WO2016060450A1 - Method for preparing high-quality aviation biofuel by using non-cooking oil, and aviation biofuel prepared thereby - Google Patents

Method for preparing high-quality aviation biofuel by using non-cooking oil, and aviation biofuel prepared thereby Download PDF

Info

Publication number
WO2016060450A1
WO2016060450A1 PCT/KR2015/010800 KR2015010800W WO2016060450A1 WO 2016060450 A1 WO2016060450 A1 WO 2016060450A1 KR 2015010800 W KR2015010800 W KR 2015010800W WO 2016060450 A1 WO2016060450 A1 WO 2016060450A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
bio
edible
oils
catalyst
Prior art date
Application number
PCT/KR2015/010800
Other languages
French (fr)
Korean (ko)
Inventor
황경란
이진석
한정식
이경환
최일호
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2016060450A1 publication Critical patent/WO2016060450A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a method for producing high quality 100% bio-air fuel from non-edible fats and oils and bio-air oil produced thereby.
  • biomass is a carbon compound in which carbon dioxide, a global warming material, is fixed using solar energy
  • biomass is an energy storage material having a characteristic of carbon compound together with fossil fuel.
  • biomass described above is often used for vegetable sources such as corn, soybean, linseed, sugar cane and palm oil, but the term is generally used for all living organisms, or their metabolism, which is part of the carbon cycle. It can be extended to by-products.
  • FIG. 1 is a process chart showing a process for manufacturing a conventional bio-air fuel, in order to produce bio-air fuel according to the prior art, hydrogen is required for the deoxygenation reaction, selective pyrolysis and isomerization reaction, and paraffin through this process.
  • Synthetic Paraffinic Kerosene (SPK) having a series of hydrocarbons is prepared.
  • US Patent Publication Nos. US 2004/0230085 and US 2014/0275670 which are conventional techniques for minimizing the amount of hydrogen used in a bio-air fuel production process, are basically (1) deoxygenation for bio-air fuel production. Reaction (2) Isomerization and selective pyrolysis require two steps (US 2004/0230085).
  • Figure 2 is a reaction schematic showing the three forms of deoxygenation reaction through hydrogenation in the conventional bio-air oil production process, the deoxygenation reaction according to the form of oxygen is removed as shown in Figure 2, Three methods exist, and in particular, the development of a catalyst for the decarboxylation reaction of removing intramolecular oxygen in the form of carbon dioxide, which has relatively low hydrogen consumption, has been mainly carried out (US 2014/0275670).
  • US Patent Publication No. US 2014/0005448 discloses a 100% bio-air fuel by adding a step of separating a hydrocarbon having a short carbon number of a paraffinic hydrocarbon and modifying it into an aromatic in a paraffinic hydrocarbon produced after hydrogenation deoxygenation.
  • a reactor for hydrocarbon reforming was operated under a reforming temperature of 300 to 520 ° C., a hydrogen pressure of 3 to 27 bar, and a hydrogen to carbon ratio of 0.5 to 10.
  • the mixed bioair fuels contained 8 to 25% by weight of renewable aromatics.
  • the above method requires an additional process such as a separation process and a reforming process, and is a process in which hydrogen is consumed in large quantities.
  • the reaction was carried out while supplying a reaction temperature of 300 to 500 °C, hydrogen pressure of 20 to 150 bar, 100 to 5000 ml of hydrogen per 1 ml of the raw material, The conversion rate reached 92 to 99.9%.
  • the aromatic fuel oil range accounted for 35 to 60% of the total aromatic hydrocarbon content of 1 to 18%.
  • the present invention has been made to solve the above problems, the object of the present invention is 100% having a high energy density as a raw material for non-edible fats and oils through a single-step process without supplying hydrogen It is to provide a method for producing bio aviation oil.
  • the present invention provides a process for preparing paraffins through deoxygenation, isomerization and aromatization reactions from non-edible fats and liquids in the presence of a catalyst without adding hydrogen. Forming a reaction product comprising the system hydrocarbon and the aromatic compound; And (b) distilling the reaction product to extract the aviation oil.
  • non-edible fat and oil proposes a method for producing bio-avid oil using non-edible fat, characterized in that the triglyceride (triglyceride) or free fatty acid (free fatty acid) as a main component.
  • non-edible oil and fat is one selected from the group consisting of palm fatty acid distillate (PFAD), non-edible dark oil derived from edible oil, microalgae-derived oil, jatropha oil, camelina oil, waste oil, and animal fats and oils. It proposes a bio-air oil production method using a non-edible fat, characterized in that the above made.
  • PFAD palm fatty acid distillate
  • the catalyst includes a support and a metal particle supported on the support, the support is a zeolite in which the volume fraction of the meso pores is larger than the volume fraction of the micropores, the metal particles are palladium (Pd), platinum (Pt)
  • the present invention proposes a method for producing bio-avid oil using non-edible fats and oils, characterized in that it is made of at least one metal selected from the group consisting of nickel (Ni), gallium (Ga), copper (Cu), and zinc (Zn).
  • step (a) proposes a bio-air oil production method using a non-edible fat, characterized in that carried out at a pressure of 10 to 50 bar and a temperature of 200 to 370 °C formed by an inert gas.
  • the present invention is prepared by the method for preparing bio-air oil using the non-edible fats and oils, wherein the isoparaffinic hydrocarbon and the aromatic compound are 30 to 70% by weight. It proposes a bio aviation oil comprising a.
  • the method for producing high quality bio-air fuel using non-edible fats and oils according to the present invention is a starting material by inducing deoxygenation, isomerization and aromatization reactions through a single step process by optimizing catalyst and reaction conditions without adding hydrogen.
  • High-density, high-quality, 100% bioair fuels including normal paraffinic hydrocarbons, isoparaffinic hydrocarbons and aromatics, can be produced directly and selectively from non-edible fats and oils, which is very economical in terms of manufacturing cost reduction and process simplification.
  • 1 is a process chart showing a conventional bio-air fuel production process.
  • Figure 2 is a reaction schematic showing three forms of deoxygenation reaction through hydrogenation in the conventional bio-air oil production process.
  • Figure 3 is a graph showing the oxygen removal rate in the raw material and the type and content of the components included in the bio-air oil prepared according to Example 2 of the present application.
  • Figure 4 is a graph showing the oxygen removal rate in the raw material and the type and content of the components included in the bio-air oil prepared according to Example 3 of the present application.
  • Bio-air oil production method (a) paraffinic hydrocarbons through the deoxygenation, isomerization and aromatization reaction from the liquid non-edible fat in the presence of a catalyst without the addition of hydrogen And forming a reaction product comprising the aromatic compound; And (b) distilling the reaction product to extract aviation oil.
  • the non-edible fats and oils supplied as a raw material to the reaction made in step (a) is composed of a hydrocarbon containing a carboxyl group as a non-edible biomass and is a mixture having no or more than one double bond in the hydrocarbon structure.
  • triglyceride (triglyceride) or free fatty acid (free fatty acid) may be included as a main component, in this case, the carbon number of the fatty acid group or free fatty acid contained in the triglyceride is preferably 10 to 24, More preferably, it may be 16-20.
  • non-edible fats and oils include palm fatty acid distillate (PFAD), non-edible dark oils derived from edible oils and fats, oils derived from microalgae, jatropha oil, camelina oil, waste oils, animal oils or mixtures thereof. However, it is not necessarily limited thereto.
  • PFAD palm fatty acid distillate
  • non-edible dark oils derived from edible oils and fats oils derived from microalgae, jatropha oil, camelina oil, waste oils, animal oils or mixtures thereof.
  • PFAD palm fatty acid distillate
  • Table 1 is a table showing the composition and characteristics of some substances belonging to the non-edible fats and oils used in the present invention.
  • non-edible fats and fats are present in the form of gel or gel rather than liquid according to the content and season of free fatty acid, it is preferable to add the non-edible fat to the reactor in the state of maintaining at a temperature of from room temperature to 60 ° C. Do.
  • the catalyst used in the reaction in this step (a) is deoxygenated not only to remove oxygen present in the hydrocarbon molecular structure included in the non-edible fats and oils, but also to mediate isomerization and conversion to aromatic hydrocarbons. It is preferred to be a bifunctional catalyst composed of a metal having an active point and a support having an acid point.
  • a zeolite having a medium and strong Bronsted acid point which is advantageous for cracking and isomerization, can be used, considering the carbon number range of the bio-air fuel fraction, among which 2 nm in diameter. It is preferable to use a zeolite having a large volume fraction of mesopores having a diameter of 2 to 50 nm as compared to the micropore volume fraction below, and furthermore, finer than a large pore zeolite or 10 zeolites having 10 or 12 oxygen atoms. It is more preferable to use zeolites having large pores and having 3D channels, which are advantageous for cracking reactions of hydrocarbons having long chains.
  • the Si / Al ratio of the zeolite affects the distribution of the product after the reaction and is operated under optimum reaction conditions to obtain the desired distribution.
  • the metal active material to be supported on the support includes at least one metal selected from the group consisting of palladium (Pd), platinum (Pt), nickel (Ni), gallium (Ga), copper (Cu) and zinc (Zn). Particles consisting of can be used.
  • the deoxygenation, isomerization and aromatization reactions carried out in this step (a) are carried out in a reactor in which the non-edible fats and oils as raw materials are supplied to the reactor in the presence of the catalyst described above without hydrogen being supplied to the reaction. It is characterized by the anhydrous catalyst conversion process carried out.
  • the reaction of this step is preferably carried out at a temperature of 200 °C to 370 °C, more preferably can be carried out at a temperature of 250 °C to 350 °C.
  • the type and content of the constituents of the reaction product obtained through this step are greatly influenced by the reaction temperature, operating at a relatively high temperature to increase the content of aromatic products, and relatively low temperature to increase the content of normal and isomerized hydrocarbons. You can drive at a relatively high temperature to increase the content of aromatic products, and relatively low temperature to increase the content of normal and isomerized hydrocarbons. You can drive at
  • the initial reactor pressure 10 bar to 50 bar by using an inert gas such as nitrogen, helium or argon so that the reaction can proceed while the raw material is maintained in the liquid phase at the reaction temperature.
  • an inert gas such as nitrogen, helium or argon
  • reaction time of the anhydrous catalytic decomposition process in this step may vary depending on the acidity of the catalyst used, but is preferably made in the range of 0.5 to 6 hours, more preferably by reacting for 1 to 3 hours Reaction products including paraffinic hydrocarbons and aromatic compounds can be prepared.
  • step (a) may be configured to recover and reuse the used catalyst.
  • the step (b) is a step of obtaining bio-air fuel by distilling the air product by distilling the reaction product obtained in the step (a) because it can use a known technique such as vacuum distillation (vaccum distillation) Will be omitted.
  • the method for producing high-quality bio-air fuel using non-edible fats and oils according to the present invention described above, a plurality of hydrogenation processes for supplying a large amount of hydrogen for deoxygenation and isomerization of raw materials are required, and after completion of the hydrogenation process, Unlike the existing multistage aviation oil production process, which requires the addition of a separate petroleum aromatic compound to satisfy the quality, the single-step process for deoxygenation, isomerization and aromatization reaction is performed by optimizing the catalyst and reaction conditions without adding hydrogen.
  • the bio-air oil prepared by the bio-air oil production method using the non-edible fat and oil is composed of 15 to 30% by weight of iso-paraffinic hydrocarbons and 30 to 70% by weight of aromatic compounds, It also contains normal paraffinic (n-paraffin) hydrocarbons, and has a high calorific value, good low temperature characteristics, and a hydrocarbon chain having 12 to 18 carbon atoms that does not contain impurities. have.
  • bio-air fuel in which 5 g by weight of palladium is supported by 10 g of stearic acid or oleic acid, which are non-edible fats and oils, as an active material without solvent.
  • Catalytic reaction was induced using a zeolite catalyst, and the catalytic reaction proceeded at a pressure of 15 bar under a nitrogen atmosphere.
  • Table 2 is a table showing the content and characteristics of the bio-air oil prepared according to the amount of catalyst, reaction temperature and reaction time used in the bio-air oil production process using the non-edible fat and oil according to the first embodiment.
  • the biofuel oil prepared according to Example 1 showed that the conversion rate of non-edible oil and fat was increased as the amount of catalyst supplied increased.
  • the proportion of hydrocarbons between the corresponding C12 and C18 also increased.
  • Figure 3 is a graph showing the oxygen removal rate in the raw material and the type and content of the components included in the bio-air oil prepared according to Example 2 of the present application.
  • the bio-air fuel prepared from the waste cooking oil of Example 2 showed an oxygen removal rate (DO) of 95.5% or 76.1%, and normal paraffinic hydrocarbons at C12 to C18 corresponding to bio-air fuel fractions.
  • DO oxygen removal rate
  • Isoparaffinic hydrocarbons and aromatic compounds accounted for 38-42% of the total product.
  • the normal paraffinic hydrocarbon was 23.5%
  • the isoparaffinic hydrocarbon was 15.8%
  • the aromatic compound was 60.7%.
  • PFAD a non-edible fat and oil raw material
  • Y zeolite Pd (5) / Y
  • beta loaded with 5% by weight of palladium as an active material without solvent Catalytic reaction was induced using 3 g of zeolite (Pd (5) / BEA) catalyst, and the catalytic reaction proceeded at 300 ° C. for 3 hours at a pressure of 15 bar under nitrogen atmosphere.
  • Figure 4 is a graph showing the oxygen removal rate in the raw material and the type and content of the components included in the bio-air oil prepared according to Example 3 of the present application.
  • the bio-air oil prepared by the PFAD of Example 3 showed 94.3% deoxygenation degree in the beta zeolite catalyst and 80% deoxygenation degree in the Y zeolite catalyst.
  • the normal paraffinic hydrocarbon was 16.2%
  • the isoparaffinic hydrocarbon was 16.8%
  • the aromatic compound was 69%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The present invention relates to a method for preparing aviation biofuel by using non-cooking oil, comprising the steps of: (a) forming a reaction product containing a paraffin-based hydrocarbon and an aromatic compound through deoxygenation, isomerization and aromatization from a liquid non-cooking oil in the presence of a catalyst without adding hydrogen; and (b) extracting an aviation fuel fraction by distilling the reaction product. According to the present invention, high-quality 100% aviation biofuel of high energy density, containing an isoparaffin-based hydrocarbon and an aromatic compound can be directly and selectively prepared from a non-cooking oil, which is a starting material, by optimizing a catalyst and reaction conditions without adding hydrogen so as to induce deoxygenation, isomerization and aromatization through a single-step process, and thus the present invention is remarkably economical with respect to preparation cost reduction and process simplification.

