WO2016061533A1 - Breath analyzer, system, and computer program for authenticating, preserving, and presenting breath analysis data - Google Patents

Breath analyzer, system, and computer program for authenticating, preserving, and presenting breath analysis data Download PDF

Info

Publication number
WO2016061533A1
WO2016061533A1 PCT/US2015/056062 US2015056062W WO2016061533A1 WO 2016061533 A1 WO2016061533 A1 WO 2016061533A1 US 2015056062 W US2015056062 W US 2015056062W WO 2016061533 A1 WO2016061533 A1 WO 2016061533A1
Authority
WO
WIPO (PCT)
Prior art keywords
breath
breath analysis
analyzer
recording
analysis result
Prior art date
Application number
PCT/US2015/056062
Other languages
French (fr)
Inventor
Stanton E. ROSS
Original Assignee
Digital Ally, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/517,160 external-priority patent/US10390732B2/en
Application filed by Digital Ally, Inc. filed Critical Digital Ally, Inc.
Publication of WO2016061533A1 publication Critical patent/WO2016061533A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/082Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath

Definitions

  • Embodiments and/or features of the invention described in the present document may be used with the subject matter disclosed in commonly assigned U.S. Patent No. 8,781 ,292, filed September 27, 2013, issued July 15, 2014, and entitled "COMPUTER PROGRAM, METHOD, AND SYSTEM FOR MANAGING MULTIPLE DATA RECORDING DEVICES" (“the '292 Patent”), which is a continuation application of the ⁇ 51 Application.
  • the '292 Patent is hereby incorporated by reference in its entirety into the present application.
  • Embodiments and/or features of the invention described in the present document may be used with the subject matter disclosed in commonly assigned U.S. Patent Application No. 14/040,329, filed September 27, 2013, and entitled “PORTABLE VIDEO AND IMAGING SYSTEM” ("the '329 Application”); and commonly assigned U.S. Patent Application No. 14/040,006, filed September 27, 2013, and entitled “MOBILE VIDEO AND IMAGING SYSTEM” ("the ⁇ 06 Application”).
  • the '329 Application and the '006 Application are hereby incorporated by reference in their entirety into the present application.
  • embodiments and/or features of the invention described in the present document may be used with the subject matter disclosed in commonly assigned U.S. Patent Application No.
  • Embodiments of the invention relate to breath analyzing devices. More specifically, embodiments of the invention relate to the authentication of a breath analysis, the preservation of the breath analysis result, and the presentation of the breath analysis result.
  • Breath analysis devices commonly known as Breathalyzers® and Intoxilyzers®, estimate the amount of a chemical substance, such as alcohol, in a breath sample. Breath analysis devices do not directly measure blood alcohol content or concentration in the blood but instead estimate the blood alcohol content or concentration by measuring the amount of alcohol found in a breath sample from a donor. Breath analysis results are used as evidence in criminal and civil cases. Authenticating, preserving, and presenting the results is therefore important for purposes of establishing criminal activity. [0007] Breath analysis devices of the prior art present numerous drawbacks.
  • breath analysis devices present the result only on a display of the device. This requires the administrator to clearly read, recall, and record the displayed result. For example, the administrator may write the result in his notes or take a photograph of the device showing the result. Both of these methods require additional work by the administrator and record the result in disparate locations that could become lost or destroyed.
  • breath analysis devices of the prior art do not present the results in a manner easily displayed in a courtroom. Typically, the administrator testifies to the result of the breath analysis or presents photographs of the device displaying the breath analysis result. Both of these are prone to human error and can raise doubt in the judge or jury.
  • Embodiments of the invention solve the above-mentioned problems by providing a breath analyzer, system, and computer program for authenticating, preserving, and presenting the results of a breath analysis.
  • embodiments of the invention authenticate that the breath analysis was performed correctly by integrating video from at least one ancillary video camera and/or an integral video camera on the breath analyzer with the breath analysis result.
  • Embodiments may also authenticate which administrator performed the breath analysis by a proximity tag system in the breath analyzer and/or a recording device manager.
  • embodiments of the invention preserve the results of the breath analysis by communicating the results to the recording device manager and/or the ancillary video camera, and storing the breath analysis results in metadata of the recorded video.
  • embodiments present the breath analysis result of the breath analyzer by superimposing the result onto the video recorded by the ancillary video cameras and/or the integral video camera on the breath analyzer.
  • a first embodiment of the invention is directed to a system for authenticating, preserving, and presenting breath analysis data.
  • the system comprises the breath analyzer, the recording device manager, the at least one ancillary video camera, and an auxiliary computing device (which may be housed with any of the aforementioned components or be housed in a separate housing).
  • a second embodiment of the invention is directed to the breath analyzer, which is adapted to authenticate the breath analysis procedure and the administrator and to preserve breath analysis data by communicating the result with a recording device manager.
  • the breath analyzer is a hand-held device used by the administrator to perform the breath analysis on the donor.
  • the breath analyzer comprises a breath receptor, an analyzing element, at least one processing element, a communications element, a memory element, and a housing.
  • a third embodiment of the invention is directed to a non-transitory computer readable storage medium associated with or otherwise stored within the breath analyzer that has a computer program stored thereon that instructs at least one processing element of the breath analyzer to perform the steps of a computerized method of authenticating the breath analysis and preserving the breath analysis result.
  • the computerized method may also be directed to presenting the breath analysis result.
  • Fig. 1 is a system diagram illustrating the interactions of the various components of the system
  • FIG. 2 is a perspective view of a first embodiment of the breath analyzer
  • FIG. 3 is a front view of the first embodiment of the breath analyzer
  • Fig. 4 is a side view of the first embodiment of the breath analyzer
  • Fig. 5 is a schematic view of the components of the breath analyzer
  • FIG. 6 is a front view of a second embodiment of the breath analyzer with an integral video camera
  • Fig. 7 is a side view of the second embodiment of the breath analyzer
  • Fig. 8 is a top view of the second embodiment of the breath analyzer;
  • Fig. 9 is a flow diagram illustrating the steps of a method of interacting with the breath analyzer;
  • Fig. 10 is a flow diagram illustrating the steps of a first method of authenticating and preserving the breath analysis result
  • Fig. 1 1 is a flow diagram illustrating the steps of a second method of authenticating and preserving the breath analysis result
  • Fig. 12 is an exemplary video capture frame showing a breath analyzer status superimposed thereon;
  • Fig. 13 is another exemplary video capture frame showing a breath analysis result superimposed thereon.
  • Fig. 14 is a flow diagram illustrating the steps of a method of presenting the breath analysis result.
  • references to "one embodiment,” “an embodiment,” or “embodiments” mean that the feature or features being referred to are included in at least one embodiment of the technology.
  • references to "one embodiment,” “an embodiment,” or “embodiments” in this description do not necessarily refer to the same embodiment and are also not mutually exclusive unless so stated and/or except as will be readily apparent to those skilled in the art from the description.
  • a feature, structure, act, etc. described in one embodiment may also be included in other embodiments, but is not necessarily included.
  • the current technology can include a variety of combinations and/or integrations of the embodiments described herein.
  • a system 10 for authenticating, preserving, and presenting breath analysis data comprises a breath analyzer 12, a recording device manager 14, at least one ancillary video camera 16, and an auxiliary computing device 18, which may include display, processing, and storage capabilities.
  • auxiliary computing device takes the form of a laptop computer in law enforcement vehicle 50. In other embodiments it takes the form of a mobile device carried by law enforcement officer 46. Other form factors for auxiliary computing device 18 are also contemplated.
  • the system 10 authenticates that the breath analysis was performed correctly by recording the breath analysis with the at least one ancillary video camera 16, and in some embodiments an integral video camera 20 in the breath analyzer 12.
  • a donor 22 provides a breath sample to the breath analyzer 12.
  • the breath analyzer 12 then sends an "analysis in progress" status 24 while it analyzes the breath sample to determine a breath analysis result 26.
  • the system 10 then preserves the breath analysis result by transmitting the breath analysis result to the recording device manager 14 for preservation at auxiliary computing device 18 and saving the breath analysis result as metadata.
  • the system 10 also presents the breath analysis result by superimposing data onto the video recording from the ancillary video camera 16 and/or the integral video camera 20.
  • the breath analysis is also displayed in real time on a display of one or more computing devices such as auxiliary computing device 18.
  • the breath analysis result is superimposed on video displayed from one or more video cameras such as ancillary video camera 16.
  • it is displayed on a dedicated portion of a display screen.
  • it is displayed on a dedicated display device such as a readout in law enforcement vehicle 50 or a heads-up display (HUD) worn by law enforcement officer 46.
  • HUD heads-up display
  • Other embodiments of the system 10 may comprise the breath analyzer 12, the recording device manager 14, and the auxiliary computing device 18.
  • the breath analyzer 12 transmits the breath analysis result to the recording device manager 14, which stores the breath analysis result at auxiliary computing device 18 without any video or superimposing.
  • Still other embodiments of the system 10 may comprise the breath analyzer 12 and the at least one ancillary video camera 16, in which the breath analyzer 12 communicates directly with the ancillary video camera 16.
  • the system 10 of embodiments of the invention may comprise computing devices to facilitate the functions and features described herein.
  • the computing devices may comprise any number and combination of processors, controllers, integrated circuits, programmable logic devices, or other data and signal processing devices for carrying out the functions described herein, and may additionally comprise one or more memory storage devices, transmitters, receivers, displays, and/or communication busses for communicating with the various devices of the system 10.
  • Embodiments of the invention are also directed to the breath analyzer 12.
  • the breath analyzer 12 is a relatively small, hand held device for receiving and analyzing a breath sample.
  • the breath analyzer 12 comprises a breath receptor 28, an analyzing element 30, a processing element 32, a communications element 34, a memory element 36, and a housing 38.
  • the breath analyzer 12 may further comprise a battery, at least one user input 40, at least one status indicator, a display 42, a data cable, and/or a power cable.
  • Embodiments of the invention are also directed to a method of authenticating, preserving, and presenting breath analysis data.
  • An administrator 44 administers the breath analysis.
  • the administrator 44 may authenticate their identity with the breath analyzer 12 and/or recording device manager 14.
  • the administrator 44 may also authenticate the breath analysis is performed correctly by directing at least one ancillary video camera 16 toward the location in which the breath analysis will be performed.
  • the administrator 44 directs the donor 22 to blow into the breath receptor 28 for a certain period of time.
  • the particles expelled by the donor 22 are the breath sample.
  • the analyzing element 30 within the breath analyzer 12 detects and measures the level of at least one chemical compound, such as alcohol or ethanoi, in the breath sample.
  • the breath analyzer 12 then preserves the breath analysis result data by transmitting information indicative of the breath analysis result to the recording device manager 14.
  • the breath analyzer 12 may also display the result for the administrator 44 and donor 22 on one or more displays, as described above.
  • the recording device manager 14 associates the breath analysis data with the video being captured by the ancillary video cameras 16.
  • the breath analysis result may also be presented by superimposing the breath analysis result onto the video being recorded.
  • Embodiments of the invention may be directed to the breath analysis and detection of other substances, such as tobacco, marijuana, cocaine, amphetamines, opioids, MDMA, and other illicit substances.
  • Embodiments of the invention may additionally or in the alternative be directed to other purposes of breath analysis, such as vehicle interlock devices, parole/probation assessments, new/potential/periodic employee screenings, impairment screenings for workers' compensation injuries, testing by alcohol servers, and self-testing.
  • Breath analysis is often used by a law enforcement officer 46 to determine the level of intoxication of drivers on roadways.
  • the donor 22 is the driver suspected of operating a vehicle while intoxicated
  • the administrator 44 is the law enforcement officer 46 or officers administering the breath analysis.
  • the result of the breath analysis may give the law enforcement office probable cause to arrest the driver.
  • the result of the breath analysis may also be presented in court as evidence of the driver's intoxication.
  • PBTs "preliminary breath testers"
  • breath analysis may be less accurate than a direct blood or urine tests, breath analysis provides the benefits of being non-invasive, simple to execute, and able to provide quick results.
  • the donor 22 is the person whose breath is to be analyzed to estimate the content of a certain substance in their blood.
  • the donor 22 may be a driver suspected of driving while intoxicated, a potential employee, an employee that has recently been injured on the job, a person on parole or probation, a government benefits recipient, etc.
  • the donor 22 may refuse to provide the breath sample, but this may have other legal and employment consequences.
  • a portion of the alcohol, or other substances, that the donor 22 has consumed are expelled with each breath, because the alcohol was absorbed into the blood stream via the donor's mouth, throat, stomach, intestine, etc. As the alcohol travels through the blood stream, it reaches the donor's lungs. Because alcohol is volatile (i.e., it will evaporate from a liquid solution), a portion of the alcohol evaporates into the lungs and is expelled along with the air during exhalation. The concentration of alcohol in the breath is related by a known formula to the concentration of alcohol in the blood. The breath analyzer 12 therefore tests the breath sample of the donor 22 and calculates an estimation of the donor's blood alcohol concentration ("BAG", also known as blood alcohol content).
  • BAG blood alcohol concentration
  • the BAG is typically measured in the units of grams/1 OOmL.
  • the current legal limit throughout the United States is 0.08 grams/1 OOmL.
  • the administrator 44 oversees the breath analysis.
  • the administrator 44 may closely observe the donor 22 for a period of time before the breath analysis. This is to ensure that the donor 22 does not have any alcohol in his mouth or throat, which can provide inaccurate test results.
  • the administrator 44 may also direct the at least one ancillary cameras to the area in which the breath analysis will take place, to provide a plurality of viewing angles of the breath analysis.
  • ancillary video camera 16 there may be a vehicle- mounted 48 ancillary video camera 16 in a law enforcement vehicle 50, a person- mounted 52 ancillary camera on the administrator 44, and another person-mounted 52 ancillary video camera 16 on an assistant administrator (e.g., another law enforcement officer).
