 8 side.
  • the microfluidic device 4 of the present embodiment has a cross section (branch) where the three flow channels intersect the dam structure 7.
  • the magnetic bead trap section 5 set in the section is installed on the analysis flow path 6 side as well as the waste flow path 8 side.
  • the driving sequence is partly more complicated than in the first embodiment.
  • the lower magnet 12 was merely slid along the microfluidic device 4 when the magnetic beads 13 trapped in the magnetic bead trap unit 5 were transported to the analysis flow path 6 side.
  • the magnetic beads 13 are first moved to the upper magnet 11 side to get over the dam structure 7 and then again to the lower magnet 12 side. After bringing the magnetic beads 13 together, they are transported to the vicinity of the ESI chip connection port 9. After the target molecule is eluted and analyzed, as shown in FIGS. 14 (f) to (h), the magnetic beads 13 are moved from the lower magnet 12 side to the upper magnet 11 side and then moved to the waste flow path 8. To transport.
  • the magnetic beads 13 are transported to the vicinity of the ESI chip connection port 9, after passing the dam, the magnetic beads 13 are moved to the lower magnet 12 side. There is no need to attract.
  • the upper magnet is slid to the vicinity of the ESI chip to elute the target molecules. After the target molecule is eluted and analyzed, the upper magnet 11 is slid along the microfluidic device 4 as it is, and the magnetic beads 13 are transported to the disposal channel 8 and discarded.
  • Example 3 differs from Examples 1 and 2 in that the target molecule is detected not by mass spectrometry but by the photodetector 42.
  • the structure of the microfluidic device 4 is the same as in the first or second embodiment.
  • target molecules are adsorbed on the magnetic beads 13 and introduced into the microfluidic device 4.
  • the introduced magnetic beads 13 are trapped in the magnetic bead trap unit 5 by the magnetic force and the dam structure 7.
  • target molecules eluted from the magnetic beads 13 are detected.
  • a laser light 41 is generated by a laser light source 40 and a color reaction or absorbance is used.
  • the concentration can be analyzed using the thermal lens effect.
  • excitation light 43 is irradiated from a laser light source 40 onto magnetic beads on which target molecules are adsorbed, and fluorescence 44 is observed with a photodetector 42. This is a general ELISA.
  • the disposal method of the magnetic beads 13 is the same as in the first and second embodiments. As shown in FIG. 2 and FIG. 15, by controlling the magnetic force acting on the magnetic beads 13, the magnetic beads 13 are moved over the dam structure 7 and moved to the disposal flow path 8. The method of this embodiment improves the trap efficiency of the magnetic beads 13 by using the dam structure 7 and the magnetic force at the same time, and enables high-throughput analysis. Further, by controlling the magnetic force acting on the magnetic beads 13, it is possible to make the magnetic beads 13 get over the dam structure 7, thereby realizing efficient disposal of the magnetic beads 13.
  • FIG. 18 is a schematic plan view showing an example of the channel structure of the microfluidic device of this example having a plurality of analysis channels.
  • a second analysis flow path 46 and a second ESI chip connection port 47 are arranged in addition to the analysis flow path 6, in addition to the analysis flow path 6, a second analysis flow path 46 and a second ESI chip connection port 47 are arranged. Other points are the same as in the first and second embodiments.
  • a new magnetic bead 13 is trapped by the magnetic bead trap unit 5 while the target molecule is being eluted from the magnetic bead 13 near the ESI chip connection port 9. It is also possible to transport to the second analysis channel 46.
  • the second analysis channel 46 side can be used for the ELISA analysis as shown in the third embodiment.
  • the dam structure 7 is installed only on the disposal flow path 8 side, but may be installed on the analysis flow path 6 side or the second analysis flow path 46 side. Whether or not a dam structure is necessary depends on the flow velocity of the liquid flowing in the flow path. As the flow rate is increased, the measurement throughput can be increased, but the force of the fluid acting on the magnetic beads 13 is increased. When the magnetic beads 13 cannot be trapped only by the magnetic force, it is necessary to install the dam structure 7.
  • two analysis channels are arranged, but three or more may be arranged if necessary.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

The present invention is an analysis method using a microfluidic device 4 and two magnets arranged on opposite sides of the microfluidic device, the microfluidic device having an introduction channel 3 into which magnetic beads are introduced along with a solution, and an analysis channel 6 and disposal channel 8 that branch off from the introduction channel at a branching section, the device having a dam structure 7 the channel height of which is less than that of the branching section at a connection section with the branching section(s) of the analysis channel and/or disposal channel, and the channel height narrowed by the dam structure being greater than the diameter of the magnetic beads. The method comprises: a step in which magnetic beads inside a microchannel are attracted to one inner wall of the microchannel by magnetic force of one of the magnets; a step in which the magnetic beads are moved to an inner wall of the microchannel on the side opposite the one inner wall by magnetic force of the other of the magnets; and a step in which the other magnet is moved along the microfluidic device, thereby causing the magnetic beads to pass beyond the dam structure. The method realizes highly-robust, high-throughput, and high-sensitivity analysis.