Description

비식용 유지를 이용한 고품질 바이오항공유 제조방법 및 이에 의해 제조된 바이오항공유Manufacturing method of high quality bio aviation oil using non-edible fat and oil and bio aviation oil produced thereby
본 발명은 비식용 유지를 원료로 고품질의 100% 바이오항공유를 제조하는 방법 및 이에 의해 제조된 바이오항공유에 관한 것이다.The present invention relates to a method for producing high quality 100% bio-air fuel from non-edible fats and oils and bio-air oil produced thereby.
국제적으로 화석에너지의 소비로 인한 대기오염과 화석에너지의 고갈로 인한 에너지 수급의 문제에 직면하면서 대체에너지에 대한 관심이 높아지고 있다. 바이오매스는 태양에너지를 이용하여 지구온난화 물질인 이산화탄소가 고정된 탄소화합물이기 때문에, 바이오매스는 결국 화석연료와 함께 탄소화합물이라는 특성을 지니고 있는 에너지 저장물질이라고 할 수 있다.Internationally, there is a growing interest in alternative energy, facing the problems of air pollution caused by the consumption of fossil energy and energy supply and demand due to the depletion of fossil energy. Since biomass is a carbon compound in which carbon dioxide, a global warming material, is fixed using solar energy, biomass is an energy storage material having a characteristic of carbon compound together with fossil fuel.
상기한 바이오매스라는 용어는 흔히 옥수수, 콩, 아마인, 사탕수수 및 팜 오일과 같은 식물성 소스에 대해 사용되지만, 상기 용어는 일반적으로 현재 살아있는 모든 유기체, 또는 탄소 사이클에서 한 부분을 차지하는 그것들의 대사 부산물에까지 확장될 수 있다.The term biomass described above is often used for vegetable sources such as corn, soybean, linseed, sugar cane and palm oil, but the term is generally used for all living organisms, or their metabolism, which is part of the carbon cycle. It can be extended to by-products.
현재 세계 각국에서는 지구 온난화에 대한 바이오매스의 긍정적인 효과에 주목하고, 이산화탄소 배출량 저감을 위한 구체적인 방안으로서 바이오매스 자원화 정책을 수립하여 실시하고 있으며, 바이오매스로부터의 에너지 회수 및 활용을 위한 자원화 기술의 개발 및 연구를 적극적으로 수행하고 있다.At present, countries around the world are paying attention to the positive effects of biomass on global warming, and establishing and implementing biomass resource management policy as a concrete way to reduce carbon dioxide emissions. Active development and research.
기존의 바이오매스로부터의 에너지 회수 및 활용을 위한 자원화 기술의 개발 및 연구는 수송유인 가솔린 및 디젤을 대체하기 위한 연구가 주로 진행되어 왔으며, 다양한 바이오매스로부터 촉매 존재하에서 알콜과 반응시켜 생산된 1세대 바이오디젤(Fatty Acid Methyl Ester, FAME)은 그 기술이 이미 개발이 완료된 상태이나, FAME에 포함된 산소로 인하여 차량 적용시 연료필터 막힘, 분배형 고압펌프 내부 제어장치의 부식 또는 연료분사 노즐의 부식 등의 문제점을 수반하고 이러한 저급 연료 물성 때문에 실제 5 내지 20%의 낮은 혼합로 차량 연료 제조에 적용되고 있다. The development and research of the resource-recycling technology for the recovery and utilization of energy from the existing biomass has been mainly conducted to replace the gasoline and diesel as transport oils, and the first generation produced by reacting with alcohol in the presence of a catalyst from various biomass. Biodiesel (Fatty Acid Methyl Ester, FAME) is a technology that has already been developed, but due to the oxygen contained in the FAME clogging the fuel filter in the vehicle application, corrosion of the internal control device of the distributed high-pressure pump or corrosion of the fuel injection nozzle It has been applied to the manufacture of vehicle fuel with a low mixing of 5 to 20% due to such low fuel properties.
최근에는 상기한 저급 물성을 보완하기 위해서 FAME으로부터 산소를 제거하거나, 다양한 액상 바이오매스로부터 직접 산소를 제거하면서 수송용 액상연료를 생산하는 방법이 제시되고 있다. Recently, in order to supplement the lower physical properties, a method of producing liquid fuel for transportation while removing oxygen from FAME or directly removing oxygen from various liquid biomass has been proposed.
이러한 수송용 액상연료를 생산하는 방법을 위한 상용 및 파일롯 공정은 다량의 수소를 필요로 하는 공정으로서 리뉴어블 제트 프로세스(Renewable Jet Process, RJP), 네스테오일(Neste oil), 다이나믹연료(Dynamic Fuels) 등의 방법이 있다. Commercial and pilot processes for the production of such liquid fuel for transportation is a process that requires a large amount of hydrogen as a renewable jet process (RJP), neste oil (Neste oil), dynamic fuel (Dynamic Fuels) ) And the like.
도 1은 기존의 바이오항공유를 제조하는 과정을 나타낸 공정도로서, 이와 같이 종래 기술에 따라 바이오항공유를 제조하기 위해서는 탈산소반응, 선택적가열분해 및 이성질체화반응을 위하여 수소가 필요하며, 이러한 공정을 통해서 파라핀계열의 탄화수소를 가지는 합성파라핀 케로센(Synthetic Paraffinic Kerosene, SPK)이 제조된다. 1 is a process chart showing a process for manufacturing a conventional bio-air fuel, in order to produce bio-air fuel according to the prior art, hydrogen is required for the deoxygenation reaction, selective pyrolysis and isomerization reaction, and paraffin through this process. Synthetic Paraffinic Kerosene (SPK) having a series of hydrocarbons is prepared.
하지만, 상기와 같은 파라핀계열의 탄화수소를 가지는 합성파라핀 케로센 등의 연료를 제조하기 위해서는, Kubicka(Collection of Xwechoslvak Chemical Communications, 73, 2008, 1015-1044)에 의하면, 비식용 유지를 연료로 전환하기 위해 사용되는 수소의 양은 기존 상용 수소화처리장치(hydro-treater)에서 사용하는 수소 양의 10배 이상이 필요하다고 보고하여 비용이 많이 소모되는 단점이 있었다.However, according to Kubicka (Collection of Xwechoslvak Chemical Communications, 73, 2008, 1015-1044), in order to manufacture a fuel such as synthetic paraffin kerosene having a paraffinic hydrocarbon as described above, converting non-edible fats and oils into fuels The amount of hydrogen used in order to report that more than 10 times the amount of hydrogen used in the existing commercial hydro-treater (hydro-treater) has a disadvantage of costly consumption.
따라서, 상기 공정을 적용하기 위해서는 수소공급이 용이한 정제공장와 연계하여 설치되어야 한다. 이러한 대량의 수소사용은 바이오연료의 가격에도 영향을 미치므로, 사용되는 수소의 양을 최소화하기 위한 노력이 계속되고 있다. Therefore, in order to apply the above process, it should be installed in connection with a refinery that can easily supply hydrogen. Since the use of such a large amount of hydrogen also affects the price of biofuels, efforts are continued to minimize the amount of hydrogen used.
상기한 바와 같이 바이오항공유 생산공정에서 사용되는 수소의 양을 최소화하기 위한 종래기술인, 미국 공개특허공보 US 2004/0230085호 및 US 2014/0275670호에 따르면 바이오항공유 생산을 위해서는 기본적으로 (1) 탈산소 반응 (2) 이성질체화 및 선택적 가열분해 반응 두 단계를 거쳐야한다(US 2004/0230085). As described above, US Patent Publication Nos. US 2004/0230085 and US 2014/0275670, which are conventional techniques for minimizing the amount of hydrogen used in a bio-air fuel production process, are basically (1) deoxygenation for bio-air fuel production. Reaction (2) Isomerization and selective pyrolysis require two steps (US 2004/0230085).
도 2는 종래의 바이오항공유 생산공정에 있어서 수소 첨가를 통한 탈산소 반응의 3가지 형태를 보여주는 반응 개략도로서, 상기한 탈산소반응은 도 2에 도시된 바와 같이 산소가 어떠한 형태로 제거되느냐 따라서, 3가지 방법이 존재하며 특히, 최근에는 수소사용량이 상대적으로 적은 분자내 산소를 이산화탄소의 형태로 제거하는 반응(decarboxylation reaction)에 대한 촉매개발이 주로 이루어지고 있다(US 2014/0275670).Figure 2 is a reaction schematic showing the three forms of deoxygenation reaction through hydrogenation in the conventional bio-air oil production process, the deoxygenation reaction according to the form of oxygen is removed as shown in Figure 2, Three methods exist, and in particular, the development of a catalyst for the decarboxylation reaction of removing intramolecular oxygen in the form of carbon dioxide, which has relatively low hydrogen consumption, has been mainly carried out (US 2014/0275670).
그러나, 도 1에서와 같이 수소의 대량사용 여부를 떠나 크게 두 단계의 공정을 거쳐야 하며, 생산되는 바이오연료도 파라핀계열의 탄화수소에 해당되어 고에너지밀도가 필요한 바이오항공유 규격에 맞지 않아 바이오항공유로 사용 가능하기 위해서는 최대 25%까지의 방향족 화합물을 갖도록 기존 정유공장에서 생산된 항공유를 50 이상 혼합시켜줘야 적합한 에너지 밀도를 가진다는 문제점이 있었다.However, as shown in FIG. 1, two-step processes are required regardless of whether a large amount of hydrogen is used, and the biofuel produced is also used as bio aviation oil because it does not meet the bio aviation oil specification that requires high energy density because it corresponds to a hydrocarbon of paraffin series. To be possible, there was a problem in that an appropriate energy density had to be mixed at least 50 of aviation oils produced in an existing refinery to have aromatic compounds up to 25%.