  • the administrator 44 may also provide instructions to the donor 22, such as how to blow into the breath analyzer 12 and for what amount of time.
  • the administrator 44 may also manipulate the breath analyzer 12, such as by turning the breath analyzer 12 on. During the breath analysis, the administrator 44 observes the donor 22 to ensure proper procedures are followed. If not, the administrator 44 may correct the donor 22 and re-initiate the breath analysis.
  • the breath analyzer 12 comprises the breath receptor 28, the analyzing element 30, at least one processing element 32, at least one memory element 36, the communications element 34, and the housing 38.
  • the breath analyzer 12 may further comprise at least one user input 40, a proximity tag 54, a proximity tag reader 56, at least one status indicator, the display 42, and/or a speaker.
  • a schematic illustration of the components of the breath analyzer 12 can be found in Fig. 5. It should be noted that Fig. 5 is not to scale and presents only a schematic illustration of the components.
  • the breath receptor 28 comprises a mouthpiece 58 and a sample chamber 60.
  • the mouthpiece 58 is a substantially hollow tube that is at least partially located on the exterior of the breath analyzer 12.
  • the mouthpiece 58 is adapted to receive the donors mouth and/or nose therearound. As the donor 22 blows into the mouthpiece 58, the mouthpiece 58 directs the flow of breath into the sample chamber 60.
  • the sample chamber 60 is an internal cavity or void in the breath analyzer 12. The sample chamber 60 stores the breath sample for analysis by the analyzing element 30, discussed below.
  • the breath receptor 28 may have a disposable cover (not illustrated).
  • the disposable cover provides a hygienic covering to the breath receptor 28 so that subsequent donors do not contact bodily fluids of previous donors.
  • the disposable cover is placed over the breath receptor 28 prior to the breath analysis and is then discarded after the breath analysis.
  • the analyzing element 30 estimates the concentration of alcohol, or other substance, in the blood by analyzing the concentration of alcohol in the breath sample.
  • the analyzing element 30 comprises at least one vial, a set of photocells connected to a meter, and a processing unit to interpret the results (not illustrated).
  • the at least one vial is typically formed of glass or another transparent substance.
  • the vial is filled with a chemical compound.
  • the chemical compound removes the alcohol from the air and reacts with the alcohol to change the color of the solution.
  • the set of photocells detects the degree of color change, which is directly tied to the concentration of alcohol in the breath sample.
  • the processing unit interprets the degree of color change, as detected by the set of photocells, to calculate the breath analysis result.
  • the processing unit may be the processing element 32 of the breath analyzer 12, or it may be separate and communicatively linked.
  • the analyzing element 30 utilizes infrared (IR) spectroscopy to estimate the concentration of alcohol in the breath sample.
  • IR spectroscopy estimates the concentration of alcohol by emitting an IR beam through the sample chamber 80. The IR beam then passes through at least one filter specific to the wavelengths of the bonds of ethanoi. A set of photocells detects the amount of IR light passing through the filter. The processing unit then interprets the amount of IR light passing through the filter to calculate the breath analysis result.
  • IR infrared
  • the breath analysis result may be displayed on the display 42 of the breath analyzer 12 and/or transmitted to the recording device manager 14, as discussed below.
  • the breath analysis result may be retransmitted by recording device manager to one or more associated devices, such as auxiliary computing device 18, ancillary camera 16, law enforcement vehicle 50, or other component of the system.
  • the breath analysis result is transmitted to the one or more associated devices, such as auxiliary computing device 18, ancillary camera 16, law enforcement vehicle 50, or other component of the system, and without first being transmitted to the recording device manager. Once received by other components of the system, the breath analysis result is used accordingly.
  • the breath analysis result may be stored as metadata associated with the video recording produced by one or more cameras such as ancillary camera 16, displayed on a display of auxiliary computing device 18, a display in law enforcement vehicle 50, or another auxiliary display (such as, for example, a HUD or other body-mounted display worn by law enforcement officer 46).
  • the breath analyzer 12 may announce the breath analysis result via the speaker, and/or give other indications that the breath analysis is complete.
  • the at least one user input 40 of the breath analyzer 12 may include buttons, knobs, switches, etc. for the input 40 of information by the administrator 44.
  • the user input 40 could include a power button, a start analysis button, a stop analysis button, a reset button, a display toggle button, etc.
  • the power button turns the device on and off.
  • there is no specific start analysis button because the breath analyzer 12 begins the breath analysis automatically upon the input 40 of the breath sample from the donor 22.
  • the communication element of the breath analyzer 12 transmits information indicative of the breath analysis result to the recording device manager 14.
  • the communication element is communicatively linked to the recording device manager 14, such that messages can be sent therebetween.
  • the communication element is also communicatively coupled, either directly or indirectly, with one or more other elements of the system.
  • the breath analyzer 12 may transmit information indicative of a status 62.
  • the status 62 could include information such as breath analyzer 12 power on, analysis start time, analysis stop time, current analyzing element reading, analysis successful completion, error detected, error not detected, location of the breath analyzer 12 (for breath analyzers equipped with a location element, discussed below), administrator information (based upon the proximity tag identifier discussed below), date of last breath analyzer testing, data of last breath analyzer calibration, ambient air temperature (as this can affect breath analysis results), one or more identifiers (such as model number or serial number) associated with breath analyzer 12, etc. All of this information can be stored as metadata for video recorded by one or more video cameras such as ancillary video camera 16, or displayed in real time by one or more displays associated with the system, such as that associated with auxiliary computing device 18.
  • the communications element 34 of the breath analyzer 12 may be wirelessiy connected to the recording device manager 14.
  • the communications element 34 may alternatively or in addition be connected via a communications wire to the recording device manager 14 and/or ancillary video camera 16.
  • the communications element 34 transmits the breath analysis result and/or status 62 substantially in real time (as defined below).
  • the transmission of the breath analysis result to an external location aids in authentication by reducing administrator error in reading the result.
  • the transmission of breath analysis also aids in preservation by storing the data in more than one location. This reduces the likelihood of a loss or destruction of the breath analysis result.
  • the transmission of the breath analysis result also aids in presentation by allowing the breath analysis to be easily and reliably superimposed onto the video from the ancillary video cameras 16 and/or the integral video camera 20 in the breath analyzer 12.
  • the breath analysis result may be stored in metadata of the recorded video data from the at least one ancillary video camera 16. Metadata associates one set of data with another set of data.
  • the metadata may be embedded in the captured video data, stored externally in a separate file that is associated with the captured video data, otherwise associated with the captured video data, or all of the above. Embedding the breath analysis result into the same file with the captured video data can be advantageous because it allows the metadata to travel as part of the data it describes.
  • metadata is associated with a particular frame or frames of the video data. This is advantageous where, for example, the same video file contains more than one breath analysis.
  • the metadata is associated with the video file as a whole. Externally stored metadata may also have advantages, such as ease of searching and indexing.
  • the metadata may also be stored in a human- readable format, such that a user can access, understand, and edit the metadata without any special software.
  • the breath analysis result could be stored in the metadata of the recorded video data of the ancillary video camera 16. A user can subsequently superimpose the breath analysis result by accessing the associated metadata with the recorded video data.
  • the breath analysis result may also have a timestamp that corresponds to the time in which the breath analysis result was communicated to the recording device manager 14. Other information such as the status 62 of the breath analyzer 12 at a certain time may also be added to the metadata of the recorded video data.
  • the housing 38 securely contains the analyzing element 30, the communications element 34, and at least a portion of the breath receptor 28.
  • the housing 38 is sized and adapted to fit into a human hand, such that the administrator 44 and/or the donor 22 can hold the breath analyzer 12 during the breath analysis.
  • the housing 38 is generally a rounded rectangular prism.
  • the housing 38 comprises a main body 64 that presents a top wail 66, a bottom wall 68, a front wall 70, a back wall 72, and two sidewalls 74.
  • the two sidewalls 74 are substantially parallel to each other, and the front wall 70 and back wail 72 are substantially parallel to each other.
  • the top wail 66 and the bottom wall 68 may be substantially parallel, as illustrated in Figs. 2-4, or the top wall 66 may be at an angle, as illustrated in Fig. 6-7.
  • the transition between the various wails may be rounded or arcuate.
  • the rounded or arcuate transitions provide comfort to a person holding the breath analyzer 12.
  • the main body 64 of the housing 38 could also be another shape, such as substantially a cylinder, substantially an ova! cylinder, substantially an ellipsoid, or substantially a sphere.
  • the mouthpiece 58 of the breath receptor 28 may be located on the front wail 70 of the housing 38.
  • the mouthpiece 58 may comprise a void 76 or opening into which a disposable mouthpiece cover may be inserted (not illustrated).
  • the donor 22 exhales directly into the mouthpiece 58 without the use of a disposable mouthpiece cover.
  • the housing 38 may secure the integral video camera 20.
  • the integral video camera 20 records high definition video and pictures of the donor 22 as the breath analysis is being performed.
  • the integral video camera 20 may be recessed (i.e., located near the back wall 72) and oriented in a front-facing direction or a diagonally front-upward-facing direction, such that it can observe the donor 22 as the breath analysis is performed.
  • the integral video camera 20 placed nearer the front wall 70, the integral video camera 20 may be too close to the donor 22 to capture clear video data.
  • the integral video camera 20 may be activated by the power button, such that the integral video camera 20 is continuously recording while the breath analyzer 12 is powered on.
  • the integral video camera 20 may alternatively be activated by the donor 22 breathing into the breath receptor 28, or by a record start input button, !t will be immediate to a person of skill in the art that any functionality described herein with respect to integral video camera 20 is also applicable to ancillary video camera 16, and vice-versa.
  • Embodiments of the breath analyzer 12 further comprise a location element, such as a GPS receiver (not illustrated).
  • the location element determines and records the GPS location of the breath analyzer 12 during the breath analysis.
  • the location element transmits information indicative of the location to the processing element 32.
  • the location information may then be stored on the memory element 36 of the breath analyzer 12 and/or be transmitted to the recording device manager 14 via the communications element 34.
  • the location element may also determine and record the time of the breath analysis. This information can, like the breath analysis result and other data, be further saved as video metadata, as described above.
  • the location information and time information provide further authentication to the breath analysis result. For example, a criminal lawyer would have more difficulty convincing a judge or jury that the breath analysis result was mishandled or confused if the breath analysis result is digitally saved, along with the time and location of the breath analysis that match the time and location of the vehicle stop.
  • the recording device manager 14 controls and synchronizes various recording devices.
  • the recording device manager 14 links (via wireless communication, wired communication, or both) to the breath analyzer 12, a person-mounted 52 video camera on the law enforcement officer 48, another person-mounted 52 video camera on a second law enforcement officer, a vehicle- mounted 48 video camera in the law enforcement vehicle 50 oriented to observe events external to the law enforcement vehicle 50, a vehicle-mounted 48 video camera in the law enforcement vehicle 50 oriented to observe events internal to the law enforcement vehicle 50, and/or the auxiliary computing device 18 (referred to generically or individually as "the various recording devices").
  • the recording device manager 14 detects when one video camera begins recording, and then instructs ail other associated devices to begin recording.
  • the recording device manager 14 may also send information indicative of a time stamp to the various recording devices for corroborating the recorded data.
  • the recording device manager 14 may instruct ail associated video cameras to begin recording upon the receipt of a signal from the breath analyzer 12 that the breath analysis has begun. This ensures that multiple video cameras record the breath analysis, for future authentication that the breath analysis was performed correctly.
  • the recording device manager 14 may also send a time stamp to all the associated video cameras to provide a corroboration of the various recorded data.
  • the recording device manager 14 may send information indicative of the breath analysis result to each of the video cameras to associate with the recorded video in metadata, to assist in the preservation of the breath analysis result and presentation of the breath analysis result superimposed on the recorded video, and to one or more displays in real time as discussed above to provide quick access to the result to law enforcement personnel.
  • the recording device manager 14 comprises a processing element, a communications element, and a memory element (not illustrated).
  • the processing element detects the presence of the various recording devices.
  • the processing element receives signals from and generates signals to the various recording devices via the communications element 34.
  • FIG. 9 An exemplary flow diagram of the interactions between the breath analyzer 12, the recording device manager 14, and the video cameras is illustrated in Fig. 9.
  • the recording device manager 14 begins by attempting to detect the breath analyzer 12, as shown in Step 900. Upon detection, the recording device manager 14 associates the breath analyzer 12 with the other various recording devices by pairing the respective devices, as shown in Step 902. The recording device manager 14 detects if the breath analyzer 12 is active at Step 904. If not, the recording device manager 14 continues to detect the activity of the breath analyzer 12. Upon detecting activity by the breath analyzer 12, the recording device manager 14 instructs the other various recording devices to begin recording if they are not already recording, as shown in Step 906.
  • the recording device manager 14 detects, at Step 908, whether the breath analyzer 12 has completed the breath analysis. If not, the recording device manager 14 instructs the other various recording devices to associate an "analysis in progress" status 24, 82 with the recorded video, as shown in Step 910. Upon the detection that the breath analysis is complete at Step 912, the recording device manager 14 instructs the other various recording devices to associate the breath analysis result with the recorded video. The recording device manager 14 also saves the breath analysis result to metadata, as shown in Step 914.