Description

マイクロ流体デバイス並びにそれを用いた分析方法及び分析装置Microfluidic device and analysis method and apparatus using the same
 本発明は、化学物質を分析する方法及び装置に関わる。 The present invention relates to a method and apparatus for analyzing chemical substances.
 半導体に関わる微細加工技術を利用したマイクロ化技術(Micro Electro-Mechanical Systems:MEMS)分野が発展している。特に、ガラス基板やPDMS(Polydimethylsiloxane)上に幅が1mm以下のマイクロ流路を作製し、そこで化学分析を行うMicro-TAS(Micro Total Analytical System)は、バイオ・医療・環境などの様々な分野で大きな注目を集めている。Micro-TASでは、これまで実験室で行われてきた生化学・化学操作(混合、反応、分離、検出)を1枚のチップ上に、すなわちマイクロ流体デバイス上に集積化・小型化しており、従来の分析装置と比較して試料、試薬、廃液等の少量化が可能である。また、反応溶液の体積が小さいため反応効率が高く測定時間を短縮できる。また、低コスト化、携帯性等の有益性が示されている。 The field of micro technology (Micro-Electro-Mechanical Systems: MEMS) using micro-processing technology related to semiconductors has been developed. In particular, Micro-TAS (Micro Total Analytical System), which produces a micro-channel with a width of 1 mm or less on a glass substrate or PDMS (Polydimethylsiloxane) and performs chemical analysis there, is used in various fields such as biotechnology, medicine, and the environment. Has attracted a lot of attention. Micro-TAS integrates and miniaturizes biochemistry and chemical operations (mixing, reaction, separation, detection) that have been performed in the laboratory on a single chip, that is, on a microfluidic device. Compared to conventional analyzers, the amount of samples, reagents, waste liquids, etc. can be reduced. Moreover, since the volume of the reaction solution is small, the reaction efficiency is high and the measurement time can be shortened. In addition, benefits such as cost reduction and portability are shown.
 Micro-TASが頻繁に利用される分析方法に酵素免疫分析方法(Enzyme-Linked ImmunoSorbent Assay:ELISA)がある。ELISAは抗原抗体反応を利用して試料溶液中の抗原を検出・定量する手法である。Micro-TASでは、マイクロ流体デバイス内の流路壁面に抗体を結合させる場合や、マイクロサイズのビーズ表面に抗体を結合させる場合などがある。Micro-TASでは反応溶液量が少ないため、抗原と抗体の接触確率が上昇し、通常のELISAよりも反応速度が向上する。 An analysis method in which Micro-TAS is frequently used is an enzyme immunoassay (Enzyme-Linked ImmunoSorbent Assay: ELISA). ELISA is a technique for detecting and quantifying an antigen in a sample solution using an antigen-antibody reaction. In Micro-TAS, there are a case where an antibody is bound to a channel wall surface in a microfluidic device and a case where an antibody is bound to a micro-sized bead surface. In Micro-TAS, since the amount of the reaction solution is small, the contact probability between the antigen and the antibody is increased, and the reaction rate is improved as compared with a normal ELISA.
 特許文献1には、Micro-TAS上でのELISAの効率を向上させる手法が記載されている。この文献では、抗体を結合したマイクロビーズを用いている。また、マイクロ流体デバイスの流路中にダム構造のようなビーズの流れせき止め部が存在する。ダム構造部では他の流路よりも流路高さが狭くなっており、流路高さがビーズ径よりも小さい。このため、流体はダム構造部を通過できるが、ビーズはダム構造部でストップする。このため、ビーズがダム構造部近傍で濃縮されることになる。濃縮された状態で抗原抗体反応や酵素反応を発生させることによって、効率的に反応を進めることができる。 Patent Document 1 describes a technique for improving the efficiency of ELISA on Micro-TAS. In this document, microbeads to which an antibody is bound are used. Further, a bead flow blocking portion such as a dam structure exists in the flow path of the microfluidic device. In the dam structure, the channel height is narrower than other channels, and the channel height is smaller than the bead diameter. Thus, fluid can pass through the dam structure, but the beads stop at the dam structure. For this reason, beads are concentrated near the dam structure. By generating an antigen-antibody reaction or an enzyme reaction in a concentrated state, the reaction can be efficiently advanced.
 マイクロ流体デバイス中にダム構造を有する技術として特許文献2がある。特許文献2には、マイクロ流体デバイスに導入したビーズの廃棄方法について記載されている。ビーズを用いた分析方法では、マイクロ流体デバイスを繰り返し使用するためにはビーズを再充填する必要がある。このため、1つの試料を分析した後に、デバイス中に導入したビーズをまず廃棄する必要がある。一般的な廃棄方法は逆洗法である。逆洗法では、ビーズを導入した時と逆向きに洗浄液を流すことでビーズをマイクロ流体デバイス外部へと押し出す。ただし、逆洗法を実現するためには、予めマイクロ流体デバイスの入口側と出口側の双方に送液ポンプを接続するか、必要に応じてポンプを付け替えることが必要になり、操作が煩雑である。特許文献2では、この課題を解決するため、ビーズをせき止めるダム構造部にビーズ廃棄用の流路を接続している。ビーズをマイクロ流体デバイスに導入する際は、ビーズ廃棄用流路のバルブを閉じ、ダム構造部下流出口のバルブを開状態とすることで、ダム構造部近傍にビーズを濃縮する。分析終了後は、ダム構造部下流出口のバルブを閉じ、ビーズ廃棄用流路のバルブを開放して洗浄液を導入することで、廃棄用流路を通してビーズをマイクロ流体デバイス外部へと押し出す。この手法であれば送液ポンプをマイクロ流体デバイスの入口側のみに設置すればよい。 There is Patent Document 2 as a technology having a dam structure in a microfluidic device. Patent Document 2 describes a method for discarding beads introduced into a microfluidic device. In the analysis method using beads, it is necessary to refill the beads in order to repeatedly use the microfluidic device. For this reason, after analyzing one sample, it is necessary to first discard the beads introduced into the device. A common disposal method is backwashing. In the backwashing method, the beads are pushed out of the microfluidic device by flowing a washing solution in a direction opposite to that when beads are introduced. However, in order to realize the backwashing method, it is necessary to connect a liquid feed pump to both the inlet side and the outlet side of the microfluidic device in advance, or to replace the pump as necessary, and the operation is complicated. is there. In Patent Document 2, in order to solve this problem, a bead discarding flow path is connected to a dam structure portion that blocks beads. When the beads are introduced into the microfluidic device, the beads are concentrated near the dam structure by closing the valve of the bead disposal flow path and opening the valve at the downstream outlet of the dam structure. After the analysis is completed, the valve at the downstream outlet of the dam structure is closed, the valve of the bead discarding channel is opened, and the cleaning liquid is introduced to push the beads out of the microfluidic device through the discarding channel. In this method, the liquid feeding pump may be installed only on the inlet side of the microfluidic device.
 特許文献3にもビーズの廃棄方法が記載されている。この文献は、流路断面積が可変なマイクロ流体デバイスを提案している。マイクロ流体デバイス内にスライドする弁体を設置し、弁体をモータ等で移動させることで流路断面積を変化させている。断面積を狭めた状態では弁体が上述のダム構造部の役割を果たし、ビーズをせき止めることができる。分析後は弁体をスライドさせて断面積を広げることでビーズを通過させ廃棄する。この手法においても、送液ポンプをマイクロ流体デバイスの入口側のみに設置すればよい。 Patent Document 3 also describes a method for discarding beads. This document proposes a microfluidic device having a variable channel cross-sectional area. A valve body that slides in the microfluidic device is installed, and the flow path cross-sectional area is changed by moving the valve body with a motor or the like. In a state in which the cross-sectional area is narrowed, the valve body plays the role of the above-described dam structure portion, and the beads can be stopped. After the analysis, slide the valve body to widen the cross-sectional area and allow the beads to pass through and discard. Also in this method, the liquid feeding pump may be installed only on the inlet side of the microfluidic device.
 特許文献4のようにマイクロ流体デバイス内に磁気ビーズを導入することもある。この文献ではターゲット分子を結合させた磁気ビーズをマイクロ流体デバイスに導入し、電気泳動用ゲル近傍まで輸送している。磁気ビーズを用いると、マイクロ流体デバイス外部に設置した磁石によって磁気ビーズをトラップできる。特許文献4では磁石によって磁気ビーズをダム構造部近傍に濃縮させている。また特許文献5のようにマイクロ流体デバイス外部の磁石を移動させることで、磁気ビーズをデバイス内で移動させることも可能である。 As in Patent Document 4, magnetic beads may be introduced into the microfluidic device. In this document, magnetic beads to which target molecules are bound are introduced into a microfluidic device and transported to the vicinity of an electrophoresis gel. When magnetic beads are used, the magnetic beads can be trapped by a magnet installed outside the microfluidic device. In Patent Document 4, magnetic beads are concentrated near the dam structure by a magnet. Moreover, it is also possible to move a magnetic bead within a device by moving the magnet outside a microfluidic device like patent document 5. FIG.
WO 03/062823 A1WO 03/062823 A1 特開2007-108075号公報JP 2007-108075 A 特開2005-851号公報JP 2005-851 Gazette 特開2007-47149号公報JP 2007-47149 A 特開2004-77258号公報JP 2004-77258 A
 マイクロ流体デバイス内にマイクロビーズを導入して分析する手法では、マイクロビーズをトラップして濃縮する手法と分析後に廃棄する手法が重要となる。特許文献1~3では、ダム構造を利用してマイクロビーズをトラップしている。この場合、ダム開口部の高さがビーズの直径よりも小さい必要がある。高さを狭めるほど作製が困難になるため、一般的にダム開口部の高さは10~20μm程度であり、ビーズの直径は30μm以上である。例えば、ビーズ表面に抗体を結合し、試料中の抗原と反応させる分析を考える。この場合、ビーズの表面積を増加させるほど抗体と抗原の衝突確率が向上し、反応速度を増加させることができる。ビーズ表面積を増加させる最も簡単な方法はビーズをより微小化することであるが、上述したようにダム開口部の高さによってビーズ径が制限されるという問題がある。 In the method of introducing microbeads into a microfluidic device for analysis, a method of trapping and concentrating microbeads and a method of discarding after analysis are important. In Patent Documents 1 to 3, micro beads are trapped using a dam structure. In this case, the height of the dam opening needs to be smaller than the diameter of the bead. Since the manufacture becomes difficult as the height is narrowed, the height of the dam opening is generally about 10 to 20 μm, and the diameter of the beads is 30 μm or more. For example, consider an analysis in which an antibody is bound to the bead surface and reacted with an antigen in a sample. In this case, as the surface area of the beads is increased, the collision probability between the antibody and the antigen is improved, and the reaction rate can be increased. The simplest method for increasing the bead surface area is to make the beads smaller, but there is a problem that the bead diameter is limited by the height of the dam opening as described above.
 特許文献4のように磁気ビーズを用い、マイクロ流体デバイスの外部に設置した磁石の力によって磁気ビーズをトラップすることもできる。この場合、ダム構造無しにビーズをトラップできるため、ビーズの微小化が可能になる。一般的に使われる磁気ビーズの直径は3μm程度である。この手法の問題点は、マイクロ流体デバイス内での流速に制限がかかることである。マイクロ流体デバイスの微小流路内の流れは層流であると仮定すると、流路に平行な向きに磁気ビーズが流体から受ける力Ffは下記の式で表せる。 As in Patent Document 4, magnetic beads can be trapped by the force of a magnet installed outside the microfluidic device. In this case, since the beads can be trapped without a dam structure, the beads can be miniaturized. The diameter of magnetic beads generally used is about 3 μm. The problem with this approach is that the flow rate in the microfluidic device is limited. When the flow of the microchannel of the microfluidic device is assumed to be laminar, magnetic beads oriented parallel to the flow path is the force F f applied from the fluid expressed by the following equation.
式1 Formula 1
Figure JPOXMLDOC01-appb-I000001
ここで、ρは流体の密度、vは流速、Aは磁気ビーズの流体との衝突断面積である。
Figure JPOXMLDOC01-appb-I000001
Here, ρ is the density of the fluid, v is the flow velocity, and A is the cross-sectional area of collision of the magnetic beads with the fluid.
 また、磁石を配置することで流体の力に対抗して磁気ビーズに働く力Fmは以下の式で表せる。 Further, the force F m acting on the magnetic beads against the fluid force by arranging the magnet can be expressed by the following equation.
式2 Formula 2
Figure JPOXMLDOC01-appb-I000002
ここで、μは磁気ビーズとマイクロ流路壁面での摩擦係数、FMは磁石の吸引力、θは吸引力と壁面のなす角である。
Figure JPOXMLDOC01-appb-I000002
Here, mu is the coefficient of friction with magnetic beads and the microchannel wall, the F M attraction of the magnet, theta is the angle of the suction force and the wall.
 したがって、Fm>Ffのときのみ磁気ビーズは流体に押し流されずにトラップされる。磁気ビーズ1つを考えた時にはAが十分小さいため、Fm>Ffが多くの場合に成立するが、多数の磁気ビーズをトラップした場合、それぞれが結合しAが大きくなり、流体の力に負けやすくなる。利用する磁気ビーズの数は反応速度や分析時のシグナルに影響し、流速は磁気ビーズの導入速度を決めるファクターであり分析のスループットに影響する。反応速度を上昇させるために磁気ビーズの数を増やしたくとも、Aが大きくなってFm>Ffが成立しなくなるため、磁気ビーズを増やせないという問題が生じる可能性がある。また、スループットを上げるために流速を上昇させるとFfが大きくなり、磁気ビーズをトラップできないという可能性が出てくる。 Therefore, the magnetic beads are trapped without being pushed away by the fluid only when F m > F f . When considering one magnetic bead, since A is sufficiently small, F m > F f is satisfied in many cases. However, when a large number of magnetic beads are trapped, each of them is combined and A becomes large, and the force of the fluid is increased. It becomes easy to lose. The number of magnetic beads to be used affects the reaction rate and the signal at the time of analysis, and the flow rate is a factor that determines the introduction rate of the magnetic beads and affects the throughput of the analysis. Even if it is desired to increase the number of magnetic beads in order to increase the reaction rate, since A becomes large and F m > F f does not hold, there may be a problem that the magnetic beads cannot be increased. Further, if the flow rate is increased to increase the throughput, F f increases, and there is a possibility that the magnetic beads cannot be trapped.
 ビーズの廃棄方法に関しては、上述したように特許文献1では逆洗法を用いる必要がある。逆洗法では、ビーズを導入した時と逆向きに洗浄液を流すことでビーズをマイクロ流体デバイス外部へと押し出す。ただし、逆洗法を実現するためには、予めマイクロ流体デバイスの入口側と出口側の双方に送液ポンプを接続するか、必要に応じてポンプを付け替えることが必要になり操作が煩雑である。 Regarding the bead disposal method, as described above, in Patent Document 1, it is necessary to use the backwash method. In the backwashing method, the beads are pushed out of the microfluidic device by flowing a washing solution in a direction opposite to that when beads are introduced. However, in order to realize the backwashing method, it is necessary to connect a liquid feed pump to both the inlet side and the outlet side of the microfluidic device in advance, or to replace the pump as necessary, and the operation is complicated. .
 特許文献2では逆洗法を回避するために、ビーズ廃棄用の流路を設けている。しかし、ビーズ廃棄用流路はデッドボリュームとして働いてしまう。例えば、ビーズにターゲット分子を結合させた後でマイクロ流体デバイスに導入し、磁気ビーズをトラップ及び濃縮し、その後にターゲット分子をビーズから溶出させて分析する手法がある。この手法の場合、分析用流路だけでなくビーズ廃棄用流路にまでターゲット分子が拡散してしまうため、分析用流路におけるターゲット分子の濃度が低下するという課題が生じる。 In Patent Document 2, a flow path for bead disposal is provided in order to avoid the backwashing method. However, the bead discarding channel works as a dead volume. For example, there is a technique in which a target molecule is bound to a bead and then introduced into a microfluidic device, and magnetic beads are trapped and concentrated, and then the target molecule is eluted from the bead and analyzed. In the case of this method, the target molecule diffuses not only to the analysis channel but also to the bead disposal channel, which causes a problem that the concentration of the target molecule in the analysis channel decreases.
 特許文献3では流路の断面積を変更することが提案されている。例えば、スライドする弁体を用いた場合は、スライド部の密閉度が悪く、マイクロ流体デバイス内部の内圧が上昇すると液体のリークが発生する確率が高くなる。一方、マイクロ流体デバイス自体を変形させて流路断面積を変更することも可能であるが、ガラスのような変形の難しい材料には適用できない。 Patent Document 3 proposes changing the cross-sectional area of the flow path. For example, when a sliding valve body is used, the degree of sealing of the slide portion is poor, and the probability of liquid leakage increases when the internal pressure inside the microfluidic device increases. On the other hand, the microfluidic device itself can be deformed to change the cross-sectional area of the channel, but it cannot be applied to materials that are difficult to deform, such as glass.
 本発明で用いる微小流路内に磁気ビーズを導入して利用するマイクロ流体デバイスは、磁気ビーズが溶液と共に導入される導入流路と、分岐部で前記導入流路から分岐する分析用流路と廃棄流路とを有し、分析用流路と廃棄流路のうち少なくとも一方の流路の分岐部との接続部に、流路高さが分岐部の流路高さよりも狭くなったダム構造を有し、ダム構造によって狭まった流路高さが磁気ビーズの直径より大きくなっている。 A microfluidic device that uses magnetic beads introduced into a microchannel used in the present invention includes an introduction channel in which magnetic beads are introduced together with a solution, and an analysis channel that branches from the introduction channel at a branching portion. A dam structure that has a waste flow path, and whose flow path height is narrower than the flow path height of the branch part at the connection part between the analysis flow path and the branch part of at least one of the waste flow paths The flow path height narrowed by the dam structure is larger than the diameter of the magnetic beads.
 本発明では、ターゲット分子を吸着させた磁気ビーズをマイクロ流体デバイス中のダム構造及び外部に設置した磁石の力によってトラップする。磁気ビーズは、磁力によって移動を制御することでダム構造を乗り越えさせることが可能である。従って一態様では、分析終了後、磁力によって磁気ビーズの移動を制御してダム構造を乗り越えさせることによって効率的に磁気ビーズを廃棄する。この結果、高スループットでかつロバストな計測が可能になる。 In the present invention, the magnetic beads adsorbing the target molecules are trapped by the force of the dam structure in the microfluidic device and the magnet installed outside. The magnetic beads can get over the dam structure by controlling the movement by magnetic force. Therefore, in one aspect, after the analysis is completed, the magnetic beads are efficiently discarded by controlling the movement of the magnetic beads by the magnetic force and getting over the dam structure. As a result, high-throughput and robust measurement is possible.
 本発明によれば、高スループットでロバストな計測が実現できる。 According to the present invention, high-throughput and robust measurement can be realized.
 上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
