WO2016060411A1 - Method for producing organic mineral and nucleic acid composite - Google Patents

Method for producing organic mineral and nucleic acid composite Download PDF

Info

Publication number
WO2016060411A1
WO2016060411A1 PCT/KR2015/010677 KR2015010677W WO2016060411A1 WO 2016060411 A1 WO2016060411 A1 WO 2016060411A1 KR 2015010677 W KR2015010677 W KR 2015010677W WO 2016060411 A1 WO2016060411 A1 WO 2016060411A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
mineral
powder
water
imp
Prior art date
Application number
PCT/KR2015/010677
Other languages
French (fr)
Korean (ko)
Inventor
조향현
김희경
김영호
Original Assignee
조향현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조향현 filed Critical 조향현
Publication of WO2016060411A1 publication Critical patent/WO2016060411A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H23/00Compounds containing boron, silicon, or a metal, e.g. chelates, vitamin B12
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/305Pyrimidine nucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/38Nucleosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/38Nucleosides
    • C12P19/385Pyrimidine nucleosides

Definitions

  • the present invention relates to a method for preparing an organic mineral source.
  • the present invention relates to a method for preparing an organosibilized mineral and a nucleic acid complex from a nucleic acid.
  • inorganic minerals such as hydrochloride, sulfate, nitrate, phosphate and carbonate, but inorganic minerals have very low bioavailability.
  • Organic minerals have high bioavailability, but face limitations in their widespread use as mineral sources for food, medicine, feed, and fertilizers due to high price or sanitary issues.
  • Korean Patent Publication No. 10-0513011 manufactures a soluble calcium-nucleic acid complex which combines calcium and macromolecule nucleic acid, but there may be a hygiene problem using the polymer nucleic acid extracted from salmon testis, and the manufacturing method is complicated. In addition, the production cost is high, but the production yield is low, there is a limit that it is uncertain whether the organic passivation of minerals other than calcium is possible.
  • Korean Patent Publication No. 10-1166546 manufactures an organo-calculated calcium-enriched whey protein by combining calcium with unsterilized whey powder, but it is not easy to secure unsterilized whey powder as a raw material, and production yield is high. There was a limit to the low, high heating costs involved in the heating process, and uncertainty about the organic passivation of minerals other than calcium.
  • the present invention is to provide a method for producing an organic mineral source of high bioavailability by chelation of minerals to nucleic acids.
  • the present invention comprises the steps of reacting a purine base-containing nucleic acid monomer or a salt powder thereof, and a water-soluble mineral powder negative soluble enthalpy, by mixing water to the mixture; Or mixing and dissolving a purine base-containing nucleic acid monomer or a salt powder thereof and water, followed by mixing and reacting a water-soluble mineral powder having a negative dissolution enthalpy in the aqueous solution. to provide.
  • the purine base-containing nucleic acid monomer has a purine base containing a hydroxyl group (-OH) at position 6 of the purine ring, combined with a water-soluble mineral powder having a dissolution enthalpy of negative to form an insoluble precipitate, and the yield of production of the organic passivated mineral and nucleic acid complex. It is preferable at this point.
  • the purine base-containing nucleic acid monomer may be any one or more nucleic acid monomers selected from inosinic acid, guanylic acid and xanthyl acid, preferably inosinic acid or guanylic acid.
  • the water-soluble mineral powder of which the dissolution enthalpy is negative can be selected by a person skilled in the art according to the type of the organic passivated mineral to be targeted.
  • Water-soluble minerals with negative enthalpy of dissolution do not ionize when mixed with water, especially when mixed with a small amount of water, causing an exothermic reaction and forming chelate bonds when a substrate for organic passivation is present.
  • the soluble enthalpy of the water-soluble mineral powder may be mixed with a plurality of different minerals sequentially or simultaneously with a purine base-containing nucleic acid monomer or salt powder thereof.
  • the water-soluble mineral powder having a negative enthalpy of dissolution is well known to those skilled in the art.
  • calcium chloride, calcium carbonate, calcium lactate, or the like may be used for calcium, and preferably dissolution enthalpy is large calcium chloride.
  • the water is not particularly limited as long as it is water used in food, medicine, feed or fertilizer or additives thereof, but preferably deionized water is used to reduce the influence of other metal salts.
  • the ratio may be from 1: 5 to 95: 1 weight ratio, preferably from 1: 2 to 10: 1 weight ratio, more preferably from 1: 1 to 5: 1 weight ratio, and the chelated minerals of the organic passivated mineral and the nucleic acid complex Can be adjusted according to the target content of.
  • a mixing ratio of the water-soluble mineral powder having a negative dissolution enthalpy and water is 1:50 to 2: 1 weight ratio. , Preferably from 1:10 to 1: 1 weight ratio.
  • the amount of water may be appropriately adjusted for the reaction, but too much may be undesirable for chelation of minerals through exothermic reaction, and too little may limit the uniform hydration of a mixture of minerals and nucleic acids.
  • the reaction by the addition of water may be carried out at 10 to 100 °C for 30 minutes to 5 days.
  • the reaction time need not be particularly limited, the time enough to complete the reaction, for example more than 1 hour , More than 2 hours, more than 4 hours, more than 6 hours, more than 12 hours can be adjusted, the maximum reaction time can be adjusted to 3 days, 2 days, 1 day.
  • the content of chlorine ions increases as the amount of the mineral chelated increases.
  • This increased chlorine ions can be simply removed by a process of washing with water.
  • the washing may be performed by centrifugation to remove the supernatant after adding an appropriate amount of water, for example, centrifugation for 1 to 60 minutes at 500 to 50,000 rpm, and this centrifugation is performed at room temperature without setting temperature conditions. It may be, but may be carried out by setting the temperature to 25 ° C or less, preferably 15 ° C or less.
  • the organic passivated mineral and nucleic acid complex of the present invention is convenient to use by drying in a suitable form, such as hot air drying, spray drying, lyophilization and the like in powder form.
  • the present invention also provides an organic passivated mineral and nucleic acid complex which is prepared by the above method and is a chelate compound in which the mineral and the nucleic acid are chelate bound.
  • the mineral may be any one selected from calcium, zinc, magnesium, potassium, iron, copper, selenium, chromium, molybdenum and iodine or two or more complex minerals.
  • the present invention provides a method for preparing a highly bioavailable organic passivated mineral and nucleic acid complex by binding a mineral to a purine base-containing nucleic acid monomer.
  • the organic passivated minerals and nucleic acid complexes prepared by the method of the present invention replace inorganic minerals in a wide range of fields such as food, medicine, feed or fertilizers, and have excellent bioavailability compared to inorganic minerals, thus providing sufficient mineral supply effect even in small amounts. To achieve this, it is possible to prevent the occurrence of discoloration, already odor, due to the use of excess mineral minerals.
  • A is a photograph after completion of the organic passivation reaction, and B is centrifuged for 20 minutes at 25 to 3,000 rpm for the organic passivation reaction, followed by mixing and suspending two times the weight of purified water with respect to the centrifuge precipitate. After centrifuged 20 times at 25 °C 3,000 rpm at 25 °C is a photograph after five times.
  • FIG. 2 is a photograph of the supernatant obtained after centrifugation of the organic passivated reactant at 25 ° C. for 20 minutes at 3,000 rpm for 24 hours at room temperature.
  • Figure 3 is a photograph of the organo-calcified calcium and nucleic acid complex obtained in order to evaluate the production yield by performing the washing process three times in B of Figure 1, 1 is Ca-IMP, 2 is Ca-GMP, 3 is Ca- AMP, 4 is Ca-CMP and 5 is Ca-MIX.
  • Figure 4 is a photograph of the inorganic mineral powder before mixing, IMP and GMP powder used as a substrate, and the organic passivated mineral and nucleic acid complex prepared in Experimental Example 3, 1: CaCl2, 2: FeSO4, 3 :: ZnSO4, 4: CuSO4 5: GMP, 6: Ca-GMP, 7: Fe-GMP, 8: Zn-GMP, 9: Cu-GMP 10: IMP, 11: Ca-IMP, 12: Fe-IMP, 13: Zn-IMP, 14 is Cu-IMP.
  • 5 to 9 are the photographs of the upper part A after the end of the organic passivation reaction in Experimental Example 3, the lower part B is centrifuged at 3,000 rpm for 20 minutes at 25 ° C. for the organic passivation reaction. After washing and mixing twice the weight of purified water and centrifuging for 20 minutes at 25 °C at 3,000 rpm, it is a photograph after five times, 1 is a photograph of mineral powder, 2 is a reactant of mineral and GMP, 3 is a mineral and IMP 5 is a calcium chloride powder as a mineral, FIG. 6 is a ferrous sulfate powder as a mineral, FIG. 7 is a sodium sulfate selenite powder, and FIG. 8 is a copper sulfate powder as a mineral. Fig. 9 shows the use of zinc sulfate powder as a mineral.
  • FIG. 13 is a photograph of each of the organic passivated mineral and nucleic acid complexes prepared in Experimental Example 5, left A is M (7) -GHAC, and right B is M (7) -IHAC.
  • Example 14 is a photograph after centrifugation at 25 ° C. and 4,000 rpm for 20 minutes after completion of the organic passivation reaction in Experimental Example 7; A is a photograph from Preparation Example 7.1-1 to Preparation Example 7.1-8, and B is Preparation Example 7.2-1. To manufacture example 7.2-8.
  • the present invention comprises the steps of reacting a purine base-containing nucleic acid monomer or a salt powder thereof, and a water-soluble mineral powder negative soluble enthalpy, by mixing water to the mixture; Or mixing and dissolving a purine base-containing nucleic acid monomer or a salt powder thereof and water, followed by mixing and reacting a water-soluble mineral powder having a negative dissolution enthalpy in the aqueous solution. to provide.
  • the present invention comprises the steps of reacting a purine base-containing nucleic acid monomer or a salt powder thereof, and a water-soluble mineral powder negative soluble enthalpy, by mixing water to the mixture; Or mixing and dissolving a purine base-containing nucleic acid monomer or a salt powder thereof and water, followed by mixing and reacting a water-soluble mineral powder having a negative dissolution enthalpy in the aqueous solution. to provide.
  • the ratio may be from 1: 5 to 95: 1 weight ratio.
  • a mixing ratio of the water-soluble mineral powder having a negative dissolution enthalpy and water is 1:50 to 2: 1 weight ratio.
  • the reaction by the addition of water may be carried out at 10 to 100 °C for 30 minutes to 5 days.
  • the purine base-containing nucleic acid monomer may be any one or more nucleic acid monomers selected from inosinic acid, guanylic acid and xanthyl acid.
  • the present invention also provides an organic passivated mineral and nucleic acid complex which is prepared by the above method and is a chelate compound in which the mineral and the nucleic acid are chelate bound.
  • the mineral may be any one selected from calcium, zinc, magnesium, potassium, iron, copper, selenium, chromium, molybdenum and iodine or two or more complex minerals.
  • 5'-cytidyl a nucleic acid containing a purine base, 5'-inosinoate disodium (IMP), 5'-diso guanylate (GMP) and 5'-disodenylate (AMP), a pyridine base Disodium acid (CMP) and 5 g of nucleic acid (MIX) powders mixed in the same amount were each collected 5 g, and 10 g of purified water was mixed with stirring at 150 ° C. for 90 minutes at 25 ° C. to prepare an aqueous nucleic acid solution. .
  • IMP 5'-inosinoate disodium
  • GMP 5'-diso guanylate
  • AMP 5'-disodenylate
  • CMP pyridine base Disodium acid
  • MIX nucleic acid
  • the organic passivation reaction was centrifuged at 25 ° C. at 3,000 rpm for 20 minutes, and then compared to before and after centrifugation to compare the evaluation of properties (precipitation, dissolution, coagulation, adhesion, and gelation). ++), severe (++), initial phenomenon occurs (+), no change (-) was confirmed by the results are shown in Table 1.
  • Figure 1 A is a photograph after the end of the organic passivation reaction, B is centrifuged for 20 minutes at 25 °C to 3,000 rpm the organic passivation reaction, the centrifuged precipitate was mixed and suspended in 25 times the weight of purified water to 25 °C After washing five times centrifuged at 3,000 rpm for 20 minutes at 5 times.
  • Figure 2 is the supernatant obtained after centrifugation for 20 minutes at 25 °C to 3,000 rpm the organic passivation reaction in B of Figure 1 at room temperature It is photograph when 24 hours passed.
  • Figure 3 is a photograph of the organo-calcified calcium and nucleic acid complex obtained in order to evaluate the production yield by performing the washing process three times in B of Figure 1, 1 is Ca-IMP, 2 is Ca-GMP, 3 is Ca- AMP, 4 is Ca-CMP and 5 is Ca-MIX.
  • IMP and GMP treatment groups were similarly insoluble with precipitation, flotation, adhesion and coagulation, and most of the AMP, CMP and MIX treatment groups showed solubility. This initial tendency did not show a significant difference even after 1 day, except that the CMP treatment group had a gradual organic passivation reaction, resulting in gelation.
  • the nucleic acids used in the above experiments were similar in their basic structure, but the AMP and MIX treatment groups inducing liquid phase after induction of the organic passivation reaction, the CMP treatment group having gelation properties, and calcium and chelating reactions It was divided into IMP and GMP treated groups with insoluble conditions.
  • the production yield was centrifuged to the organic passivated reactant, mixed and suspended with about twice the amount of purified water, and centrifuged for 20 minutes at 25 rpm at 3,000 rpm for 5 minutes. It was confirmed in% relative to the nucleic acid weight of the substrate used.
  • the production yield was 69.6% for Ca-IMP, 74.1% for Ca-GMP, 81.48% for Ca-AMP, 1.2% for Ca-CMP and 1.6% for Ca-Mix treatment group.
  • the most effective organic passivation reaction was the AMP treatment group, followed by IMP followed by the GMP treatment group.
  • the organic passivation efficiency of the prepared organic passivated mineral and nucleic acid complex is shown in Table 2 by performing ICP analysis, it was identified by dividing into a total of 15 species including the target mineral compared to the original substrate.
  • Preparation Example 2-1 is a mixture of 5 g of calcium chloride powder [CaCl 2 ⁇ 2H 2 O] and 10 g of purified water
  • Preparation Example 2-2 is a mixture of 5 g of 5'-diisosinate (IMP) powder and 10 g of purified water
  • Preparation Example 2-3 the calcium chloride aqueous solution of Preparation Example 2-1 and the IMP aqueous solution of Preparation Example 2-2 were mixed, and Preparation Example 2-4 was obtained by mixing 5 g of IMP powder with 15 g of the calcium chloride aqueous solution of Preparation Example 2-1.
  • Preparation Example 2-5 was a mixture of 5 g of calcium chloride powder and 5 g of IMP powder and mixed with 10 g of purified water
  • 2 parts by weight of the inorganic mineral was first powder-mixed to 10 parts by weight of the IMP or GMP powder, and 10 parts by weight of purified water was mixed with the mixed powder and reacted at room temperature with stirring at 500 rpm for 24 hours.
  • IMP and GMP dissolved in purified water at 20% by weight were used, respectively.
  • 4 is a photograph of the inorganic mineral powder before mixing, IMP and GMP powder used as a substrate, and the prepared organic passivated mineral and nucleic acid complex, 1: CaCl2, 2: FeSO4, 3: ZnSO4, 4: CuSO4, 5: GMP , 6: Ca-GMP, 7: Fe-GMP, 8: Zn-GMP, 9: Cu-GMP 10: IMP, 11: Ca-IMP, 12: Fe-IMP, 13: Zn-IMP, 14: Cu- IMP.
  • the upper part A is a photograph after the completion of the organic passivation reaction, and the lower part B is centrifuged at 3,000 rpm for 20 minutes at 25 ° C. for the organic passivation reaction, and then purified water of twice the weight of the centrifugation precipitate.
  • FIG. 5 shows the use of calcium chloride powder as a mineral
  • FIG. 6 uses ferrous sulfate powder as a mineral
  • FIG. 7 uses sodium selenite powder
  • FIG. 8 uses copper sulfate powder as a mineral.
  • 9 uses zinc sulfate powder as a mineral.
  • 20% GMP and 20% IMP used as a control group were excellent in solubility in purified water and showed colorless water solubility.
  • Cu-GMP treated with copper sulfate compared to the weight of the substrate nucleic acid used for the first time was 104%, whereas Cu-IMP treated group showed about 60%, indicating a difference in yield according to the substrate. It was. The rest of calcium, iron and zinc showed high production efficiency ranging from 95% to 133% regardless of substrate.
  • the organic passivation efficiency of the prepared organic passivated mineral and nucleic acid complex is shown in Table 5 by performing ICP analysis, and identified by dividing into a total of 15 species including the target mineral compared to the original substrate.
  • the content of phosphorus uniquely possessed by the GMP and IMP controls was about 50,000 ppm, the calcium content was 36 ppm of GMP, no IMP was detected, iron was 2.82 ppm, and IMP was 5.92 ppm. Was detected, zinc, copper and selenium were not detected.
  • Iron content in Fe-GMP was 36,720ppm, Fe-IMP was 42,430ppm, and phosphorus was detected in the range of 47,000-48,000ppm.
  • the zinc content in Zn-GMP and Zn-IMP was about 11,000 ppm, with 49,000 to 54,000 ppm of phosphorus detected.
  • magnesium sulfate [MgSO 4 ] powder magnesium sulfate [MgSO 4 ] powder
  • sodium molybdate [MoNa 2 O 4 ( Sigma-Aldrich)] powder was used.
  • FIG. 10 is a photograph after completion of the organic passivation reaction, and the bottom B shows centrifugation of the organic passivation reaction at 25 ° C. at 3,000 rpm for 20 minutes, followed by mixing and suspending twice the weight of purified water with respect to the centrifugation precipitate. After centrifuged for 5 minutes at 25 ° C. at 3,000 rpm for 20 minutes, the photographs were taken five times, including: 1: Ca-IMP, 2: CaFe-IMP, 3: CaCu-IMP, 4: CaSe-IMP, 5: CaCr- IMP, 6: CaMn-IMP, 7: CaMo-IMP, 8: CaZn-IMP.
  • CaCu-IMP was slightly lower in the calcium content based on Ca-IMP at 78,870 ppm (0.96 times) and 76,574 ppm (0.93 times) for CaMn-IMP, but the calcium content was increased by the other two complex mineral reactions. Increased by 1.2 to 1.75 times, it was found that the organic passivation efficiency is increased through mutual promotion rather than competition of chelate bonds due to the complex use of minerals.
  • Selenium is 279,000 ppm (Ca-IMP 23 ppm), CaCr-IMP is chromium 68,550 ppm (Ca-IMP 1.72 ppm), and CaMn-IMP is 85,500 ppm (Ca-IMP 3.23 ppm) and magnesium is CaMg-IMP At 36,230 ppm (Ca-IMP 73 ppm) and CaZn-IMP for zinc, 91,724 ppm (Ca-IMP 8 ppm), when calcium is used as a catalyst, all of the different minerals show very high organic passivation efficiency at the same time. Was evaluated.
  • this result is an organic passivation method capable of simultaneously increasing the organic passivation efficiency of heterogeneous minerals, including calcium, with increased production yield when using calcium as a catalyst.
  • the upper part (after reaction) of FIG. 12 is a photograph after completion
  • the lower part (after CF) is a photograph after performing the washing
  • FIG. 13 is a photograph of each of the prepared organic passivated mineral and nucleic acid complexes.
  • the left A is M (7) -GHAC and the right B is M (7) -IHAC.
  • M (7) -GHAC showed 158% of M (7) -IHAC and 162% of M (7) -IHAC.
  • M (7) -GHAC contains about 14.1% of phosphorus (P) and sulfur (S). : 73.7%), and 15 total minerals excluding phosphorus and sulfur were 16.1% (68.8% of organic passivation efficiency compared to mineral input).
  • M (7) -IHAC the range of about 23.2% (organic passivation efficiency of mineral input: 59.6%) and 10.5% ((organic passivation efficiency of mineral input: 52.9%) was similarly high regardless of nucleic acid type. Organic passivation efficiency was shown.
  • Ca-GMP Ca-GMP, Fe-GMP, Zn-GMP and Cu-GMP, which are organic passivated mineral and nucleic acid complexes prepared in Experimental Example 4, and four kinds of Ca-IMP, Fe-IMP, Zn-IMP and Cu-IMP A total of eight species were evaluated for acid resistance and alkali resistance.
  • centrifugal (3,000rpm, 20 minutes, 25) treatment only the supernatant was passed through a 0.25 ⁇ m filtration filter to compare the amount of minerals present in the supernatant through ICP analysis. Confirmed.
  • Table 10 shows the results of pH stability experiments of the organic passivated mineral and nucleic acid complexes.
  • Table 11 shows the results of the long-term storage stability of the pH through the analysis of the content of the minerals eluted in the supernatant after the evaluation of the properties of the organic passivated calcium and nucleic acid complex.
  • Ca-HAC materials namely Ca-IMP (Ca-IHAC) and Ca-GMP (Ca-GHAC), were evaluated to have safety over the entire pH range.
  • Ca-GHAC showed 90-231ppm in total sum including P and S and 41-190ppm minerals minus phosphorus (P) and sulfur (S).
  • P phosphorus
  • S sulfur
  • Fe-HAC material showed slightly higher mineral distribution compared to Ca-HAC material, but it was evaluated to have safety in the whole range.
  • Fe-GMP was investigated to be 2ppm at pH 7, 1ppm Fe-IMP was estimated to have little elution effect in neutral conditions, the amount of elution is increasing toward acidic and basic conditions
  • the levels of minerals contained in the sediment retained chelate bonds of more than 30,000 ppm of Fe-GMP (Fe-GHAC) and 42,000 ppm of Fe-IMP (Fe-IHAC). It was found to have basicity.
  • Table 13 shows the pH long-term storage stability test results through the analysis of the content of the minerals eluted in the supernatant after the evaluation of the properties of the organic passivated copper and nucleic acid complex.
  • Cu-GHAC When comparing the safety of Cu-HAC material with only copper, Cu-GHAC was found to be 20ppm at pH 7 and 1.27ppm of Fe-IHAC, which showed little dissolution effect in neutral conditions. As the conditions were increased, the elution rate was estimated to increase within the range of 1,000-3,000 ppm, and the safety condition was evaluated to be the pH range of 4-10.
  • the levels of minerals contained in the sediments preserved the organic efficiency of more than 100,000 ppm in both Cu-GHAC and Fe-IHAC and their elution values for 10 days were evaluated as having acid and base resistance.
  • Zn-GHAC When Zn-HAC materials were compared with zinc only, Zn-GHAC was found to have 25ppm at pH 7 and 366ppm at Zn-IHAC.
  • Zn-GHAC materials had excellent base resistance as the elution amount decreased to 3 ppm as the base condition rather than acid resistance.
  • Zn-IHAC materials were found to have both acid and base resistance at the same time, showing a little difference than other materials.
  • the FPLC system (AKATA, Sweden) was measured in a Superdex Pep 10 / 300GL column using UPC900 + D920 + CU950, phosphate buffer, flow rate 0.5ml / min, pressure 0.84PSI and the results are shown in Table 15.
  • the molecular weight of NANA is 309 and considering that the molecular weight of the nucleic acid is 392.17 (IMP) to 407.20 (GMP), it can be seen that 69% of the yeast extract is a polymer having a molecular weight of 1,000 Da or more when calculated in the formula.
  • nucleic acid in yeast extracts was 10.5%, GMP 10.5%, CMP 7.2% and UMP 8,2% in Aromild (KOHJIN, Japan) compared to 19 standard nucleic acids. Was not detected, and the total nucleic acid was 36.4%. Nucleic acids in the S. cereviase CKK110426 extract were assayed and found to contain 6.57% CMP, 8.21% ppm for UMP, 4.89% for GMP, 2.74% for IMP, and 0.66% for AMP. Was%.
  • the organic passivation substrate 0.040g of ferrous sulfate powder of Experimental Example 3 and 6.66g of GMP powder were mixed. After that, the mixture was mixed with 32 g of purified water and stirred (150 rpm, 1 hour, 25 ° C.).
  • Preparation Example 7.1-3 was prepared by mixing 6.66 g of yeast extract with respect to ferrous sulfate powder 0.040 g (pure Fe content: 0.008 g), and adding 28.6 g of purified water to the organic solvent through stirring (150 rpm, 1 hour). Induced the passivation reaction.
  • Production Example 7.1-4 was carried out in the same manner as in Production Example 7.1-3 except that 0.080 g (pure Fe content: 0.016 g) was added to the ferrous sulfate powder.
  • Production Example 7.1-5 was carried out in the same manner as in Production Example 7.1-3 except that 0.12 g of ferrous sulfate powder (pure Fe content: 0.024 g) was added.
  • Production Example 7.1-6 was carried out in the same manner as in Production Example 7.1-3 except that 0.16 g (pure Fe content: 0.032 g) was added to the ferrous sulfate powder.
  • Production Example 7.1-7 was carried out in the same manner as in Production Example 7.1-3 except that 0.20 g (pure Fe content: Fe 0.04 g) was added to the ferrous sulfate powder.
  • Production Example 7.1-8 was carried out in the same manner as in Production Example 7.1-3 except that 0.30 g (pure Fe content: Fe 0.06 g) was added to the ferrous sulfate powder.
  • Preparation Examples 7.2-1 to 7.2-8 are carried out in the same manner as Preparation Examples 7.1-1 to 7.1-8, but after the final mixing process, only a step of heating with stirring at 150 rpm for 30 minutes at 80 ° C. is further added. It was.
  • A is a photograph from Preparation Example 7.1-1 to Preparation Example 7.1-8, and B is Preparation Example 7.2-1 to Preparation Example 7.2. It is a photograph up to -8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a method for producing an organic mineral and nucleic acid composite, comprising the step of: mixing a nucleic acid monomer containing a purine base, or a powdery salt thereof, with a water-soluble powdery mineral having a negative enthalpy of solution and then reacting the resulting mixture by mixing same with water; or mixing a nucleic acid monomer containing a purine base, or a powdery salt thereof, with water, dissolving same, and then reacting the resulting aqueous solution by mixing same with a water-soluble powdery mineral having a negative enthalpy of solution. The organic mineral and nucleic acid composite produced using the method according to the present invention replaces inorganic minerals in a wide range of fields such as food, pharmaceuticals, feed, or fertilizers and, at the same time, has superior bioavailability compared with the inorganic minerals and thus can achieve the effect of sufficient mineral supply even by using a small amount thereof and prevent the occurrence of discoloration, off-flavors, and foul smells caused by using an excessive amount of the inorganic minerals.