  • Some embodiments of the invention comprise a proximity tag system for authenticating the devices, cameras, and administrators associated with the breath analysis.
  • the proximity tag system comprises a plurality of proximity tags 54 and at least one proximity tag reader 56.
  • Proximity tags are any devices that radiate an identifying signal, herein referred to as the proximity tag identifier, that can be read by a corresponding reader such as the proximity tag reader 56.
  • Proximity tags can be active (meaning that they periodically broadcast their identifier), assisted passive (meaning that they broadcast their identifier only when interrogated by a signal from the reader), or passive (meaning that they have no power source and must be illuminated by a signal from the proximity tag reader 56 in order to radiate their identifier).
  • Other forms of proximity tags are also possible.
  • Proximity tag identifier may be preprogrammed into proximity tags, or may be field-programmable, such that the identifier is assigned by the user when the proximity tag 54 is deployed.
  • One common form of proximity tag system is the radio-frequency identification (RFID) tag and the corresponding RFID reader.
  • RFID radio-frequency identification
  • Another form of proximity tag system utilizes a challenge-response protocol to avoid the spoofing of a proximity tag identifier.
  • the proximity tag reader 58 receives the proximity tag identifiers transmitted by proximity tag 54. As depicted, proximity tag reader is integrated into breath analyzer 12, and proximity tag identifiers are then communicated by communications element 34 to the other components of the system.
  • breath analyzer 12 may instead (or in addition) contain a proximity tag, which is read by another proximity tag reader located in another component of the system such as recording device manager 14.
  • a proximity tag reader located in another component of the system such as recording device manager 14.
  • a different type of reader may be required to receive the proximity tag identifiers.
  • an active reader is required to read passive tags.
  • the proximity tag reader 56 can determine the distance to the transmitting tag based on signal strength or other information.
  • multiple proximity tag readers are present.
  • positional information about the tag can be determined based on a relative signal strength at each reader.
  • the law enforcement officer 46 uses a proximity tag 54 that contains a proximity tag indicator specific to that law enforcement officer 46 to authenticate the name, unit, and/or status of the specific law enforcement officer 46 using the recording device manager 14 and/or the breath analyzer 12.
  • the proximity tag 54 may be located within a proximity card held by the officer, within the badge worn by the officer, on a watch or a belt worn by the officer, etc. There may also be a proximity tag 54 in the breath analyzer 12 and/or the ancillary video cameras 16.
  • the proximity tag reader 56 reduces work to be performed at a later time to associate the recorded video data and breath analysis result with the specific law enforcement officer 46.
  • Some embodiments of the invention comprise the auxiliary computing device 18 that is associated with the recording device manager 14,
  • the auxiliary computing device 18 records the video data and statuses of the ancillary video cameras 16, the breath analysis results and status 62 from the breath analyzer 12, etc.
  • the auxiliary computing device 18 could be a laptop computer within the law enforcement vehicle 50, as illustrated in Fig. 1 .
  • the auxiliary computing device 18 could be a digital video recorder that is a stand-alone device located within the law enforcement vehicle 50 and associated with the recording device manager.
  • the auxiliary computing device 18 is within and associated with the recording device manager 14.
  • the auxiliary computing device 18 is within and associated with the ancillary video cameras 16.
  • the ancillary video cameras 16 each record their video data on their own infernal memory elements with associated metadata such as the breath analysis result.
  • the system 10 uses a combination of the above-mentioned recording methods for redundant data storage and/or to allow different types of devices to store data in different ways.
  • the breath analysis result is saved to metadata associated with the video at a specific time stamp or time stamps. Then, during the preparation for a hearing, the breath analysis result can be selectively superimposed on the video by a user.
  • the breath analysis result may be automatically superimposed on the video by default, and present the user with the option to remove the breath analysis result from the video.
  • the breath analysis result may be inadmissible in court, or may only be admissible for certain purposes (such as the establishment of probable cause for the arrest, but not as evidence of intoxication). For this reason, the user may desire to have the breath analysis result superimposed, to not have the breath analysis superimposed, or to have two separate videos (one superimposed, the other not). Saving the breath analysis result to metadata provides this benefit.
  • the breath analysis result is directly and permanently superimposed on the video.
  • a non-transitory computer readable storage medium having a computer program stored thereon may instruct the at least one processing element to implement the steps of at least one of the described methods.
  • the non-transitory computer readable storage medium may be located within the housing 38 of the breath analyzer 12, within the recording device manager 14, within the auxiliary computing device 18, within the at least one ancillary video camera 16, within a computing device secured within the law enforcement vehicle 50, and/or within a generic computing device.
  • Step 1000 the breath analyzer 12 is associated with the recording device manager 14.
  • Step 1002 at least one ancillary video camera 16 is associated with the recording device manager 14.
  • Step 1004 the recording device manager 14 receives information indicative that the breath analyzer 12 is active.
  • the recording device manager 14 then instructs the at least one ancillary video camera 18 to begin recording (if it is not already) in Step 1006.
  • the recording device manager 14 in Step 1008 also instructs the at least one ancillary video camera 16 to associate an "analysis in progress" status 24, 62 with the video being recorded.
  • additional information may also be associated with the video being recorded.
  • Such information can include information relating to the breath analyzer (as discussed above), information relating to the scene (such as any proximity tags detected by proximity tag reader 56), or other information (such as the identities of any other ancillary or integrated video cameras currently recording the scene).
  • the recording device manager 14 receives information indicative that the breath analysis is complete.
  • the recording device manager 14 receives information indicative of the breath analysis result.
  • the recording device manager 14 instructs the at least one ancillary video camera 16 to associate the breath analysis result with the video being recorded in Step 1014.
  • the breath analysis is additionally communicated to one or more other components of the system for processing, storage, or display.
  • the recording device manager also saves the breath analysis result to metadata in Step 1016.
  • Some embodiments of the method of authenticating and preserving breath analysis data further comprise the following steps: receiving information indicative of a proximity tag identifier of a proximity tag 54 being within the range of the proximity tag reader 56; associating proximity tag identifier with the video data being recording; and associating the proximity tag identifier with the breath analysis results.
  • FIG. 1 1 Another method of authenticating and preserving breath analysis results is illustrated in Fig. 1 1 .
  • the breath analyzer 12 sends a set of information indicative of the breath analyzer 12 in Step 1 100.
  • the breath analyzer 12 also receives information indicative of a recording device manager 14 in Step 1 102.
  • the breath analyzer 12 receives information indicative of the breath sample being supplied to the breath receptor 28 in Step 1 104,
  • the breath analyzer 12 then, in Step 1 106, instructs the analyzing element 30 to analyze the breath sample.
  • the breath analyzer 12 then sends to the recording device manager 14 a set of information indicative that the analyzing element 30 has begun analyzing in Step 1 108.
  • the breath analyzer 12 receives information indicative of the analyzing element 30 completing the breath analysis in Step 1 1 10.
  • Step 1 1 12 the breath analyzer 12 sends, to the recording device manager 14, a set of information indicative that the breath analysis is complete.
  • the breath analyzer 12 receives, from the analyzing element 30, a breath analysis result.
  • the breath analyzer 12 sends, to the recording device manager 14, information indicative of the breath analysis result.
  • Some embodiments further comprise the step of storing the breath analysis result in the memory element 36 and/or displaying it on one or more local or remote displays.
  • Some embodiments further comprise the steps of receiving, from the recording device manager 14, information indicative of the time and/or location; and associating the information indicative of the time and/or location with the breath analysis results.
  • Some embodiments further comprise the following steps: receiving information indicative of a proximity tag identifier from the recording device manager 14; associating the proximity tag identifier with the breath analysis results.
  • FIG. 14 Two exemplary presentations of the breath analysis data are illustrated in Figs. 12 and 13.
  • a method of presenting breath analysis results is illustrated in Fig. 14.
  • the steps comprise obtaining a video recording from an ancillary video camera 16, in Step 1400; obtaining information indicative of the breath analysis result from the metadata associated with a video recording, in Step 1402; superimposing the breath analysis result onto a plurality of frames of the video recording, such that the breath analysis result is superimposed on frames of the video recording at a time approximately the same as, and for a certain period of time following, the time in which the recording device manager 14 received the information indicative of the breath analysis result, in Step 1404: and displaying the video recording with the breath analysis result superimposed on the plurality of frames, in Step 1406.
  • Other embodiments of the method comprise the steps of obtaining information indicative of the status 62 of the breath analyzer 12 from the metadata associated with the video recording; superimposing the status 62 of the breath analyzer 12 onto the video recording; and synchronizing the superimposition such that the status 62 of the breath analyzer 12 is displayed at the time corresponding with the status 62.
  • Other embodiments of the method comprise the steps of obtaining information indicative of the administrator 44 from the metadata associated with the video recording; and superimposing the information indicative of the administrator 44 onto the video recording.
  • the superimposed information may change with subsequent frames of the video recording. For example, a series of frames may show the "analysis in progress" reading 24 (as illustrated in Fig. 12) followed by a series of frames showing the breath analysis result (as illustrated in Fig. 13). It will be immediately apparent to a person of skill in the art that any of the information gathered by or stored in the system can be superimposed on, or associated as metadata with, the video recording. Information can be displayed individually, in combination, alternation, or simultaneously.
  • the computer program of embodiments of the invention comprises a plurality of code segments executable by a computing device for performing the steps of various methods of the invention.
  • the steps of the method may be performed in the order discussed, or they may be performed in a different order, unless otherwise expressly stated. Furthermore, some steps may be performed concurrently as opposed to sequentially. Also, some steps may be optional.
  • the computer program may also execute additional steps not described herein.
  • the computer program, system 10, and method of embodiments of the invention may be implemented in hardware, software, firmware, or combinations thereof, which broadly comprises server devices, computing devices, and a communications network.
  • the computer program of embodiments of the invention may be responsive to user input.
  • user input may be received from a variety of computing devices including but not limited to the following: desktops, laptops, calculators, telephones, smartphones, smart watches, in-car computers, camera systems, or tablets.
  • the computing devices may receive user input from a variety of sources including but not limited to the following: keyboards, keypads, mice, trackpads, trackballs, pen-input devices, printers, scanners, facsimile, touchscreens, network transmissions, verbal/vocal commands, gestures, button presses or the like.
  • the server devices and computing devices may include any device, component, or equipment with a processing element and associated memory elements.
  • the processing element may implement operating systems, and may be capable of executing the computer program, which is also generally known as instructions, commands, software code, executables, applications ("apps"), and the like.
  • the processing element may include processors, microprocessors, microcontrollers, field programmable gate arrays, and the like, or combinations thereof.
  • the memory elements may be capable of storing or retaining the computer program and may also store data, typically binary data, including text, databases, graphics, audio, video, combinations thereof, and the like.
  • the memory elements may also be known as a "computer- readable storage medium” and may include random access memory (RAM), read only memory (ROM), flash drive memory, floppy disks, hard disk drives, optical storage media such as compact discs (CDs or CDROMs), digital video disc (DVD), and the like, or combinations thereof.
  • the server devices may further include file stores comprising a plurality of hard disk drives, network attached storage, or a separate storage network.
  • the computing devices may specifically include mobile communication devices (including wireless devices), work stations, desktop computers, laptop computers, palmtop computers, tablet computers, portable digital assistants (PDA), smart phones, and the like, or combinations thereof.
  • Various embodiments of the computing device may also include voice communication devices, such as cell phones and/or smart phones.
  • the computing device will have an electronic display operable to display visual graphics, images, text, etc.
  • the computer program facilitates interaction and communication through a graphical user interface (GUI) that is displayed via the electronic display.
  • GUI graphical user interface
  • the communications network may be wired or wireless and may include servers, routers, switches, wireless receivers and transmitters, and the like, as well as electrically conductive cables or optical cables.
  • the communications network may also include local, metro, or wide area networks, as well as the Internet, or other cloud networks.
  • the communications network may include cellular or mobile phone networks, as well as landline phone networks, public switched telephone networks, fiber optic networks, or the like.
  • the computer program may run on computing devices or, alternatively, may run on one or more server devices.
  • the computer program may be embodied in a stand-alone computer program (i.e., an "app") downloaded on a user's computing device or in a web-accessible program that is accessible by the user's computing device via the communications network.
  • the stand-along computer program or web-accessible program provides users with access to an electronic resource from which the users can interact with various embodiments of the invention.
  • Execution of the computer program of embodiments of the invention performs steps of the method of embodiments of the invention. Because multiple users may be updating information stored, displayed, and acted upon by the computer program, information displayed by the computer program is displayed in real-time. "Real-time" as defined herein is when the processing element of the system 10 performs the steps less than every 1 second, every 500 milliseconds, every 100 milliseconds, or every 16 milliseconds.

