WO2016061912A1 - 无线局域网中的信令的发送、接收方法及装置 - Google Patents

无线局域网中的信令的发送、接收方法及装置 Download PDF

Info

Publication number
WO2016061912A1
WO2016061912A1 PCT/CN2015/070252 CN2015070252W WO2016061912A1 WO 2016061912 A1 WO2016061912 A1 WO 2016061912A1 CN 2015070252 W CN2015070252 W CN 2015070252W WO 2016061912 A1 WO2016061912 A1 WO 2016061912A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
signaling
transmission
indicate
sta
Prior art date
Application number
PCT/CN2015/070252
Other languages
English (en)
French (fr)
Inventor
林英沛
张佳胤
罗俊
刘乐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP22193359.1A priority Critical patent/EP4171167A1/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202010209216.4A priority patent/CN111510253B/zh
Priority to BR112017008123-7A priority patent/BR112017008123B1/pt
Priority to RU2017117422A priority patent/RU2665295C1/ru
Priority to KR1020177013352A priority patent/KR101922579B1/ko
Priority to EP15851662.5A priority patent/EP3200418B1/en
Priority to CN201580057206.0A priority patent/CN107079020B/zh
Priority to JP2017539483A priority patent/JP6837978B2/ja
Publication of WO2016061912A1 publication Critical patent/WO2016061912A1/zh
Priority to US15/492,053 priority patent/US10342042B2/en
Priority to US16/411,961 priority patent/US10721768B2/en
Priority to US16/932,333 priority patent/US11601972B2/en
Priority to US18/166,763 priority patent/US11889549B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/04Scheduled or contention-free access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/17Selecting a data network PoA [Point of Attachment]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for transmitting and receiving signaling in a wireless local area network.
  • WLAN Wireless Local Area Networks
  • IEEE Institute of Electrical and Electronics Engineers 802.11 series is the main standard of WLAN, and has experienced 802.11, 802.11b/g. /a, 802.11n, 802.11ac generations of mainstream standards.
  • the WLAN technology is based on a computer network and a wireless communication technology
  • a logical link control (LLC) layer and an application layer thereon are applied to different physical layers (PHYsical, referred to as PHY for short).
  • PHY Physical layers
  • the requirements can be the same or different. Therefore, the WLAN standard is mainly for the physical layer and the medium access control layer (Media Access Control, MAC for short), which relates to the wireless frequency range and air interface communication used.
  • Technical specifications and technical standards such as agreements.
  • the physical layer frame in the WLAN standard is also called the physical layer aggregation process (Physical).
  • Layer Convergence Procedure abbreviation: PLCP
  • the PLCP Protocol Data Unit is composed of PLCP Header and PLCP Service Data Unit (PSDU).
  • the PLCP Header mainly includes the training field and signaling (SIGNAL, referred to as: SIG) field.
  • 802.11ax which is under research and development, continues to evolve WLAN technology.
  • the 802.11ax standard will use Orthogonal Frequency Division Multiple Access (OFDMA) to improve transmission efficiency.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the embodiments of the present invention provide a method and an apparatus for transmitting and receiving signaling in a WLAN, and solve the problem of a design scheme of a common signaling in an OFDM system based on OFDMA.
  • a first aspect provides a method for transmitting signaling in a WLAN in a wireless local area network, where the method includes:
  • the access point AP generates signaling, where the signaling includes an AP ID field, a bandwidth BW field, a guard interval GI field, a cyclic redundancy check CRC field, and a tail Tail field, where the AP ID field is used to indicate the ID of the AP, the BW field is used to indicate the bandwidth required for subsequent data transmission of the signaling, and the GI is used to indicate the length of the cyclic prefix CP required for subsequent data transmission of the signaling, the CRC a field is used to protect a field before the CRC field in the signaling, the Tail field is used to clear an encoder and a decoder, and the CRC field and the Tail field are the last two fields of the signaling;
  • the AP sends the signaling.
  • a second aspect provides a method for receiving signaling in a wireless local area network WLAN, where the method includes:
  • the station STA receives the signaling sent by the access point AP, where the signaling includes an AP identifier ID field, a bandwidth BW field, a guard interval GI field, a cyclic redundancy check CRC field, and a tail Tail field, and the AP ID field
  • the signaling includes an AP identifier ID field, a bandwidth BW field, a guard interval GI field, a cyclic redundancy check CRC field, and a tail Tail field
  • the AP ID field An ID for indicating the AP, the BW a field for indicating a bandwidth required for subsequent data transmission of the signaling, the GI being used to indicate a length of a cyclic prefix CP required for subsequent data transmission of the signaling, the CRC field being used to protect the letter a field preceding the CRC field, the Tail field is used to clear the encoder and the decoder, and the CRC field and the Tail field are the last two fields of the signaling;
  • the STA parses the AP ID field, the BW field, and the GI field, respectively, and obtains an ID of the AP, a bandwidth required for subsequent data transmission of the signaling, and a length of the CP.
  • the field after the AP ID field is stopped.
  • a third aspect provides an access point AP, where the AP includes: a generating unit and a sending unit;
  • the generating unit is configured to generate signaling, where the signaling includes an AP ID field, a bandwidth BW field, a guard interval GI field, a cyclic redundancy check CRC field, and a tail Tail field, where the AP ID field is used. Determining an ID of the AP, the BW field is used to indicate a bandwidth required for subsequent data transmission of the signaling, and the GI is used to indicate a length of a cyclic prefix CP required for subsequent data transmission of the signaling, The CRC field is used to protect a field before the CRC field in the signaling, the Tail field is used to clear an encoder and a decoder, and the CRC field and the Tail field are the last two of the signaling. Fields
  • the sending unit is configured to send the signaling.
  • a STA in a fourth aspect, includes: a receiving unit, and a parsing unit;
  • the receiving unit is configured to receive signaling sent by an access point AP, where the signaling includes an AP identifier ID field, a bandwidth BW field, a guard interval GI field, a cyclic redundancy check CRC field, and a tail Tail field.
  • the AP ID field is used to indicate an ID of the AP
  • the BW field is used to indicate a bandwidth required for subsequent data transmission of the signaling
  • the GI is used to indicate a subsequent data transmission required by the signaling.
  • the CRC field is used to protect a field before the CRC field in the signaling
  • the Tail field is used to clear an encoder and a decoder, and the CRC field and the Tail field are the last two fields of the signaling;
  • the parsing unit is configured to separately parse the AP ID field, the BW field, and the GI field, and obtain an ID of the AP, a bandwidth required for subsequent data transmission of the signaling, and a length of the CP. ;
  • the field after the AP ID field is stopped.
  • a fifth aspect provides an access point AP, where the AP includes: a processor and a transmitter;
  • the processor is further configured to generate signaling, where the signaling includes an AP ID field, a bandwidth BW field, a guard interval GI field, a cyclic redundancy check CRC field, and a tail Tail field, where the AP ID field is used.
  • the AP ID field is used. Instructing the ID of the AP, the BW field is used to indicate the bandwidth required for subsequent data transmission of the signaling, and the GI is used to indicate the length of the cyclic prefix CP required for subsequent data transmission of the signaling.
  • the CRC field is used to protect a field before the CRC field in the signaling, the Tail field is used to clear an encoder and a decoder, and the CRC field and the Tail field are the last of the signaling. Two fields;
  • the transmitter is configured to send the signaling.
  • the APID field is a first field of the signaling.
  • the signaling further includes at least one of the following fields:
  • the duration field is used to indicate the remaining duration of the current scheduled transmission occupied channel
  • the FEC encoding field is used to indicate the data encoding mode of the current scheduled transmission
  • the STA number field is used to indicate the local The number of STAs that are scheduled to be transmitted
  • the STAID length field is used to indicate the length of the STAID of the STA that is scheduled to be transmitted
  • the frame structure of the current scheduled transmission includes: an uplink structure, or a downlink structure, or The structure of the downlink and uplink cascade.
  • the AP further includes a receiver
  • the receiver is configured to: if the frame structure indication field indicates that the frame structure of the current scheduled transmission is the uplink structure, after the transmitter sends the signaling, receive uplink data sent by the STA package;
  • the transmitter is further configured to send an acknowledgement message to the STA, where the acknowledgement message is used to indicate that the AP receives the uplink data packet.
  • the AP further includes a receiver
  • the transmitter is further configured to: if the frame structure indication field indicates that the frame structure of the current scheduled transmission is the downlink structure, send the downlink data packet to the STA after the sending the signaling;
  • the receiver is configured to receive an acknowledgment message sent by the STA, where the acknowledgment message is used to indicate that the STA receives the downlink data packet.
  • the AP further includes a receiver
  • the transmitter is further configured to: if the frame structure indication field indicates that the frame structure of the current scheduled transmission is the downlink and uplink cascading structure, send the downlink data packet after the sending the signaling Giving the STA;
  • the receiver is configured to receive an uplink data packet sent by the STA and a first acknowledgement message, where the first acknowledgement message is used to indicate that the STA receives the downlink data packet;
  • the transmitter is further configured to send a second acknowledgement message to the STA, where the second acknowledgement message is used to indicate that the AP receives the uplink data packet;
  • the receiver is further configured to: if the frame structure indication field indicates that the frame structure of the current scheduled transmission is the downlink and uplink cascading structure, after the transmitter sends the signaling, the receiver Describe the uplink data packet sent by the STA;
  • the transmitter is further configured to send a downlink data packet and a second acknowledgement message to the STA, where the second acknowledgement message is used to indicate that the AP receives the uplink data packet;
  • the receiver is further configured to receive a first acknowledgment message sent by the STA, where the first acknowledgment message is used to indicate that the STA receives the downlink data packet.
  • the fifth possible implementation manner of the fifth aspect in combination with the second possible implementation manner of the fifth aspect, the fifth possible implementation manner of the fifth aspect, if the transition time point between the downlink and the uplink is T , the value M of the conversion time field is:
  • M (T - end time of the next signaling) / time domain length of each resource unit in this scheduling.
  • a STA in a sixth aspect, includes: a receiver, a processor;
  • the receiver is configured to receive signaling sent by an access point AP, where the signaling includes an AP identifier ID field, a bandwidth BW field, a guard interval GI field, a cyclic redundancy check CRC field, and a tail Tail field.
  • the AP ID field is used to indicate an ID of the AP
  • the BW field is used to indicate a bandwidth required for subsequent data transmission of the signaling
  • the GI is used to indicate a subsequent data transmission required by the signaling.
  • a length of a cyclic prefix CP the CRC field is used to protect a field before the CRC field in the signaling
  • the Tail field is used to clear an encoder and a decoder
  • the CRC field and the Tail field are The last two fields of the signaling;
  • the processor is configured to separately parse the AP ID field, the BW field, and the GI field, and obtain an ID of the AP, a bandwidth required for subsequent data transmission of the signaling, and a length of the CP. ;
  • the APID field is a first field of the signaling.
  • the signaling further includes at least one of the following fields:
  • the transmission modulation coding scheme MCS field of the next signaling of the signaling, the length field of the next signaling, the frame structure indication field, the single-user SU/multi-user MU field, the conversion time field, the duration field, the front The error correction FEC coding field, the STA number field, and the STAID length field, wherein the MCS field of the next signaling is used to indicate the transmission MCS of the next signaling, and the length field of the next signaling is used for And indicating a length of the next signaling, where the frame structure indication field is used to indicate a frame structure of the scheduled transmission, and the SU/MU field is used to indicate whether the scheduling transmission is an SU or a MU, and the conversion time is The field is used to indicate a transition time point between the downlink and the uplink, where the duration field is used to indicate the remaining duration of the scheduled transmission occupied channel, and the FEC encoding field is used to indicate the data encoding mode of the scheduled transmission, The STA number field is used to indicate the number of
  • the transmission MCS of the next signaling, the length of the next signaling, the frame structure of the current scheduled transmission, whether the current scheduling transmission is SU or MU, and the transition between the downlink and the uplink The time point, the remaining duration of the current scheduled transmission occupied channel, the data coding mode of the current scheduled transmission, the number of STAs of the current scheduled transmission, and the STAID of the STA scheduled to be transmitted this time length.
  • the STA further includes: a transmitter;
  • the processor is further configured to: read resource indication information in the next signaling, and determine a resource location of the STA according to the resource indication information;
  • the receiver is further configured to receive a downlink data packet at the resource location;
  • the transmitter is configured to send an uplink data packet at the resource location.
  • the processor is specifically used to:
  • Conversion time point value of the conversion time field x time domain length of the resource unit + end time of the next signaling.
  • the fourth possible implementation manner of the sixth aspect if the signaling further includes the frame structure indication field, and the frame structure indication field indicates the The frame structure of the secondary scheduling transmission is the downlink and uplink cascading structure, and the time domain location of the uplink transmission resource is:
  • the transmission time of the uplink transmission resource the conversion time point + the handover time received to the transmission + the uplink time indicated by the next signaling.
  • the seventh aspect provides a method for transmitting signaling in a WLAN in a wireless local area network. If the single-user SU is transmitted this time, the method includes:
  • the station STA generates signaling, where the signaling includes an access point identification AP ID field, a bandwidth BW field, a SU/multi-user MU field, a guard interval GI field, a station identification STAID field, and a transmission modulation code of the non-preamble portion data.
  • the AP ID field is used for Instructing an ID of the AP
  • the BW field is used to indicate a bandwidth required for subsequent data transmission of the signaling
  • the SU/MU field is used to indicate that the current transmission is an SU
  • the GI field is used to indicate Required for subsequent data transmission of the signaling
  • the length of the cyclic prefix CP is used to indicate the identifier of the STA that is currently transmitted
  • the MCS field of the non-preamble portion data is used to indicate the transmission MCS of the non-preamble portion data
  • the FEC encoding field is used.
  • the STBC field is used to indicate whether the subsequent data transmission of the signaling in the SU transmission is in an STBC manner, and the NSS field is used to indicate that the SU transmission is adopted.
  • the number of streams used to indicate whether the non-preamble portion data is an aggregation of a single medium access control layer protocol data unit MPDU or an MPDU, the smoothing field being used to indicate information related to transmit beamforming, the CRC a field is used to protect a field before the CRC field in the signaling, the Tail field is used to clear an encoder and a decoder, and the CRC field and the Tail field are the last two fields of the signaling;
  • the STA sends the signaling.
  • the eighth aspect provides a method for transmitting signaling in a WLAN in a wireless local area network. If the single-user SU is transmitted this time, the method includes:
  • the access point AP receives the signaling sent by the station STA, where the signaling includes an AP identifier ID field, a bandwidth BW field, a SU/multi-user MU field, a guard interval GI field, a site identifier STAID field, and a non-leading part data.
  • the AP ID a field is used to indicate an ID of the AP
  • the BW field is used to indicate a bandwidth required for subsequent data transmission of the signaling
  • the SU/MU field is used to indicate that the current transmission is an SU
  • the GI field a length of a cyclic prefix CP required for indicating a subsequent data transmission of the signaling
  • the STAID field is used to indicate an identifier of a STA of the current transmission
  • a transmission MCS field of the non-preamble portion data is used to indicate the a transmission MCS of the non-preamble portion data
  • the FEC encoding field is used to indicate a data encoding manner of the non-preamble portion data
  • the STBC field is used to indicate whether a subsequent
  • the AP parses the AP ID field, the BW field, the GI field, the SU/MU field, the STAID field, the transmission MCS field of the non-preamble portion data, the FEC encoding field,
  • the STBC field, the NSS field, the aggregated field, and the smoothed field obtain the following information:
  • the ID of the AP, the bandwidth required for subsequent data transmission of the signaling, and the length of the CP, the current transmission is the SU, the identifier of the currently transmitted STA, the transmission MCS of the non-preamble portion data, Whether the data encoding mode of the non-preamble portion data, the subsequent data transmission of the signaling in the SU transmission adopts an STBC manner, the number of streams used by the SU transmission, and whether the non-preamble portion data is a single MPDU or an MPDU.
  • Aggregation information related to beamforming;
  • the field after the AP ID field is stopped.
  • a ninth aspect a STA is provided, where the STA includes: a generating unit and a sending unit;
  • the generating unit is configured to generate signaling if the single-user SU is transmitted this time, where the signaling includes an access point identifier AP ID field, a bandwidth BW field, a SU/multi-user MU field, and a guard interval GI.
  • the AP ID field is used to indicate an ID of the AP
  • the BW field is used to indicate a bandwidth required for subsequent data transmission of the signaling
  • the SU/MU field is used for Indicates that the current transmission is an SU
  • the GI field is used to indicate the length of the cyclic prefix CP required for subsequent data transmission of the signaling
  • the STAID field is used to indicate the identity of the STA of the current transmission
  • the non- The transmission MCS field of the preamble portion data is used to indicate a transmission MCS of the non-preamble portion data
  • the FEC encoding field is used to indicate a data encoding manner of the non-preamble portion data
  • the sending unit is configured to send the signaling.
  • a tenth aspect provides an access point AP, where the AP includes a receiving unit and a parsing unit;
  • the receiving unit is configured to: if the current transmission is a single-user SU, receive signaling sent by the station STA, where the signaling includes an AP identifier ID field, a bandwidth BW field, a SU/multi-user MU field, and a guard interval.
  • the GI field is used to indicate an ID of the AP
  • the BW field is used to indicate a bandwidth required for subsequent data transmission of the signaling
  • the SU/MU field is used by The SU indicating the current transmission is the SU
  • the GI field is used to indicate the length of the cyclic prefix CP required for subsequent data transmission of the signaling
  • the STAID field is used to indicate the identity of the STA of the current transmission
  • the transmission MCS field of the non-preamble portion data is used to indicate a transmission MCS of the non-preamble portion data
  • the FEC encoding field is used to indicate a data encoding manner of the non-preamble portion data
  • the smoothing field is used to indicate information related to transmit beamforming
  • the CRC field is used to protect a field before the CRC field in the signaling
  • the Tail field is used to clear the encoder and the decoder
  • the CRC field and the Tail field are the last two fields of the signaling
  • the parsing unit is configured to separately parse the AP ID field, the BW field, the GI field, the SU/MU field, the STAID field, a transmission MCS field of the non-preamble portion data, and the
  • the FEC coding field, the STBC field, the NSS field, the aggregation field, and the smoothing field obtain the following information:
  • the ID of the AP, the bandwidth required for subsequent data transmission of the signaling, and the length of the CP, the current transmission is the SU, the identifier of the currently transmitted STA, the transmission MCS of the non-preamble portion data, Whether the data encoding mode of the non-preamble portion data, the subsequent data transmission of the signaling in the SU transmission adopts an STBC manner, the number of streams used by the SU transmission, and whether the non-preamble portion data is a single MPDU or an MPDU.
  • Aggregation information related to beamforming;
  • the field after the AP ID field is stopped.
  • the embodiment of the present invention provides a method and an apparatus for transmitting and receiving signaling in a WLAN, where the method includes: the AP generates signaling, where the signaling includes an AP ID field, a BW field, a GI field, a CRC field, and a Tail field, and an AP ID.
  • the field is used to indicate the ID of the AP
  • the BW field is used to indicate the bandwidth required for subsequent data transmission of the signaling
  • the GI is used to indicate the length of the CP required for subsequent data transmission of the signaling
  • the CRC field is used to protect the CRC in the signaling.
  • the above solution provides a common signaling design scheme in an OFDMA-based WLAN system, and solves the problem of a public signaling design scheme in an OFDM system based on OFDMA.
  • FIG. 1 is a schematic diagram of a physical layer frame structure specified in the 802.11a standard
  • FIG. 2 is a schematic structural diagram of an 802.11a signaling field
  • FIG. 3 is a schematic diagram of a physical structure frame structure of a mixed format specified in the 802.11n standard
  • FIG. 4 is a schematic structural diagram of an 802.11a signaling field
  • FIG. 5 is a schematic diagram of a physical layer frame structure specified in the 802.11ac standard
  • FIG. 6 is a schematic structural diagram of an 802.11ac signaling field
  • FIG. 7 is a schematic diagram of a network architecture of a WLAN according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a signaling sending method in a WLAN according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a location of a HEW-SIG1 in a data frame according to an embodiment of the present invention.
  • FIG. 9a is a schematic structural diagram of a data frame according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram 1 of a HEW-SIG1 according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram 2 of a HEW-SIG1 according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram 3 of a HEW-SIG1 according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram 4 of a HEW-SIG1 according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram 5 of a HEW-SIG1 according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a format of an uplink frame structure according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of a format of a downlink frame structure according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a frame structure structure of downlink and uplink concatenation according to an embodiment of the present disclosure
  • FIG. 18 is a schematic flowchart of a method for receiving signaling in a WLAN according to an embodiment of the present disclosure
  • FIG. 19 is a schematic flowchart of parsing signaling HEW-SIG1 according to an embodiment of the present disclosure.
  • 20 is a schematic diagram of a position of a conversion time point according to an embodiment of the present invention.
  • FIG. 21 is a schematic diagram of a time domain location of an uplink transmission resource according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram 1 of an AP according to an embodiment of the present disclosure.
  • FIG. 23 is a second schematic structural diagram of an AP according to an embodiment of the present disclosure.
  • FIG. 24 is a schematic structural diagram 1 of a STA according to an embodiment of the present disclosure.
  • FIG. 25 is a schematic structural diagram 2 of a STA according to an embodiment of the present disclosure.
  • FIG. 26 is a schematic structural diagram 3 of an AP according to an embodiment of the present disclosure.
  • FIG. 27 is a schematic structural diagram 4 of an AP according to an embodiment of the present disclosure.
  • FIG. 29 is a schematic structural diagram 4 of a STA according to an embodiment of the present disclosure.
  • FIG. 30 is a schematic flowchart of a signaling sending method in a WLAN according to an embodiment of the present disclosure
  • FIG. 31 is a schematic structural diagram 6 of the HEW-SIG1 according to an embodiment of the present disclosure.
  • FIG. 32 is a schematic flowchart of a method for sending signaling in a WLAN according to an embodiment of the present disclosure
  • FIG. 33 is a schematic flowchart of parsing signaling HEW-SIG1 according to an embodiment of the present disclosure
  • FIG. 34 is a schematic flowchart of a signaling sending method in a WLAN according to an embodiment of the present disclosure
  • FIG. 35 is a schematic structural diagram 7 of the HEW-SIG1 according to an embodiment of the present disclosure.
  • FIG. 36 is a schematic structural diagram 8 of a HEW-SIG1 according to an embodiment of the present disclosure.
  • FIG. 37 is a schematic flowchart of a method for sending signaling in a WLAN according to an embodiment of the present disclosure
  • FIG. 38 is a schematic structural diagram 5 of a STA according to an embodiment of the present disclosure.
  • FIG. 39 is a schematic structural diagram 5 of an AP according to an embodiment of the present disclosure.
  • 40a-40m are schematic structural diagrams of HE-SIG-A or HE-SIG-B according to an embodiment of the present invention.
  • FIG. 41 is a schematic diagram of a processing process of a receiving end according to an embodiment of the present invention.
  • FIG. 42 is a schematic diagram of a processing process of a receiving end according to another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of the physical layer frame structure specified in the 802.11a standard.
  • the PLCP Header includes a Short Training Field (STF), a Long Training Field (LTF), and a SIG field.
  • the PLCP Header portion may also be referred to as a Preamble portion.