이에, 미국 공개특허공보 US 2014/0005448호에서는 수첨 탈산소반응 후 생성된 파라핀계 탄화수소 중, 파라핀계 탄화수소의 짧은 탄소수를 가진 탄화수소를 분리하여 방향족으로 개질하는 단계를 추가하여 100% 바이오항공유를 제조할 수 있는 방법이 제시되었는데, 이때, 탄화수소 개질반응을 위한 반응기는 300 내지 520 ℃의 개질 온도, 3 내지 27 bar의 수소압력, 0.5 내지 10의 수소와 탄소 비율 하에서 운전하였으며, 개질된 탄화수소가 최종 혼합된 바이오항공유는 8 내지 25 중량%의 renewable 방향족이 함유되었다. 그러나, 상기한 방법은 분리 공정 및 개질공정 등 추가 공정이 필요하며, 수소가 대량으로 소모하는 공정이다. Accordingly, US Patent Publication No. US 2014/0005448 discloses a 100% bio-air fuel by adding a step of separating a hydrocarbon having a short carbon number of a paraffinic hydrocarbon and modifying it into an aromatic in a paraffinic hydrocarbon produced after hydrogenation deoxygenation. In this case, a reactor for hydrocarbon reforming was operated under a reforming temperature of 300 to 520 ° C., a hydrogen pressure of 3 to 27 bar, and a hydrogen to carbon ratio of 0.5 to 10. The mixed bioair fuels contained 8 to 25% by weight of renewable aromatics. However, the above method requires an additional process such as a separation process and a reforming process, and is a process in which hydrogen is consumed in large quantities.
이에 따라, 100% 항공유 제조 공정에서 수소사용을 최소화를 하기 위한 일환으로 다단계의 수소 첨가 반응을 one-step 수소 첨가 공정으로 단순화한 연구가 최근 들어 보고되고 있다. Wang C(ChemSusChem 5 (2012) 1974-1983, Catalysis Today, 234, 2014, 153-160) 연구그룹에 의하면, 제올라이트에 백금(Pt) 또는 니켈금속을 담지하여 트리글리세라이드로 구성된 유지를 단일공정 수첨반응을 통해 바이오디젤을 제조하였다. 니켈이 담지된 SAPO 촉매의 경우, 370 ℃에서 300 ml/분의 수소분위기로 40 bar의 압력을 유지하면서 반응을 진행하였으며, 그 결과 100% 전환율과 100의 알칸계 탄화수소 선택도를 보였고, 이 중에서 63%가 이성질체화 선택도를 보였다. Accordingly, a study to simplify the multistage hydrogenation reaction into a one-step hydrogenation process has recently been reported as part of minimizing hydrogen use in the 100% aviation oil production process. According to Wang C (ChemSus Chem 5 (2012) 1974-1983, Catalysis Today, 234, 2014, 153-160), a single-process hydrogenation reaction of a triglyceride-containing fat was carried by supporting platinum (Pt) or nickel metal in zeolites. Biodiesel was prepared through. In the case of nickel-supported SAPO catalyst, the reaction was carried out at 370 ° C. under a hydrogen atmosphere of 300 ml / min, maintaining a pressure of 40 bar. As a result, 100% conversion and 100 alkane hydrocarbon selectivity were shown. 63% showed isomerization selectivity.
그러나, 상기한 방법 역시 수소를 사용하여야 하고, 방향족화합물을 포함하고 있지 않아 추후 석유계 방향족 화합물을 혼합시켜줘야만 한다는 문제점이 있었다. However, the above-mentioned method also has a problem in that hydrogen must be used and the petroleum-based aromatic compound must be mixed in the future because it does not contain an aromatic compound.
한편, 상기한 바와 같은 고에너지밀도가 필요한 바이오항공유를 제조하기 위한 종래기술의 또 다른 예인, 국제 공개특허공보 WO 2014/049621호에서는, 재생원료물질(renewable feedstock)으로부터 방향족화합물을 포함하는 항공유 생산 공정에 관한 기술 내용을 개시하였다.On the other hand, International Patent Publication No. WO 2014/049621, which is another example of the prior art for producing a bio-aviation oil requiring a high energy density as described above, produces an aviation oil containing an aromatic compound from a renewable feedstock The technical content of the process is disclosed.
상기한 특허공보 WO 2014/049621호에서는, 기존 정유 정제 조건에서 단일공정 수첨 반응을 통해 파라핀계 탄화수소 및 방향족 화합물을 생산하는 공정이다. In the above-mentioned patent publication WO 2014/049621, a process for producing paraffinic hydrocarbons and aromatic compounds through a single process hydrogenation reaction under existing refinery refining conditions.
이때, 황처리된 Ni-Mo, Ni-W 촉매를 이용하고, 300 내지 500 ℃의 반응온도, 20 내지 150 bar의 수소압력, 원료 1ml당 100 내지 5000 ml의 수소를 공급하면서 반응을 진행하였으며, 이때 전환율은 92 내지 99.9%에 달했다. 아울러, 방향족이 함유된 항공유 범위는 전체의 35 내지 60%를 차지하였으며 여기에 방향족 탄화수소는 1 내지 18%가 함유되어 있다. At this time, using a sulfur-treated Ni-Mo, Ni-W catalyst, the reaction was carried out while supplying a reaction temperature of 300 to 500 ℃, hydrogen pressure of 20 to 150 bar, 100 to 5000 ml of hydrogen per 1 ml of the raw material, The conversion rate reached 92 to 99.9%. In addition, the aromatic fuel oil range accounted for 35 to 60% of the total aromatic hydrocarbon content of 1 to 18%.
그러나, 상기한 공정 역시 수소를 사용하고 있으며, 황화처리된 촉매를 사용할 경우 생성물에 황이 포함되어 불순물로 존재할 가능성이 크다는 문제점을 가지고 있다. However, the above-mentioned process also uses hydrogen, and when using a sulfided catalyst, sulfur has a high possibility of being present as impurities in the product.
이처럼, 다양한 기술개발이 진행되고 있음에도 불구하고, 100% 바이오항공유에 포함되는 파라핀계 및 방향족계 탄화수소를 직접 및 선택적으로 생산하기 위하여 추가적인 수소첨가 가열분해 및 수소첨가 이성질체화 그리고 방향족 화합물의 추가적 혼합을 필요로 하지 않는 직접적 생산 공정을 위한 촉매 및 단일 공정개발이 여전히 필요하여 이에 대한 연구가 필요한 실정이다.As such, despite various technological developments, additional hydrocracking, hydroisomerization, and further mixing of aromatic compounds are required to directly and selectively produce paraffinic and aromatic hydrocarbons contained in 100% bio-air fuel. It is still necessary to develop a catalyst and a single process for a direct production process that is not needed, and thus, a study is needed.
본 발명은 상기한 바와 같은 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 수소를 공급하지 않고 단일 단계 공정(single-step process)을 통해 비식용 유지를 원료로 고에너지 밀도를 갖는 100% 바이오항공유를 제조하는 방법을 제공하는 것이다.The present invention has been made to solve the above problems, the object of the present invention is 100% having a high energy density as a raw material for non-edible fats and oils through a single-step process without supplying hydrogen It is to provide a method for producing bio aviation oil.
상기한 기술적 과제를 달성하기 위해 본 발명은, (a) 수소를 첨가하지 않고 촉매의 존재 하에서 액상의 비식용 유지로부터 탈산소(deoxygenation), 이성화(isomerization) 및 방향족화(aromatization) 반응을 통해 파라핀계 탄화수소 및 방향족 화합물을 포함하는 반응 생성물을 형성시키는 단계; 및 (b) 상기 반응 생성물을 증류시켜 항공유분을 추출하는 단계;를 포함하는 비식용 유지를 이용한 바이오항공유 제조방법을 제안한다.In order to achieve the above technical problem, the present invention provides a process for preparing paraffins through deoxygenation, isomerization and aromatization reactions from non-edible fats and liquids in the presence of a catalyst without adding hydrogen. Forming a reaction product comprising the system hydrocarbon and the aromatic compound; And (b) distilling the reaction product to extract the aviation oil.
또한, 상기 비식용 유지는 트리글리세라이드(triglyceride) 또는 유리지방산(free fatty acid)을 주성분으로 포함하는 것을 특징으로 하는 비식용 유지를 이용한 바이오항공유 제조방법을 제안한다.In addition, the non-edible fat and oil proposes a method for producing bio-avid oil using non-edible fat, characterized in that the triglyceride (triglyceride) or free fatty acid (free fatty acid) as a main component.
또한, 상기 비식용 유지는 PFAD(palm fatty acid distillate), 식용유지로부터 유래된 비식용 다크오일, 미세조류 유래 유지, 자트로파유, 카멜리나유, 폐유지, 및 동물성 유지로 이루어진 군으로부터 선택되는 1종 이상으로 이루어진 것을 특징으로 하는 비식용 유지를 이용한 바이오항공유 제조방법을 제안한다.In addition, the non-edible oil and fat is one selected from the group consisting of palm fatty acid distillate (PFAD), non-edible dark oil derived from edible oil, microalgae-derived oil, jatropha oil, camelina oil, waste oil, and animal fats and oils. It proposes a bio-air oil production method using a non-edible fat, characterized in that the above made.
또한, 상기 촉매는 지지체 및 상기 지지체에 담지된 금속 입자를 포함하되, 상기 지지체는 메조 기공의 부피 분율이 마이크로 기공의 부피 분율 보다 큰 제올라이트이고, 상기 금속 입자는 팔라듐(Pd), 백금(Pt), 니켈(Ni), 갈륨(Ga), 구리(Cu) 및 아연(Zn)로 이루어진 군으로부터 선택되는 1종 이상의 금속으로 이루어진 것을 특징으로 하는 비식용 유지를 이용한 바이오항공유 제조방법을 제안한다.In addition, the catalyst includes a support and a metal particle supported on the support, the support is a zeolite in which the volume fraction of the meso pores is larger than the volume fraction of the micropores, the metal particles are palladium (Pd), platinum (Pt) The present invention proposes a method for producing bio-avid oil using non-edible fats and oils, characterized in that it is made of at least one metal selected from the group consisting of nickel (Ni), gallium (Ga), copper (Cu), and zinc (Zn).