Abstract

A breath analyzer, a system, and a computer program for administering a breath analysis to a donor and recording a breath analysis result. Embodiments of the invention authenticate that the breath analysis was performed correctly, preserves the breath analysis results by communicating with other devices, and presents the breath analysis results by superimposing them on recorded video data. The breath analyzer includes a breath receptor for receiving a breath sample from the donor, an analyzing element for determining a breath analysis result, a communications element for sending information indicative of the breath analysis result to a recording device manager, and a housing for securing the components in a handheld device. The system comprises the breath analyzer, a recording device manager for synchronizing the recordings, and at least one ancillary camera for recording the breath analysis.

Description

BREATH ANALYZER, SYSTEM, AND COMPUTER PROGRAM FOR AUTHENTICATING, PRESERVING, AND PRESENTING BREATH ANALYSIS DATA
RELATED APPLICATIONS
[0001] This application is a continuation-in-part application and claims priority benefit, with regard to all common subject matter, of commonly assigned U.S. Patent Application No. 13/967,151 , filed August 14, 2013, and entitled "COMPUTER PROGRAM, METHOD, AND SYSTEM FOR MANAGING MULTIPLE DATA RECORDING DEVICES" ("the Ί 51 Application"). The Ί 51 Application is hereby incorporated by reference in its entirety into the present application.
[0002] Embodiments and/or features of the invention described in the present document may be used with the subject matter disclosed in commonly assigned U.S. Patent No. 8,781 ,292, filed September 27, 2013, issued July 15, 2014, and entitled "COMPUTER PROGRAM, METHOD, AND SYSTEM FOR MANAGING MULTIPLE DATA RECORDING DEVICES" ("the '292 Patent"), which is a continuation application of the Ί 51 Application. The '292 Patent is hereby incorporated by reference in its entirety into the present application.
[0003] Embodiments and/or features of the invention described in the present document may be used with the subject matter disclosed in commonly assigned U.S. Patent Application No. 14/040,329, filed September 27, 2013, and entitled "PORTABLE VIDEO AND IMAGING SYSTEM" ("the '329 Application"); and commonly assigned U.S. Patent Application No. 14/040,006, filed September 27, 2013, and entitled "MOBILE VIDEO AND IMAGING SYSTEM" ("the Ό06 Application"). The '329 Application and the '006 Application are hereby incorporated by reference in their entirety into the present application. [0004] Further, embodiments and/or features of the invention described in the present document may be used with the subject matter disclosed in commonly assigned U.S. Patent Application No. 14/517,226 filed October 17, 2014, and entitled "DUAL LENS CAMERA UNIT," and with commonly assigned U.S. Patent No. 9,159,371 filed October 17, 2014 and issued October 13, 2015, and entitled "FORENSIC VIDEO RECORDING WITH PRESENCE DETECTION." These documents are hereby incorporated by reference in their entirety into the present application.
BACKGROUND
1 . FIELD
[0005] Embodiments of the invention relate to breath analyzing devices. More specifically, embodiments of the invention relate to the authentication of a breath analysis, the preservation of the breath analysis result, and the presentation of the breath analysis result.
2. RELATED ART
[0006] Breath analysis devices, commonly known as Breathalyzers® and Intoxilyzers®, estimate the amount of a chemical substance, such as alcohol, in a breath sample. Breath analysis devices do not directly measure blood alcohol content or concentration in the blood but instead estimate the blood alcohol content or concentration by measuring the amount of alcohol found in a breath sample from a donor. Breath analysis results are used as evidence in criminal and civil cases. Authenticating, preserving, and presenting the results is therefore important for purposes of establishing criminal activity. [0007] Breath analysis devices of the prior art present numerous drawbacks. First, there is no authentication of the donor (i.e., the individual providing the breath sample), how the breath analysis was performed, and which administrator (e.g., a law enforcement officer) performed the breath analysis. The only verification of these can be based upon human testimony and independent videos or photographs taken by the administrator. Second, breath analysis devices present the result only on a display of the device. This requires the administrator to clearly read, recall, and record the displayed result. For example, the administrator may write the result in his notes or take a photograph of the device showing the result. Both of these methods require additional work by the administrator and record the result in disparate locations that could become lost or destroyed. Third, breath analysis devices of the prior art do not present the results in a manner easily displayed in a courtroom. Typically, the administrator testifies to the result of the breath analysis or presents photographs of the device displaying the breath analysis result. Both of these are prone to human error and can raise doubt in the judge or jury.
SUMMARY
[0008] Embodiments of the invention solve the above-mentioned problems by providing a breath analyzer, system, and computer program for authenticating, preserving, and presenting the results of a breath analysis. First, embodiments of the invention authenticate that the breath analysis was performed correctly by integrating video from at least one ancillary video camera and/or an integral video camera on the breath analyzer with the breath analysis result. Embodiments may also authenticate which administrator performed the breath analysis by a proximity tag system in the breath analyzer and/or a recording device manager. Second, embodiments of the invention preserve the results of the breath analysis by communicating the results to the recording device manager and/or the ancillary video camera, and storing the breath analysis results in metadata of the recorded video. Third, embodiments present the breath analysis result of the breath analyzer by superimposing the result onto the video recorded by the ancillary video cameras and/or the integral video camera on the breath analyzer.
[0009] A first embodiment of the invention is directed to a system for authenticating, preserving, and presenting breath analysis data. The system comprises the breath analyzer, the recording device manager, the at least one ancillary video camera, and an auxiliary computing device (which may be housed with any of the aforementioned components or be housed in a separate housing).
[0010] A second embodiment of the invention is directed to the breath analyzer, which is adapted to authenticate the breath analysis procedure and the administrator and to preserve breath analysis data by communicating the result with a recording device manager. The breath analyzer is a hand-held device used by the administrator to perform the breath analysis on the donor. The breath analyzer comprises a breath receptor, an analyzing element, at least one processing element, a communications element, a memory element, and a housing.
[0011] A third embodiment of the invention is directed to a non-transitory computer readable storage medium associated with or otherwise stored within the breath analyzer that has a computer program stored thereon that instructs at least one processing element of the breath analyzer to perform the steps of a computerized method of authenticating the breath analysis and preserving the breath analysis result. The computerized method may also be directed to presenting the breath analysis result.
[0012] This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Other aspects and advantages of the invention will be apparent from the following detailed description of the embodiments and the accompanying drawing figures.
BRIEF DESCRIPTION OF THE DRAWING FIGURES
[0013] Embodiments of the invention are described in detail below with reference to the attached drawing figures, wherein:
[0014] Fig. 1 is a system diagram illustrating the interactions of the various components of the system;
[0015] Fig. 2 is a perspective view of a first embodiment of the breath analyzer;
[0016] Fig. 3 is a front view of the first embodiment of the breath analyzer;
[0017] Fig. 4 is a side view of the first embodiment of the breath analyzer;
[0018] Fig. 5 is a schematic view of the components of the breath analyzer;
[0019] Fig. 6 is a front view of a second embodiment of the breath analyzer with an integral video camera;
[0020] Fig. 7 is a side view of the second embodiment of the breath analyzer;
[0021] Fig. 8 is a top view of the second embodiment of the breath analyzer; [0022] Fig. 9 is a flow diagram illustrating the steps of a method of interacting with the breath analyzer;
[0023] Fig. 10 is a flow diagram illustrating the steps of a first method of authenticating and preserving the breath analysis result;
[0024] Fig. 1 1 is a flow diagram illustrating the steps of a second method of authenticating and preserving the breath analysis result;
[0025] Fig. 12 is an exemplary video capture frame showing a breath analyzer status superimposed thereon;
[0026] Fig. 13 is another exemplary video capture frame showing a breath analysis result superimposed thereon; and
[0027] Fig. 14 is a flow diagram illustrating the steps of a method of presenting the breath analysis result.
[0028] The drawing figures do not limit the invention to the specific embodiments disclosed and described herein. The drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the invention.
DETAILED DESCRIPTION
[0029] The following detailed description references the accompanying drawings that illustrate specific embodiments in which the invention can be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments can be utilized and changes can be made without departing from the scope of the invention. The following detailed description is, therefore, not to be taken in a limiting sense. The scope of the invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
[0030] In this description, references to "one embodiment," "an embodiment," or "embodiments" mean that the feature or features being referred to are included in at least one embodiment of the technology. Separate references to "one embodiment," "an embodiment," or "embodiments" in this description do not necessarily refer to the same embodiment and are also not mutually exclusive unless so stated and/or except as will be readily apparent to those skilled in the art from the description. For example, a feature, structure, act, etc. described in one embodiment may also be included in other embodiments, but is not necessarily included. Thus, the current technology can include a variety of combinations and/or integrations of the embodiments described herein.
[0031] Turning to Fig. 1 , embodiments of the invention are directed to a system 10 for authenticating, preserving, and presenting breath analysis data. The system 10 comprises a breath analyzer 12, a recording device manager 14, at least one ancillary video camera 16, and an auxiliary computing device 18, which may include display, processing, and storage capabilities. In some embodiments auxiliary computing device takes the form of a laptop computer in law enforcement vehicle 50. In other embodiments it takes the form of a mobile device carried by law enforcement officer 46. Other form factors for auxiliary computing device 18 are also contemplated. The system 10 authenticates that the breath analysis was performed correctly by recording the breath analysis with the at least one ancillary video camera 16, and in some embodiments an integral video camera 20 in the breath analyzer 12. A donor 22 provides a breath sample to the breath analyzer 12. The breath analyzer 12 then sends an "analysis in progress" status 24 while it analyzes the breath sample to determine a breath analysis result 26. The system 10 then preserves the breath analysis result by transmitting the breath analysis result to the recording device manager 14 for preservation at auxiliary computing device 18 and saving the breath analysis result as metadata. The system 10 also presents the breath analysis result by superimposing data onto the video recording from the ancillary video camera 16 and/or the integral video camera 20. In some embodiments, the breath analysis is also displayed in real time on a display of one or more computing devices such as auxiliary computing device 18. In some such embodiments, the breath analysis result is superimposed on video displayed from one or more video cameras such as ancillary video camera 16. In other embodiments, it is displayed on a dedicated portion of a display screen. In still other embodiments it is displayed on a dedicated display device such as a readout in law enforcement vehicle 50 or a heads-up display (HUD) worn by law enforcement officer 46.
[0032] Other embodiments of the system 10 may comprise the breath analyzer 12, the recording device manager 14, and the auxiliary computing device 18. The breath analyzer 12 transmits the breath analysis result to the recording device manager 14, which stores the breath analysis result at auxiliary computing device 18 without any video or superimposing. Still other embodiments of the system 10 may comprise the breath analyzer 12 and the at least one ancillary video camera 16, in which the breath analyzer 12 communicates directly with the ancillary video camera 16.
[0033] The system 10 of embodiments of the invention may comprise computing devices to facilitate the functions and features described herein. The computing devices may comprise any number and combination of processors, controllers, integrated circuits, programmable logic devices, or other data and signal processing devices for carrying out the functions described herein, and may additionally comprise one or more memory storage devices, transmitters, receivers, displays, and/or communication busses for communicating with the various devices of the system 10.