  • STF for packet detection, Auto Gain Control (AGC) settings, initial frequency offset estimation
  • AGC Auto Gain Control
  • the meter is synchronized with the initial time.
  • the LTF for channel estimation and more accurate frequency offset estimation and initial time synchronization.
  • the SIG field which contains an Orthogonal Frequency Division Multiplexing (OFDM) symbol, which is used to identify the rate and length information of the data packet.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the SIG field of the 802.11a standard consists of a single 4 ⁇ s symbol (3.2 ⁇ s OFDM symbol and a 0.8 ⁇ s Cyclic Prefix (CP).
  • the waveform consists of 64 subcarriers with a subcarrier position range of - 32,-31,...,-1,0,1,...,31.
  • the subcarriers carrying the signals are located at -26, -25,..., -2, -1, 1, 2, ..., 25, 26, Wherein the pilot subcarriers are located at -21, -7, 7, 21, and the remaining 48 subcarriers carry the encoded SIG bits.
  • the remaining subcarriers -32, ..., -27, 27, ... 31 are guard subcarriers, 0 is a DC subcarrier.
  • the SIG field itself is transmitted using Binary Phase Shift Keying (BPSK) modulation and a 1/2 rate binary convolutional code, so the SIG consists of 24 information bits. , as shown in Figure 2.
  • 0-3 bits are rate bits, which are used to indicate the modulation and modulation scheme (MCS) used for data part transmission; bit 4 is reserved bits, bit 5- 16 is a length bit indicating the length of the data or the amount of data.
  • bit 5 is the least significant bit (Least Signific Ant Bit (abbreviation: LSB)
  • bit 16 is the Most Significant Bit (MSB).
  • Bit 17 is the parity bit used to verify the even parity of the first 17 bits. Since SIG and subsequent data Part of the binary convolutional code is separately encoded, and the 6 bits of the tail are set to 0 to clear the encoder and decoder.
  • FIG 3 shows the structure of the mixed-layer physical layer frame specified in the 802.11n standard.
  • the 802.11n hybrid format PLCP Header consists of a traditional PLCP Header and an 802.11n PLCP Header.
  • the tradition here (Legacy, abbreviated: L) mainly refers to the PLCP Header part of 802.11a.
  • the High Throughput (HT) here mainly refers to the PLCP Header part of 802.11n.
  • the L-STF part of the L-Preamble part and the STF field of the 802.11a preamble are the same, and the LTF fields in the L-LTF and 802.11a preambles are the same, in the L-SIG field and the 802.11a preamble.
  • the SIG field is the same.
  • Part of the HT Preamble The HT-SIG field, HT-STF, and HT-LTF are composed.
  • the HT-SIG field consists of two OFDM symbols HT-SIG1 and HT-SIG2, including new signaling information in the 802.11n standard, and is also used for automatic detection between 802.11n data packets and legacy 802.11a data packets. .
  • the HT-STF is used to redo the automatic gain setting.
  • the HT-LTF includes one or more OFDM symbols for Multiple Input Multiple Output (MIMO) channel estimation.
  • MIMO Multiple Input Multiple Output
  • HT-SIG1 The structure diagram of the two symbols of HT-SIG1 and HT-SIG2 is shown in Fig. 4.
  • the number of subcarriers and modulation coding of HT-SIG1 and HT-SIG2 are exactly the same as those of 802.11a, so each symbol contains 24 information bits, and the 6 bits of the tail are set to 0 for clearing the encoder and decoding.
  • the first 7 bits represent the MCS indication, and one of 0-76 is selected to transmit the following data portion.
  • Bit 7 is used to indicate whether data is transmitted on a bandwidth of 20 MHz or 40 MHz. This information allows a 20 MHz receiver to receive no signal at 40 MHz bandwidth, thereby reducing power consumption.
  • Bits 8-23 are used to indicate the length of the data, ranging from 0-65535 bytes.
  • the smoothing field of bit 0 the non-probing field of bit 1 and the extended spatial stream field of bits 8-9 are used to indicate information related to transmit beamforming, since 802.11n supports transmit beamforming.
  • Bit 2 is a reserved bit.
  • Bit 3 is an aggregation bit, which is used to indicate whether the data part is a single MAC Protocol Data Unit (MPDU) or an aggregation of MPDUs (A-MPDU).
  • Bits 4-5 represent Space-time block coding (STBC), 0 means no STBC coding, 3 is reserved value, and 1 and 2 are used to indicate different space-time flows according to different MCSs.
  • STBC Space-time block coding
  • the Forward Error Correction (FEC) coded bit is used to indicate whether the data is encoded in a Binary Convolution Code (BCC) or a Low Density Parity Check (CLow Density Parity Check). :LDPC).
  • Bit 7 is used to indicate whether the CP length of the data transmission portion is a short CP (0.4 ⁇ s) or a long CP (0.8 ⁇ s).
  • Bits 10-17 are CRC guard bits for protecting the 0-23 bits of HT-SIG1 and the 0-9 bits of HT-SIG2.
  • FIG. 5 shows the structure of the physical layer frame specified in the 802.11ac standard.
  • the 802.11ac preamble (or PLCP Header) includes a traditional preamble and a VHT preamble.
  • L mainly refers to the PLCP Header part of 802.11a.
  • the Very High Throughput (VHT) here refers to the PLCP Header part of 802.11ac.
  • VHT Very High Throughput
  • the L-Preamble portion of the 802.11ac preamble is identical to the L-Preamble portion of the 802.11n preamble.
  • the VHT Preamble portion is composed of a VHT-SIGA field, a VHT-STF, a VHT-LTF, and a VHT-SIGB field.
  • the VHT-SIGA field consists of two OFDM symbols VHT-SIGA1 and VHT-SIGA2, including new signaling information in the 802.11ac standard, and is also used between 802.11ac packets and legacy 802.11a and 802.11n packets. Automatic detection.
  • the structure and function of VHT-STF and VHT-LTF are similar to those of HT-STF and HT-LTF.
  • the VHT-SIGB field is a new field in the 802.11ac preamble, which is used to support the Multiple User (MM) MIMO function.
  • MM Multiple User
  • VHT-SIGA1 and VHT-SIGA2 are shown in Fig. 6.
  • the number of subcarriers and modulation coding of HT-SIG-A1 and VHE-SIG-A2 are exactly the same as those of 802.11a, so each symbol contains 24 information bits, and the 6 bits of the tail are set to 0 for clearing.
  • Encoder and decoder In VHT-SIG-A1, bit 0-1 is used to indicate the transmission bandwidth of data after VHT-SIG-A, and two bandwidths of 20, 40, 80, and 160 MHz are indicated by 2 bits. Bit 2 is a reserved bit and bit 3 is used to indicate whether STBC is used.
  • Bits 4-9 are used to indicate the packet in the MU-MIMO transmission.
  • the packet identifier is sent to the data packet of the access point (AP). Iditity (abbreviation: ID) is 0, and the packet ID of the data packet sent by the AP is 1.
  • ID the packet ID of the data packet sent by the AP is 1.
  • the remaining indications are the MU's grouping.
  • bits 10-21 when SU is used, bits 10-12 are used to indicate the number of space time streams (NSTS), and bits 13-21 are partial associations of stations (STAtion, STA for short).
  • An identifier (AID) is used by the receiving end to determine whether to receive the information sent by the STA.
  • bit 10-12, 13-15, 16-18, and 19-21 respectively indicate the group.
  • the bit 22 is used to indicate whether a non-AP STA is allowed to enter a sleep state in a Transmission Opportunity (TXOP).
  • Bit 23 is a reserved bit.
  • bit 0 is used to indicate whether the CP length of the data transmission portion after VHT-SIG-A is short CP (0.4 ⁇ s) or long CP (0.8 ⁇ s).
  • Bit 1 is used to indicate whether the symbol length exceeds a certain value at the time of short CP transmission.
  • Bit 2 is used to indicate the coding mode.
  • bits 10-17 are identical to bits 10-17 in 802.11n HT-SIG2 for protecting the 0-23 bits of VHT-SIG-A1 and the 0-9 bits of VHT-SIG-A2.
  • the words “first”, “second” and the like are used to distinguish the same or similar items whose functions and functions are substantially the same, in the field.
  • the skilled person can understand the words “first”, “second” and the like and limit the number and execution order.
  • FIG. 7 is a schematic diagram of a network architecture of a WLAN according to an embodiment of the present invention.
  • the network architecture of the WLAN 10 includes an AP 20 and multiple STAs 30.
  • the WLAN 10 supports uplink (UpLink, UL for short) or downlink (DL) MU MIMO communication between the AP 20 and the plurality of STAs 30, and the WLAN 10 supports the UL between the AP 20 and each of the plurality of STAs 30.
  • UpLink, UL for short or downlink (DL) MU MIMO communication between the AP 20 and the plurality of STAs 30, and the WLAN 10 supports the UL between the AP 20 and each of the plurality of STAs 30.
  • DL downlink
  • the AP 20 includes a host processor 21 coupled to a network interface 22.
  • Network interface 22 includes a MAC 23 and a PHY 24.
  • PHY24 includes multiple transceivers (transmit/receive Weighing: TX/RX) 25, and the transceiver 25 is coupled to a plurality of antennas 26.
  • MAC 23 and PHY 24 are configured to operate in accordance with a first communication protocol (e.g., the IEEE 802.11ax standard, now in a standardized process).
  • the MAC 23 and the PHY 24 may also be configured to operate according to the second communication protocol (for example, the IEEE 802.11n standard, the IEEE 802.11a standard, the IEEE 802.11ac standard, etc.), which is not specifically limited in the embodiment of the present invention.
  • the first communication protocol is referred to herein as a High Efficiency Wlan (HEW) protocol, which is referred to herein as a legacy protocol.
  • HEW High Efficiency Wlan
  • the STA 30 includes a host processor 31 coupled to a network interface 32 that includes a MAC 33 and a PHY 34.
  • the PHY 34 includes a plurality of transceivers 35, and the transceiver 35 is coupled to a plurality of antennas 36. Wherein at least one of the plurality of STAs 30 is configured as an HEW protocol.
  • the WLAN 10 may further include an L-STA 40, which is not configured as the HEW protocol, and is configured to operate according to the conventional protocol, which is not specifically limited by the embodiment of the present invention.
  • FIG. 7 is only a schematic diagram showing a network architecture of a possible WLAN.
  • FIG. 7 is only a schematic diagram showing a network architecture of a possible WLAN.
  • FIG. 7 is only a schematic diagram showing a network architecture of a possible WLAN.
  • FIG. 7 is only a schematic diagram showing a network architecture of a possible WLAN.
  • both the STA side and the AP side can include multiple transceivers and antennas.
  • FIG. 7 is only an exemplary example of three transceivers and three antennas on the STA side and the AP side, respectively.
  • the number of the antennas and the antennas is not limited thereto, and is not specifically limited in the embodiment of the present invention.
  • FIG. 7 is merely an example of listing 4 STAs 30 and 1 L-STA 40, but the number of STAs 30 and L-STAs 40 is not The embodiment of the present invention is not limited thereto.
  • FIG. 8 is a schematic diagram of signaling sending in a WLAN according to an embodiment of the present disclosure, where the method includes:
  • the AP generates signaling, where the signaling includes an AP ID field, a bandwidth (Bandwidth, BW for short) field, and a Guard Interval (GI) field.
  • a CRC field and a tail Tail field the AP ID field is used to indicate the ID of the AP
  • the BW field is used to indicate the bandwidth required for subsequent data transmission of the signaling
  • the GI is used to indicate the length of the CP required for subsequent data transmission of the signaling
  • the CRC field is used to protect the field before the CRC field in the signaling
  • the Tail field is used to clear the encoder and the decoder
  • the CRC field and the Tail field are the last two fields of the signaling.
  • the AP sends signaling.
  • the AP ID field may be the first field of the signaling.
  • the receiving terminal STA may first parse the AP ID field to determine whether the data packet is sent by the associated AP, and if yes, continue to unpack the packet; if not, stop the unpacking. Save system resources.
  • the signaling generated by the AP is referred to as HEW-SIG1 as an example.
  • HEW-SIG1 the signaling generated by the AP is referred to as HEW-SIG1 as an example.
  • the location of HEW-SIG1 in the data frame is as shown in Figure 9, after the L-Preamble, so its decoding is based on L-Preamble-based channel estimation, so the transmission of SIG/SIGA in 802.11a, 802.11n, 802.11ac is still used.
  • the parameter at 20 MHz, uses 52 subcarriers of the 64 subcarriers as useful subcarriers, including 4 pilot subcarriers, which is consistent with the transmission parameters of the L-Preamble.
  • HEW-SIG1 adopts MCS0 transmission, that is, BPSK/Quadrature Binary Phase Shift Keying (QBPSK) modulation, and BCC coding of one-half code rate, so one OFDM symbol carries 24-bit information.
  • MCS0 transmission that is, BPSK/Quadrature Binary Phase Shift Keying (QBPSK) modulation, and BCC coding of one-half code rate, so one OFDM symbol carries 24-bit information.
  • QBPSK Binary Phase Shift Keying
  • the HEW-SIG1 when the HEW-SIG1 has only one OFDM symbol, only the 10 bits of the AP ID field, the BW field, and the GI field are available except for the CRC field containing 8 bits and the Tail field for clearing the codec.
  • the specific content of the field carried in one OFDM symbol of the HEW-SIG1 is as shown in Table 1.
  • the 2-bit BW field is used to represent 20 40, 80, 160MHZ bandwidth usage scenario;
  • 2bit GI field is used to indicate 4 CP lengths, where 0.8 and 1.6 are mandatory, the other two can be 0.4, 2.4, 3.2, etc., CRC field and Tail field and 802.11n
  • the usage of SIG/SIGA in 802.11ac is consistent.
  • FIG. 10 is merely an exemplary schematic diagram of a possible HEW-SIG1 structure. Of course, there may be other arrangements for each field in the HEW-SIG1. Specifically limited.
  • the CRC bits can be compressed, for example, 6 bits are used for CRC check, so that 12 bits can be used to carry valid information. It can carry 2bit BW, 2bit GI, 7bit AP ID, and can also carry other possible signaling fields or retain the remaining 1bit, as shown in Figure 11. Of course, if the check is performed by using 4 bits, the payload information can be carried by 14 bits. In addition to the 2 bit BW, the 2 bit GI, and the 7 bit AP ID, the 3 bit can carry additional information or be a reserved field. This example does not specifically limit this.
  • the signaling generated in step S801 further includes at least one of the following fields:
  • MCS field of next signaling MCS field of next signaling, length field of next signaling, frame structure indication field, SU/MU field, conversion time field, duration field, forward error correction FEC coding field, STA number field, site identifier (STA Ididity (abbreviation: STAID) length field, where the MCS field of the next signaling is used to indicate the transmission MCS of the next signaling, and the length field of the next signaling is used to indicate the length of the next signaling, and the frame structure indication field Used to indicate the frame structure of this scheduled transmission, the SU/MU field is used to indicate Whether the SU or the MU is transmitted in the current scheduling, the conversion time field is used to indicate the transition time point between the downlink and the uplink, and the duration field is used to indicate the remaining duration of the occupied channel of the scheduled transmission, and the FEC encoding field is used to indicate the present
  • the data encoding mode of the secondary scheduling transmission the STA number field is used to indicate the number of STAs scheduled to be transmitted, and
  • the BW field in addition to the AP ID field, the BW field, the GI field, the CRC field, and the Tail field, there may be various other fields in the HEW-SIG1.
  • the next signaling of HEW-SIG1 is taken as an example of HEW-SIG2.
  • the location of HEW-SIG1 in the data frame is as shown in FIG. 9, one OFDM symbol carries 24 bits of information, and HEW-SIG1 is composed of two 4 ⁇ s OFDM symbols.
  • the HEW-SIG1 may include an AP ID field, a BW field, a GI field, an MCS field of the HEW-SIG2, a length field of the HEW-SIG2, a frame structure indication field, a conversion time field, a SU/MU field, CRC field, Tail field.
  • the order and number of bits of each field are as shown in FIG.
  • the specific contents of the fields carried in the first OFDM symbol and the second OFDM symbol of the HEW-SIG1 are respectively shown in Table 2 and Table 3.
  • the 2-bit BW field is used to represent the bandwidth usage scenarios of 20, 40, 80, and 160 MHz;
  • the 2-bit GI field is used to indicate the four CP lengths.
  • the MCS field of HEW-SIG2 and the length field of HEW-SIG2 respectively indicate the transmission MCS and length of HEW-SIG2
  • the frame structure indication field is used for Indicates the uplink and downlink transmission mode of the frame for the scheduled transmission.
  • the conversion time field is used to indicate the transition time point between the downlink and the uplink;
  • the SU/MU field is used to indicate whether the SU or MU is scheduled for the current transmission;
  • the CRC field and The Tail field is consistent with the usage of SIG/SIGA in 802.11n and 802.11ac.
  • FIG. 12 is merely a schematic diagram showing a possible HEW-SIG1 structure.
  • HEW-SIG1 may also be composed of other fields, and other fields in HEW-SIG1 may have other fields.
  • the arrangement of the present invention is not specifically limited in this embodiment.
  • the HEW-SIG1 structure diagram can be as shown in FIG. 13. Compared with the HEW-SIG1 provided in FIG. 12, the HEW-SIG1 provided in FIG. 13 adds a duration field and The FEC encoding field removes the frame structure indication field and the conversion time field.
  • the HEW-SIG1 structure diagram may be as shown in FIG. 14.
  • the HEW-SIG1 is composed of three 4 ⁇ s OFDM symbols, which is not specifically limited in the embodiment of the present invention.
  • the reserved field of the HEW-SIG1 may be used to indicate other signaling, which is not specifically limited in the embodiment of the present invention.
  • part of the fields of the HEW-SIG1 may be multiplexed.
  • the conversion time field is not required, and the conversion time field is
  • the 6 bits can be multiplexed with other signaling bits, such as an MCS that transmits an acknowledgment character (Acknowledgement, ACK), which is not specifically limited in this embodiment of the present invention.
  • the STA field can also be used to indicate whether the SU or the MU is transmitted in the current scheduling. For example, if the value of the STA field is 1, it can be characterized that the SU is scheduled to be transmitted; if the value of the STA field is not 1, It is the MU that can characterize this scheduled transmission.
  • the method may further include :
  • the AP receives the uplink data packet sent by the STA.
  • the AP sends an acknowledgement message to the STA, where the acknowledgement message is used to indicate that the AP receives the uplink data packet.
  • the frame structure format when there is only an uplink data packet, the frame structure format may be as shown in FIG. 15.
  • the AP sends a channel reserved packet (CRP) to enter the scheduled transmission phase.
  • the AP transmits an L-Preamble and a HEW Preamble, and the HEW Preamble includes HEW-SIG1, HEW-STF, HEW-LTF, and HEW-SIG2.
  • HEW-SIG2 contains resource allocation indications in the uplink transmission phase.
  • the STA performs uplink transmission on the indicated resource in the next uplink transmission slot according to the resource allocation indication in the HEW-SIG2.
  • the AP sends the ACK that just received the uplink data, and indicates the resource allocation of the next uplink time slot; if the uplink data transmission ends, the AP only sends the ACK that just received the uplink data.
  • the media access protocol (Media Access Protrol, MAP for short) in FIG. 15 is a resource allocation indication.
  • step S802 if the frame structure indication field indicates that the frame structure of the scheduled transmission is a downlink structure, after the AP sends the signaling (step S802), include:
  • the AP sends a downlink packet to the STA.
  • the AP receives an acknowledgment message sent by the STA, where the acknowledgment message is used to indicate that the STA receives the downlink data packet.
  • the frame structure format may be as shown in FIG. 16.
  • the AP sends a CRP and enters the scheduled transmission phase.
  • the AP sends downlink data, where the initial part of the downlink data includes L-Preamble and HEW Preamble.
  • the HEW Preamble includes HEW-SIG1, HEW-STF, HEW-LTF, and HEW-SIG2.
  • the HEW Preamble is followed by the transmission of the downlink data.
  • the HEW-SIG2 includes a resource allocation indication of the downlink transmission phase and/or a resource indication of the uplink reply ACK.
  • the STA receives downlink data on the corresponding resource according to the resource allocation indication in the HEW-SIG2. After the downlink data transmission ends, the STA sends an ACK that just receives the downlink data.
  • step S802 if the frame structure indication field indicates that the frame structure of the scheduled transmission is a downlink and uplink cascading structure, signaling is sent by the AP (step S802). After that, you can also include:
  • the AP sends a downlink packet to the STA.
  • the AP sends a second acknowledgement message to the STA, and the second acknowledgement message is used to indicate that the AP receives the uplink data packet.
  • the frame structure format can be as shown in FIG.
  • the AP sends a CRP and enters the scheduled transmission phase.
  • the AP then sends the L-Preamble and HEW Preamble first.
  • the HEW Preamble includes HEW-SIG1, HEW-STF, HEW-LTF, and HEW-SIG2.
  • the HEW-SIG2 includes resource locations for receiving data and transmitting data on the STA side in downlink and uplink transmission slots.
  • the uplink transmission time period includes the transmission of the ACK reply to the downlink data
  • the downlink transmission time period includes the transmission of the ACK of the uplink data. If the last time slot ends, the ACK reply transmission of the uplink transmission with an AP is required, as shown in the last part of FIG.
  • the method may further include:
  • the AP receives the uplink data packet sent by the STA.
  • the AP sends a downlink data packet and a second acknowledgement message to the STA, where the second acknowledgement message is used to indicate that the AP receives the uplink data packet.
  • the AP receives the first acknowledgement message sent by the STA, where the first acknowledgement message is used to instruct the STA to receive the downlink data packet.
  • This embodiment of the present invention does not specifically limit this.
  • the value M of the conversion time field is:
  • the symbol length of the 256-point Fast Fourier Transformation (FFT) is 12.8 ⁇ s
  • the CP length is 0.8 ⁇ s
  • the shortest OFDM symbol length of the 20 MHz 256-point FFT is 13.6 ⁇ s.
  • the longest length that the SIG can indicate in the L-Preamble is 5484 ⁇ s, minus the length of the L-Preamble by 20 ⁇ s, leaving 5464 ⁇ s for transmitting the Preamble and data of the HEW part.
  • the time domain of the resource unit in the scheduling phase contains n OFDM symbols
  • the number of OFDM symbols included in the time domain of the resource unit is different, the number of bits required for the conversion time field is also different, which is not specifically limited in this embodiment of the present invention.
  • a method for transmitting signaling in a WLAN includes: an AP generating signaling, where the signaling includes an AP ID field, a BW field, a GI field, a CRC field, and a Tail field, where the AP ID field is used to indicate The ID of the AP, the BW field is used to indicate the bandwidth required for subsequent data transmission of the signaling, the GI is used to indicate the length of the CP required for subsequent data transmission of the signaling, and the CRC field is used to protect the field before the CRC field in the signaling.
  • the Tail field is used to clear the encoder and decoder, and the CRC field and the Tail field are the last two fields of signaling; the AP sends signaling.
  • the above solution provides a common signaling design scheme in an OFDMA-based WLAN system, and solves the problem of a public signaling design scheme in an OFDM system based on OFDMA.
  • FIG. 18 is a schematic diagram of a method for receiving signaling in a WLAN according to an embodiment of the present disclosure, where the method includes:
  • the STA receives the signaling sent by the access point AP, where the signaling includes an AP ID field, a BW field, a GI field, a CRC field, and a Tail field, where the AP ID field is used to indicate an ID of the AP, and the BW field is used to indicate The bandwidth required for subsequent data transmission of signaling, the GI is used to indicate the length of the CP required for subsequent data transmission of the signaling, the CRC field is used to protect the field before the CRC field in the signaling, and the Tail field is used to clear the encoder and The decoder, CRC field and Tail field are the last two fields of signaling.
  • the STA parses the AP ID field, the BW field, and the GI field, respectively, and obtains an ID of the AP, a bandwidth required for subsequent data transmission of the signaling, and a length of the CP.
  • the field after the AP ID field is stopped.
  • the structure of the signaling received by the STA may be referred to FIG. 10, and details are not described herein again.
  • the AP ID field may be the letter.
  • the first field of the order the STA may first parse the AP ID field to determine whether the data packet is sent by the associated AP, and if yes, continue to unpack; if not, stop the unpacking, saving the system. resource of.
  • the signaling may further include at least one of the following fields:
  • the MCS field of the next signaling is used to indicate the transmission MCS of the next signaling
  • the length field of the next signaling is used to indicate the length of the next signaling
  • the frame structure indication field is used to indicate the frame of the scheduled transmission.
  • the SU/MU field is used to indicate whether the scheduling transmission is SU or MU
  • the conversion time field is used to indicate the transition time point between the downlink and the uplink
  • the duration field is used to indicate the remaining duration of the occupied channel of the scheduled transmission.
  • the frame structure of the scheduled transmission includes: an uplink structure, or a downlink structure, or a downlink and uplink cascade structure.
  • the MCS of the next signaling, the length of the next signaling, the frame structure of the scheduled transmission, whether the SU or the MU, the transition time between the downlink and the uplink, and the remaining of the channel occupied by the scheduled transmission The duration, the data encoding mode of the scheduled transmission, the number of STAs scheduled to be transmitted, and the length of the STAID of the STA that is scheduled to be transmitted this time.
  • FIG. 12-14 a schematic diagram of the structure of the signaling received by the STA may be referred to as FIG. 12-14 and the like, and details are not described herein again.
  • the signaling receiving method in the WLAN provided by the embodiment of the present invention may further include:
  • the STA reads the resource indication information in the next signaling
  • the STA transmits uplink data packets and/or downlink data packets at resource locations.
  • the schematic diagram of the signaling received by the STA is specifically shown in FIG. 12, where the STA is configured to parse the signaling HEW after receiving the data packet.
  • the schematic diagram of the -SIG1 process is shown in Figure 19, including:
  • S1901 The STA parses the AP ID field to obtain an ID of the AP.
  • the STA determines, according to the ID of the AP, whether it is a data packet sent by the AP associated with itself.
  • S1903 The STA parses the BW field, the GI field, the transport MCS field of the HEW-SIG2, and the length field of the HEW-SIG2, respectively, and obtains the bandwidth required for subsequent data transmission of the HEW-SIG1, the length of the CP, and the transmission MCS of the HEW-SIG2, And the length of the HEW-SIG2.
  • S1904 The STA parses the frame structure indication field to obtain a frame structure of the scheduled transmission.
  • the STA determines whether the frame structure of the scheduled transmission is a downlink and uplink cascading structure.
  • step S1907 is performed.