또한, 상기 단계 (a)는 비활성 기체에 의해 형성된 10 내지 50 bar의 압력 및 200 내지 370℃의 온도에서 수행되는 것을 특징으로 하는 비식용 유지를 이용한 바이오항공유 제조방법을 제안한다.In addition, the step (a) proposes a bio-air oil production method using a non-edible fat, characterized in that carried out at a pressure of 10 to 50 bar and a temperature of 200 to 370 ℃ formed by an inert gas.
그리고, 본 발명은 발명의 다른 측면에서 상기한 비식용 유지를 이용한 바이오항공유 제조방법에 의해 제조되며, 15 내지 30 중량%의 이소 파라핀(iso-paraffin)계 탄화수소 및 30 내지 70 중량%의 방향족 화합물을 포함하는 것을 특징으로 하는 바이오항공유를 제안한다.In another aspect of the present invention, the present invention is prepared by the method for preparing bio-air oil using the non-edible fats and oils, wherein the isoparaffinic hydrocarbon and the aromatic compound are 30 to 70% by weight. It proposes a bio aviation oil comprising a.
원료의 탈산소화 및 이성화를 위해 대량의 수소를 공급해야 하는 복수의 수첨 공정이 필요할 뿐만 아니라 수첨 공정 완료 후에는 항공유로서의 품질을 만족시키기 위해 별도의 석유계 방향족 화합물을 추가해야하는 기존의 다단 항공유 생산 공정과 달리, 본 발명에 따른 비식용 유지를 이용한 고품질 바이오항공유 제조방법은, 수소를 첨가하지 않고 촉매 및 반응조건을 최적화하여 탈산소, 이성화 및 방향족화 반응을 단일 단계 공정을 통해 유도함으로써 출발 원료인 비식용 유지로부터노말 파라핀계 탄화수소, 이소 파라핀계 탄화수소 및 방향족 화합물을 포함하는 고에너지밀도의 고품질 100%의 바이오항공유를 직접 및 선택적으로 제조할 수 있어 제조비용 절감 및 공정 간소화 측면에서 대단히 경제적이다.Existing multi-stage aviation oil production process that requires the addition of a plurality of hydrogenation processes that need to supply a large amount of hydrogen for deoxygenation and isomerization of raw materials, as well as the addition of a separate petroleum aromatic compound to satisfy the quality of the aviation oil after completion of the hydrogenation process In contrast, the method for producing high quality bio-air fuel using non-edible fats and oils according to the present invention is a starting material by inducing deoxygenation, isomerization and aromatization reactions through a single step process by optimizing catalyst and reaction conditions without adding hydrogen. High-density, high-quality, 100% bioair fuels, including normal paraffinic hydrocarbons, isoparaffinic hydrocarbons and aromatics, can be produced directly and selectively from non-edible fats and oils, which is very economical in terms of manufacturing cost reduction and process simplification.
도 1은 종래의 바이오항공유 생산공정을 나타낸 공정도이다.1 is a process chart showing a conventional bio-air fuel production process.
도 2는 종래의 바이오항공유 생산공정에 있어서 수소 첨가를 통한 탈산소 반응의 3가지 형태를 보여주는 반응 개략도이다.Figure 2 is a reaction schematic showing three forms of deoxygenation reaction through hydrogenation in the conventional bio-air oil production process.
도 3은 본원 실시예 2에 따라 제조된 바이오항공유에 포함된 구성 성분의 종류 및 함량과 원료 내 산소 제거율을 보여주는 그래프이다.Figure 3 is a graph showing the oxygen removal rate in the raw material and the type and content of the components included in the bio-air oil prepared according to Example 2 of the present application.
도 4는 본원 실시예 3에 따라 제조된 바이오항공유에 포함된 구성 성분의 종류 및 함량과 원료 내 산소 제거율을 보여주는 그래프이다.Figure 4 is a graph showing the oxygen removal rate in the raw material and the type and content of the components included in the bio-air oil prepared according to Example 3 of the present application.
이하 본 발명을 상세히 설명하도록 한다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 바이오항공유 제조방법은, (a) 수소를 첨가하지 않고 촉매의 존재 하에서 액상의 비식용 유지로부터 탈산소(deoxygenation), 이성화(isomerization) 및 방향족화(aromatization) 반응을 통해 파라핀계 탄화수소 및 방향족 화합물을 포함하는 반응 생성물을 형성시키는 단계; 및 (b) 상기 반응생성물을 증류시켜 항공유분을 추출하는 단계를 포함하여 이루어진다.Bio-air oil production method according to the present invention, (a) paraffinic hydrocarbons through the deoxygenation, isomerization and aromatization reaction from the liquid non-edible fat in the presence of a catalyst without the addition of hydrogen And forming a reaction product comprising the aromatic compound; And (b) distilling the reaction product to extract aviation oil.
상기 단계 (a)에서 이루어지는 반응에 원료 물질로서 공급되는 상기 비식용 유지는, 비식용 바이오매스로서 카르복실기를 포함하고 있는 탄화수소로 구성되며 탄화수소 구조 내에 이중결합이 없거나 한 개 이상을 포함하고 있는 혼합물로서, 바람직하게는, 트리글리세라이드(triglyceride) 또는 유리지방산(free fatty acid)을 주성분으로 포함할 수 있으며, 이때, 상기 트리글리세라이드에 포함된 지방산기 또는 유리지방산의 탄소수는 10 내지 24개인 것이 바람직하며, 더욱 바람직하게는 16 내지 20개일 수 있다.The non-edible fats and oils supplied as a raw material to the reaction made in step (a) is composed of a hydrocarbon containing a carboxyl group as a non-edible biomass and is a mixture having no or more than one double bond in the hydrocarbon structure. , Preferably, triglyceride (triglyceride) or free fatty acid (free fatty acid) may be included as a main component, in this case, the carbon number of the fatty acid group or free fatty acid contained in the triglyceride is preferably 10 to 24, More preferably, it may be 16-20.
이와 같은 비식용 유지의 구체적인 예로서는 PFAD(palm fatty acid distillate), 식용유지로부터 유래된 비식용 다크오일, 미세조류 유래 유지, 자트로파유, 카멜리나유, 폐유지, 동물성 유지 또는 이들의 혼합물을 들 수 있으나, 반드시 이에 제한되는 것은 아니다.Specific examples of such non-edible fats and oils include palm fatty acid distillate (PFAD), non-edible dark oils derived from edible oils and fats, oils derived from microalgae, jatropha oil, camelina oil, waste oils, animal oils or mixtures thereof. However, it is not necessarily limited thereto.
표 1은 본 발명에서 사용되는 비식용 유지에 속하는 몇몇 물질들의 구성성분 및 특징을 나타낸 표이다.Table 1 is a table showing the composition and characteristics of some substances belonging to the non-edible fats and oils used in the present invention.
표 1
자트로파 유 카멜리나 유 PFAD 대두유 지방산
특징 TG-rich oil TG-rich oil FFA 99.5%TG 0.5% FFA 62,5%TG 37.5%
C16:0 12.2 5.1 41.9 10.5
C18:0 7.3 2.7 4.6 1.4
C18:1 42.2 15.2(15.7) 41.2 22.5
C18:2 37.3 17.9(19.1) 10.3 53.6
C18:3 - 34.6(31.5) 0.1 7.7
C20:1 - 15.1 - -
합계 99.0 90.6 98.1 98.4
Table 1
Jatropha oil Camelina Yu PFAD Soybean Oil Fatty Acids
Characteristic TG-rich oil TG-rich oil FFA 99.5% TG 0.5% FFA 62,5% TG 37.5%
C16: 0 12.2 5.1 41.9 10.5
C18: 0 7.3 2.7 4.6 1.4
C18: 1 42.2 15.2 (15.7) 41.2 22.5
C18: 2 37.3 17.9 (19.1) 10.3 53.6
C18: 3 - 34.6 (31.5) 0.1 7.7
C20: 1 - 15.1 - -
Sum 99.0 90.6 98.1 98.4
상기 비식용 유지는 유리지방산의 함량 및 계절에 따라 액상이 아닌 젤 또는 겔의 형태로 존재하기 때문에 액상 형태로 반응에 제공하기 위해 상온 내지 60℃의 온도로 유지시킨 상태에서 반응조에 투입하는 것이 바람직하다.Since the non-edible fats and fats are present in the form of gel or gel rather than liquid according to the content and season of free fatty acid, it is preferable to add the non-edible fat to the reactor in the state of maintaining at a temperature of from room temperature to 60 ° C. Do.
한편, 본 단계 (a)에서 이루어지는 반응에 사용되는 상기 촉매는, 비식용 유지에 포함된 탄화수소 분자 구조 내에 존재하는 산소를 제거할 뿐만 아니라 이성질체화 및 방향족 탄화수소로의 전환 반응을 매개하기 위해서 탈산소 활성점을 갖는 금속과 산점을 갖는 지지체로 구성된 이중기능(bifunctional) 촉매인 것이 바람직하다.On the other hand, the catalyst used in the reaction in this step (a) is deoxygenated not only to remove oxygen present in the hydrocarbon molecular structure included in the non-edible fats and oils, but also to mediate isomerization and conversion to aromatic hydrocarbons. It is preferred to be a bifunctional catalyst composed of a metal having an active point and a support having an acid point.