[0034] Embodiments of the invention are also directed to the breath analyzer 12. The breath analyzer 12 is a relatively small, hand held device for receiving and analyzing a breath sample. The breath analyzer 12 comprises a breath receptor 28, an analyzing element 30, a processing element 32, a communications element 34, a memory element 36, and a housing 38. The breath analyzer 12 may further comprise a battery, at least one user input 40, at least one status indicator, a display 42, a data cable, and/or a power cable.
[0035] Embodiments of the invention are also directed to a method of authenticating, preserving, and presenting breath analysis data. An administrator 44 administers the breath analysis. The administrator 44 may authenticate their identity with the breath analyzer 12 and/or recording device manager 14. The administrator 44 may also authenticate the breath analysis is performed correctly by directing at least one ancillary video camera 16 toward the location in which the breath analysis will be performed. The administrator 44 directs the donor 22 to blow into the breath receptor 28 for a certain period of time. The particles expelled by the donor 22 are the breath sample. The analyzing element 30 within the breath analyzer 12 detects and measures the level of at least one chemical compound, such as alcohol or ethanoi, in the breath sample. The breath analyzer 12 then preserves the breath analysis result data by transmitting information indicative of the breath analysis result to the recording device manager 14. The breath analyzer 12 may also display the result for the administrator 44 and donor 22 on one or more displays, as described above. The recording device manager 14 associates the breath analysis data with the video being captured by the ancillary video cameras 16. The breath analysis result may also be presented by superimposing the breath analysis result onto the video being recorded.
[0036] It should be appreciated that while the current disclosure is largely directed to the detection of alcohol impairment by law enforcement, other embodiments of the invention may be directed to other fields. Embodiments of the invention may be directed to the breath analysis and detection of other substances, such as tobacco, marijuana, cocaine, amphetamines, opioids, MDMA, and other illicit substances. Embodiments of the invention may additionally or in the alternative be directed to other purposes of breath analysis, such as vehicle interlock devices, parole/probation assessments, new/potential/periodic employee screenings, impairment screenings for workers' compensation injuries, testing by alcohol servers, and self-testing.
[0037] Breath analysis is often used by a law enforcement officer 46 to determine the level of intoxication of drivers on roadways. In this scenario, the donor 22 is the driver suspected of operating a vehicle while intoxicated, and the administrator 44 is the law enforcement officer 46 or officers administering the breath analysis. The result of the breath analysis may give the law enforcement office probable cause to arrest the driver. The result of the breath analysis may also be presented in court as evidence of the driver's intoxication. However, in some states, the breath analysis results of "preliminary breath testers" ("PBTs", i.e. the handheld devices carried by law enforcement officers 46) are inadmissible at trial, because PBTs are not calibrated and tested as often as "evidentiary breath testers" which are usually located at a central law enforcement facility. While the breath analysis may be less accurate than a direct blood or urine tests, breath analysis provides the benefits of being non-invasive, simple to execute, and able to provide quick results.
[0038] The donor 22 is the person whose breath is to be analyzed to estimate the content of a certain substance in their blood. The donor 22 may be a driver suspected of driving while intoxicated, a potential employee, an employee that has recently been injured on the job, a person on parole or probation, a government benefits recipient, etc. The donor 22 may refuse to provide the breath sample, but this may have other legal and employment consequences.
[0039] A portion of the alcohol, or other substances, that the donor 22 has consumed are expelled with each breath, because the alcohol was absorbed into the blood stream via the donor's mouth, throat, stomach, intestine, etc. As the alcohol travels through the blood stream, it reaches the donor's lungs. Because alcohol is volatile (i.e., it will evaporate from a liquid solution), a portion of the alcohol evaporates into the lungs and is expelled along with the air during exhalation. The concentration of alcohol in the breath is related by a known formula to the concentration of alcohol in the blood. The breath analyzer 12 therefore tests the breath sample of the donor 22 and calculates an estimation of the donor's blood alcohol concentration ("BAG", also known as blood alcohol content). The BAG is typically measured in the units of grams/1 OOmL. The current legal limit throughout the United States is 0.08 grams/1 OOmL. [0040] The administrator 44 oversees the breath analysis. The administrator 44 may closely observe the donor 22 for a period of time before the breath analysis. This is to ensure that the donor 22 does not have any alcohol in his mouth or throat, which can provide inaccurate test results. The administrator 44 may also direct the at least one ancillary cameras to the area in which the breath analysis will take place, to provide a plurality of viewing angles of the breath analysis. For example, there may be a vehicle- mounted 48 ancillary video camera 16 in a law enforcement vehicle 50, a person- mounted 52 ancillary camera on the administrator 44, and another person-mounted 52 ancillary video camera 16 on an assistant administrator (e.g., another law enforcement officer). The administrator 44 may also provide instructions to the donor 22, such as how to blow into the breath analyzer 12 and for what amount of time. The administrator 44 may also manipulate the breath analyzer 12, such as by turning the breath analyzer 12 on. During the breath analysis, the administrator 44 observes the donor 22 to ensure proper procedures are followed. If not, the administrator 44 may correct the donor 22 and re-initiate the breath analysis.
[0041] The components of the breath analyzer 12 will now be discussed. The breath analyzer 12 comprises the breath receptor 28, the analyzing element 30, at least one processing element 32, at least one memory element 36, the communications element 34, and the housing 38. The breath analyzer 12 may further comprise at least one user input 40, a proximity tag 54, a proximity tag reader 56, at least one status indicator, the display 42, and/or a speaker. A schematic illustration of the components of the breath analyzer 12 can be found in Fig. 5. It should be noted that Fig. 5 is not to scale and presents only a schematic illustration of the components. [0042] The breath receptor 28 comprises a mouthpiece 58 and a sample chamber 60. The mouthpiece 58 is a substantially hollow tube that is at least partially located on the exterior of the breath analyzer 12. The mouthpiece 58 is adapted to receive the donors mouth and/or nose therearound. As the donor 22 blows into the mouthpiece 58, the mouthpiece 58 directs the flow of breath into the sample chamber 60. The sample chamber 60 is an internal cavity or void in the breath analyzer 12. The sample chamber 60 stores the breath sample for analysis by the analyzing element 30, discussed below.
[0043] The breath receptor 28 may have a disposable cover (not illustrated). The disposable cover provides a hygienic covering to the breath receptor 28 so that subsequent donors do not contact bodily fluids of previous donors. The disposable cover is placed over the breath receptor 28 prior to the breath analysis and is then discarded after the breath analysis.
[0044] The analyzing element 30 estimates the concentration of alcohol, or other substance, in the blood by analyzing the concentration of alcohol in the breath sample. The analyzing element 30 comprises at least one vial, a set of photocells connected to a meter, and a processing unit to interpret the results (not illustrated). The at least one vial is typically formed of glass or another transparent substance. The vial is filled with a chemical compound. The chemical compound removes the alcohol from the air and reacts with the alcohol to change the color of the solution. The set of photocells detects the degree of color change, which is directly tied to the concentration of alcohol in the breath sample. The processing unit interprets the degree of color change, as detected by the set of photocells, to calculate the breath analysis result. The processing unit may be the processing element 32 of the breath analyzer 12, or it may be separate and communicatively linked.
[0045] In another embodiment of the invention, the analyzing element 30 utilizes infrared (IR) spectroscopy to estimate the concentration of alcohol in the breath sample. IR spectroscopy estimates the concentration of alcohol by emitting an IR beam through the sample chamber 80. The IR beam then passes through at least one filter specific to the wavelengths of the bonds of ethanoi. A set of photocells detects the amount of IR light passing through the filter. The processing unit then interprets the amount of IR light passing through the filter to calculate the breath analysis result.
[0046] The breath analysis result may be displayed on the display 42 of the breath analyzer 12 and/or transmitted to the recording device manager 14, as discussed below. The breath analysis result may be retransmitted by recording device manager to one or more associated devices, such as auxiliary computing device 18, ancillary camera 16, law enforcement vehicle 50, or other component of the system. In alternative embodiments, the breath analysis result is transmitted to the one or more associated devices, such as auxiliary computing device 18, ancillary camera 16, law enforcement vehicle 50, or other component of the system, and without first being transmitted to the recording device manager. Once received by other components of the system, the breath analysis result is used accordingly. For example, the breath analysis result may be stored as metadata associated with the video recording produced by one or more cameras such as ancillary camera 16, displayed on a display of auxiliary computing device 18, a display in law enforcement vehicle 50, or another auxiliary display (such as, for example, a HUD or other body-mounted display worn by law enforcement officer 46). The breath analyzer 12 may announce the breath analysis result via the speaker, and/or give other indications that the breath analysis is complete.
[0047] The at least one user input 40 of the breath analyzer 12 may include buttons, knobs, switches, etc. for the input 40 of information by the administrator 44. The user input 40 could include a power button, a start analysis button, a stop analysis button, a reset button, a display toggle button, etc. In the embodiment as shown in Fig. 1 , the power button turns the device on and off. In some embodiments, there is no specific start analysis button because the breath analyzer 12 begins the breath analysis automatically upon the input 40 of the breath sample from the donor 22.
[0048] The communication element of the breath analyzer 12 transmits information indicative of the breath analysis result to the recording device manager 14. The communication element is communicatively linked to the recording device manager 14, such that messages can be sent therebetween. In some embodiments, the communication element is also communicatively coupled, either directly or indirectly, with one or more other elements of the system. In addition to the breath analysis result, the breath analyzer 12 may transmit information indicative of a status 62. The status 62 could include information such as breath analyzer 12 power on, analysis start time, analysis stop time, current analyzing element reading, analysis successful completion, error detected, error not detected, location of the breath analyzer 12 (for breath analyzers equipped with a location element, discussed below), administrator information (based upon the proximity tag identifier discussed below), date of last breath analyzer testing, data of last breath analyzer calibration, ambient air temperature (as this can affect breath analysis results), one or more identifiers (such as model number or serial number) associated with breath analyzer 12, etc. All of this information can be stored as metadata for video recorded by one or more video cameras such as ancillary video camera 16, or displayed in real time by one or more displays associated with the system, such as that associated with auxiliary computing device 18.
[0049] The communications element 34 of the breath analyzer 12 may be wirelessiy connected to the recording device manager 14. The communications element 34 may alternatively or in addition be connected via a communications wire to the recording device manager 14 and/or ancillary video camera 16. The communications element 34 transmits the breath analysis result and/or status 62 substantially in real time (as defined below).
[0050] The transmission of the breath analysis result to an external location aids in authentication by reducing administrator error in reading the result. The transmission of breath analysis also aids in preservation by storing the data in more than one location. This reduces the likelihood of a loss or destruction of the breath analysis result. The transmission of the breath analysis result also aids in presentation by allowing the breath analysis to be easily and reliably superimposed onto the video from the ancillary video cameras 16 and/or the integral video camera 20 in the breath analyzer 12.