  • S1906 The STA parses the conversion time field to obtain a transition time point between the downlink and the uplink.
  • S1907 The STA parses the SU/MU field, and obtains whether the scheduling transmission is SU or MU.
  • step S1908 is performed;
  • step S1909 is performed.
  • the SU receives and transmits data according to the carrier allocation format of the SU.
  • the STA reads the resources in the HEW-SIG2. Instructions.
  • the STA determines, according to the resource indication information in the HEW-SIG2, the resource location of the data that is received or transmitted by the STA, and receives or sends the data at the corresponding resource location.
  • the resource indication information of the HEW-SIG2 is not needed, and when the MU transmission is performed, which STA needs to be indicated in the HEW-SIG2 At what position (receive) and transmit (uplink) data; at the same time, when performing MU transmission, in order to ensure the quality of reception and transmission, try to ensure that the receiving and transmitting parts of each STA have pilots, so SU and MU When transmitting, the allocation structure of subcarriers is inconsistent, and MU requires more pilot design than SU.
  • the SU/MU field can be added to indicate whether the SU or MU is scheduled for transmission.
  • the STA parses the conversion time field to obtain a conversion time point between the downlink and the uplink, and specifically includes:
  • the STA determines the transition time point between the downlink and the uplink according to the value of the conversion time field, the time domain length of the resource unit, and the end time of the signaling, and the preset formula includes:
  • Conversion time point value of the conversion time field ⁇ time domain length of the resource unit + end time of the next signaling.
  • the position of the conversion time point is as shown in FIG.
  • the signaling further includes a frame structure indication field, and the frame structure indication field indicates that the frame structure of the scheduled transmission is a downlink and uplink cascading structure
  • the time domain location of the uplink transmission resource is:
  • the conversion time of the reception to the transmission Take 16 ⁇ s
  • the transmission time of the STA indicated in HEW-SIG2 is 25 ⁇ s after the start of the uplink, then it can be obtained by formula (3).
  • the end time is +2217 ⁇ s.
  • the time domain location of the uplink transmission resource is as shown in FIG.
  • the receive/transmit transition gap (RTG) is the handover time of the receive-to-send in the formula (3), and the uplink indicated by the HEW-SIG2.
  • the time is the uplink time indicated by the next signaling in equation (3).
  • the STA can calculate the time domain location of the uplink transmission resource.
  • the receiving method of the WLAN signaling includes: the STA receives the signaling sent by the access point AP, where the signaling includes an AP ID field, a BW field, a GI field, a CRC field, and a Tail field, and the AP
  • the ID field is used to indicate the ID of the AP
  • the BW field is used to indicate the bandwidth required for subsequent data transmission of the signaling
  • the GI is used to indicate the length of the CP required for subsequent data transmission of the signaling
  • the CRC field is used to protect the signaling.
  • the embodiment of the present invention provides an AP 2200. Specifically, as shown in FIG. 22, the embodiment includes: a generating unit 2202 and a sending unit 2203.
  • the generating unit 2202 is configured to generate signaling, where the signaling includes an AP ID field, a bandwidth BW field, a guard interval GI field, a cyclic redundancy check CRC field, and a tail Tail field, where the AP ID field is used to indicate an ID of the AP2200.
  • BW field is used to indicate signaling
  • the bandwidth required for subsequent data transmission the GI is used to indicate the length of the CP required for subsequent data transmission of the signaling
  • the CRC field is used to protect the field before the CRC field in the signaling
  • the Tail field is used to clear the encoder and the decoder.
  • the CRC field and the Tail field are the last two fields of signaling.
  • the sending unit 2203 is configured to send signaling.
  • the AP ID field is the first field of signaling.
  • the signaling further includes at least one of the following fields:
  • the MCS field of the next signaling is used to indicate the transmission MCS of the next signaling
  • the length field of the next signaling is used to indicate the length of the next signaling
  • the frame structure indication field is used to indicate the frame of the scheduled transmission.
  • the SU/MU field is used to indicate whether the scheduling transmission is SU or MU
  • the conversion time field is used to indicate the transition time point between the downlink and the uplink
  • the duration field is used to indicate the remaining duration of the occupied channel of the scheduled transmission.
  • the frame structure of the scheduled transmission includes: an uplink structure, or a downlink structure, or a downlink and uplink cascade structure.
  • the AP 2200 further includes a receiving unit 2204.
  • the receiving unit 2204 is configured to: if the frame structure indication field indicates that the frame structure of the scheduled transmission is an uplink structure, after the sending unit 2203 sends the signaling, receive the uplink data packet sent by the STA.
  • the sending unit 2203 is further configured to send an acknowledgement message to the STA, where the acknowledgement message is used to indicate that the AP2200 receives the uplink data packet.
  • the AP 2200 further includes a receiving unit 2204.
  • the sending unit 2203 is further configured to: if the frame structure indication field indicates that the frame structure of the scheduled transmission is a downlink structure, send the downlink data packet to the STA after sending the signaling.
  • the receiving unit 2204 is configured to receive an acknowledgement message sent by the STA, where the acknowledgement message is used. Instruct the STA to receive the downlink data packet.
  • the AP 2200 further includes a receiving unit 2204.
  • the sending unit 2203 is further configured to: if the frame structure indication field indicates that the frame structure of the scheduled transmission is a downlink and an uplink cascading structure, after sending the signaling, send the downlink data packet to the STA.
  • the receiving unit 2204 is configured to receive an uplink data packet sent by the STA and a first acknowledgement message, where the first acknowledgement message is used to indicate that the STA receives the downlink data packet.
  • the sending unit 2203 is further configured to send a second acknowledgement message to the STA, where the second acknowledgement message is used to indicate that the AP2200 receives the uplink data packet.
  • the receiving unit 2204 is further configured to: if the frame structure indication field indicates that the frame structure of the scheduled transmission is a downlink and uplink cascading structure, after the sending unit 2203 sends the signaling, the uplink data packet sent by the STA is received.
  • the sending unit 2203 is further configured to send a downlink data packet and a second acknowledgement message to the STA, where the second acknowledgement message is used to indicate that the AP2200 receives the uplink data packet.
  • the receiving unit 2204 is further configured to receive a first acknowledgement message sent by the STA, where the first acknowledgement message is used to instruct the STA to receive the downlink data packet.
  • the value M of the conversion time field is:
  • M (T - end time of the next signaling) / time domain length of each resource unit in this scheduling.
  • the method for transmitting the signaling in the WLAN by using the AP may refer to the description of the first embodiment, and details are not described herein again.
  • the AP of the present embodiment can be used to perform the method in the foregoing Embodiment 1. Therefore, the technical effects that can be obtained can also be referred to the description in the foregoing embodiment, and details are not described herein again.
  • the embodiment of the present invention provides a STA 2400.
  • the STA 2400 includes: a receiving unit 2401 and a parsing unit 2402.
  • the receiving unit 2401 is configured to receive signaling sent by the access point AP, where the signaling includes an AP identifier ID field, a bandwidth BW field, a guard interval GI field, a cyclic redundancy check CRC field, and a tail Tail field, and an AP ID field.
  • the BW field is used to indicate the bandwidth required for subsequent data transmission of the signaling
  • the GI is used to indicate the length of the cyclic prefix CP required for subsequent data transmission of the signaling
  • the CRC field is used for protection signaling.
  • the field before the CRC field, the Tail field is used to clear the encoder and the decoder, and the CRC field and the Tail field are the last two fields of signaling.
  • the parsing unit 2402 is configured to parse the AP ID field, the BW field, and the GI field respectively, and obtain an ID of the AP, a bandwidth required for subsequent data transmission of the signaling, and a length of the CP.
  • the field after the AP ID field is stopped.
  • the AP ID field is the first field of signaling.
  • the signaling further includes at least one of the following fields:
  • Transmission modulation coding scheme MCS field of the next signaling, length field of the next signaling, frame structure indication field, single-user SU/multi-user MU field, conversion time field, duration field, forward error correction FEC Encoding field, STA2400 number field, STA2400ID length field, where the MCS field of the next signaling is used to indicate the transmission MCS of the next signaling, and the length field of the next signaling is used to indicate the length of the next signaling, frame structure
  • the indication field is used to indicate the frame structure of the scheduled transmission
  • the SU/MU field is used to indicate whether the scheduling transmission is SU or MU
  • the conversion time field is used to indicate the transition time point between the downlink and the uplink
  • duration field is used.
  • the FEC encoding field is used to indicate the data encoding mode of the current scheduled transmission
  • the STA2400 number field is used to indicate the number of STAs scheduled to be transmitted
  • the STAID length field is used to indicate the present The length of the STAID of the STA that is scheduled to be transmitted, where the frame structure of the scheduled transmission includes: an uplink structure, or a downlink structure, or a downlink Upstream cascade structure.
  • the parsing unit 2402 is further configured to parse at least one of the following fields to obtain at least one of the following information:
  • the transmission of the next signaling MCS, the length of the next signaling, and the current scheduled transmission The frame structure, the SU or MU, the transition time point between the downlink and the uplink, the remaining duration of the scheduled transmission occupied channel, the data coding mode of the current scheduled transmission, and the station STA of the current scheduled transmission The number, the length of the STAID of the STA that is scheduled to be transmitted this time.
  • the STA 2400 further includes: a reading unit 2403, a determining unit 2404, and a transmitting unit 2405.
  • the reading unit 2403 is configured to read resource indication information in the next signaling.
  • the determining unit 2404 is configured to determine a resource location of the STA2400 according to the resource indication information.
  • the receiving unit 2401 is configured to receive a downlink data packet at a resource location
  • the sending unit 2405 is configured to send an uplink data packet at a resource location.
  • the parsing unit 2402 is specifically configured to:
  • the conversion time point between the downlink and the uplink is determined, and the preset formula includes:
  • Conversion time point value of the conversion time field ⁇ time domain length of the resource unit + end time of the next signaling.
  • the signaling further includes a frame structure indication field, and the frame structure indication field indicates that the frame structure of the scheduled transmission is a downlink and uplink cascading structure
  • the time domain location of the uplink transmission resource is:
  • the transmission time of the uplink transmission resource the conversion time point + the handover time received to the transmission + the uplink time indicated by the next signaling.
  • the method for receiving the signaling in the WLAN by using the STA may refer to the description of the first embodiment, and details are not described herein again.
  • the STAs of the present embodiment can be used to perform the method in the foregoing Embodiment 1. Therefore, the technical effects that can be obtained by the STAs can be referred to the description in the foregoing embodiments, and details are not described herein again.
  • An embodiment of the present invention provides an AP 2600. Specifically, as shown in FIG. 26, the embodiment includes: a processor 2601 and a transmitter 2602.
  • the processor 2601 is configured to generate signaling, where the signaling includes an AP ID field, a bandwidth BW field, a guard interval GI field, a cyclic redundancy check CRC field, and a tail Tail field, where the AP ID field is used to indicate an ID of the AP2600.
  • the BW field is used to indicate the bandwidth required for subsequent data transmission of signaling
  • the GI is used to indicate the length of the CP required for subsequent data transmission of the signaling
  • the CRC field is used to protect the field before the CRC field in the signaling
  • the Tail field is used.
  • the CRC field and the Tail field are the last two fields of signaling;
  • the transmitter 2602 is configured to send signaling.
  • the AP ID field is the first field of signaling.
  • the signaling further includes at least one of the following fields:
  • the MCS field of the next signaling is used to indicate the transmission MCS of the next signaling
  • the length field of the next signaling is used to indicate the length of the next signaling
  • the frame structure indication field is used to indicate the frame of the scheduled transmission.
  • the SU/MU field is used to indicate whether the scheduling transmission is SU or MU
  • the conversion time field is used to indicate the transition time point between the downlink and the uplink
  • the duration field is used to indicate the remaining duration of the occupied channel of the scheduled transmission.
  • the frame structure of the scheduled transmission includes: an uplink structure, or a downlink structure, or a downlink and uplink cascade structure.
  • the AP 2600 further includes a receiver 2603.
  • the receiver 2603 is configured to: if the frame structure indication field indicates that the frame structure of the scheduled transmission is an uplink structure, after the transmitter 2602 sends the signaling, receive the uplink data packet sent by the STA.
  • the transmitter 2602 is further configured to send an acknowledgement message to the STA, where the acknowledgement message is used to indicate that the AP2600 receives the uplink data packet.
  • the AP 2600 further includes a receiver 2603.
  • the transmitter 2602 is further configured to: if the frame structure indication field indicates that the frame structure of the scheduled transmission is a downlink structure, after sending the signaling, send the downlink data packet to the STA;
  • the receiver 2603 is configured to receive an acknowledgement message sent by the STA, where the acknowledgement message is used to instruct the STA to receive the downlink data packet.
  • the AP 2600 further includes a receiver 2603.
  • the transmitter 2602 is further configured to: if the frame structure indication field indicates that the frame structure of the scheduled transmission is a downlink and uplink cascading structure, after sending the signaling, send the downlink data packet to the STA;
  • the receiver 2603 is configured to receive an uplink data packet sent by the STA and a first acknowledgement message, where the first acknowledgement message is used to indicate that the STA receives the downlink data packet.
  • the transmitter 2602 is further configured to send a second acknowledgement message to the STA, where the second acknowledgement message is used to indicate that the AP2600 receives the uplink data packet.
  • the receiver 2603 is further configured to: if the frame structure indication field indicates that the frame structure of the scheduled transmission is a downlink and uplink cascading structure, after the transmitter 2602 sends the signaling, receive the uplink data packet sent by the STA;
  • the transmitter 2602 is further configured to send a downlink data packet and a second acknowledgement message to the STA, where the second acknowledgement message is used to indicate that the AP2600 receives the uplink data packet.
  • the receiver 2603 is further configured to receive a first acknowledgement message sent by the STA, where the first acknowledgement message is used to instruct the STA to receive the downlink data packet.
  • the value M of the conversion time field is:
  • M (T - end time of the next signaling) / time domain length of each resource unit in this scheduling.
  • the method for transmitting the signaling in the WLAN by using the AP may refer to the description of the first embodiment, and details are not described herein again.
  • the AP of the present embodiment can be used to perform the method in the foregoing Embodiment 1. Therefore, the technical effects that can be obtained can also be referred to the description in the foregoing embodiment, and details are not described herein again.
  • An embodiment of the present invention provides a STA 2800, which is specifically shown in FIG. 28, and includes: a receiver 2801 and a processor 2802.
  • the receiver 2801 is configured to receive signaling sent by the access point AP, where the signaling includes an AP identifier ID field, a bandwidth BW field, a guard interval GI field, a cyclic redundancy check CRC field, and a tail Tail field, and an AP ID field.
  • the BW field is used to indicate the bandwidth required for subsequent data transmission of the signaling
  • the GI is used to indicate the length of the cyclic prefix CP required for subsequent data transmission of the signaling
  • the CRC field is used for protection signaling.
  • the field before the CRC field, the Tail field is used to clear the encoder and the decoder, and the CRC field and the Tail field are the last two fields of signaling.
  • the processor 2802 is configured to separately parse the AP ID field, the BW field, and the GI field, and obtain an ID of the AP, a bandwidth required for subsequent data transmission of the signaling, and a length of the CP.
  • the field after the AP ID field is stopped.
  • the AP ID field is the first field of signaling.
  • the signaling further includes at least one of the following fields:
  • Transmission modulation coding scheme MCS field of the next signaling, length field of the next signaling, frame structure indication field, single-user SU/multi-user MU field, conversion time field, duration field, forward error correction FEC
  • the coding field, the STA number field, and the STAID length field where the MCS field of the next signaling is used to indicate the transmission MCS of the next signaling, and the length field of the next signaling is used to indicate the length of the next signaling, the frame structure
  • the indication field is used to indicate the frame structure of the scheduled transmission
  • the SU/MU field is used to indicate whether the scheduling transmission is SU or MU
  • the conversion time field is used to indicate the transition time point between the downlink and the uplink
  • the duration field is used.
  • the number of STAs indicating the current duration of the scheduled transmission of the occupied channel, the FEC encoding field used to indicate the current scheduled transmission, and the number of STAs field are used to indicate the number of STAs scheduled to be transmitted, STAID
  • the length field is used to indicate the length of the STAID of the STA that is scheduled to be transmitted, and the frame structure of the scheduled transmission includes: an uplink structure, or a downlink structure, or a downlink and uplink cascade structure.
  • the processor 2802 is further configured to parse at least one of the following fields to obtain at least one of the following information:
  • the transmission MCS of the next signaling, the length of the next signaling, the frame structure of the scheduled transmission, the SU or MU of the scheduled transmission, the transition time between the downlink and the uplink, and the occupied channel of the scheduled transmission The remaining duration, the data encoding mode of the current scheduled transmission, the number of STAs scheduled to be transmitted this time, and the length of the STAID of the STA that is scheduled to be transmitted this time.
  • the STA 2800 further includes: a transmitter 2803.
  • the processor 2802 is further configured to: read the resource indication information in the next signaling, and determine the resource location of the STA2800 according to the resource indication information;
  • the receiver 2801 is further configured to receive a downlink data packet at a resource location;
  • the transmitter 2803 is configured to send an uplink data packet at a resource location.
  • the processor 2802 is specifically configured to:
  • the conversion time point between the downlink and the uplink is determined, and the preset formula includes:
  • Conversion time point value of the conversion time field ⁇ time domain length of the resource unit + end time of the next signaling.
  • the signaling further includes a frame structure indication field, and the frame structure indication field indicates that the frame structure of the scheduled transmission is a downlink and uplink cascading structure
  • the time domain location of the uplink transmission resource is:
  • the transmission time of the uplink transmission resource the conversion time point + the handover time received to the transmission + the uplink time indicated by the next signaling.
  • the method for receiving the signaling in the WLAN by using the STA may refer to the description of the first embodiment, and details are not described herein again.
  • the STAs of the present embodiment can be used to perform the method in the foregoing Embodiment 1. Therefore, the technical effects that can be obtained by the STAs can be referred to the description in the foregoing embodiments, and details are not described herein again.
  • the embodiment of the present invention provides a method for transmitting signaling in a WLAN, which is specifically applied to a scenario in which only a SU is transmitted. As shown in FIG. 30, the method includes:
  • the AP generates signaling, where the signaling includes an AP ID field, a BW field, a SU/MU field, a GI field, a STAID field, an MCS field of non-preamble portion data, an FEC encoding field, an STBC field, and a number of spatial streams (Number Of Spatial Streams (NSS) fields, aggregate fields, smoothing fields, CRC fields, and Tail fields.
  • the signaling includes an AP ID field, a BW field, a SU/MU field, a GI field, a STAID field, an MCS field of non-preamble portion data, an FEC encoding field, an STBC field, and a number of spatial streams (Number Of Spatial Streams (NSS) fields, aggregate fields, smoothing fields, CRC fields, and Tail fields.
  • NSS Number of Spatial Streams
  • the AP ID field is used to indicate an ID of the AP
  • the BW field is used to indicate a bandwidth required for subsequent data transmission of the signaling
  • the SU/MU field is used to indicate that the current transmission is an SU.
  • the GI field is used to indicate a length of a CP required for subsequent data transmission of the signaling
  • the STAID field is used to indicate an identifier of a STA that is currently transmitted
  • a transmission MCS field of the non-preamble portion data is used to indicate a transmission MCS of the non-preamble portion data
  • the FEC encoding field is used to indicate a data encoding manner of the non-preamble portion data
  • the STBC field is used to indicate whether a subsequent data transmission of the signaling in the SU transmission is
  • the NSS field is used to indicate the number of flows adopted by the SU transmission
  • the aggregation field is used to indicate whether the non-preamble portion data is an aggregation of a single MPDU or an MP
  • the AP sends signaling.
  • HEW-SIG1 the signaling generated by the AP is referred to as HEW-SIG1 as an example.
  • HEW-SIG1 the location of HEW-SIG1 in the data frame is as shown in FIG. 9.
  • One OFDM symbol carries 24 bits of information, and HEW-SIG1 is composed of two 4 ⁇ s OFDM symbols.
  • HEW-SIG1 includes an AP ID field, a BW field, a SU/MU field, a GI field, a STAID field, an MCS field of non-leading part data, FEC coding field, STBC field, NSS field, aggregation field, smoothing field, CRC field and tail Tail field.
  • the order and number of bits of each field are as shown in FIG.
  • the NSS field is indicated by 3 bits.
  • 000 can be designed to represent 1 spatial stream, 001 for 2 spatial streams, 010 for 3 spatial streams, 011 for 4 spatial streams, 100 for 5 spatial streams, 101 for 6 spatial streams, and 110 for 7 Spatial stream, 111 represents 8 spatial streams.
  • the smoothing field is used to indicate information related to transmit beamforming, and specifically, the receiving end may be instructed to determine whether channel smoothing can be performed according to whether beamforming is performed.
  • the indication manner of the transmission MCS field of the non-preamble portion data is the same as the indication manner of the MCS field in the current standard (such as 802.11a, 802.11n, 802.11ac), and the STBC field is The indication manner is the same as that of the STBC field in the current standard (such as 802.11n, 802.11ac), and the aggregation field and the smoothing field are in the same manner as the aggregation field and the smoothing field in the current standard (such as 802.11n).
  • This embodiment of the present invention does not specifically limit this.
  • the structure shown in FIG. 31 can be applied to both uplink transmission and downlink transmission.
  • the AP ID, the STAID, and the received/transmitted signal can be used for judgment.
  • the STA can confirm the downlink transmission if the STA receives the signaling sent by the AP and resolves it, and knows that the ID of the AP included in the signaling matches the ID of the AP associated with the STA.
  • a UL/DL indicator field may be added in FIG. 31, which is not specifically limited in this embodiment of the present invention.
  • FIG. 31 exemplarily shows a structural design of a HEW-SIG1.
  • the front and rear positions of the specific fields in FIG. 31, the first few symbols, and the number of bits used in each field are adjustable.
  • the STAID field may be indicated by 5-10 bits
  • the NSS field may be 2 bits or 4 bits.
  • the bit indication, and the like, are not specifically limited in this embodiment of the present invention.
  • the embodiment of the present invention further provides a method for transmitting signaling in a WLAN, which is specifically applied in a scenario where only the SU is transmitted. As shown in FIG. 32, the method includes:
  • the STA receives the signaling sent by the AP, where the signaling includes an AP ID field, a BW field, a SU/MU field, a GI field, an STAID field, an MCS field of the non-leading part data, an FEC encoding field, an STBC field, and an NSS. Field, aggregate field, smoothing field, CRC field and Tail field.
  • the AP ID field is used to indicate an ID of the AP
  • the BW field is used to indicate a bandwidth required for subsequent data transmission of the signaling
  • the SU/MU field is used to indicate that the current transmission is an SU.
  • the GI field is used to indicate a length of a CP required for subsequent data transmission of the signaling
  • the STAID field is used to indicate an identifier of a STA that is currently transmitted
  • a transmission MCS field of the non-preamble portion data is used to indicate a transmission MCS of the non-preamble portion data
  • the FEC encoding field is used to indicate a data encoding manner of the non-preamble portion data
  • the STBC field is used to indicate whether a subsequent data transmission of the signaling in the SU transmission is