Description

유기태화 미네랄 및 핵산 복합체의 제조방법Method for preparing organic passivated mineral and nucleic acid complex
본 발명은 유기태 미네랄 공급원의 제조방법에 관한 것이다. 특히 핵산으로부터 유기태화 미네랄 및 핵산 복합체를 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing an organic mineral source. In particular, the present invention relates to a method for preparing an organosibilized mineral and a nucleic acid complex from a nucleic acid.
동식물의 정상적인 성장에는 필수적으로 일정량의 미네랄이 필요하다. 인간을 포함하는 동물에서도 칼슘, 아연, 마그네슘, 칼륨, 철, 구리, 셀렌, 크롬, 몰리브덴 및 요오드 등의 미네랄 필요하고, 이러한 미네랄은 동물 조직에서 차지하는 비율은 대단히 적지만 골격을 형성하고, 체내 삼투압을 조절하며, 체액의 산-염기 평형을 유지시키고, 효소계의 활성제로 또는 효소 자체의 구성성분으로 관여하는 등 그 역할이 다양하다.Normal growth of flora and fauna requires a certain amount of minerals. Animals, including humans, also require minerals such as calcium, zinc, magnesium, potassium, iron, copper, selenium, chromium, molybdenum and iodine, and these minerals form a skeleton, although their proportion is very small in animal tissues, and osmotic pressure in the body Its role is to maintain the acid-base equilibrium of body fluids, and to participate as an activator of the enzyme system or as a component of the enzyme itself.
그러나 미네랄은 체내에서 합성될 수 없으므로 외부로부터 공급되어야 하며, 주로 염산염, 황산염, 질산염, 인산염, 탄산염 등의 무기태 미네랄의 형태로 공급되지만, 무기태 미네랄은 생체 이용율이 매우 낮다.However, since minerals cannot be synthesized in the body, they must be supplied from the outside, and are mainly supplied in the form of inorganic minerals such as hydrochloride, sulfate, nitrate, phosphate and carbonate, but inorganic minerals have very low bioavailability.
반면에 유기태 미네랄은 생체 이용율은 높지만 가격이 높거나 위생적인 문제로 인하여 식품, 의약, 사료, 비료 등의 미네랄 급원으로 널리 사용하는데에는 한계에 직면해 있다.Organic minerals, on the other hand, have high bioavailability, but face limitations in their widespread use as mineral sources for food, medicine, feed, and fertilizers due to high price or sanitary issues.
한국특허공보 제10-0513011호는 칼슘과 고분자 핵산물질을 결합시킨 가용성 칼슘-핵산물질 복합체를 제조하고 있으나, 연어 정소에서 추출한 고분자 핵산물질을 사용하여 위생상 문제가 있을 수 있고, 제조방법이 복잡하며, 생산비용은 높은 반면 생산 수율이 낮고, 칼슘 이외의 다른 미네랄의 유기태화가 가능한지 불확실하다는 한계가 있었다.Korean Patent Publication No. 10-0513011 manufactures a soluble calcium-nucleic acid complex which combines calcium and macromolecule nucleic acid, but there may be a hygiene problem using the polymer nucleic acid extracted from salmon testis, and the manufacturing method is complicated. In addition, the production cost is high, but the production yield is low, there is a limit that it is uncertain whether the organic passivation of minerals other than calcium is possible.
또한 한국특허공보 제10-1166546호는 살균처리되지 않은 유청 분말에 칼슘을 결합시켜 유기태화 칼슘 강화 유단백질을 제조하고 있으나, 원료가 되는 살균처리되지 않은 유청 분말의 확보가 용이하지 않고, 생산 수율이 낮으며, 가열 공정이 포함되어 에너지 비용이 상승하고, 칼슘 이외의 다른 미네랄의 유기태화가 가능한지 불확실하다는 한계가 있었다.In addition, Korean Patent Publication No. 10-1166546 manufactures an organo-calculated calcium-enriched whey protein by combining calcium with unsterilized whey powder, but it is not easy to secure unsterilized whey powder as a raw material, and production yield is high. There was a limit to the low, high heating costs involved in the heating process, and uncertainty about the organic passivation of minerals other than calcium.
본 발명은 핵산에 미네랄을 킬레이트화하여 생체이용율이 높은 유기태 미네랄 급원을 제조하는 방법을 제공하기 위한 것이다.The present invention is to provide a method for producing an organic mineral source of high bioavailability by chelation of minerals to nucleic acids.
본 발명은 퓨린염기 함유 핵산 단량체 또는 이의 염 분말, 및 용해엔탈피가 음성인 수용성 미네랄 분말을 혼합한 후, 상기 혼합물에 물을 혼합하여 반응시키는 단계; 또는 퓨린염기 함유 핵산 단량체 또는 이의 염 분말과 물을 혼합하여 용해시킨 후, 상기 수용액에 용해엔탈피가 음성인 수용성 미네랄 분말을 혼합하여 반응시키는 단계;를 포함하는 유기태화 미네랄 및 핵산 복합체의 제조방법을 제공한다.The present invention comprises the steps of reacting a purine base-containing nucleic acid monomer or a salt powder thereof, and a water-soluble mineral powder negative soluble enthalpy, by mixing water to the mixture; Or mixing and dissolving a purine base-containing nucleic acid monomer or a salt powder thereof and water, followed by mixing and reacting a water-soluble mineral powder having a negative dissolution enthalpy in the aqueous solution. to provide.
상기 퓨린염기 함유 핵산 단량체는 퓨린환의 6번 위치에 수산기(-OH)를 포함하는 퓨린염기가 용해엔탈피가 음성인 수용성 미네랄 분말과 결합하여 불용성 침전물을 형성하고, 유기태화 미네랄 및 핵산 복합체의 생산 수율이 높다는 점에서 바람직하다. 예를 들어 상기 퓨린염기 함유 핵산 단량체는 이노신산, 구아닐산 및 크산틸산 중에서 선택되는 어느 하나 이상의 핵산 단량체일 수 있고, 바람직하게는 이노신산 또는 구아닐산이다.The purine base-containing nucleic acid monomer has a purine base containing a hydroxyl group (-OH) at position 6 of the purine ring, combined with a water-soluble mineral powder having a dissolution enthalpy of negative to form an insoluble precipitate, and the yield of production of the organic passivated mineral and nucleic acid complex. It is preferable at this point. For example, the purine base-containing nucleic acid monomer may be any one or more nucleic acid monomers selected from inosinic acid, guanylic acid and xanthyl acid, preferably inosinic acid or guanylic acid.
가장 바람직하게는 이노신산의 나트륨염 또는 구아닌산의 나트륨염이다.Most preferably it is the sodium salt of inosine acid or the sodium salt of guanic acid.
상기 용해엔탈피가 음성인 수용성 미네랄 분말은 목표로 하는 유기태화 미네랄의 종류에 따라 미네랄의 종류를 통상의 기술자가 선택할 수 있다. 용해엔탈피가 음성인 수용성 미네랄의 경우 물과 혼합되었을 때, 특히 소량의 물과 혼합되었을 때 이온화되지 않고 발열 반응을 일으키면서 유기태화에 필요한 기질이 존재할 경우 킬레이트 결합을 형성한다.The water-soluble mineral powder of which the dissolution enthalpy is negative can be selected by a person skilled in the art according to the type of the organic passivated mineral to be targeted. Water-soluble minerals with negative enthalpy of dissolution do not ionize when mixed with water, especially when mixed with a small amount of water, causing an exothermic reaction and forming chelate bonds when a substrate for organic passivation is present.
상기 용해엔탈피가 음성인 수용성 미네랄 분말은 복수의 서로 다른 미네랄을 순차적으로 또는 동시에 퓨린염기 함유 핵산 단량체 또는 이의 염 분말과 혼합할 수 있다.The soluble enthalpy of the water-soluble mineral powder may be mixed with a plurality of different minerals sequentially or simultaneously with a purine base-containing nucleic acid monomer or salt powder thereof.
상기 용해엔탈피가 음성인 수용성 미네랄 분말은 통상의 기술자에게 널리 알려져 있고, 예를 들어 칼슘의 경우 염화칼슘, 탄산칼슘, 젖산칼슘 등이 사용될 수 있으며, 바람직하게는 용해엔탈피가 큰 염화칼슘이다.The water-soluble mineral powder having a negative enthalpy of dissolution is well known to those skilled in the art. For example, calcium chloride, calcium carbonate, calcium lactate, or the like may be used for calcium, and preferably dissolution enthalpy is large calcium chloride.
상기 물은 식품, 의약, 사료 또는 비료나 그 첨가제에 사용되는 물이면 특별히 제한할 필요가 없으나, 바람직하게는 다른 금속염의 영향을 적게하기 위해 탈이온수를 이용하는 것이 바람직하다.The water is not particularly limited as long as it is water used in food, medicine, feed or fertilizer or additives thereof, but preferably deionized water is used to reduce the influence of other metal salts.
상기 퓨린염기 함유 핵산 단량체 또는 이의 염 분말, 용해엔탈피가 음성인 수용성 미네랄 분말, 및 물의 혼합 순서에 관계없이, 상기 퓨린염기 함유 핵산 단량체 또는 이의 염 분말, 및 용해엔탈피가 음성인 수용성 미네랄 분말의 혼합비율은 1:5 내지 95:1 중량비, 바람직하게는 1:2 내지 10:1 중량비, 더욱 바람직하게는 1:1 내지 5:1 중량비일 수 있고, 유기태화 미네랄 및 핵산 복합체의 킬레이트화된 미네랄의 목표 함량에 따라 조절할 수 있다.Mixing of the purine base-containing nucleic acid monomer or a salt powder thereof, a water-soluble mineral powder having a negative enthalpy, and water, and a mixture of the purine base-containing nucleic acid monomer or a salt powder thereof and a water-soluble mineral powder having a negative enthalpy thereof The ratio may be from 1: 5 to 95: 1 weight ratio, preferably from 1: 2 to 10: 1 weight ratio, more preferably from 1: 1 to 5: 1 weight ratio, and the chelated minerals of the organic passivated mineral and the nucleic acid complex Can be adjusted according to the target content of.
상기 퓨린염기 함유 핵산 단량체 또는 이의 염 분말, 용해엔탈피가 음성인 수용성 미네랄 분말, 및 물의 혼합 순서에 관계없이, 상기 용해엔탈피가 음성인 수용성 미네랄 분말과 물의 혼합비율은 1:50 내지 2:1 중량비, 바람직하게는 1:10 내지 1:1 중량비일 수 있다. 상기 물의 함량은 반응을 위해 적절히 조절하면 되지만 너무 많으면 발열반응을 통한 미네랄의 킬레이트화에 바람직하지 못하고, 너무 적으면 미네랄 및 핵산의 혼합물을 균일하게 수화하는데 한계가 있을 수 있다.Regardless of the mixing order of the purine base-containing nucleic acid monomer or a salt powder thereof, a water-soluble mineral powder having a negative dissolution enthalpy, and water, a mixing ratio of the water-soluble mineral powder having a negative dissolution enthalpy and water is 1:50 to 2: 1 weight ratio. , Preferably from 1:10 to 1: 1 weight ratio. The amount of water may be appropriately adjusted for the reaction, but too much may be undesirable for chelation of minerals through exothermic reaction, and too little may limit the uniform hydration of a mixture of minerals and nucleic acids.
상기 물을 첨가하여 반응시키는 과정은 10 내지 100 ℃에서 30 분 내지 5일 동안 수행될 수 있다. 특별히 반응시키는 과정에서 별도의 가열을 하더라도 생산 수율의 증가나 킬레이트된 미네랄 함량의 증가에 유리하다고 할 수 없고, 반응시간은 특별히 한정할 필요없이 반응이 충분히 이루어질 정도의 시간, 예를 들어 1 시간 이상, 2 시간 이상, 4 시간 이상, 6 시간 이상, 12 시간 이상으로 조절할 수 있고, 최대 반응시간도 3일, 2일, 1일로 조절할 수 있다.The reaction by the addition of water may be carried out at 10 to 100 ℃ for 30 minutes to 5 days. In particular, even if a separate heating in the reaction process is not advantageous to increase the production yield or increase the chelated mineral content, the reaction time need not be particularly limited, the time enough to complete the reaction, for example more than 1 hour , More than 2 hours, more than 4 hours, more than 6 hours, more than 12 hours can be adjusted, the maximum reaction time can be adjusted to 3 days, 2 days, 1 day.
**
*상기 수용성 미네랄 분말로 염화물을 사용하는 경우 미네랄이 킬레이트화되는 양이 증가함에 따라 염소 이온의 함량이 증가한다. 이러한 증가된 염소 이온은 물로 세척하는 공정으로 간단히 제거될 수 있다. 예를 들어 염화칼슘을 용해하기 위해 사용된 물의 부피의 0.5 ~ 10 배의 물, 바람직하게는 1 ~ 2 배의 물을 사용하여 1 ~ 5회 반복 세척을 통해 염소 이온의 농도를 무해한 수준으로 낮출 수 있다. 상기 세척은 적절한 양의 물을 첨가한 후 원심분리하여 상등액을 제거하는 방식, 예를 들어 500 ~ 50,000 rpm에서 1 ~ 60 분 원심분리할 수 있고, 이러한 원심분리과정은 온도 조건 설정없이 실온에서 수행될 수 있으나, 25 ℃ 이하, 바람직하게는 15 ℃ 이하로 온도를 일정하게 설정하여 수행될 수 있다.When the chloride is used as the water-soluble mineral powder, the content of chlorine ions increases as the amount of the mineral chelated increases. This increased chlorine ions can be simply removed by a process of washing with water. For example, it is possible to lower the concentration of chlorine ions to harmless levels through 1 to 5 repeated washings with 0.5 to 10 times the volume of water used to dissolve calcium chloride, preferably 1 to 2 times the water. have. The washing may be performed by centrifugation to remove the supernatant after adding an appropriate amount of water, for example, centrifugation for 1 to 60 minutes at 500 to 50,000 rpm, and this centrifugation is performed at room temperature without setting temperature conditions. It may be, but may be carried out by setting the temperature to 25 ° C or less, preferably 15 ° C or less.
상기 본 발명의 유기태화 미네랄 및 핵산 복합체는 열풍건조, 분무건조, 동결건조 등 적절한 방법을 통해 건조시켜 분말 형태로 이용하는 것이 사용에 편리하다.The organic passivated mineral and nucleic acid complex of the present invention is convenient to use by drying in a suitable form, such as hot air drying, spray drying, lyophilization and the like in powder form.
또한 본 발명은 상기 방법으로 제조되고, 미네랄 및 핵산이 킬레이트 결합된 킬레이트 화합물인 유기태화 미네랄 및 핵산 복합체를 제공한다.The present invention also provides an organic passivated mineral and nucleic acid complex which is prepared by the above method and is a chelate compound in which the mineral and the nucleic acid are chelate bound.
상기 미네랄은 칼슘, 아연, 마그네슘, 칼륨, 철, 구리, 셀렌, 크롬, 몰리브덴 및 요오드 중에서 선택되는 어느 하나의 미네랄 또는 둘 이상의 복합 미네랄일 수 있다.The mineral may be any one selected from calcium, zinc, magnesium, potassium, iron, copper, selenium, chromium, molybdenum and iodine or two or more complex minerals.
본 발명은 퓨린염기 함유 핵산 단량체에 미네랄을 결합시켜 생체이용율이 높은 유기태화 미네랄 및 핵산 복합체를 제조하는 방법을 제공한다. 본 발명의 방법으로 제조된 유기태화 미네랄 및 핵산 복합체는 식품, 의약, 사료 또는 비료 등 광범위한 분야에서 무기태 미네랄을 대체하면서, 무기태 미네랄에 비해 생체이용율이 뛰어나므로 소량 사용만으로도 충분한 미네랄 공급 효과를 달성하면서 과량의 무기태 미네랄 사용으로 인한 변색, 이미, 이취의 발생을 방지할 수 있다.The present invention provides a method for preparing a highly bioavailable organic passivated mineral and nucleic acid complex by binding a mineral to a purine base-containing nucleic acid monomer. The organic passivated minerals and nucleic acid complexes prepared by the method of the present invention replace inorganic minerals in a wide range of fields such as food, medicine, feed or fertilizers, and have excellent bioavailability compared to inorganic minerals, thus providing sufficient mineral supply effect even in small amounts. To achieve this, it is possible to prevent the occurrence of discoloration, already odor, due to the use of excess mineral minerals.
도 1의 실험예 1에서 A는 유기태화 반응 종료 후의 사진이고, B는 유기태화 반응물을 25 에서 3,000 rpm으로 20분 동안 원심분리 후, 상기 원심분리 침전물에 대하여 2 배 중량의 정제수를 혼합 및 현탁하여 25 ℃에서 3,000 rpm으로 20분 원심분리하는 세척 과정을 5 회 실시한 후의 사진이다.In Experimental Example 1 of FIG. 1, A is a photograph after completion of the organic passivation reaction, and B is centrifuged for 20 minutes at 25 to 3,000 rpm for the organic passivation reaction, followed by mixing and suspending two times the weight of purified water with respect to the centrifuge precipitate. After centrifuged 20 times at 25 ℃ 3,000 rpm at 25 ℃ is a photograph after five times.
도 2는 도 1의 B에서 유기태화 반응물을 첫번째로 25 ℃에서 3,000 rpm으로 20분 동안 원심분리 후 얻은 상등액을 상온에서 24시간 경과하였을 때의 사진이다.FIG. 2 is a photograph of the supernatant obtained after centrifugation of the organic passivated reactant at 25 ° C. for 20 minutes at 3,000 rpm for 24 hours at room temperature.
도 3은 도 1의 B에서 세척 과정을 3회 실시한 후 동결건조하여 생산수율을 평가하기 위해 얻어진 유기태화 칼슘 및 핵산 복합체의 사진으로 1은 Ca-IMP, 2는 Ca-GMP, 3은 Ca-AMP, 4는 Ca-CMP 및 5는 Ca-MIX의 사진이다.Figure 3 is a photograph of the organo-calcified calcium and nucleic acid complex obtained in order to evaluate the production yield by performing the washing process three times in B of Figure 1, 1 is Ca-IMP, 2 is Ca-GMP, 3 is Ca- AMP, 4 is Ca-CMP and 5 is Ca-MIX.
도 4는 실험예 3에서 혼합 전의 무기태 미네랄 분말, 기질로 사용한 IMP 및 GMP 분말, 및 제조된 유기태화 미네랄 및 핵산 복합체의 사진으로, 1 : CaCl2, 2 : FeSO4, 3 :ZnSO4, 4 : CuSO4, 5 : GMP, 6 : Ca-GMP, 7: Fe-GMP, 8 : Zn-GMP, 9 : Cu-GMP 10 : IMP, 11 : Ca-IMP, 12 : Fe-IMP, 13 : Zn-IMP, 14 : Cu-IMP이다.Figure 4 is a photograph of the inorganic mineral powder before mixing, IMP and GMP powder used as a substrate, and the organic passivated mineral and nucleic acid complex prepared in Experimental Example 3, 1: CaCl2, 2: FeSO4, 3 :: ZnSO4, 4: CuSO4 5: GMP, 6: Ca-GMP, 7: Fe-GMP, 8: Zn-GMP, 9: Cu-GMP 10: IMP, 11: Ca-IMP, 12: Fe-IMP, 13: Zn-IMP, 14 is Cu-IMP.