[0051] The breath analysis result may be stored in metadata of the recorded video data from the at least one ancillary video camera 16. Metadata associates one set of data with another set of data. The metadata may be embedded in the captured video data, stored externally in a separate file that is associated with the captured video data, otherwise associated with the captured video data, or all of the above. Embedding the breath analysis result into the same file with the captured video data can be advantageous because it allows the metadata to travel as part of the data it describes. In some such embodiments, metadata is associated with a particular frame or frames of the video data. This is advantageous where, for example, the same video file contains more than one breath analysis. In other such embodiments, the metadata is associated with the video file as a whole. Externally stored metadata may also have advantages, such as ease of searching and indexing. The metadata may also be stored in a human- readable format, such that a user can access, understand, and edit the metadata without any special software.
[0052] For example, the breath analysis result could be stored in the metadata of the recorded video data of the ancillary video camera 16. A user can subsequently superimpose the breath analysis result by accessing the associated metadata with the recorded video data. The breath analysis result may also have a timestamp that corresponds to the time in which the breath analysis result was communicated to the recording device manager 14. Other information such as the status 62 of the breath analyzer 12 at a certain time may also be added to the metadata of the recorded video data. Some information stored in the metadata may be relatively static, such as a manufacturer name and model of the breath analyzer 12, an identifier assigned to the specific breath analyzer 12 by a law enforcement agency, a date of the last testing and/or calibration of the breath analyzer 12, a name of the last person to perform the testing and/or calibration, etc. The user may also selectively superimpose the status and/or the relatively static information over the recorded video data, as discussed below. [0053] The housing 38 securely contains the analyzing element 30, the communications element 34, and at least a portion of the breath receptor 28. The housing 38 is sized and adapted to fit into a human hand, such that the administrator 44 and/or the donor 22 can hold the breath analyzer 12 during the breath analysis.
[0054] The housing 38 is generally a rounded rectangular prism. The housing 38 comprises a main body 64 that presents a top wail 66, a bottom wall 68, a front wall 70, a back wall 72, and two sidewalls 74. The two sidewalls 74 are substantially parallel to each other, and the front wall 70 and back wail 72 are substantially parallel to each other. The top wail 66 and the bottom wall 68 may be substantially parallel, as illustrated in Figs. 2-4, or the top wall 66 may be at an angle, as illustrated in Fig. 6-7. As illustrated, the transition between the various wails may be rounded or arcuate. The rounded or arcuate transitions provide comfort to a person holding the breath analyzer 12. The main body 64 of the housing 38 could also be another shape, such as substantially a cylinder, substantially an ova! cylinder, substantially an ellipsoid, or substantially a sphere.
[0055] As shown in Figs. 2 and 6, the mouthpiece 58 of the breath receptor 28 may be located on the front wail 70 of the housing 38. The mouthpiece 58 may comprise a void 76 or opening into which a disposable mouthpiece cover may be inserted (not illustrated). In other embodiments, the donor 22 exhales directly into the mouthpiece 58 without the use of a disposable mouthpiece cover.
[0056] !n embodiments of the invention as illustrated in Figs. 6-8, the housing 38 may secure the integral video camera 20. The integral video camera 20 records high definition video and pictures of the donor 22 as the breath analysis is being performed. As shown in Fig. 6, the integral video camera 20 may be recessed (i.e., located near the back wall 72) and oriented in a front-facing direction or a diagonally front-upward-facing direction, such that it can observe the donor 22 as the breath analysis is performed. Were the integral video camera 20 placed nearer the front wall 70, the integral video camera 20 may be too close to the donor 22 to capture clear video data. The integral video camera 20 may be activated by the power button, such that the integral video camera 20 is continuously recording while the breath analyzer 12 is powered on. The integral video camera 20 may alternatively be activated by the donor 22 breathing into the breath receptor 28, or by a record start input button, !t will be immediate to a person of skill in the art that any functionality described herein with respect to integral video camera 20 is also applicable to ancillary video camera 16, and vice-versa.
[0057] Embodiments of the breath analyzer 12 further comprise a location element, such as a GPS receiver (not illustrated). The location element determines and records the GPS location of the breath analyzer 12 during the breath analysis. The location element transmits information indicative of the location to the processing element 32. The location information may then be stored on the memory element 36 of the breath analyzer 12 and/or be transmitted to the recording device manager 14 via the communications element 34. The location element may also determine and record the time of the breath analysis. This information can, like the breath analysis result and other data, be further saved as video metadata, as described above. The location information and time information provide further authentication to the breath analysis result. For example, a criminal defendant would have more difficulty convincing a judge or jury that the breath analysis result was mishandled or confused if the breath analysis result is digitally saved, along with the time and location of the breath analysis that match the time and location of the vehicle stop.
[0058] The recording device manager 14 will now be discussed, as illustrated in Fig. 1 . The recording device manager 14, such as a Digital Ally® VuLink®, controls and synchronizes various recording devices. For example, the recording device manager 14 links (via wireless communication, wired communication, or both) to the breath analyzer 12, a person-mounted 52 video camera on the law enforcement officer 48, another person-mounted 52 video camera on a second law enforcement officer, a vehicle- mounted 48 video camera in the law enforcement vehicle 50 oriented to observe events external to the law enforcement vehicle 50, a vehicle-mounted 48 video camera in the law enforcement vehicle 50 oriented to observe events internal to the law enforcement vehicle 50, and/or the auxiliary computing device 18 (referred to generically or individually as "the various recording devices"). The recording device manager 14 detects when one video camera begins recording, and then instructs ail other associated devices to begin recording. The recording device manager 14 may also send information indicative of a time stamp to the various recording devices for corroborating the recorded data.
[0059] For example, the recording device manager 14 may instruct ail associated video cameras to begin recording upon the receipt of a signal from the breath analyzer 12 that the breath analysis has begun. This ensures that multiple video cameras record the breath analysis, for future authentication that the breath analysis was performed correctly. The recording device manager 14 may also send a time stamp to all the associated video cameras to provide a corroboration of the various recorded data. Further, the recording device manager 14 may send information indicative of the breath analysis result to each of the video cameras to associate with the recorded video in metadata, to assist in the preservation of the breath analysis result and presentation of the breath analysis result superimposed on the recorded video, and to one or more displays in real time as discussed above to provide quick access to the result to law enforcement personnel.
[0060] The recording device manager 14 comprises a processing element, a communications element, and a memory element (not illustrated). The processing element detects the presence of the various recording devices. The processing element receives signals from and generates signals to the various recording devices via the communications element 34.
[0061] An exemplary flow diagram of the interactions between the breath analyzer 12, the recording device manager 14, and the video cameras is illustrated in Fig. 9. The recording device manager 14 begins by attempting to detect the breath analyzer 12, as shown in Step 900. Upon detection, the recording device manager 14 associates the breath analyzer 12 with the other various recording devices by pairing the respective devices, as shown in Step 902. The recording device manager 14 detects if the breath analyzer 12 is active at Step 904. If not, the recording device manager 14 continues to detect the activity of the breath analyzer 12. Upon detecting activity by the breath analyzer 12, the recording device manager 14 instructs the other various recording devices to begin recording if they are not already recording, as shown in Step 906. The recording device manager 14 then detects, at Step 908, whether the breath analyzer 12 has completed the breath analysis. If not, the recording device manager 14 instructs the other various recording devices to associate an "analysis in progress" status 24, 82 with the recorded video, as shown in Step 910. Upon the detection that the breath analysis is complete at Step 912, the recording device manager 14 instructs the other various recording devices to associate the breath analysis result with the recorded video. The recording device manager 14 also saves the breath analysis result to metadata, as shown in Step 914.
[0062] Some embodiments of the invention comprise a proximity tag system for authenticating the devices, cameras, and administrators associated with the breath analysis. The proximity tag system comprises a plurality of proximity tags 54 and at least one proximity tag reader 56. Proximity tags are any devices that radiate an identifying signal, herein referred to as the proximity tag identifier, that can be read by a corresponding reader such as the proximity tag reader 56. Proximity tags can be active (meaning that they periodically broadcast their identifier), assisted passive (meaning that they broadcast their identifier only when interrogated by a signal from the reader), or passive (meaning that they have no power source and must be illuminated by a signal from the proximity tag reader 56 in order to radiate their identifier). Other forms of proximity tags are also possible. Proximity tag identifier may be preprogrammed into proximity tags, or may be field-programmable, such that the identifier is assigned by the user when the proximity tag 54 is deployed. One common form of proximity tag system is the radio-frequency identification (RFID) tag and the corresponding RFID reader. Another form of proximity tag system utilizes a challenge-response protocol to avoid the spoofing of a proximity tag identifier. [0063] The proximity tag reader 58 receives the proximity tag identifiers transmitted by proximity tag 54. As depicted, proximity tag reader is integrated into breath analyzer 12, and proximity tag identifiers are then communicated by communications element 34 to the other components of the system. In other embodiments, breath analyzer 12 may instead (or in addition) contain a proximity tag, which is read by another proximity tag reader located in another component of the system such as recording device manager 14. Depending on the type of proximity tag 54, a different type of reader may be required to receive the proximity tag identifiers. For example, an active reader is required to read passive tags. In some embodiments, the proximity tag reader 56 can determine the distance to the transmitting tag based on signal strength or other information. In some embodiments, multiple proximity tag readers are present. In some such implementations, positional information about the tag can be determined based on a relative signal strength at each reader.
[0064] The law enforcement officer 46 uses a proximity tag 54 that contains a proximity tag indicator specific to that law enforcement officer 46 to authenticate the name, unit, and/or status of the specific law enforcement officer 46 using the recording device manager 14 and/or the breath analyzer 12. The proximity tag 54 may be located within a proximity card held by the officer, within the badge worn by the officer, on a watch or a belt worn by the officer, etc. There may also be a proximity tag 54 in the breath analyzer 12 and/or the ancillary video cameras 16. The proximity tag reader 56 reduces work to be performed at a later time to associate the recorded video data and breath analysis result with the specific law enforcement officer 46. [0065] Some embodiments of the invention comprise the auxiliary computing device 18 that is associated with the recording device manager 14, The auxiliary computing device 18 records the video data and statuses of the ancillary video cameras 16, the breath analysis results and status 62 from the breath analyzer 12, etc. For example, the auxiliary computing device 18 could be a laptop computer within the law enforcement vehicle 50, as illustrated in Fig. 1 . As another example, the auxiliary computing device 18 could be a digital video recorder that is a stand-alone device located within the law enforcement vehicle 50 and associated with the recording device manager. As yet another example, the auxiliary computing device 18 is within and associated with the recording device manager 14. In other embodiments, the auxiliary computing device 18 is within and associated with the ancillary video cameras 16. As such, the ancillary video cameras 16 each record their video data on their own infernal memory elements with associated metadata such as the breath analysis result. In still other embodiments, the system 10 uses a combination of the above-mentioned recording methods for redundant data storage and/or to allow different types of devices to store data in different ways.