  • the NSS field is used to indicate the number of flows adopted by the SU transmission
  • the aggregation field is used to indicate whether the non-preamble portion data is an aggregation of a single MPDU or an MP
  • S3202 STA parses the AP ID field, the BW field, the SU/MU field, the GI field, the STAID field, a transmission MCS field of the non-preamble portion data, the FEC encoding field, and
  • the STBC field, the NSS field, the aggregated field, and the smoothed field obtain the following information:
  • the ID of the AP The ID of the AP, the bandwidth required for subsequent data transmission of the signaling, and the length of the CP.
  • the current transmission is the SU, the identity of the STA transmitted this time, the transmission MCS of the non-preamble portion data, and the non-preamble part data.
  • Data encoding mode whether the subsequent data transmission of the signaling in the SU transmission adopts the STBC mode, the number of streams used by the SU transmission, and whether the non-preamble part data is a single MPDU or an aggregation of MPDUs, and the beamforming Relevant information;
  • the field after the AP ID field is stopped.
  • a schematic structural diagram of the signaling received by the STA may be specifically shown in FIG. 31, and details are not described herein again.
  • FIG. 31 A schematic diagram of the structure of the signaling received by the STA is shown in FIG. 31.
  • FIG. 33 A schematic diagram of the process of parsing the signaling HEW-SIG1 after the STA receives the data packet is shown in FIG. 33, and includes:
  • S3301 Parse the AP ID field to obtain an ID of the AP to which the current transmission belongs.
  • S3302 Determine, according to the ID of the AP, whether it is a data packet sent by the AP associated with the AP.
  • S3305 The STAID field is read, and the identifier information of the STA that is transmitted this time is obtained.
  • S3306 Analyze the transmission MCS field of the non-preamble part data and the FEC encoding field, and determine the transmission MCS used by the non-preamble part data in the current transmission, and the information of the data encoding mode.
  • S3307 parsing the STBC field and the NSS field, respectively determining whether the subsequent data transmission of the HEW-SIG1 in the current transmission adopts the STBC mode and the information of the number of streams used by the SU transmission.
  • the wave allocation format receives the data, which is not specifically limited in the embodiment of the present invention.
  • the STA may also generate signaling, and the AP receives the signaling sent by the STA, where the signaling structure and the diagram 31 is the same, the flow diagram of the parsing signaling HEW-SIG1 after the AP receives the signaling is similar to that of FIG. 33.
  • the AP parsing signaling HEW-SIG1 is used, it is determined according to the ID of the AP in step S3302.
  • the packet sent by the AP associated with it is replaced by "determining whether the packet is sent to itself according to the ID of the AP.”
  • the above solution provides a common signaling design scheme in an OFDMA-based WLAN system, and solves the problem of a public signaling design scheme in an OFDM system based on OFDMA.
  • An embodiment of the present invention provides a method for transmitting signaling in a WLAN. As shown in FIG. 34, the method includes:
  • the AP generates signaling, where the signaling includes an AP ID field, a BW field, a GI field, a frame structure indication field, a downlink/uplink STA number field, a CRC field, and a Tail field.
  • the AP ID field is used to indicate the ID of the AP
  • the BW field is used to indicate the bandwidth required for subsequent data transmission of the signaling
  • the GI is used to indicate the length of the CP required for subsequent data transmission of the signaling
  • the frame structure indication field is used.
  • the frame structure indicating that the scheduled transmission is downlink and uplink cascading
  • the downlink/uplink STA number field is used to indicate the number of downlink/uplink users of the scheduled transmission
  • the CRC field is used to protect the CRC field before the signaling.
  • Field, Tail field is used to clear the encoder and decoder
  • CRC field and Tail field are the last two fields of signaling.
  • S3402 The AP sends signaling.
  • the downlink/uplink STA number field is introduced. If the frame structure indication field indicates that the frame structure of the scheduled transmission is a downlink and uplink cascading structure, the current downlink/uplink STA number field is read. To determine the resource indication information The signaling indicates whether the downlink transmission or the uplink transmission resource.
  • the signaling in the embodiment of the present invention may include other fields. This embodiment of the present invention does not specifically limit this.
  • HEW-SIG1 The signaling generated by the AP is referred to as HEW-SIG1 as an example. Assume that the position of HEW-SIG1 in the data frame is as shown in FIG. 9. One OFDM symbol carries 24 bits of information, and HEW-SIG1 is composed of two 4 ⁇ s OFDM symbols. Illustratively, as shown in FIG. 35, HEW-SIG1 includes AP ID field, BW field, SU/MU field, GI field, frame structure indication field, downlink STA number field, conversion time field, MCS field of HEW-SIG2, length field of HEW-SIG2, CRC field, and tail Tail field. The order and number of bits of each field are as shown in FIG.
  • HEW-SIG1 is composed of three 4 ⁇ s OFDM symbols, as shown in FIG. 36, HEW-SIG1 includes an AP ID field, a duration field, a BW field, a SU/MU field, a GI field, and a HEW-SIG2.
  • the order and number of bits of each field are as shown in FIG.
  • FIGS. 35 and 36 exemplarily show a structural design of a HEW-SIG1.
  • the front and rear positions of the specific fields in FIG. 35 and FIG. 36 are located in the first few symbols, and the number of bits used in each field is adjustable, which is not specifically limited in the embodiment of the present invention.
  • the embodiment of the invention provides a method for sending signaling in a WLAN. As shown in FIG. 37, the method includes:
  • the STA receives the signaling sent by the AP, where the signaling includes an AP ID field, a BW field, a GI field, a frame structure indication field, a downlink/uplink STA number field, a CRC field, and a Tail field.
  • the AP ID field is used to indicate the ID of the AP
  • the BW field is used to indicate the bandwidth required for subsequent data transmission of the signaling
  • the GI is used to indicate the subsequent data transmission required for signaling.
  • the length of the CP is used to indicate that the frame structure of the scheduled transmission is a downlink and uplink cascading structure
  • the downlink/uplink STA number field is used to indicate the number of downlink/uplink users for the scheduled transmission
  • the CRC field is used.
  • the Tail field is used to clear the encoder and the decoder
  • the CRC field and the Tail field are the last two fields of the signaling.
  • S3702 The STA parses the AP ID field, the BW field, the GI field, the frame structure indication field, and the downlink/uplink STA number field, respectively, to obtain the following information:
  • the ID of the AP, the bandwidth required for subsequent data transmission of the signaling, and the length of the CP, the frame structure of the scheduled transmission is the downlink and uplink cascading structure, and the number of downlink/uplink users scheduled to be transmitted this time;
  • the field after the AP ID field is stopped.
  • the structure of the signaling received by the STA may be specifically shown in FIG. 35 and FIG. 36, and details are not described herein again.
  • the STA reads the frame structure indication field of the HEW-SIG1, and obtains the structure of the downlink and uplink cascading after the frame structure of the scheduled transmission is obtained. Further reading the number of downlink STAs field to determine how many users are scheduled in the downlink. For example, when k is scheduled, when the STA reads the resource allocation information and reads the resource allocation information of the first k STAs, it knows that the downlink information is allocated before, and all the subsequent uplink information is allocated. Therefore, it is not necessary to indicate in the resource allocation information of each STA whether the allocation information is downlink allocation information or uplink allocation information.
  • the number of downlink STAs field may also be replaced with the number of uplink STAs.
  • the number of uplink STAs field is used to indicate the number of uplink users scheduled to be transmitted, that is, how many users are scheduled in the uplink.
  • the STA reads the frame structure indication field of the HEW-SIG1, and obtains the structure of the downlink and uplink cascading of the frame structure of the scheduled transmission, and further reads the number of uplink STAs field to determine how many users are scheduled in the uplink. Assuming that k uplink users are scheduled, when the STA reads the resource allocation information and reads the resource allocation information of the first k STAs, it knows that the uplink information is allocated before. This is followed by the assigned downlink information. Therefore, it is not necessary to indicate in each of the resource allocation information of each STA whether the allocation information is uplink allocation information or downlink allocation information.
  • the STA may determine, according to the STA number field and the downlink STA number field, whether the resource allocation indication information is a downlink indication or an uplink indication, so that the resource allocation indication is not needed.
  • the STA number field indicates whether the resource allocation indication information is a downlink indication or an uplink indication, so that the resource allocation indication is not needed.
  • an indication of whether the downlink allocation information or the uplink allocation information is added to each of the allocation information is added. For example, if the number of scheduled STAs is 16, and the number of downlink STAs is 8, the first 8 resource allocation information is indicated by downlink allocation information, and the remaining 8 resource allocation informations are indicated by uplink allocation information.
  • the number of downlink STAs in FIG. 36 can also be changed to the number of uplink STAs field.
  • the number of uplink STAs field is used to indicate the number of uplink users scheduled to be transmitted, that is, how many users are scheduled in the uplink. The principle of use is the same as above. For example, if the number of scheduled STAs is 16, and the number of uplink STAs is 8, the first 8 resource allocation information is an uplink allocation information indication, and the remaining 8 resource allocation informations are downlink allocation information indications. In this way, it is possible to achieve the purpose of adding an indication of whether the downlink allocation information or the uplink allocation information is added to each of the allocation information in the resource allocation indication information.
  • the above solution provides a common signaling design scheme in an OFDMA-based WLAN system, and solves the problem of a public signaling design scheme in an OFDM system based on OFDMA.
  • An embodiment of the present invention provides a STA 3800.
  • the STA 3800 includes: a generating unit 3801 and a sending unit 3802.
  • the generating unit 3801 is configured to generate signaling if the single-user SU is transmitted this time, where the signaling includes an access point identifier AP ID field, a bandwidth BW field, a SU/multi-user MU field, and a guard interval.
  • the AP ID field is used to indicate An ID of the AP
  • the BW field is used to indicate a bandwidth required for subsequent data transmission of the signaling
  • the SU/MU field is used to indicate that the current transmission is an SU
  • the GI field is used to indicate the The length of the cyclic prefix CP required for subsequent data transmission of the signaling
  • the STAID field is used to indicate the identity of the STA of the current transmission
  • the transmission MCS field of the non-preamble portion data is used to indicate the data of the non-preamble portion Transmitting an MCS
  • the FEC encoding field is used to indicate a data encoding manner of the non-preamble portion data
  • the STBC is used to indicate a data encoding manner of the non-preamble portion data
  • the sending unit 3802 is configured to send the signaling.
  • the STA3800 of the present embodiment can be used to perform the method of the foregoing embodiment 6, the technical effects that can be obtained can also be referred to the description in the foregoing embodiment, and details are not described herein again.
  • the embodiment of the present invention provides an AP3900.
  • the AP3900 includes a receiving unit 3901 and a parsing unit 3902.
  • the receiving unit 3901 is configured to: if the current transmission is a single-user SU, receive signaling sent by the station STA, where the signaling includes an AP identifier ID field, a bandwidth BW field, a SU/multi-user MU field, and protection.
  • Interval GI field Interval GI field, station identification STAID field, transmission modulation coding scheme MCS field of non-preamble part data, forward error correction FEC coding field, space time block coding STBC field, number of spatial streams NSS field, aggregation field, smoothing field, cyclic redundancy a check CRC field and a tail Tail field
  • the AP ID field is used to indicate an ID of the AP3900
  • the BW field is used to indicate a bandwidth required for subsequent data transmission of the signaling
  • the SU/MU field The SU used to indicate the current transmission is the SU
  • the GI field is used to indicate the cyclic prefix CP required for subsequent data transmission of the signaling.
  • the length of the STAID field is used to indicate the identifier of the STA that is currently transmitted
  • the MCS field of the non-preamble portion data is used to indicate the transmission MCS of the non-preamble portion data
  • the FEC encoding field is used to indicate
  • the STBC field is used to indicate whether the subsequent data transmission of the signaling in the SU transmission adopts an STBC manner
  • the NSS field is used to indicate the number of streams used by the SU transmission.
  • the aggregation field is used to indicate that the non-preamble portion data is an aggregation of a single MPDU or an MPDU, where the smoothing field is used to indicate information related to transmit beamforming, and the CRC field is used to protect the signaling A field preceding the CRC field, the Tail field is used to clear the encoder and the decoder, and the CRC field and the Tail field are the last two fields of the signaling.
  • the parsing unit 3902 is configured to separately parse the AP ID field, the BW field, the GI field, the SU/MU field, the STAID field, and the transmission MCS field of the non-preamble portion data,
  • the FEC encoding field, the STBC field, the NSS field, the aggregation field, and the smoothing field obtain the following information:
  • the ID of the AP3900, the bandwidth required for subsequent data transmission of the signaling, and the length of the CP, the current transmission is the SU, the identifier of the currently transmitted STA, the transmission MCS of the non-preamble portion data, Whether the data encoding mode of the non-preamble portion data, the subsequent data transmission of the signaling in the SU transmission adopts an STBC manner, the number of streams used by the SU transmission, and whether the non-preamble portion data is a single MPDU or an MPDU.
  • Aggregation information related to beamforming;
  • the field after the AP ID field is stopped.
  • the AP3900 of the present embodiment can be used to perform the method in the foregoing Embodiment 6. Therefore, the technical effects that can be obtained can also be referred to the description in the foregoing embodiment, and details are not described herein again.
  • the frame structure involved in the present invention may be as shown in FIG. 9a in addition to FIG. 9 and the like.
  • the legacy preamble in the uplink frame or the downlink frame is followed by the signaling HEW-SIG1, or the signaling HEW-SIG2 is also included.
  • the signaling HEW-SIG1 may include HE-SIG-A or also HE-SIG-B.
  • the legacy preamble (L-preamble) and the signaling HEW SIG1 may also be included in the uplink frame.
  • HEW-SIG2 in the downlink frame, L-preamble in the uplink frame, HEW-SIG1, or HEW-SIG2 are optional.
  • HE-SIG-A or HE-SIG-B in HEW-SIG1 is also optional.
  • the downlink frame in HEW SIG1, it can be divided into two parts.
  • the first part (which can be called HE-SIG-A) is a part that uses fixed MCS transmission, fixed symbol length and number, for transmitting basic signaling and It is judged that the radio frame is a frame format of 11ax.
  • the second part (which may be referred to as HE-SIG-B) may be a variable length and a different number of symbols, where the variable length refers to the selection of the CP length according to the channel environment. Its CP length and number of symbols can be indicated in HE-SIG-A.
  • the HE-SIG-B may be a variable length variable number of symbols, or may be a fixed CP length, or a fixed number of symbols, or a case where the CP length and the number of symbols are fixed. Signaling for a particular STA may also be placed at the beginning of its allocated resources, such as HEW-SIG2 in the downstream frame of Figure 9a.
  • the first signaling HE-SIG-A part adopts the subcarrier allocation mode in 802.11a and the AP establishes a repeating transmission on each 20 MHz in the channel of the BSS
  • the first signaling HE-SIG-A The fields can also be in the format shown in Figures 40a, 40b, 40c.
  • Figures 40a, 40b, 40c Here is exemplarily provided a flow chart of parsing the signaling HEW-SIG-A after receiving the data packet by the receiving end, as shown in FIG. 41.
  • the MU scenario is in the indication mode of the HE-SIG-A as shown in 40a, b, and c, the resource indication information, and the configuration parameters of the specific data part, such as the transmission MCS, the STAID/GID, the number of space-time streams transmitted, and the specific resources.
  • the location indication, whether each STA uses the LDPC indication, or whether the STBC indication or the like is to be placed in the HE-SIG-B is indicated.
  • FIG. 41 is a schematic flowchart of a STA parsing signaling HEW-SIG-A.
  • the STA parses the content in the HEW-SIG-A in turn, and performs corresponding operations according to the parsed content. This will not be repeated here.
  • embodiments of the present invention also include other specific frame structures.
  • the SU/MU field indicates SU
  • the first signaling HE-SIG-A adopts the subcarrier allocation mode in 802.11a and is in the channel in the BSS established by the AP.
  • the first signaling HE-SIG-A may be composed of two OFDM symbols, and the signaling information carried by each OFDM symbol is as shown in FIG. 40d.
  • the HE-SIG-A may also be composed of four OFDM symbols, where the second OFDM symbol repeats the content of the first OFDM symbol, and the fourth OFDM symbol repeats the content of the third OFDM symbol, that is, the first
  • the two and fourth OFDM symbols are time domain repetitions of the first and third OFDM symbols, respectively.
  • the contents carried by the first and second symbols, the third and fourth symbols are as shown in Fig. 40e.
  • each OFDM symbol may also be repeated in the frequency domain, each OFDM symbol carries 12-bit information, and the content of four OFDM symbols carrying HE-SIG-A in the frequency domain may also be represented by FIG. 40e.
  • the symbols of the HE-SIG-A when the symbols of the HE-SIG-A are repeated in the time domain, only two repeated symbols may be used to carry the information of the HE-SIG-A.
  • the second OFDM symbol is the first time domain repetition
  • each symbol is repeated in its own frequency domain.
  • the HE-SIG carried by the two symbols is The content of -A can also be represented by Figure 40f.
  • HE-SIG-A is only carried with two time domain or frequency domain repeated symbols as shown in Fig. 40f, part of the common signaling needs to be indicated in HE-SIG-B.
  • the transmission of HE-SIG-B may not be transmitted in the time domain or in the frequency domain, but may be transmitted separately on each symbol. Alternatively, it may be transmitted using a high MCS, and optionally may not be used at every 20 MHz.
  • the transmission is repeated, and the transmission is performed on the entire channel in which the AP establishes the BSS. Alternatively, the transmission may be repeated at every 20 MHz.
  • HE-SIG-B is transmitted at 20 MHz using MCS0, its contents can be as shown in Fig. 40g and Fig. 40h.
  • 40G is HE-SIG-B when the SU is carried by only one symbol
  • FIG. 40h is the content of HE-SIG-B when the SU is carried by two symbols.
  • the content carried by HE-SIG-B may be all or part of FIG. 40g and FIG. 40h. Consistent, just the field group in the OFDM symbol The combination may be different.
  • each OFDM symbol when the SU is used, three OFDM symbols may be used to carry the content of the HE-SIG-A, where each symbol is repeated in the frequency domain, so each OFDM symbol can carry 12 bits of information.
  • the contents of the HE-SIG-A carried by the three OFDM symbols can be as shown in Figures 40i, 40j, and 40l, respectively.
  • the HE-SIG-A shown in Fig. 40i When the HE-SIG-A shown in Fig. 40i is employed, the HE-SIG-B portion may not be needed.
  • the HE-SIG-A shown in Fig. 40j When the HE-SIG-A shown in Fig. 40j is employed, the HE-SIG-B portion is required to supplement the signaling indication at the time of SU.
  • the transmission of HE-SIG-B may not be transmitted in the time domain or the frequency domain, but may be transmitted separately on each symbol, and may be transmitted by using a high MCS, and optionally may not be used at every 20 MHz.
  • the transmission is repeated, and the transmission is performed on the entire channel in which the AP establishes the BSS, and optionally, the transmission can be repeated at every 20 MHz.
  • the content of the bearer can be carried by the OFDM symbol to carry the content of HE-SIG-B as shown in Fig. 40k.
  • the content carried by HE-SIG-B may be identical or partially identical to that of Figure k, except that The combination of fields in an OFDM symbol may be different.
  • the HE-SIG-B portion is required to supplement the signaling indication when the SU is used.
  • the transmission of HE-SIG-B may not be transmitted in the time domain or the frequency domain, but may be transmitted separately on each symbol, and may be transmitted by using a high MCS, and optionally may not be used at every 20 MHz.
  • the transmission is repeated, and the transmission is performed on the entire channel in which the AP establishes the BSS, and optionally, the transmission can be repeated at every 20 MHz.
  • the content of the bearer can be carried by the two OFDM symbols to carry the contents of the HE-SIG-B as shown in FIG. 40m.
  • the content carried by the HE-SIG-B may be identical or partially identical to that of FIG. 40m, except that The combination of fields in an OFDM symbol may be different.
  • FIG. 42 exemplarily provides a schematic flowchart of analyzing the signaling HEW-SIG-1 after receiving the data packet by the receiving end, and the details thereof are here. No longer.
  • the downlink and The structure or field, order of the HE-SIG-1 in the upstream frame may be the same.
  • the content, structure, and order of the HE-SIG-1 in the downlink frame are as described in the above embodiments, and the structure or field, order of the HE-SIG-1 in the uplink frame, especially HE-SIG-
  • the structure, field, and order of A may be consistent with HE-SIG-A in the downlink frame, but the content of the specific bearer may be different.
  • the transmission of HE-SIG-A adopts the subcarrier allocation manner in 802.11a and repeats transmission on each 20 MHz in the channel of the BSS established by the AP.
  • the STA performing uplink multi-user transmission needs to transmit the same content in the HE-SIG-A to ensure the formed air interface waveform. Consistently, the same waveforms sent by multiple STAs are superimposed in the air to form the same waveform. In this case, the content carried by each STA's HE-SIG-A is also the same.
  • the STA or the AP can know whether it is a downlink transmission or an uplink transmission after the HE-SIG-A is solved, the number, field, and structure of the HE-SIG-A of the uplink transmission need to be consistent with the HE-SIG-A of the downlink transmission.
  • the contents of the fields of the HE-SIG-A sent by all STAs need to be completely consistent. Since the uplink transmission is scheduled by the AP, and the receiving end of the uplink transmission is an AP, the AP knows related parameter information and resource configuration information of the uplink transmission. In this way, these transmission parameter configurations and resource configuration information of the HE-SIG-A transmitted by the uplink multi-user can be configured by default. For example, the values of these fields of the HE-SIG-A of all uplink multi-user transmitted STAs are set to 0. Or a specific default field or sequence.
  • the fields need to indicate corresponding information to the receiving end or other STAs. These fields cannot be set to default values, and the corresponding information needs to be indicated according to actual conditions. These fields include, but are not limited to, the SU/MU indication field, the AP ID field, and the TXOP transmission duration field and the like.
  • the SU/MU needs to indicate whether the next radio frame is a single-user transmission SU or a multi-user transmission MU, so it must be instructed according to the actual situation, so that the receiving end can receive according to the correct frame format.
  • the AP ID field is used to indicate the information of the AP associated with the current wireless packet, so that other APs or STAs determine whether the wireless frame is related to itself, if it is related, continue to receive and unpack, if not, directly abandon the reception or stop the solution. package. Therefore, the AP ID field must also be indicated according to the actual situation, and cannot be configured by default.
  • the TXOP transmission duration field is used to indicate the duration of the current scheduling period of the AP, and is used by other APs or STAs to acquire information about the remaining duration of the channel being occupied, and configure NAV information. Therefore, the TXOP transmission duration field must also be configured according to the actual situation, and cannot be configured by default.
  • the configuration of these fields of the STAs transmitted by each uplink multi-user must be the same, that is, The content carried by the SU/MU indication field, the AP ID field, and the TXOP transmission duration field of each uplink multi-user transmitted STA must be identical.
  • the SU/MU indication field is used to indicate single-user or multi-user transmission, so the STAs transmitted by each uplink multi-user are easily consistent.
  • the AP ID field is used to indicate the information of the AP that is related to the next radio frame.
  • the TXOP transmission duration field is used to indicate the duration of the current scheduling period of the AP, and is used by other APs or STAs to acquire information about the remaining duration of the channel being occupied, and configure NAV information. This information is also consistent for the STAs transmitted by each uplink multi-user, except that this information is calculated according to the TXOP transmission duration indicated by the SIG part of the downlink frame and the duration of the downlink frame.
  • the duration of the frame interval between the downlink and the uplink, and the duration before the downlink and/or the uplink frame are also calculated.
  • the SU here refers to that only one station (user) is transmitting; the MU refers to that multiple stations (users) are transmitting at the same time, including but not limited to MU-MIMO, OFDMA, and the like.
  • MU-MIMO multiple stations (users) are transmitting at the same time, including but not limited to MU-MIMO, OFDMA, and the like.
  • the above figures and their descriptions are only examples of the content carried by HE-SIG-A or HE-SIG-B.
  • the order of specific fields may be adjusted, or only partial fields or combinations of partial fields may be carried.