도 5 내지 도 9는 실험예 3에서 위쪽의 A는 유기태화 반응 종료 후의 사진이고, 아래쪽의 B는 유기태화 반응물을 25 ℃에서 3,000 rpm으로 20분 동안 원심분리 후, 상기 원심분리 침전물에 대하여 2 배 중량의 정제수를 혼합 및 현탁하여 25 ℃에서 3,000 rpm으로 20분 원심분리하는 세척 과정을 5 회 실시한 후의 사진이며, 1은 미네랄 분말의 사진, 2는 미네랄과 GMP의 반응물, 3은 미네랄과 IMP의 반응물이고, 도 5는 미네랄로 염화칼슘 분말을 사용한 것, 도 6은 미네랄로 황산제1철 분말을 사용한 것, 도 7은 미네날로 소듐셀레나이트 분말을 사용한 것, 도 8은 미네랄로 황산동 분말을 사용한 것, 도 9는 미네랄로 황산아연 분말을 사용한 것이다.5 to 9 are the photographs of the upper part A after the end of the organic passivation reaction in Experimental Example 3, the lower part B is centrifuged at 3,000 rpm for 20 minutes at 25 ° C. for the organic passivation reaction. After washing and mixing twice the weight of purified water and centrifuging for 20 minutes at 25 ℃ at 3,000 rpm, it is a photograph after five times, 1 is a photograph of mineral powder, 2 is a reactant of mineral and GMP, 3 is a mineral and IMP 5 is a calcium chloride powder as a mineral, FIG. 6 is a ferrous sulfate powder as a mineral, FIG. 7 is a sodium sulfate selenite powder, and FIG. 8 is a copper sulfate powder as a mineral. Fig. 9 shows the use of zinc sulfate powder as a mineral.
도 10는 실험예 4에서 위쪽 A는 유기태화 반응 종료 후의 사진이고, 아래쪽의 B는 유기태화 반응물을 25 ℃에서 3,000 rpm으로 20분 동안 원심분리 후, 상기 원심분리 침전물에 대하여 2 배 중량의 정제수를 혼합 및 현탁하여 25 ℃에서 3,000 rpm으로 20분 원심분리하는 세척 과정을 5 회 실시한 후의 사진이며, 1 : Ca-IMP, 2 : CaFe-IMP, 3 : CaCu-IMP, 4 : CaSe-IMP, 5 : CaCr-IMP, 6: CaMn-IMP, 7 : CaMo-IMP, 8 : CaZn-IMP이다.10 is a photograph after completion of the organic passivation reaction in Experimental Example 4, the bottom B is centrifuged at 3,000 rpm for 20 minutes at 25 ° C. for the organic passivation reaction, and then twice the weight of purified water with respect to the centrifugation precipitate. Is a photograph after five times of mixing and suspending the centrifugation at 3,000 rpm for 20 minutes at 25 ℃, 1: Ca-IMP, 2: CaFe-IMP, 3: CaCu-IMP, 4: CaSe-IMP, 5: CaCr-IMP, 6: CaMn-IMP, 7: CaMo-IMP, 8: CaZn-IMP.
도 11은 실험예 4에서 제조된 각각의 유기태화 미네랄 및 핵산 복합체의 사진이다.11 is a photograph of each organic passivated mineral and nucleic acid complex prepared in Experimental Example 4.
도 12는 실험예 5에서 위쪽(반응후)은 유기태화 반응 종료 후의 사진이고, 아래쪽(CF후)은 3,000 rpm으로 20분 원심분리하는 세척 과정을 5 회 실시한 후의 사진이다.12 is a photograph after the end of the organic passivation reaction in Experimental Example 5, the bottom (after CF) is a photograph after five times the washing process centrifuged for 20 minutes at 3,000 rpm.
도 13은 실험예 5에서 제조된 각각의 유기태화 미네랄 및 핵산 복합체의 사진으로 왼쪽 A는 M(7)-GHAC이고, 오른쪽 B는 M(7)-IHAC이다.13 is a photograph of each of the organic passivated mineral and nucleic acid complexes prepared in Experimental Example 5, left A is M (7) -GHAC, and right B is M (7) -IHAC.
도 14는 실험예 7에서 유기태화 반응 완료 후 25 ℃, 4,000 rpm에서 20분 원심분리 후의 사진으로 A는 제조예 7.1-1 부터 제조예 7.1-8까지의 사진이고, B는 제조예 7.2-1 부터 제조예 7.2-8까지의 사진이다.14 is a photograph after centrifugation at 25 ° C. and 4,000 rpm for 20 minutes after completion of the organic passivation reaction in Experimental Example 7; A is a photograph from Preparation Example 7.1-1 to Preparation Example 7.1-8, and B is Preparation Example 7.2-1. To manufacture example 7.2-8.
본 발명은 퓨린염기 함유 핵산 단량체 또는 이의 염 분말, 및 용해엔탈피가 음성인 수용성 미네랄 분말을 혼합한 후, 상기 혼합물에 물을 혼합하여 반응시키는 단계; 또는 퓨린염기 함유 핵산 단량체 또는 이의 염 분말과 물을 혼합하여 용해시킨 후, 상기 수용액에 용해엔탈피가 음성인 수용성 미네랄 분말을 혼합하여 반응시키는 단계;를 포함하는 유기태화 미네랄 및 핵산 복합체의 제조방법을 제공한다.The present invention comprises the steps of reacting a purine base-containing nucleic acid monomer or a salt powder thereof, and a water-soluble mineral powder negative soluble enthalpy, by mixing water to the mixture; Or mixing and dissolving a purine base-containing nucleic acid monomer or a salt powder thereof and water, followed by mixing and reacting a water-soluble mineral powder having a negative dissolution enthalpy in the aqueous solution. to provide.
본 발명은 퓨린염기 함유 핵산 단량체 또는 이의 염 분말, 및 용해엔탈피가 음성인 수용성 미네랄 분말을 혼합한 후, 상기 혼합물에 물을 혼합하여 반응시키는 단계; 또는 퓨린염기 함유 핵산 단량체 또는 이의 염 분말과 물을 혼합하여 용해시킨 후, 상기 수용액에 용해엔탈피가 음성인 수용성 미네랄 분말을 혼합하여 반응시키는 단계;를 포함하는 유기태화 미네랄 및 핵산 복합체의 제조방법을 제공한다.The present invention comprises the steps of reacting a purine base-containing nucleic acid monomer or a salt powder thereof, and a water-soluble mineral powder negative soluble enthalpy, by mixing water to the mixture; Or mixing and dissolving a purine base-containing nucleic acid monomer or a salt powder thereof and water, followed by mixing and reacting a water-soluble mineral powder having a negative dissolution enthalpy in the aqueous solution. to provide.
상기 퓨린염기 함유 핵산 단량체 또는 이의 염 분말, 용해엔탈피가 음성인 수용성 미네랄 분말, 및 물의 혼합 순서에 관계없이, 상기 퓨린염기 함유 핵산 단량체 또는 이의 염 분말, 및 용해엔탈피가 음성인 수용성 미네랄 분말의 혼합비율은 1:5 내지 95:1 중량비일 수 있다.Mixing of the purine base-containing nucleic acid monomer or a salt powder thereof, a water-soluble mineral powder having a negative enthalpy, and water, and a mixture of the purine base-containing nucleic acid monomer or a salt powder thereof and a water-soluble mineral powder having a negative enthalpy thereof The ratio may be from 1: 5 to 95: 1 weight ratio.
상기 퓨린염기 함유 핵산 단량체 또는 이의 염 분말, 용해엔탈피가 음성인 수용성 미네랄 분말, 및 물의 혼합 순서에 관계없이, 상기 용해엔탈피가 음성인 수용성 미네랄 분말과 물의 혼합비율은 1:50 내지 2:1 중량비일 수 있다.Regardless of the mixing order of the purine base-containing nucleic acid monomer or a salt powder thereof, a water-soluble mineral powder having a negative dissolution enthalpy, and water, a mixing ratio of the water-soluble mineral powder having a negative dissolution enthalpy and water is 1:50 to 2: 1 weight ratio. Can be.
상기 물을 첨가하여 반응시키는 과정은 10 내지 100 ℃에서 30 분 내지 5일 동안 수행될 수 있다.The reaction by the addition of water may be carried out at 10 to 100 ℃ for 30 minutes to 5 days.
상기 퓨린염기 함유 핵산 단량체는 이노신산, 구아닐산 및 크산틸산 중에서 선택되는 어느 하나 이상의 핵산 단량체일 수 있다.The purine base-containing nucleic acid monomer may be any one or more nucleic acid monomers selected from inosinic acid, guanylic acid and xanthyl acid.
또한 본 발명은 상기 방법으로 제조되고, 미네랄 및 핵산이 킬레이트 결합된 킬레이트 화합물인 유기태화 미네랄 및 핵산 복합체를 제공한다.The present invention also provides an organic passivated mineral and nucleic acid complex which is prepared by the above method and is a chelate compound in which the mineral and the nucleic acid are chelate bound.
상기 미네랄은 칼슘, 아연, 마그네슘, 칼륨, 철, 구리, 셀렌, 크롬, 몰리브덴 및 요오드 중에서 선택되는 어느 하나의 미네랄 또는 둘 이상의 복합 미네랄일 수 있다.The mineral may be any one selected from calcium, zinc, magnesium, potassium, iron, copper, selenium, chromium, molybdenum and iodine or two or more complex minerals.
이하 본 발명을 실시예, 실험예 및 제조예에 의해 상세히 설명한다. 단, 하기 실시예, 실험예 및 제조예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예, 실험예 및 제조예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by Examples, Experimental Examples and Preparation Examples. However, the following Examples, Experimental Examples and Preparation Examples are merely illustrative of the present invention, and the content of the present invention is not limited to the following Examples, Experimental Examples, and Preparation Examples.
실험예 1: 핵산 종류에 따른 유기태화 칼슘 및 핵산 복합체의 제조 가능성 확인 Experimental Example 1: Confirmation of the preparation possibility of organo-calcified calcium and nucleic acid complex according to the nucleic acid type
1) 시료의 제조방법1) Sample preparation method
퓨린염기를 포함하는 핵산인 5'-이노신산이나트륨(IMP), 5'-구아닐산이나트륨(GMP) 및 5'-아데닐산이나트륨(AMP), 피리딘염기를 포함하는 핵산인 5'-시티딜산이나트륨(CMP), 그리고 이들 4종을 동량으로 혼합한 핵산(MIX) 분말을 각각 5 g씩 분취하여, 정제수 10 g을 25 ℃에서 150 rpm으로 90 분 동안 교반하면서 혼합하여 핵산 수용액을 제조하였다.5'-cytidyl, a nucleic acid containing a purine base, 5'-inosinoate disodium (IMP), 5'-diso guanylate (GMP) and 5'-disodenylate (AMP), a pyridine base Disodium acid (CMP) and 5 g of nucleic acid (MIX) powders mixed in the same amount were each collected 5 g, and 10 g of purified water was mixed with stirring at 150 ° C. for 90 minutes at 25 ° C. to prepare an aqueous nucleic acid solution. .
상기 각각의 핵산 수용액에 염화칼슘 분말[CaCl2·2H2O(Junsei, 일본)] 5 g을 25 ℃에서 150 rpm으로 90 분 동안 교반하면서 혼합하여 별도의 가열 없이 24 시간 동안 방치하면서 충분히 반응시켰다. 5 g of calcium chloride powder [CaCl 2 · 2H 2 O (Junsei, Japan)] was mixed with each of the aqueous nucleic acid solutions while stirring at 25 ° C. for 150 minutes at 150 rpm, and allowed to react for 24 hours without additional heating.
2) 실험결과2) Experiment result
유기태화 반응이 종료되면 유기태화 반응물을 25 ℃에서 3,000 rpm으로 20분 원심분리하여, 원심분리 전과 후로 구분하여 성상 평가(침전, 용해, 응고, 부착, 겔화 현상)를 비교하였는데, 매우심함(+++), 심함(++), 초기현상 발생(+), 변화없음(-)으로 구분하여 결과를 확인하여 표 1에 나타내었다.After the completion of the organic passivation reaction, the organic passivation reaction was centrifuged at 25 ° C. at 3,000 rpm for 20 minutes, and then compared to before and after centrifugation to compare the evaluation of properties (precipitation, dissolution, coagulation, adhesion, and gelation). ++), severe (++), initial phenomenon occurs (+), no change (-) was confirmed by the results are shown in Table 1.
표 1
Figure PCTKR2015010677-appb-T000001
Table 1
Figure PCTKR2015010677-appb-T000001
도 1의 A는 유기태화 반응 종료 후의 사진이고, B는 유기태화 반응물을 25 ℃에서 3,000 rpm으로 20분 동안 원심분리 후, 상기 원심분리 침전물에 대하여 2 배 중량의 정제수를 혼합 및 현탁하여 25 ℃에서 3,000 rpm으로 20분 원심분리하는 세척 과정을 5 회 실시한 후의 사진이다.도 2는 도 1의 B에서 유기태화 반응물을 첫번째로 25 ℃에서 3,000 rpm으로 20분 동안 원심분리 후 얻은 상등액을 상온에서 24시간 경과하였을 때의 사진이다.Figure 1 A is a photograph after the end of the organic passivation reaction, B is centrifuged for 20 minutes at 25 ℃ to 3,000 rpm the organic passivation reaction, the centrifuged precipitate was mixed and suspended in 25 times the weight of purified water to 25 ℃ After washing five times centrifuged at 3,000 rpm for 20 minutes at 5 times. Figure 2 is the supernatant obtained after centrifugation for 20 minutes at 25 ℃ to 3,000 rpm the organic passivation reaction in B of Figure 1 at room temperature It is photograph when 24 hours passed.
도 3은 도 1의 B에서 세척 과정을 3회 실시한 후 동결건조하여 생산수율을 평가하기 위해 얻어진 유기태화 칼슘 및 핵산 복합체의 사진으로 1은 Ca-IMP, 2는 Ca-GMP, 3은 Ca-AMP, 4는 Ca-CMP 및 5는 Ca-MIX의 사진이다.Figure 3 is a photograph of the organo-calcified calcium and nucleic acid complex obtained in order to evaluate the production yield by performing the washing process three times in B of Figure 1, 1 is Ca-IMP, 2 is Ca-GMP, 3 is Ca- AMP, 4 is Ca-CMP and 5 is Ca-MIX.
단일 또는 4종 혼합 핵산에 대하여 칼슘을 첨가 시, 초기에는 용해성이 매우 좋은 것으로 보였으나 일정 시간이 경과하면 핵산은 칼슘과의 유기태화 반응으로 인하여 발열반응이 발생하는 경향을 보였고, 특히 IMP 및 GMP의 경우는 염화칼슘 분말을 첨가한 후 30 분경에 발열반응이 크게 진행되어 60 ℃ 이상으로 수용액의 온도가 상승하였다.When calcium was added to single or four kinds of mixed nucleic acids, the solubility appeared to be very good at the beginning, but after a certain time, the nucleic acid showed an exothermic reaction due to the organic passivation reaction with calcium, especially IMP and GMP. In the case of adding calcium chloride powder, the exothermic reaction proceeded greatly about 30 minutes, and the temperature of the aqueous solution rose to 60 ° C. or more.
유기태화 반응에 따라 IMP와 GMP 처리군은 유사하게 침전, 부유, 부착 및 응고현상이 동시에 나타나면서 불용성화 되었고, AMP, CMP 및 MIX 처리군은 대부분이 용해성을 그대로 보유하고 있는 경향을 보였으며, 이러한 초기경향은 1일이 경과시도 유의한 차이를 보이지 않았는데, 다만 CMP 처리군은 점진적인 유기태화 반응이 유발되면서 겔화 현상이 발생하였다.According to the organic passivation reaction, IMP and GMP treatment groups were similarly insoluble with precipitation, flotation, adhesion and coagulation, and most of the AMP, CMP and MIX treatment groups showed solubility. This initial tendency did not show a significant difference even after 1 day, except that the CMP treatment group had a gradual organic passivation reaction, resulting in gelation.
상기 실험에 사용한 핵산들은 기본적인 구조가 유사하지만, 유기태화 반응을 유도한 후 액상상태를 유지하는 AMP 처리군과 MIX 처리군, 그리고 겔화 패턴 성상을 보유한 CMP 처리군, 그리고 칼슘과 킬레이팅 반응에 따른 불용성 조건을 보유한 IMP와 GMP 처리군으로 구분되었다. The nucleic acids used in the above experiments were similar in their basic structure, but the AMP and MIX treatment groups inducing liquid phase after induction of the organic passivation reaction, the CMP treatment group having gelation properties, and calcium and chelating reactions It was divided into IMP and GMP treated groups with insoluble conditions.
생산수율은 유기태화 반응물을 원심분리 후, 침전물 대비 2 배 정도의 정제수를 혼합 및 현탁하여 25 ℃에서 3,000 rpm으로 20분 원심분리하는 세척 과정을 5 회 실시하여 최종 동결건조후 생산물의 무게를 최초 사용된 기질인 핵산 무게에 대비하여 %로 확인하였다.The production yield was centrifuged to the organic passivated reactant, mixed and suspended with about twice the amount of purified water, and centrifuged for 20 minutes at 25 rpm at 3,000 rpm for 5 minutes. It was confirmed in% relative to the nucleic acid weight of the substrate used.
생산수율은 Ca-IMP는 69.6%, Ca-GMP는 74.1%, Ca-AMP는 81.48%, Ca-CMP는 1.2% 그리고 Ca-Mix처리군은 1.6%의 생산수율을 나타냄을 확인할 수 있었다. 생산수율로만 본다면 가장 효과적인 유기태화 반응을 보인 핵산은 AMP 처리군이였으며 그리고 IMP 다음으로 GMP 처리군의 순이였다. The production yield was 69.6% for Ca-IMP, 74.1% for Ca-GMP, 81.48% for Ca-AMP, 1.2% for Ca-CMP and 1.6% for Ca-Mix treatment group. In terms of production yield, the most effective organic passivation reaction was the AMP treatment group, followed by IMP followed by the GMP treatment group.
상기 제조된 유기태화 미네럴 및 핵산 복합체의 유기태화 효율은 ICP분석을 실시하여 표 2에 나타내고, 당초 기질 대비 목표 미네럴을 포함한 총 15종으로 구분하여 확인하였다.The organic passivation efficiency of the prepared organic passivated mineral and nucleic acid complex is shown in Table 2 by performing ICP analysis, it was identified by dividing into a total of 15 species including the target mineral compared to the original substrate.
표 2
Figure PCTKR2015010677-appb-T000002
TABLE 2
Figure PCTKR2015010677-appb-T000002
AMP와 CMP 처리군의 침전물내 칼슘의 킬레이팅 효능이 거의 없음이 평가되었는데, 이는 상등액으로 칼슘이 분리된 것으로 확인되었으며, 불용성으로 유기태화 반응이 종결되었던 Ca-IMP는 칼슘의 함유량이 81,569ppm, Ca-GMP는 84,498ppm이 검출되었다.It was evaluated that there was little chelating effect of calcium in the precipitates of AMP and CMP treatment group. This was confirmed that calcium was separated into the supernatant, and Ca-IMP, which was insoluble in organic organase, was 81,569ppm, Ca-GMP was detected 84,498 ppm.
액상화 되는 패턴을 보였던 Ca-Mix 처리군의 침전물내 칼슘함유량을 조사한 결과에서는 43,393ppm이 검출되어 Ca-IMP 혹은 Ca-GMP의 절반수준의 킬레이팅 효능을 보유한 것으로 평가되었는데, 이는 CMP와 AMP로 일부 칼슘 미네럴이 킬레이팅화 되는 반응이 동시에 진행되었고, 또한 침전물과 상등액별 각각 분리시 상등액으로 전이된 것으로 추정되었다.As a result of investigating the calcium content in the precipitate of Ca-Mix treated group which showed the liquefaction pattern, 43,393ppm was detected, and it was estimated to have chelating efficacy of half level of Ca-IMP or Ca-GMP, which was partially CMP and AMP. The reaction of chelating calcium minerals proceeded at the same time, and it was also estimated that the sediment and the supernatant were separated into the supernatant upon separation.
핵산 중에서 IMP 및 GMP 분말 5g 대비 염화칼슘 분말[CaCl2·2H2O] 5g을 첨가했을 때 50,000~70,000ppm범위에서 유기태화 효율을 나타내는 것으로 평가되었지만, 이는 첨가되는 미네럴류별 첨가량을 조절시 유기태화 효율 또한 자유롭게 조절할 수 있을 것으로 예상되었다.When 5 g of calcium chloride powder [CaCl 2 · 2H 2 O] was added to 5 g of IMP and GMP powder among nucleic acids, it was evaluated to exhibit organic passivation efficiency in the range of 50,000 to 70,000 ppm. It was also expected to be freely adjustable.
실험예 2: 혼합 순서에 따른 유기태화 칼슘 및 핵산 복합체의 제조 가능성 확인 Experimental Example 2: Confirmation of preparation possibility of organo-calcified calcium and nucleic acid complexes according to the mixing order
1) 시료의 제조방법1) Sample preparation method