[0066] In embodiments, the breath analysis result is saved to metadata associated with the video at a specific time stamp or time stamps. Then, during the preparation for a hearing, the breath analysis result can be selectively superimposed on the video by a user. The breath analysis result may be automatically superimposed on the video by default, and present the user with the option to remove the breath analysis result from the video. In some jurisdictions, the breath analysis result may be inadmissible in court, or may only be admissible for certain purposes (such as the establishment of probable cause for the arrest, but not as evidence of intoxication). For this reason, the user may desire to have the breath analysis result superimposed, to not have the breath analysis superimposed, or to have two separate videos (one superimposed, the other not). Saving the breath analysis result to metadata provides this benefit. In other embodiments, the breath analysis result is directly and permanently superimposed on the video.
[0067] Various methods of embodiments of the invention will now be discussed. A non-transitory computer readable storage medium having a computer program stored thereon may instruct the at least one processing element to implement the steps of at least one of the described methods. The non-transitory computer readable storage medium may be located within the housing 38 of the breath analyzer 12, within the recording device manager 14, within the auxiliary computing device 18, within the at least one ancillary video camera 16, within a computing device secured within the law enforcement vehicle 50, and/or within a generic computing device.
[0068] A method of authenticating and preserving breath analysis results is illustrated in Fig. 10. In Step 1000, the breath analyzer 12 is associated with the recording device manager 14. In Step 1002, at least one ancillary video camera 16 is associated with the recording device manager 14. In Step 1004, the recording device manager 14 receives information indicative that the breath analyzer 12 is active. The recording device manager 14 then instructs the at least one ancillary video camera 18 to begin recording (if it is not already) in Step 1006. The recording device manager 14 in Step 1008 also instructs the at least one ancillary video camera 16 to associate an "analysis in progress" status 24, 62 with the video being recorded. At this step, additional information may also be associated with the video being recorded. Such information can include information relating to the breath analyzer (as discussed above), information relating to the scene (such as any proximity tags detected by proximity tag reader 56), or other information (such as the identities of any other ancillary or integrated video cameras currently recording the scene). In Step 1010, the recording device manager 14 receives information indicative that the breath analysis is complete. In Step 1012, the recording device manager 14 receives information indicative of the breath analysis result. Then, the recording device manager 14 instructs the at least one ancillary video camera 16 to associate the breath analysis result with the video being recorded in Step 1014. In some embodiments, the breath analysis is additionally communicated to one or more other components of the system for processing, storage, or display. The recording device manager also saves the breath analysis result to metadata in Step 1016. Some embodiments of the method of authenticating and preserving breath analysis data further comprise the following steps: receiving information indicative of a proximity tag identifier of a proximity tag 54 being within the range of the proximity tag reader 56; associating proximity tag identifier with the video data being recording; and associating the proximity tag identifier with the breath analysis results.
[0069] Another method of authenticating and preserving breath analysis results is illustrated in Fig. 1 1 . The breath analyzer 12 sends a set of information indicative of the breath analyzer 12 in Step 1 100. The breath analyzer 12 also receives information indicative of a recording device manager 14 in Step 1 102. The breath analyzer 12 then receives information indicative of the breath sample being supplied to the breath receptor 28 in Step 1 104, The breath analyzer 12 then, in Step 1 106, instructs the analyzing element 30 to analyze the breath sample. The breath analyzer 12 then sends to the recording device manager 14 a set of information indicative that the analyzing element 30 has begun analyzing in Step 1 108. The breath analyzer 12 receives information indicative of the analyzing element 30 completing the breath analysis in Step 1 1 10. Then, in Step 1 1 12, the breath analyzer 12 sends, to the recording device manager 14, a set of information indicative that the breath analysis is complete. In Step 1 1 14, the breath analyzer 12 receives, from the analyzing element 30, a breath analysis result. Finally, in Step 1 1 14, the breath analyzer 12 sends, to the recording device manager 14, information indicative of the breath analysis result. Some embodiments further comprise the step of storing the breath analysis result in the memory element 36 and/or displaying it on one or more local or remote displays. Some embodiments further comprise the steps of receiving, from the recording device manager 14, information indicative of the time and/or location; and associating the information indicative of the time and/or location with the breath analysis results. Some embodiments further comprise the following steps: receiving information indicative of a proximity tag identifier from the recording device manager 14; associating the proximity tag identifier with the breath analysis results.
[0070] Two exemplary presentations of the breath analysis data are illustrated in Figs. 12 and 13. A method of presenting breath analysis results is illustrated in Fig. 14. The steps comprise obtaining a video recording from an ancillary video camera 16, in Step 1400; obtaining information indicative of the breath analysis result from the metadata associated with a video recording, in Step 1402; superimposing the breath analysis result onto a plurality of frames of the video recording, such that the breath analysis result is superimposed on frames of the video recording at a time approximately the same as, and for a certain period of time following, the time in which the recording device manager 14 received the information indicative of the breath analysis result, in Step 1404: and displaying the video recording with the breath analysis result superimposed on the plurality of frames, in Step 1406. Other embodiments of the method comprise the steps of obtaining information indicative of the status 62 of the breath analyzer 12 from the metadata associated with the video recording; superimposing the status 62 of the breath analyzer 12 onto the video recording; and synchronizing the superimposition such that the status 62 of the breath analyzer 12 is displayed at the time corresponding with the status 62. Other embodiments of the method comprise the steps of obtaining information indicative of the administrator 44 from the metadata associated with the video recording; and superimposing the information indicative of the administrator 44 onto the video recording. The superimposed information may change with subsequent frames of the video recording. For example, a series of frames may show the "analysis in progress" reading 24 (as illustrated in Fig. 12) followed by a series of frames showing the breath analysis result (as illustrated in Fig. 13). It will be immediately apparent to a person of skill in the art that any of the information gathered by or stored in the system can be superimposed on, or associated as metadata with, the video recording. Information can be displayed individually, in combination, alternation, or simultaneously.
[0071] The computer program of embodiments of the invention comprises a plurality of code segments executable by a computing device for performing the steps of various methods of the invention. The steps of the method may be performed in the order discussed, or they may be performed in a different order, unless otherwise expressly stated. Furthermore, some steps may be performed concurrently as opposed to sequentially. Also, some steps may be optional. The computer program may also execute additional steps not described herein. The computer program, system 10, and method of embodiments of the invention may be implemented in hardware, software, firmware, or combinations thereof, which broadly comprises server devices, computing devices, and a communications network.
[0072] The computer program of embodiments of the invention may be responsive to user input. As defined herein user input may be received from a variety of computing devices including but not limited to the following: desktops, laptops, calculators, telephones, smartphones, smart watches, in-car computers, camera systems, or tablets. The computing devices may receive user input from a variety of sources including but not limited to the following: keyboards, keypads, mice, trackpads, trackballs, pen-input devices, printers, scanners, facsimile, touchscreens, network transmissions, verbal/vocal commands, gestures, button presses or the like.
[0073] The server devices and computing devices may include any device, component, or equipment with a processing element and associated memory elements. The processing element may implement operating systems, and may be capable of executing the computer program, which is also generally known as instructions, commands, software code, executables, applications ("apps"), and the like. The processing element may include processors, microprocessors, microcontrollers, field programmable gate arrays, and the like, or combinations thereof. The memory elements may be capable of storing or retaining the computer program and may also store data, typically binary data, including text, databases, graphics, audio, video, combinations thereof, and the like. The memory elements may also be known as a "computer- readable storage medium" and may include random access memory (RAM), read only memory (ROM), flash drive memory, floppy disks, hard disk drives, optical storage media such as compact discs (CDs or CDROMs), digital video disc (DVD), and the like, or combinations thereof. In addition to these memory elements, the server devices may further include file stores comprising a plurality of hard disk drives, network attached storage, or a separate storage network.
[0074] The computing devices may specifically include mobile communication devices (including wireless devices), work stations, desktop computers, laptop computers, palmtop computers, tablet computers, portable digital assistants (PDA), smart phones, and the like, or combinations thereof. Various embodiments of the computing device may also include voice communication devices, such as cell phones and/or smart phones. In preferred embodiments, the computing device will have an electronic display operable to display visual graphics, images, text, etc. In certain embodiments, the computer program facilitates interaction and communication through a graphical user interface (GUI) that is displayed via the electronic display. The GUI enables the user to interact with the electronic display by touching or pointing at display areas to provide information to the system 10.
[0075] The communications network may be wired or wireless and may include servers, routers, switches, wireless receivers and transmitters, and the like, as well as electrically conductive cables or optical cables. The communications network may also include local, metro, or wide area networks, as well as the Internet, or other cloud networks. Furthermore, the communications network may include cellular or mobile phone networks, as well as landline phone networks, public switched telephone networks, fiber optic networks, or the like.
[0076] The computer program may run on computing devices or, alternatively, may run on one or more server devices. In certain embodiments of the invention, the computer program may be embodied in a stand-alone computer program (i.e., an "app") downloaded on a user's computing device or in a web-accessible program that is accessible by the user's computing device via the communications network. As used herein, the stand-along computer program or web-accessible program provides users with access to an electronic resource from which the users can interact with various embodiments of the invention.
[0077] Execution of the computer program of embodiments of the invention performs steps of the method of embodiments of the invention. Because multiple users may be updating information stored, displayed, and acted upon by the computer program, information displayed by the computer program is displayed in real-time. "Real-time" as defined herein is when the processing element of the system 10 performs the steps less than every 1 second, every 500 milliseconds, every 100 milliseconds, or every 16 milliseconds.
[0078] Although the invention has been described with reference to the embodiments illustrated in the attached drawing figures, it is noted that equivalents may be employed and substitutions made herein without departing from the scope of the invention as recited in the claims. [0079] Having thus described various embodiments of the invention, what is claimed as new and desired to be protected by Letters Patent includes the following:

Claims

CLAIMS:
1 . A system for administering a breath analysis to a donor by a law enforcement officer, said law enforcement officer being a different person than the donor, and recording a breath analysis result, the system comprising:
a recording device manager communicatively coupled with a plurality of video cameras,
said recording device manager configured to initiate the recording of video data by at least one of the plurality of video cameras to obtain recorded video data,
wherein to initiate the recording of video data, the recording device manager transmits a signal to said at least one of the plurality of video cameras to begin recording,
said signal indicative that the breath analysis has begun or is scheduled to begin, a breath analyzer communicatively coupled with the recording device manager, including:
a breath receptor for collecting a breath specimen from the donor[[;]], an analyzing element for analyzing the breath specimen and determining the breath analysis result, and
a communication element configured to transmit a signal to the recording device manager indicative that the breath analysis has begun or is scheduled to begin and, in response to completion of the breath analysis, further transmit information indicative of the breath analysis result to the recording device manager; and an auxiliary computing device associated with the recording device manager and configured to receive the information indicative of the breath analysis result from the recording device manager,
wherein the auxiliary computing device is configured to associate the information indicative of the breath analysis result with at least a portion of the recorded video data from said at least one of the plurality of video cameras,
wherein said association is selected from the group consisting of: superimposing the breath analysis result on one or more frames of the recorded video data, and storing the breath analysis result as metadata for one or more frames of the recorded video data.
2. The system of claim 1 , wherein the auxiliary computing device is a computer located within a law enforcement vehicle.
3. The system of claim 1 , wherein one or more of the plurality of video cameras is configured to be located on the law enforcement officer and oriented such that said one or more of the plurality of video cameras records the donor during the breath analysis.
4. The system of claim 1 , wherein the breath analyzer further comprises an integral video camera in the breath analyzer oriented such that it can observe the donor during the breath analysis.
5. The system of claim 1 , wherein the communication element of the breath analyzer operates wirelessly.
6. The system of claim 1 , wherein the breath analyzer, via the communication element, is configured to transmit information indicative of a status of the breath analyzer to the recording device manager.
7. The system of claim 1 , wherein the breath analyzer includes a location element for determining a geographic location of the breath analyzer, and the location of the breath analyzer is stored as metadata associated with the recorded video data.
8. The system of claim 1 , wherein the auxiliary computing device includes a display, and the auxiliary computing device is configured to display the breath analysis result in real time on the display.
9. A breath analyzer for administering a breath analysis to a donor by a law enforcement officer, said law enforcement being a different person than the donor, the breath analyzer comprising:
a breath receptor for collecting a breath specimen from the donor;
an analyzing element for analyzing the breath specimen and determining the breath analysis result;
a communication element configured to transmit information indicative of the breath analysis result to an auxiliary computing device;
a proximity tag reader configured to (1 ) detect the presence of a proximity tag associated with the law enforcement officer, and (2) associate information from the proximity tag with the breath analysis result to associate the law enforcement officer with the breath analysis result; and
a handheld housing for housing the analyzing element, the communication element, at least a portion of the breath receptor, and the proximity tag reader.
10. The breath analyzer of claim 9, wherein the breath analyzer further comprises an integral video camera in the breath analyzer oriented such that it can observe the donor during the breath analysis.
1 1 . The breath analyzer of claim 9, further including a location element for determining a geographic location of the breath analyzer.
12. The breath analyzer of claim 9,
wherein the breath analyzer, via the communication element, is configured to transmit information indicative of a status of the breath analyzer to the auxiliary computing device,
wherein the status is selected from a group consisting of: power on, breath analysis started, breath analysis stopped, current reading of the analyzing element, breath analysis successful completion, error detected, and error not detected.
13. A system for administering a breath analysis to a donor by an administrator, said administrator being a different person than the donor, and recording a breath analysis result, the system comprising:
a recording device manager communicatively coupled with a plurality of recording devices,
said recording device manager configured to initiate the recording of data by at least one of the plurality of recording devices to obtain recorded data, wherein to initiate the recording of data, the recording device manager transmits a signal to said at least one of the plurality of recording devices to begin recording,
said signal indicative that the breath analysis has begun or is scheduled to begin; and
a breath analyzer communicatively coupled with the recording device manager, including:
a breath receptor for collecting a breath specimen from the donor, an analyzing element for analyzing the breath specimen and determining the breath analysis result, and
a communication element configured to transmit information indicative of the breath analysis result to the recording device manager, wherein the recording device manager is configured to store the information indicative of the breath analysis result as metadata with at least a portion of the recorded data from said at least one of the plurality of recording devices.
14. The system of claim 13,
wherein said at least one of the plurality of recording devices is a video camera, wherein the recorded data is recorded video data, and
wherein the breath analysis result is selectively superimposed on said at least a portion of the recorded video data.
15. The system of claim 14,
wherein the video camera is a first video camera and the recorded data is first video data, said system further including a second video camera recording second video data,
wherein one of the first video camera and the second video camera is mounted on a body of the administrator, and an other of the first video camera and the second video camera is located within a vehicle of the administrator.
PCT/US2015/056062 2014-10-17 2015-10-16 Breath analyzer, system, and computer program for authenticating, preserving, and presenting breath analysis data WO2016061533A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/517,160 2014-10-17
US14/517,160 US10390732B2 (en) 2013-08-14 2014-10-17 Breath analyzer, system, and computer program for authenticating, preserving, and presenting breath analysis data

Publications (1)

Publication Number Publication Date
WO2016061533A1 true WO2016061533A1 (en) 2016-04-21

Family

ID=55747450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/056062 WO2016061533A1 (en) 2014-10-17 2015-10-16 Breath analyzer, system, and computer program for authenticating, preserving, and presenting breath analysis data

Country Status (1)

Country Link
WO (1) WO2016061533A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10152859B2 (en) 2016-05-09 2018-12-11 Coban Technologies, Inc. Systems, apparatuses and methods for multiplexing and synchronizing audio recordings
US10165171B2 (en) 2016-01-22 2018-12-25 Coban Technologies, Inc. Systems, apparatuses, and methods for controlling audiovisual apparatuses
US10370102B2 (en) 2016-05-09 2019-08-06 Coban Technologies, Inc. Systems, apparatuses and methods for unmanned aerial vehicle
US10789840B2 (en) 2016-05-09 2020-09-29 Coban Technologies, Inc. Systems, apparatuses and methods for detecting driving behavior and triggering actions based on detected driving behavior
US20210267482A1 (en) * 2020-02-28 2021-09-02 Picomole Inc. Apparatus and method for collecting a breath sample using a metering device
WO2021168541A1 (en) * 2020-02-28 2021-09-02 Picomole Inc. Apparatus and method for collecting a breath sample using a metering device
US11499916B2 (en) 2019-04-03 2022-11-15 Picomole Inc. Spectroscopy system and method of performing spectroscopy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060193749A1 (en) * 2000-01-06 2006-08-31 Ghazarian Viken D Portable RF breathalyzer
US20100177193A1 (en) * 2006-11-24 2010-07-15 Global Sight, S.A. De C.V. Remote and digital data transmission systems and satellite location from mobile or fixed terminals with urban surveillance cameras for facial recognition, data collection of public security personnel and missing or kidnapped individuals and city alarms, stolen vehicles, application of electronic fines and collection thereof through a personal id system by means of a multifunctional card and collection of services which all of the elements are communicated to a command center
IE20090923A1 (en) * 2009-04-03 2010-09-29 Actip Ltd A proximity reader
US20110301971A1 (en) * 2010-06-08 2011-12-08 Hok Group, Inc. Healthcare System Planning Tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060193749A1 (en) * 2000-01-06 2006-08-31 Ghazarian Viken D Portable RF breathalyzer
US20100177193A1 (en) * 2006-11-24 2010-07-15 Global Sight, S.A. De C.V. Remote and digital data transmission systems and satellite location from mobile or fixed terminals with urban surveillance cameras for facial recognition, data collection of public security personnel and missing or kidnapped individuals and city alarms, stolen vehicles, application of electronic fines and collection thereof through a personal id system by means of a multifunctional card and collection of services which all of the elements are communicated to a command center
IE20090923A1 (en) * 2009-04-03 2010-09-29 Actip Ltd A proximity reader
US20110301971A1 (en) * 2010-06-08 2011-12-08 Hok Group, Inc. Healthcare System Planning Tool

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10165171B2 (en) 2016-01-22 2018-12-25 Coban Technologies, Inc. Systems, apparatuses, and methods for controlling audiovisual apparatuses
US10152859B2 (en) 2016-05-09 2018-12-11 Coban Technologies, Inc. Systems, apparatuses and methods for multiplexing and synchronizing audio recordings
US10152858B2 (en) 2016-05-09 2018-12-11 Coban Technologies, Inc. Systems, apparatuses and methods for triggering actions based on data capture and characterization
US10370102B2 (en) 2016-05-09 2019-08-06 Coban Technologies, Inc. Systems, apparatuses and methods for unmanned aerial vehicle
US10789840B2 (en) 2016-05-09 2020-09-29 Coban Technologies, Inc. Systems, apparatuses and methods for detecting driving behavior and triggering actions based on detected driving behavior
US11499916B2 (en) 2019-04-03 2022-11-15 Picomole Inc. Spectroscopy system and method of performing spectroscopy
US11506601B2 (en) 2019-04-03 2022-11-22 Picomole Inc. Resonant cavity system
US20210267482A1 (en) * 2020-02-28 2021-09-02 Picomole Inc. Apparatus and method for collecting a breath sample using a metering device
WO2021168541A1 (en) * 2020-02-28 2021-09-02 Picomole Inc. Apparatus and method for collecting a breath sample using a metering device

Similar Documents

Publication Publication Date Title
US11523751B2 (en) Breath analyzer, system, and computer program for authenticating, preserving, and presenting breath analysis data
WO2016061533A1 (en) Breath analyzer, system, and computer program for authenticating, preserving, and presenting breath analysis data
US20230200727A1 (en) Sobriety monitoring system
US20230273186A1 (en) Sobriety monitoring system
RU2578023C2 (en) Portable diagnostic unit and method for using it with electronic device and diagnostic cartridge in instant diagnostic tests
US10557844B2 (en) Bioresistive-fingerprint based sobriety monitoring system
US10809248B2 (en) System for certifying a detection of a gaseous substance exhaled by an individual, and method using the system
US20230184742A1 (en) Sobriety monitoring system with identification indicia
CN209247780U (en) Intelligent alcoholicity of exhaled gas detector
KR20210009893A (en) Near communication connecting method of continuous glucose monitoring system
US11049242B2 (en) Portable and rapid screening in vitro detection system
EP4170325A1 (en) System for automated optical analyte measurements via wearable smart devices
KR102312359B1 (en) system for self-determination of mild cognitive impairment and prevention training using memory and response rate information, based on breathing patterns
WO2023067042A1 (en) System and method for automated optical analyte measurements via wearable smart devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851051

Country of ref document: EP

Kind code of ref document: A1