Abstract

本发明实施例提供无线局域网中的信令的发送、接收方法及装置,解决了目前还没有基于正交频分多址接入(OFDMA)的无线局域网(WLAN)中公共信令的设计方案的问题。方法包括:接入点(AP)生成信令,其中,该信令包括AP标识(ID)字段、带宽(BW)字段、保护间隔(GI)字段、循环冗余校验(CRC)字段和尾(Tail)字段,AP ID字段用于指示AP的ID,BW字段用于指示信令的后续数据传输所需的带宽,GI用于指示信令的后续数据传输所需的循环前缀(CP)的长度,CRC字段用于保护信令中CRC字段之前的字段,Tail字段用于清空编码器和解码器,CRC字段和Tail字段为信令的最后两个字段;AP发送信令。本发明适用于通信领域。

Description

无线局域网中的信令的发送、接收方法及装置
本申请要求于2014年10月20日提交中国专利局、申请号为PCT/CN2014/088972、发明名称为“无线局域网中的信令的发送、接收方法及装置”的PCT专利申请的优先权,以及于2014年12月5日提交中国专利局,申请号为PCT/CN2014/093183、发明名称为“无线局域网中的信令的发送、接收方法及装置”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及无线局域网中的信令的发送、接收方法及装置。
背景技术
无线局域网(Wireless Local Area Networks,简称:WLAN)是一种利用无线射频技术在空中进行数据传输的网络系统。随着智能终端的广泛应用,人们对数据网络流量的需求日益增长,通过WLAN来承载这些流量已经成为非常重要的信息数据传输方式之一。
WLAN技术的发展离不开其标准的制定与推广应用,其中,电子和电气工程师协会(Institute of Electrical and Electronics Engineers,简称:IEEE)802.11系列是WLAN主要标准,先后经历了802.11,802.11b/g/a,802.11n,802.11ac几代主流标准。
由于WLAN技术基于计算机网络与无线通信技术,而在计算机网络结构中,逻辑链路控制(Logical Link Control,简称:LLC)层及其之上的应用层对不同的物理层(PHYsical,简称:PHY)的要求可以是相同的,也可以是不同的,因此,WLAN标准主要是针对物理层和媒质访问控制层(Media Access Control,简称:MAC),涉及到所使用的无线频率范围、空中接口通信协议等技术规范与技术标准。
WLAN标准中的物理层帧也称作是物理层汇聚过程(Physical  Layer Convergence Procedure,简称:PLCP)协议数据单元(PLCP Protocol Data Unit,简称:PPDU),是由PLCP Header和PLCP服务数据单元(PLCP Service Data Unit,简称:PSDU)组成的。其中PLCP Header主要包含了训练字段和信令(SIGNAL,简称:SIG)字段。
目前,正在研究和制定中的802.11ax继续演进着WLAN技术。802.11ax标准将使用正交频分多址接入(Orthogonal Frequency Division Multiple Access,简称:OFDMA)来提升传输效率。然而,目前还没有基于OFDMA的WLAN系统中公共信令的设计方案。
发明内容
本发明实施例提供WLAN中的信令的发送、接收方法及装置,解决了目前还没有基于OFDMA的WLAN系统中公共信令的设计方案的问题。
为达到上述目的,本发明实施例提供以下方案:
第一方面,提供一种无线局域网WLAN中的信令的发送方法,所述方法包括:
接入点AP生成信令,其中,所述信令包括AP ID字段、带宽BW字段、保护间隔GI字段、循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述GI用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
所述AP发送所述信令。
第二方面,提供一种无线局域网WLAN中的信令的接收方法,所述方法包括:
站点STA接收接入点AP发送的信令,其中,所述信令包括AP标识ID字段、带宽BW字段、保护间隔GI字段、循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW 字段用于指示所述信令的后续数据传输所需的带宽,所述GI用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
所述STA分别解析所述AP ID字段、所述BW字段、所述GI字段,获得所述AP的ID、所述信令的后续数据传输所需的带宽以及所述CP的长度;
其中,若所述AP的ID与所述STA关联的AP ID不匹配,停止解析所述AP ID字段之后的字段。
第三方面,提供一种接入点AP,所述AP包括:生成单元和发送单元;
所述生成单元,用于生成信令,其中,所述信令包括AP ID字段、带宽BW字段、保护间隔GI字段、循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述GI用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
所述发送单元,用于发送所述信令。
第四方面,提供一种站点STA,所述STA包括:接收单元、解析单元;
所述接收单元,用于接收接入点AP发送的信令,其中,所述信令包括AP标识ID字段、带宽BW字段、保护间隔GI字段、循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述GI用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述CRC字段用于保护所述信令中所述CRC字段之前的字段, 所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
所述解析单元,用于分别解析所述AP ID字段、所述BW字段、所述GI字段,获得所述AP的ID、所述信令的后续数据传输所需的带宽以及所述CP的长度;
其中,若所述AP的ID与所述STA关联的AP ID不匹配,停止解析所述AP ID字段之后的字段。
第五方面,提供一种接入点AP,所述AP包括:处理器和发送器;
所述处理器,还用于生成信令,其中,所述信令包括AP ID字段、带宽BW字段、保护间隔GI字段、循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述GI用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
所述发送器,用于发送所述信令。
在第五方面第一种可能的实现方式中,结合第五方面,所述APID字段为所述信令的第一个字段。
在第五方面第二种可能的实现方式中,结合第五方面或第五方面第一种可能的实现方式,所述信令还包括下述字段中的至少一个字段:
所述下一个信令的传输调制编码方案MCS字段、所述下一个信令的长度字段、帧结构指示字段、单用户SU/多用户MU字段、转换时间字段、持续时间字段、前向纠错FEC编码字段、站点STA数目字段、站点标识STAID长度字段,其中,所述下一个信令的MCS字段用于指示所述下一个信令的传输MCS,所述下一个信令的长度字段用于指示所述下一个信令的长度,所述帧结构指示字段用于指示 所述本次调度传输的帧结构,所述SU/MU字段用于指示本次调度传输的是SU还是MU,所述转换时间字段用于指示所述下行和上行之间的转换时间点,所述持续时间字段用于指示所述本次调度传输占用信道的剩余持续时间、所述FEC编码字段用于指示所述本次调度传输的数据编码方式、所述STA数目字段用于指示所述本次调度传输的STA的数目,所述STAID长度字段用于指示所述本次调度传输的STA的STAID的长度,其中,所述本次调度传输的帧结构包括:上行结构、或下行结构、或下行和上行级联的结构。
在第五方面第三种可能的实现方式中,结合第五方面第二种可能的实现方式,所述AP还包括接收器;
所述接收器,用于若所述帧结构指示字段指示所述本次调度传输的帧结构为所述上行结构,在所述发送器发送所述信令之后,接收所述STA发送的上行数据包;
所述发送器,还用于发送确认消息给所述STA,所述确认消息用于指示所述AP接收到所述上行数据包。
在第五方面第四种可能的实现方式中,结合第五方面第二种可能的实现方式,所述AP还包括接收器;
所述发送器,还用于若所述帧结构指示字段指示所述本次调度传输的帧结构为所述下行结构,在所述发送所述信令之后,发送下行数据包给所述STA;
所述接收器,用于接收所述STA发送的确认消息,所述确认消息用于指示所述STA接收到所述下行数据包。
在第五方面第五种可能的实现方式中,结合第五方面第二种可能的实现方式,所述AP还包括接收器;
所述发送器,还用于若所述帧结构指示字段指示所述本次调度传输的帧结构为所述下行和上行级联的结构,在所述发送所述信令之后,发送下行数据包给所述STA;
所述接收器,用于接收所述STA发送的上行数据包和第一确认消息,所述第一确认消息用于指示所述STA接收到所述下行数据包;
所述发送器,还用于发送第二确认消息给所述STA,所述第二确认消息用于指示所述AP接收到所述上行数据包;
或者,
所述接收器,还用于若所述帧结构指示字段指示所述本次调度传输的帧结构为所述下行和上行级联的结构,在所述发送器发送所述信令之后,接收所述STA发送的上行数据包;
所述发送器,还用于发送下行数据包和第二确认消息给所述STA,所述第二确认消息用于指示所述AP接收到所述上行数据包;
所述接收器,还用于接收所述STA发送的第一确认消息,所述第一确认消息用于指示所述STA接收到所述下行数据包。
在第五方面第六种可能的实现方式中,结合第五方面第二种可能的实现方式至第五方面第五种可能的实现方式,若所述下行和上行之间的转换时间点为T,则所述转换时间字段的数值M为:
M=(T-所述下一个信令的结束时间)/本次调度时每个资源单元的时域长度。
第六方面,提供一种站点STA,所述STA包括:接收器、处理器;
所述接收器,用于接收接入点AP发送的信令,其中,所述信令包括AP标识ID字段、带宽BW字段、保护间隔GI字段、循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述GI用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
所述处理器,用于分别解析所述AP ID字段、所述BW字段、所述GI字段,获得所述AP的ID、所述信令的后续数据传输所需的带宽以及所述CP的长度;
其中,若所述AP的ID与所述STA关联的AP ID不匹配,停止 解析所述AP ID字段之后的字段。
在第六方面第一种可能的实现方式中,结合第六方面,所述APID字段为所述信令的第一个字段。
在第六方面第二种可能的实现方式中,结合第六方面或第六方面第一种可能的实现方式,所述信令还包括下述字段中的至少一个字段:
所述信令的下一个信令的传输调制编码方案MCS字段、所述下一个信令的长度字段、帧结构指示字段、单用户SU/多用户MU字段、转换时间字段、持续时间字段、前向纠错FEC编码字段、STA数目字段、STAID长度字段,其中,所述下一个信令的MCS字段用于指示所述下一个信令的传输MCS,所述下一个信令的长度字段用于指示所述下一个信令的长度,所述帧结构指示字段用于指示本次调度传输的帧结构,所述SU/MU字段用于指示本次调度传输的是SU还是MU,所述转换时间字段用于指示下行和上行之间的转换时间点,所述持续时间字段用于指示本次调度传输占用信道的剩余持续时间、所述FEC编码字段用于指示本次调度传输的数据编码方式、所述STA数目字段用于指示本次调度传输的STA的数目,所述STAID长度字段用于指示本次调度传输的STA的STAID的长度,其中,所述本次调度传输的帧结构包括:上行结构、或下行结构、或下行和上行级联的结构;
所述处理器,还用于解析所述下述字段中的至少一个字段,获得下述信息中的至少一个信息:
所述下一个信令的传输MCS、所述下一个信令的长度、所述本次调度传输的帧结构、所述本次调度传输的是SU还是MU、所述下行和上行之间的转换时间点、所述本次调度传输占用信道的剩余持续时间、所述本次调度传输的数据编码方式、所述本次调度传输的站点STA的数目、所述本次调度传输的STA的STAID的长度。
在第六方面第三种可能的实现方式中,结合第六方面第二种可能的实现方式,所述STA还包括:发送器;
所述处理器,还用于读取所述下一个信令中的资源指示信息,并根据所述资源指示信息,确定所述STA的资源位置;
所述接收器,还用于在所述资源位置上接收下行数据包;
或者,
所述发送器,用于在所述资源位置上发送上行数据包。
在第六方面第四种可能的实现方式中,结合第六方面第二种可能的实现方式或第六方面第三种可能的实现方式,若所述信令包括所述转换时间字段,则所述处理器具体用于:
根据所述转换时间字段的数值、资源单元的时域长度、所述信令的结束时间,结合预设公式,确定所述下行和上行之间的转换时间点,所述预设公式包括:
转换时间点=转换时间字段的数值×资源单元的时域长度+所述下一个信令的结束时间。
在第六方面第五种可能的实现方式中,结合第六方面第四种可能的实现方式,若所述信令还包括所述帧结构指示字段,并且所述帧结构指示字段指示所述本次调度传输的帧结构为所述下行和上行级联的结构,则上行传输资源的时域位置为:
上行传输资源的发送时间=转换时间点+接收至发送的切换时间+所述下一个信令指示的上行时间。
第七方面,提供一种无线局域网WLAN中的信令的发送方法,若本次传输的是单用户SU,所述方法包括:
站点STA生成信令,其中,所述信令包括接入点标识AP ID字段、带宽BW字段、SU/多用户MU字段、保护间隔GI字段、站点标识STAID字段、非前导部分数据的传输调制编码方案MCS字段、前向纠错FEC编码字段、空时分组编码STBC字段、空间流数目NSS字段、聚合字段、平滑字段,循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述SU/MU字段用于指示本次传输的是SU,所述GI字段用于指示所述信令的后续数据传输所需的 循环前缀CP的长度,所述STAID字段用于指示本次传输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示所述非前导部分数据的数据编码方式,所述STBC字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个媒质访问控制层协议数据单元MPDU还是MPDU的聚合,所述平滑字段用于指示与发送波束成型有关的信息,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
所述STA发送所述信令。
第八方面,提供一种无线局域网WLAN中的信令的发送方法,若本次传输的是单用户SU,所述方法包括:
接入点AP接收站点STA发送的信令,其中,所述信令包括AP标识ID字段、带宽BW字段、SU/多用户MU字段、保护间隔GI字段、站点标识STAID字段、非前导部分数据的传输调制编码方案MCS字段、前向纠错FEC编码字段、空时分组编码STBC字段、空间流数目NSS字段、聚合字段、平滑字段、循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述SU/MU字段用于指示本次传输的是SU,所述GI字段用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述STAID字段用于指示本次传输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示所述非前导部分数据的数据编码方式,所述STBC字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个MPDU还是MPDU的聚合,所述平滑字段用于指示与发送 波束成型有关的信息,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
所述AP分别解析所述AP ID字段、所述BW字段、所述GI字段,所述SU/MU字段、所述STAID字段、所述非前导部分数据的传输MCS字段、所述FEC编码字段、所述STBC字段、所述NSS字段、所述聚合字段、以及所述平滑字段,获得下述信息:
所述AP的ID、所述信令的后续数据传输所需的带宽以及所述CP的长度、本次传输的是SU、本次传输的STA的标识、所述非前导部分数据的传输MCS、所述非前导部分数据的数据编码方式、所述SU传输中所述信令的后续数据传输是否采用STBC方式、所述SU传输采用的流数,所述非前导部分数据是单个MPDU还是MPDU的聚合,所述波束成型有关的信息;
其中,若所述AP的ID与所述AP自己的AP ID不匹配,停止解析所述AP ID字段之后的字段。
第九方面,提供一种站点STA,所述STA包括:生成单元和发送单元;
所述生成单元,用于若本次传输的是单用户SU,生成信令,其中,所述信令包括接入点标识AP ID字段、带宽BW字段、SU/多用户MU字段、保护间隔GI字段、站点标识STAID字段、非前导部分数据的传输调制编码方案MCS字段、前向纠错FEC编码字段、空时分组编码STBC字段、空间流数目NSS字段、聚合字段、平滑字段,循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述SU/MU字段用于指示本次传输的是SU,所述GI字段用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述STAID字段用于指示本次传输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示所述非前导部分数据的数据编码方式,所述STBC 字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个媒质访问控制层协议数据单元MPDU还是MPDU的聚合,所述平滑字段用于指示与发送波束成型有关的信息,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
所述发送单元,用于发送所述信令。
第十方面,提供一种接入点AP,所述AP包括接收单元和解析单元;
所述接收单元,用于若本次传输的是单用户SU,接收站点STA发送的信令,其中,所述信令包括AP标识ID字段、带宽BW字段、SU/多用户MU字段、保护间隔GI字段、站点标识STAID字段、非前导部分数据的传输调制编码方案MCS字段、前向纠错FEC编码字段、空时分组编码STBC字段、空间流数目NSS字段、聚合字段、平滑字段、循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述SU/MU字段用于指示本次传输的是SU,所述GI字段用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述STAID字段用于指示本次传输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示所述非前导部分数据的数据编码方式,所述STBC字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个MPDU还是MPDU的聚合,所述平滑字段用于指示与发送波束成型有关的信息,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
所述解析单元,用于分别解析所述AP ID字段、所述BW字段、所述GI字段,所述SU/MU字段、所述STAID字段、所述非前导部分数据的传输MCS字段、所述FEC编码字段、所述STBC字段、所述NSS字段、所述聚合字段、以及所述平滑字段,获得下述信息:
所述AP的ID、所述信令的后续数据传输所需的带宽以及所述CP的长度、本次传输的是SU、本次传输的STA的标识、所述非前导部分数据的传输MCS、所述非前导部分数据的数据编码方式、所述SU传输中所述信令的后续数据传输是否采用STBC方式、所述SU传输采用的流数,所述非前导部分数据是单个MPDU还是MPDU的聚合,所述波束成型有关的信息;
其中,若所述AP的ID与所述AP自己的AP ID不匹配,停止解析所述AP ID字段之后的字段。
本发明实施例提供WLAN中的信令的发送、接收方法及装置,方法包括:AP生成信令,其中,该信令包括AP ID字段、BW字段、GI字段、CRC字段和Tail字段,AP ID字段用于指示AP的ID,BW字段用于指示信令的后续数据传输所需的带宽,GI用于指示信令的后续数据传输所需的CP的长度,CRC字段用于保护信令中CRC字段之前的字段,Tail字段用于清空编码器和解码器,CRC字段和Tail字段为信令的最后两个字段;AP发送信令。上述方案提供了基于OFDMA的WLAN系统中公共信令的设计方案,解决了目前还没有基于OFDMA的WLAN系统中公共信令的设计方案的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为802.11a标准中规定的物理层帧结构示意图;
图2为802.11a信令字段结构示意图;
图3为802.11n标准中规定的混合格式物理层帧结构示意图;
图4为802.11a信令字段结构示意图;
图5为802.11ac标准中规定的物理层帧结构示意图;
图6为802.11ac信令字段结构示意图;
图7为本发明实施例提供的WLAN的网络架构示意图;
图8为本发明实施例提供的WLAN中的信令的发送方法流程示意图;
图9为本发明实施例提供的HEW-SIG1在数据帧中的位置示意图;
图9a为本发明实施例提供数据帧的结构示意图;
图10为本发明实施例提供的HEW-SIG1的结构示意图一;
图11为本发明实施例提供的HEW-SIG1的结构示意图二;
图12为本发明实施例提供的HEW-SIG1的结构示意图三;
图13为本发明实施例提供的HEW-SIG1的结构示意图四;
图14为本发明实施例提供的HEW-SIG1的结构示意图五;
图15为本发明实施例提供的上行帧结构格式示意图;
图16为本发明实施例提供的下行帧结构格式示意图;
图17为本发明实施例提供的下行和上行级联的帧结构格式示意图;
图18为本发明实施例提供的WLAN中的信令的接收方法流程示意图;
图19为本发明实施例提供的解析信令HEW-SIG1的流程示意图;
图20为本发明实施例提供的转换时间点位置示意图;
图21为本发明实施例提供的上行传输资源的时域位置示意图;
图22为本发明实施例提供的AP结构示意图一;
图23为本发明实施例提供的AP结构示意图二;
图24为本发明实施例提供的STA结构示意图一;
图25为本发明实施例提供的STA结构示意图二;
图26为本发明实施例提供的AP结构示意图三;
图27为本发明实施例提供的AP结构示意图四;
图28为本发明实施例提供的STA结构示意图三;
图29为本发明实施例提供的STA结构示意图四;
图30为本发明实施例提供的WLAN中的信令的发送方法流程示意图;
图31为本发明实施例提供的HEW-SIG1的结构示意图六;
图32为本发明实施例提供的WLAN中的信令的发送方法流程示意图;
图33为本发明实施例提供的解析信令HEW-SIG1的流程示意图;
图34为本发明实施例提供的WLAN中的信令的发送方法流程示意图;
图35为本发明实施例提供的HEW-SIG1的结构示意图七;
图36为本发明实施例提供的HEW-SIG1的结构示意图八;
图37为本发明实施例提供的WLAN中的信令的发送方法流程示意图;
图38为本发明实施例提供的STA结构示意图五;
图39为本发明实施例提供的AP结构示意图五;
图40a-40m为本发明实施例提供的HE-SIG-A或者HE-SIG-B的结构示意图;
图41为一个本发明实施例提供的接收端处理流程示意图;
图42为另一个本发明实施例提供的接收端处理流程示意图。
具体实施方式
首先给出802.11a、802.11n,802.11ac三代典型WLAN标准的物理层帧结构的简要介绍如下:
图1为802.11a标准中规定的物理层帧结构示意图。其中,PLCP Header包括短训练字段(Short Training Field,简称:STF)、长训练字段(Long Training Field,简称:LTF)和SIG字段。PLCP Header部分也可以称作前导码(Preamble)部分。STF用于数据包检测、自动增益控制(Auto Gain Control,AGC)设置,初始频率偏移估 计和初始时间同步。在STF之后是LTF,用于信道估计以及更准确的频率偏移估计和初始时间同步。在LTF之后是SIG字段,包含一个正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)符号,用于标识该数据包的速率和长度信息。
802.11a标准的SIG字段由单个4μs的码元(3.2μs的OFDM码元及0.8μs的循环前缀(Cyclic Prefix,简称:CP)组成。其波形由64个子载波组成,其子载波位置范围为-32,-31,…,-1,0,1,…,31。载有信号的子载波位置位于-26,-25,…,-2,-1,1,2,…,25,26,其中导频子载波位于-21、-7、7、21,剩余的48个子载波载有已编码的SIG比特。其余的子载波-32,…,-27,27,…31为保护子载波,0为直流子载波。SIG字段本身使用二进制相移键控(Binary Phase shift keying,简称:BPSK)调制和1/2速率的二进制卷积码进行传输,因此SIG由24个信息比特(bit)组成,如图2所示。其中,0-3比特是速率比特,用于指示数据部分传输所使用的编码和调制方案(Modulation and Coding Scheme,简称:MCS);比特4是保留比特,比特5-16是长度比特,用于指示数据的长度或者数据量。其中,比特5为最低有效位(Least Significant Bit,简称:LSB),比特16为最高有效位(Most Significant Bit,简称:MSB)。比特17是校验比特,用于校验前17个比特的偶校验。由于SIG与后面的数据部分分别进行二进制卷积码编码,尾部的6比特被设为0,用于清空编码器和解码器。
图3给出了802.11n标准中规定的混合格式物理层帧结构示意图。802.11n混合格式PLCP Header包括传统的PLCP Header和802.11n的PLCP Header两部分。这里的传统(Legacy,简称:L)主要是指802.11a的PLCP Header部分。这里的高吞吐率(High Throughput,简称:HT)主要是指802.11n的PLCP Header部分。为保证后向兼容性,L-Preamble部分的L-STF和802.11a前导码中的STF字段相同,L-LTF和802.11a前导码中的LTF字段相同,L-SIG字段和802.11a前导码中的SIG字段相同。HT Preamble部分由 HT-SIG字段、HT-STF、以及HT-LTF组成。其中HT-SIG字段由两个OFDM符号HT-SIG1和HT-SIG2组成,包含802.11n标准中的新的信令信息,并且还用于802.11n数据包和传统802.11a数据包之间的自动检测。HT-STF用来重做自动增益设置。HT-LTF包含1个或者多个OFDM符号,用于多入多出(Multiple Input Multiple Output,简称:MIMO)信道估计。HT数据字段位于HT-LTF之后。
HT-SIG1和HT-SIG2两个符号的结构示意图如图4所示。HT-SIG1和HT-SIG2的子载波数、调制编码方式与802.11a的SIG完全一致,因此每个符号包含24个信息比特,以及尾部的6比特被设为0,用于清空编码器和解码器。在HT-SIG1中,前7个比特表示MCS指示,在0-76中选择一种来发送后面的数据部分。比特7用来指示是在20MHz还是在40MHz的带宽上发送数据。该信息可以使20MHz的接收机在40MHz带宽时不接收信号,从而减小功率消耗。比特8-23用于指示数据的长度,范围为0-65535字节。在HT-SIG2中,比特0的平滑字段、比特1的非探测字段和比特8-9的扩展空间流字段用于指示与发送波束成型有关的信息,因为802.11n支持发送波束成型。比特2是保留比特。比特3是聚合比特,用于指示数据部分是单个MAC协议数据单元(MAC Protocol Data Unit,MPDU)还是MPDU的聚合(Aggregation of MPDU,简称:A-MPDU)。比特4-5表示空时分组编码(Space-time block coding,简称:STBC),0表示没有STBC编码,3是预留值,1和2用于指示根据采用不同的MCS时不同的空时流数和空间流数的差。前向纠错(Forward Error Correction,简称:FEC)编码比特用于指示数据的编码方式是二进制卷积码(Binary Convolution Code,简称:BCC)还是低密度奇偶校验码(CLow Density Parity Check,简称:LDPC)。比特7用于指示数据传输部分的CP长度是短CP(0.4μs)还是长CP(0.8μs)。比特10-17是CRC保护比特,用于保护HT-SIG1的0-23比特位以及HT-SIG2的0-9比特位。
图5给出了802.11ac标准中规定的物理层帧结构示意图。 802.11ac前导码(或者PLCP Header)包括传统前导码和VHT前导码两部分。这里的L主要是指802.11a的PLCP Header部分。这里的甚高吞吐率(Very High Throughput,简称:VHT)指的是802.11ac的PLCP Header部分。为保证后向兼容性,802.11ac前导码中的L-Preamble部分和802.11n前导码中的L-Preamble部分完全相同。VHT Preamble部分由VHT-SIGA字段、VHT-STF、VHT-LTF、以及VHT-SIGB字段组成。其中VHT-SIGA字段由两个OFDM符号VHT-SIGA1和VHT-SIGA2组成,包含802.11ac标准中的新的信令信息,并且还用于802.11ac数据包和传统802.11a及802.11n数据包之间的自动检测。VHT-STF和VHT-LTF的结构和功能与HT-STF和HT-LTF类似。VHT-SIGB字段为802.11ac前导码中新增的字段,用于支持多用户(Multiple User,简称:MU)MIMO功能。
VHT-SIGA1和VHT-SIGA2这两个符号的结构示意图如图6所示。HT-SIG-A1和VHE-SIG-A2的子载波数、调制编码方式与802.11a的SIG完全一致,因此每个符号包含24个信息比特,以及尾部的6比特被设为0,用于清空编码器和解码器。在VHT-SIG-A1中,比特0-1用于指示VHT-SIG-A之后数据的传输带宽,用2比特指示20、40、80、160MHz四种带宽。比特2是保留比特,比特3用于指示是否采用STBC。比特4-9用于指示MU-MIMO传输时的分组,其中当采用单用户(Signal User,简称:SU)时,发送给接入点(Access Point,简称:AP)的数据包中分组标识(Iditity,简称:ID)为0,AP发送的数据包中分组ID为1。其余的指示为MU的分组。对于比特10-21,当采用SU时,比特10-12用于指示空时流数目(Number of Space time stream,简称:NSTS),比特13-21是站点(STAtion,简称:STA)的部分关联标识符(Association Identifier,简称:AID),用于接收端判断是否接收该STA发送的信息;当采用MU时,比特10-12、13-15、16-18、19-21分别指示该分组中各个用户的数据所承载的NSTS。比特22用于指示在传输机会(Transmission Opportunity,简称:TXOP)中是否允许非AP的STA进入睡眠状态。 比特23是保留比特。在VHT-SIG-A2中,比特0用于指示VHT-SIG-A之后数据传输部分的CP长度是短CP(0.4μs)还是长CP(0.8μs)。比特1用于指示在短CP传输时,符号长度是否超过一定的值。比特2用于指示编码方式,当采用SU时,0表示BCC编码,1表示LDPC编码;当采用MU时,当VHT-SIG-A1中比特10-12的MU[0]NSTS非零时,比特2为0表示BCC编码,1表示LDPC编码;MU[0]NSTS为0,则该比特为保留比特。比特3用于指示当采用LDPC编码时是否需要增加额外的OFDM符号。对于比特4-7,当采用SU时,指示数据传输的MCS;当采用MU时,比特4、5、6与比特2的多用户场景下类似。比特8用于指示SU时是否采用波束成型。比特9为保留比特。比特10-17与802.11n HT-SIG2中的比特10-17一致,用于保护VHT-SIG-A1的0-23比特位以及VHT-SIG-A2的0-9比特位。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了便于清楚描述本发明实施例的技术方案,在本发明的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并对不对数量和执行次序进行限定。