상기 실험예 1에서 유기태화 효율이 뛰어나면서 생산 수율이 높았던 5'-이노신산이나트륨(IMP)를 이용하여, IMP 분말, 염화칼슘 분말 및 물의 혼합 순서에 따른 유기태화 칼슘 및 핵산 복합체 생성여부를 확인하기 위하여 다음의 실험을 실시하였다.Using the 5'-inosinonate disodium (IMP), which was excellent in organic passivation efficiency and high in production yield in Experimental Example 1, to determine whether the organic calcium passivation and nucleic acid complexes were generated according to the mixing order of IMP powder, calcium chloride powder and water. In order to perform the following experiment.
제조예 2-1은 염화칼슘 분말[CaCl2·2H2O] 5g과 정제수 10g을 혼합한 것이고, 제조예 2-2는 5'-이노신산이나트륨(IMP) 분말 5g과 정제수 10g을 혼합한 것이며, 제조예 2-3은 제조예 2-1의 염화칼슘 수용액과 제조예 2-2의 IMP 수용액을 혼합한 것이고, 제조예 2-4는 제조예 2-1의 염화칼슘 수용액 15g에 IMP 분말 5g을 혼합한 것이며, 제조예 2-5는 염화칼슘 분말 5g 및 IMP 분말 5g을 먼저 혼합하고 정제수 10g을 혼합한 것이며, 제조예 2-6은 염화칼슘 분말 5g 및 IMP 분말 5g을 먼저 혼합하고 정제수 10g을 혼합하고, 80 ℃에서 30 분 동안 가열한 것이다.Preparation Example 2-1 is a mixture of 5 g of calcium chloride powder [CaCl 2 · 2H 2 O] and 10 g of purified water, and Preparation Example 2-2 is a mixture of 5 g of 5'-diisosinate (IMP) powder and 10 g of purified water, In Preparation Example 2-3, the calcium chloride aqueous solution of Preparation Example 2-1 and the IMP aqueous solution of Preparation Example 2-2 were mixed, and Preparation Example 2-4 was obtained by mixing 5 g of IMP powder with 15 g of the calcium chloride aqueous solution of Preparation Example 2-1. Preparation Example 2-5 was a mixture of 5 g of calcium chloride powder and 5 g of IMP powder and mixed with 10 g of purified water, and Preparation Example 2-6 was mixed with 5 g of calcium chloride powder and 5 g of IMP powder and mixed with 10 g of purified water. Heated at < RTI ID = 0.0 >
상기 제조예 2-1 내지 제조예 2-6에서 상기 혼합 또는 가열 처리 후 24 시간 동안 별도의 가열 없이 상온에서 반응시켰다. In Preparation Examples 2-1 to 2-6, the reaction was performed at room temperature without additional heating for 24 hours after the mixing or heat treatment.
2) 실험결과2) Experiment result
성상 평가(침전, 용해, 응고, 부착, 겔화 현상), 생산 수율 및 침전물 내 킬레이트된 칼슘 함유량은 실험예 1과 동일하게 확인하였고, 제조예 2-3은 수용액과 수용액을 혼합한 후 30 분 경과 후의 온도, 그리고 나머지 제조예들은 분말 원료와 물 혼합 후 30분 경과 후의 수용액의 온도를 측정하여 발열반응 여부를 확인하여 표 3에 나타내었다.Properties evaluation (precipitation, dissolution, coagulation, adhesion, gelation phenomenon), production yield and chelated calcium content in the precipitate were confirmed in the same manner as Experimental Example 1, Preparation Example 2-3 30 minutes after mixing the aqueous solution and aqueous solution After the temperature, and the rest of the preparation examples are shown in Table 3 to determine the exothermic reaction by measuring the temperature of the aqueous solution after 30 minutes after mixing the powder raw material and water.
표 3
Figure PCTKR2015010677-appb-T000003
TABLE 3
Figure PCTKR2015010677-appb-T000003
상기 제조예 2-1 및 제조예 2-5는 발열반응이 심하게 진행되어 수용액의 온도가 55 ℃ 이상으로 상승하였으나, 제조예 2-2, 제조예 2-3 및 제조예 2-4의 경우는 발열 반응이 유도되지 않았다. 특히 제조예 2-3 또는 제조예 2-4와 같이 염화칼슘 수용액을 먼저 제조한 후 IMP 수용액 또는 IMP 분말을 혼합한 경우는 발열반응이 유도되지 않았고, 불용성의 유기태화 칼슘 및 핵산 복합체가 형성되지 않았다.In Preparation Example 2-1 and Preparation Example 2-5, the exothermic reaction proceeded severely, so that the temperature of the aqueous solution rose to 55 ° C. or higher, but in Preparation Example 2-2, Preparation Example 2-3, and Preparation Example 2-4, No exothermic reaction was induced. In particular, when calcium chloride aqueous solution was prepared first, as in Preparation Example 2-3 or Preparation Example 2-4, and then mixed with IMP aqueous solution or IMP powder, no exothermic reaction was induced and insoluble organocalcified and nucleic acid complexes were not formed. .
제조예 2-6에서와 같이 별도로 80 ℃로 30 분동안 가열한 경우, 제조예 2-5와 마찬가지로 불용성의 유기태화 칼슘 및 핵산 복합체가 형성되었으나, 생산 수율이나 칼슘 함유량에는 차이가 없었다. 이후 유기태화 미네랄 및 핵산 복합체의 제조는 작업의 편리성 및 에너지 비용의 감소를 고려하여 가열 처리 공정 없이 반응시키는 것으로 결정하였다.When heated separately at 80 ° C. for 30 minutes as in Preparation Example 2-6, insoluble organocalcified and nucleic acid complexes were formed in the same manner as in Preparation Example 2-5, but there was no difference in production yield or calcium content. Since the preparation of the organic passivated mineral and nucleic acid complex was determined to react without the heat treatment process in consideration of the ease of operation and the reduction of energy costs.
상기 실험예 1 및 실험예 2의 결과로부터 핵산 중에서 IMP 또는 GMP와 칼슘의 결합에 따른 불용성 침전은 이온 결합보다는 킬레이트 결합에 의한 유기태화로 파악되었고, 4 종의 핵산 사이에 인(P) 또는 인산기의 함량은 차이가 없었으므로, IMP 또는 GMP가 공통적으로 보유하고 있는 아민기(-NH2) 또는 퓨린환의 6번 위치에 수산기(-OH)를 포함하는 퓨린염기가 킬레이팅 결합에 주요한 기능을 수행할 것으로 예상되었다.Insoluble precipitate due to the combination of IMP or GMP and calcium in the nucleic acid from the results of Experimental Example 1 and Experimental Example 2 was found to be organic passivation by chelate bond rather than ionic bond, phosphorus (P) or phosphate group between the four nucleic acids Since the content of was not different, the amine group (-NH 2 ) commonly possessed by IMP or GMP or the purine base including hydroxyl group (-OH) at position 6 of the purine ring plays a major role in chelating bond. It was expected to.
상기 결과를 통해 핵산을 기질로 칼슘의 유기태화 반응을 유도시 생산 수율 및 킬레이트 결합의 정도를 고려했을 때 IMP 또는 GMP를 기질로 사용하는 것이 적합함을 알 수 있었다.From the above results, it was found that using IMP or GMP as a substrate is appropriate in consideration of the production yield and the degree of chelate binding when inducing the organic passivation reaction of calcium with the nucleic acid as a substrate.
실험예 3: 단일 미네랄 도입에 따른 유기태화 미네랄 및 핵산 복합체의 제조 가능성 확인 Experimental Example 3: Confirmation of the preparation possibility of the organic passivated mineral and nucleic acid complex according to the introduction of a single mineral
1) 시료의 제조방법1) Sample preparation method
상기 실험예 1에서 유기태화 효율이 뛰어나면서 생산 수율이 높았던 5'-이노신산이나트륨(IMP) 또는 5'-구아닐산이나트륨(GMP) 분말을 기질로 이용하였다.In Experimental Example 1, 5'-inosinoate disodium (IMP) or 5'-sodium guanylate (GMP) powder, which had excellent organic passivation efficiency and high production yield, was used as a substrate.
무기태 미네랄로 상기 실험예 1의 염화칼슘 분말 이외에, 황산아연[ZnSO4·7H2O(빅솔, 한국)] 분말, 황산제1철[FeSO4·7H2O(Yakuri Pure Chemical)] 분말, 황산동[CuSO4·5H2O(Yakuri Pure Chemical)] 분말 및 소듐셀레나이트[Na2SeO3(XinXianShi Qiyuan Food Additive Co.)] 분말을 이용하였다.In addition to the calcium chloride powder of Experimental Example 1 as an inorganic mineral, zinc sulfate [ZnSO 4 · 7H 2 O (Bixsol, Korea)] powder, ferrous sulfate [FeSO 4 · 7H 2 O (Yakuri Pure Chemical)] powder, copper sulfate [CuSO 4 · 5H 2 O (Yakuri Pure Chemical)] powder and sodium selenite [Na 2 SeO 3 (XinXianShi Qiyuan Food Additive Co.)] powder were used.
상기 IMP 또는 GMP 분말 10 중량부에 상기 무기태 미네랄 2 중량부를 먼저 분말 혼합하고, 상기 혼합된 분말에 정제수 10 중량부를 혼합하여 상온에서 500 rpm으로 교반하면서 24 시간 반응시켰다.2 parts by weight of the inorganic mineral was first powder-mixed to 10 parts by weight of the IMP or GMP powder, and 10 parts by weight of purified water was mixed with the mixed powder and reacted at room temperature with stirring at 500 rpm for 24 hours.
상기 24 시간 동안 반응시킨 유기태화 반응물을 25 ℃에서 3,000rpm으로 20분 원심분리하여 침전물을 얻고, 상기 침전물 중량의 2 배 중량의 정제수를 혼합 및 교반한 후 상기 조건과 동일하게 원심분리하는 세척과정을 5회 반복하여 미반응 핵산 및 미네랄을 제거한 후, 동결건조하여 유기태화 미네랄 및 핵산 복합체를 제조하였다. 상기 제조된 유기태화 미네랄 및 핵산 복합체는 '(사용한 미네랄)-(사용한 핵산)'으로 약칭하여 기재하였다.Centrifuging the organic passivated reactant reacted for 24 hours at 25 ° C. at 3,000 rpm for 20 minutes to obtain a precipitate, followed by mixing and stirring two times the weight of the precipitated purified water and centrifuging under the same conditions as above. Repeated 5 times to remove the unreacted nucleic acid and minerals, and then lyophilized to prepare an organic passivated mineral and nucleic acid complex. The prepared organic passivated mineral and nucleic acid complexes are abbreviated as '(mineral used)-(nucleic acid used)'.
대조군으로 20 중량%로 정제수에 IMP 및 GMP를 각각 용해시킨 것을 사용하였다.As a control, IMP and GMP dissolved in purified water at 20% by weight were used, respectively.
2) 실험결과2) Experiment result
성상 평가(침전, 용해, 응고, 부착, 겔화 현상), 생산 수율 및 침전물 내 킬레이트된 미네랄 함유량은 실험예 1과 동일하게 확인하였고, 유기태화 효율은 ICP분석을 실시하여, 당초 기질 대비 목표 미네랄을 포함한 총 15종으로 구분하여 확인하였으며, 총 킬레이트된 미네랄의 함량은 인(P) 및 황(S)를 포함한 것을 'PS+'로 인 및 황을 제외한 것을 'PS-'로 나타내었다.Properties evaluation (precipitation, dissolution, coagulation, adhesion, gelation phenomenon), production yield and chelated mineral content in the precipitate were confirmed in the same manner as in Experiment 1, and the organic passivation efficiency was subjected to ICP analysis, to determine the target mineral compared to the original substrate The total chelated mineral content was identified as 'PS +' containing phosphorus (P) and sulfur (S) and 'PS-' except phosphorus and sulfur.
표 4
Figure PCTKR2015010677-appb-T000004
Table 4
Figure PCTKR2015010677-appb-T000004
도 4는 혼합 전의 무기태 미네랄 분말, 기질로 사용한 IMP 및 GMP 분말, 및 제조된 유기태화 미네랄 및 핵산 복합체의 사진으로, 1 : CaCl2, 2 : FeSO4, 3 :ZnSO4, 4 : CuSO4, 5 : GMP, 6 : Ca-GMP, 7: Fe-GMP, 8 : Zn-GMP, 9 : Cu-GMP 10 : IMP, 11 : Ca-IMP, 12 : Fe-IMP, 13 : Zn-IMP, 14 : Cu-IMP이다.4 is a photograph of the inorganic mineral powder before mixing, IMP and GMP powder used as a substrate, and the prepared organic passivated mineral and nucleic acid complex, 1: CaCl2, 2: FeSO4, 3: ZnSO4, 4: CuSO4, 5: GMP , 6: Ca-GMP, 7: Fe-GMP, 8: Zn-GMP, 9: Cu-GMP 10: IMP, 11: Ca-IMP, 12: Fe-IMP, 13: Zn-IMP, 14: Cu- IMP.
도 5 내지 도 9에서 위쪽의 A는 유기태화 반응 종료 후의 사진이고, 아래쪽의 B는 유기태화 반응물을 25 ℃에서 3,000 rpm으로 20분 동안 원심분리 후, 상기 원심분리 침전물에 대하여 2 배 중량의 정제수를 혼합 및 현탁하여 25 ℃에서 3,000 rpm으로 20분 원심분리하는 세척 과정을 5 회 실시한 후의 사진이며, 1은 미네랄 분말의 사진, 2는 미네랄과 GMP의 반응물, 3은 미네랄과 IMP의 반응물이고, 도 5는 미네랄로 염화칼슘 분말을 사용한 것, 도 6은 미네랄로 황산제1철 분말을 사용한 것, 도 7은 미네날로 소듐셀레나이트 분말을 사용한 것, 도 8은 미네랄로 황산동 분말을 사용한 것, 도 9는 미네랄로 황산아연 분말을 사용한 것이다.5 to 9, the upper part A is a photograph after the completion of the organic passivation reaction, and the lower part B is centrifuged at 3,000 rpm for 20 minutes at 25 ° C. for the organic passivation reaction, and then purified water of twice the weight of the centrifugation precipitate. Is a photograph after five times of mixing and suspending, centrifuging at 3,000 rpm for 20 minutes at 25 ℃, 1 is a photograph of mineral powder, 2 is a reactant of mineral and GMP, 3 is a reactant of mineral and IMP, FIG. 5 shows the use of calcium chloride powder as a mineral, FIG. 6 uses ferrous sulfate powder as a mineral, FIG. 7 uses sodium selenite powder, and FIG. 8 uses copper sulfate powder as a mineral. 9 uses zinc sulfate powder as a mineral.
먼저 대조군으로 사용한 20% GMP와 20% IMP는 정제수에 용해성이 뛰어나서 무색의 수용성을 나타내었다. First, 20% GMP and 20% IMP used as a control group were excellent in solubility in purified water and showed colorless water solubility.
실험예 1 및 2에서 유기태화 칼슘 및 핵산 복합체는 칼슘과 핵산이 킬레이트 결합에 의해 불용성의 침전물을 형성하였는데, 본 실험에서도 칼슘, 철, 구리 및 아연의 경우는 기질로 GMP 및 IMP를 사용했을 때 모두 침전물을 형성하였으나, 셀레늄의 경우만 침전성을 나타내지 않았다.In Experimental Examples 1 and 2, the organocalcified calcium and nucleic acid complexes formed insoluble precipitates by calcium and nucleic acid chelate bonds. In this experiment, calcium, iron, copper, and zinc were used as the substrates when GMP and IMP were used. All formed precipitates, but only selenium did not show precipitation.
또한 생산 수율에 있어서는, 최초 사용된 기질 핵산 중량 대비 황산동을 처리한 Cu-GMP는 104%의 생산수율을 보였는데, Cu-IMP 처리군은 약 60%를 나타내어, 기질에 따른 수율의 차이를 나타내었다. 나머지 칼슘, 철, 아연의 경우는 기질에 관계없이 최저 95%에서 최대 133%의 범위로 높은 생산효율을 보였다. In terms of production yield, Cu-GMP treated with copper sulfate compared to the weight of the substrate nucleic acid used for the first time was 104%, whereas Cu-IMP treated group showed about 60%, indicating a difference in yield according to the substrate. It was. The rest of calcium, iron and zinc showed high production efficiency ranging from 95% to 133% regardless of substrate.
상기 제조된 유기태화 미네럴 및 핵산 복합체의 유기태화 효율은 ICP분석을 실시하여 표 5에 나타내고, 당초 기질 대비 목표 미네럴을 포함한 총 15종으로 구분하여 확인하였다.The organic passivation efficiency of the prepared organic passivated mineral and nucleic acid complex is shown in Table 5 by performing ICP analysis, and identified by dividing into a total of 15 species including the target mineral compared to the original substrate.
표 5
Figure PCTKR2015010677-appb-T000005
Table 5
Figure PCTKR2015010677-appb-T000005
상기 표 5에서 대조군인 GMP와 IMP가 고유하게 보유하고 있는 인의 함유량은 약 50,000 ppm 전후를 나타내었으며, 칼슘 함유량은 GMP는 36ppm, IMP는 검출되지 않았고, 철은 GMP 는 2.82 ppm, IMP는 5.92 ppm이 검출되었고, 아연, 구리 및 셀레늄은 검출되지 않았다.In Table 5, the content of phosphorus uniquely possessed by the GMP and IMP controls was about 50,000 ppm, the calcium content was 36 ppm of GMP, no IMP was detected, iron was 2.82 ppm, and IMP was 5.92 ppm. Was detected, zinc, copper and selenium were not detected.
한편 Ca-GMP는 인 함유량은 41,000ppm이 검출되었고, 유기태화 반응 후 칼슘의 함유량은 62,000 ppm으로 증가하였으며, Ca-IMP는 인의 함유량이 50,000ppm이고, 유기태화 반응 후 칼슘 함유량은 58,000 ppm 이었다.In the case of Ca-GMP, 41,000 ppm of phosphorus was detected, and the calcium content was increased to 62,000 ppm after the organic passivation reaction. The Ca-IMP content was 50,000 ppm and the calcium content was 58,000 ppm after the organic passivation reaction.
Fe-GMP 내 철 함유량은 36,720ppm, Fe-IMP는 42,430ppm이었고, 이때 인은 47,000~48,000ppm범위에서 검출되었다.Iron content in Fe-GMP was 36,720ppm, Fe-IMP was 42,430ppm, and phosphorus was detected in the range of 47,000-48,000ppm.
Zn-GMP 및 Zn-IMP 내 아연 함유량은 공히 약 11,000 ppm이고, 이때 인은 49,000~54,000ppm이 검출되었다.The zinc content in Zn-GMP and Zn-IMP was about 11,000 ppm, with 49,000 to 54,000 ppm of phosphorus detected.
Cu-GMP 및 Cu-IMP 내 구리 함유량은 공히 100,000 ppm을 상회하는 킬레이팅 능력을 보였는데, 이때 인은 48,000~51,000ppm이 검출되었다.The copper content in Cu-GMP and Cu-IMP both exhibited a chelating ability of over 100,000 ppm, with phosphorus concentrations of 48,000-51,000 ppm.
상기 결과로부터 핵산 분말과 미네랄 분말을 5:1 중량비로 혼합한 경우에도 미네랄 함량이 증가된 유기태화 미네랄 및 핵산 복합체가 높은 생산 수율로 형성되었음을 확인할 수 있었다.From the above results, it was confirmed that even when the nucleic acid powder and the mineral powder were mixed in a 5: 1 weight ratio, the organic passivated mineral and the nucleic acid complex having increased mineral content were formed in a high yield.
실험예 4: 2종의 미네랄 동시 도입에 따른 유기태화 미네랄 및 핵산 복합체의 제조 가능성 확인 Experimental Example 4: Confirmation of preparation of organic passivated mineral and nucleic acid complex by simultaneous introduction of two minerals
1) 시료의 제조방법1) Sample preparation method
상기 실험예 1에서 유기태화 효율이 뛰어나면서 생산 수율이 높았던 5'-이노신산이나트륨(IMP) 분말을 기질로 이용하였다.In Experimental Example 1, 5'-inosinoate disodium (IMP) powder having excellent organic passivation efficiency and high production yield was used as a substrate.
무기태 미네랄로 상기 실험예 3의 염화칼슘 분말, 황산아연 분말, 황산제1철 분말, 황산동 분말, 소듐셀레나이트 분말 외에 4 종의 미네날 분말을 추가로 사용하였다. 4 종의 미네랄은 황산마그네슘[MgSO4] 분말, 염화칼륨[KCl(대정화금)] 분말, 염화크롬[CrCl3·6H2O(대정화금)] 분말 및 몰리브덴산나트륨[MoNa2O4(Sigma-Aldrich)] 분말을 이용하였다.In addition to the calcium mineral powder, zinc sulfate powder, ferrous sulfate powder, copper sulfate powder, and sodium selenite powder of Experimental Example 3, four kinds of mineral powders were additionally used as inorganic minerals. The four minerals are magnesium sulfate [MgSO 4 ] powder, potassium chloride [KCl (large crystallization)] powder, chromium chloride [CrCl 3 · 6H 2 O (large crystallization)] powder and sodium molybdate [MoNa 2 O 4 ( Sigma-Aldrich)] powder was used.