이러한 촉매에 포함되는 지지체로는, 바이오항공유 유분의 탄소수 범위를 고려할 때, 크랙킹(cracking)과 이성화 반응에 유리한 중간 및 강한 브뢴스테드(bronsted) 산점을 갖는 제올라이트를 사용할 수 있으며, 그 중에서도 직경 2nm 이하의 마이크로 기공 부피 분율에 비해 직경 2 내지 50 nm의 메조 기공의 부피 분율이 큰 제올라이트를 사용하는 것이 바람직하며, 나아가, 산소원자 10개 혹은 12개 고리로 이루어진 큰 세공의 제올라이트 또는 다른 제올라이트보다 미세기공이 크고 3D 채널을 갖고 있어 긴 체인을 갖는 탄화수소의 크랙킹 반응에 유리한 제올라이트를 사용하는 것이 보다 바람직하다. 참고로, 제올라이트의 Si/Al 비는 반응 후 생성물의 분포에 영향을 주며, 원하는 분포를 얻기 위해 최적의 반응조건 하에서 운전한다.As the support included in such a catalyst, a zeolite having a medium and strong Bronsted acid point, which is advantageous for cracking and isomerization, can be used, considering the carbon number range of the bio-air fuel fraction, among which 2 nm in diameter. It is preferable to use a zeolite having a large volume fraction of mesopores having a diameter of 2 to 50 nm as compared to the micropore volume fraction below, and furthermore, finer than a large pore zeolite or 10 zeolites having 10 or 12 oxygen atoms. It is more preferable to use zeolites having large pores and having 3D channels, which are advantageous for cracking reactions of hydrocarbons having long chains. For reference, the Si / Al ratio of the zeolite affects the distribution of the product after the reaction and is operated under optimum reaction conditions to obtain the desired distribution.
그리고, 상기 지지체에 담지될 금속 활성물질로는 팔라듐(Pd), 백금(Pt), 니켈(Ni), 갈륨(Ga), 구리(Cu) 및 아연(Zn)으로 이루어진 군에서 선택된 1종 이상의 금속으로 이루어진 입자를 사용할 수 있다.The metal active material to be supported on the support includes at least one metal selected from the group consisting of palladium (Pd), platinum (Pt), nickel (Ni), gallium (Ga), copper (Cu) and zinc (Zn). Particles consisting of can be used.
상기와 같이 구성된 중간 산점과 강한 산점을 갖고 있는 촉매를 이용함으로써 비식용 유지에 포함된 트리글리세라이드 또는 유리지방산 내의 이중결합 및/또는 삼중결합을 쉽게 끊을 수 있으며, 특히, 탄소수가 디젤보다 적은 항공유의 경우에는 상기 촉매를 후술할 최적의 반응조건에 적용할 경우, 적당한 비율에서 트리글리세라이드와 유리지방산의 이성화(isomerization)가 진행되고, 파라핀계 탄화수소 및 방향족 화합물이 생성될 수 있다. By using a catalyst having an intermediate acid point and a strong acid point configured as described above, it is possible to easily break the double bond and / or triple bond in triglyceride or free fatty acid included in non-edible fats and oils. In this case, when the catalyst is applied to the optimum reaction conditions to be described later, isomerization of triglyceride and free fatty acid proceeds at an appropriate ratio, and paraffinic hydrocarbons and aromatic compounds may be produced.
본 단계 (a)에서 이루어지는 탈산소(deoxygenation), 이성화(isomerization) 및 방향족화(aromatization) 반응은, 수소를 반응에 공급하지 않은 상태에서 전술한 촉매의 존재 하에서 원료인 상기 비식용 유지를 반응기에 투입해 이루어지는 무수소 촉매 전환 공정인 것을 특징으로 한다.The deoxygenation, isomerization and aromatization reactions carried out in this step (a) are carried out in a reactor in which the non-edible fats and oils as raw materials are supplied to the reactor in the presence of the catalyst described above without hydrogen being supplied to the reaction. It is characterized by the anhydrous catalyst conversion process carried out.
이때, 본 단계의 반응은 200℃ 내지 370℃의 온도에서 실시하는 것이 바람직하며, 더욱 바람직하게는 250℃ 내지 350℃의 온도에서 실시할 수 있다. 본 단계를 통해 얻어지는 반응 생성물의 구성성분의 종류 및 함량은 반응 온도에 크게 영향을 받으며, 방향족 생성물의 함량을 늘리기 위해서는 상대적으로 고온에서 운전하며, 노말 및 이성화된 탄화수소의 함량을 늘리기 위해서는 상대적으로 저온에서 운전할 수 있다.At this time, the reaction of this step is preferably carried out at a temperature of 200 ℃ to 370 ℃, more preferably can be carried out at a temperature of 250 ℃ to 350 ℃. The type and content of the constituents of the reaction product obtained through this step are greatly influenced by the reaction temperature, operating at a relatively high temperature to increase the content of aromatic products, and relatively low temperature to increase the content of normal and isomerized hydrocarbons. You can drive at
그리고, 상기 반응 온도에서 원료가 액상으로 유지되면서 반응이 진행될 수 있도록 질소, 헬륨 또는 아르곤 등의 비활성기체를 이용하여 초기 반응기 압력을 10 bar 내지 50 bar로 조절하는 것이 바람직하다.And, it is preferable to adjust the initial reactor pressure to 10 bar to 50 bar by using an inert gas such as nitrogen, helium or argon so that the reaction can proceed while the raw material is maintained in the liquid phase at the reaction temperature.
또한, 본 단계에서의 이루어지는 무수소 촉매 분해 공정의 반응 시간은 사용되는 촉매의 산성도에 따라 달라질 수 있으나 0.5 내지 6시간의 범위 내에서 이루어지는 것이 바람직하며, 더욱 바람직하게는 1 내지 3시간 동안 반응시켜 파라핀계 탄화수소 및 방향족 화합물을 포함하는 반응생성물을 제조할 수 있다.In addition, the reaction time of the anhydrous catalytic decomposition process in this step may vary depending on the acidity of the catalyst used, but is preferably made in the range of 0.5 to 6 hours, more preferably by reacting for 1 to 3 hours Reaction products including paraffinic hydrocarbons and aromatic compounds can be prepared.
아울러, 상기 단계 (a)에서는 사용된 촉매를 회수하여 재사용할 수 있도록 구성할 수 있다.In addition, the step (a) may be configured to recover and reuse the used catalyst.
다음으로, 상기 단계 (b)는 상기 단계 (a)에서 얻어진 반응생성물을 증류시켜 항공유분을 추출함으로써 바이오항공유를 수득하는 단계로서 감압증류(vaccum distillation) 등의 공지된 기술을 이용할 수 있으므로 자세한 설명을 생략하기로 한다. Next, the step (b) is a step of obtaining bio-air fuel by distilling the air product by distilling the reaction product obtained in the step (a) because it can use a known technique such as vacuum distillation (vaccum distillation) Will be omitted.
앞에서 상세히 설명한 본 발명에 따른 비식용 유지를 이용한 고품질 바이오항공유 제조방법에 따르면, 원료의 탈산소화 및 이성화를 위해 대량의 수소를 공급해야 하는 복수의 수첨 공정이 필요할 뿐만 아니라 수첨 공정 완료 후에는 항공유로서의 품질을 만족시키기 위해 별도의 석유계 방향족화합물을 추가해야 하는 기존의 다단 항공유 생산 공정과 달리, 수소를 첨가하지 않고 촉매 및 반응조건을 최적화하여 탈산소, 이성화 및 방향족화 반응을 단일 단계 공정(single-step process)을 통해 유도함으로써 출발 원료인 비식용 유지로부터 노말 파라핀계 탄화수소, 이소 파라핀계 탄화수소 및 방향족 화합물을 포함하는 고에너지 밀도의 고품질 100% 바이오항공유를 직접 및 선택적으로 제조할 수 있어 제조비용 절감 및 공정 간소화 측면에서 대단히 경제적이다.According to the method for producing high-quality bio-air fuel using non-edible fats and oils according to the present invention described above, a plurality of hydrogenation processes for supplying a large amount of hydrogen for deoxygenation and isomerization of raw materials are required, and after completion of the hydrogenation process, Unlike the existing multistage aviation oil production process, which requires the addition of a separate petroleum aromatic compound to satisfy the quality, the single-step process for deoxygenation, isomerization and aromatization reaction is performed by optimizing the catalyst and reaction conditions without adding hydrogen. It is possible to directly and selectively produce high-energy-dense, high-quality, 100% bioair fuels containing normal paraffinic hydrocarbons, isoparaffinic hydrocarbons and aromatics from the starting raw non-edible fats and oils through a step-step process. Extremely economical in terms of savings and process simplification The.
또한, 상기한 비식용 유지를 이용한 바이오항공유 제조방법에 의해 제조한 바이오항공유는 15 내지 30 중량%의 이소 파라핀(iso-paraffin)계 탄화수소 및 30 내지 70 중량%의 방향족 화합물을 포함하여 이루어지며, 노말 파라핀(n-paraffin)계 탄화수소 또한 포함하여 이루어져, 발열량이 높으며, 저온특성이 좋고, 불순물이 포함되어 있지 않은 12 내지 18개의 탄소수를 가지는 탄화수소 사슬로 이루어져 있어 비행기의 운항시 연료로 효과적으로 사용될 수 있다.In addition, the bio-air oil prepared by the bio-air oil production method using the non-edible fat and oil is composed of 15 to 30% by weight of iso-paraffinic hydrocarbons and 30 to 70% by weight of aromatic compounds, It also contains normal paraffinic (n-paraffin) hydrocarbons, and has a high calorific value, good low temperature characteristics, and a hydrocarbon chain having 12 to 18 carbon atoms that does not contain impurities. have.
이하, 본 발명을 바람직한 실시예를 들어 보다 상세히 설명하도록 한다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments.
그러나, 제시한 실시예는 본 발명을 보다 상세히 설명하기 위한 예시일 뿐이며 이를 한정하기 위한 것은 아니다.However, the presented embodiments are merely illustrative for describing the present invention in more detail and are not intended to limit the scope of the invention.
<실시예 1><Example 1>
본 실시예 1에 따른 바이오항공유를 제조하기 위해서, 비식용 유지 원료물질인 스테아릭산(stearic acid) 또는 올레익산(oleic acid) 10g을 솔벤트(solvent)없이 활성물질로 팔라듐이 5중량% 담지된 베타제올라이트 촉매를 이용해 촉매 반응을 유도하였으며, 촉매 반응은, 질소 분위기하의 15 bar의 압력에서 진행하였다.In order to manufacture bio-air fuel according to the first embodiment, beta in which 5 g by weight of palladium is supported by 10 g of stearic acid or oleic acid, which are non-edible fats and oils, as an active material without solvent. Catalytic reaction was induced using a zeolite catalyst, and the catalytic reaction proceeded at a pressure of 15 bar under a nitrogen atmosphere.
표 2는 본 실시예 1에 따른 비식용 유지 원료물질을 이용한 바이오항공유 제조과정에 사용된 촉매양, 반응온도 및 반응시간에 따라 제조된 바이오항공유의 함량 및 특성을 나타낸 표이다.Table 2 is a table showing the content and characteristics of the bio-air oil prepared according to the amount of catalyst, reaction temperature and reaction time used in the bio-air oil production process using the non-edible fat and oil according to the first embodiment.
표 2
Figure PCTKR2015010800-appb-T000001
TABLE 2
Figure PCTKR2015010800-appb-T000001
표 2에 나타낸 바와 같이, 본 실시예 1에 따라 제조된 바이오항공유는 반응물 대 촉매양의 비율을 살펴볼 때, 공급한 촉매의 양이 증가할수록, 비식용 유지의 전환율은 증가하였으며, 전체적으로 항공유 유분에 해당되는 C12 내지 C18 사이의 탄화수소 비율도 증가하였다. 그러나, 반응물과 촉매비율이 1 : 5 이하에서는 큰 차이가 없었다. As shown in Table 2, when looking at the ratio of reactant to catalyst amount, the biofuel oil prepared according to Example 1 showed that the conversion rate of non-edible oil and fat was increased as the amount of catalyst supplied increased. The proportion of hydrocarbons between the corresponding C12 and C18 also increased. However, there was no significant difference between the reactants and the catalyst ratio of 1: 5 or less.
그리고, 반응온도에 따른 생성물의 분포를 살펴보면, 반응온도가 증가할수록 전환율의 차이는 크지 않지만, 크랙킹되는 정도가 커져 C8 내지 C11 사이의 탄화수소 비율이 증가한 반면에, 항공유에 해당되는 C12 내지 C18 사이의 탄화수소 비율은 감소하였다. In addition, looking at the distribution of the product according to the reaction temperature, as the reaction temperature increases, the difference in conversion rate is not large, but the degree of cracking is increased, while the hydrocarbon ratio between C8 and C11 increases, whereas between C12 and C18 corresponding to aviation oil The hydrocarbon ratio was reduced.
아울러, 반응온도가 증가하면 C12 내지 C18 사이에서 방향족의 비율이 크게 증가한 반면에 노말 파라핀계 탄화수소의 비율은 줄어들었다. 반응시간별 변수를 확인해보면, 생성물 분포에 반응온도만큼 큰 영향은 미치지 않았다. 1시간에서 3시간 사이의 전환율은 유사하였으며 반응시간이 증가할수록 노말 파라핀계 탄화수소의 양은 줄어들면서 동시에 방향족 화합물의 양은 증가하였다. In addition, as the reaction temperature increases, the proportion of aromatics between C12 and C18 increases significantly, while the proportion of normal paraffinic hydrocarbons decreases. As a result of checking the reaction time variables, there was no significant effect on the product distribution as much as the reaction temperature. The conversion between 1 and 3 hours was similar, and as the reaction time increased, the amount of normal paraffinic hydrocarbons decreased while the amount of aromatic compounds increased.
<실시예 2><Example 2>
본 실시예 2에 따른 바이오항공유를 제조하기 위해서, 비식용 유지 원료물질인 폐식용유(SBO) 10g을 솔벤트(solvent)없이 활성물질로 팔라듐이 5중량%씩 담지된 Y제올라이트(Pd(5)/Y) 및 베타제올라이트(Pd(5)/BEA) 촉매 3g을 이용해 촉매 반응을 유도하였으며, 촉매 반응은, 300℃에서 3시간 동안 질소 분위기하의 15 bar의 압력에서 진행하였다.In order to manufacture the bio-air oil according to the second embodiment, 10 g of waste food oil (SBO), which is a non-edible fat and oil raw material, was zeolite (Pd (5) /), in which 5 wt% of palladium was supported by active material without solvent. Y) and 3 g of beta zeolite (Pd (5) / BEA) catalysts were used to induce the catalysis, which was carried out at 300 ° C. for 3 hours at 15 bar under nitrogen atmosphere.
도 3은 본원 실시예 2에 따라 제조된 바이오항공유에 포함된 구성 성분의 종류 및 함량과 원료 내 산소 제거율을 보여주는 그래프이다.Figure 3 is a graph showing the oxygen removal rate in the raw material and the type and content of the components included in the bio-air oil prepared according to Example 2 of the present application.
도 3에 나타낸 바와 같이 본 실시예 2의 폐식용유로 제조한 바이오항공유는, 산소제거율(DO)은 95.5% 또는 76.1%를 보였으며, 바이오항공유 분에 해당되는 C12 내지 C18에서의 노말 파라핀계 탄화수소, 이소 파라핀계 탄화수소 및 방향족 화합물은 전체 생성물의 38 내지 42%를 차지하였다. 보다 상세히 설명하면, 베타제올라이트 촉매를 이용하여 바이오항공유를 제조한 경우, 노말 파라핀계 탄화수소는 23.5%, 이소 파라핀계 탄화수소는 15.8%, 방향족화합물은 60.7%로 구성되었다. As shown in FIG. 3, the bio-air fuel prepared from the waste cooking oil of Example 2 showed an oxygen removal rate (DO) of 95.5% or 76.1%, and normal paraffinic hydrocarbons at C12 to C18 corresponding to bio-air fuel fractions. , Isoparaffinic hydrocarbons and aromatic compounds accounted for 38-42% of the total product. In more detail, when bio-fuel oil was manufactured using a beta zeolite catalyst, the normal paraffinic hydrocarbon was 23.5%, the isoparaffinic hydrocarbon was 15.8%, and the aromatic compound was 60.7%.
그리고, 수소를 첨가하지 않으면서, 촉매를 사용하지 않고 분해 반응을 수행한 대조군의 경우, 전환율이 매우 낮았으며, 원료물질 내 산소는 전혀 제거되지 않았다. In addition, in the case of the control group in which the decomposition reaction was performed without using a catalyst without adding hydrogen, the conversion was very low, and oxygen in the raw material was not removed at all.
<실시예 3><Example 3>
본 실시예 3에 따른 바이오항공유를 제조하기 위해서, 비식용 유지 원료물질인 PFAD 10g을 솔벤트(solvent)없이 활성물질로 팔라듐이 5중량%씩 담지된 Y제올라이트(Pd(5)/Y) 및 베타제올라이트(Pd(5)/BEA) 촉매 3g을 이용해 촉매 반응을 유도하였으며, 촉매 반응은, 300℃에서 3시간 동안 질소 분위기하의 15 bar의 압력에서 진행하였다.In order to manufacture the bio-air fuel according to the third embodiment, 10 g of PFAD, a non-edible fat and oil raw material, was prepared using Y zeolite (Pd (5) / Y) and beta loaded with 5% by weight of palladium as an active material without solvent. Catalytic reaction was induced using 3 g of zeolite (Pd (5) / BEA) catalyst, and the catalytic reaction proceeded at 300 ° C. for 3 hours at a pressure of 15 bar under nitrogen atmosphere.
도 4는 본원 실시예 3에 따라 제조된 바이오항공유에 포함된 구성 성분의 종류 및 함량과 원료 내 산소 제거율을 보여주는 그래프이다.Figure 4 is a graph showing the oxygen removal rate in the raw material and the type and content of the components included in the bio-air oil prepared according to Example 3 of the present application.
도 4에 나타낸 바와 같이, 본 실시예 3의 PFAD로 제조한 바이오항공유는, 베타제올라이트 촉매에서는 94.3%의 탈산소도를 보였으며, Y 제올라이트 촉매에서는 80%의 탈산소도를 보였다. As shown in FIG. 4, the bio-air oil prepared by the PFAD of Example 3 showed 94.3% deoxygenation degree in the beta zeolite catalyst and 80% deoxygenation degree in the Y zeolite catalyst.
또한, 바이오항공유에 해당되는 C12 내지 C18에서의 노말 파라핀계 탄화수소, 이소 파라핀계 탄화수소 및 방향족 화합물은 전체 생성물의 35 내지 40%를 차지하였다. In addition, the normal paraffinic hydrocarbons, iso paraffinic hydrocarbons and aromatic compounds in the C12 to C18 corresponding to the bio aviation oil accounted for 35 to 40% of the total product.
그리고, 베타제올라이트 촉매를 이용하여 바이오항공유를 제조한 경우, 노말 파라핀계 탄화수소는 16.2%, 이소 파라핀계 탄화수소는 16.8%, 방향족 화합물은 69%로 구성되었다. In the case of manufacturing a bio-air fuel using a beta zeolite catalyst, the normal paraffinic hydrocarbon was 16.2%, the isoparaffinic hydrocarbon was 16.8%, and the aromatic compound was 69%.
아울러, Y제올라이트 촉매를 이용하여 바이오항공유를 제조한 경우, 노말 파라핀계 탄화수소는 45%, 이소 파라핀계 탄화수소는 18.8%, 방향족 화합물은 36.2%로 구성되었다. In addition, when bio-fuel was manufactured using the Y zeolite catalyst, 45% of normal paraffinic hydrocarbons, 18.8% of isoparaffinic hydrocarbons, and 36.2% of aromatic compounds were composed.
그리고, 수소를 첨가하지 않으면서, 촉매를 사용하지 않고 분해 반응을 수행한 대조군 경우, 전환율이 매우 낮았으며, 원료물질 내 산소는 전혀 제거되지 않았다.In addition, in the case of the control group in which the decomposition reaction was performed without using a catalyst without adding hydrogen, the conversion was very low, and oxygen in the raw material was not removed at all.

Claims (6)

  1. (a) 수소를 첨가하지 않고 촉매의 존재 하에서 액상의 비식용 유지로부터 탈산소(deoxygenation), 이성화(isomerization) 및 방향족화(aromatization) 반응을 통해 파라핀계 탄화수소 및 방향족 화합물을 포함하는 반응 생성물을 형성시키는 단계; 및(a) Deoxygenation, isomerization and aromatization reactions from a liquid, non-edible fat in the presence of a catalyst without the addition of hydrogen to form reaction products comprising paraffinic hydrocarbons and aromatic compounds Making a step; And
    (b) 상기 반응 생성물을 증류시켜 항공유분을 추출하는 단계;를 포함하는 비식용 유지를 이용한 바이오항공유 제조방법.(B) distilling the reaction product to extract the aviation oil; bio-fuel oil manufacturing method using a non-edible oil and fat comprising a.
  2. 제 1항에 있어서,The method of claim 1,
    상기 비식용 유지는 트리글리세라이드(triglyceride) 또는 유리지방산(free fatty acid)을 주성분으로 포함하는 것을 특징으로 하는 비식용 유지를 이용한 바이오항공유 제조방법.The non-edible fats and oils manufacturing method using non-edible fats and oils, characterized in that the triglyceride (triglyceride) or free fatty acid (free fatty acid) as a main component.
  3. 제 2항에 있어서,The method of claim 2,
    상기 비식용 유지는 PFAD(palm fatty acid distillate), 다크오일, 미세조류 유래 유지, 자트로파유, 카멜리나유, 폐유지, 및 동물성 유지로 이루어진 군으로부터 선택되는 1종 이상으로 이루어진 것을 특징으로 하는 비식용 유지를 이용한 바이오항공유 제조방법.The non-edible fats and oils are non-edible, characterized in that at least one selected from the group consisting of palm fatty acid distillate (PFAD), dark oil, microalgae-derived oil, jatropha oil, camelina oil, waste fat, and animal fats and oils. Bio-air oil production method using fats and oils.
  4. 제 1항에 있어서,The method of claim 1,
    상기 촉매는 지지체 및 상기 지지체에 담지된 금속 입자를 포함하되, 상기 지지체는 메조 기공의 부피 분율이 마이크로 기공의 부피 분율 보다 큰 제올라이트이고, 상기 금속 입자는 팔라듐(Pd), 백금(Pt), 니켈(Ni), 갈륨(Ga), 구리(Cu) 및 아연(Zn)로 이루어진 군으로부터 선택되는 1종 이상의 금속으로 이루어진 것을 특징으로 하는 비식용 유지를 이용한 바이오항공유 제조방법.The catalyst includes a support and a metal particle supported on the support, wherein the support is a zeolite having a volume fraction of mesopores larger than a volume fraction of micropores, and the metal particles are palladium (Pd), platinum (Pt), or nickel. (Ni), gallium (Ga), copper (Cu) and zinc (Zn) bio-fuel oil manufacturing method using a non-edible fat, characterized in that consisting of at least one metal selected from the group consisting of.
  5. 제 1항에 있어서, The method of claim 1,
    상기 단계 (a)는 비활성 기체에 의해 형성된 10 내지 50 bar의 압력 및 200 내지 370℃의 온도에서 수행되는 것을 특징으로 하는 비식용 유지를 이용한 바이오항공유 제조방법. Step (a) is a bio-air oil production method using a non-edible oil, characterized in that carried out at a pressure of 10 to 50 bar and a temperature of 200 to 370 ℃ formed by an inert gas.
  6. 제 1항 내지 제 5항 중 어느 한 항에 기재된 방법에 의해 제조되며, 15 내지 30 중량%의 이소 파라핀(iso-paraffin)계 탄화수소 및 30 내지 70 중량%의 방향족 화합물을 포함하는 것을 특징으로 하는 바이오항공유.Prepared by the method according to any one of claims 1 to 5, characterized in that it comprises 15 to 30% by weight of iso-paraffinic hydrocarbons and 30 to 70% by weight of aromatic compounds. Bio aviation oil.
PCT/KR2015/010800 2014-10-14 2015-10-14 Method for preparing high-quality aviation biofuel by using non-cooking oil, and aviation biofuel prepared thereby WO2016060450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0138134 2014-10-14
KR1020140138134A KR101607868B1 (en) 2014-10-14 2014-10-14 Method for manufacturing high quality bio jet fuel using inedible fat and bio jet fuel manufactured thereby

Publications (1)

Publication Number Publication Date
WO2016060450A1 true WO2016060450A1 (en) 2016-04-21

Family

ID=55652284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010800 WO2016060450A1 (en) 2014-10-14 2015-10-14 Method for preparing high-quality aviation biofuel by using non-cooking oil, and aviation biofuel prepared thereby

Country Status (2)

Country Link
KR (1) KR101607868B1 (en)
WO (1) WO2016060450A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221287A1 (en) 2018-05-18 2019-11-21 一般社団法人 HiBD研究所 Production method for bio-jet fuel
CN111036257A (en) * 2019-06-28 2020-04-21 南京工程学院 Porous frame supported catalyst for preparing biological aviation oil and preparation method thereof
WO2023116168A1 (en) * 2021-12-23 2023-06-29 中国石油天然气股份有限公司 Method for preparing liquid fuel by means of selective catalytic deoxidation of grease, and liquid fuel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101750230B1 (en) 2016-04-08 2017-06-23 한국에너지기술연구원 Method for manufacturing high quality hydrocarbons from inedible oil using catalyst
KR20240008450A (en) 2022-07-11 2024-01-19 한국에너지기술연구원 Catalyst for bio-jet oil production and bio-jet oil production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928273B2 (en) * 2005-08-29 2011-04-19 David Bradin Process for producing a renewable fuel in the gasoline or jet fuel range
US20130018213A1 (en) * 2010-08-02 2013-01-17 Battelle Memorial Institute Deoxygenation of fatty acids for preparation of hydrocarbons
US20140045239A1 (en) * 2007-07-27 2014-02-13 Swift Fuels, Llc Renewable engine fuel and method of producing same
US8742183B2 (en) * 2007-12-21 2014-06-03 Uop Llc Production of aviation fuel from biorenewable feedstocks
US20140275670A1 (en) * 2013-03-14 2014-09-18 Ted R. Aulich Process for low-hydrogen-consumption conversion of renewable feedstocks to alkanes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314274B2 (en) 2008-12-17 2012-11-20 Uop Llc Controlling cold flow properties of transportation fuels from renewable feedstocks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928273B2 (en) * 2005-08-29 2011-04-19 David Bradin Process for producing a renewable fuel in the gasoline or jet fuel range
US20140045239A1 (en) * 2007-07-27 2014-02-13 Swift Fuels, Llc Renewable engine fuel and method of producing same
US8742183B2 (en) * 2007-12-21 2014-06-03 Uop Llc Production of aviation fuel from biorenewable feedstocks
US20130018213A1 (en) * 2010-08-02 2013-01-17 Battelle Memorial Institute Deoxygenation of fatty acids for preparation of hydrocarbons
US20140275670A1 (en) * 2013-03-14 2014-09-18 Ted R. Aulich Process for low-hydrogen-consumption conversion of renewable feedstocks to alkanes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019221287A1 (en) 2018-05-18 2019-11-21 一般社団法人 HiBD研究所 Production method for bio-jet fuel
KR20200141087A (en) 2018-05-18 2020-12-17 잇판샤단호징 에이치아이비디 겡큐쇼 Biojet fuel manufacturing method
US11603501B2 (en) 2018-05-18 2023-03-14 Hibd Laboratory Association Method for producing bio-jet fuel
CN111036257A (en) * 2019-06-28 2020-04-21 南京工程学院 Porous frame supported catalyst for preparing biological aviation oil and preparation method thereof
CN111036257B (en) * 2019-06-28 2022-11-25 南京工程学院 Porous frame supported catalyst for preparing biological aviation oil and preparation method thereof
WO2023116168A1 (en) * 2021-12-23 2023-06-29 中国石油天然气股份有限公司 Method for preparing liquid fuel by means of selective catalytic deoxidation of grease, and liquid fuel

Also Published As

Publication number Publication date
KR101607868B1 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
KR101673597B1 (en) Process for hydrodeoxygenation of feeds derived from renewable sources with limited decarboxylation conversion using a catalyst based on nickel and molybdenum
WO2016060450A1 (en) Method for preparing high-quality aviation biofuel by using non-cooking oil, and aviation biofuel prepared thereby
KR101638633B1 (en) A method of converting effluents of renewable origin into fuel of excellent quality by using a molybdenum-based catalyst
Chew et al. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery
US8324439B2 (en) Method of converting feedstocks from renewable sources to good-quality diesel fuel bases using a zeolite type catalyst
EP1795576B1 (en) Process for the manufacture of hydrocarbons
US7232935B2 (en) Process for producing a hydrocarbon component of biological origin
EP1396531B1 (en) Process for producing a hydrocarbon component of biological origin
US8282815B2 (en) Method of converting feedstocks from renewable sources to good-quality diesel fuel bases using a zeolite catalyst without intermediate gas-liquid separation
EP2817275B1 (en) Conversion of lipids
KR20090095631A (en) Process for conversion of biomass to fuel
TWI551548B (en) Method for preparing fuel from bio-oil
CN102066527A (en) An integrated process for producing diesel fuel from biological material and products and uses relating to said process
CN103224835B (en) Method for extraction of unsaturated fatty acid from oil-containing microalgae and preparation of aviation fuels
KR20100075841A (en) Energy efficient process to produce biologically based fuels
CN112189046A (en) Method for producing bio-jet fuel
WO2013086762A1 (en) Fuel preparation method using biological grease
Yin et al. Review of bio-oil upgrading technologies and experimental study on emulsification of bio-oil and diesel
EP2305778B1 (en) Fuel and fuel additives capable for use for internal combustion engines and process for the production thereof
EP2922935B9 (en) A method of obtaining paraffinic hydrocarbons from natural fat
KR102478550B1 (en) Method for producing high purity normal paraffin from biomass
Baladincz et al. Expanding feedstock supplies of the second generation bio-fuels of diesel-engines
US20210355393A1 (en) Method and System for Preparing Fuel by Using High Acid Value Biological Oil and Fat
Baladincz et al. Investigation of the hydroconversion of lard and lard-gas oil mixture on PtPd/USY catalyst
KR101750230B1 (en) Method for manufacturing high quality hydrocarbons from inedible oil using catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850057

Country of ref document: EP

Kind code of ref document: A1