实施例一、
图7为本发明实施例所应用的WLAN的网络架构示意图,该WLAN10的网络架构包括AP20与多个STA30。其中,WLAN10支持在AP20和多个STA30之间的上行(UpLink,简称:UL)或下行(DownLink,DL)MU MIMO通信,并且WLAN10支持在AP20与多个STA30中的每一个STA之间的UL SU或DL SU通信。
AP20包括耦合到网络接口22的主机处理器21。网络接口22包括MAC23和PHY24。PHY24包括多个收发器(transmit/receive简 称:TX/RX)25,并且收发器25耦合到多根天线26。本发明实施例中,MAC23和PHY24被配置为根据第一通信协议(例如IEEE802.11ax标准,现在处于标准化过程中)操作。当然,MAC23和PHY24还可以被配置为根据第二通信协议(例如IEEE802.11n标准、IEEE802.11a标准、IEEE802.11ac标准等)操作,本发明实施例对此不作具体限定。其中,该第一通信协议在此被称作高效率无线局域网(High Efficiency Wlan,HEW)协议,该第二通信协议在此被称作传统协议。
STA30包括耦合到网络接口32的主机处理器31,网络接口32包括MAC33和PHY34。PHY34包括多个收发器35,并且收发器35耦合到多根天线36。其中,多个STA30中的至少一个被配置为HEW协议。
当然,WLAN10还可以包括L-STA40,其不被配置为HEW协议,而被配置为根据传统协议操作,本发明实施例对此不作具体限定。
本领域普通技术人员容易理解,图7仅是示例性的给出一种可能WLAN的网络架构示意图,当然,还可能存在其它可能的架构,本发明实施例对此不作具体限定。
本领域普通技术人员容易理解,STA侧与AP侧均可以包含多个收发器和天线,图7仅是示例性的在STA侧与AP侧分别列出3个收发器以及3根天线,但是收发器与天线的数量不限于此,本发明实施例对此不作具体限定。
本领域普通技术人员容易理解,WLAN10中可以包含多个STA30和多个L-STA40,图7仅是示例性的列出4个STA30与1个L-STA40,但是STA30与L-STA40的数目不限于此,本发明实施例对此不作具体限定。
图8为本发明实施例提供的WLAN中的信令的发送方法,该方法包括:
S801、AP生成信令,其中,信令包括AP ID字段、带宽(Bandwidth,简称:BW)字段、保护间隔(Guard Interval,简称:GI)字段、 CRC字段和尾Tail字段,AP ID字段用于指示AP的ID,BW字段用于指示信令的后续数据传输所需的带宽,GI用于指示信令的后续数据传输所需的CP的长度,CRC字段用于保护信令中CRC字段之前的字段,Tail字段用于清空编码器和解码器,CRC字段和Tail字段为信令的最后两个字段。
S802、AP发送信令。
优选的,本发明实施例步骤S801中,AP ID字段可以为该信令的第一个字段。这样,当接收端STA侧接收到AP发送的数据包之后,可以先解析AP ID字段,判断是否为自己关联的AP发送的数据包,若是,则继续解包;若不是,则停止解包,节省了系统的资源。
示例性的,以AP生成的信令被称作HEW-SIG1为例进行说明。假设HEW-SIG1在数据帧中的位置如图9所示,处于L-Preamble之后,因此其解码基于L-Preamble的信道估计,故仍然沿用802.11a,802.11n,802.11ac中SIG/SIGA的传输参数,在20MHz上,采用64个子载波中的52个子载波作为有用子载波,其中包含4个导频子载波,这与L-Preamble的传输参数一致。HEW-SIG1的传输采用MCS0传输,即BPSK/正交二进制相移键控(Quadrature Binary Phase shift keying,简称:QBPSK)调制,二分之一码率的BCC编码,因此一个OFDM符号承载24bit信息。
如图10所示,当HEW-SIG1只有一个OFDM符号时,除了包含8bit的CRC字段和6bit用于清空编解码器的Tail字段外,AP ID字段、BW字段、GI字段只有10bit可用。BW字段与GI字段各需2bit,AP ID字段为6bit,可区分26=64个不同的AP的ID。
其中,HEW-SIG1的一个OFDM符号中承载的字段的具体内容如表一所示,6bit的AP ID字段用于表示26=64个不同的AP的ID;2bit的BW字段用于表征20、40、80、160MHZ的带宽使用场景;2bit的GI字段用于指示4种CP长度,这里0.8和1.6是必选项,其余两种可以是0.4、2.4、3.2等,CRC字段和Tail字段和802.11n,802.11ac中SIG/SIGA的用法一致。
表一
Figure PCTCN2015070252-appb-000001
本领域普通技术人员容易理解,图10仅是示例性的给出一种可能的HEW-SIG1结构示意图,当然,HEW-SIG1中各字段还可能有其它的排列方式,本发明实施例对此不作具体限定。
进一步的,由于传输的信息比特有限,因此可以压缩CRC的比特,例如用6bit进行CRC校验,这样可以有12bit进行承载有效信息。可以承载2bit的BW,2bit的GI,7bit的AP ID,同时还可以承载其它可能的信令字段或者将剩余的1bit保留,如图11所示。当然,如果用4bit进行校验,则可以有14bit进行承载有效信息,除了承载2bit的BW,2bit的GI,7bit的AP ID外,还可以有3bit承载额外的信息或者作为保留字段,本发明实施例对此不作具体限定。
进一步的,本发明实施例提供的WLAN中的信令的发送方法中,步骤S801生成的信令还包括下述字段中的至少一个字段:
下一个信令的MCS字段、下一个信令的长度字段、帧结构指示字段、SU/MU字段、转换时间字段、持续时间字段、前向纠错FEC编码字段、STA数目字段、站点标识(STA Ididity,简称:STAID)长度字段,其中,下一个信令的MCS字段用于指示下一个信令的传输MCS,下一个信令的长度字段用于指示下一个信令的长度,帧结构指示字段用于指示本次调度传输的帧结构,SU/MU字段用于指示 本次调度传输的是SU还是MU,转换时间字段用于指示下行和上行之间的转换时间点,持续时间字段用于指示本次调度传输占用信道的剩余持续时间、FEC编码字段用于指示本次调度传输的数据编码方式、STA数目字段用于指示本次调度传输的STA的数目,STAID长度字段用于指示本次调度传输的STA的STAID的长度。
具体的,HEW-SIG1中除了AP ID字段、BW字段、GI字段、CRC字段、Tail字段外,还可能存在多种其它的字段。
示例性的,以HEW-SIG1的下一个信令为HEW-SIG2为例进行说明。同样假设HEW-SIG1在数据帧中的位置如图9所示,一个OFDM符号承载24bit信息,HEW-SIG1由2个4μs的OFDM符号构成。则如图12所示,HEW-SIG1可以包含AP ID字段、BW字段、GI字段、HEW-SIG2的MCS字段、HEW-SIG2的长度字段、帧结构指示字段、转换时间字段、SU/MU字段、CRC字段、Tail字段。各个字段的顺序和比特数如图12所示。
其中,HEW-SIG1的第一个OFDM符号与第二个OFDM符号中承载的字段的具体内容分别如表二和表三所示。7bit的AP ID字段用于表示27=128个不同的AP的ID;2bit的BW字段用于表征20、40、80、160MHZ的带宽使用场景;2bit的GI字段用于指示4种CP长度,这里0.8和1.6是必选项,其余两种可以是0.4、2.4、3.2等;HEW-SIG2的MCS字段和HEW-SIG2的长度字段分别指示HEW-SIG2的传输MCS和长度;帧结构指示字段用于指示本次调度传输的帧的上、下行传输方式,转换时间字段用于指示下行和上行之间的转换时间点;SU/MU字段用于指示本次调度传输的是SU还是MU;CRC字段和Tail字段和802.11n,802.11ac中SIG/SIGA的用法一致。
表二
Figure PCTCN2015070252-appb-000002
Figure PCTCN2015070252-appb-000003
表三
Figure PCTCN2015070252-appb-000004
本领域普通技术人员容易理解,图12仅是示例性的给出一种可能的HEW-SIG1结构示意图,当然,HEW-SIG1还可能由其它字段组成,并且HEW-SIG1中各字段还可能有其它的排列方式,本发明实施例对此不作具体限定。
示例性的,HEW-SIG1结构示意图可以如图13所示,相对于图12提供的HEW-SIG1,图13提供的HEW-SIG1加入了持续时间字段与 FEC编码字段,去掉了帧结构指示字段和转换时间字段。
或者,
示例性的,HEW-SIG1结构示意图可以如图14所示,HEW-SIG1由3个4μs的OFDM符号构成,本发明实施例对此不作具体限定。
需要说明的是,上述提供的HEW-SIG1结构示意图中,HEW-SIG1的保留字段可以用来指示其它信令,本发明实施例对此不作具体限定。
需要说明的是,本发明实施例中,HEW-SIG1的部分字段可以复用。示例性的,在如图12所示的HEW-SIG1结构示意图中,当帧结构指示字段指示本次调度传输的帧结构为上行结构或下行结构时,不需要转换时间字段,此时转换时间字段的6bit可以复用其它的信令比特,比如传输确认字符(Acknowledgement,简称:ACK)的MCS等信息,本发明实施例对此不作具体限定。
需要说明的是,STA字段也可用于表征本次调度传输的是SU还是MU,比如,若STA字段的数值为1,可表征本次调度传输的是SU;若STA字段的数值不为1,可表征本次调度传输的是MU。
进一步的,本发明实施例提供的WLAN中的信令的发送方法中,若帧结构指示字段指示本次调度传输的帧结构为上行结构,在AP发送信令(步骤S802)之后,还可以包括:
AP接收STA发送的上行数据包;
AP发送确认消息给STA,该确认消息用于指示AP接收到上行数据包。
具体的,本发明实施例中,当只有上行数据包时,帧结构格式可以如图15所示。首先,AP发送信道预留包(channel reserved packet,简称:CRP),进入调度传输阶段。然后,AP发送L-Preamble和HEW Preamble,HEW Preamble包括HEW-SIG1、HEW-STF、HEW-LTF和HEW-SIG2。其中,HEW-SIG2包含了上行传输阶段的资源分配指示。STA根据HEW-SIG2中的资源分配指示,在接下来的上行传输时隙内在所指示的资源上进行上行传输。若接下来还是只有上行数据,则 在第一个上行传输时隙结束后,AP发送刚才接收上行数据的ACK,以及指示下一个上行时隙的资源分配情况;若上行数据传输结束,则AP仅发送刚才接收上行数据的ACK。
其中,图15中的媒体接入协议(Media Access Protrol,简称:MAP)即为资源分配指示。
可选的,本发明实施例提供的WLAN中的信令的发送方法中,若帧结构指示字段指示本次调度传输的帧结构为下行结构,在AP发送信令(步骤S802)之后,还可以包括:
AP发送下行数据包给STA;
AP接收STA发送的确认消息,该确认消息用于指示STA接收到下行数据包。
具体的,本发明实施例中,当只有下行数据包时,帧结构格式可以如图16所示。首先,AP发送CRP,进入调度传输阶段。然后,AP发送下行数据,其中下行数据的起始部分包括L-Preamble和HEW Preamble。HEW Preamble包括HEW-SIG1、HEW-STF、HEW-LTF和HEW-SIG2。HEW Preamble之后紧接着进行下行数据的发送。其中,HEW-SIG2包含了下行传输阶段的资源分配指示和/或上行回复ACK的资源指示。STA根据HEW-SIG2中的资源分配指示,在相应的资源上接收下行数据。下行数据传输结束后,STA发送刚才接收下行数据的ACK。
可选的,本发明实施例提供的WLAN中的信令的发送方法中,若帧结构指示字段指示本次调度传输的帧结构为下行和上行级联的结构,在AP发送信令(步骤S802)之后,还可以包括:
AP发送下行数据包给STA;
AP接收STA发送的上行数据包和第一确认消息,该第一确认消息用于指示STA接收到下行数据包;
AP发送第二确认消息给STA,第二确认消息用于指示AP接收到上行数据包。
具体的,本发明实施例中,当既有下行数据包,又有上行数据 包时,帧结构格式可以如图17所示。首先,AP发送CRP,进入调度传输阶段。然后,AP首先发送L-Preamble和HEW Preamble。HEW Preamble包括HEW-SIG1、HEW-STF、HEW-LTF和HEW-SIG2。其中,HEW-SIG2中包含了下行和上行传输时隙内,STA侧接收数据和发送数据的资源位置。若一个下行、上行传输结束后,仍有下行和上行数据,则在上行数据结束后,接着从下行数据开始,继续下行、上行的传输。其中,上行传输时间段内,包含了对下行数据的ACK回复的传输;下行传输时间段内,包含了对上行数据的ACK的传输。若最后以上行时隙结束,则需要跟一个AP对上行传输的ACK回复传输,如图17的最后一部分所示。
当然,若帧结构指示字段指示本次调度传输的帧结构为下行和上行级联的结构,在AP发送信令(步骤S802)之后,还可以包括:
AP接收STA发送的上行数据包;
AP发送下行数据包和第二确认消息给STA,第二确认消息用于指示AP接收到上行数据包;
AP接收STA发送的第一确认消息,第一确认消息用于指示STA接收到下行数据包。
本发明实施例对此不作具体限定。
进一步的,若下行和上行之间的转换时间点为T,则转换时间字段的数值M为:
M=(T-下一个信令的结束时间)/本次调度时每个资源单元的时域长度。    公式(1)
具体的,20MHz数据传输,256点快速傅里叶变换(Fast Fourier Transformation,简称:FFT)情况下的符号长度为12.8μs,加上CP长度0.8μs,可得20MHz256点FFT的最短OFDM符号长度为13.6μs。L-Preamble中SIG所能指示的最长的长度为5484μs,减去L-Preamble长度20μs,还剩下5464μs用于传输HEW部分的Preamble和data。假设调度阶段的资源单元的时域包含n个OFDM符号,则可能出现的下行、上行切换点的数目最多为M=5464÷13.6÷n。假设 n=8,则下行、上行切换点的数目最多为M=5464÷13.6÷8≈50。若转换时间字段占6bit,则可以指示26=64个切换点,完全可以指示n=8时所有的下行和上行切换点。当然,若资源单元的时域包含的OFDM符号数不同,则转换时间字段所需的比特数也不同,本发明实施例对此不作具体限定。
本发明实施例提供的WLAN中的信令的发送方法,包括:AP生成信令,其中,该信令包括AP ID字段、BW字段、GI字段、CRC字段和Tail字段,AP ID字段用于指示AP的ID,BW字段用于指示信令的后续数据传输所需的带宽,GI用于指示信令的后续数据传输所需的CP的长度,CRC字段用于保护信令中CRC字段之前的字段,Tail字段用于清空编码器和解码器,CRC字段和Tail字段为信令的最后两个字段;AP发送信令。上述方案提供了基于OFDMA的WLAN系统中公共信令的设计方案,解决了目前还没有基于OFDMA的WLAN系统中公共信令的设计方案的问题。
图18为本发明实施例提供的WLAN中的信令的接收方法,该方法包括:
S1801、STA接收接入点AP发送的信令,其中,该信令包括AP ID字段、BW字段、GI字段、CRC字段和Tail字段,AP ID字段用于指示AP的ID,BW字段用于指示信令的后续数据传输所需的带宽,GI用于指示信令的后续数据传输所需的CP的长度,CRC字段用于保护信令中CRC字段之前的字段,Tail字段用于清空编码器和解码器,CRC字段和Tail字段为信令的最后两个字段。
S1802、STA分别解析AP ID字段、BW字段、GI字段,获得AP的ID、信令的后续数据传输所需的带宽以及CP的长度;
其中,若AP的ID与STA关联的AP ID不匹配,停止解析AP ID字段之后的字段。
具体的,本发明实施例步骤S1801中,STA接收到的信令的结构示意图可参考图10,本发明实施例在此不再赘述。
优选的,本发明实施例步骤S1801中,AP ID字段可以为该信 令的第一个字段。这样,当STA接收到AP发送的数据包之后,可以先解析AP ID字段,判断是否为自己关联的AP发送的数据包,若是,则继续解包;若不是,则停止解包,节省了系统的资源。
进一步的,本发明实施例提供的WLAN中的信令接收方法中,信令还可以包括下述字段中的至少一个字段:
信令的下一个信令的传输MCS字段、下一个信令的长度字段、帧结构指示字段、SU/MU字段、转换时间字段、持续时间字段、FEC编码字段、STA数目字段、STAID长度字段,其中,下一个信令的MCS字段用于指示下一个信令的传输MCS,下一个信令的长度字段用于指示下一个信令的长度,帧结构指示字段用于指示本次调度传输的帧结构,SU/MU字段用于指示本次调度传输的是SU还是MU,转换时间字段用于指示下行和上行之间的转换时间点,持续时间字段用于指示本次调度传输占用信道的剩余持续时间、FEC编码字段用于指示本次调度传输的数据编码方式、STA数目字段用于指示本次调度传输的STA的数目,STAID长度字段用于指示本次调度传输的STA的STAID的长度,其中,本次调度传输的帧结构包括:上行结构、或下行结构、或下行和上行级联的结构。
本发明实施例提供的WLAN中的信令接收方法,还可以包括:
STA解析下述字段中的至少一个字段,获得下述信息中的至少一个信息:
下一个信令的MCS、下一个信令的长度、本次调度传输的帧结构、本次调度传输的是SU还是MU、下行和上行之间的转换时间点、本次调度传输占用信道的剩余持续时间、本次调度传输的数据编码方式、本次调度传输的站点STA的数目、本次调度传输的STA的STAID的长度。
具体的,本发明实施例中,STA接收到的信令的结构示意图可参考图12-14等,本发明实施例在此不再赘述。
进一步的,本发明实施例提供的WLAN中的信令接收方法中,还可以包括:
STA读取下一个信令中的资源指示信息;
STA根据资源指示信息,确定STA的资源位置;
STA在资源位置上传输上行数据包和/或下行数据包。
示例性的,若AP ID字段为该信令的第一个字段,以STA接收到的信令的结构示意图具体如图12所示,这里提供一种STA接收到数据包后,解析信令HEW-SIG1的流程示意图如图19所示,包括:
S1901、STA解析AP ID字段,获得AP的ID。
S1902、STA根据AP的ID,判断是否是自己关联的AP发送的数据包。
若是,执行步骤S1903;
若不是,结束。
S1903、STA解析BW字段、GI字段、HEW-SIG2的传输MCS字段和HEW-SIG2的长度字段,分别获得HEW-SIG1的后续数据传输所需的带宽以及CP的长度、HEW-SIG2的传输MCS、以及HEW-SIG2的长度。
S1904、STA解析帧结构指示字段,获得本次调度传输的帧结构。
S1905、STA判断本次调度传输的帧结构是否是下行和上行级联的结构。
若是,执行步骤S1906;
若不是,执行步骤S1907。
S1906、STA解析转换时间字段,获得下行和上行之间的转换时间点。
S1907、STA解析SU/MU字段,获得本次调度传输的是SU还是MU。
若本次调度传输的是SU,执行步骤S1908;
若本次调度传输的是MU,执行步骤S1909。
S1908、若本次调度传输的是SU,根据SU的载波分配格式接收或发送数据。
S1909、若本次调度传输的是MU,STA读取HEW-SIG2中的资源 指示信息。
S1910、STA根据HEW-SIG2中的资源指示信息,确定自身接收或发送数据的资源位置,并在相应的资源位置上接收或发送数据。
至此,信令HEW-SIG1的解析流程结束。
需要说明的是,当进行SU传输时,由于后续的传输资源仅供这一个用户使用,因此不需要HEW-SIG2的资源指示信息,而当进行MU传输时,需要在HEW-SIG2中指示哪个STA在什么位置上接收(下行)和发送(上行)数据;同时,当进行MU传输时,为了保证接收和发送质量,会尽量保证每个STA的接收和发送部分均有导频,因此SU和MU传输时,子载波的分配结构不一致,MU相对于SU需要较多的导频设计。综上,可以增加SU/MU字段指示本次调度传输的是SU还是MU。
进一步的,若信令包括转换时间字段,则STA解析转换时间字段,获得下行和上行之间的转换时间点,具体包括:
STA根据转换时间字段的数值、资源单元的时域长度、信令的结束时间,结合预设公式,确定下行和上行之间的转换时间点,预设公式包括:
转换时间点=转换时间字段的数值×资源单元的时域长度+下一个信令的结束时间。   公式(2)
示例性的,假设转换时间字段的数值为010100,转换成十进制为20,本次调度时每个资源单元的时域包含8个OFDM符号,则本次调度时每个资源单元的时域长度为13.6×8=108.8μs,由公式(2)可得,本次调度下行和上行之间的转换时间点=HEW-SIG2的结束时间+20×108.8μs=HEW-SIG2的结束时间+2176μs。其中,转换时间点的位置如图20所示。
进一步的,若信令还包括帧结构指示字段,并且帧结构指示字段指示本次调度传输的帧结构为下行和上行级联的结构,则上行传输资源的时域位置为:
上行传输资源的发送时间=转换时间点+接收至发送的切换时间 +下一个信令指示的上行时间   公式(3)
示例性的,接上一示例,假设本次调度下行和上行之间的转换时间点=HEW-SIG2的结束时间+20×108.8μs=HEW-SIG2的结束时间+2176μs,接收至发送的转换时间取16μs,HEW-SIG2中指示STA的传输时间为上行开始后25μs,则由公式(3)可得,上行传输资源的发送时间=HEW-SIG2的结束时间+2176μs+16μs+25μs=HEW-SIG2的结束时间+2217μs。其中,上行传输资源的时域位置如图21所示,收发传输间隙(receive/transmit transition gap,简称:RTG)即是公式(3)中的接收至发送的切换时间,HEW-SIG2指示的上行时间即为公式(3)中的下一个信令指示的上行时间。通过公式(3),STA可以计算获得上行传输资源的时域位置。
本发明实施例提供的WLAN的信令的接收方法,包括:STA接收接入点AP发送的信令,其中,该信令包括AP ID字段、BW字段、GI字段、CRC字段和Tail字段,AP ID字段用于指示AP的ID,BW字段用于指示信令的后续数据传输所需的带宽,GI用于指示信令的后续数据传输所需的CP的长度,CRC字段用于保护信令中CRC字段之前的字段,Tail字段用于清空编码器和解码器,CRC字段和Tail字段为信令的最后两个字段;STA分别解析AP ID字段、BW字段、GI字段,获得AP的ID、信令的后续数据传输所需的带宽以及CP的长度;其中,若AP的ID与STA关联的AP ID不匹配,停止解析AP ID字段之后的字段。上述方案提供了基于OFDMA的WLAN系统中公共信令的设计方案,解决了目前还没有基于OFDMA的WLAN系统中公共信令的设计方案的问题。
实施例二、
本发明实施例提供一种AP2200,具体如图22所示,包括:生成单元2202和发送单元2203。
生成单元2202,用于生成信令,其中,信令包括AP ID字段、带宽BW字段、保护间隔GI字段、循环冗余校验CRC字段和尾Tail字段,AP ID字段用于指示AP2200的ID,BW字段用于指示信令的 后续数据传输所需的带宽,GI用于指示信令的后续数据传输所需的CP的长度,CRC字段用于保护信令中CRC字段之前的字段,Tail字段用于清空编码器和解码器,CRC字段和Tail字段为信令的最后两个字段。
发送单元2203,用于发送信令。
优选的,AP ID字段为信令的第一个字段。
进一步的,信令还包括下述字段中的至少一个字段:
下一个信令的MCS字段、下一个信令的长度字段、帧结构指示字段、SU/MU字段、转换时间字段、持续时间字段、前向纠错FEC编码字段、STA数目字段、STAID长度字段,其中,下一个信令的MCS字段用于指示下一个信令的传输MCS,下一个信令的长度字段用于指示下一个信令的长度,帧结构指示字段用于指示本次调度传输的帧结构,SU/MU字段用于指示本次调度传输的是SU还是MU,转换时间字段用于指示下行和上行之间的转换时间点,持续时间字段用于指示本次调度传输占用信道的剩余持续时间、FEC编码字段用于指示本次调度传输的数据编码方式、STA数目字段用于指示本次调度传输的STA的数目,STAID长度字段用于指示本次调度传输的STA的STAID的长度,其中,本次调度传输的帧结构包括:上行结构、或下行结构、或下行和上行级联的结构。
进一步的,如图23所示,AP2200还包括接收单元2204。
接收单元2204,用于若帧结构指示字段指示本次调度传输的帧结构为上行结构,在发送单元2203发送信令之后,接收STA发送的上行数据包。
发送单元2203,还用于发送确认消息给STA,确认消息用于指示AP2200接收到上行数据包。
可选的,如图23所示,AP2200还包括接收单元2204。
发送单元2203,还用于若帧结构指示字段指示本次调度传输的帧结构为下行结构,在发送信令之后,发送下行数据包给STA。
接收单元2204,用于接收STA发送的确认消息,确认消息用于 指示STA接收到下行数据包。
可选的,如图23所示,AP2200还包括接收单元2204。
发送单元2203,还用于若帧结构指示字段指示本次调度传输的帧结构为下行和上行级联的结构,在发送信令之后,发送下行数据包给STA。
接收单元2204,用于接收STA发送的上行数据包和第一确认消息,第一确认消息用于指示STA接收到下行数据包。
发送单元2203,还用于发送第二确认消息给STA,第二确认消息用于指示AP2200接收到上行数据包。
或者,
接收单元2204,还用于若帧结构指示字段指示本次调度传输的帧结构为下行和上行级联的结构,在发送单元2203发送信令之后,接收STA发送的上行数据包。
发送单元2203,还用于发送下行数据包和第二确认消息给STA,第二确认消息用于指示AP2200接收到上行数据包。
接收单元2204,还用于接收STA发送的第一确认消息,第一确认消息用于指示STA接收到下行数据包。
进一步的,若下行和上行之间的转换时间点为T,则转换时间字段的数值M为:
M=(T-下一个信令的结束时间)/本次调度时每个资源单元的时域长度。
具体的,通过AP进行WLAN中的信令的发送方法可参考实施例一的描述,本发明实施例在此不再赘述。
由于本实施例的AP能够用于执行上述实施例一的方法,因此,其所能获得的技术效果也可以参照上述实施例中的描述,此处不再赘述。
实施例三、
本发明实施例提供一种STA2400,具体如图24所示,STA2400包括:接收单元2401、解析单元2402。
接收单元2401,用于接收接入点AP发送的信令,其中,信令包括AP标识ID字段、带宽BW字段、保护间隔GI字段、循环冗余校验CRC字段和尾Tail字段,AP ID字段用于指示AP的ID,BW字段用于指示信令的后续数据传输所需的带宽,GI用于指示信令的后续数据传输所需的循环前缀CP的长度,CRC字段用于保护信令中CRC字段之前的字段,Tail字段用于清空编码器和解码器,CRC字段和Tail字段为信令的最后两个字段。
解析单元2402,用于分别解析AP ID字段、BW字段、GI字段,获得AP的ID、信令的后续数据传输所需的带宽以及CP的长度。
其中,若AP的ID与STA2400关联的AP ID不匹配,停止解析AP ID字段之后的字段。
优选的,AP ID字段为信令的第一个字段。
进一步的,信令还包括下述字段中的至少一个字段:
信令的下一个信令的传输调制编码方案MCS字段、下一个信令的长度字段、帧结构指示字段、单用户SU/多用户MU字段、转换时间字段、持续时间字段、前向纠错FEC编码字段、STA2400数目字段、STA2400ID长度字段,其中,下一个信令的MCS字段用于指示下一个信令的传输MCS,下一个信令的长度字段用于指示下一个信令的长度,帧结构指示字段用于指示本次调度传输的帧结构,SU/MU字段用于指示本次调度传输的是SU还是MU,转换时间字段用于指示下行和上行之间的转换时间点,持续时间字段用于指示本次调度传输占用信道的剩余持续时间、FEC编码字段用于指示本次调度传输的数据编码方式、STA2400数目字段用于指示本次调度传输的STA的数目,STAID长度字段用于指示本次调度传输的STA的STAID的长度,其中,本次调度传输的帧结构包括:上行结构、或下行结构、或下行和上行级联的结构。
解析单元2402,还用于解析下述字段中的至少一个字段,获得下述信息中的至少一个信息:
下一个信令的传输MCS、下一个信令的长度、本次调度传输的 帧结构、本次调度传输的是SU还是MU、下行和上行之间的转换时间点、本次调度传输占用信道的剩余持续时间、本次调度传输的数据编码方式、本次调度传输的站点STA的数目、本次调度传输的STA的STAID的长度。
进一步的,如图25所示,STA2400还包括:读取单元2403、确定单元2404、发送单元2405。
读取单元2403,用于读取下一个信令中的资源指示信息。
确定单元2404,用于根据资源指示信息,确定STA2400的资源位置。
接收单元2401,用于在资源位置上接收下行数据包;
或者,
发送单元2405,用于在资源位置上发送上行数据包。
进一步的,若信令包括转换时间字段,则解析单元2402具体用于:
根据转换时间字段的数值、资源单元的时域长度、信令的结束时间,结合预设公式,确定下行和上行之间的转换时间点,预设公式包括:
转换时间点=转换时间字段的数值×资源单元的时域长度+下一个信令的结束时间。
进一步的,若信令还包括帧结构指示字段,并且帧结构指示字段指示本次调度传输的帧结构为下行和上行级联的结构,则上行传输资源的时域位置为:
上行传输资源的发送时间=转换时间点+接收至发送的切换时间+下一个信令指示的上行时间。
具体的,通过STA进行WLAN中的信令的接收方法可参考实施例一的描述,本发明实施例在此不再赘述。
由于本实施例的STA能够用于执行上述实施例一的方法,因此,其所能获得的技术效果也可以参照上述实施例中的描述,此处不再赘述。
实施例四、
本发明实施例提供一种AP2600,具体如图26所示,包括:处理器2601和发送器2602。
处理器2601,用于生成信令,其中,信令包括AP ID字段、带宽BW字段、保护间隔GI字段、循环冗余校验CRC字段和尾Tail字段,AP ID字段用于指示AP2600的ID,BW字段用于指示信令的后续数据传输所需的带宽,GI用于指示信令的后续数据传输所需的CP的长度,CRC字段用于保护信令中CRC字段之前的字段,Tail字段用于清空编码器和解码器,CRC字段和Tail字段为信令的最后两个字段;
发送器2602,用于发送信令。
优选的,AP ID字段为信令的第一个字段。
进一步的,信令还包括下述字段中的至少一个字段:
下一个信令的MCS字段、下一个信令的长度字段、帧结构指示字段、SU/MU字段、转换时间字段、持续时间字段、前向纠错FEC编码字段、STA数目字段、STAID长度字段,其中,下一个信令的MCS字段用于指示下一个信令的传输MCS,下一个信令的长度字段用于指示下一个信令的长度,帧结构指示字段用于指示本次调度传输的帧结构,SU/MU字段用于指示本次调度传输的是SU还是MU,转换时间字段用于指示下行和上行之间的转换时间点,持续时间字段用于指示本次调度传输占用信道的剩余持续时间、FEC编码字段用于指示本次调度传输的数据编码方式、STA数目字段用于指示本次调度传输的STA的数目,STAID长度字段用于指示本次调度传输的STA的STAID的长度,其中,本次调度传输的帧结构包括:上行结构、或下行结构、或下行和上行级联的结构。
进一步的,如图27所示,AP2600还包括接收器2603。
接收器2603,用于若帧结构指示字段指示本次调度传输的帧结构为上行结构,在发送器2602发送信令之后,接收STA发送的上行数据包。
发送器2602,还用于发送确认消息给STA,确认消息用于指示AP2600接收到上行数据包。
可选的,如图27所示,AP2600还包括接收器2603。
发送器2602,还用于若帧结构指示字段指示本次调度传输的帧结构为下行结构,在发送信令之后,发送下行数据包给STA;
接收器2603,用于接收STA发送的确认消息,确认消息用于指示STA接收到下行数据包。
可选的,如图27所示,AP2600还包括接收器2603。
发送器2602,还用于若帧结构指示字段指示本次调度传输的帧结构为下行和上行级联的结构,在发送信令之后,发送下行数据包给STA;