IMP 분말 20 중량부에 염화칼슘 분말 10 중량부를 분말 혼합하거나, IMP 분말 20 중량부에 염화칼슘 분말 10 중량부 및 나머지 1 종의 미네랄 분말 10 중량부를 분말 혼합하고, 상기 혼합된 분말에 정제수 30 중량부를 혼합하여 상온에서 500 rpm으로 교반하면서 24 시간 반응시켰다.10 parts by weight of calcium chloride powder is mixed with 20 parts by weight of IMP powder, or 10 parts by weight of calcium chloride powder and 10 parts by weight of the other mineral powder are mixed with 20 parts by weight of IMP powder, and 30 parts by weight of purified water is mixed with the mixed powder. The reaction was carried out for 24 hours while stirring at 500 rpm at room temperature.
상기 반응 후 세척 방법, 유기태화 미네랄 및 핵산 복합체의 제조방법이나 약칭의 기재방법은 상기 실험예 3과 동일하다.After the reaction, the washing method, the preparation method of the organic passivated mineral and the nucleic acid complex, or the abbreviated description method are the same as in Experimental Example 3.
2) 실험결과2) Experiment result
성상 평가(침전, 용해, 응고, 부착, 겔화 현상), 생산 수율 및 침전물 내 킬레이트된 미네랄 함유량은 실험예 1과 동일하게 확인하였고, 유기태화 효율은 ICP분석을 실시하여, 당초 기질 대비 목표 미네랄을 포함한 총 15종으로 구분하여 확인하였으며, 총 킬레이트된 미네랄의 함량은 인(P) 및 황(S)를 포함한 것을 'PS+'로 인 및 황을 제외한 것을 'PS-'로 나타내었다.Properties evaluation (precipitation, dissolution, coagulation, adhesion, gelation phenomenon), production yield and chelated mineral content in the precipitate were confirmed in the same manner as in Experiment 1, and the organic passivation efficiency was subjected to ICP analysis, to determine the target mineral compared to the original substrate The total chelated mineral content was identified as 'PS +' containing phosphorus (P) and sulfur (S) and 'PS-' except phosphorus and sulfur.
표 6
Figure PCTKR2015010677-appb-T000006
Table 6
Figure PCTKR2015010677-appb-T000006
표 7
Figure PCTKR2015010677-appb-T000007
TABLE 7
Figure PCTKR2015010677-appb-T000007
도 10의 위쪽 A는 유기태화 반응 종료 후의 사진이고, 아래쪽의 B는 유기태화 반응물을 25 ℃에서 3,000 rpm으로 20분 동안 원심분리 후, 상기 원심분리 침전물에 대하여 2 배 중량의 정제수를 혼합 및 현탁하여 25 ℃에서 3,000 rpm으로 20분 원심분리하는 세척 과정을 5 회 실시한 후의 사진이며, 1 : Ca-IMP, 2 : CaFe-IMP, 3 : CaCu-IMP, 4 : CaSe-IMP, 5 : CaCr-IMP, 6: CaMn-IMP, 7 : CaMo-IMP, 8 : CaZn-IMP이다.10 is a photograph after completion of the organic passivation reaction, and the bottom B shows centrifugation of the organic passivation reaction at 25 ° C. at 3,000 rpm for 20 minutes, followed by mixing and suspending twice the weight of purified water with respect to the centrifugation precipitate. After centrifuged for 5 minutes at 25 ° C. at 3,000 rpm for 20 minutes, the photographs were taken five times, including: 1: Ca-IMP, 2: CaFe-IMP, 3: CaCu-IMP, 4: CaSe-IMP, 5: CaCr- IMP, 6: CaMn-IMP, 7: CaMo-IMP, 8: CaZn-IMP.
도 11은 상기 제조된 각각의 유기태화 미네랄 및 핵산 복합체의 사진이다.11 is a photograph of each of the prepared organic passivated mineral and nucleic acid complexes.
염화칼슘 분말 및 다른 미네랄 분말을 IMP 분말에 혼합하여 반응시켰을 때, 2 종의 미네랄이 각각 킬레이트 반응하여 유기태화 미네랄 및 핵산 복합체를 형성하는 것을 알 수 있었다. 또한 염화칼슘 분말을 단독으로 사용하는 것보다 생산 수율이 39 %에서 213 %까지 현저히 증가한 것을 확인할 수 있었다.When calcium chloride powder and other mineral powder were mixed with the IMP powder and reacted, it was found that the two kinds of minerals chelate each to form an organic passivated mineral and a nucleic acid complex. In addition, the production yield was significantly increased from 39% to 213% than using calcium chloride powder alone.
Ca-IMP를 기준으로 칼슘 함유량에서 CaCu-IMP는 78,870ppm(0.96배), CaMn-IMP의 경우는 76,574ppm(0.93배)으로 다소 낮게 나타났지만, 이외의 2종 복합 미네랄 반응에 의해 칼슘 함유량이 1.2 내지 1.75배까지 증가하여, 미네랄의 복합 사용으로 인한 킬레이트 결합의 경쟁보다는 오히려 상호 촉진을 통해 유기태화 효율을 증가시킴을 알 수 있었다.CaCu-IMP was slightly lower in the calcium content based on Ca-IMP at 78,870 ppm (0.96 times) and 76,574 ppm (0.93 times) for CaMn-IMP, but the calcium content was increased by the other two complex mineral reactions. Increased by 1.2 to 1.75 times, it was found that the organic passivation efficiency is increased through mutual promotion rather than competition of chelate bonds due to the complex use of minerals.
칼슘 이외의 다른 미네랄이 사용되지 않은 Ca-IMP와 비교했을 때, CaFe-IMP에서 철은 69,390ppm(Ca-IMP 19ppm), CaCu-IMP에서 구리는 99,450ppm(Ca-IMP ND), CaSe-IMP에서 셀레늄은 279,000ppm(Ca-IMP 23ppm), CaCr-IMP에서 크롬은 68,550ppm(Ca-IMP 1.72ppm), CaMn-IMP에서 망간은 85,500ppm(Ca-IMP 3.23ppm), CaMg-IMP에서 마그네슘은 36,230ppm(Ca-IMP 73ppm), 그리고 CaZn-IMP에서 아연의 경우는 91,724ppm(Ca-IMP 8ppm)의 수치로 칼슘을 촉매로 함께 사용했을 때, 이종 미네랄 전체가 동시에 매우 높은 유기태화 효율을 보이는 것으로 평가되었다.Compared with Ca-IMP where no minerals other than calcium were used, iron in CaFe-IMP was 69,390 ppm (Ca-IMP 19 ppm), and in CaCu-IMP, copper was 99,450 ppm (Ca-IMP ND) and CaSe-IMP. Selenium is 279,000 ppm (Ca-IMP 23 ppm), CaCr-IMP is chromium 68,550 ppm (Ca-IMP 1.72 ppm), and CaMn-IMP is 85,500 ppm (Ca-IMP 3.23 ppm) and magnesium is CaMg-IMP At 36,230 ppm (Ca-IMP 73 ppm) and CaZn-IMP for zinc, 91,724 ppm (Ca-IMP 8 ppm), when calcium is used as a catalyst, all of the different minerals show very high organic passivation efficiency at the same time. Was evaluated.
특히 IMP 분말과 단독으로는 유기태화 셀레늄 및 핵산 복합체 형성이 불가능했으나, 염화칼슘 분말과 소듐셀레나이트 분말을 혼합하여 반응시켰을 때에는 셀레늄의 유기태화도 진행되었음을 확인할 수 있었다.In particular, IMP powder alone and organolated selenium and nucleic acid complex formation was impossible, but it was confirmed that the organic passivation of selenium also proceeded when the mixture of calcium chloride powder and sodium selenite powder was reacted.
따라서, 이러한 결과는 칼슘을 촉매로 하는 경우 생산수율 증대와 더불어 칼슘을 포함한 이종 미네랄의 유기태화 효율의 동시 증대가 가능한 유기태화 방법임을 알 수 있다. Therefore, this result is an organic passivation method capable of simultaneously increasing the organic passivation efficiency of heterogeneous minerals, including calcium, with increased production yield when using calcium as a catalyst.
실험예 5: 7종의 미네랄 동시 도입에 따른 유기태화 미네랄 및 핵산 복합체의 제조 가능성 확인 Experimental Example 5: Confirmation of preparation of organic passivated mineral and nucleic acid complexes by simultaneous introduction of seven minerals
1) 시료의 제조방법1) Sample preparation method
상기 실험예 1에서 유기태화 효율이 뛰어나면서 생산 수율이 높았던 5'-이노신산이나트륨(IMP) 분말 또는 5'-구아닐산이나트륨(GMP) 분말을 기질로 이용하였다.In Experimental Example 1, 5'-inosinoate disodium (IMP) powder or 5'-sodium guanylate (GMP) powder, which had excellent organic passivation efficiency and high production yield, was used as a substrate.
무기태 미네랄로 상기 실험예 4의 염화칼슘 분말, 황산아연 분말, 황산제1철 분말, 황산동 분말, 소듐셀레나이트 분말, 황산마그네슘 분말, 염화칼륨 분말을 이용하였다.As inorganic minerals, calcium chloride powder, zinc sulfate powder, ferrous sulfate powder, copper sulfate powder, sodium selenite powder, magnesium sulfate powder, and potassium chloride powder of Experimental Example 4 were used.
IMP 분말 또는 GMP 분말 10 중량부에 상기 7종의 미네랄 분말 각각 1 중량부씩 혼합한 후, 상기 혼합된 분말에 정제수 100 중량부를 혼합하여 상온에서 500 rpm으로 교반하면서 24 시간 반응시켰다. IMP를 기질로 반응시킨 것은 'M(7)-IHAC'로 GMP를 기질로 반응시킨 것은 'M(7)-GHAC'로 약칭하였다.1 part by weight of each of the seven mineral powders was mixed with 10 parts by weight of IMP powder or GMP powder, and then 100 parts by weight of purified water was mixed with the mixed powder and reacted at room temperature with stirring at 500 rpm for 24 hours. The reaction of IMP as a substrate was abbreviated as 'M (7) -IHAC' and the reaction of GMP as a substrate was abbreviated as 'M (7) -GHAC'.
상기 반응 후 세척 방법, 유기태화 미네랄 및 핵산 복합체의 제조방법이나 약칭의 기재방법은 상기 실험예 3과 동일하다.After the reaction, the washing method, the preparation method of the organic passivated mineral and the nucleic acid complex, or the abbreviated description method are the same as in Experimental Example 3.
2) 실험결과2) Experiment result
성상 평가(침전, 용해, 응고, 부착, 겔화 현상), 생산 수율 및 침전물 내 킬레이트된 미네랄 함유량은 실험예 1과 동일하게 확인하였고, 유기태화 효율은 ICP분석을 실시하여, 당초 기질 대비 목표 미네랄을 포함한 총 15종으로 구분하여 확인하였으며, 총 킬레이트된 미네랄의 함량은 인(P) 및 황(S)를 포함한 것을 'PS+'로 인 및 황을 제외한 것을 'PS-'로 나타내었다.Properties evaluation (precipitation, dissolution, coagulation, adhesion, gelation phenomenon), production yield and chelated mineral content in the precipitate were confirmed in the same manner as in Experiment 1, and the organic passivation efficiency was subjected to ICP analysis to target target minerals compared to the substrate The total chelated mineral content was identified as 'PS +' containing phosphorus (P) and sulfur (S) and 'PS-' except phosphorus and sulfur.
표 8
Figure PCTKR2015010677-appb-T000008
Table 8
Figure PCTKR2015010677-appb-T000008
표 9
Figure PCTKR2015010677-appb-T000009
Table 9
Figure PCTKR2015010677-appb-T000009
도 12의 위쪽(반응후)은 유기태화 반응 종료 후의 사진이고, 아래쪽(CF후)은 3,000 rpm으로 20분 원심분리하는 세척 과정을 5 회 실시한 후의 사진이다.The upper part (after reaction) of FIG. 12 is a photograph after completion | finish of an organic passivation reaction, and the lower part (after CF) is a photograph after performing the washing | cleaning process 5 times centrifuged at 3,000 rpm for 20 minutes.
도 13은 상기 제조된 각각의 유기태화 미네랄 및 핵산 복합체의 사진으로 왼쪽 A는 M(7)-GHAC이고, 오른쪽 B는 M(7)-IHAC이다.FIG. 13 is a photograph of each of the prepared organic passivated mineral and nucleic acid complexes. The left A is M (7) -GHAC and the right B is M (7) -IHAC.
생산 수율은 7종 미네랄을 동시에 IMP 또는 GMP에 처리하였을 때, M(7)-GHAC는 기질인 핵산 첨가 중량 대비 158%, M(7)-IHAC는 162%의 생산수율을 나타내었다.When the seven minerals were simultaneously treated with IMP or GMP, M (7) -GHAC showed 158% of M (7) -IHAC and 162% of M (7) -IHAC.
7종 무기태 미네랄 첨가량 대비 총유기태화 검출량과 검출효율을 비교하여 보면, M(7)-GHAC는 인(P)과 황(S)을 포함하는 경우는 약 14.1%(미네랄 투입량 대비 유기태화 효율: 73.7%)였으며, 인과 황을 제외한 15종의 총미네랄 검출량은 16.1%(미네랄 투입량 대비 유기태화 효율: 68.8%)였다. M(7)-IHAC의 경우는 약 23.2%(미네랄 투입량 대비 유기태화 효율: 59.6%)와 10.5%((미네랄 투입량 대비 유기태화 효율: 52.9%)의 범위를 보여 핵산 종류와 상관없이 유사하게 높은 유기태화 효율을 보였다.Comparing the total organic passivation amount and the detection efficiency with respect to the addition of the seven inorganic minerals, M (7) -GHAC contains about 14.1% of phosphorus (P) and sulfur (S). : 73.7%), and 15 total minerals excluding phosphorus and sulfur were 16.1% (68.8% of organic passivation efficiency compared to mineral input). In the case of M (7) -IHAC, the range of about 23.2% (organic passivation efficiency of mineral input: 59.6%) and 10.5% ((organic passivation efficiency of mineral input: 52.9%) was similarly high regardless of nucleic acid type. Organic passivation efficiency was shown.
미네랄별 유기태화 효율을 미네럴별 투입량 대비 비교하여 보았더니, 칼슘은 67.7~74%, 철은 99.8~100%, 아연의 경우는 76~97.9%, 구리의 경우는 97.7~99.1%, 셀레늄은 73.6~91.1%, 칼륨의 경우는 7.79~24.6% 그리고 마그네늄의 경우는 22~56.6%의 유기태화 효율을 보였는데 IMP를 기질로 하는 경우가 다소 낮은 경향을 보였다.The organic passivation efficiency of each mineral was compared with that of minerals, and it was found that calcium is 67.7 ~ 74%, iron is 99.8 ~ 100%, zinc is 76 ~ 97.9%, copper is 97.7 ~ 99.1%, and selenium is 73.6. Organic passivation efficiencies of ~ 91.1%, 7.79 ~ 24.6% for potassium, and 22 ~ 56.6% for magnesium, but IMP-based substrates were somewhat lower.
실험예 6: 유기태화 미네랄 및 핵산 복합체의 외부 저항성 평가Experimental Example 6: Evaluation of External Resistance of Organostabilized Minerals and Nucleic Acid Complexes
1) 실험방법1) Experiment Method
실험예 3에서 제조된 유기태화 미네랄 및 핵산 복합체인 Ca-GMP, Fe-GMP, Zn-GMP 및 Cu-GMP인 4종과 Ca-IMP, Fe-IMP, Zn-IMP 및 Cu-IMP인 4종으로 총 8종을 내산성 및 내알카리성을 평가하였다.Four kinds of Ca-GMP, Fe-GMP, Zn-GMP and Cu-GMP, which are organic passivated mineral and nucleic acid complexes prepared in Experimental Example 4, and four kinds of Ca-IMP, Fe-IMP, Zn-IMP and Cu-IMP A total of eight species were evaluated for acid resistance and alkali resistance.
5ml 볼륨의 에펜도르프 튜브에 준비된 pH용액을 4ml씩 각각 분취한 후, 여기에 준비된 유기태화 미네랄 및 핵산 복합체를 0.5g씩 첨가한 후 충분히 분산과정과 Sonocation 공정을 진행하였고, 10일 동안을 상온에서 거치시킨 후 외관평가를 통하여 성상 변화를 침전, 용해, 용출 및 겔화 현상으로 구분하여 평가하였는데, 매우 심한경우는 +++, 심한경우는 ++, 초기현상이 발생한 경우는 +, 그리고 변화가 없는 경우는 로 구분하여 평가하였다. 4 ml of each prepared pH solution was added to a 5 ml volume of Eppendorf tube, and 0.5 g of each of the prepared organic passivated mineral and nucleic acid complexes was added thereto, followed by sufficient dispersion and sonocation. After fermentation, the change of appearance was evaluated by sedimentation, dissolution, elution and gelation. The most severe case was +++, the severe case was ++, the initial phenomenon occurred at +, and there was no change. The cases were evaluated by dividing by.
성상 평가가 완료되면 원심(3,000rpm, 20분, 25)처리후 상등액만을 분취 0.25 ㎛ 여과필터를 거쳐 ICP분석을 통하여 상등액내 존재하는 미네럴량을 비교하여 개발 소재류의 안전성과 관련한 외부환경저항 효과를 확인하였다. After the evaluation of the properties, centrifugal (3,000rpm, 20 minutes, 25) treatment, only the supernatant was passed through a 0.25 μm filtration filter to compare the amount of minerals present in the supernatant through ICP analysis. Confirmed.
2) 실험결과2) Experiment result
유기태화 미네랄 및 핵산 복합체의 pH 안정성 실험결과를 표 10에 나타내었다.Table 10 shows the results of pH stability experiments of the organic passivated mineral and nucleic acid complexes.
표 10
Figure PCTKR2015010677-appb-T000010
Table 10
Figure PCTKR2015010677-appb-T000010
전체 시험군에서 pH 2-10 범위내에서는 안정한 것으로 평가되었다. 이중 Cu-GMP의 경우는 강산성인 pH 1의 범위에서 용해되면서 미네럴이 용출 및 겔화 현상이 심하게 발생하는 결과를 보였는데, pH가 중성 및 염기조건의 진해하면 이러한 현상은 발생하지 않았다.All test groups were evaluated to be stable within the pH 2-10 range. In case of Cu-GMP, the dissolution and gelation of minerals occurred severely while dissolving in the range of pH 1, which is strongly acidic, but this phenomenon did not occur when the pH was neutral and neutral.
pH가 산성조건에서 미네럴 분리 및 용출과 관련한 성상변화를 유발하는 시험구가 또 있는지를 살펴보았더니, Fe-GMP 및 Fe-IMP가 해당되었는데 이중 Fe-GMP시료는 pH가 12이상의 염기조건에서 용출되는 현상이 더욱 심하게 나타났다. We examined whether there was another test zone that caused the change of properties related to mineral separation and elution under acidic conditions. Among them, Fe-GMP and Fe-IMP were included. The phenomenon became more severe.
유기태화 칼슘 및 핵산 복합체의 상기 성상 평가 후 상등액에 용출된 미네랄의 함량 분석을 통해 pH 장기보관 안정성 실험결과를 표 11에 나타내었다.Table 11 shows the results of the long-term storage stability of the pH through the analysis of the content of the minerals eluted in the supernatant after the evaluation of the properties of the organic passivated calcium and nucleic acid complex.
표 11
Figure PCTKR2015010677-appb-T000011
Table 11
Figure PCTKR2015010677-appb-T000011
Ca-HAC 소재, 즉 Ca-IMP(Ca-IHAC) 및 Ca-GMP(Ca-GHAC)는 전체 pH 범위에서 안전성을 보유하고 있는 것으로 평가되었다. 즉, 칼슘을 포함한 전체 미네랄 합계치를 비교하여 보았더니 Ca-GHAC는 P과 S를 포함한 전체 합계에서 는 90-231ppm을 인(P)과 황(S)을 뺀 미네랄 수치가 41-190ppm의 범위를, IMP를 기질로 하는 경우에서는 71-114ppm과 54-106ppm의 미미한 수치만의 결과를 확인하였다.Ca-HAC materials, namely Ca-IMP (Ca-IHAC) and Ca-GMP (Ca-GHAC), were evaluated to have safety over the entire pH range. In other words, when comparing total minerals including calcium, Ca-GHAC showed 90-231ppm in total sum including P and S and 41-190ppm minerals minus phosphorus (P) and sulfur (S). In the case of using IMP as a substrate, only slight values of 71-114 ppm and 54-106 ppm were confirmed.