マイクロ流体デバイスの構成例を示す模式図。The schematic diagram which shows the structural example of a microfluidic device. マイクロ流体デバイスを用いた分析方法における駆動シーケンスの一例を示す概略図。Schematic which shows an example of the drive sequence in the analysis method using a microfluidic device. マイクロ流体デバイスと質量分析装置の位置関係を示した模式図。The schematic diagram which showed the positional relationship of a microfluidic device and a mass spectrometer. マイクロ流体デバイスを含んだ分析システムの一例を示す概略図。Schematic which shows an example of the analysis system containing a microfluidic device. 磁石をマイクロ流体デバイス表面に垂直な方向に駆動する方法の例を示した模式図。The schematic diagram which showed the example of the method of driving a magnet in the direction perpendicular | vertical to the microfluidic device surface. 磁石をマイクロ流体デバイスの表面と平行な方向にスライドさせる方法の一例を示す模式図。The schematic diagram which shows an example of the method of sliding a magnet in the direction parallel to the surface of a microfluidic device. 電磁石を用いた場合の構成例を示す図。The figure which shows the structural example at the time of using an electromagnet. 磁石の構造例を示す模式図。The schematic diagram which shows the structural example of a magnet. ダム構造の例を示す模式図。The schematic diagram which shows the example of a dam structure. 磁気ビーズの修飾方法の例を示す模式図。The schematic diagram which shows the example of the modification method of a magnetic bead. ダム構造を有するマイクロ流体デバイスの製作方法を示す模式図。The schematic diagram which shows the manufacturing method of the microfluidic device which has a dam structure. ダム構造を有するマイクロ流体デバイスの製作方法を示す模式図。The schematic diagram which shows the manufacturing method of the microfluidic device which has a dam structure. マイクロ流体デバイスの取り外しを説明する模式図。The schematic diagram explaining removal of a microfluidic device. マイクロ流体デバイスを用いた分析方法における駆動シーケンスの他の例を示す概略図。Schematic which shows the other example of the drive sequence in the analysis method using a microfluidic device. ESIチップが底面に接続されたマイクロ流体デバイスの断面模式図。The cross-sectional schematic diagram of the microfluidic device with which the ESI chip was connected to the bottom face. 光検出器によってターゲット分子を検出する例を示す模式図。The schematic diagram which shows the example which detects a target molecule with a photodetector. 光検出器によってターゲット分子を検出する例を示す模式図。The schematic diagram which shows the example which detects a target molecule with a photodetector. 複数の分析用流路を有するマイクロ流体デバイスの流路構造の例を示す平面模式図。The plane schematic diagram which shows the example of the flow-path structure of the microfluidic device which has several flow paths for analysis.
 以下、図面を参照して本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 実施例1は、ターゲット分子を質量分析装置で計測する際に、マイクロ流体デバイスを用いてターゲット分子を濃縮してイオン化する例である。実施例1では、ターゲット分子を吸着させた磁気ビーズをマイクロ流体デバイスに導入し、外部磁石によって磁気ビーズをトラップして濃縮する。続いて、磁気ビーズからターゲット分子を溶出し、エレクトロスプレーイオン化(Electrospray ionization:ESI)によってイオン化する。 Example 1 is an example in which when target molecules are measured by a mass spectrometer, the target molecules are concentrated and ionized using a microfluidic device. In Example 1, magnetic beads having target molecules adsorbed are introduced into a microfluidic device, and the magnetic beads are trapped and concentrated by an external magnet. Subsequently, target molecules are eluted from the magnetic beads and ionized by electrospray ionization (ESI).
 図1は本実施例のマイクロ流体デバイスの構成例を示す模式図であり、図1(a)は流路構造を示す平面模式図、図1(b)は図1(a)のB-B断面に相当するデバイスの断面模式図である。マイクロ流体デバイス4の材質にはガラスやPDMS等が用いられる。一般にマイクロ流体デバイス4は2枚の板を張り合わせることによって作製される。ガラスの方がPDMSに比べ接着性が高く、結果として耐圧が高い。サイズは分析方法によって様々であるが、一般的には30mm×70mm程度である。磁石の磁力によってマイクロ流体デバイス4中の磁気ビーズをコントロールする場合、磁石をなるべく磁気ビーズに近づけた方がよい。マイクロ流体デバイス4の厚みは薄いほど磁石を磁気ビーズに近づけられる。一方、薄くするほど強度が低下する。このため、マイクロ流体デバイス4の厚みは一般的には1.4mm程度である。ただし、磁石を近づける部分のみ表面を削ることによってデバイスの剛性を維持しつつ磁石を近づけることも可能である。本実施例のマイクロ流体デバイス4は外部と連結するポートが3つ存在し、それぞれ導入口2、廃棄口1、ESIチップ接続口9である。一般的な導入口2、廃棄口1、ESIチップ接続口9の径は100~1000μm程度であるが、この範囲に限定されるものではない。図1では導入口2及び廃棄口1への接続配管及びESIチップは図示を省略してある。 FIG. 1 is a schematic diagram showing a configuration example of a microfluidic device of this example, FIG. 1 (a) is a schematic plan view showing a channel structure, and FIG. 1 (b) is a cross-sectional view taken along line BB in FIG. 1 (a). It is a cross-sectional schematic diagram of the device corresponding to a cross section. The material of the microfluidic device 4 is glass, PDMS, or the like. In general, the microfluidic device 4 is manufactured by bonding two plates. Glass has higher adhesion than PDMS, resulting in higher pressure resistance. The size varies depending on the analysis method, but is generally about 30 mm × 70 mm. When the magnetic beads in the microfluidic device 4 are controlled by the magnetic force of the magnet, it is better to bring the magnet as close to the magnetic beads as possible. The thinner the microfluidic device 4 is, the closer the magnet is to the magnetic beads. On the other hand, the strength decreases as the thickness decreases. For this reason, the thickness of the microfluidic device 4 is generally about 1.4 mm. However, it is also possible to bring the magnet closer while maintaining the rigidity of the device by scraping the surface only at the part where the magnet is brought closer. The microfluidic device 4 of the present embodiment has three ports connected to the outside, which are an introduction port 2, a disposal port 1, and an ESI chip connection port 9, respectively. The diameter of the general introduction port 2, the disposal port 1, and the ESI chip connection port 9 is about 100 to 1000 μm, but is not limited to this range. In FIG. 1, the connection piping to the introduction port 2 and the disposal port 1 and the ESI chip are not shown.
 導入流路3は導入口2に連通し、導入口2から溶液と共に磁気ビーズが導入される。分析用流路6は末端がESIチップ接続口9に連通し、分析用流路6に移動された磁気ビーズに対して検出あるいは処理が行われる。本実施例では、分析用流路6内で磁気ビーズからターゲット分子を溶出する処理が行われる。廃棄流路8は、廃棄口1に連通し廃棄される磁気ビーズが流される。導入流路3は分岐部で分析用流路6と廃棄流路8に分岐し、廃棄流路8の分岐部との接続部に、流路高さが分岐部の流路高さよりも小さくなったダム構造7を有する。すなわち、ダム構造7は、導入流路3から分岐する流路のうち、使用時にコンダクタンスが大きい流路の入口側に配置されている。ダム構造7は、換言すると、3つの微小流路3,6,8が交差する交差部の廃棄流路8側に配置されているということもできる。図1に示した実施例のダム構造7は流路の底壁から上壁に向かって流路幅一杯に突出する邪魔板によって構成されている。流路断面はダム構造7によって狭められ、特に流路の高さ方向寸法はダム構造7の位置でダム構造上方のダム開口部に制限される。ただし、ダム構造7によって狭められた流路高さは磁気ビーズの直径より大きく、従って磁気ビーズはダム構造上方のダム開口部を通過できる。流路は、幅が100~5000μm程度であり、深さは50~300μm程度である。ダム構造7のダム開口部の高さは少なくとも利用する磁気ビーズの直径よりも大きくなければならず、磁気ビーズの直径の2倍以上が望ましい。典型的なダム開口部の高さは20μm程度である。典型的な磁気ビーズの直径は1~10μm程度であるので、高さ20μmのダム開口部を通過することができる。 The introduction channel 3 communicates with the introduction port 2, and magnetic beads are introduced from the introduction port 2 together with the solution. The end of the analysis channel 6 communicates with the ESI chip connection port 9, and the magnetic beads moved to the analysis channel 6 are detected or processed. In this embodiment, a process for eluting target molecules from the magnetic beads in the analysis flow path 6 is performed. In the discard channel 8, magnetic beads that are communicated with the discard port 1 and discarded are flowed. The introduction flow path 3 branches into the analysis flow path 6 and the waste flow path 8 at the branching portion, and the flow path height is smaller than the flow path height of the branching portion at the connection portion with the branching portion of the waste flow path 8. The dam structure 7 is provided. That is, the dam structure 7 is disposed on the inlet side of a channel having a large conductance during use among the channels branched from the introduction channel 3. In other words, it can also be said that the dam structure 7 is disposed on the waste flow path 8 side of the intersection where the three micro flow paths 3, 6, and 8 intersect. The dam structure 7 of the embodiment shown in FIG. 1 is configured by a baffle plate that projects to the full width of the flow path from the bottom wall to the top wall of the flow path. The cross section of the flow path is narrowed by the dam structure 7, and in particular, the height direction dimension of the flow path is limited to the dam opening above the dam structure at the position of the dam structure 7. However, the flow path height narrowed by the dam structure 7 is larger than the diameter of the magnetic beads, so that the magnetic beads can pass through the dam opening above the dam structure. The channel has a width of about 100 to 5000 μm and a depth of about 50 to 300 μm. The height of the dam opening of the dam structure 7 must be at least larger than the diameter of the magnetic beads to be used, and is preferably at least twice the diameter of the magnetic beads. A typical dam opening has a height of about 20 μm. Since the diameter of a typical magnetic bead is about 1 to 10 μm, it can pass through a dam opening having a height of 20 μm.
 本実施例では磁気ビーズがダム開口部を通過する。ダム構造7の高さは流路深さからダム開口部の高さを引いた値である。典型的な流路深さは100μm程度であるので、ダム構造7の典型的な高さは80μm程度である。導入された磁気ビーズは磁力によってダム構造近傍の磁気ビーズトラップ部5にトラップされ、その後磁力を作用させることで分析用流路6へと輸送される。磁気ビーズトラップ部5でトラップした磁気ビーズは全てを分析用流路6に導入する必要がある。なぜなら、分析用流路6に入りきらず、磁気ビーズトラップ部5に磁気ビーズ13がはみ出すと、はみ出した磁気ビーズから溶出したターゲット分子は拡散によって廃棄流路8側にも流れてしまうからである。このため、分析用流路6の体積はトラップした磁気ビーズの体積以上、すなわちマイクロ流体デバイスに導入した磁気ビーズの体積以上であることが望ましい。ターゲット分子の量によって必要な磁気ビーズの量が決まり、それに合わせて分析用流路6の体積を設計する。ターゲット分子の溶出効率や溶出後の拡散を考慮すると、トラップした磁気ビーズによって分析用流路6全体が埋まるように設計するのが望ましい。上述した流路の分岐部は流路の交差部に対応し、そこに磁力を作用させて磁気ビーズをトラップするので流路の分岐部は磁気ビーズトラップ部5とも重なる。すなわち、流路の分岐部、流路の交差部、及び磁気ビーズトラップ部5は実質的に同じ領域を指す。 In this embodiment, magnetic beads pass through the dam opening. The height of the dam structure 7 is a value obtained by subtracting the height of the dam opening from the channel depth. Since the typical flow path depth is about 100 μm, the typical height of the dam structure 7 is about 80 μm. The introduced magnetic beads are trapped in the magnetic bead trap part 5 near the dam structure by a magnetic force, and then transported to the analysis channel 6 by applying the magnetic force. It is necessary to introduce all the magnetic beads trapped by the magnetic bead trap section 5 into the analysis flow path 6. This is because if the magnetic beads 13 do not fully enter the analysis flow path 6 and the magnetic beads 13 protrude from the magnetic bead trap section 5, the target molecules eluted from the protruding magnetic beads will also flow to the disposal flow path 8 side due to diffusion. For this reason, it is desirable that the volume of the analysis flow path 6 be equal to or larger than the volume of the trapped magnetic beads, that is, the volume of the magnetic beads introduced into the microfluidic device. The amount of magnetic beads required depends on the amount of target molecules, and the volume of the analysis flow path 6 is designed accordingly. Considering the elution efficiency of the target molecule and the diffusion after the elution, it is desirable to design so that the entire analysis channel 6 is filled with the trapped magnetic beads. The branch part of the flow path described above corresponds to the intersection part of the flow path, and a magnetic force is applied thereto to trap the magnetic beads, so that the branch part of the flow path also overlaps with the magnetic bead trap part 5. That is, the branch part of the flow path, the crossing part of the flow path, and the magnetic bead trap part 5 indicate substantially the same region.
 図2は、本実施例のマイクロ流体デバイスを用いた分析方法における駆動シーケンスの一例を示す概略図である。図2には、マイクロ流体デバイス4の断面模式図に磁気ビーズ13、磁石11,12及びESIチップ14を追記してある。ただし、後述するマイクロ流体デバイスホルダや磁石駆動機構は図示を省略してある。磁石11,12はマイクロ流体デバイス4の上面側と底面側にそれぞれ1つずつ設置される。ただし、必ずしも1つずつである必要はなく、複数個であっても問題ない。ここで、マイクロ流体デバイス4の外形を構成する面積の大きな一対の平面のうち、ダム構造7の基部が設けられている側の平面を底面と呼び、その反対側の平面を上面と呼ぶ。 FIG. 2 is a schematic diagram showing an example of a driving sequence in the analysis method using the microfluidic device of this example. In FIG. 2, the magnetic beads 13, the magnets 11 and 12, and the ESI chip 14 are added to the schematic cross-sectional view of the microfluidic device 4. However, illustration of a microfluidic device holder and a magnet driving mechanism which will be described later is omitted. One magnet 11, 12 is installed on each of the upper surface side and the bottom surface side of the microfluidic device 4. However, it does not necessarily have to be one by one, and there is no problem even if there is a plurality. Here, of the pair of large planes constituting the outer shape of the microfluidic device 4, the plane on the side where the base of the dam structure 7 is provided is referred to as the bottom surface, and the plane on the opposite side is referred to as the top surface.
 図2(a)に示すように、磁気ビーズ13をマイクロ流体デバイス4に導入する段階では、マイクロ流体デバイス4の底面側の下部磁石12をマイクロ流体デバイス4近傍に設置し、上面側の上部磁石11はマイクロ流体デバイス4から離れた位置に設置する。下部磁石12の方が上部磁石11よりもマイクロ流体デバイス4に接近した状態である。磁石の極の向きに指定はない。下部磁石12の磁力は、マイクロ流体デバイス4の磁気ビーズトラップ部5に作用する。 As shown in FIG. 2A, at the stage of introducing the magnetic beads 13 into the microfluidic device 4, the lower magnet 12 on the bottom surface side of the microfluidic device 4 is installed near the microfluidic device 4, and the upper magnet on the upper surface side. 11 is installed at a position away from the microfluidic device 4. The lower magnet 12 is closer to the microfluidic device 4 than the upper magnet 11 is. There is no specification for the direction of the pole of the magnet. The magnetic force of the lower magnet 12 acts on the magnetic bead trap portion 5 of the microfluidic device 4.
 この磁石設置状態で導入口2より溶液とともに磁気ビーズ13を導入すると、図2(a)のように下部磁石12の磁力によって磁気ビーズ13が流路の内壁に引き付けられ、磁気ビーズトラップ部5にトラップされる。導入口2から導入された溶液は矢印で示すように廃棄口1及びESIチップ接続口9に向かって流れていく。上述したように、導入口2、廃棄口1、ESIチップ接続口9の径は100~1000μm程度であるが、ESIチップ14の先端径はそれよりも小さい。すなわち、導入口2から廃棄口1までのコンダクタンスは、導入口2からESIチップ先端までのコンダクタンスより大きい。もしくは大きくなるようにデバイス構造を設計する方が良い。例えば、導入口2から廃棄口1までのコンダクタンスは、導入口2からESIチップ先端までのコンダクタンスの100倍になるように設計する。このとき、溶液を100μL/minで導入すると、廃棄口側には100μL/min程度で、ESIチップ接続口側には1μL/min程度で溶液が流れることになる。 When the magnetic beads 13 are introduced together with the solution from the introduction port 2 in this magnet installed state, the magnetic beads 13 are attracted to the inner wall of the flow path by the magnetic force of the lower magnet 12 as shown in FIG. Be trapped. The solution introduced from the introduction port 2 flows toward the disposal port 1 and the ESI chip connection port 9 as indicated by arrows. As described above, the diameter of the introduction port 2, the disposal port 1, and the ESI chip connection port 9 is about 100 to 1000 μm, but the tip diameter of the ESI chip 14 is smaller than that. That is, the conductance from the introduction port 2 to the disposal port 1 is larger than the conductance from the introduction port 2 to the tip of the ESI chip. Or it is better to design the device structure to be larger. For example, the conductance from the introduction port 2 to the disposal port 1 is designed to be 100 times the conductance from the introduction port 2 to the tip of the ESI chip. At this time, when the solution is introduced at 100 μL / min, the solution flows at about 100 μL / min on the disposal port side and at about 1 μL / min on the ESI chip connection port side.
 実施例1では、このような流量差によって大半の磁気ビーズ13が流れていく廃棄流路側すなわち廃棄流路8の流路分岐部との接続部にダム構造7を設置している。磁気ビーズ13の導入時、下部磁石12によって磁気ビーズ13を流路底面に引き付ける。上述したように、磁気ビーズ13を磁石でのみトラップする場合には、Fm>Ffのときのみトラップできる。しかし、本実施例では磁気ビーズトラップ部5の廃棄流路8側にダム構造7を配置している。したがって、Ff>Fmの状態でもダム構造7があるため、磁気ビーズ13が流体の力によってスライドすることはない。ダム構造7を設置することで、設置しない場合に比べ流量を増加させても磁気ビーズ13を磁気ビーズトラップ部5にトラップすることが可能になり、分析スループットを向上させることができる。分析流路6に流れる溶液は流速が遅いので、磁石の吸引力を受けている磁気ビーズが分析流路6の方に押し流されることはない。 In the first embodiment, the dam structure 7 is installed on the waste flow path side where most of the magnetic beads 13 flow due to such a flow rate difference, that is, on the connection portion with the flow path branching portion of the waste flow path 8. When the magnetic beads 13 are introduced, the magnetic beads 13 are attracted to the bottom surface of the flow path by the lower magnet 12. As described above, when the magnetic beads 13 are trapped only by a magnet, they can be trapped only when F m > F f . However, in this embodiment, the dam structure 7 is arranged on the waste flow path 8 side of the magnetic bead trap unit 5. Therefore, even if F f > F m, the dam structure 7 is present, so that the magnetic beads 13 do not slide due to the force of the fluid. By installing the dam structure 7, it becomes possible to trap the magnetic beads 13 in the magnetic bead trap unit 5 even when the flow rate is increased compared with the case where the dam structure 7 is not installed, and the analysis throughput can be improved. Since the solution flowing in the analysis channel 6 has a low flow rate, the magnetic beads receiving the magnetic attraction force are not pushed toward the analysis channel 6.
 図2(a)のように磁気ビーズ13をトラップした後、図2(b)に示すように下部磁石12をマイクロ流体デバイス4の表面に沿ってスライドさせることで、磁気ビーズ13を分析用流路6の内壁に磁力で引き付けながらESIチップ14近傍まで移動させ密集させる。この状態で溶出液をマイクロ流体デバイス4に導入し、磁気ビーズ13からターゲット分子を溶出させてESIチップ14へと導入してイオン化する。磁気ビーズ13が効率的に移動するように、図1(a)に示すように分析用流路6の入口は面取りされていることが望ましい。 After trapping the magnetic beads 13 as shown in FIG. 2A, the lower magnet 12 is slid along the surface of the microfluidic device 4 as shown in FIG. While attracting to the inner wall of the path 6 by magnetic force, it is moved to the vicinity of the ESI chip 14 to be dense. In this state, the eluate is introduced into the microfluidic device 4, the target molecules are eluted from the magnetic beads 13, introduced into the ESI chip 14, and ionized. In order to move the magnetic beads 13 efficiently, the inlet of the analysis flow path 6 is preferably chamfered as shown in FIG.