接收器2603,用于接收STA发送的上行数据包和第一确认消息,第一确认消息用于指示STA接收到下行数据包;
发送器2602,还用于发送第二确认消息给STA,第二确认消息用于指示AP2600接收到上行数据包;
或者,
接收器2603,还用于若帧结构指示字段指示本次调度传输的帧结构为下行和上行级联的结构,在发送器2602发送信令之后,接收STA发送的上行数据包;
发送器2602,还用于发送下行数据包和第二确认消息给STA,第二确认消息用于指示AP2600接收到上行数据包;
接收器2603,还用于接收STA发送的第一确认消息,第一确认消息用于指示STA接收到下行数据包。
进一步的,若下行和上行之间的转换时间点为T,则转换时间字段的数值M为:
M=(T-下一个信令的结束时间)/本次调度时每个资源单元的时域长度。
具体的,通过AP进行WLAN中的信令的发送方法可参考实施例一的描述,本发明实施例在此不再赘述。
由于本实施例的AP能够用于执行上述实施例一的方法,因此,其所能获得的技术效果也可以参照上述实施例中的描述,此处不再赘述。
实施例五、
本发明实施例提供一种STA2800,具体如图28所示,包括:接收器2801、处理器2802。
接收器2801,用于接收接入点AP发送的信令,其中,信令包括AP标识ID字段、带宽BW字段、保护间隔GI字段、循环冗余校验CRC字段和尾Tail字段,AP ID字段用于指示AP的ID,BW字段用于指示信令的后续数据传输所需的带宽,GI用于指示信令的后续数据传输所需的循环前缀CP的长度,CRC字段用于保护信令中CRC字段之前的字段,Tail字段用于清空编码器和解码器,CRC字段和Tail字段为信令的最后两个字段。
处理器2802,用于分别解析AP ID字段、BW字段、GI字段,获得AP的ID、信令的后续数据传输所需的带宽以及CP的长度。
其中,若AP的ID与STA2800关联的AP ID不匹配,停止解析AP ID字段之后的字段。
优选的,AP ID字段为信令的第一个字段。
进一步的,信令还包括下述字段中的至少一个字段:
信令的下一个信令的传输调制编码方案MCS字段、下一个信令的长度字段、帧结构指示字段、单用户SU/多用户MU字段、转换时间字段、持续时间字段、前向纠错FEC编码字段、STA数目字段、STAID长度字段,其中,下一个信令的MCS字段用于指示下一个信令的传输MCS,下一个信令的长度字段用于指示下一个信令的长度,帧结构指示字段用于指示本次调度传输的帧结构,SU/MU字段用于指示本次调度传输的是SU还是MU,转换时间字段用于指示下行和上行之间的转换时间点,持续时间字段用于指示本次调度传输占用信道的剩余持续时间、FEC编码字段用于指示本次调度传输的数据编码方式、STA数目字段用于指示本次调度传输的STA的数目,STAID 长度字段用于指示本次调度传输的STA的STAID的长度,其中,本次调度传输的帧结构包括:上行结构、或下行结构、或下行和上行级联的结构。
处理器2802,还用于解析下述字段中的至少一个字段,获得下述信息中的至少一个信息:
下一个信令的传输MCS、下一个信令的长度、本次调度传输的帧结构、本次调度传输的是SU还是MU、下行和上行之间的转换时间点、本次调度传输占用信道的剩余持续时间、本次调度传输的数据编码方式、本次调度传输的站点STA的数目、本次调度传输的STA的STAID的长度。
进一步的,STA2800还包括:发送器2803。
处理器2802,还用于读取下一个信令中的资源指示信息,并根据资源指示信息,确定STA2800的资源位置;
接收器2801,还用于在资源位置上接收下行数据包;
或者,
发送器2803,用于在资源位置上发送上行数据包。
进一步的,若信令包括转换时间字段,则处理器2802具体用于:
根据转换时间字段的数值、资源单元的时域长度、信令的结束时间,结合预设公式,确定下行和上行之间的转换时间点,预设公式包括:
转换时间点=转换时间字段的数值×资源单元的时域长度+下一个信令的结束时间。
进一步的,若信令还包括帧结构指示字段,并且帧结构指示字段指示本次调度传输的帧结构为下行和上行级联的结构,则上行传输资源的时域位置为:
上行传输资源的发送时间=转换时间点+接收至发送的切换时间+下一个信令指示的上行时间。
具体的,通过STA进行WLAN中的信令的接收方法可参考实施例一的描述,本发明实施例在此不再赘述。
由于本实施例的STA能够用于执行上述实施例一的方法,因此,其所能获得的技术效果也可以参照上述实施例中的描述,此处不再赘述。
实施例六、
本发明实施例提供一种WLAN中信令的发送方法,具体应用在只有SU传输的场景下,如图30所示,所述方法包括:
S3001、AP生成信令,其中,信令包括AP ID字段、BW字段、SU/MU字段、GI字段、STAID字段、非前导部分数据的MCS字段、FEC编码字段、STBC字段、空间流数目(Number of Spatial Streams,简称:NSS)字段、聚合字段、平滑字段,CRC字段和Tail字段。
所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述SU/MU字段用于指示本次传输的是SU,所述GI字段用于指示所述信令的后续数据传输所需的CP的长度,所述STAID字段用于指示本次传输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示所述非前导部分数据的数据编码方式,所述STBC字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个MPDU还是MPDU的聚合,所述平滑字段用于指示与发送波束成型有关的信息,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段。
S3002、AP发送信令。
具体的,以AP生成的信令被称作HEW-SIG1为例进行说明。假设HEW-SIG1在数据帧中的位置如图9所示,一个OFDM符号承载24bit信息,HEW-SIG1由2个4μs的OFDM符号构成,则在只有SU传输的场景下,如图31所示,HEW-SIG1包括AP ID字段、BW字段、SU/MU字段、GI字段、STAID字段、非前导部分数据的MCS字段、 FEC编码字段、STBC字段、NSS字段、聚合字段、平滑字段,CRC字段和尾Tail字段。各个字段的顺序和比特数如图31所示。
需要说明的是,本示例中,NSS字段采用3比特指示。其中,可以设计000表示1个空间流,001表示2个空间流,010表示3个空间流,011表示4个空间流,100表示5个空间流,101表示6个空间流,110表示7个空间流,111表示8个空间流。
需要说明的是,本示例中,平滑字段用于指示与发送波束成型有关的信息,具体可以是指示接收端根据是否进行波束成型判断是否可以进行信道平滑。
需要说明的是,本发明实施例中,所述非前导部分数据的传输MCS字段的指示方式与当前标准(比如802.11a、802.11n、802.11ac)中MCS字段的指示方式相同,所述STBC字段的指示方式与当前标准(比如802.11n、802.11ac)中STBC字段的指示方式相同,所述聚合字段和所述平滑字段与当前标准(比如802.11n)中聚合字段、平滑字段的指示方式相同,本发明实施例对此不作具体限定。
需要说明的是,图31所示的结构既可适用于上行传输,也适用于下行传输。具体可以通过AP ID、STAID以及接收/发送的信号进行判断。比如,若STA为接收端,AP为发送端,当STA接收AP发送的信令并解析后,获知信令中包含的AP的ID与STA关联的AP的ID相匹配,则可确认为下行传输。可选的,还可以在图31中加入一个UL/DL指示字段,本发明实施例对此不作具体限定。
需要说明的是,图31示例性的给出一种HEW-SIG1的结构设计方案。当然,图31中具体字段的前后位置、位于第几个符号中,以及每个字段采用的比特数均可调,比如,STAID字段可以用5-10比特指示,NSS字段可以用2比特或4比特指示,等等,本发明实施例对此不作具体限定。
本发明实施例还提供一种WLAN中信令的发送方法,具体应用在只有SU传输的场景下,如图32所示,所述方法包括:
S3201、STA接收AP发送的信令,其中,该信令包括AP ID字段、BW字段、SU/MU字段、GI字段、STAID字段、非前导部分数据的MCS字段、FEC编码字段、STBC字段、NSS字段、聚合字段、平滑字段,CRC字段和Tail字段。
所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述SU/MU字段用于指示本次传输的是SU,所述GI字段用于指示所述信令的后续数据传输所需的CP的长度,所述STAID字段用于指示本次传输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示所述非前导部分数据的数据编码方式,所述STBC字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个MPDU还是MPDU的聚合,所述平滑字段用于指示与发送波束成型有关的信息,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段。
S3202、STA分别解析所述AP ID字段、所述BW字段、所述SU/MU字段、所述GI字段、所述STAID字段、所述非前导部分数据的传输MCS字段、所述FEC编码字段、所述STBC字段、所述NSS字段、所述聚合字段、以及所述平滑字段,获得下述信息:
AP的ID、信令的后续数据传输所需的带宽以及CP的长度、本次传输的是SU、本次传输的STA的标识、所述非前导部分数据的传输MCS、所述非前导部分数据的数据编码方式、所述SU传输中所述信令的后续数据传输是否采用STBC方式、所述SU传输采用的流数,所述非前导部分数据是单个MPDU还是MPDU的聚合,所述波束成型有关的信息;
其中,若AP的ID与STA关联的AP ID不匹配,停止解析AP ID字段之后的字段。
具体的,本发明实施例中,STA接收到的信令的结构示意图具体可以如图31所示,本发明实施例在此不再赘述。
假设STA接收到的信令的结构示意图具体如图31所示,这里提供一种STA接收到数据包后,解析信令HEW-SIG1的流程示意图如图33所示,包括:
S3301、解析AP ID字段,获得当前传输所属AP的ID。
S3302、根据AP的ID,判断是否是自己关联的AP发送的数据包。
若是,执行步骤S3303;
若不是,结束
S3303、解析BW字段,获得HEW-SIG1的后续数据传输所需的带宽。
S3304、解析SU/MU字段,获得本次传输的是SU。
S3305、读取STAID字段,获得本次传输的STA的标识信息。
S3306、解析非前导部分数据的传输MCS字段、以及FEC编码字段,分别确定本次传输中非前导部分数据所采用的传输MCS、以及数据编码方式的信息。
S3307、解析STBC字段、以及NSS字段,分别确定本次传输中HEW-SIG1的后续数据传输是否采用STBC方式、以及所述SU传输采用的流数的信息。
S3308、解析聚合字段以及平滑字段,分别确定所述非前导部分数据是单个MPDU还是MPDU的聚合、以及所述波束成型有关的信息。
S3309、根据解析出的本次传输中非前导部分数据所采用的传输MCS、以及数据编码方式的信息、本次传输中HEW-SIG1的后续数据传输是否采用STBC方式的信息、所述SU传输采用的流数的信息、本次传输中非前导部分数据是单个MPDU还是MPDU的聚合的信息、以及所述波束成型有关的信息,接收本次传输的HEW-SIG1的后续数据。
需要说明的是,若本次传输的是MU,则STA可以根据MU的载 波分配格式接收数据,本发明实施例对此不作具体限定。
可选的,本发明实施例提供的WLAN中信令的发送方法中,在SU传输的场景下,还可以由STA生成信令,AP接收STA发送的信令,其中,信令的结构与图31相同,AP接收到信令后解析信令HEW-SIG1的流程示意图与图33类似,区别仅在于若是AP解析信令HEW-SIG1,则需要将步骤S3302中的“根据AP的ID,判断是否是自己关联的AP发送的数据包”替换为“根据AP的ID,判断该数据包是否是发送给自己的”。本发明实施例对该情况不再详细阐述,具体可参考上述实施例的描述。
上述方案提供了基于OFDMA的WLAN系统中公共信令的设计方案,解决了目前还没有基于OFDMA的WLAN系统中公共信令的设计方案的问题。
实施例七、
本发明实施例提供一种WLAN中信令的发送方法,如图34所示,所述方法包括:
S3401、AP生成信令,其中,信令包括AP ID字段、BW字段、GI字段、帧结构指示字段、下行/上行STA数目字段、CRC字段和Tail字段。
其中,AP ID字段用于指示AP的ID,BW字段用于指示信令的后续数据传输所需的带宽,GI用于指示信令的后续数据传输所需的CP的长度,帧结构指示字段用于指示本次调度传输的帧结构为下行和上行级联的结构,下行/上行STA数目字段用于指示本次调度传输的下行/上行用户数目,CRC字段用于保护信令中CRC字段之前的字段,Tail字段用于清空编码器和解码器,CRC字段和Tail字段为信令的最后两个字段。
S3402、AP发送信令。
具体的,本发明实施例中引入下行/上行STA数目字段,若帧结构指示字段指示本次调度传输的帧结构为下行和上行级联的结构,则读取本次传输下行/上行STA数目字段,以确定资源指示信息中的 信令指示的是下行传输还是上行传输资源。
需要说明的是,本发明实施例中的信令除了包含AP ID字段、BW字段、GI字段、帧结构指示字段、下行/上行STA数目字段、CRC字段和Tail字段外,还可能包含其它字段,本发明实施例对此不作具体限定。
以AP生成的信令被称作HEW-SIG1为例进行说明。假设HEW-SIG1在数据帧中的位置如图9所示,一个OFDM符号承载24bit信息,HEW-SIG1由2个4μs的OFDM符号构成,则示例性的,如图35所示,HEW-SIG1包括AP ID字段、BW字段、SU/MU字段、GI字段、帧结构指示字段、下行STA数目字段、转换时间字段、HEW-SIG2的MCS字段、HEW-SIG2的长度字段、CRC字段和尾Tail字段。各个字段的顺序和比特数如图31所示。
示例性的,假设HEW-SIG1由3个4μs的OFDM符号构成,则如图36所示,HEW-SIG1包括AP ID字段、持续时间字段、BW字段、SU/MU字段、GI字段、HEW-SIG2的MCS字段、HEW-SIG2的MCS字段、帧结构指示字段、STA数目字段、下行STA数目字段、STAID长度字段、转换时间字段、CRC字段和尾Tail字段。各个字段的顺序和比特数如图36所示。
需要说明的是,图35和图36示例性的给出一种HEW-SIG1的结构设计方案。当然,图35和图36中具体字段的前后位置、位于第几个符号中,以及每个字段采用的比特数均可调,本发明实施例对此不作具体限定。
本发明实施例提供一种WLAN中信令的发送方法,如图37所示,所述方法包括:
S3701、STA接收AP发送的信令,其中,信令包括AP ID字段、BW字段、GI字段、帧结构指示字段、下行/上行STA数目字段、CRC字段和Tail字段。
其中,AP ID字段用于指示AP的ID,BW字段用于指示信令的后续数据传输所需的带宽,GI用于指示信令的后续数据传输所需的 CP的长度,帧结构指示字段用于指示本次调度传输的帧结构为下行和上行级联的结构,下行/上行STA数目字段用于指示本次调度传输的下行/上行用户数目,CRC字段用于保护信令中CRC字段之前的字段,Tail字段用于清空编码器和解码器,CRC字段和Tail字段为信令的最后两个字段。
S3702、STA分别解析AP ID字段、BW字段、GI字段、帧结构指示字段、下行/上行STA数目字段,获得下述信息:
AP的ID、信令的后续数据传输所需的带宽以及CP的长度、本次调度传输的帧结构为下行和上行级联的结构、以及本次调度传输的下行/上行用户数目;
其中,若AP的ID与STA关联的AP ID不匹配,停止解析AP ID字段之后的字段。
具体的,本发明实施例中,STA接收到的信令的结构示意图具体可以如图35和图36所示,本发明实施例在此不再赘述。
具体的,假设STA接收到的信令的结构示意图具体如图35所示,则STA读取HEW-SIG1的帧结构指示字段,获取本次调度传输的帧结构为下行和上行级联的结构后,进一步读取下行STA数目字段,确定下行调度了多少个用户。例如调度了k个,则STA在读取资源分配信息时,读到前k个STA的资源分配信息时,就知道这之前都是分配的下行信息,这之后的都是分配的上行信息。因此不需要在每一个STA的资源分配信息中都指示一次该分配信息是下行分配信息还是上行分配信息。
当然,图35所示的信令结构中,下行STA数目字段也可以替换为上行STA数目字段。该上行STA数目字段用于指示本次调度传输的上行用户数目,即上行调度了多少用户。STA读取HEW-SIG1的帧结构指示字段,获取本次调度传输的帧结构为下行和上行级联的结构后,进一步读取上行STA数目字段,确定上行调度了多少个用户。假设调度了k个上行用户,则STA在读取资源分配信息时,读到前k个STA的资源分配信息时,就知道这之前都是分配的上行信息, 这之后的都是分配的下行信息。同样也因此不需要再每一个STA的资源分配信息中都指示一次该分配信息是上行分配信息还是下行的分配信息。
具体的,假设STA接收到的信令的结构示意图具体如图36所示,则STA可以根据STA数目字段和下行STA数目字段判断资源分配指示信息是下行指示还是上行指示,从而无需在资源分配指示信息中,针对每一个分配信息都加上一个是下行分配信息还是上行分配信息的指示。例如,调度的STA数目为16,下行STA数目为8,则前8个资源分配信息为下行分配信息指示,剩下的8个资源分配信息为上行分配信息指示。
同样,图36中的下行STA数目字段也可以换成上行STA数目字段。该上行STA数目字段用于指示本次调度传输的上行用户数目,即上行调度了多少用户。使用原理与上面的方法相同。例如调度的STA数目为16,上行STA数目为8,则前8个资源分配信息为上行分配信息指示,剩下的8个资源分配信息为下行分配信息指示。这样就可以达到无需在资源分配指示信息中,针对每一个分配信息都加上一个是下行分配信息还是上行分配信息的指示的目的。
上述方案提供了基于OFDMA的WLAN系统中公共信令的设计方案,解决了目前还没有基于OFDMA的WLAN系统中公共信令的设计方案的问题。
实施例八、
本发明实施例提供一种STA3800,如图38所示,所述STA3800包括:生成单元3801和发送单元3802。
所述生成单元3801,用于若本次传输的是单用户SU,生成信令,其中,所述信令包括接入点标识AP ID字段、带宽BW字段、SU/多用户MU字段、保护间隔GI字段、站点标识STAID字段、非前导部分数据的传输调制编码方案MCS字段、前向纠错FEC编码字段、空时分组编码STBC字段、空间流数目NSS字段、聚合字段、平滑字段,循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所 述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述SU/MU字段用于指示本次传输的是SU,所述GI字段用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述STAID字段用于指示本次传输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示所述非前导部分数据的数据编码方式,所述STBC字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个媒质访问控制层协议数据单元MPDU还是MPDU的聚合,所述平滑字段用于指示与发送波束成型有关的信息,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段。
所述发送单元3802,用于发送所述信令。
由于本实施例的STA3800能够用于执行上述实施例六的方法,因此,其所能获得的技术效果也可以参照上述实施例中的描述,此处不再赘述。
实施例九、
本发明实施例提供一种AP3900,如图39所示,所述AP3900包括接收单元3901和解析单元3902。
所述接收单元3901,用于若本次传输的是单用户SU,接收站点STA发送的信令,其中,所述信令包括AP标识ID字段、带宽BW字段、SU/多用户MU字段、保护间隔GI字段、站点标识STAID字段、非前导部分数据的传输调制编码方案MCS字段、前向纠错FEC编码字段、空时分组编码STBC字段、空间流数目NSS字段、聚合字段、平滑字段、循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP3900的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述SU/MU字段用于指示本次传输的是SU,所述GI字段用于指示所述信令的后续数据传输所需的循环前缀CP 的长度,所述STAID字段用于指示本次传输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示所述非前导部分数据的数据编码方式,所述STBC字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个MPDU还是MPDU的聚合,所述平滑字段用于指示与发送波束成型有关的信息,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段。
所述解析单元3902,用于分别解析所述AP ID字段、所述BW字段、所述GI字段,所述SU/MU字段、所述STAID字段、所述非前导部分数据的传输MCS字段、所述FEC编码字段、所述STBC字段、所述NSS字段、所述聚合字段、以及所述平滑字段,获得下述信息:
所述AP3900的ID、所述信令的后续数据传输所需的带宽以及所述CP的长度、本次传输的是SU、本次传输的STA的标识、所述非前导部分数据的传输MCS、所述非前导部分数据的数据编码方式、所述SU传输中所述信令的后续数据传输是否采用STBC方式、所述SU传输采用的流数,所述非前导部分数据是单个MPDU还是MPDU的聚合,所述波束成型有关的信息;
其中,若所述AP的ID与所述AP自己的AP ID不匹配,停止解析所述AP ID字段之后的字段。
由于本实施例的AP3900能够用于执行上述实施例六的方法,因此,其所能获得的技术效果也可以参照上述实施例中的描述,此处不再赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
本领域技术人员可以理解,本发明涉及的帧结构除了图9等,还可以如图9a所示,上行帧或者下行帧中legacy前导之后是信令HEW-SIG1,或者还包括信令HEW-SIG2,信令HEW-SIG1可以包括HE-SIG-A,或者还包括HE-SIG-B。具体的,上行帧中也可以包含传统前导码(L-前导码)以及信令HEW SIG1。其中,下行帧中的HEW-SIG2,上行帧中的L-前导码,HEW-SIG1,或者HEW-SIG2是可选的。HEW-SIG1中的HE-SIG-A或者HE-SIG-B,也是可选的。
对于下行帧中,在HEW SIG1中,可以将其分成两部分,第一部分(可以称作HE-SIG-A)是采用固定MCS传输,固定符号长度和数目的部分,用于传输基本信令和判断该无线帧为11ax的帧格式。第二部分(可以称作HE-SIG-B),可以是采用变长和不同的符号数,这里的变长是指根据信道环境选择CP长度。其CP长度和符号数目可以在HE-SIG-A里指示。对于SU的场景,HE-SIG-B可以是变长变符号数目的,也可以是固定CP长度,或者固定符号数目,或者CP长度和符号数目都固定的情形。针对具体某个STA的信令也可以放在其所分配资源的起始部分,例如图9a中下行帧中的HEW-SIG2。
对于MU的情景,当第一信令HE-SIG-A部分采用802.11a中的子载波分配方式且AP建立BSS的信道中的每个20MHz上重复传输时,第一信令HE-SIG-A字段还可以如图40a、40b、40c所示的格式。这里示例性地提供一种接收端接收到数据包后,解析信令HEW-SIG-A的流程示意图如图41所示。MU场景在如40a、b、c所示的HE-SIG-A的指示方式中,资源指示信息,具体数据部分的配置参数,如传输MCS、STAID/GID、传输的空时流数目、具体资源的位置指示、每个STA的是否采用LDPC的指示,或者,是否采用STBC的指示等将放在HE-SIG-B中进行指示。
如图41所示为一个STA解析信令HEW-SIG-A的流程示意图,总的来说,STA依次解析HEW-SIG-A里的内容,根据解析得到的内容进行相应的操作,其细节在此不再赘述。
当然,本发明实施方式还包括其他具体的帧结构。例如,当SU/MU字段指示为SU时,也即对于SU的情景时,当第一信令HE-SIG-A采用802.11a中的子载波分配方式且在AP建立的BSS中的信道中的每个20MHz上重复传输时,第一信令HE-SIG-A可以由两个OFDM符号组成,每个OFDM符号承载的信令信息如图40d所示。可选的,HE-SIG-A还可以由四个OFDM符号组成,其中第二个OFDM符号重复第一个OFDM符号的内容,第四个OFDM符号重复第三个OFDM符号的内容,也即第二个和第四个OFDM符号分别是第一个和第三个OFDM符号的时域重复。这种情况下,第一和第二个符号,第三和第四个符号所承载的内容如图40e所示。可选的,每个OFDM符号也可以在频域重复,每个OFDM符号承载12bit信息,采用四个各自在频域重复的OFDM符号承载HE-SIG-A的内容同样可以用图40e表示。
可选的,SU时为了保证HE-SIG-A的传输可靠性,HE-SIG-A的符号在时域重复时,也可以只采用两个重复的符号来承载HE-SIG-A的信息,如图40f所示,其中第二个OFDM符号是第一个时域重复,可选的,也可以是每个符号在自身的频域进行重复,这种情况下两个符号承载的HE-SIG-A的内容同样可以用图40f表示。当HE-SIG-A只用如图40f所示中的两个时域或者频域重复的符号承载时,部分公共信令需要在HE-SIG-B中进行指示。HE-SIG-B的传输可以不采用时域或者频域重复的传输方式,而在每个符号上单独传输,可选的,可以采用高MCS进行传输,再可选的可以采用不在每个20MHz上重复传输,而在AP建立BSS的整个信道上进行传输,可选的,也可以在每个20MHz上重复传输。HE-SIG-B在采用MCS0在20MHz上传输时,其承载的内容可以如图40g和图40h所示。其中,图40g是只用一个符号承载SU时的HE-SIG-B,图40h是用两个符号承载SU时HE-SIG-B的内容。可选的,当用比MCS0高的高阶MCS传输时,或者采用比20MHz大的带宽传输HE-SIG-B时,HE-SIG-B所承载的内容可以全部或者部分与图40g和图40h一致,只是OFDM符号中的字段组 合可能不同。
可选的,当SU时,可能采用三个OFDM符号承载HE-SIG-A的内容,其中每个符号在频域进行重复,因此每个OFDM符号能够承载12bit的信息。三个OFDM符号承载的HE-SIG-A的内容可以分别如图40i、40j、40l所示。当采用图40i所示的HE-SIG-A时,可以不需要HE-SIG-B部分。当采用图40j所示的HE-SIG-A时,需要HE-SIG-B部分来补充SU时的信令指示。HE-SIG-B的传输可以不采用时域或者频域重复的传输方式,而在每个符号上单独传输,可选的可以采用高MCS进行传输,再可选的可以采用不在每个20MHz上重复传输,而在AP建立BSS的整个信道上进行传输,可选的也可以在每个20MHz上重复传输。HE-SIG-B在采用MCS0在20MHz上传输时,其承载的内容可以如图40k所示,用一个OFDM符号来承载HE-SIG-B的内容。可选的,当用比MCS0高的高阶MCS传输时,或者采用比20MHz大的带宽传输HE-SIG-B时,HE-SIG-B所承载的内容可以全部或者部分与图k一致,只是OFDM符号中的字段组合可能不同。在SU且采用图40l所示的HE-SIG-A时,需要HE-SIG-B部分来补充SU时的信令指示。HE-SIG-B的传输可以不采用时域或者频域重复的传输方式,而在每个符号上单独传输,可选的可以采用高MCS进行传输,再可选的可以采用不在每个20MHz上重复传输,而在AP建立BSS的整个信道上进行传输,可选的也可以在每个20MHz上重复传输。HE-SIG-B在采用MCS0在20MHz上传输时,其承载的内容可以如图40m所示,用两个OFDM符号来承载HE-SIG-B的内容。可选的,当用比MCS0高的高阶MCS传输时,或者采用比20MHz大的带宽传输HE-SIG-B时,HE-SIG-B所承载的内容可以全部或者部分与图40m一致,只是OFDM符号中的字段组合可能不同。
当HE-SIG-1的信令结构如图40f~40m时,图42示例性地提供一种接收端接收到数据包后,解析信令HEW-SIG-1的流程示意图,其详细内容在此不再赘述。
另外的例子中,如图9a所示的结构中,在SU的情况下,下行与 上行帧中的HE-SIG-1的结构或者字段、顺序可以是相同的。在MU的情况下,下行帧中的HE-SIG-1的内容、结构、顺序如上述实施例所描述,上行帧中的HE-SIG-1的结构或者字段、顺序,尤其是HE-SIG-A的结构、字段、顺序可以与下行帧中的HE-SIG-A一致,但是具体承载的内容可以是不同的。
具体的,当上行传输时,HE-SIG-A的传输采用802.11a中的子载波分配方式且在AP建立的BSS的信道中的每个20MHz上重复传输。上行多个用户传输时,为了能让AP和/或者其它STA能够解出HE-SIG-A,进行上行多用户传输的STA需要在HE-SIG-A传输相同的内容,以保证形成的空口波形一致,多个STA发送的相同的波形在空中叠加,从而形成相同的波形。这种情况下每个STA的HE-SIG-A所承载的内容也相同。由于STA或者AP在解出HE-SIG-A之后才能知道是下行传输还是上行传输,因此上行传输的HE-SIG-A的符号数、字段、结构需要与下行传输的HE-SIG-A一致。
为了保证所有多用户传输的STA上行发送的HE-SIG-A的波形一致,需要使所有STA发送的HE-SIG-A的各字段的内容完全一致。由于上行传输是由AP调度的,且上行传输的接收端是AP,因此AP知道上行传输的相关参数信息以及资源配置信息。这样,在上行多用户传输的HE-SIG-A的这些传输参数配置以及资源配置信息可以缺省配置,例如所有上行多用户传输的STA的HE-SIG-A的这些字段的值都设成0,或者是某种特定的缺省字段或者序列。
但是,其中的某些字段,需要指示给接收端或者其它STA相应的信息,这些字段不能设成缺省值,而需要根据实际情况指示相应的信息。这些字段包括但不限于SU/MU指示字段、AP ID字段以及TXOP传输时长字段等。SU/MU需要指示接下来的无线帧是单用户传输SU还是多用户传输MU,因此必须根据实际情况进行指示,以便接收端按照正确的帧格式进行接收。AP ID字段用于指示与本无线包相关的AP的信息,以便其它AP或者STA判断该无线帧是否与自己相关,如果相关则继续接收并解包,如果不相关则直接放弃接收或者停止解 包。因此,AP ID字段也必须根据实际情况进行指示,而不能任意缺省配置。TXOP传输时长字段用于指示AP本次的调度时段所剩余的时长,用于其它AP或者STA获取信道被占用的剩余时长的信息,配置NAV信息。因此,TXOP传输时长字段也必须根据实际情况进行配置,而不能任意缺省配置。
需要说明的是,即使SU/MU指示字段、AP ID字段以及TXOP传输时长字段等字段需要根据实际情况指示而不能任意配置,但是各上行多用户传输的STA的这些字段的配置必须相同,也即各上行多用户传输的STA的SU/MU指示字段、AP ID字段以及TXOP传输时长字段承载的内容必须完全一致。SU/MU指示字段用于指示单用户或者多用户传输,因此各上行多用户传输的STA的很容易一致。AP ID字段用于指示与接下来的无线帧先关的AP的信息,由于上行多用户传输的STA都是向同一个AP进行上行传输,因此各上行多用户传输的STA的AP ID字段很容易一致。TXOP传输时长字段用于指示AP本次的调度时段所剩余的时长,用于其它AP或者STA获取信道被占用的剩余时长的信息,配置NAV信息。这个信息对于各上行多用户传输的STA也是一致的,只不过这个信息要根据下行帧的SIG部分指示的TXOP传输时长以及下行帧的时长进行计算。可选的,还需要下行、上行之间进行转换的帧间隔时长、下行和/或上行帧之前的前导(该前导可能包含legacy的前导和HEW的前导部分)的时长进行计算。
需要说明的是,这里的SU是指只有一个站点(用户)在传输;MU是指同时有多个站点(用户)在传输,包括但不限于MU-MIMO、OFDMA等方式。以上各图及其说明只是HE-SIG-A或者HE-SIG-B所承载内容的示例,具体的各个字段的顺序可以调整,或者可以只承载其中的部分字段,或者部分字段的组合。

Claims (38)

  1. 一种无线局域网WLAN中的信令的发送方法,其特征在于,所述方法包括:
    接入点AP生成信令,其中,所述信令包括AP ID字段、带宽BW字段、保护间隔GI字段、循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述GI用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
    所述AP发送所述信令。
  2. 根据权利要求1所述的方法,其特征在于,所述AP ID字段为所述信令的第一个字段。
  3. 根据权利要求1或2所述的方法,其特征在于,所述信令还包括下述字段中的至少一个字段:
    所述下一个信令的传输调制编码方案MCS字段、所述下一个信令的长度字段、帧结构指示字段、单用户SU/多用户MU字段、转换时间字段、持续时间字段、前向纠错FEC编码字段、站点STA数目字段和站点标识STA ID长度字段,其中,所述下一个信令的MCS字段用于指示所述下一个信令的传输MCS,所述下一个信令的长度字段用于指示所述下一个信令的长度,所述帧结构指示字段用于指示所述本次调度传输的帧结构,所述SU/MU字段用于指示本次调度传输的是SU还是MU,所述转换时间字段用于指示所述下行和上行之间的转换时间点,所述持续时间字段用于指示所述本次调度传输占用信道的剩余持续时间,所述FEC编码字段用于指示所述本次调度传输的数据编码方式,所述STA数目字段用于指示所述本次调度传输的STA的数目,所述STAID长度字段用于指示所述本次调度传输的STA的STA ID的长度,其中,所述本次调度传输的帧结构包括:上行结构、或下行结构、或下行和上行级联的结构。
  4. 根据权利要求3所述的方法,其特征在于,若所述帧结构指示字段指示所述本次调度传输的帧结构为所述上行结构,在所述AP发送所述信令之后,还包括:
    所述AP接收所述STA发送的上行数据包;
    所述AP发送确认消息给所述STA,所述确认消息用于指示所述AP接收到所述上行数据包。
  5. 根据权利要求3所述的方法,其特征在于,若所述帧结构指示字段指示所述本次调度传输的帧结构为所述下行结构,在所述AP发送所述信令之后,还包括:
    所述AP发送下行数据包给所述STA;
    所述AP接收所述STA发送的确认消息,所述确认消息用于指示所述STA接收到所述下行数据包。
  6. 根据权利要求3所述的方法,其特征在于,若所述帧结构指示字段指示所述本次调度传输的帧结构为所述下行和上行级联的结构,在所述AP发送所述信令之后,还包括:
    所述AP发送下行数据包给所述STA;
    所述AP接收所述STA发送的上行数据包和第一确认消息,所述第一确认消息用于指示所述STA接收到所述下行数据包;
    所述AP发送第二确认消息给所述STA,所述第二确认消息用于指示所述AP接收到所述上行数据包;
    或者,若所述帧结构指示字段指示所述本次调度传输的帧结构为所述下行和上行级联的结构,在所述AP发送所述信令之后,还包括:
    所述AP接收所述STA发送的上行数据包;
    所述AP发送下行数据包和第二确认消息给所述STA,所述第二确认消息用于指示所述AP接收到所述上行数据包;
    所述AP接收所述STA发送的第一确认消息,所述第一确认消息用于指示所述STA接收到所述下行数据包。
  7. 根据权利要求3-6任一项所述的方法,其特征在于,若所述下行和上行之间的转换时间点为T,则所述转换时间字段的数值M为:
    M=(T-所述下一个信令的结束时间)/本次调度时每个资源单元的时域长度。
  8. 根据权利要求3所述的方法,其特征在于,若本次调度传输的是SU,则所述信令还包括下述字段中的至少一个字段,具体包括:
    所述信令还包括:SU/MU字段、STA ID字段、非前导部分数据的传输MCS字段、FEC编码字段、空时分组编码STBC字段、空间流数目NSS字段、聚合字段、以及平滑字段,其中,所述SU/MU字段用于指示本次调度传输的是SU,所述STA ID字段用于指示本次调度传输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示本次调度传输的数据编码方式,所述STBC字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个媒质访问控制层协议数据单元MPDU还是MPDU的聚合,所述平滑字段用于指示与发送波束成型有关的信息。
  9. 根据权利要求3所述的方法,其特征在于,所述信令还包括下述字段中的至少一个字段,具体包括:
    所述信令还包括帧结构指示字段和下行/上行STA数目字段,其中,所述帧结构指示字段用于指示本次调度传输的帧结构为所述下行和上行级联的结构,所述下行/上行STA数目字段用于指示本次调度传输的下行/上行用户数目。
  10. 一种无线局域网WLAN中的信令的接收方法,其特征在于,所述方法包括:
    站点STA接收接入点AP发送的信令,其中,所述信令包括AP标识ID字段、带宽BW字段、保护间隔GI字段、循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述GI用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用 于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
    所述STA分别解析所述AP ID字段、所述BW字段、所述GI字段,获得所述AP的ID、所述信令的后续数据传输所需的带宽以及所述CP的长度;
    其中,若所述AP的ID与所述STA关联的AP ID不匹配,停止解析所述AP ID字段之后的字段。
  11. 根据权利要求10所述的方法,其特征在于,所述AP ID字段为所述信令的第一个字段。
  12. 根据权利要求10或11所述的方法,其特征在于,所述信令还包括下述字段中的至少一个字段:
    所述信令的下一个信令的传输调制编码方案MCS字段、所述下一个信令的长度字段、帧结构指示字段、单用户SU/多用户MU字段、转换时间字段、持续时间字段、前向纠错FEC编码字段、STA数目字段、STA ID长度字段,其中,所述下一个信令的MCS字段用于指示所述下一个信令的传输MCS,所述下一个信令的长度字段用于指示所述下一个信令的长度,所述帧结构指示字段用于指示本次调度传输的帧结构,所述SU/MU字段用于指示本次调度传输的是SU还是MU,所述转换时间字段用于指示下行和上行之间的转换时间点,所述持续时间字段用于指示本次调度传输占用信道的剩余持续时间、所述FEC编码字段用于指示本次调度传输的数据编码方式、所述STA数目字段用于指示本次调度传输的STA的数目,所述STA ID长度字段用于指示本次调度传输的STA的STA ID的长度,其中,所述本次调度传输的帧结构包括:上行结构、或下行结构、或下行和上行级联的结构;
    所述方法还包括:
    所述STA解析所述下述字段中的至少一个字段,获得下述信息中的至少一个信息:
    所述下一个信令的传输MCS、所述下一个信令的长度、所述本次调度传输的帧结构、所述本次调度传输的是SU还是MU、所述下行和 上行之间的转换时间点、所述本次调度传输占用信道的剩余持续时间、所述本次调度传输的数据编码方式、所述本次调度传输的站点STA的数目、所述本次调度传输的STA的STA ID的长度。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述STA读取所述下一个信令中的资源指示信息;
    所述STA根据所述资源指示信息,确定所述STA的资源位置;
    所述STA在所述资源位置上传输上行数据包和/或下行数据包。
  14. 根据权利要求12或13所述的方法,其特征在于,若所述信令包括所述转换时间字段,则所述STA解析所述转换时间字段,获得所述下行和上行之间的转换时间点,包括:
    所述STA根据所述转换时间字段的数值、资源单元的时域长度、所述信令的结束时间,结合预设公式,确定所述下行和上行之间的转换时间点,所述预设公式包括:
    转换时间点=转换时间字段的数值×资源单元的时域长度+所述下一个信令的结束时间。
  15. 根据权利要求14所述的方法,其特征在于,若所述信令还包括所述帧结构指示字段,并且所述帧结构指示字段指示所述本次调度传输的帧结构为所述下行和上行级联的结构,则上行传输资源的时域位置为:
    上行传输资源的发送时间=转换时间点+接收至发送的切换时间+所述下一个信令指示的上行时间。
  16. 根据权利要求12所述的方法,其特征在于,若本次调度传输的是SU,则所述信令还包括下述字段中的至少一个字段,具体包括:
    所述信令还包括:SU/MU字段、STA ID字段、非前导部分数据的传输MCS字段、FEC编码字段、空时分组编码STBC字段、空间流数目NSS字段、聚合字段、以及平滑字段,其中,所述SU/MU字段用于指示本次调度传输的是SU,所述STA ID字段用于指示本次调度传 输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示本次调度传输的数据编码方式,所述STBC字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个媒质访问控制层协议数据单元MPDU还是MPDU的聚合,所述平滑字段用于指示与发送波束成型有关的信息;
    所述STA解析所述下述字段中的至少一个字段,获得下述信息中的至少一个信息,具体包括:
    所述STA解析所述SU/MU字段、所述STA ID字段、所述非前导部分数据的传输MCS字段、所述FEC编码字段、所述STBC字段、所述NSS字段、所述聚合字段、以及所述平滑字段,获得下述信息:
    本次调度传输的是SU、本次调度传输的STA的标识、所述非前导部分数据的传输MCS、本次调度传输的数据编码方式、所述SU传输中所述信令的后续数据传输是否采用STBC方式、所述SU传输采用的流数,所述非前导部分数据是单个MPDU还是MPDU的聚合,所述波束成型有关的信息。
  17. 根据权利要求12所述的方法,其特征在于,所述信令还包括下述字段中的至少一个字段,具体包括:
    所述信令还包括帧结构指示字段和下行/上行STA数目字段,其中,所述帧结构指示字段用于指示本次调度传输的帧结构为所述下行和上行级联的结构,所述下行/上行STA数目字段用于指示本次调度传输的下行/上行用户数目;
    所述STA解析所述下述字段中的至少一个字段,获得下述信息中的至少一个信息,具体包括:
    所述STA解析所述帧结构指示字段和所述下行/上行STA数目字段,获得本次调度传输的帧结构为所述下行和上行级联的结构、以及本次调度传输的下行/上行用户数目。
  18. 一种无线局域网WLAN中的信令的发送方法,其特征在于, 若本次传输的是单用户SU,所述方法包括:
    站点STA生成信令,其中,所述信令包括接入点标识AP ID字段、带宽BW字段、SU/多用户MU字段、保护间隔GI字段、站点标识STA ID字段、非前导部分数据的传输调制编码方案MCS字段、前向纠错FEC编码字段、空时分组编码STBC字段、空间流数目NSS字段、聚合字段、平滑字段,循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述SU/MU字段用于指示本次传输的是SU,所述GI字段用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述STA ID字段用于指示本次传输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示所述非前导部分数据的数据编码方式,所述STBC字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个媒质访问控制层协议数据单元MPDU还是MPDU的聚合,所述平滑字段用于指示与发送波束成型有关的信息,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
    所述STA发送所述信令。
  19. 一种无线局域网WLAN中的信令的发送方法,其特征在于,若本次传输的是单用户SU,所述方法包括:
    接入点AP接收站点STA发送的信令,其中,所述信令包括AP标识ID字段、带宽BW字段、SU/多用户MU字段、保护间隔GI字段、站点标识STA ID字段、非前导部分数据的传输调制编码方案MCS字段、前向纠错FEC编码字段、空时分组编码STBC字段、空间流数目NSS字段、聚合字段、平滑字段、循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述SU/MU字段用于指示本次传 输的是SU,所述GI字段用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述STA ID字段用于指示本次传输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示所述非前导部分数据的数据编码方式,所述STBC字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个MPDU还是MPDU的聚合,所述平滑字段用于指示与发送波束成型有关的信息,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
    所述AP分别解析所述AP ID字段、所述BW字段、所述GI字段,所述SU/MU字段、所述STA ID字段、所述非前导部分数据的传输MCS字段、所述FEC编码字段、所述STBC字段、所述NSS字段、所述聚合字段、以及所述平滑字段,获得下述信息:
    所述AP的ID、所述信令的后续数据传输所需的带宽以及所述CP的长度、本次传输的是SU、本次传输的STA的标识、所述非前导部分数据的传输MCS、所述非前导部分数据的数据编码方式、所述SU传输中所述信令的后续数据传输是否采用STBC方式、所述SU传输采用的流数,所述非前导部分数据是单个MPDU还是MPDU的聚合,所述波束成型有关的信息;
    其中,若所述AP的ID与所述AP自己的AP ID不匹配,停止解析所述AP ID字段之后的字段。
  20. 一种接入点AP,其特征在于,所述AP包括:生成单元和发送单元;
    所述生成单元,用于生成所述信令,其中,所述信令包括AP ID字段、带宽BW字段、保护间隔GI字段、循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述GI用于指示所述 信令的后续数据传输所需的循环前缀CP的长度,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
    所述发送单元,用于发送所述信令。
  21. 根据权利要求20所述的AP,其特征在于,所述AP ID字段为所述信令的第一个字段。
  22. 根据权利要求20或21所述的AP,其特征在于,所述信令还包括下述字段中的至少一个字段:
    所述下一个信令的传输调制编码方案MCS字段、所述下一个信令的长度字段、帧结构指示字段、单用户SU/多用户MU字段、转换时间字段、持续时间字段、前向纠错FEC编码字段、站点STA数目字段、站点标识STAID长度字段,其中,所述下一个信令的MCS字段用于指示所述下一个信令的传输MCS,所述下一个信令的长度字段用于指示所述下一个信令的长度,所述帧结构指示字段用于指示所述本次调度传输的帧结构,所述SU/MU字段用于指示本次调度传输的是SU还是MU,所述转换时间字段用于指示所述下行和上行之间的转换时间点,所述持续时间字段用于指示所述本次调度传输占用信道的剩余持续时间,所述FEC编码字段用于指示所述本次调度传输的数据编码方式,所述STA数目字段用于指示所述本次调度传输的STA的数目,所述STAID长度字段用于指示所述本次调度传输的STA的STA ID的长度,其中,所述本次调度传输的帧结构包括:上行结构、或下行结构、或下行和上行级联的结构。
  23. 根据权利要求22所述的AP,其特征在于,所述AP还包括接收单元;
    所述接收单元,用于若所述帧结构指示字段指示所述本次调度传输的帧结构为所述上行结构,在所述发送单元发送所述信令之后,接收所述STA发送的上行数据包;
    所述发送单元,还用于发送确认消息给所述STA,所述确认消息 用于指示所述AP接收到所述上行数据包。
  24. 根据权利要求22所述的AP,其特征在于,所述AP还包括接收单元;
    所述发送单元,还用于若所述帧结构指示字段指示所述本次调度传输的帧结构为所述下行结构,在所述发送所述信令之后,发送下行数据包给所述STA;
    所述接收单元,用于接收所述STA发送的确认消息,所述确认消息用于指示所述STA接收到所述下行数据包。
  25. 根据权利要求22所述的AP,其特征在于,所述AP还包括接收单元;
    所述发送单元,还用于若所述帧结构指示字段指示所述本次调度传输的帧结构为所述下行和上行级联的结构,在所述发送所述信令之后,发送下行数据包给所述STA;
    所述接收单元,用于接收所述STA发送的上行数据包和第一确认消息,所述第一确认消息用于指示所述STA接收到所述下行数据包;
    所述发送单元,还用于发送第二确认消息给所述STA,所述第二确认消息用于指示所述AP接收到所述上行数据包;
    或者,
    所述接收单元,还用于若所述帧结构指示字段指示所述本次调度传输的帧结构为所述下行和上行级联的结构,在所述发送单元发送所述信令之后,接收所述STA发送的上行数据包;
    所述发送单元,还用于发送下行数据包和第二确认消息给所述STA,所述第二确认消息用于指示所述AP接收到所述上行数据包;
    所述接收单元,还用于接收所述STA发送的第一确认消息,所述第一确认消息用于指示所述STA接收到所述下行数据包。
  26. 根据权利要求22-25任一项所述的AP,其特征在于,若所述下行和上行之间的转换时间点为T,则所述转换时间字段的数值M为:
    M=(T-所述下一个信令的结束时间)/本次调度时每个资源单元 的时域长度。
  27. 根据权利要求25所述的AP,其特征在于,若本次调度传输的是SU,则所述信令还包括下述字段中的至少一个字段,具体包括:
    所述信令还包括:SU/MU字段、STA ID字段、非前导部分数据的传输MCS字段、FEC编码字段、空时分组编码STBC字段、空间流数目NSS字段、聚合字段、以及平滑字段,其中,所述SU/MU字段用于指示本次调度传输的是SU,所述STA ID字段用于指示本次调度传输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示本次调度传输的数据编码方式,所述STBC字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个媒质访问控制层协议数据单元MPDU还是MPDU的聚合,所述平滑字段用于指示与发送波束成型有关的信息。
  28. 根据权利要求25所述的AP,其特征在于,所述信令还包括下述字段中的至少一个字段,具体包括:
    所述信令还包括帧结构指示字段和下行/上行STA数目字段,其中,所述帧结构指示字段用于指示本次调度传输的帧结构为所述下行和上行级联的结构,所述下行/上行STA数目字段用于指示本次调度传输的下行/上行用户数目。
  29. 一种站点STA,其特征在于,所述STA包括:接收单元、解析单元;
    所述接收单元,用于接收接入点AP发送的信令,其中,所述信令包括AP标识ID字段、带宽BW字段、保护间隔GI字段、循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述GI用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段 为所述信令的最后两个字段;
    所述解析单元,用于分别解析所述AP ID字段、所述BW字段、所述GI字段,获得所述AP的ID、所述信令的后续数据传输所需的带宽以及所述CP的长度;
    其中,若所述AP的ID与所述STA关联的AP ID不匹配,停止解析所述AP ID字段之后的字段。
  30. 根据权利要求29所述的STA,其特征在于,所述AP ID字段为所述信令的第一个字段。
  31. 根据权利要求29或30所述的STA,其特征在于,所述信令还包括下述字段中的至少一个字段:
    所述信令的下一个信令的传输调制编码方案MCS字段、所述下一个信令的长度字段、帧结构指示字段、单用户SU/多用户MU字段、转换时间字段、持续时间字段、前向纠错FEC编码字段、STA数目字段、STA ID长度字段,其中,所述下一个信令的MCS字段用于指示所述下一个信令的传输MCS,所述下一个信令的长度字段用于指示所述下一个信令的长度,所述帧结构指示字段用于指示本次调度传输的帧结构,所述SU/MU字段用于指示本次调度传输的是SU还是MU,所述转换时间字段用于指示下行和上行之间的转换时间点,所述持续时间字段用于指示本次调度传输占用信道的剩余持续时间、所述FEC编码字段用于指示本次调度传输的数据编码方式、所述STA数目字段用于指示本次调度传输的STA的数目,所述STA ID长度字段用于指示本次调度传输的STA的STA ID的长度,其中,所述本次调度传输的帧结构包括:上行结构、或下行结构、或下行和上行级联的结构;
    所述解析单元,还用于解析所述下述字段中的至少一个字段,获得下述信息中的至少一个信息:
    所述下一个信令的传输MCS、所述下一个信令的长度、所述本次调度传输的帧结构、所述本次调度传输的是SU还是MU、所述下行和上行之间的转换时间点、所述本次调度传输占用信道的剩余持续时间、所述本次调度传输的数据编码方式、所述本次调度传输的站点STA的 数目、所述本次调度传输的STA的STA ID的长度。
  32. 根据权利要求31所述的STA,其特征在于,所述STA还包括:读取单元、确定单元、发送单元;
    所述读取单元,用于读取所述下一个信令中的资源指示信息;
    所述确定单元,用于根据所述资源指示信息,确定所述STA的资源位置;
    所述接收单元,用于在所述资源位置上接收下行数据包;
    或者,
    所述发送单元,用于在所述资源位置上发送上行数据包。
  33. 根据权利要求31或32所述的STA,其特征在于,若所述信令包括所述转换时间字段,则所述解析单元具体用于:
    根据所述转换时间字段的数值、资源单元的时域长度、所述信令的结束时间,结合预设公式,确定所述下行和上行之间的转换时间点,所述预设公式包括:
    转换时间点=转换时间字段的数值×资源单元的时域长度+所述下一个信令的结束时间。
  34. 根据权利要求33所述的STA,其特征在于,若所述信令还包括所述帧结构指示字段,并且所述帧结构指示字段指示所述本次调度传输的帧结构为所述下行和上行级联的结构,则上行传输资源的时域位置为:
    上行传输资源的发送时间=转换时间点+接收至发送的切换时间+所述下一个信令指示的上行时间。
  35. 根据权利要求31所述的STA,其特征在于,若本次调度传输的是SU,则所述信令还包括下述字段中的至少一个字段,具体包括:
    所述信令还包括:SU/MU字段、STA ID字段、非前导部分数据的传输MCS字段、FEC编码字段、空时分组编码STBC字段、空间流数目NSS字段、聚合字段、以及平滑字段,其中,所述SU/MU字段用于指示本次调度传输的是SU,所述STA ID字段用于指示本次调度传 输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示本次调度传输的数据编码方式,所述STBC字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个媒质访问控制层协议数据单元MPDU还是MPDU的聚合,所述平滑字段用于指示与发送波束成型有关的信息;
    所述解析单元具体用于:
    解析所述SU/MU字段、所述STAID字段、所述非前导部分数据的传输MCS字段、所述FEC编码字段、所述STBC字段、所述NSS字段、所述聚合字段、以及所述平滑字段,获得下述信息:
    本次调度传输的是SU、本次调度传输的STA的标识、所述非前导部分数据的传输MCS、本次调度传输的数据编码方式、所述SU传输中所述信令的后续数据传输是否采用STBC方式、所述SU传输采用的流数,所述非前导部分数据是单个MPDU还是MPDU的聚合,所述波束成型有关的信息。
  36. 根据权利要求31所述的STA,其特征在于,所述信令还包括下述字段中的至少一个字段,具体包括:
    所述信令还包括帧结构指示字段和下行/上行STA数目字段,其中,所述帧结构指示字段用于指示本次调度传输的帧结构为所述下行和上行级联的结构,所述下行/上行STA数目字段用于指示本次调度传输的下行/上行用户数目;
    所述解析单元具体用于:
    解析所述帧结构指示字段和所述下行/上行STA数目字段,获得本次调度传输的帧结构为所述下行和上行级联的结构、以及本次调度传输的下行/上行用户数目。
  37. 一种站点STA,其特征在于,所述STA包括:生成单元和发送单元;
    所述生成单元,用于若本次传输的是单用户SU,生成信令,其 中,所述信令包括接入点标识AP ID字段、带宽BW字段、SU/多用户MU字段、保护间隔GI字段、站点标识STAID字段、非前导部分数据的传输调制编码方案MCS字段、前向纠错FEC编码字段、空时分组编码STBC字段、空间流数目NSS字段、聚合字段、平滑字段,循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述SU/MU字段用于指示本次传输的是SU,所述GI字段用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述STAID字段用于指示本次传输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示所述非前导部分数据的数据编码方式,所述STBC字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个媒质访问控制层协议数据单元MPDU还是MPDU的聚合,所述平滑字段用于指示与发送波束成型有关的信息,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
    所述发送单元,用于发送所述信令。
  38. 一种接入点AP,其特征在于,所述AP包括接收单元和解析单元;
    所述接收单元,用于若本次传输的是单用户SU,接收站点STA发送的信令,其中,所述信令包括AP标识ID字段、带宽BW字段、SU/多用户MU字段、保护间隔GI字段、站点标识STA ID字段、非前导部分数据的传输调制编码方案MCS字段、前向纠错FEC编码字段、空时分组编码STBC字段、空间流数目NSS字段、聚合字段、平滑字段、循环冗余校验CRC字段和尾Tail字段,所述AP ID字段用于指示所述AP的ID,所述BW字段用于指示所述信令的后续数据传输所需的带宽,所述SU/MU字段用于指示本次传输的是SU,所述GI字段 用于指示所述信令的后续数据传输所需的循环前缀CP的长度,所述STAID字段用于指示本次传输的STA的标识,所述非前导部分数据的传输MCS字段用于指示所述非前导部分数据的传输MCS,所述FEC编码字段用于指示所述非前导部分数据的数据编码方式,所述STBC字段用于指示所述SU传输中所述信令的后续数据传输是否采用STBC方式,所述NSS字段用于指示所述SU传输采用的流数,所述聚合字段用于指示所述非前导部分数据是单个MPDU还是MPDU的聚合,所述平滑字段用于指示与发送波束成型有关的信息,所述CRC字段用于保护所述信令中所述CRC字段之前的字段,所述Tail字段用于清空编码器和解码器,所述CRC字段和所述Tail字段为所述信令的最后两个字段;
    所述解析单元,用于分别解析所述AP ID字段、所述BW字段、所述GI字段,所述SU/MU字段、所述STA ID字段、所述非前导部分数据的传输MCS字段、所述FEC编码字段、所述STBC字段、所述NSS字段、所述聚合字段、以及所述平滑字段,获得下述信息:
    所述AP的ID、所述信令的后续数据传输所需的带宽以及所述CP的长度、本次传输的是SU、本次传输的STA的标识、所述非前导部分数据的传输MCS、所述非前导部分数据的数据编码方式、所述SU传输中所述信令的后续数据传输是否采用STBC方式、所述SU传输采用的流数,所述非前导部分数据是单个MPDU还是MPDU的聚合,所述波束成型有关的信息;
    其中,若所述AP的ID与所述AP自己的AP ID不匹配,停止解析所述AP ID字段之后的字段。
PCT/CN2015/070252 2014-10-20 2015-01-07 无线局域网中的信令的发送、接收方法及装置 WO2016061912A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP15851662.5A EP3200418B1 (en) 2014-10-20 2015-01-07 Method and apparatus for sending and receiving signalling in wireless local area network(wlan)
CN202010209216.4A CN111510253B (zh) 2014-10-20 2015-01-07 无线局域网中的信令的发送、接收方法及装置
BR112017008123-7A BR112017008123B1 (pt) 2014-10-20 2015-01-07 Método e aparelho para enviar e receber sinalização em rede de área local sem fio
RU2017117422A RU2665295C1 (ru) 2014-10-20 2015-01-07 Способ и устройство для отправки и приема сигнализации в беспроводной локальной сети
KR1020177013352A KR101922579B1 (ko) 2014-10-20 2015-01-07 무선 근거리 통신망(wlan)에서 시그널링을 송수신하는 방법 및 장치
EP22193359.1A EP4171167A1 (en) 2014-10-20 2015-01-07 Method and apparatus for sending and receiving signaling in wireless local area network
CN201580057206.0A CN107079020B (zh) 2014-10-20 2015-01-07 无线局域网中的信令的发送、接收方法及装置
JP2017539483A JP6837978B2 (ja) 2014-10-20 2015-01-07 無線ローカルエリアネットワークにおいてシグナリングを送受信するための方法および装置
US15/492,053 US10342042B2 (en) 2014-10-20 2017-04-20 Method and apparatus for sending and receiving signaling in wireless local area network
US16/411,961 US10721768B2 (en) 2014-10-20 2019-05-14 Method and apparatus for sending and receiving signaling in wireless local area network
US16/932,333 US11601972B2 (en) 2014-10-20 2020-07-17 Method and apparatus for sending and receiving signaling in wireless local area network
US18/166,763 US11889549B2 (en) 2014-10-20 2023-02-09 Method and apparatus for sending and receiving signaling in wireless local area network

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2014088972 2014-10-20
CNPCT/CN2014/088972 2014-10-20
CNPCT/CN2014/093183 2014-12-05
CN2014093183 2014-12-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/492,053 Continuation US10342042B2 (en) 2014-10-20 2017-04-20 Method and apparatus for sending and receiving signaling in wireless local area network

Publications (1)

Publication Number Publication Date
WO2016061912A1 true WO2016061912A1 (zh) 2016-04-28

Family

ID=55760119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070252 WO2016061912A1 (zh) 2014-10-20 2015-01-07 无线局域网中的信令的发送、接收方法及装置

Country Status (8)

Country Link
US (4) US10342042B2 (zh)
EP (2) EP4171167A1 (zh)
JP (3) JP6837978B2 (zh)
KR (1) KR101922579B1 (zh)
CN (2) CN107079020B (zh)
BR (1) BR112017008123B1 (zh)
RU (1) RU2665295C1 (zh)
WO (1) WO2016061912A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112017008123B1 (pt) 2014-10-20 2023-11-14 Huawei Technologies Co., Ltd Método e aparelho para enviar e receber sinalização em rede de área local sem fio
EP3210354B1 (en) * 2014-10-24 2024-04-10 InterDigital Patent Holdings, Inc. Wlan designs for supporting an outdoor propagation channel
EP4311361A2 (en) * 2015-01-09 2024-01-24 InterDigital Patent Holdings, Inc. Bss-color enhanced transmission in wlans (bss-cet)
AU2016216286B2 (en) * 2015-02-02 2018-12-06 Lg Electronics Inc. Methods and apparatus for transmitting/receiving HE-SIG B
US9999054B2 (en) * 2015-03-04 2018-06-12 Lg Electronics Inc. Method and apparatus for transmitting radio frame including control information in a WLAN system
WO2016144902A1 (en) * 2015-03-06 2016-09-15 Interdigital Patent Holdings, Inc. Method and system for wireless local area network (wlan) long symbol duration migration
CN106162906B (zh) * 2015-03-31 2019-01-15 中兴通讯股份有限公司 调度信息发送、接收方法及装置
CN107534534B (zh) * 2015-06-10 2020-09-11 华为技术有限公司 物理层协议数据单元的传输方法和装置
WO2017082941A1 (en) * 2015-11-11 2017-05-18 Ruckus Wireless, Inc. Selective wlan processing based on preamble information
JP2018060065A (ja) * 2016-10-05 2018-04-12 コニカミノルタ株式会社 画像形成システムおよび画像形成方法
DE102018216944A1 (de) * 2017-10-02 2019-04-04 Marvell World Trade Ltd. Systeme und Verfahren zum Multi-User-Betrieb mit Duplex-Mediumzugriffssteuerung
US10530463B2 (en) * 2017-11-16 2020-01-07 Grand Mate Co., Ltd. Method of extending RF signals in a wireless control system
CN116318582A (zh) * 2018-07-09 2023-06-23 华为技术有限公司 一种信令字段指示方法及装置
US10707993B2 (en) * 2018-08-23 2020-07-07 Sr Technologies, Inc. Blind detection and synchronization of data packets
US11234243B2 (en) 2019-08-09 2022-01-25 Samsung Electronics Co., Ltd Method and system for transitioning station to uplink multi-user disable mode and uplink multi-user enable mode
US20220174134A1 (en) * 2020-12-02 2022-06-02 Semiconductor Components Industries, Llc Abbreviated header communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013104992A2 (en) * 2012-01-11 2013-07-18 Marvell World Trade Ltd. Information bit padding schemes for wlan
CN103534967A (zh) * 2011-05-13 2014-01-22 高通股份有限公司 用于具有多种格式的分组的无线通信的系统和方法
CN103959670A (zh) * 2011-12-02 2014-07-30 华为技术有限公司 用于在无线网络中进行流量标示和控制的系统和方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6889045B2 (en) 2002-06-26 2005-05-03 Motorola, Inc. Method and apparatus for implementing bi-directional soft handovers between wireless networks via media gateway control
US8077681B2 (en) * 2002-10-08 2011-12-13 Nokia Corporation Method and system for establishing a connection via an access network
CN1264309C (zh) * 2003-06-26 2006-07-12 华为技术有限公司 一种给无线局域网用户发送业务数据的方法
KR100716993B1 (ko) * 2005-02-07 2007-05-10 삼성전자주식회사 무선랜 상에서 전송 프레임에 대한 확인 신호 프레임 결정방법 및 장치
US8619658B2 (en) * 2005-09-21 2013-12-31 Interdigital Technology Corporation Method and apparatus for transmission management in a wireless communication system
JP5415533B2 (ja) * 2008-06-23 2014-02-12 トムソン ライセンシング 通信方法及び通信局
US8599804B2 (en) * 2009-08-07 2013-12-03 Broadcom Corporation Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications
KR20110027533A (ko) 2009-09-09 2011-03-16 엘지전자 주식회사 다중 안테나 시스템에서 제어정보 전송 방법 및 장치
EP2491662B1 (en) * 2009-10-23 2015-07-29 Marvell World Trade Ltd. Number of streams indication for WLAN
EP2373075A1 (en) * 2010-03-30 2011-10-05 British Telecommunications public limited company System and method for WLAN traffic monitoring
US8619655B2 (en) * 2010-06-09 2013-12-31 Broadcom Corporation Cyclic shift delay (CSD) short training field (STF) for orthogonal frequency division multiplexing (OFDM) signaling within multiple user, multiple access, and/or MIMO wireless communicaitons
US9860037B2 (en) 2010-07-21 2018-01-02 Qualcomm, Incorporated Method and apparatus for ordering sub-fields of VHT-SIG-A and VIT-SIG-B fields
US9184969B2 (en) * 2011-04-24 2015-11-10 Broadcom Corporation Preamble for use within single user, multiple user, multiple access, and/or MIMO wireless communications
US20120269142A1 (en) * 2011-04-24 2012-10-25 Broadcom Corporation Doppler adaptation using pilot patterns within single user, multiple user, multiple access, and/or MIMO wireless communications
US8830815B2 (en) * 2011-05-19 2014-09-09 Qualcomm Incorporated Preamble design for television white space transmissions
WO2013025923A1 (en) 2011-08-18 2013-02-21 Marvell World Trade Ltd. Signal field design for wlan
US9100275B2 (en) * 2011-09-06 2015-08-04 Sameer Vermani Signal unit including a field indicative of a zero-length payload
US9729367B2 (en) * 2011-10-14 2017-08-08 Korea University Research And Business Foundation Method and device for processing uplink signal in WLAN system
CN103096328B (zh) * 2011-11-02 2015-09-23 西门子公司 用于多链路无线数据传输的装置、系统和方法
CN104247316B (zh) 2012-04-03 2018-10-02 马维尔国际贸易有限公司 用于wlan的物理层帧格式
AU2013250182B2 (en) 2012-04-15 2016-10-20 Lg Electronics Inc. Method and apparatus for transmitting and receiving feedback trigger frames in wireless LAN systems
JP5866479B2 (ja) * 2012-04-24 2016-02-17 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおいて部分連携識別子を含むフレーム送受信方法及び装置
CN103582137B (zh) * 2012-07-19 2018-01-02 华为技术有限公司 Wlan的信道资源分配方法和设备、无线局域网通信系统
US9712306B2 (en) * 2013-01-21 2017-07-18 Apple Inc. Adaptive link adaptation for wireless communications
US9729285B2 (en) * 2013-06-13 2017-08-08 Avago Technologies General Ip (Singapore) Pte. Ltd Flexible OFDMA packet structure for wireless communications
CN105612698A (zh) * 2013-11-19 2016-05-25 英特尔Ip公司 具有精简的信号字段的帧结构和用于高效wi-fi(hew)通信的方法
US20150163028A1 (en) * 2013-12-10 2015-06-11 Qualcomm Incorporated Methods and apparatus for wireless communication utilizing efficient signal field design in high efficiency wireless packets
US9680563B2 (en) * 2014-01-17 2017-06-13 Apple Inc. System and method for partial bandwidth communication
US9661638B2 (en) * 2014-05-07 2017-05-23 Qualcomm Incorporated Methods and apparatus for signaling user allocations in multi-user wireless communication networks
CN106664165B (zh) * 2014-08-21 2020-07-24 Lg 电子株式会社 在无线通信系统中用于上行链路传输的方法及其装置
BR112017008123B1 (pt) * 2014-10-20 2023-11-14 Huawei Technologies Co., Ltd Método e aparelho para enviar e receber sinalização em rede de área local sem fio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534967A (zh) * 2011-05-13 2014-01-22 高通股份有限公司 用于具有多种格式的分组的无线通信的系统和方法
CN103959670A (zh) * 2011-12-02 2014-07-30 华为技术有限公司 用于在无线网络中进行流量标示和控制的系统和方法
WO2013104992A2 (en) * 2012-01-11 2013-07-18 Marvell World Trade Ltd. Information bit padding schemes for wlan

Also Published As

Publication number Publication date
KR101922579B1 (ko) 2018-11-27
EP3200418A1 (en) 2017-08-02
US20170223734A1 (en) 2017-08-03
BR112017008123B1 (pt) 2023-11-14
CN107079020B (zh) 2020-04-14
CN107079020A (zh) 2017-08-18
CN111510253B (zh) 2023-11-10
US10342042B2 (en) 2019-07-02
RU2665295C1 (ru) 2018-08-28
US20230189332A1 (en) 2023-06-15
KR20170070208A (ko) 2017-06-21
EP3200418A4 (en) 2017-09-13
JP6837978B2 (ja) 2021-03-03
JP2022173220A (ja) 2022-11-18
BR112017008123A2 (zh) 2018-06-19
EP4171167A1 (en) 2023-04-26
US11601972B2 (en) 2023-03-07
JP2017535220A (ja) 2017-11-24
US10721768B2 (en) 2020-07-21
JP2020074556A (ja) 2020-05-14
US20190281626A1 (en) 2019-09-12
CN111510253A (zh) 2020-08-07
JP7135013B2 (ja) 2022-09-12
US11889549B2 (en) 2024-01-30
US20200351939A1 (en) 2020-11-05
EP3200418B1 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
JP7135013B2 (ja) 無線ローカルエリアネットワークにおいてシグナリングを送受信するための方法および装置
CN107771376B (zh) 无线通信系统中发送数据的方法及其设备
US10057806B2 (en) Multi-user communication in wireless networks
JP6749911B2 (ja) 無線通信システムにおけるデータ送信方法及びこのための装置
KR101884541B1 (ko) 데이터 단위를 수신하는 방법 및 장치
KR101597472B1 (ko) 무선랜 시스템에서 프레임 송신 및 수신 방법과 이를 지원하는 장치
KR101417691B1 (ko) 무선랜에서 멀티 채널을 이용하여 제어 정보를 전송하는 방법 및 장치
WO2016104886A1 (ko) 트리거 프레임을 기반으로 한 데이터 단위의 전송 방법 및 장치
WO2015194732A1 (ko) 프레임을 수신하는 방법 및 장치
US10917217B2 (en) Method and apparatus for transmitting a physical protocol data unit including a high-efficiency short training field
KR20160030521A (ko) 고효율 wlan 프리앰블 구조
EP3364587B1 (en) Method for transmitting frame type indication information in wireless lan system and device therefor
CN112655181A (zh) 在包括具有相互不同的最大可传输rf带宽的无线装置的wlan环境中应用优化的相位旋转的方法和装置
KR20120117845A (ko) 무선랜 시스템에서 mimo 패킷을 송수신하는 방법 및 장치
KR20230041706A (ko) 향상된 사운딩 패킷 설계
US10320601B2 (en) Transmitting/receiving device and method in wireless communication system
WO2016088956A1 (ko) 데이터 단위의 전송 방법 및 장치
KR20170078632A (ko) Plcp 서비스 데이터 유닛(psdu) 톤들 상의 제어 채널

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539483

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015851662

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177013352

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017117422

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017008123

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017008123

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170419