*유기태화 철 및 핵산 복합체의 상기 성상 평가 후 상등액에 용출된 미네랄의 함량 분석을 통해 pH 장기보관 안정성 실험결과를 표 12에 나타내었다.* The results of the long-term storage stability test results of the pH of the minerals eluted in the supernatant after evaluation of the properties of the organic iron iron and nucleic acid complexes are shown in Table 12.
표 12
Figure PCTKR2015010677-appb-T000012
Table 12
Figure PCTKR2015010677-appb-T000012
Fe-HAC 소재는 Ca-HAC 소재와 비교시 다소 높은 미네랄 분포 수치를 보였지만, 전체 범위에서 안전성을 보유하고 있는 것으로 평가되었다. 즉, 철만을 대상으로 비교하여 보았더니 Fe-GMP는 pH 7에서는 2ppm, Fe-IMP는 1ppm으로 조사되어 중성 조건에서는 용출효과는 거의 없는 것으로 평가되었는데, 산성 및 염기성 조건으로 갈수록 용출량은 증가하는 것으로 평가되었지만, 침전물 내 함유되어 있는 미네랄의 수치가 Fe-GMP(Fe-GHAC)는 30,000ppm이상, 그리고 Fe-IMP(Fe-IHAC)는 42,000ppm이상으로 킬레이트 결합을 유지하고 있어, 이들은 내산 및 내염기성을 보유하고 있음을 알 수 있었다.Fe-HAC material showed slightly higher mineral distribution compared to Ca-HAC material, but it was evaluated to have safety in the whole range. In other words, compared to only iron, Fe-GMP was investigated to be 2ppm at pH 7, 1ppm Fe-IMP was estimated to have little elution effect in neutral conditions, the amount of elution is increasing toward acidic and basic conditions Although evaluated, the levels of minerals contained in the sediment retained chelate bonds of more than 30,000 ppm of Fe-GMP (Fe-GHAC) and 42,000 ppm of Fe-IMP (Fe-IHAC). It was found to have basicity.
유기태화 구리 및 핵산 복합체의 상기 성상 평가 후 상등액에 용출된 미네랄의 함량 분석을 통해 pH 장기보관 안정성 실험결과를 표 13에 나타내었다.Table 13 shows the pH long-term storage stability test results through the analysis of the content of the minerals eluted in the supernatant after the evaluation of the properties of the organic passivated copper and nucleic acid complex.
표 13
Figure PCTKR2015010677-appb-T000013
Table 13
Figure PCTKR2015010677-appb-T000013
Cu-HAC 소재의 경우의 안전성을 구리만을 대상으로 비교하여 보았더니 Cu-GHAC는 pH 7에서는 20ppm, Fe-IHAC는 1.27ppm으로 조사되어 중성 조건에서는 용출효과는 거의 없는 것으로 평가되었는데, 산성 및 염기성 조건으로 갈수록 용출량은 1,000-3,000ppm범위 이내로 증가하는 것으로 평가되어 안전조건은 pH 4-10범위인 것으로 평가되었다.When comparing the safety of Cu-HAC material with only copper, Cu-GHAC was found to be 20ppm at pH 7 and 1.27ppm of Fe-IHAC, which showed little dissolution effect in neutral conditions. As the conditions were increased, the elution rate was estimated to increase within the range of 1,000-3,000 ppm, and the safety condition was evaluated to be the pH range of 4-10.
침전물 내 함유되어 있는 미네랄의 수치가 Cu-GHAC와 Fe-IHAC 공히 100,000ppm이상의 유기태 효율을 보존하고 있었던 점과 10일 동안 용출수치인 결과로 보면 이들은 내산 및 내염기성을 보유하고 있는 것으로 평가되었다. The levels of minerals contained in the sediments preserved the organic efficiency of more than 100,000 ppm in both Cu-GHAC and Fe-IHAC and their elution values for 10 days were evaluated as having acid and base resistance.
유기태화 아연 및 핵산 복합체의 상기 성상 평가 후 상등액에 용출된 미네랄의 함량 분석을 통해 pH 장기보관 안정성 실험결과를 표 14에 나타내었다.After evaluating the properties of the organo-zinc and nucleic acid complexes, the results of the long-term storage stability test results of the pH of the minerals eluted in the supernatant are shown in Table 14.
표 14
Figure PCTKR2015010677-appb-T000014
Table 14
Figure PCTKR2015010677-appb-T000014
Zn-HAC 소재의 경우의 안전성을 아연만을 대상으로 비교하여 보았더니 Zn-GHAC는 pH 7에서는 25ppm, Zn-IHAC는 366ppm으로 조사되어 중성 조건에서는 용출효과는 거의 없는 것으로 평가되었다.When Zn-HAC materials were compared with zinc only, Zn-GHAC was found to have 25ppm at pH 7 and 366ppm at Zn-IHAC.
내산 및 내염기성을 보유하고 있는지를 조사하여 보았더니 Zn-GHAC소재류는 내산 보다는 염기조건으로 갈수록 용출량은 3ppm으로 감소함에 따라 내염기성이 뛰어난 것으로 판단되었다. 그러나, Zn-IHAC소재류는 내산 및 내염기성을 동시에 보유하는 것으로 조사되어 다른 소재보다는 다소 차이를 보였다.Investigation of the resistance to acid and base resistance showed that Zn-GHAC materials had excellent base resistance as the elution amount decreased to 3 ppm as the base condition rather than acid resistance. However, Zn-IHAC materials were found to have both acid and base resistance at the same time, showing a little difference than other materials.
침전물 내 함유되어 있는 미네랄의 수치가 Zn-GHAC와 Fe-IHAC 공히 10,000ppm이상의 유기태 효율을 보존하고 있었던 점과 10일 동안 용출수치인 결과로 보면 다소 용출되는 수치가 높기는 하지만 이들은 내산 및 내염기성을 보유하고 있는 것으로 평가되었다. Although the levels of minerals contained in the sediments preserved organic efficiency of more than 10,000 ppm in both Zn-GHAC and Fe-IHAC and the results of elution values for 10 days, they were slightly higher. It was assessed to possess.
실험예 7: 고분자 핵산 중합체의 유기태화 미네랄 및 핵산 복합체의 제조 가능성 확인 Experimental Example 7: Confirmation of preparation of organic passivated mineral and nucleic acid complex of the polymer nucleic acid polymer
1) 효모추출물 특성 확인1) Confirmation of yeast extract characteristics
가. 분자량end. Molecular Weight
S. cereviase OKK110426에서 추출한 추출물 동결건조 시료와 C.utilis에서 분리한 추출물(일본 KOHJIN사, 제품명 : AROMILD)을 각각 준비하였으며, FPLC분석간 표준체로서는 분말 GMP(1g)+분말 CMP(1g)+분말 AMP(1g)+분말 IMP(1g)혼합 후, 정제수 50g mass up한 조성액에 대하여 FPLC분석을 실시한 비교구(SGCAI)와 분자량이 309로 알려진 NANA를 1%(w/w) 희석후 FPLC분석을 실시한 NANA시험구를 사용하였다. S. cereviase isolated from extract of freeze-dried sample and C.utilis extracted from OKK110426 extract (JP KOHJIN Co., product name: AROMILD) of each were prepared, as cross pyojunche FPLC analysis powder GMP (1g) + powder CMP (1g) + Powder After mixing AMP (1g) + powder IMP (1g), FPLC analysis was performed on the composition obtained by FPLC analysis of 50g mass up of purified water and 1% (w / w) dilution of NANA, whose molecular weight is 309. A NANA test zone was used.
FPLC 시스템(AKATA, 스웨덴)은 UPC900+D920+CU950을 이용하여, Superdex Pep 10/300GL컬럼으로, 포스페이트 버퍼, 유속 0.5ml/min, 압력 0.84PSI로 측정하여 그 결과를 표 15에 나타내었다.The FPLC system (AKATA, Sweden) was measured in a Superdex Pep 10 / 300GL column using UPC900 + D920 + CU950, phosphate buffer, flow rate 0.5ml / min, pressure 0.84PSI and the results are shown in Table 15.
표 15
Figure PCTKR2015010677-appb-T000015
Table 15
Figure PCTKR2015010677-appb-T000015
분자량을 알고 있는 표준체인 NANA(MW 309)를 기준으로 효모추출물 내 함유되어 있는 핵산류(5종 혼합액)을 기준으로 FPLC분석을 통한 분자량 검출시간을 검정하여 보았더니 분자량이 309인 경우는 42.44min.에서 검출되었다. Based on NANA (MW 309), a standard that knows the molecular weight, based on nucleic acids (5 mixtures) contained in yeast extract, the molecular weight detection time was analyzed by FPLC analysis. When the molecular weight was 309, it was 42.44 min. Detected in.
이를 기준으로 S.cereviase CKK110426의 경우는 41.83min.에서 90%가 Aromild의 경우는 42.08min.에서 90%가 검출되었다.On this basis, if the S.cereviase CKK110426 in the case of 90% in 41.83min. The Aromild was 90% detected by the 42.08min..
이는 NANA의 분자량이 309임을 감안하고 핵산의 분자량이 392.17(IMP)~407.20(GMP)임을 감안하면 효모추출물의 경우, 정립된 계산식에 산출시 69%가 분자량 1,000 Da 이상의 고분자임을 알 수 있었다.Considering that the molecular weight of NANA is 309 and considering that the molecular weight of the nucleic acid is 392.17 (IMP) to 407.20 (GMP), it can be seen that 69% of the yeast extract is a polymer having a molecular weight of 1,000 Da or more when calculated in the formula.
나. 핵산 함유량I. Nucleic acid content
효모추출물 내 핵산의 함유량 조사를 하여 보았더니, 표준체 핵산 19종 대비 Aromild(KOHJIN사, 일본)내 IMP는 10.5%, GMP 10.5%, CMP는 7.2% 그리고 UMP는 8,2%였으나, AMP의 경우는 검출이 되지 않았으며, 이때 전체 핵산류 총합은 36.4%였다. 또한 S.cereviase CKK110426 추출물내 핵산류를 검정하여 보았더니, CMP는 6.57%, UMP는 8.21%ppm, GMP 4.89%, IMP 2.74% 그리고 AMP의 경우는 0.66%의 함유량을 보유하고 있었으며 총량은 약 23.1%였다. The content of nucleic acid in yeast extracts was 10.5%, GMP 10.5%, CMP 7.2% and UMP 8,2% in Aromild (KOHJIN, Japan) compared to 19 standard nucleic acids. Was not detected, and the total nucleic acid was 36.4%. Nucleic acids in the S. cereviase CKK110426 extract were assayed and found to contain 6.57% CMP, 8.21% ppm for UMP, 4.89% for GMP, 2.74% for IMP, and 0.66% for AMP. Was%.
다. 미네랄 함유량All. Mineral content
효모추출물 내의 미네랄 함량은 IPC 분석법으로 분석하여 표 16에 나타내었다.Mineral content in yeast extract is shown in Table 16 by the IPC analysis.
표 16
Figure PCTKR2015010677-appb-T000016
Table 16
Figure PCTKR2015010677-appb-T000016
2) 시료의 제조방법2) Sample preparation method
가. 비열처리 방식에 의한 시료의 제조end. Preparation of Samples by Non-thermal Treatment
가) 제조예7.1-1A) Manufacturing Example 7.1-1
유기태화 기질인 효모추출물이 용해에 따른 침전물을 형성하는지를 파악하기 위하여 실험을 실시하였으며, 이를 위하여 효모추출물 6.66g 대비 정제수를 혼합하되 30g 되는 비율로 mass-up후 이를 교반(150rpm, 1시간, 25℃) 용해시켰다.An experiment was conducted to determine whether yeast extract, an organic passivation substrate, forms precipitates upon dissolution. For this, mixed purified water with 6.66 g of yeast extract was mixed, but stirred after mass-up at a rate of 30 g (150rpm, 1 hour, 25 C) was dissolved.
나) 제조예 7.1-2B) Preparation example 7.1-2
유기태화 기질인 GMP 대비 무기태 철분의 혼합반응에 따른 유기태화 반응여부와 관련한 불용성 침전물 형성여부 및 반응 패턴을 조사하기 위하여, 실험예 3의 황산제1철 분말 0.040g과 GMP 분말 6.66g을 혼합한 후 여기에 정제수를 32g 되게 혼합 및 교반(150rpm, 1시간, 25 ℃)시키는 조건으로 실시하였다.In order to investigate the insoluble precipitate formation and the reaction pattern related to the organic passivation reaction according to the mixing reaction of inorganic iron powder with GMP, the organic passivation substrate, 0.040g of ferrous sulfate powder of Experimental Example 3 and 6.66g of GMP powder were mixed. After that, the mixture was mixed with 32 g of purified water and stirred (150 rpm, 1 hour, 25 ° C.).
다) 제조예 7.1-3 내지 8C) Preparation Examples 7.1-3 to 8
효모추출물(S.cereviase CKK110426) 기질로 하여 무기태 미네럴의 첨가량을 증가 시키면서 유기태화 반응을 유도에 따른 성상변화 및 생산수율 패턴을 조사한 결과는 다음과 같다.As a result of increasing the amount of inorganic minerals added as a yeast extract ( S.cereviase CKK110426) substrate, the characteristics change and yield patterns of the organic passivation reaction were investigated.
제조예 7.1-3은 황산제1철 분말 0.040g(순수Fe함유량: 0.008g) 대비 효모추출물을 6.66g을 혼합한후 여기에 정제수를 28.6g을 첨가 및 교반(150rpm, 1시간)을 통하여 유기태화 반응을 유도하였다.Preparation Example 7.1-3 was prepared by mixing 6.66 g of yeast extract with respect to ferrous sulfate powder 0.040 g (pure Fe content: 0.008 g), and adding 28.6 g of purified water to the organic solvent through stirring (150 rpm, 1 hour). Induced the passivation reaction.
제조예 7.1-4는 황산제1철 분말을 0.080g(순수 Fe함유량 : 0.016g)을 첨가하는 조건 이외에는 제조예 7.1-3과 동일하게 실시하였다.Production Example 7.1-4 was carried out in the same manner as in Production Example 7.1-3 except that 0.080 g (pure Fe content: 0.016 g) was added to the ferrous sulfate powder.
제조예 7.1-5는 황산제1철 분말을 0.12g(순수 Fe함유량 : 0.024g)을 첨가하는 조건 이외에는 제조예 7.1-3과 동일하게 실시하였다.Production Example 7.1-5 was carried out in the same manner as in Production Example 7.1-3 except that 0.12 g of ferrous sulfate powder (pure Fe content: 0.024 g) was added.
제조예 7.1-6은 황산제1철 분말을 0.16g(순수 Fe함유량 : 0.032g)을 첨가하는 조건 이외에는 제조예 7.1-3과 동일하게 실시하였다. Production Example 7.1-6 was carried out in the same manner as in Production Example 7.1-3 except that 0.16 g (pure Fe content: 0.032 g) was added to the ferrous sulfate powder.
제조예 7.1-7은 황산제1철 분말을 0.20g(순수 Fe함유량 : Fe 0.04g)을 첨가하는 조건 이외에는 제조예 7.1-3과 동일하게 실시하였다.Production Example 7.1-7 was carried out in the same manner as in Production Example 7.1-3 except that 0.20 g (pure Fe content: Fe 0.04 g) was added to the ferrous sulfate powder.
제조예 7.1-8은 황산제1철 분말을 0.30g(순수 Fe함유량 : Fe 0.06g)을 첨가하는 조건 이외에는 제조예 7.1-3과 동일하게 실시하였다.Production Example 7.1-8 was carried out in the same manner as in Production Example 7.1-3 except that 0.30 g (pure Fe content: Fe 0.06 g) was added to the ferrous sulfate powder.
나. 열처리 방식에 의한 시료의 제조I. Preparation of Samples by Heat Treatment
제조예 7.2-1 내지 7.2-8은 상기 제조예 7.1-1 내지 7.1-8과 각각 동일하게 수행하되, 다만 최종 혼합 공정후, 80 ℃에서, 150 rpm으로 30 분간 교반하면서 가열하는 공정만 더 추가하였다.Preparation Examples 7.2-1 to 7.2-8 are carried out in the same manner as Preparation Examples 7.1-1 to 7.1-8, but after the final mixing process, only a step of heating with stirring at 150 rpm for 30 minutes at 80 ° C. is further added. It was.
3) 실험결과3) Experiment result
성상 평가(침전, 용해, 응고, 부착, 겔화 현상), 생산 수율 및 침전물 내 킬레이트된 미네랄 함유량은 실험예 1과 동일하게 확인하였다.Appearance evaluation (precipitation, dissolution, coagulation, adhesion, gelation phenomenon), production yield and chelated mineral content in the precipitate were confirmed in the same manner as in Experiment 1.
표 17
Figure PCTKR2015010677-appb-T000017
Table 17
Figure PCTKR2015010677-appb-T000017
표 18
Figure PCTKR2015010677-appb-T000018
Table 18
Figure PCTKR2015010677-appb-T000018
도 14는 유기태화 반응 완료 후 25 ℃, 4,000 rpm에서 20분 원심분리 후의 사진으로 A는 제조예 7.1-1 부터 제조예 7.1-8까지의 사진이고, B는 제조예 7.2-1 부터 제조예 7.2-8까지의 사진이다.14 is a photograph after centrifugation at 25 ° C. and 4,000 rpm for 20 minutes after completion of the organic passivation reaction. A is a photograph from Preparation Example 7.1-1 to Preparation Example 7.1-8, and B is Preparation Example 7.2-1 to Preparation Example 7.2. It is a photograph up to -8.
핵산 고함유 단일 효모추출물 기질만을 정제수에 용해시킨 제조예 7.1-1의 경우는 용해성은 우수하였으나, 자체 효모가 보유한 미네과 결합되어서인지 별도 첨가된 황산제1철 분말과의 유기태화 반응은 유발되지 않았다. In Preparation Example 1-1, in which only a single yeast extract substrate containing high nucleic acid was dissolved in purified water, the solubility was excellent, but the organic passivation reaction with the ferrous sulfate powder added separately was not induced, because it was combined with Mine contained in the yeast. .
제조예 7.1-2의 GMP 분말을 기질로 하여 Fe를 유기태화 반응을 유도한 경우에서, 기질 대비 생산수율은 131%를 나타내었으며, 현장생산 편리성과 관련된 물리적 성상변화를 살펴보면 유기태화 반응에 따른 불용성화 되면서 침전되는 효능 또한 우수한 것으로 평가 되었다. In the case of inducing the organic passivation reaction of Fe using the GMP powder of Preparation Example 7.1-2, the yield was 131% compared to the substrate, and the physical property change related to the convenience of on-site production was observed. The precipitation effect was also evaluated as excellent.
핵산 GMP 기질 대비 동량의 효모추출물에 대하여 황산제1철 분말을 저농도(1배 기준)에서 고농도(7.5배)까지 점진적으로 농도구배를 부여한 결과, 유기태화에 따른 생산수율은 저농도 첨가시 11.9%에서 점진적으로 증가하는 패턴이였으며 최대 7,5배 첨가한 제조예 7.1-8에서는 25,8%의 생산수율을 보였다. 상기 결과로부터 효모추출물을 이용했을 때의 생산 수율이 GMP 분말을 기질로 하는 것보다 현저히 낮기 때문에 유기태화를 위한 기질로 적합하지 않은 것으로 조사되었다.Concentration gradients of ferrous sulfate powder from low concentration (one-fold basis) to high concentration (7.5-fold) were applied to the yeast extract of the same amount compared to the nucleic acid GMP substrate, and the yield of organic passivation was 11.9% when low concentration was added. The pattern was gradually increased, and production yield of 25,8% was obtained in Preparation Example 8, which was added up to 7,5 times. From the above results, it was found that the production yield when using the yeast extract is significantly lower than that of the GMP powder as a substrate, which is not suitable as a substrate for organic passivation.
제조예 7.2-1 내지 제조예 7.2-8에서 가열처리 조건을 부가한 경우에도 효모추출물에서나 GMP 분말 기질에서 모두 생산 수율의 증가는 확인할 수 없고, 비열처리 제Even when heat treatment conditions were added in Preparation Examples 7.2-1 to 7.2-8, no increase in production yield was observed in the yeast extract or in the GMP powder substrate.
조예와 유사한 패턴을 나타내었다.A pattern similar to the example was shown.