 磁気ビーズ13を用いてターゲット分子を濃縮する一般的な手法は、ターゲット分子が含まれた試料溶液に磁気ビーズ13を添加してターゲット分子を磁気ビーズ13に吸着させ、その後、磁気ビーズ13を単離する。続いて、磁気ビーズ13と溶出液を混ぜることによって磁気ビーズ13からターゲット分子を溶出する。すなわち、試料溶液に対して溶出溶液の液量が少ないほどターゲット分子を濃縮できる。1.5mLマイクロチューブなどに磁気ビーズ13を加え、そこに溶出液を添加してターゲット分子を溶出するような手法では、ハンドリングの問題から溶出液量を微量化することが難しい。また、通常は得られた溶出液をサンプルインジェクターなどで質量分析装置に導入して分析する。この手法の場合、サンプルインジェクターからESIチップ14までの配管中でターゲット分子が拡散してしまい濃度が薄くなるという問題が発生する。 A general technique for concentrating target molecules using the magnetic beads 13 is to add the magnetic beads 13 to the sample solution containing the target molecules to adsorb the target molecules to the magnetic beads 13, and then to detach the magnetic beads 13. Release. Subsequently, the target molecules are eluted from the magnetic beads 13 by mixing the magnetic beads 13 and the eluate. That is, the target molecule can be concentrated as the amount of the elution solution is smaller than the sample solution. In the technique of adding the magnetic beads 13 to a 1.5 mL microtube or the like and adding the eluate thereto to elute the target molecules, it is difficult to reduce the amount of the eluate due to handling problems. Further, the obtained eluate is usually introduced into a mass spectrometer with a sample injector or the like and analyzed. In the case of this method, the problem arises that the target molecules diffuse in the pipe from the sample injector to the ESI chip 14 and the concentration becomes low.
 一方、本実施例では、マイクロ流体デバイス4中で磁気ビーズ13を濃縮した上で、磁気ビーズ13からターゲット分子の溶出と、溶出液のESIチップ14への導入をオンラインで行う。このため、溶出液量を微量化することができ濃縮率が高い。さらに、ESIチップ14近傍まで磁気ビーズ13を輸送した後にターゲット分子を溶出するため、溶出液が拡散せず、高濃度を維持した状態でイオン化することが可能である。 On the other hand, in this embodiment, after concentrating the magnetic beads 13 in the microfluidic device 4, elution of target molecules from the magnetic beads 13 and introduction of the eluate into the ESI chip 14 are performed online. For this reason, the amount of the eluate can be reduced to a high concentration rate. Further, since the target molecules are eluted after transporting the magnetic beads 13 to the vicinity of the ESI chip 14, the eluate does not diffuse and can be ionized while maintaining a high concentration.
 図2(c)に示すように、磁気ビーズ13からターゲット分子を溶出して分析した後に下部磁石12を移動させることで磁気ビーズ13を分析用流路6の内壁に沿ってダム構造7近傍まで輸送する。磁気ビーズ13を廃棄流路8に運ぶためには、ダム構造7を乗り越えさせる必要がある。そこで、図2(d)に示すように、下部磁石12と上部磁石11を移動する。すなわち下部磁石12をマイクロ流体デバイス4から離して下部磁石12の磁力が磁気ビーズ13に及ばないようにする。一方、上部磁石11をマイクロ流体デバイス4に接近させて上部磁石11の磁力を磁気ビーズ13に作用させることで、磁気ビーズ13を上部磁石11側の内壁に移動させる。 As shown in FIG. 2 (c), the target molecules are eluted from the magnetic beads 13 and analyzed, and then the lower magnet 12 is moved to move the magnetic beads 13 to the vicinity of the dam structure 7 along the inner wall of the analysis flow path 6. transport. In order to carry the magnetic beads 13 to the waste channel 8, it is necessary to get over the dam structure 7. Therefore, the lower magnet 12 and the upper magnet 11 are moved as shown in FIG. That is, the lower magnet 12 is separated from the microfluidic device 4 so that the magnetic force of the lower magnet 12 does not reach the magnetic beads 13. On the other hand, by bringing the upper magnet 11 close to the microfluidic device 4 and causing the magnetic force of the upper magnet 11 to act on the magnetic beads 13, the magnetic beads 13 are moved to the inner wall on the upper magnet 11 side.
 このとき磁気ビーズ13は流路の上壁に張り付いた状態になるので、図2(e)、(f)に示すように上部磁石11をマイクロ流体デバイス4に沿って移動させるとダム構造7を越えて磁気ビーズ13を廃棄流路8へと運ぶことができる。さらに、図2(g)に示すように、磁石を廃棄流路8から離れた位置まで移動させることで磁気ビーズに加わっていた磁力を減少させ、磁気ビーズ13を磁力から開放する。磁力から開放された磁気ビーズ13は、溶液の流れに乗って廃棄口1からマイクロ流体デバイス4の外部へと廃棄される。 At this time, since the magnetic beads 13 are stuck to the upper wall of the flow path, when the upper magnet 11 is moved along the microfluidic device 4 as shown in FIGS. The magnetic beads 13 can be transported to the waste flow path 8 over the distance. Furthermore, as shown in FIG. 2G, the magnetic force applied to the magnetic beads is reduced by moving the magnet to a position away from the waste flow path 8, and the magnetic beads 13 are released from the magnetic force. The magnetic beads 13 released from the magnetic force ride on the flow of the solution and are discarded from the disposal port 1 to the outside of the microfluidic device 4.
 本実施例の手法では、磁気ビーズ13の廃棄時においても溶液の流れは導入口2から廃棄口1もしくはESIチップ接続口9に向かって流れている。すなわち、課題を有する逆洗法を用いずとも磁気ビーズ13を廃棄することが可能である。 In the method of this embodiment, the solution flow is flowing from the inlet 2 toward the waste port 1 or the ESI chip connection port 9 even when the magnetic beads 13 are discarded. That is, it is possible to discard the magnetic beads 13 without using the problematic backwashing method.
 磁気ビーズ13の廃棄方法として、図2(c)の段階で磁気ビーズ13を磁力から開放することが考えられる。しかし、磁気ビーズトラップ部5からESIチップ14側への溶液の流れが存在するため、磁力を開放した時点で少量の磁気ビーズ13が廃棄口1側ではなくESIチップ14側へ流れてしまう。ESIチップ14は通常先端径が小さいため、磁気ビーズ13が流れ込んでくると詰りが発生する可能性が高い。このため、本実施例のように磁気ビーズ13を廃棄する際は、磁気ビーズ13にダム構造7を乗り越えさせてから磁力を開放する必要がある。 As a method for discarding the magnetic beads 13, it is conceivable to release the magnetic beads 13 from the magnetic force at the stage of FIG. However, since there is a solution flow from the magnetic bead trap unit 5 to the ESI chip 14 side, a small amount of the magnetic beads 13 flows to the ESI chip 14 side instead of the waste outlet 1 side when the magnetic force is released. Since the tip diameter of the ESI chip 14 is usually small, there is a high possibility that clogging will occur when the magnetic beads 13 flow in. For this reason, when discarding the magnetic beads 13 as in the present embodiment, it is necessary to release the magnetic force after the dam structure 7 is moved over the magnetic beads 13.
 ESIチップ14側にバルブを設けるという考え方もある。磁気ビーズトラップ部5とESIチップ先端との間のどこかにバルブを設置した場合、図2(c)の段階でそのバルブを閉じてから磁力を開放すれば、磁気ビーズはESIチップ14側には流れず、廃棄口1側にのみ流れる。しかし、磁気ビーズトラップ部5とESIチップ先端との間にバルブを設置すると構造が非常に複雑になる。また、溶出液が通過する部分にバルブを設置した場合、その部分がデッドボリュームとなり溶液拡散の原因となる。このように、構造のシンプルさやデッドボリュームの少なさという観点からも、磁気ビーズ13を廃棄する際は、ダム構造7を乗り越えさせることが効果的な手段であることが分かる。 There is also a concept of providing a valve on the ESI chip 14 side. If a valve is installed somewhere between the magnetic bead trap section 5 and the ESI chip tip, the magnetic bead will move to the ESI chip 14 side if the magnetic force is released after closing the valve in the stage of FIG. Does not flow and flows only to the disposal port 1 side. However, if a valve is installed between the magnetic bead trap section 5 and the ESI chip tip, the structure becomes very complicated. In addition, when a valve is installed at a portion through which the eluate passes, the portion becomes a dead volume and causes solution diffusion. Thus, also from the viewpoint of the simplicity of the structure and the small dead volume, it can be seen that it is an effective means to get over the dam structure 7 when discarding the magnetic beads 13.
 磁気ビーズ13の廃棄後は、図2(h)に示すような位置に磁石を戻して次の計測へと待機する。この状態で磁気ビーズ13を導入すると、図2(a)の状態へと遷移する。 After discarding the magnetic beads 13, the magnet is returned to the position as shown in FIG. 2 (h) and waits for the next measurement. When the magnetic beads 13 are introduced in this state, the state transitions to the state of FIG.
 図3は、マイクロ流体デバイスと質量分析装置の位置関係を示した模式図である。マイクロ流体デバイス4は磁石駆動機構17に対して所定の位置関係となるように固定されている。磁石駆動機構17の詳細は後述する。 FIG. 3 is a schematic diagram showing the positional relationship between the microfluidic device and the mass spectrometer. The microfluidic device 4 is fixed to the magnet drive mechanism 17 so as to have a predetermined positional relationship. Details of the magnet drive mechanism 17 will be described later.
 分析用流路6に接続されたESIチップ14には一般的に1~5kV程度のDC電圧を印加する。質量分析装置16の細孔15部分との電位差によってESIチップ14から帯電液滴が噴霧され、液滴内部の分子がイオン化する。イオンは質量分析装置16内部で質量電荷比によって分離されて分析される。ESIチップ14が導体であれば、ESIチップ14自体に配線することで電圧を印加することができる。一方で、ESIチップ14がPEEK(Polyetheretherketone)のような不導体であった場合、溶液に電圧を印加する方法が良く用いられる。ESIチップ14へ流れる溶液に接触する一部の配管を金属とし、その部分に電圧を印加すればESIチップ先端まで電位が伝わり、エレクトロスプレーイオン化することが可能になる。 A DC voltage of about 1 to 5 kV is generally applied to the ESI chip 14 connected to the analysis flow path 6. Charged droplets are sprayed from the ESI chip 14 due to a potential difference from the pore 15 portion of the mass spectrometer 16, and molecules inside the droplets are ionized. The ions are separated and analyzed by the mass-to-charge ratio inside the mass spectrometer 16. If the ESI chip 14 is a conductor, a voltage can be applied by wiring the ESI chip 14 itself. On the other hand, when the ESI chip 14 is a nonconductor such as PEEK (Polyetheretherketone), a method of applying a voltage to the solution is often used. If a part of piping that contacts the solution flowing to the ESI chip 14 is made of metal and a voltage is applied to the pipe, the potential is transmitted to the tip of the ESI chip, and electrospray ionization can be performed.
 本実施例における想定リスクは、磁気ビーズ13がESIチップ14の先端側へ流れこんでしまい、チップに詰まってしまうことである。このリスクを低減するためには図3に示すようにESIチップ14側に対して、ダム構造7側及び廃棄口1側が下側になるように配置すると良い。この場合、磁気ビーズ13に働く重力がESIチップ14から離れる方向に働く。例えば、磁気ビーズ13が追随できないほどの速度で磁石を動かしてしまったとしても、溶液が流れていない、もしくは溶液の流速が非常に遅ければ重力によって磁気ビーズ13はESIチップ14から離れる方向に移動する。ただし、必ずしも図3の配置に限定されるわけではない。例えば、磁気ビーズ13がESIチップ先端側へ流れこんでしまうリスクよりも、図2(b)の段階で全ての磁気ビーズ13をESIチップ14側に輸送しきれないリスクを重要視すれば、図3とは逆で、ESIチップ14側を下向きになるように設置するとよい。また、質量分析装置16の細孔15周辺の構造によってマイクロ流体デバイス4の配置が制限されることもある。 The assumed risk in this embodiment is that the magnetic beads 13 flow into the tip side of the ESI chip 14 and become clogged with the chip. In order to reduce this risk, as shown in FIG. 3, it is good to arrange | position so that the dam structure 7 side and the waste outlet 1 side may become a lower side with respect to the ESI chip | tip 14 side. In this case, gravity acting on the magnetic beads 13 works in a direction away from the ESI chip 14. For example, even if the magnet is moved at a speed that the magnetic beads 13 cannot follow, the magnetic beads 13 move away from the ESI chip 14 due to gravity if the solution is not flowing or the flow rate of the solution is very slow. To do. However, it is not necessarily limited to the arrangement of FIG. For example, if the risk that all the magnetic beads 13 cannot be transported to the ESI chip 14 at the stage of FIG. 2B is more important than the risk of the magnetic beads 13 flowing into the ESI chip tip side, It is good to install so that the ESI chip | tip 14 side may face down contrary to 3. FIG. Further, the arrangement of the microfluidic device 4 may be limited by the structure around the pore 15 of the mass spectrometer 16.
 図4は、マイクロ流体デバイスを含んだ分析システムの一例を示す概略図である。分析システムは、マイクロ流体デバイス4、磁石駆動機構17、質量分析装置16、サンプルインジェクター24、送液ポンプ25、廃液バルブ23、高圧電源20、制御コンピュータ18を備える。マイクロ流路、磁気ビーズ等は図示を省略している。マイクロ流体デバイス4は図1~3で説明したものである。磁石駆動機構17は磁石を含んだものであり、磁石を移動させるモータや回路などによって構成される。サンプルインジェクター24と送液ポンプ25は結合されており、サンプルインジェクター24によって溶液とともに磁気ビーズ13を導入し、送液ポンプ25によって溶液を送液する。サンプルインジェクター24や送液ポンプ25は専用の特殊なものではなく、一般的な液体クロマトグラフィ(Liquid chromatography:LC)システムを用いてもよい。ただし、少なくとも100nL/min程度で溶液を送液できるシステムが望ましい。また、複数種類の溶液を送液できるシステムである必要がある。 FIG. 4 is a schematic diagram showing an example of an analysis system including a microfluidic device. The analysis system includes a microfluidic device 4, a magnet drive mechanism 17, a mass spectrometer 16, a sample injector 24, a liquid feed pump 25, a waste liquid valve 23, a high-voltage power supply 20, and a control computer 18. The microchannel, magnetic beads, etc. are not shown. The microfluidic device 4 has been described with reference to FIGS. The magnet drive mechanism 17 includes a magnet, and is configured by a motor or a circuit that moves the magnet. The sample injector 24 and the liquid feeding pump 25 are coupled together, the magnetic beads 13 are introduced together with the solution by the sample injector 24, and the solution is fed by the liquid feeding pump 25. The sample injector 24 and the liquid feed pump 25 are not special special ones, and a general liquid chromatography (LC) system may be used. However, a system capable of delivering the solution at least at about 100 nL / min is desirable. In addition, the system needs to be able to send multiple types of solutions.
 サンプルインジェクター24から導入された磁気ビーズ13は導入配管21を通り、マイクロ流体デバイス4へと導入される。図2に示したような駆動シーケンスで質量分析を完了した後、磁気ビーズ13は廃棄流路8から廃棄配管22及び廃液バルブ23を通って廃液タンク26へと廃棄される。質量分析装置16の種類は何でもよく、三連四重極質量分析計、イオントラップ、飛行時間型質量分析計などが考えられる。また、本実施例ではターゲット分子をESIによってイオン化しているため、イオンを分析する装置であれば質量分析装置である必要もない。例えばイオン移動度計によって分析することも可能である。 The magnetic beads 13 introduced from the sample injector 24 pass through the introduction pipe 21 and are introduced into the microfluidic device 4. After completing the mass analysis in the drive sequence as shown in FIG. 2, the magnetic beads 13 are discarded from the waste flow path 8 to the waste liquid tank 26 through the waste pipe 22 and the waste liquid valve 23. Any type of mass spectrometer 16 may be used, such as a triple quadrupole mass spectrometer, an ion trap, and a time-of-flight mass spectrometer. Further, in this embodiment, since the target molecule is ionized by ESI, it is not necessary to be a mass spectrometer as long as it is an apparatus for analyzing ions. For example, it is possible to analyze with an ion mobility meter.
 本実施例の前提として、磁気ビーズ13の表面には何らかの修飾がなされており、ターゲット分子を吸着させることができる。ターゲット分子の吸着はH2Oを多く含む溶液下、例えば血清やリン酸緩衝生理食塩水(PBS:Phosphate buffered saline)などのもとで行われる。一方で、有機溶媒に磁気ビーズ13を添加すると、ターゲット分子は有機溶媒へと溶出される。この前提と図1~4を踏まえて、本実施例の駆動シーケンスの一例を説明する。 As a premise of the present embodiment, the surface of the magnetic bead 13 is modified in some way so that target molecules can be adsorbed. The target molecules are adsorbed in a solution containing a large amount of H 2 O under, for example, serum or phosphate buffered saline (PBS). On the other hand, when the magnetic beads 13 are added to the organic solvent, the target molecules are eluted into the organic solvent. Based on this premise and FIGS. 1 to 4, an example of the drive sequence of this embodiment will be described.
(1) ターゲット分子を吸着させた磁気ビーズ13を、サンプルインジェクター24を通してマイクロ流体デバイス4に水溶液と共に導入する。その際の流量は例えば100μL/minである。水溶液は例えばPBSなどである。この際、廃棄流路8に接続された廃液バルブ23は開状態となっており、導入口2から導入された溶液は廃棄口1及びESIチップ14を通ってマイクロ流体デバイス4の外部へと流出する。 (1) The magnetic beads 13 on which the target molecules are adsorbed are introduced into the microfluidic device 4 through the sample injector 24 together with the aqueous solution. The flow rate at that time is, for example, 100 μL / min. The aqueous solution is, for example, PBS. At this time, the waste liquid valve 23 connected to the waste flow path 8 is in an open state, and the solution introduced from the introduction port 2 flows out of the microfluidic device 4 through the waste port 1 and the ESI chip 14. To do.
(2) 導入された磁気ビーズ13は下部磁石12による磁力によってダム構造7の近傍、すなわち磁気ビーズトラップ部5でトラップされる。 (2) The introduced magnetic beads 13 are trapped in the vicinity of the dam structure 7, that is, in the magnetic bead trap section 5 by the magnetic force of the lower magnet 12.
(3) 溶液の導入をストップし、溶液の流れが無い状態で下部磁石12をESIチップ14側へと移動することで磁気ビーズ13をESIチップ接続口9の近傍に濃縮する。 (3) The introduction of the soot solution is stopped, and the magnetic beads 13 are concentrated in the vicinity of the ESI chip connection port 9 by moving the lower magnet 12 to the ESI chip 14 side without the flow of the solution.
(4) 送液ポンプ25から溶出液として有機溶媒をマイクロ流体デバイス4に導入する。例えば、メタノールである。必ずしも有機溶媒100%である必要はなく、50%メタノール水溶液などでもよい。廃液バルブ23は開状態で有機溶媒を導入してもよいし、閉状態で導入してもよい。また、一定量有機溶媒を導入してから廃液バルブ23を閉状態としてもよい。廃棄口1側のコンダクタンスがESIチップ14側のそれよりも十分に大きい場合、分析用流路6の全体に有機溶媒が導入される前に廃棄流路8側は有機溶媒で満たされる。廃棄流路8側が有機溶媒で満たされた段階で廃液バルブ23を閉じるのが望ましい。ただし、ESIチップ14側に流れる流量が1μL/min程度になるように導入流量を調節する。廃液バルブ23を閉とした場合は、送液ポンプ25の送液量を1μL/min程度に設定し、廃液バルブ23が開状態のままターゲット分子を溶出する場合は、廃棄口1側とESIチップ14側のコンダクタンス比を基に流量を決定する。 (4) An organic solvent is introduced from the feed pump 25 into the microfluidic device 4 as an eluent. For example, methanol. The organic solvent need not necessarily be 100%, and may be a 50% aqueous methanol solution. The waste liquid valve 23 may be introduced in an open state or may be introduced in a closed state. Alternatively, the waste liquid valve 23 may be closed after a certain amount of organic solvent is introduced. When the conductance on the waste outlet 1 side is sufficiently larger than that on the ESI chip 14 side, the waste flow path 8 side is filled with the organic solvent before the organic solvent is introduced into the entire analysis flow path 6. It is desirable to close the waste liquid valve 23 when the waste flow path 8 side is filled with the organic solvent. However, the introduction flow rate is adjusted so that the flow rate flowing to the ESI chip 14 side is about 1 μL / min. When the waste liquid valve 23 is closed, the liquid feed amount of the liquid feed pump 25 is set to about 1 μL / min, and when the target molecule is eluted while the waste liquid valve 23 is open, the waste outlet 1 side and the ESI chip The flow rate is determined based on the conductance ratio on the 14th side.
(5) 有機溶媒と磁気ビーズ13が接触することで磁気ビーズ13に吸着したターゲット分子が溶出する。溶出した分子はESIチップ14に導入されてESIによってイオン化される。 (5) The target molecules adsorbed on the magnetic beads 13 are eluted by the contact between the organic solvent and the magnetic beads 13. The eluted molecules are introduced into the ESI chip 14 and ionized by ESI.
(6) イオン化した分子は質量分析装置16によって分析される。 (6) The ionized molecules are analyzed by the mass spectrometer 16.
(7) 溶出が完了した後、有機溶媒の送液を止める。磁石を移動させることで、磁気ビーズ13を磁気ビーズトラップ部5まで輸送する。 (7) After elution is completed, stop sending the organic solvent. By moving the magnet, the magnetic beads 13 are transported to the magnetic bead trap unit 5.
(8) 上部磁石11と下部磁石12を移動させることで磁気ビーズ13にダム構造7を乗り越えさせ、磁気ビーズを廃棄流路8へと導入する。 (8) The upper magnet 11 and the lower magnet 12 are moved so that the magnetic beads 13 get over the dam structure 7 and the magnetic beads are introduced into the waste flow path 8.
(9) 上部磁石11を廃棄流路8から離れた位置まで移動することで、磁気ビーズ13を磁力から開放する。 (9) The magnetic beads 13 are released from the magnetic force by moving the upper magnet 11 to a position away from the waste flow path 8.
(10) 廃液バルブ23を開状態として、洗浄用溶液をマイクロ流体デバイス4に導入することで、磁気ビーズ13を廃棄口1からマイクロ流体デバイス4の外部へと押し出す。 (10) The waste liquid valve 23 is opened and the cleaning solution is introduced into the microfluidic device 4 to push the magnetic beads 13 out of the microfluidic device 4 from the waste outlet 1.
(11) 磁石を元の位置に戻し、次の計測への待機状態となる。 (11) Return the saddle magnet to its original position and enter the standby state for the next measurement.
 ここではイオン化法としてESIを適用したが、本実施例はESIに限定されるものではない。ESIと似ているが、電圧を用いないサーモスプレーイオン化法(Thermo spray ionization)などを用いてもよい。他にも、溶出液を気化させてからイオン化してもよい。その場合は大気圧化学イオン化(Atmospheric pressure chemical ionization:APCI)、光イオン化(Photoionization:PI)、バリア放電イオン化(Dielectric barrier discharge ionization:DBDI)、2次エレクトロスプレーイオン化法(Secondary electrospray ionization:SESI)などを用いることも可能である。または、溶出液をプレートなどに滴下した後、脱離エレクトロスプレーイオン化法(Desorption electrospray ionization:DESI)やマトリックス支援レーザ脱離イオン化法(Matrix Assisted Laser Desorption / Ionization、MALDI)を用いてもよい。 Here, ESI is applied as an ionization method, but this embodiment is not limited to ESI. Although similar to ESI, a thermospray ionization method using no voltage may be used. Alternatively, the eluate may be vaporized and then ionized. In that case, atmospheric pressure chemical ionization (APCI), photoionization (PI), barrier discharge ionization (DBDI), secondary electrospray ionization (SESI), etc. It is also possible to use. Alternatively, after dropping the eluate onto a plate or the like, desorption electrospray ionization (DESI) or matrix-assisted laser desorption / ionization (Matrix Assisted Desorption / Ionization, MALDI) may be used.
 図5は、磁石をマイクロ流体デバイス表面に対して垂直な方向に駆動する方法の例を示した模式図である。磁石駆動機構に保持される上部磁石11と下部磁石12は磁石保持具27を介して結合されており、ラック&ピニオン機構29によってデバイス表面に垂直な方向に同期して駆動される。すなわち、マイクロ流体デバイス4を挟んで配置された2つの磁石11,12は、マイクロ流体デバイス4に対して一方の磁石が近づくと他方の磁石が遠ざかるように駆動される。換言すると磁石駆動機構は、マイクロ流体デバイス4の微小流路に対して一方の磁石が磁力を作用させると他方の磁石が作用を止めるように2つの磁石11,12を駆動する。本実施例では、DCモータによる回転運動が磁石の上下運動に変換される。磁石の位置を光センサなどでモニタし、DCモータの回転を制御することが望ましい。 FIG. 5 is a schematic diagram showing an example of a method for driving a magnet in a direction perpendicular to the surface of the microfluidic device. The upper magnet 11 and the lower magnet 12 held by the magnet drive mechanism are coupled via a magnet holder 27 and are driven by a rack and pinion mechanism 29 in synchronization with a direction perpendicular to the device surface. That is, the two magnets 11 and 12 arranged with the microfluidic device 4 interposed therebetween are driven so that when one magnet approaches the microfluidic device 4, the other magnet moves away. In other words, the magnet drive mechanism drives the two magnets 11 and 12 so that when one magnet acts on the microchannel of the microfluidic device 4, the other magnet stops acting. In this embodiment, the rotational motion by the DC motor is converted into the vertical motion of the magnet. It is desirable to monitor the position of the magnet with an optical sensor or the like and control the rotation of the DC motor.
 磁石11,12間の距離は磁力の大きさによって変更すべきである。磁石間の距離が近い場合、磁気ビーズ13に対して両者の磁力が働くことになる。磁気ビーズ13に対して2つの磁石の距離が等しい場合、図2(a)のように磁気ビーズ13を流路の片面に寄せることができない。このため、片方の磁石がマイクロ流体デバイス4に近づいている際は、もう片方の磁石がマイクロ流体デバイス4から十分離れており、片方の磁石からの磁力が主に磁気ビーズ13に働いている状態を作り出す必要がある。ただし、磁石間の距離が離れるということは、磁石の駆動距離が大きくなることを意味し、装置全体のサイズが大きくなるという問題が発生する。例えば、100~300mT程度の強度を有する磁石を用いる場合は磁石間距離が10~30mm程度離れていればよい。ただし、この範囲に限定されるものではなく、磁気ビーズ13を図2のシーケンスのように動かせるのであれば磁石間距離に制限は無い。 The distance between the magnets 11 and 12 should be changed according to the magnitude of the magnetic force. When the distance between the magnets is short, both magnetic forces act on the magnetic beads 13. When the distance between the two magnets is equal to the magnetic bead 13, the magnetic bead 13 cannot be brought to one side of the flow path as shown in FIG. For this reason, when one magnet is approaching the microfluidic device 4, the other magnet is sufficiently separated from the microfluidic device 4 and the magnetic force from the one magnet is mainly acting on the magnetic beads 13. Need to produce. However, the fact that the distance between the magnets increases means that the driving distance of the magnets increases, and a problem arises that the size of the entire apparatus increases. For example, when a magnet having a strength of about 100 to 300 mT is used, the distance between the magnets may be about 10 to 30 mm. However, the range is not limited to this range, and the distance between the magnets is not limited as long as the magnetic beads 13 can be moved as in the sequence of FIG.
 また、必ずしも上部磁石11と下部磁石12を結合する必要はない。それぞれに駆動機構を取り付けて独立に動かしても構わない。磁石の移動方法はラック&ピニオン機構29に限定されるものではなく、ステッピングモータなど、コンピュータ制御によってコントロールできる方法であれば何でもよい。ソフトウェアのミスなどによって制御系がコントロール不能となった場合、磁石がマイクロ流体デバイス4に衝突する可能性がある。このため、コントロール不能となった場合も磁石がマイクロ流体デバイス4に衝突しないように物理的なストッパーを用意しておくことが望ましい。 Further, it is not always necessary to connect the upper magnet 11 and the lower magnet 12. You may attach a drive mechanism to each and move independently. The moving method of the magnet is not limited to the rack and pinion mechanism 29, and any method can be used as long as it can be controlled by computer control, such as a stepping motor. If the control system becomes uncontrollable due to a software error or the like, the magnet may collide with the microfluidic device 4. For this reason, it is desirable to prepare a physical stopper so that the magnet does not collide with the microfluidic device 4 even when control becomes impossible.
 図5にはマイクロ流体デバイスホルダ28も図示している。マイクロ流体デバイスホルダ28は上下に分割されており、一方はマイクロ流体デバイス4を挿入できる凹構造を有して磁石駆動機構17に固定されており、もう一方はマイクロ流体デバイス4を固定する押さえ板である。マイクロ流体デバイス4をマイクロ流体デバイスホルダの凹み部に挿入した状態で押さえ板を例えばねじ締めすることでマイクロ流体デバイス4を固定する。マイクロ流体デバイスホルダ28は他の図では省略しているが、通常はマイクロ流体デバイス4と共に用いられる。マイクロ流体デバイス4全体をホルダで覆ってしまうと、ホルダの厚み分だけ磁石をマイクロ流体デバイス4に近づけることができない。そこで、本実施例のホルダは磁石が近づく部分だけ、磁石の形状に合わせて削られており、磁石が可能な限りマイクロ流体デバイス4に近づけるような構造になっている。必ずしも磁石の形状に合わせず大きな領域を削ることも可能であるが、剛性の低下が問題になる場合がある。 FIG. 5 also shows the microfluidic device holder 28. The microfluidic device holder 28 is divided into upper and lower parts, one has a concave structure into which the microfluidic device 4 can be inserted and is fixed to the magnet drive mechanism 17, and the other is a pressing plate for fixing the microfluidic device 4. It is. In a state where the microfluidic device 4 is inserted into the recess of the microfluidic device holder, the microfluidic device 4 is fixed by, for example, screwing the holding plate. Although the microfluidic device holder 28 is omitted in other drawings, it is usually used together with the microfluidic device 4. If the entire microfluidic device 4 is covered with a holder, the magnet cannot be brought closer to the microfluidic device 4 by the thickness of the holder. In view of this, the holder of the present embodiment is scraped according to the shape of the magnet only at the portion where the magnet approaches, and has a structure in which the magnet is as close to the microfluidic device 4 as possible. Although it is possible to cut a large area without necessarily matching the shape of the magnet, there is a case where a decrease in rigidity becomes a problem.
 図6は、磁石をマイクロ流体デバイスの表面と平行な方向にスライドさせる方法の一例を示す模式図である。ESIチップ14、磁気ビーズ13などは図示を省略した。磁石駆動機構17は、2つの磁石11,12にマイクロ流体デバイス4の表面に沿って同期したスライド及びそれぞれ独立したスライドを行わせる。 FIG. 6 is a schematic diagram showing an example of a method of sliding a magnet in a direction parallel to the surface of the microfluidic device. The ESI chip 14 and the magnetic beads 13 are not shown. The magnet drive mechanism 17 causes the two magnets 11 and 12 to perform a synchronized slide and independent slide along the surface of the microfluidic device 4.
 片方の磁石12がステッピングモータによって駆動する駆動ステージ30と結合している。図5で示したように、上部磁石11と下部磁石12は結合されているため、一方の磁石が駆動ステージ30によってスライドすると、他方の磁石も同期してスライドする。ただし、図2(b)で示したように、磁気ビーズ13をESIチップ14側に輸送する際は、下部磁石12のみスライドし、上部磁石11はスライドしない。上部磁石11もスライドすると、上部磁石11がESIチップ14と衝突してしまうからである。図6に示した例では、上部磁石11が下部磁石12に追従しないようにスライダー31、コンストンバネ32、ストッパー45が設置してある。ESIチップ側にストッパー45が存在し、ストッパー45と磁石11が衝突することで、ストッパー45より先に磁石が進めないような構造になっている。また逆方向へのスライドはコンストンバネ32によって拘束される。なお、磁石の位置を調整する方法は図6に記載した方法に限定されるものではなく、図2のような動きが可能であればどんな方法を用いてもよい。 One magnet 12 is coupled to a drive stage 30 driven by a stepping motor. As shown in FIG. 5, since the upper magnet 11 and the lower magnet 12 are coupled, when one magnet slides with the drive stage 30, the other magnet also slides in synchronization. However, as shown in FIG. 2B, when the magnetic beads 13 are transported to the ESI chip 14 side, only the lower magnet 12 slides and the upper magnet 11 does not slide. This is because if the upper magnet 11 is also slid, the upper magnet 11 collides with the ESI chip 14. In the example shown in FIG. 6, the slider 31, the conston spring 32, and the stopper 45 are installed so that the upper magnet 11 does not follow the lower magnet 12. A stopper 45 exists on the ESI chip side, and the stopper 45 and the magnet 11 collide so that the magnet cannot advance ahead of the stopper 45. The slide in the reverse direction is restrained by the conston spring 32. The method for adjusting the position of the magnet is not limited to the method described in FIG. 6, and any method may be used as long as the movement as shown in FIG. 2 is possible.
 本実施例に用いる磁石は、磁気ビーズ13に対して磁力を加えることができれば何でもよい。永久磁石の中でも、ネオジウム磁石は磁力が強く使いやすい。一方、図7に示すように電磁石を用いてもよい。鉄芯33のような透磁率が高い棒にコイル34を巻くのが一般的な電磁石である。永久磁石を用いる場合に対し電磁石を用いると図5のような駆動機構が必要無くなる。電磁石では電流を流している時のみ磁力を発生するため、上部磁石11及び下部磁石12それぞれの利用したい方のコイル34に電流を流せばよい。例えば、図2(a)~(c)の段階では下部磁石12に、図2(d)~(f)の段階では上部磁石11に電流を流せば、図5のような駆動機構無しにこれまで説明してきた磁気ビーズ13のコントロール方法を実現できる。ただし、ネオジウム磁石と同等の磁力を電磁石で発生させるのは困難である。大電流が必要となり発熱が大きな課題となる。また、電磁石を並べ、必要な電磁石のみに電流を流すことによって磁界を変化させれば、磁石をスライドさせることなく磁気ビーズの位置をコントロールすることも可能である。磁石として電磁石を使用する場合には、磁石駆動機構17は、一方の側の電磁石に通電する際には他方の側の電磁石への通電を止めるように、すなわちマイクロ流体デバイスの微小流路に対して一方の側の電磁石が磁力を作用させると他方の側の電磁石が作用を止めるように2つの電磁石を駆動する。 The magnet used in this embodiment may be anything as long as it can apply a magnetic force to the magnetic beads 13. Among permanent magnets, neodymium magnets are strong and easy to use. On the other hand, an electromagnet may be used as shown in FIG. It is a general electromagnet to wind a coil 34 around a bar having a high magnetic permeability such as an iron core 33. If an electromagnet is used in contrast to the case where a permanent magnet is used, a drive mechanism as shown in FIG. 5 is not necessary. Since an electromagnet generates a magnetic force only when an electric current is flowing, it is only necessary to pass an electric current through the coil 34 of the upper magnet 11 and the lower magnet 12 to be used. For example, if a current is passed through the lower magnet 12 in the stages of FIGS. 2A to 2C and the upper magnet 11 in the stages of FIGS. 2D to 2F, this can be achieved without the drive mechanism shown in FIG. The control method of the magnetic beads 13 described up to here can be realized. However, it is difficult for an electromagnet to generate a magnetic force equivalent to that of a neodymium magnet. A large current is required and heat generation becomes a major issue. In addition, if the magnetic field is changed by arranging electromagnets and passing a current only through the necessary electromagnets, the position of the magnetic beads can be controlled without sliding the magnets. When an electromagnet is used as the magnet, the magnet drive mechanism 17 stops energizing the electromagnet on the other side when energizing the electromagnet on the other side, that is, with respect to the microchannel of the microfluidic device. When the electromagnet on one side applies a magnetic force, the two electromagnets are driven so that the electromagnet on the other side stops the action.
 磁石の形状は図2に示しているような球型である必要は必ずしもない。図8は磁石の構造例を示す模式図である。図8(a)に示すような先端のみが球状、図8(b)に示すような直方体、図8(c)に示すような三角錐といった構造でもよい。磁気ビーズは磁力が最も強い部分に集まるが、直方体のように角が複数ある場合、磁気ビーズ13が密集する箇所が分散するという問題が生じる。 The shape of the magnet is not necessarily a spherical shape as shown in FIG. FIG. 8 is a schematic diagram showing an example of the structure of a magnet. Only the tip as shown in FIG. 8A may have a spherical shape, a rectangular parallelepiped as shown in FIG. 8B, or a triangular pyramid as shown in FIG. 8C. The magnetic beads gather at the portion where the magnetic force is the strongest. However, when there are a plurality of corners such as a rectangular parallelepiped, there arises a problem that the locations where the magnetic beads 13 are concentrated are dispersed.
 図9はダム構造の例を示す断面模式図である。図9(a)~(e)は、図1(b)のダム構造7に対応する箇所だけを拡大して示した部分断面模式図であり、磁気ビーズ13が磁力とダム構造によって微小流路の分岐部すなわち磁気ビーズトラップ部にトラップされた状態を示している。 FIG. 9 is a schematic sectional view showing an example of a dam structure. FIGS. 9A to 9E are schematic partial cross-sectional views showing only the portion corresponding to the dam structure 7 of FIG. 1B in an enlarged manner. This shows a state of being trapped in a branch portion of the magnetic beads, that is, a magnetic bead trap portion.
 図9(a)~(e)に示すようにダム構造7には様々な形状が考えられる。図9(a)はこれまで示してきたダム構造7であり、矩形断面を有する。図9(b)は、ダム底部の幅が上部よりも狭くなっている逆三角形状の断面を有するダム構造を示している。底部の隙間に挿入された磁気ビーズ13は流速が上昇しても移動することはない。すなわちトラップ効率が高くなる。しかし、製造が困難である点、廃棄する効率が低下する可能性がある点が問題となる。図9(c)に示したダム構造7は、断面が台形の形状をしている。図9(a)のような構造を製造しようとしても、精度の問題で図9(c)のようになることもある。断面が台形形状のダム構造7の場合、流速が大きくなると磁気ビーズ13がダム構造7を滑りあがってしまう可能性がある。また、図9(d)のように微小流路中に窪みが設けられ、窪みの壁がその窪みに入った磁気ビーズが窪みから脱出するための乗り越えなければならない障壁を構成している構造も本発明でいうダム構造7の範疇である。図9(d)に図示されている窪みの左側の垂直壁の箇所が微小流路の分岐部と廃棄流路との接続部に該当し、窪みの右側の垂直壁の箇所が微小流路の分岐部と分析用流路との接続部に該当する。このダム構造によると、流体の流れから磁気ビーズ13の位置を下方にずらすことができるため、流体によって押し流される確率が低下する。図9(e)のように流路高さが階段状に変化した構造も階段部分が本発明のダム構造7として作用し、磁気ビーズが流体によって押し流されることを妨ぐ。図9(e)に図示されている窪みの左側の垂直壁の箇所が微小流路の分岐部と廃棄流路との接続部に該当する。 As shown in FIGS. 9A to 9E, the dam structure 7 can have various shapes. FIG. 9A shows the dam structure 7 shown so far, and has a rectangular cross section. FIG. 9B shows a dam structure having an inverted triangular cross section in which the width of the dam bottom is narrower than the top. The magnetic beads 13 inserted in the gaps at the bottom do not move even if the flow rate increases. That is, the trap efficiency is increased. However, there are problems in that the manufacturing is difficult and the efficiency of disposal may be reduced. The dam structure 7 shown in FIG. 9C has a trapezoidal cross section. Even if the structure shown in FIG. 9A is to be manufactured, the structure shown in FIG. In the case of the dam structure 7 having a trapezoidal cross section, the magnetic beads 13 may slide up the dam structure 7 when the flow velocity increases. Also, as shown in FIG. 9 (d), there is a structure in which a recess is provided in the microchannel, and the wall of the recess constitutes a barrier that must be overcome for the magnetic beads entering the recess to escape from the recess. This is the category of the dam structure 7 in the present invention. The portion of the vertical wall on the left side of the recess illustrated in FIG. 9D corresponds to the connection portion between the branch portion of the micro flow channel and the waste flow channel, and the location of the vertical wall on the right side of the recess is the micro flow channel. Corresponds to the connection between the branch and the analysis flow path. According to this dam structure, since the position of the magnetic beads 13 can be shifted downward from the flow of the fluid, the probability of being washed away by the fluid decreases. As shown in FIG. 9E, the structure in which the flow path height is changed stepwise also acts as the dam structure 7 of the present invention to prevent the magnetic beads from being washed away by the fluid. The portion of the vertical wall on the left side of the depression shown in FIG. 9 (e) corresponds to the connection portion between the branch portion of the microchannel and the waste channel.