Claims (7)

  1. 퓨린염기 함유 핵산 단량체 또는 이의 염 분말, 및 용해엔탈피가 음성인 수용성 미네랄 분말을 혼합한 후, 상기 혼합물에 물을 혼합하여 반응시키는 단계; 또는 퓨린염기 함유 핵산 단량체 또는 이의 염 분말과 물을 혼합하여 용해시킨 후, 상기 수용액에 용해엔탈피가 음성인 수용성 미네랄 분말을 혼합하여 반응시키는 단계;를 포함하는 유기태화 미네랄 및 핵산 복합체의 제조방법.Mixing a purine base-containing nucleic acid monomer or a salt powder thereof, and a water-soluble mineral powder having a negative enthalpy, and then reacting the mixture by mixing water; Or mixing and dissolving a purine base-containing nucleic acid monomer or a salt powder thereof and water, followed by mixing and reacting a water-soluble mineral powder having a negative dissolution enthalpy in the aqueous solution.
  2. 제1항에 있어서, 상기 퓨린염기 함유 핵산 단량체 또는 이의 염 분말, 용해엔탈피가 음성인 수용성 미네랄 분말, 및 물의 혼합 순서에 관계없이, 상기 퓨린염기 함유 핵산 단량체 또는 이의 염 분말, 및 용해엔탈피가 음성인 수용성 미네랄 분말의 혼합비율은 1:5 내지 95:1 중량비인 것을 특징으로 하는 유기태화 미네랄 및 핵산 복합체의 제조방법.The purine base-containing nucleic acid monomer or salt powder thereof, and the enthalpy thereof are negative, regardless of the mixing order of the purine base-containing nucleic acid monomer or salt powder thereof, the water-soluble mineral powder having a negative dissolution enthalpy, and water. The mixing ratio of the phosphorus water-soluble mineral powder is 1: 5 to 95: 1 weight ratio method for producing an organic passivated mineral and nucleic acid complex.
  3. 제1항에 있어서, 상기 퓨린염기 함유 핵산 단량체 또는 이의 염 분말, 용해엔탈피가 음성인 수용성 미네랄 분말, 및 물의 혼합 순서에 관계없이, 상기 용해엔탈피가 음성인 수용성 미네랄 분말과 물의 혼합비율은 1:50 내지 2:1 중량비인 것을 특징으로 하는 유기태화 미네랄 및 핵산 복합체의 제조방법.The mixing ratio of water-soluble mineral powder and water of claim 1, wherein the purine base-containing nucleic acid monomer or a salt powder thereof, a water-soluble mineral powder having negative dissolution enthalpy, and water are mixed in an order of 1: Process for producing an organic passivated mineral and nucleic acid complex, characterized in that 50 to 2: 1 by weight.
  4. 제1항에 있어서, 상기 물을 첨가하여 반응시키는 과정은 10 내지 100 ℃에서 30 분 내지 5일 동안 수행되는 것을 특징으로 하는 유기태화 미네랄 및 핵산 복합체의 제조방법.The method of claim 1, wherein the reaction by adding water is carried out at 10 to 100 ° C. for 30 minutes to 5 days.
  5. 제1항에 있어서, 상기 퓨린염기 함유 핵산 단량체는 이노신산, 구아닐산 및 크산틸산 중에서 선택되는 어느 하나 이상의 핵산 단량체인 것을 특징으로 하는 유기태화 미네랄 및 핵산 복합체의 제조방법.The method according to claim 1, wherein the purine base-containing nucleic acid monomer is at least one nucleic acid monomer selected from inosinic acid, guanylic acid and xanthyl acid.
  6. 청구항 제1항 내지 제5항 중 어느 한 항의 방법으로 제조되고, 미네랄 및 핵산이 킬레이트 결합된 킬레이트 화합물인 것을 특징으로 하는 유기태화 미네랄 및 핵산 복합체.An organic passivated mineral and nucleic acid complex prepared by the method of any one of claims 1 to 5, wherein the mineral and nucleic acid are chelate-bonded chelating compounds.
  7. 제6항에 있어서, 상기 미네랄은 칼슘, 아연, 마그네슘, 칼륨, 철, 구리, 셀렌, 크롬, 몰리브덴 및 요오드 중에서 선택되는 어느 하나의 미네랄 또는 둘 이상의 복합 미네랄인 것을 특징으로 하는 유기태화 미네랄 및 핵산 복합체.According to claim 6, The mineral is an organic passivated mineral and nucleic acid, characterized in that any one selected from calcium, zinc, magnesium, potassium, iron, copper, selenium, chromium, molybdenum and iodine or two or more complex minerals Complex.
PCT/KR2015/010677 2014-10-13 2015-10-08 Method for producing organic mineral and nucleic acid composite WO2016060411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0137928 2014-10-13
KR1020140137928A KR101676327B1 (en) 2014-10-13 2014-10-13 Preparation method for organic mineral and nucleotide complex