 本実施例では、ESIチップ14としてNanoESI用のチップを想定している。NanoESI用チップは一般的に外径350μm程度、先端内径10~100μm程度である。NanoESI用チップを用いた場合は、チップ側に流す流量は5μL/min以下が望ましい。内部が中空のチップだけでなく、内部にLCカラムが内包されたチップを用いてもよい。粒子が詰められたLCカラム以外にもモノリスカラムが内包されたチップでもよい。LCカラムが内包されている場合、その部分でLC分離が可能になる。また、磁気ビーズからターゲット分子を溶出する溶出液がイオン化に向かない場合、LCカラム用いることによって溶液を交換することができる。 In the present embodiment, a NanoESI chip is assumed as the ESI chip 14. NanoESI chips generally have an outer diameter of about 350 μm and a tip inner diameter of about 10 to 100 μm. When the NanoESI chip is used, the flow rate to flow to the chip side is preferably 5 μL / min or less. In addition to a hollow chip inside, a chip in which an LC column is included may be used. In addition to the LC column packed with particles, a chip containing a monolithic column may be used. When the LC column is included, LC separation can be performed at that portion. Moreover, when the eluate for eluting the target molecules from the magnetic beads is not suitable for ionization, the solution can be exchanged by using an LC column.
 磁気ビーズとターゲット分子を吸着させる方法は様々存在する。マイクロ流体デバイス4上で溶出可能であれば、吸着の方法は問わない。例えば図10(a)のように磁気ビーズ13の周りにポリマー36を修飾することが考えられる。これは一般的な固相抽出剤として働く。例えばC18などで修飾する。H2Oが多い溶液中に磁気ビーズ13を導入すると、ターゲット分子がポリマー36内に移動する。その後、有機溶媒に磁気ビーズ13を導入すると、ターゲット分子が溶出される。これは分子の極性を利用した方法である。 There are various methods for adsorbing magnetic beads and target molecules. The adsorption method is not particularly limited as long as it can be eluted on the microfluidic device 4. For example, it is conceivable to modify the polymer 36 around the magnetic beads 13 as shown in FIG. This acts as a general solid phase extraction agent. For example, it is modified with C18. When the magnetic beads 13 are introduced into a solution rich in H 2 O, the target molecules move into the polymer 36. Thereafter, when the magnetic beads 13 are introduced into the organic solvent, the target molecules are eluted. This is a method utilizing the polarity of molecules.
 固相抽出剤よりも吸着させる分子を選択するのが、分子鋳型ポリマー(Molecular imprinted polymer:MIP)である。ターゲット分子を鋳型としてポリマー36を合成し、その後、ターゲット分子を除去すると、ポリマー36の形状がターゲット分子を特異的に捕捉できる構造になる。このMIPを磁気ビーズ13表面に修飾する場合もある。MIPを用いた場合は固相抽出剤と同様に、有機溶媒によってターゲット分子を溶出することができる。 The molecular template polymer (Molecular imprinted polymer: MIP) selects molecules to be adsorbed rather than the solid phase extractant. When the polymer 36 is synthesized using the target molecule as a template, and then the target molecule is removed, the shape of the polymer 36 becomes a structure that can specifically capture the target molecule. This MIP may be modified on the surface of the magnetic beads 13. When MIP is used, the target molecule can be eluted with an organic solvent as in the case of the solid phase extraction agent.
 MIPよりもさらに特異的に分子を吸着することができるのが抗体37である。図10(b)のように抗体37を磁気ビーズ13表面に結合させることもある。抗体37を磁気ビーズ13に結合するためには、まず磁気ビーズ13表面にProtein AやProtein Gなどの抗体37と結合できる分子を結合させておく。もしくは、磁気ビーズ13表面にストレプトアビジンを結合させておき、そこにビオチン化した抗体37を結合させる。抗体37とターゲット分子を結合させた場合は、一般的には酸性溶液によって抗体37を変性させてターゲット分子を溶出させる。酸性溶液で溶出した場合、酸性溶液はESIに向かないため、ESI前に溶液を交換する必要がある。このためには上述したようにLCカラムが内包されたESIチップ14を用いるとよい。酸性溶液に溶けたターゲット分子をLCカラムでトラップし、有機溶媒で溶出する。 Antibody 37 can adsorb molecules more specifically than MIP. The antibody 37 may be bound to the surface of the magnetic bead 13 as shown in FIG. In order to bind the antibody 37 to the magnetic bead 13, first, a molecule capable of binding to the antibody 37 such as Protein A or Protein G is bound to the surface of the magnetic bead 13. Alternatively, streptavidin is bound to the surface of the magnetic beads 13, and the biotinylated antibody 37 is bound thereto. When the antibody 37 and the target molecule are bound, the target molecule is generally eluted by denaturing the antibody 37 with an acidic solution. When elution is performed with an acidic solution, the acidic solution is not suitable for ESI, and thus the solution needs to be replaced before ESI. For this purpose, it is preferable to use the ESI chip 14 including the LC column as described above. The target molecule dissolved in the acidic solution is trapped with an LC column and eluted with an organic solvent.
 ダム構造7を有するマイクロ流体デバイス4の製作には大きく2つの方法がある。図11と図12は、それぞれの製作方法を示す模式図である。基本的にマイクロ流体デバイス4は2枚のシートを張り合わせることで作製する。図11の方法では、上板38と下板39の両方を加工して張り合わせる。この場合、上板38と下板39を精度良く張り合わせる必要がある。一方、図12に示した方法では、上板38は加工せず、下板39のみを加工している。ダム構造7を作るためには、下板39を削る深さを2段階にする必要がある。このため、加工が煩雑になり時間がかかる。 There are two main methods for manufacturing the microfluidic device 4 having the dam structure 7. FIG. 11 and FIG. 12 are schematic views showing respective manufacturing methods. Basically, the microfluidic device 4 is manufactured by laminating two sheets. In the method of FIG. 11, both the upper plate 38 and the lower plate 39 are processed and bonded together. In this case, it is necessary to attach the upper plate 38 and the lower plate 39 with high accuracy. On the other hand, in the method shown in FIG. 12, the upper plate 38 is not processed, and only the lower plate 39 is processed. In order to make the dam structure 7, it is necessary to cut the depth of the lower plate 39 in two stages. For this reason, processing becomes complicated and takes time.
 図13は、マイクロ流体デバイスの取り外しを説明する模式図である。本実施例の分析方法は、マイクロ流体デバイス4を交換せずとも複数回の分析を行うことができる。すなわち、磁気ビーズ13の導入・分析・廃棄を繰り返す。しかし、大量の分析を行いマイクロ流体デバイス4が劣化してきた場合は、デバイスを交換するのがよい。この場合、図13のようにマイクロ流体デバイス4とESIチップ14のみを交換し、磁石や磁石駆動機構17は交換しないことが望ましい。もちろん駆動ステージ30やDCモータが劣化した場合には、磁石駆動機構17も交換する必要があるが、マイクロ流体デバイス4とESIチップ14に比べると使用可能期間は長い。マイクロ流体デバイス4とESIチップ14は必ずしも同時に交換する必要はなく、それぞれ単独で交換してもよい。 FIG. 13 is a schematic diagram for explaining the removal of the microfluidic device. The analysis method of this embodiment can perform a plurality of analyzes without replacing the microfluidic device 4. That is, the introduction, analysis, and disposal of the magnetic beads 13 are repeated. However, when a large amount of analysis is performed and the microfluidic device 4 has deteriorated, it is preferable to replace the device. In this case, it is desirable that only the microfluidic device 4 and the ESI chip 14 are replaced as shown in FIG. 13, and the magnet and the magnet drive mechanism 17 are not replaced. Of course, when the drive stage 30 or the DC motor deteriorates, the magnet drive mechanism 17 also needs to be replaced, but the usable period is longer than that of the microfluidic device 4 and the ESI chip 14. The microfluidic device 4 and the ESI chip 14 are not necessarily replaced at the same time, and may be replaced independently.
 図13では省略しているが、マイクロ流体デバイス4はマイクロ流体デバイスホルダ28に固定されており、マイクロ流体デバイス4を交換したいときは、マイクロ流体デバイスホルダ28ごと交換するのが一般的な手法である。この場合、磁石駆動機構17とマイクロ流体デバイスホルダ28はネジによって固定されるのではなく、マイクロ流体デバイスホルダ28は磁石駆動機構17からワンタッチで取り付け及び取り外し可能であることが望ましい。 Although omitted in FIG. 13, the microfluidic device 4 is fixed to the microfluidic device holder 28, and when it is desired to replace the microfluidic device 4, the microfluidic device holder 28 is generally replaced. is there. In this case, it is desirable that the magnet driving mechanism 17 and the microfluidic device holder 28 are not fixed by screws, but the microfluidic device holder 28 can be attached and detached from the magnet driving mechanism 17 with one touch.
 図13に示すように、磁石駆動機構17は固定用足場49を介して、磁石駆動機構向け固定部48に固定されている。固定用足場49は質量分析装置16に固定されている、もしくは質量分析装置16と一体のものである。 As shown in FIG. 13, the magnet drive mechanism 17 is fixed to a magnet drive mechanism fixing portion 48 via a fixing scaffold 49. The fixing scaffold 49 is fixed to the mass spectrometer 16 or integrated with the mass spectrometer 16.
 本実施例の特徴は、ダム構造7と磁力を利用して磁気ビーズ13のトラップ効率を上昇させ、高スループット分析を可能にしている点である。そして、ESIチップ14近傍まで磁気ビーズ13を輸送して濃縮することで高濃度のターゲット分子をイオン化できる点である。さらに、磁気ビーズ13に加わる磁力をコントロールすることで、磁気ビーズ13にダム構造7を乗り越えさせ、効率的な磁気ビーズ13の破棄を実現しているためロバスト性が高い点である。
The feature of the present embodiment is that the trap efficiency of the magnetic beads 13 is increased by utilizing the dam structure 7 and the magnetic force, thereby enabling high-throughput analysis. The high concentration target molecules can be ionized by transporting and concentrating the magnetic beads 13 to the vicinity of the ESI chip 14. Furthermore, by controlling the magnetic force applied to the magnetic bead 13, the dam structure 7 is moved over the magnetic bead 13 and efficient destruction of the magnetic bead 13 is realized, so that the robustness is high.
 図14は、マイクロ流体デバイスを用いた分析方法における駆動シーケンスの他の例を示す概略図である。本実施例のマイクロ流体デバイス4は実施例1と類似の構造を有するが、実施例1との違いは、ダム構造7が磁気ビーズトラップ部の廃棄流路8側だけでなく、分析用流路6側にも配置してある点である。廃棄流路8側とESIチップ14側の流路のコンダクタンス比から大半の溶液は廃棄流路8側に流れている。このため、磁気ビーズも廃棄流路8側に流れる確率が高い。しかし、少量の磁気ビーズ13は分析用流路6側に向かった流体の力を受ける。トラップできずに分析用流路6側に磁気ビーズ13が流れてしまう可能性を低減するため、本実施例のマイクロ流体デバイス4は、ダム構造7を3つの流路が交差する交差部(分岐部)に設定される磁気ビーズトラップ部5の廃棄流路8側と共に分析用流路6側にも設置した。 FIG. 14 is a schematic diagram showing another example of a driving sequence in an analysis method using a microfluidic device. The microfluidic device 4 of the present embodiment has a structure similar to that of the first embodiment. However, the difference from the first embodiment is that the dam structure 7 is not only the side of the waste flow path 8 of the magnetic bead trap part but also the flow path for analysis. It is also a point arranged on the 6 side. From the conductance ratio of the flow path on the waste flow path 8 side and the flow path on the ESI chip 14 side, most of the solution flows to the waste flow path 8 side. For this reason, there is a high probability that the magnetic beads also flow to the waste flow path 8 side. However, a small amount of the magnetic beads 13 receives the force of the fluid toward the analysis channel 6 side. In order to reduce the possibility that the magnetic beads 13 may flow to the analysis flow channel 6 side without being trapped, the microfluidic device 4 of the present embodiment has a cross section (branch) where the three flow channels intersect the dam structure 7. The magnetic bead trap section 5 set in the section) is installed on the analysis flow path 6 side as well as the waste flow path 8 side.
 この場合、実施例1に比べ一部複雑な駆動シーケンスになる。実施例1の場合、磁気ビーズトラップ部5にトラップした磁気ビーズ13を分析用流路6側に輸送する際、下部磁石12をマイクロ流体デバイス4に沿ってスライドさせるだけであった。しかし、実施例2の場合は、図14(b)~(e)のように、まず上部磁石11側に磁気ビーズ13を寄せせることでダム構造7を乗り越え、続いて下部磁石12側に再び磁気ビーズ13を寄せてからESIチップ接続口9近傍まで輸送する。ターゲット分子を溶出して分析後は、図14(f)~(h)に示すように、下部磁石12側から上部磁石11側へ磁気ビーズ13を寄せてから廃棄流路8へと磁気ビーズ13を輸送する。 In this case, the driving sequence is partly more complicated than in the first embodiment. In the case of Example 1, the lower magnet 12 was merely slid along the microfluidic device 4 when the magnetic beads 13 trapped in the magnetic bead trap unit 5 were transported to the analysis flow path 6 side. However, in the case of Example 2, as shown in FIGS. 14B to 14E, the magnetic beads 13 are first moved to the upper magnet 11 side to get over the dam structure 7 and then again to the lower magnet 12 side. After bringing the magnetic beads 13 together, they are transported to the vicinity of the ESI chip connection port 9. After the target molecule is eluted and analyzed, as shown in FIGS. 14 (f) to (h), the magnetic beads 13 are moved from the lower magnet 12 side to the upper magnet 11 side and then moved to the waste flow path 8. To transport.
 実施例1よりもシーケンスは煩雑になるが、磁気ビーズ13がトラップ時に分析用流路6側へと流れ込んでしまうリスクを低減できる。ダム構造7を1つ追加し、その結果として駆動シーケンスが複雑になった以外は実施例1と2で差はない。 Although the sequence is more complicated than in Example 1, the risk of the magnetic beads 13 flowing into the analysis channel 6 side during trapping can be reduced. There is no difference between the first and second embodiments except that one dam structure 7 is added and the driving sequence becomes complicated as a result.
 なお、図15のようにESIチップ14を図中下向きに設置した場合、磁気ビーズ13をESIチップ接続口9近傍まで輸送する際に、ダムを越えた後、磁気ビーズ13を下部磁石12側に引き寄せる必要はない。上部磁石11側に磁気ビーズ13を寄せた状態で、上部磁石をESIチップ近傍までスライドし、ターゲット分子を溶出させる。ターゲット分子を溶出して分析後は、そのまま上部磁石11をマイクロ流体デバイス4に沿ってスライドさせて廃棄流路8へと磁気ビーズ13を輸送し廃棄する。
In addition, when the ESI chip 14 is installed downward as shown in FIG. 15, when the magnetic beads 13 are transported to the vicinity of the ESI chip connection port 9, after passing the dam, the magnetic beads 13 are moved to the lower magnet 12 side. There is no need to attract. In a state where the magnetic beads 13 are brought close to the upper magnet 11 side, the upper magnet is slid to the vicinity of the ESI chip to elute the target molecules. After the target molecule is eluted and analyzed, the upper magnet 11 is slid along the microfluidic device 4 as it is, and the magnetic beads 13 are transported to the disposal channel 8 and discarded.
 実施例3では、実施例1、2と異なり質量分析ではなく光検出器42によってターゲット分子を検出する。マイクロ流体デバイス4の構造は実施例1もしくは実施例2と同様である。また、実施例1、2と同様に磁気ビーズ13にターゲット分子を吸着させ、マイクロ流体デバイス4に導入する。導入された磁気ビーズ13は磁力とダム構造7によって磁気ビーズトラップ部5にトラップされる。 Example 3 differs from Examples 1 and 2 in that the target molecule is detected not by mass spectrometry but by the photodetector 42. The structure of the microfluidic device 4 is the same as in the first or second embodiment. Similarly to the first and second embodiments, target molecules are adsorbed on the magnetic beads 13 and introduced into the microfluidic device 4. The introduced magnetic beads 13 are trapped in the magnetic bead trap unit 5 by the magnetic force and the dam structure 7.
 図16に示した例では、磁気ビーズ13から溶出されたターゲット分子を検出する。検出にはレーザ光源40によってレーザ光41を発生させて呈色反応や吸光度を用いる。または熱レンズ効果を利用して濃度を分析することも可能である。図17に示すように、ターゲット分子が吸着した磁気ビーズにレーザ光源40から励起光43を照射し、蛍光44を光検出器42で観察するという手法もある。これは一般的なELISAである。 In the example shown in FIG. 16, target molecules eluted from the magnetic beads 13 are detected. For detection, a laser light 41 is generated by a laser light source 40 and a color reaction or absorbance is used. Alternatively, the concentration can be analyzed using the thermal lens effect. As shown in FIG. 17, there is also a method in which excitation light 43 is irradiated from a laser light source 40 onto magnetic beads on which target molecules are adsorbed, and fluorescence 44 is observed with a photodetector 42. This is a general ELISA.
 光検出器42を利用して分析した場合にも、磁気ビーズ13の廃棄方法は実施例1、2と同様である。図2や図15に示すように、磁気ビーズ13に働く磁力をコントロールすることで、磁気ビーズ13にダム構造7を乗り越えさせて廃棄流路8へと移動させる。本実施例の方法は、ダム構造7と磁力を同時に利用することによって磁気ビーズ13のトラップ効率を向上させ高スループット分析が可能になる。また、磁気ビーズ13に働く磁力をコントロールすることで磁気ビーズ13にダム構造7を乗り越えさせることが可能となり効率的な磁気ビーズ13の廃棄が実現する。
Even when the analysis is performed using the photodetector 42, the disposal method of the magnetic beads 13 is the same as in the first and second embodiments. As shown in FIG. 2 and FIG. 15, by controlling the magnetic force acting on the magnetic beads 13, the magnetic beads 13 are moved over the dam structure 7 and moved to the disposal flow path 8. The method of this embodiment improves the trap efficiency of the magnetic beads 13 by using the dam structure 7 and the magnetic force at the same time, and enables high-throughput analysis. Further, by controlling the magnetic force acting on the magnetic beads 13, it is possible to make the magnetic beads 13 get over the dam structure 7, thereby realizing efficient disposal of the magnetic beads 13.
 図18は、複数の分析用流路を有する本実施例のマイクロ流体デバイスの流路構造の例を示す平面模式図である。図18に示すように本実施例のマイクロ流体デバイス4は、分析用流路6に加え、第2の分析用流路46及び第2のESIチップ接続口47が配置されている。その他の点は実施例1、2と同様である。本実施例では、磁石を3個以上用意することで、ESIチップ接続口9付近で磁気ビーズ13からターゲット分子を溶出している間に、新たな磁気ビーズ13を磁気ビーズトラップ部5でトラップし、第2の分析用流路46に輸送することも可能である。または、第2の分析用流路46側を実施例3で示したようなELISA分析に用いることも可能である。 FIG. 18 is a schematic plan view showing an example of the channel structure of the microfluidic device of this example having a plurality of analysis channels. As shown in FIG. 18, in the microfluidic device 4 of this embodiment, in addition to the analysis flow path 6, a second analysis flow path 46 and a second ESI chip connection port 47 are arranged. Other points are the same as in the first and second embodiments. In this embodiment, by preparing three or more magnets, a new magnetic bead 13 is trapped by the magnetic bead trap unit 5 while the target molecule is being eluted from the magnetic bead 13 near the ESI chip connection port 9. It is also possible to transport to the second analysis channel 46. Alternatively, the second analysis channel 46 side can be used for the ELISA analysis as shown in the third embodiment.
 図18の例ではダム構造7を廃棄流路8側にのみ設置しているが、分析用流路6側や第2の分析用流路46側にも設置してよい。ダム構造が必要であるか否かは流路に流れる液体の流速次第である。流速を上げるほど、計測スループットを高められるが、磁気ビーズ13に働く流体の力は大きくなる。磁力のみで磁気ビーズ13をトラップできない場合はダム構造7を設置することが必要となる。本実施例では分析用流路を2つ配置したが、必要であれば3つ以上配置しても構わない。 18, the dam structure 7 is installed only on the disposal flow path 8 side, but may be installed on the analysis flow path 6 side or the second analysis flow path 46 side. Whether or not a dam structure is necessary depends on the flow velocity of the liquid flowing in the flow path. As the flow rate is increased, the measurement throughput can be increased, but the force of the fluid acting on the magnetic beads 13 is increased. When the magnetic beads 13 cannot be trapped only by the magnetic force, it is necessary to install the dam structure 7. In this embodiment, two analysis channels are arranged, but three or more may be arranged if necessary.

 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。

In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1…廃棄口、2…導入口、3…導入流路、4…マイクロ流体デバイス、5…磁気ビーズトラップ部、6…分析用流路、7…ダム構造、8…廃棄流路、9…ESIチップ接続口、11…上部磁石、12…下部磁石、13…磁気ビーズ、14…ESIチップ、15…細孔、16…質量分析装置、17…磁石駆動機構、23…廃液バルブ、24…サンプルインジェクター、25…送液ポンプ、28…マイクロ流体デバイスホルダ、30…駆動ステージ、31…スライダー、32…コンストンバネ、40…レーザ光源、42…光検出器、44…蛍光、45…ストッパー DESCRIPTION OF SYMBOLS 1 ... Waste port, 2 ... Inlet port, 3 ... Introduction channel, 4 ... Microfluidic device, 5 ... Magnetic bead trap part, 6 ... Analytical channel, 7 ... Dam structure, 8 ... Waste channel, 9 ... ESI Chip connection port, 11 ... upper magnet, 12 ... lower magnet, 13 ... magnetic bead, 14 ... ESI chip, 15 ... pore, 16 ... mass spectrometer, 17 ... magnet drive mechanism, 23 ... waste liquid valve, 24 ... sample injector , 25 ... liquid feed pump, 28 ... microfluidic device holder, 30 ... drive stage, 31 ... slider, 32 ... conston spring, 40 ... laser light source, 42 ... photodetector, 44 ... fluorescence, 45 ... stopper