Publications (1)

Publication Number Publication Date
WO2016060411A1 true WO2016060411A1 (en) 2016-04-21

Family

ID=55746901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010677 WO2016060411A1 (en) 2014-10-13 2015-10-08 Method for producing organic mineral and nucleic acid composite

Country Status (2)

Country Link
KR (1) KR101676327B1 (en)
WO (1) WO2016060411A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200019054A1 (en) * 2017-02-07 2020-01-16 Arisawa Mfg. Co., Ltd. Photosensitive resin composition, solder resist film using said photosensitive resin composition, flexible printed circuit and image display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030050685A (en) * 2001-12-19 2003-06-25 주식회사 동원에프앤비 Compound of calcium-nucleic acid and manufacturing method of the same
CN1602959A (en) * 2004-08-05 2005-04-06 颜怀玮 Nutrient product for enhancing immunity, preventing cancer and prolonging life of cancer patient and its preparing method
KR101166546B1 (en) * 2009-11-20 2012-07-19 매일유업주식회사 Preparation method for milk protein with high content of organic calcium
US20140004154A1 (en) * 2010-12-16 2014-01-02 Steve Pascolo Pharmaceutical Composition Consisting Of RNA Having Alkali Metal As Counter Ion And Formulated With Dications
CN104012659A (en) * 2014-06-26 2014-09-03 中恩(天津)营养科技有限公司 Formula powder for phenylketonuria children and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030050685A (en) * 2001-12-19 2003-06-25 주식회사 동원에프앤비 Compound of calcium-nucleic acid and manufacturing method of the same
CN1602959A (en) * 2004-08-05 2005-04-06 颜怀玮 Nutrient product for enhancing immunity, preventing cancer and prolonging life of cancer patient and its preparing method
KR101166546B1 (en) * 2009-11-20 2012-07-19 매일유업주식회사 Preparation method for milk protein with high content of organic calcium
US20140004154A1 (en) * 2010-12-16 2014-01-02 Steve Pascolo Pharmaceutical Composition Consisting Of RNA Having Alkali Metal As Counter Ion And Formulated With Dications
CN104012659A (en) * 2014-06-26 2014-09-03 中恩(天津)营养科技有限公司 Formula powder for phenylketonuria children and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HERRERO, LUIS A. ET AL.: "Interactions in solution of calcium(II) and copper(II) with nucleoside monophosphates: a calorimetric study", JBIC, vol. 5, no. 2, 2000, pages 269 - 275 *
ZEA, CORBIN J. ET AL.: "Thermodynamics of binding of divalent magnesium and manganese to uridine phosphates: implications for diabetes-related hypo-magnesaemia and carbohydrate biocatalysis", CHEMISTRY CENTRAL JOURNAL, vol. 2, 2008 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200019054A1 (en) * 2017-02-07 2020-01-16 Arisawa Mfg. Co., Ltd. Photosensitive resin composition, solder resist film using said photosensitive resin composition, flexible printed circuit and image display device
US11609493B2 (en) * 2017-02-07 2023-03-21 Arisawa Mfg. Co., Ltd. Photosensitive resin composition, solder resist film using said photosensitive resin composition, flexible printed circuit and image display device

Also Published As

Publication number Publication date
KR20160043480A (en) 2016-04-21
KR101676327B1 (en) 2016-11-15

Similar Documents

Publication Publication Date Title
AU731776B2 (en) Crystals of benzimidazole derivatives and their production
ES8503654A1 (en) Dihydropyridine anti-ischaemic and antihypertensive agents, processes for their production, and pharmaceutical compositions containing them.
WO2016060411A1 (en) Method for producing organic mineral and nucleic acid composite
WO2016068565A1 (en) Method for preparing organic mineral-reinforced milk protein by using nucleic acid as catalyst
US4144238A (en) Process for the production of pure white 2-chloronicotinic acid
JPS60233102A (en) Production of chitosan derivative
Boyer et al. Preparation of picryl chloride
CN101233118A (en) Method for the production of 2,4,6-trimercapto-1,3,5-triazine
EP0407816A2 (en) Base modified nucleosides
NL8006367A (en) PROCESS FOR THE PREPARATION OF 7-AMINO-DESACETOXY-CEPHALOSPORIC ACID DERIVATIVES.
PL142255B1 (en) Process for preparing novel derivatives of ortho-condensed pyrrole
KR102156745B1 (en) Preparation method for organic mineral and nucleotide complex
KR102156746B1 (en) Method for enlarging production efficiency of organic mineral using calcium as a catalyst
US6486318B1 (en) Single pot process for preparing metal picolinates from alpha picoline
US3665005A (en) Process for preparing 4-hydroxy-6,7-substituted-3-carboalkoxyquinolines
McKee et al. 6-(and 7-)-Chloro-4-(1-diethylamino-4-pentylamino)-2-(p-methoxyphenyl)-quinazoline Dihydrochlorides
Rijkers et al. The use of phosphorus oxychloride in the synthesis of amino acid p‐nitroanilides
Kaye Further observations on the adenosine phosphatases of cobra venom
US3352860A (en) Process for the manufacture of organinc nitrogen-halogen compounds
EP0008277B1 (en) Benzopyrano derivatives, pharmaceutical compositions containing them and processes for preparing the compounds and compositions
Attanasi et al. Convenient access to new 2-selenazolin-4-one and 2-selenazoline derivatives from 1, 2-diaza-1, 3-butadienes
ES8402822A1 (en) Process for the preparation of 2-halogen-pyridine derivatives.
Krichevsky et al. Synthesis and Chemical Conversions of 2-Chloro-3-cyano-4-methylamino-5-nitropyridine
Kudo et al. Synthesis of [1] benzothienonaphthyridines
GB2167412A (en) Pyridinecarboxamide compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851218

Country of ref document: EP

Kind code of ref document: A1