Claims (15)

  1.  微小流路内に磁気ビーズを導入して利用するマイクロ流体デバイスであって、磁気ビーズが溶液と共に導入される導入流路と、分岐部で前記導入流路から分岐する分析用流路と廃棄流路とを有し、前記分析用流路と廃棄流路のうち少なくとも一方の流路の前記分岐部との接続部に、流路高さが前記分岐部の流路高さよりも小さくなったダム構造を有し、前記ダム構造によって狭まった流路高さが磁気ビーズの直径より大きいマイクロ流体デバイスと、前記マイクロ流体デバイスを挟んで配置された2つの磁石とを用いた分析方法であって、
     一方の磁石の磁力によって前記微小流路内の磁気ビーズを前記微小流路の一方の内壁に引き付ける工程と、
     他方の磁石の磁力によって磁気ビーズを前記内壁と反対側の内壁に移動させる工程と、
     前記他方の磁石を前記マイクロ流体デバイスに沿って移動させることで磁気ビーズに前記ダム構造を越えさせる工程と、
    を有することを特徴とする分析方法。
    A microfluidic device in which magnetic beads are introduced into a microchannel and used, wherein the magnetic beads are introduced together with a solution, an analysis channel that branches from the introduction channel at a branching portion, and a waste stream A dam having a flow path height lower than a flow path height of the branch portion at a connection portion of at least one of the analysis flow channel and the waste flow channel with the branch portion. An analysis method using a microfluidic device having a structure and a flow path height narrowed by the dam structure being larger than a diameter of a magnetic bead, and two magnets arranged with the microfluidic device interposed therebetween,
    Attracting magnetic beads in the microchannel to one inner wall of the microchannel by the magnetic force of one magnet;
    Moving the magnetic beads to the inner wall opposite to the inner wall by the magnetic force of the other magnet;
    Moving the other magnet along the microfluidic device to cause the magnetic beads to cross the dam structure;
    The analysis method characterized by having.
  2.  請求項1に記載の分析方法において、
     磁気ビーズを前記導入流路に導入する工程と、
     磁気ビーズを前記ダム構造近傍で磁力によってトラップする工程と、
     磁石を移動することで磁気ビーズを前記分析用流路へと移動させる工程と、
     溶出液を前記分析用流路に導入することで磁気ビーズに吸着したターゲット分子を溶出させる工程と、
     前記ターゲット分子の分析後に磁石を移動することで磁気ビーズを前記ダム構造近傍へと移動させる工程と、
    を有することを特徴とする分析方法。
    The analysis method according to claim 1,
    Introducing magnetic beads into the introduction flow path;
    Trapping magnetic beads by magnetic force in the vicinity of the dam structure;
    Moving the magnetic beads to the flow path for analysis by moving a magnet;
    A step of eluting the target molecules adsorbed on the magnetic beads by introducing the eluate into the analysis channel;
    Moving the magnetic beads to the vicinity of the dam structure by moving a magnet after analysis of the target molecule;
    The analysis method characterized by having.
  3.  請求項1に記載の分析方法において、
     前記ダム構造近傍へと移動させた磁気ビーズを前記ダム構造を越えて前記廃棄流路に移動させる工程と、
     前記磁石を前記廃棄流路から離れた位置まで移動させることで磁気ビーズに加わっていた磁力を減少させる工程と、
    を有することを特徴とする分析方法。
    The analysis method according to claim 1,
    Moving the magnetic beads moved to the vicinity of the dam structure over the dam structure to the waste channel;
    Reducing the magnetic force applied to the magnetic beads by moving the magnet to a position away from the waste flow path;
    The analysis method characterized by having.
  4.  請求項2に記載の分析方法において、
     磁気ビーズから前記ターゲット分子を溶出させる際に前記廃棄流路に接続されたバルブを閉じることを特徴とする分析方法。
    The analysis method according to claim 2,
    An analysis method characterized by closing a valve connected to the waste flow path when eluting the target molecule from a magnetic bead.
  5.  請求項2に記載の分析方法において、
     前記溶出させたターゲット分子をイオン化する工程を更に有することを特徴とする分析方法。
    The analysis method according to claim 2,
    The analysis method further comprising the step of ionizing the eluted target molecule.
  6.  請求項2に記載の分析方法において、
     前記溶出させたターゲット分子をエレクトロスプレーイオン化法によってイオン化する工程を更に有することを特徴とする分析方法。
    The analysis method according to claim 2,
    The analysis method further comprising the step of ionizing the eluted target molecule by electrospray ionization.
  7.  請求項1に記載のマイクロ流体デバイスにおいて、
     前記分析用流路の体積が前記マイクロ流体デバイスに導入した磁気ビーズの体積以上あることを特徴とする分析方法。
    The microfluidic device of claim 1, wherein
    The analysis method characterized in that the volume of the flow path for analysis is equal to or greater than the volume of magnetic beads introduced into the microfluidic device.
  8.  微小流路内に磁気ビーズを導入して利用するマイクロ流体デバイスであって、
     磁気ビーズが溶液と共に導入される導入流路と、分岐部で前記導入流路から分岐する分析用流路と廃棄流路とを有し、
     前記分析用流路と廃棄流路のうち少なくとも一方の流路の前記分岐部との接続部に、流路高さが前記分岐部の流路高さよりも小さくなったダム構造を有し、前記ダム構造によって狭まった流路高さが磁気ビーズの直径より大きいことを特徴とするマイクロ流体デバイス。
    A microfluidic device that uses and introduces magnetic beads in a microchannel,
    An introduction flow path through which the magnetic beads are introduced together with the solution, an analysis flow path branched from the introduction flow path at the branching section, and a disposal flow path,
    The connection portion of the flow path for analysis and the waste flow path to the branch portion of at least one flow path has a dam structure in which the flow path height is smaller than the flow path height of the branch portion, A microfluidic device characterized in that the flow path height narrowed by the dam structure is larger than the diameter of the magnetic beads.
  9.  請求項8に記載のマイクロ流体デバイスにおいて、
     前記ダム構造は前記廃棄流路の前記分岐部との接続部に設けられていることを特徴とするマイクロ流体デバイス。
    The microfluidic device of claim 8, wherein
    The microfluidic device, wherein the dam structure is provided at a connection portion with the branch portion of the disposal channel.
  10.  請求項8に記載のマイクロ流体デバイスにおいて、
     前記分析用流路にイオン源が接続されていることを特徴とするマイクロ流体デバイス。
    The microfluidic device of claim 8, wherein
    A microfluidic device, wherein an ion source is connected to the analysis flow path.
  11.  請求項8に記載のマイクロ流体デバイスにおいて、
     前記廃棄流路はバルブに接続されていることを特徴とするマイクロ流体デバイス。
    The microfluidic device of claim 8, wherein
    The microfluidic device, wherein the waste channel is connected to a valve.
  12.  請求項8に記載のマイクロ流体デバイスと、
     前記マイクロ流体デバイスを挟んで配置された2つの磁石と、
     前記2つの磁石を保持して駆動する磁石駆動機構とを有し、
     前記磁石駆動機構は、前記マイクロ流体デバイスの前記微小流路に対して一方の磁石が磁力を作用させると他方の磁石が作用を止めるように前記2つの磁石を駆動することを特徴とする分析装置。
    A microfluidic device according to claim 8;
    Two magnets disposed across the microfluidic device;
    A magnet drive mechanism that holds and drives the two magnets;
    The analysis apparatus characterized in that the magnet driving mechanism drives the two magnets such that when one magnet acts on the microchannel of the microfluidic device, the other magnet stops acting. .
  13.  請求項12に記載の分析装置において、
     前記磁石駆動機構は、前記マイクロ流体デバイスに対して一方の磁石が近づくと他方の磁石が遠ざかるように前記2つの磁石を駆動することを特徴とする分析装置。
    The analyzer according to claim 12, wherein
    The analysis apparatus characterized in that the magnet driving mechanism drives the two magnets such that when one magnet approaches the microfluidic device, the other magnet moves away.
  14.  請求項12に記載の分析装置において、
     前記磁石駆動機構は、前記2つの磁石にマイクロ流体デバイスの表面に沿って同期したスライド及びそれぞれ独立したスライドを行わせることを特徴とする分析装置。
    The analyzer according to claim 12, wherein
    The analysis apparatus characterized in that the magnet drive mechanism causes the two magnets to perform a synchronized slide and independent slide along the surface of the microfluidic device.
  15.  請求項14に記載の分析装置において、
     前記磁石駆動機構は、前記導入流路への磁気ビーズの導入時は前記ダム構造の基部側に配置された磁石の磁力を前記微小流路の前記分岐部に作用させて磁気ビーズを前記分岐部にトラップし、前記磁気ビーズの廃棄時には前記ダム構造によって狭まった流路側に配置された磁石の磁力を磁気ビーズに作用させ当該磁石をスライドさせて磁気ビーズに前記ダム構造を越えさせることを特徴とする分析装置。
    The analyzer according to claim 14, wherein
    When the magnetic beads are introduced into the introduction flow path, the magnet drive mechanism causes a magnetic force of a magnet disposed on the base side of the dam structure to act on the branch portion of the micro flow path so that the magnetic beads are moved to the branch portion. When the magnetic beads are discarded, the magnetic force of the magnet arranged on the flow path side narrowed by the dam structure acts on the magnetic beads, and the magnet is slid to cause the magnetic beads to cross the dam structure. Analysis equipment.
PCT/JP2014/078160 2014-10-23 2014-10-23 Microfluidic device, analysis method using same, and analysis device WO2016063389A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078160 WO2016063389A1 (en) 2014-10-23 2014-10-23 Microfluidic device, analysis method using same, and analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078160 WO2016063389A1 (en) 2014-10-23 2014-10-23 Microfluidic device, analysis method using same, and analysis device

Publications (1)

Publication Number Publication Date
WO2016063389A1 true WO2016063389A1 (en) 2016-04-28

Family

ID=55760458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078160 WO2016063389A1 (en) 2014-10-23 2014-10-23 Microfluidic device, analysis method using same, and analysis device

Country Status (1)

Country Link
WO (1) WO2016063389A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108211960A (en) * 2018-01-22 2018-06-29 昆明理工大学 It is a kind of to be adjusted by the controllable of medium of magnetic liquid than microfluidic mixer device
CN111239380A (en) * 2018-11-29 2020-06-05 深圳华迈兴微医疗科技有限公司 Chemiluminescence immunoassay appearance
CN113046348A (en) * 2021-05-13 2021-06-29 安图实验仪器(郑州)有限公司 Magnetic bead adsorption system and magnetic bead adsorption mechanism thereof
US20210257204A1 (en) * 2018-08-25 2021-08-19 Jp Scientific Limited Method and device for sample introduction for mass spectrometry
WO2022086972A1 (en) * 2020-10-19 2022-04-28 Pattern Bioscience, Inc. Microfluidic chips including a gutter having a trough and a ridge to facilitate loading thereof and related methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271876A (en) * 2007-04-27 2008-11-13 Mitsubishi Chemicals Corp Microreactor, multi-step enzymic reaction method using the same, and method for continuous synthesis of sugar chain
JP2012504487A (en) * 2008-10-06 2012-02-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Microfluidic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271876A (en) * 2007-04-27 2008-11-13 Mitsubishi Chemicals Corp Microreactor, multi-step enzymic reaction method using the same, and method for continuous synthesis of sugar chain
JP2012504487A (en) * 2008-10-06 2012-02-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Microfluidic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108211960A (en) * 2018-01-22 2018-06-29 昆明理工大学 It is a kind of to be adjusted by the controllable of medium of magnetic liquid than microfluidic mixer device
CN108211960B (en) * 2018-01-22 2023-11-21 昆明理工大学 Controllable ratio-regulating micro-flow mixer using magnetic liquid as medium
US20210257204A1 (en) * 2018-08-25 2021-08-19 Jp Scientific Limited Method and device for sample introduction for mass spectrometry
CN111239380A (en) * 2018-11-29 2020-06-05 深圳华迈兴微医疗科技有限公司 Chemiluminescence immunoassay appearance
WO2022086972A1 (en) * 2020-10-19 2022-04-28 Pattern Bioscience, Inc. Microfluidic chips including a gutter having a trough and a ridge to facilitate loading thereof and related methods
CN113046348A (en) * 2021-05-13 2021-06-29 安图实验仪器(郑州)有限公司 Magnetic bead adsorption system and magnetic bead adsorption mechanism thereof

Similar Documents

Publication Publication Date Title
JP7085476B2 (en) Electromagnetic assembly for processing fluids
US11828691B2 (en) Electromagnetic assemblies for processing fluids
WO2016063389A1 (en) Microfluidic device, analysis method using same, and analysis device
US8093064B2 (en) Method for using magnetic particles in droplet microfluidics
US7303727B1 (en) Microfluidic sample delivery devices, systems, and methods
US20080217254A1 (en) Magnetic Bead Trap and Mass Spectrometer Interface
US10656147B2 (en) Magnetic elements for processing fluids
US20030066957A1 (en) Microfluidic system (mdi)
KR20070037432A (en) Chemical analysis apparatus and method of chemical analysis
US20220011327A1 (en) An Electromagnetic Coil Assembly Structure for Processing Fluids and Methods for Making Same
US20130134041A1 (en) Droplet moving device, droplet moving method, plasma separation device, and plasma separation method
CA2442345A1 (en) A microfluidic system (ms)
Smithers et al. Interfacing microfluidics with information-rich detection systems for cells, bioparticles, and molecules
WO2020016854A1 (en) An electromagnetic coil assembly structure for processing fluids and methods for making same
US20230132614A1 (en) Electromagnetic assemblies for processing fluids
US20050070010A1 (en) Dockable processing module
US20240255473A1 (en) System and methods for sample processing with mass spectrometry incorporating magnetic beads

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP