WO2016060139A1 - Bridge-inspecting robot system - Google Patents

Bridge-inspecting robot system Download PDF

Info

Publication number
WO2016060139A1
WO2016060139A1 PCT/JP2015/078968 JP2015078968W WO2016060139A1 WO 2016060139 A1 WO2016060139 A1 WO 2016060139A1 JP 2015078968 W JP2015078968 W JP 2015078968W WO 2016060139 A1 WO2016060139 A1 WO 2016060139A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
camera
carriage
suspension
bridge
Prior art date
Application number
PCT/JP2015/078968
Other languages
French (fr)
Japanese (ja)
Inventor
野中 俊一郎
渡辺 幹夫
直孝 式田
文敬 山崎
Original Assignee
富士フイルム株式会社
一般財団法人首都高速道路技術センター
株式会社イクシスリサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 一般財団法人首都高速道路技術センター, 株式会社イクシスリサーチ filed Critical 富士フイルム株式会社
Publication of WO2016060139A1 publication Critical patent/WO2016060139A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges

Definitions

  • the present invention relates to a bridge inspection robot system suitable for, for example, inspecting the lower surface of a bridge floor slab and steel girder, etc., and has applied for a patent related to the results of commissioned research by the national government (2014-2018, a new administrative agency).
  • Energy and Industrial Technology Development Organization “Development project for social issues such as infrastructure maintenance and renewal, etc./Development of robot technology for infrastructure maintenance and non-destructive inspection equipment / Study on a robot approach to close proximity visual inspection equipped with a compound eye imaging device "Development" contract research, patent application subject to Article 19 of the Industrial Technology Strengthening Act).
  • Various bridges such as river bridges and viaducts are regularly inspected as part of maintenance management after erection to confirm the deterioration and damage of components.
  • the inspection of the bridge is generally a so-called proximity inspection in which an inspector approaches the member and visually observes the member.
  • a work trolley equipped with a camera and configured to run while being engaged with the lower end of a bridge girder For example, in the work cart described in Japanese Patent Application Laid-Open No. 2003-119721, drum-shaped wheels are respectively provided at the tips of a plurality of arms that are swingably attached to the work cart, and these drum-shaped wheels are used for bridge I.
  • the both ends of the lower flange of the girders made of steel molds are sandwiched and the wheels are driven to drive the work carriage along the girders.
  • the work cart is remotely controlled for traveling by the wheel and the operation of the camera, and approaches a predetermined part of the bridge to take a picture with the camera. As a result, a remote inspector visually inspects the camera image and inspects the bridge.
  • the carriage In the bridge inspection device described in Japanese Patent Application Laid-Open No. 2013-194457, two wire ropes constructed along a bridge girder, a carriage traveling on the wire rope, and an inspection device mounted on the carriage are used.
  • the bridge is being inspected.
  • the carriage In addition to the traveling wheels, the carriage includes reaction force wheels that contact the lower flanges of the girders. The reaction force wheel is pressed against the lower flange by the damper device, and the traveling wheel is pressed against the wire rope by the reaction force accompanying this, and the carriage is reliably moved along the girder.
  • some highway bridges are composed of piers, steel girder, floor slabs, etc.
  • the pier is a foundation member that is spaced apart in the longitudinal direction of the bridge and receives a steel girder, floor slab, and the like.
  • Steel girder is arranged on the upper surface of the pier.
  • the steel girder is composed of a plurality of main girders, a horizontal girder connecting them, a counter-tilt structure, and the like, and a floor slab made of, for example, reinforced concrete is fixed to the upper part.
  • the main girder is constituted by connecting a plurality of I-type steel materials with an attachment plate.
  • the I-type steel material is formed in an I-type from a vertical plate and flanges arranged on upper and lower ends thereof.
  • the attachment plate is attached to the I-type steel material by fastening with bolts and nuts, welding, or the like.
  • the anti-tilt structure is a structure in which a plurality of members are combined in, for example, a triangle.
  • the steel girder is provided with a horizontal girder and various reinforcing members such as an inclined structure between the main girders, and a connecting plate and its fixing bolts are arranged at regular intervals in the longitudinal direction.
  • various reinforcing members and attachment plates obstruct the progress of the cart.
  • a vertical stiffener may be provided on the side surface of the vertical plate of the main girder.
  • This vertical stiffener may extend in a direction perpendicular to the vertical plate and have a width that reaches the edge of the lower flange.
  • the camera is provided with a support member and the camera is projected upward from the carriage to capture an image of the inside of the steel girder, the support member hits various reinforcing members, which hinders the progress of the work carriage.
  • the work carriage disclosed in Japanese Patent Laid-Open No. 2003-119721 has a problem that the engagement of the wheel is easily released when the thickness of the lower flange with which the drum-shaped wheel is engaged is large. For this reason, there exists a possibility that a wheel may drop
  • An object of the present invention is to provide a bridge inspection robot system capable of reliably inspecting a lower surface portion of a bridge while reducing restrictions on movement due to the structure of the bridge. It is another object of the present invention to provide a bridge inspection robot system that can easily inspect the main girder and floor slab on the opposite side of the inspection object without re-installing the camera or carriage.
  • the bridge inspection robot system of the present invention inspects a bridge in which a plurality of main girders having a lower flange are arranged apart from each other in a direction perpendicular to the longitudinal direction of the main girder.
  • the bridge inspection robot system includes a first suspension carriage and a second suspension carriage, a rail, a camera, and an image processing unit.
  • the first suspension carriage and the second suspension carriage are attached to a plurality of main girders and travel in the longitudinal direction of the main girders.
  • the rail is attached to the first suspension carriage and the second suspension carriage, is formed longer than the interval between the main girders to which the first suspension carriage and the second suspension carriage are attached, and protrudes from at least one suspension carriage.
  • the camera travels attached to a rail and moves beyond one suspended carriage.
  • the image processing unit identifies a damaged portion of the bridge based on the camera data.
  • the first suspension carriage and the second suspension carriage are in contact with the upper surface of the lower flange of the main girder and are spaced apart in the longitudinal direction of the main girder, and the first wheel and the second wheel. It is preferable to have a first displacement portion and a second displacement portion that are displaced between a travel position that individually contacts the upper surface of the lower flange and a retracted position that is retracted from the upper surface of the lower flange.
  • each wheel can be retracted to pass a portion where the protrusion is present.
  • the retreat position refers to a position where the wheel does not hit an obstacle when the suspended carriage travels and does not become an obstacle to travel.
  • the first displacement unit and the second displacement unit have an obstacle sensor that detects an obstacle that is an obstacle to travel of the first wheel and the second wheel, and the first wheel is based on an obstacle detection signal from the obstacle sensor.
  • the offset length in the longitudinal direction of the main girder of the first wheel and the second wheel, which are arranged apart from the longitudinal direction of the main girder in the longitudinal direction of the main girder, is longer than the longitudinal length of the obstacle. .
  • a wheel that is in contact with the lower flange and maintains the suspended state is always secured, so that the suspended carriage does not fall off the lower flange.
  • the first suspension carriage and the second suspension carriage are in contact with the upper surface of the lower flange of the main girder, and are arranged with a first wheel and a second wheel that are spaced apart in the longitudinal direction of the main girder, and a first wheel and a second wheel. It is preferable to have the 1st displacement part and the 2nd displacement part which displace between the running position which contacts the upper surface of a lower flange separately, and the climbing position which gets over the protrusion from the upper surface of a lower flange. In this case, if there is a protrusion in the traveling direction of the suspension carriage, it can pass over it.
  • the camera has a camera body, an elevating part that moves the camera body up and down, and a camera carriage that moves the elevating part on a rail.
  • the camera can be set at an arbitrary position on the lower surface of the bridge, and an image without a blind spot can be obtained.
  • the camera body is preferably a binocular camera that obtains a plurality of parallax images.
  • the size and position of the damaged portion of the bridge can be known using parallax.
  • the image processing unit detects a position of a member between a plurality of main beams based on a plurality of parallaxes as a distance from the camera body, specifies a three-dimensional coordinate position of the member based on a moving distance of the suspension carriage and the camera carriage, It is preferable to specify the photographing position of the camera body that avoids the member based on the three-dimensional coordinate position. In this case, it is possible to obtain a fluoroscopic image without various reinforcing members.
  • the first suspension carriage and the second suspension carriage have a lower surface contact wheel that contacts the lower surface of the lower flange.
  • the first wheel and the second wheel can be reliably brought into contact with the upper surface of the lower flange, and the posture of the suspension carriage is maintained when the first wheel or the second wheel is in the retracted position. Therefore, stable running is possible.
  • a controller for remotely operating the first and second suspension carts and the camera it is preferable to have a controller for remotely operating the first and second suspension carts and the camera. In this case, a desired area can be photographed by setting the camera at an arbitrary position.
  • the present invention it is possible to reliably inspect the lower surface portion of the bridge with less restriction on movement due to the structure of the bridge.
  • the main girder and the bottom of the floor slab on the opposite side of the inspection object can be easily inspected without re-installing the camera or the carriage.
  • FIG. It is a front view which shows the bridge inspection state of the bridge inspection robot system of this invention.
  • FIG. It is a front view which shows the movement of a suspension cart and a camera. It is a front view which notches and shows a part of suspension cart. It is a top view which shows arrangement
  • the bridge inspection robot system 10 of the present invention includes a first suspension carriage 11 and a second suspension carriage 12, a rail 13, and an obstacle sensor (obstacle detection unit) 14 (see FIG. 4).
  • the camera 15 and the image processing unit 16 are provided.
  • the bridge 20 to be inspected is composed of, for example, a bridge pier 21, a steel slab girder 22, and a floor slab 23 made of reinforced concrete, and the floor slab 23 is fixed on the pier 21 by a steel spar 22.
  • the longitudinal direction of the bridge is defined as the X-axis direction
  • the width direction orthogonal to the longitudinal direction of the bridge is defined as the Y-axis direction
  • the vertical direction is described as the Z-axis direction.
  • the steel girder 22 includes a plurality of main girders 25 arranged in the longitudinal direction of the bridge 20, and reinforcement such as a horizontal girder (not shown) that connects these main girders 25 and a tilting structure 26. It is comprised from the member.
  • the main girder 25 is configured by connecting a plurality of I-type steel materials 30 by means of an attachment plate 31.
  • the I-type steel material 30 has an I-shaped cross section in which an upper flange 30b is arranged at the upper end of the vertical plate 30a and a lower flange 30c is arranged at the lower end.
  • the attachment plate 31 is attached to the I-type steel material 30 by fastening with bolts and nuts (not shown), welding, or the like, and connects the I-type steel materials 30 to each other in the X-axis direction.
  • the anti-tilt structure 26 is configured as a reinforcing member based on a triangle using an L-shaped steel material 27, a mounting plate 28, and the like.
  • Various members such as a load distribution cross beam and a reinforcing cross beam are arranged between the I-type steel members 30 in addition to the counter tilting structure 26, but these are not shown.
  • the first suspension carriage 11 includes a rectangular base 40, first to third wheels 41 to 43 attached to the base 40, a lower surface contact wheel 44, and a connecting block 45 (see FIG. 4). 2).
  • the first to third wheels 41 to 43 are displaced by the first to third displacement portions 46 to 48 between a traveling position indicated by a solid line in FIGS. 2 and 3 and a retracted position indicated by a two-dot chain line.
  • a certain position that is the maximum opening angle is set as the retreat position so that all obstacles predicted in advance can be retreated.
  • the position may be any position where the wheels 41 to 43 do not hit the obstacle, and the retraction position (retraction angle) may be changed according to the size of the obstacle.
  • the first wheel 41 and the second wheel 42 are provided near one side edge of the base 40 and near the corners on the front end side and the rear end side.
  • the third wheel 43 is provided at an intermediate position in the X direction near the other side edge of the base 40.
  • the left and right wheels are arranged so as to be shifted in the X-axis direction between the first wheel 41 and the third wheel 43 and between the third wheel 43 and the second wheel 42, for example.
  • the shift length (offset length) L2 is set longer than the obstacle length L1 in the X-axis direction.
  • the lower surface contact wheel 44 is attached to the center of the base 40 by a support bracket 50.
  • the support bracket 50 rotatably holds the lower surface contact wheel 44 and presses the lower surface contact wheel 44 toward the lower surface of the lower flange 30c by a coil spring (not shown).
  • the support bracket 50 is not displaced like the first to third displacement portions 46 to 48.
  • the wheels 41 to 44 have a built-in motor, and the wheels 41 to 44 rotate in synchronization with the control of the first controller 51. Accordingly, the first suspension carriage 11 travels in the X direction while being suspended downward from the lower flange 30c. Each wheel 41 to 44 may be rotated by an external motor instead of the motor built-in type wheel.
  • the first displacement portion 46 includes a wheel holding bracket 55 and a swinging portion 56 that swingably holds the wheel holding bracket 55.
  • the wheel holding bracket 55 is bent in an L shape so that the first wheel 41 is perpendicular to the upper surface of the lower flange 30c.
  • the swinging portion 56 of the first displacement portion 46 swings the wheel holding bracket 55 by a motor (not shown) to bring the first wheel 41 into contact with the upper surface of the lower flange 30c (indicated by a solid line), and the lower flange It is displaced between the retracted position retracted from the upper surface of 30c (indicated by a two-dot chain line).
  • the other second displacement portion 47 (see FIG. 4) and the third displacement portion 48 are configured in the same manner as the first displacement portion 46.
  • the second suspension carriage 12 is also configured in the same manner as the first suspension carriage 11.
  • the arrangement of the wheels 41 to 43 is opposite to that of the first suspension carriage 11.
  • the first suspension carriage 11 and the second suspension carriage 12 are provided with an obstacle sensor 14 that detects an obstacle ahead of each of the wheels 41 to 43 in the traveling direction.
  • the obstacle sensor 14 detects an obstacle having such a height that the wheels 41 to 43 cannot get over, such as the attachment plate 31 and the mounting bolt nut.
  • a sensor that detects an obstacle mechanically by an actuator or a sensor that can detect an obstacle by optical, magnetic, or other methods is used.
  • a rail 13 is detachably attached to the first suspension carriage 11 and the second suspension carriage 12 via a connection block 45.
  • the rail 13 connects the first suspension carriage 11 and the second suspension carriage 12 and is spanned between the two main girders 25.
  • the rail 13 has a total length L4 that is longer than the interval L3 of the main girder 25, and the width direction (Y direction) of the bridge 20 from one or both of the first suspension carriage 11 and the second suspension carriage 12. ).
  • the camera 15 includes a camera body 70, a holding unit 71, an elevating unit 72, and a camera carriage 73.
  • the camera body 70 is constituted by a twin-lens camera, and a plurality of photographing lenses 70a are arranged in the Y direction.
  • the camera body 70 is attached to the upper end of the elevating part 72 by a holding part 71.
  • the holding unit 71 rotates the camera body 70 around the Y axis in an angle range of 270 °, for example, and rotates the camera body 70 around the Z axis in an angle range of 270 °, for example. Note that these rotation angle ranges may be changed as appropriate. In short, it is only necessary to change the posture of the camera body 70 and capture the entire area of the lower surface of the bridge 20 without blind spots.
  • the camera body 70 has higher functionality than a normal camera.
  • the influence of camera shake can be suppressed by having a high brightness illuminator 70b such as an LED and performing shutter control at a high speed of, for example, 1/500 second or more.
  • it has a shake correction control function such as an optical shift method, and the influence of camera shake can be suppressed.
  • the high-precision exposure control function can cope with brightness fluctuations in outdoor dark areas by improving the photometry area and control program. Image processing for obtaining depth information and removing obstacles by the binocular function is reliably performed.
  • the length of the damaged portion can be accurately measured by selecting an appropriate baseline length for the binocular function and simplifying calibration before inspection.
  • the elevating unit 72 is attached to a camera carriage 73, and holds the camera body 70 so as to be movable in the vertical direction (Z-axis direction).
  • the raising / lowering stroke of the raising / lowering part 72 is 2 m, for example.
  • the lower part of the camera body 70 is housed in the recess 73a (see FIG. 4) of the camera carriage 73.
  • the camera body 70 is held at a position where it does not come into contact with various members of the steel girder 22.
  • the camera main body 70 has a viewing angle that allows the entire lower surface portion of the steel girder 22 to be in the field of view in the lowest lowered state, and further has a zoom function. Further, when it is at its highest position, it can approach the lower surface of the floor slab 23.
  • the camera carriage 73 is attached between the two rails 13 and moves on the rails 13.
  • a rail groove 73 b into which a part of the rail 13 is inserted is formed in the front end portion and the rear end portion of the camera carriage 73.
  • the camera carriage 73 only needs to have a structure capable of traveling on the rail 13, and the movement method is not particularly limited.
  • the rail 13 is driven by drive wheels, rack and pinion, traction by wire, ball screw, and the like.
  • the two rails 13 are used, but this may be one rail or three or more rails.
  • the cross-sectional shape of the rail 13 is not limited to a rectangle, but may be a circle, an ellipse, or another polygon.
  • the holding guide method of the camera carriage 73 by the rail 13 is not particularly limited to the illustrated one, and other holding guide methods may be used.
  • the rail 13 is attached below the suspension carriages 11 and 12 so that the connecting block 45 of the suspension carriages 11 and 12 does not obstruct the traveling of the camera carriage 73.
  • the rails 13 may be attached to the suspension carts 11 and 12 as long as they do not obstruct the traveling of the camera cart 73 and may be a cantilever structure in addition to the both-end support structure. Stoppers 13 a are attached to both ends of the rail 13 so that the camera carriage 73 does not fall off the rail 13.
  • the camera body 70 can be stored in the recess 73a of the camera carriage 73. When the elevating part 72 is lowered to the lowest end, the camera body 70 enters the recess 73a. In the stored state of the camera main body 70, the camera carriage 73 can pass through the lower part of the suspension carriages 11 and 12, move from the inside of the main girder 25 to the outside, and the outside part of the main girder 25 can be photographed.
  • the camera body 70 is not necessarily housed in the recess 73a, and the uppermost part of the camera body 70 is the lowermost of various reinforcing members existing between the main beams 25 in a state where the elevating part 72 is lowered to the lowest position. What is necessary is just to be located below the site
  • the first controller 51 is built in the base 40 of the first suspension carriage 11.
  • the first controller 51 controls each part such as the suspension carts 11 and 12, the camera main body 70, the holding unit 71, the lifting unit 72, the camera cart 73, and the image data from the camera main body 70 is in the hands of the inspector. Transmit to the second controller 52. Image data is transmitted in a wired or wireless manner.
  • the first controller 51 and the second controller 52 constitute a controller.
  • the second controller 52 is composed of, for example, a notebook personal computer as shown in FIG.
  • the second controller 52 includes a display 52a, a keyboard 52b, an arithmetic processing unit 52c (see FIG. 3), a data communication unit 52d, a USB port, and the like.
  • An operation member such as a joystick is connected to the USB port as necessary.
  • the arithmetic processing unit 52c is installed with a predetermined application so that the image processing unit 16, the suspension carts 11 and 12, the camera cart 73, the lifting unit 72, and the holding unit 71 are operated. It functions as the switching unit 76.
  • FIG. 3 shows this functional block.
  • the second controller 52 receives an operation of an operation member such as a keyboard 52b or a joystick, generates a control signal, sends the control signal to the first controller 51, and remotely operates each unit.
  • the image processing unit 16 processes the image data sent from the first controller 51 and displays a through image from the camera body 70 on the display 52a.
  • various reinforcing members are detected and their positions are identified, damaged portions are detected, and their sizes and positions are identified.
  • the mode switching unit 76 switches between an automatic inspection mode and a manual mode according to an input operation.
  • the suspension carts 11 and 12 and the camera cart 73 are moved according to a predetermined procedure, the lower surface portion of the bridge 20 is photographed, various reinforcing members and damaged portions are identified by image processing, and the positions of the various reinforcing members Memorize the size and evaluation of the damaged part.
  • an alarm can be issued to notify the inspector.
  • the inspector interrupts the automatic mode and switches to the manual mode to perform zoom shooting or shooting with a different shooting angle.
  • a 3D display image is created using a parallax image of a binocular camera.
  • the inspector can go down to the work landing provided on the lower side of the bridge 20 by a ladder or the like.
  • suspension carts 11 and 12 are attached to the plurality of main girders 25 of the bridge 20 to be inspected.
  • the rail 13 to which the camera carriage 73 is attached is attached to the suspension carriages 11 and 12.
  • the suspension carriages 11 and 12 are reciprocated in the X-axis direction on the lower flange 30c of the main girder 25 to be inspected between the piers 21, and the inspection target part is photographed by the camera body 70.
  • a moving image and a necessary range (the entire lower surface of the floor slab 23, the lower surface of the upper flange 30b of the main girder 25, and a part of the side surface of the vertical portion) can be captured without changing the posture of the camera body 70.
  • a still image is obtained accordingly.
  • a plurality of image data obtained during the going process is subjected to image processing, and coordinate positions (three-dimensional coordinate positions) on the XYZ axes of various reinforcing members are specified.
  • a reinforcing member such as a cross beam, the tilting structure 26, and a vertical member is recognized.
  • the position of each reinforcing member in the XYZ axial directions is obtained as a distance from the camera body 70 based on a plurality of parallaxes.
  • the position of each reinforcing member is specified as a three-dimensional coordinate position.
  • the position data of the camera main body 70 can be specified based on the moving distance of the suspended carriages 11 and 12 and the camera carriage 73.
  • the moving distance can be obtained based on the number of rotations of each motor, the number of rotations of the wheels 41 to 43, and the like.
  • a fluoroscopic image in which various reinforcing members are deleted by image processing is obtained within the shootable range below the bridge 20.
  • the plurality of fluoroscopic images are combined to generate an entire image of the bottom surface of the floor slab in the inspection target area.
  • AdaBoost Adaptive Boosting
  • Haar-like feature amount scaling amount obtained as the difference value of the average brightness of the rectangular area, representing the intensity gradient
  • image processing such as detection processing by, a portion suspected of being damaged (damage candidate) is detected.
  • an image processing system for discriminating “damage / non-damage” by learning from the feature amount of the damage / non-damage image prepared in advance is constructed.
  • a perspective image of the upper flange surface of the main girder 25 in the inspection target area and a part of the vertical plane continuous thereto is synthesized within the range obtained by the first imaging of the inspection target area.
  • An entire image of the digit 25 is generated. Damage candidates are detected from this entire image.
  • an entire image of each reinforcing member in the inspection target area is generated, and damage candidates are detected from the entire image.
  • Damage includes corrosion, cracks, and cracks in the coating film. These damages change in color, partially swell, or have cracks compared to other normal sites, and the type of the damaged part is specified based on changes in these colors and shapes. Further, the size of the damaged portion is identified from the size of the area of the damaged portion, and the degree of damage is evaluated according to this size. The determination accuracy of the image recognition and the evaluation of the degree of damage is enhanced by the learning effect of the feature amount of the damage / non-damage image prepared in advance, and the presence / absence, size, and evaluation of the damage are reliably performed.
  • the lower surface of the floor slab 23 in the inspection target area, the inner surface of the main girder 25 (the lower surface of the upper flange 30b, the side surface of the vertical portion, the upper surface of the lower flange 30c) )
  • the suspension carriages 11 and 12, the camera carriage 73, the elevating part 72, and the holding part 71 are controlled so that the camera body 70 is sequentially positioned when returning to the specific point.
  • the shooting data is supplemented for the portion where shooting was impossible in the going process, and shooting without a blind spot is performed in the inspection target area.
  • the shooting data is supplemented for the part that was a blind spot in the going process in the same way as the going process.
  • the entire perspective image of the floor slab 23 in the inspection target area, the entire perspective image of the upper flange surface, vertical surface, and lower flange surface of the main girder 25 in the inspection target area, and the entire image of each reinforcing member in the inspection target area Etc. are obtained. Damage candidates are detected from these whole images to obtain damage data.
  • the damage type and the damage image are stored as damage data together with the coordinate position of the damaged portion. Identification of the coordinate position of the damaged portion is performed based on the amount of movement of each of the suspended carriages 11 and 12, the camera carriage 73, the elevating part 72, and the amount of displacement of the holding part 71.
  • the inspection record is automatically created by inserting the damage data into a predetermined inspection record format document stored in advance.
  • the created inspection record can be checked by an inspector and edited or corrected. Since the inspection data is automatically created by fitting the damage data into the inspection document in a predetermined format based on the automatically acquired damage data, the work time of the inspector can be greatly shortened.
  • the field of view of the camera body 70 is a range in which the lower surface of the floor slab 23 of the bridge 20 and the vertical part of the main beam 25 are reflected when the camera body 70 is arranged in the center between the plurality of main beams 25. If the length in the Y direction (inter-digit length) between the plurality of main girders 25 is long and the whole image is not captured within one shooting screen range, a plurality of shooting points are provided in the Y direction and divided shooting is performed. Then, the obtained divided photographed images are combined and photographed so that the lower surface of the floor slab 23 of the bridge 20 and the vertical portion of the main girder 25 are reflected.
  • the image used for position detection and damage detection of each reinforcing member may be moving image data or still image data. Still images may be obtained from one frame of a moving image or may be obtained from image synthesis of a plurality of frames.
  • the left main girder 25 since the left main girder 25 is located on the outermost side, it is necessary to re-inspect the outer surface of the outermost main girder by reattaching the suspension carriage or camera in the conventional inspection method. .
  • the rail 13 of the suspension carriage 11 suspended from the outermost main girder 25 protrudes outward, and the camera 15 can pass below the suspension carriage 11. It has become. Therefore, the outer part of the suspension carriage can be inspected in the same manner when the inner part is inspected. For this reason, it is not necessary to mount the camera again for the outside inspection again, and the outside portion can be easily and efficiently inspected.
  • the suspension carts 11 and 12 are moved in the X direction, and a schematic image of the entire lower surface portion of the bridge 20 is obtained by moving the bridge pier 21 from one side to the other.
  • the position information of various reinforcing members is acquired based on the above, damage candidates are detected based on a fluoroscopic image from which various reinforcing members are deleted, and the damage candidates are photographed by zoom photographing or the like in the return process to determine whether there is damage, the size of the damaged portion, etc.
  • the type and the like can be determined with high accuracy.
  • the position of the reinforcing member is specified in the going process
  • the optimal shooting position is specified based on the position of the reinforcing member in the returning process, and specific shooting data such as the presence or absence of damage is obtained at this specific position.
  • the position of the reinforcing member and the damaged portion may be specified in the going process. In this case, after acquiring the image data by moving a certain distance, the position of the reinforcing member is specified, the presence / absence of the damage, the size, and the evaluation are performed based on the image data.
  • the going process includes a few returning processes. However, since all the processes in the going process are not returned, the time required for the inspection can be shortened accordingly.
  • the camera body 70 is preferably a binocular camera that obtains a plurality of parallax images, but the reinforcing member and damage may be specified using parallax due to movement of the single-lens camera without using the binocular camera.
  • the 360 ° omnidirectional imaging may be performed by fixing the photographic optical axis to, for example, the Z axis and arranging a convex mirror on the photographic optical axis or using a fisheye lens.
  • the obstacle sensors 14 are provided on the suspension carts 11 and 12 to configure the obstacle detection unit.
  • the suspension vehicles 11 and 12 are based on image data from the camera body 70. Obstacles in front of them, such as the attachment plate 31 and bolts and nuts, may be detected.
  • the first to third wheels 41 to 43 are provided on the left and right sides of the suspension carriages 11 and 12, respectively.
  • the suspension carriages 11 and 12 are integrated by the rail 13, the third carriage located inside is provided.
  • the wheel 43 may be omitted, and the suspension carts 11 and 12 may be supported by the left and right first wheels 41 and the second wheels 42 only. In this case, there is always one wheel that is in the retracted position with respect to the obstacle, and the other three wheels are always held in the traveling position.
  • the first wheel 41 may be provided on one side edge of the base 40 and the second wheel 42 may be provided on the other side edge of the base 40.
  • the first suspension carriage 11 and the second suspension carriage 12 are brought into contact with the first to third wheels 41 to 43 that can be displaced between the travel position and the retracted position, and the lower surface of the lower flange 30c.
  • the total number of right and left displaceable wheels is four as in the second embodiment shown in FIG.
  • the fifth wheel 66 and the fourth displacement portion 67 may be provided in the rear to achieve more stable traveling.
  • the left and right wheels are set to have an offset length L2 longer than the length L1 of the obstacle in the X-axis direction. Although illustration is omitted, the left and right wheels are not limited to two, and may be three or more.
  • the wheels 41 to 43 are swung between the retracted position and the traveling position.
  • the traveling wheel may be raised to the retracted position.
  • the wheel holding bracket 81 that holds the wheel 80 of the suspension carriage 79 is held in the holding frame 82 so as to be movable up and down.
  • a coil spring 83 that presses the wheel holding bracket 81 downward is mounted in the holding frame 82.
  • the wheel holding bracket 81 retreats upward as indicated by a two-dot chain line against the bias of the coil spring 83. 80 can pass over the attachment plate 31.
  • the suspended carriages 11 and 12 are caused to travel using the wheels 41 to 44 and 80.
  • a rolling wheel 89 may be used as shown in FIG.
  • the rolling wheel 89 includes a wheel body 90, a pulley 91, and an endless belt 92.
  • the wheel body 90 is formed in a substantially triangular shape in which each vertex of the triangle is formed in a round shape.
  • the pulley 91 is disposed near each vertex of the wheel body 90.
  • the endless belt 92 is disposed on the outer peripheral surfaces of the pulley 91 and the wheel main body 90 and is rotated by a motor (not shown).
  • the endless belt 92 hits the attachment plate 31 protruding from the lower flange 30c, the rotational load of the endless belt 92 increases.
  • the rolling wheel 89 rolls as indicated by a two-dot chain line, and the endless belt 92 gets over the attachment plate 31. it can.
  • the rolling wheel 89 has a configuration similar to that of the wheel holding bracket 81 shown in FIG. 7 or another known lifting mechanism so that the wheel body 90 is held so as to be retractable upward when it rides on the attachment plate 31. 90 endless belts 92 are urged toward the upper surface of the lower flange 30c.
  • a twin-lens camera is used, but in addition to this, an infrared camera or the like may be further provided for inspection.
  • a robot hand or the like may be provided on the suspension carts 11 and 12, and an inspection process such as hitting a site where corrosion is progressing may be added. In this case, the progress of corrosion can be confirmed reliably.
  • foreign matter may be removed or collected using a robot hand. In this case, the collection of foreign matter is prevented by using a collection box or a fall prevention net.
  • a suction tube may be provided at the tip of the robot hand to suck up dust and the like.
  • air blowing and suction may be performed using separate nozzles, dust may be blown off by the blowing nozzle, and the blown-off dust may be collected by the suction nozzle.
  • the bridge 20 to be inspected according to the present invention corresponds to a bridge arranged at any position in the river, the ocean, and the land.
  • the use of the bridge is not limited, and any use of a humanitarian bridge, a road bridge, and a railway bridge may be used.
  • the steel girder 22 has been described as an example, it may be a bridge having a plurality of girders having the lower flange 30c, and the structure type and material are not particularly limited.

Abstract

Provided is a bridge-inspecting robot system that reduces the movement restrictions that are imposed by the structure of a bridge and that can reliably inspect a lower surface section and both side sections of the bridge. A first suspended dolly (11) and a second suspended dolly (12) have four wheels (41-44) and first through third displacement parts (46-48) and travel while suspended from a lower flange (30c). When an obstruction such as a splice plate (31) is present, the first wheel (41) through the third wheel (43) are withdrawn from an upper surface of the lower flange (30c) by means of the first through third displacement parts (46-48). The first suspended dolly (11) and the second suspended dolly (12) are coupled by a rail (13) that has a total length (L4) that is longer than the interval (L3) between main girders (25). A camera dolly (73) travels the rail (13) and passes through a lower part of the suspended dollies (11, 12). The present invention makes it possible to capture images of not only an inside surface of two of the main girders (25) of an inspection target but also an outside surface of the girders (25).

Description

橋梁検査ロボットシステムBridge inspection robot system
 本発明は、例えば橋梁の床版の下面や鋼鈑桁等の点検に好適な橋梁検査ロボットシステムに関し、国等の委託研究の成果に係る特許出願(平成26年度~平成30年度、独立行政法人新エネルギー・産業技術総合開発機構「インフラ維持管理・更新等の社会課題対応システム開発プロジェクト/インフラ維持管理用ロボット技術・非破壊検査装置開発/複眼式撮像装置を搭載した橋梁近接目視代替ロボットシステムの研究開発」委託研究、産業技術力強化法第19条の適用を受ける特許出願)である。 The present invention relates to a bridge inspection robot system suitable for, for example, inspecting the lower surface of a bridge floor slab and steel girder, etc., and has applied for a patent related to the results of commissioned research by the national government (2014-2018, a new administrative agency). Energy and Industrial Technology Development Organization “Development project for social issues such as infrastructure maintenance and renewal, etc./Development of robot technology for infrastructure maintenance and non-destructive inspection equipment / Study on a robot approach to close proximity visual inspection equipped with a compound eye imaging device "Development" contract research, patent application subject to Article 19 of the Industrial Technology Strengthening Act).
 河川橋や高架橋等の種々の橋梁では、架設後の維持管理の一環として定期的に点検を行い、構成部材の劣化の状況や損傷を確認している。橋梁の点検は、点検員が部材に接近して目視するいわゆる近接点検が一般的である。 河川 Various bridges such as river bridges and viaducts are regularly inspected as part of maintenance management after erection to confirm the deterioration and damage of components. The inspection of the bridge is generally a so-called proximity inspection in which an inspector approaches the member and visually observes the member.
 橋梁には、例えば床版の下面や、床版の下面に配置された鋼鈑桁の主桁と主桁の間の部分等のように、点検員の接近が困難な部位が存在する。このような部位の近接点検を行うために、床版の下面の桁に沿って仮設足場を配置して点検員を主桁や床版に接近させたり、高所作業車を用いて点検員を床版の下面に接近させたりしている。 There are some parts of the bridge that are difficult for the inspector to access, such as the lower surface of the floor slab and the part between the main girders of the steel girder arranged on the lower surface of the floor slab. In order to perform close inspection of such parts, temporary scaffolds are placed along the girders on the lower surface of the floor slab to bring the inspector closer to the main girder and floor slab, or the inspector is used using an aerial work vehicle. It is approaching the lower surface of the floor slab.
 しかしながら、床版の下面に仮設足場を配置する場合、大きな手間とコストがかかる不都合がある。また、床版の下面を作業車で点検する場合、大型車両である車両本体を床版上に停止させて道路の一部を占有する必要があり、道路の交通に影響を与える不都合がある。 However, when a temporary scaffold is arranged on the lower surface of the floor slab, there is a disadvantage that it takes a lot of labor and cost. In addition, when the lower surface of the floor slab is inspected with a work vehicle, it is necessary to occupy a part of the road by stopping the vehicle main body, which is a large vehicle, on the floor slab, which disadvantageously affects road traffic.
 このような不都合を解消するため、カメラを搭載し、橋梁の桁の下端部に係合して走行するように構成された作業台車が提案されている。例えば、特開2003-119721号公報に記載の作業台車は、作業台車に揺動自在に取り付けられた複数のアームの先端に鼓状の車輪をそれぞれ設け、これらの鼓状の車輪で橋梁のI型鋼材からなる桁の下フランジの両端縁を挟み込み、上記車輪を駆動して作業台車を桁に沿って走行させている。作業台車は、車輪による走行とカメラの動作が遠隔操作され、橋梁の所定の部位に接近してカメラで撮影を行う。これにより、遠隔位置の点検員がカメラの映像を視認して、橋梁を点検している。 In order to solve such an inconvenience, there has been proposed a work trolley equipped with a camera and configured to run while being engaged with the lower end of a bridge girder. For example, in the work cart described in Japanese Patent Application Laid-Open No. 2003-119721, drum-shaped wheels are respectively provided at the tips of a plurality of arms that are swingably attached to the work cart, and these drum-shaped wheels are used for bridge I. The both ends of the lower flange of the girders made of steel molds are sandwiched and the wheels are driven to drive the work carriage along the girders. The work cart is remotely controlled for traveling by the wheel and the operation of the camera, and approaches a predetermined part of the bridge to take a picture with the camera. As a result, a remote inspector visually inspects the camera image and inspects the bridge.
 特開2013-194457号公報に記載の橋梁点検装置では、橋梁の桁に沿って架設される2本のワイヤロープと、このワイヤロープ上を走行する台車と、台車に搭載した点検機器とを用いて、橋梁を点検している。台車は、走行車輪の他に、桁の下フランジに接触する反力車輪を備えている。反力車輪は、ダンパー装置によって下フランジに押圧され、これに伴う反力により走行車輪がワイヤロープに押圧され、桁に沿って台車を確実に移動させている。 In the bridge inspection device described in Japanese Patent Application Laid-Open No. 2013-194457, two wire ropes constructed along a bridge girder, a carriage traveling on the wire rope, and an inspection device mounted on the carriage are used. The bridge is being inspected. In addition to the traveling wheels, the carriage includes reaction force wheels that contact the lower flanges of the girders. The reaction force wheel is pressed against the lower flange by the damper device, and the traveling wheel is pressed against the wire rope by the reaction force accompanying this, and the carriage is reliably moved along the girder.
 例えば高速道路の橋梁は橋脚、鋼鈑桁、床版などから構成されているものがある。橋脚は、橋梁の長手方向に離間して配置され、鋼鈑桁、床版などを受ける基礎部材である。橋脚の上面には鋼鈑桁が配される。鋼鈑桁は、複数の主桁とこれらを繋ぐ横桁、対傾構などから構成され、上部に例えば鉄筋コンクリート製の床版が固定される。主桁は、複数のI型鋼材を添接板で連結して構成されている。I型鋼材は、垂直板とこれの上下端に配されるフランジとからI型に構成されている。添接板はボルトナットによる締結や、溶接等によりI型鋼材に取り付けられている。対傾構は複数の部材を例えば三角形に組み合わせた構造である。 For example, some highway bridges are composed of piers, steel girder, floor slabs, etc. The pier is a foundation member that is spaced apart in the longitudinal direction of the bridge and receives a steel girder, floor slab, and the like. Steel girder is arranged on the upper surface of the pier. The steel girder is composed of a plurality of main girders, a horizontal girder connecting them, a counter-tilt structure, and the like, and a floor slab made of, for example, reinforced concrete is fixed to the upper part. The main girder is constituted by connecting a plurality of I-type steel materials with an attachment plate. The I-type steel material is formed in an I-type from a vertical plate and flanges arranged on upper and lower ends thereof. The attachment plate is attached to the I-type steel material by fastening with bolts and nuts, welding, or the like. The anti-tilt structure is a structure in which a plurality of members are combined in, for example, a triangle.
 このように鋼鈑桁は、主桁の間に横桁や対傾構の各種補強部材が架設される他に、長手方向に添接板やその固定ボルト等が一定間隔で配されている。このため、特開2003-119721号公報のような台車を用いて橋梁の下面等を撮影しようとしても、これらの各種補強部材や添接板などが台車の進行を妨げてしまうという問題がある。例えば、主桁の垂直板の側面に垂直補剛材が設けられている場合がある。この垂直補剛材は、垂直板に直交する方向に延在されて、下フランジの縁端に達する幅を有することがある。このような場合に、特開2003-119721号公報の作業台車では、下フランジの両端縁を挟み込む車輪が垂直補剛材を乗り越えることが困難であり、その結果、主桁に沿って走行する範囲が制限されるという問題がある。また、カメラに支持部材を設けてカメラを台車の上方へ突出させて鋼鈑桁の内部を撮影しようとする場合に、支持部材が各種補強部材に当たってしまい、作業台車の進行の障害となってしまう。 In this way, the steel girder is provided with a horizontal girder and various reinforcing members such as an inclined structure between the main girders, and a connecting plate and its fixing bolts are arranged at regular intervals in the longitudinal direction. For this reason, even if an attempt is made to photograph the lower surface of a bridge using a cart such as that disclosed in Japanese Patent Application Laid-Open No. 2003-119721, there is a problem that these various reinforcing members and attachment plates obstruct the progress of the cart. For example, a vertical stiffener may be provided on the side surface of the vertical plate of the main girder. This vertical stiffener may extend in a direction perpendicular to the vertical plate and have a width that reaches the edge of the lower flange. In such a case, in the work cart disclosed in Japanese Patent Application Laid-Open No. 2003-119721, it is difficult for the wheels sandwiching the both end edges of the lower flange to get over the vertical stiffener, and as a result, the range of traveling along the main girder There is a problem that is limited. Further, when the camera is provided with a support member and the camera is projected upward from the carriage to capture an image of the inside of the steel girder, the support member hits various reinforcing members, which hinders the progress of the work carriage.
 更に、特開2003-119721号公報の作業台車は、鼓状の車輪が係合する下フランジの厚みが大きい場合に、車輪の係合が解除されやすい問題がある。このため、下フランジの厚みよりも大きくなる添接板による接合部分で車輪が脱落してしまうおそれがある。 Furthermore, the work carriage disclosed in Japanese Patent Laid-Open No. 2003-119721 has a problem that the engagement of the wheel is easily released when the thickness of the lower flange with which the drum-shaped wheel is engaged is large. For this reason, there exists a possibility that a wheel may drop | omit at the junction part by the attachment board which becomes larger than the thickness of a lower flange.
 特開2013-194457号公報のように、ワイヤロープを用いて作業台車を走行させる場合には、各種補強部材を避けるようにワイヤロープを主桁に平行に設ける必要がある。このため、点検員が鋼鈑桁の近くまで行き、点検対象の鋼鈑桁を目視により確認し、且つこれらの各種補強部材を避けつつ、ワイヤロープを張る必要がある。このように点検作業の前の予備作業であるワイヤロープ張り作業に、時間と手間を要するという問題がある。 As disclosed in Japanese Patent Application Laid-Open No. 2013-194457, when a work carriage is run using a wire rope, it is necessary to provide the wire rope in parallel with the main girder so as to avoid various reinforcing members. For this reason, it is necessary for the inspector to go near the steel girder, visually check the steel girder to be inspected, and stretch the wire rope while avoiding these various reinforcing members. Thus, there is a problem that time and labor are required for the wire rope tensioning operation which is a preliminary operation before the inspection operation.
 また、特開2003-119721号公報又は特開2013-194457号公報に記載の点検装置では、点検対象である隣接する主桁同士の内側を点検することはできるものの、点検対象の主桁の外側を点検する場合には、作業台車を点検対象側に再度取り付ける必要があり、作業効率が低下する。 Further, in the inspection apparatus described in Japanese Patent Application Laid-Open No. 2003-119721 or Japanese Patent Application Laid-Open No. 2013-194457, the inside of adjacent main girders to be inspected can be inspected, but the outside of the main girder to be inspected In the case of inspecting, it is necessary to reattach the work carriage to the inspection object side, and work efficiency is lowered.
 本発明は、橋梁の構造による移動の制限を少なくして、橋梁の下面部分を確実に点検することができる橋梁検査ロボットシステムを提供することを目的とする。また、カメラや台車を再度取り付けることなく、点検対象の反対側の主桁や床版下面を容易に点検することができる橋梁検査ロボットシステムを提供することを目的とする。 An object of the present invention is to provide a bridge inspection robot system capable of reliably inspecting a lower surface portion of a bridge while reducing restrictions on movement due to the structure of the bridge. It is another object of the present invention to provide a bridge inspection robot system that can easily inspect the main girder and floor slab on the opposite side of the inspection object without re-installing the camera or carriage.
 本発明の橋梁検査ロボットシステムは、下フランジを有する複数の主桁を、主桁の長手方向に直交する方向に離間して並べてなる橋梁を検査する。橋梁検査ロボットシステムは、第1懸垂台車及び第2懸垂台車と、レールと、カメラと、画像処理部とを備える。第1懸垂台車及び第2懸垂台車は、複数の主桁に取り付けられて主桁の長手方向に走行する。レールは、第1懸垂台車及び第2懸垂台車に取り付けられ、第1懸垂台車及び第2懸垂台車が取り付けられる主桁の間隔よりも長く形成され、少なくとも一方の懸垂台車から突出する。カメラは、レールに取り付けられて走行し、一方の懸垂台車を超えて移動する。画像処理部は、カメラの撮影データに基づき橋梁の損傷部を特定する。 The bridge inspection robot system of the present invention inspects a bridge in which a plurality of main girders having a lower flange are arranged apart from each other in a direction perpendicular to the longitudinal direction of the main girder. The bridge inspection robot system includes a first suspension carriage and a second suspension carriage, a rail, a camera, and an image processing unit. The first suspension carriage and the second suspension carriage are attached to a plurality of main girders and travel in the longitudinal direction of the main girders. The rail is attached to the first suspension carriage and the second suspension carriage, is formed longer than the interval between the main girders to which the first suspension carriage and the second suspension carriage are attached, and protrudes from at least one suspension carriage. The camera travels attached to a rail and moves beyond one suspended carriage. The image processing unit identifies a damaged portion of the bridge based on the camera data.
 第1懸垂台車及び第2懸垂台車は、主桁の下フランジの上面に当接し、主桁の長手方向に離間して配置される第1車輪及び第2車輪と、第1車輪及び第2車輪を個別に下フランジの上面に接触する走行位置、下フランジの上面から退避した退避位置の間で変位する第1変位部及び第2変位部とを有することが好ましい。この場合には、懸垂台車の進行方向に突出物がある場合に、各車輪を退避させて突出物がある部分を通過することができる。なお、退避位置とは、懸垂台車の走行時に車輪が障害物に当たることなく走行の障害とならない位置を言う。 The first suspension carriage and the second suspension carriage are in contact with the upper surface of the lower flange of the main girder and are spaced apart in the longitudinal direction of the main girder, and the first wheel and the second wheel. It is preferable to have a first displacement portion and a second displacement portion that are displaced between a travel position that individually contacts the upper surface of the lower flange and a retracted position that is retracted from the upper surface of the lower flange. In this case, when there is a protrusion in the traveling direction of the suspension carriage, each wheel can be retracted to pass a portion where the protrusion is present. The retreat position refers to a position where the wheel does not hit an obstacle when the suspended carriage travels and does not become an obstacle to travel.
 第1変位部及び第2変位部は、第1車輪及び第2車輪の走行の障害となる障害物を検出する障害物センサを有し、障害物センサからの障害物検出信号に基づき第1車輪又は第2車輪を走行位置から退避位置にすることが好ましい。この場合には、各車輪を障害物から確実に退避することができ、障害物がある部分を確実に通過することができる。 The first displacement unit and the second displacement unit have an obstacle sensor that detects an obstacle that is an obstacle to travel of the first wheel and the second wheel, and the first wheel is based on an obstacle detection signal from the obstacle sensor. Alternatively, it is preferable to move the second wheel from the traveling position to the retracted position. In this case, each wheel can be reliably retracted from the obstacle, and the portion where the obstacle is present can be reliably passed.
 障害物の主桁長手方向長さに比べて、懸垂台車に主桁の長手方向に離間して配される第1車輪及び第2車輪の主桁長手方向でのオフセット長さが長いことが好ましい。この場合には、障害物から退避する車輪の他に、下フランジに当接して懸垂状態を維持する車輪が常に確保されるため、懸垂台車が下フランジから脱落することがなくなる。 It is preferable that the offset length in the longitudinal direction of the main girder of the first wheel and the second wheel, which are arranged apart from the longitudinal direction of the main girder in the longitudinal direction of the main girder, is longer than the longitudinal length of the obstacle. . In this case, in addition to the wheel that retreats from the obstacle, a wheel that is in contact with the lower flange and maintains the suspended state is always secured, so that the suspended carriage does not fall off the lower flange.
 第1懸垂台車及び2懸垂台車は、主桁の下フランジの上面に当接し、主桁の長手方向に離間して配置される第1車輪及び第2車輪と、第1車輪及び第2車輪を個別に下フランジの上面に接触する走行位置、下フランジの上面からの突出物を乗り越える乗り越え位置の間で変位する第1変位部及び第2変位部とを有することが好ましい。この場合には、懸垂台車の進行方向に、突出物がある場合にこれを乗り越えて通過することができる。 The first suspension carriage and the second suspension carriage are in contact with the upper surface of the lower flange of the main girder, and are arranged with a first wheel and a second wheel that are spaced apart in the longitudinal direction of the main girder, and a first wheel and a second wheel. It is preferable to have the 1st displacement part and the 2nd displacement part which displace between the running position which contacts the upper surface of a lower flange separately, and the climbing position which gets over the protrusion from the upper surface of a lower flange. In this case, if there is a protrusion in the traveling direction of the suspension carriage, it can pass over it.
 カメラは、カメラ本体と、カメラ本体を昇降させる昇降部と、昇降部をレール上で移動させるカメラ台車とを有することが好ましい。この場合には、カメラを橋梁の下面部の任意位置にセットすることができ、死角の無い画像を得ることができる。 It is preferable that the camera has a camera body, an elevating part that moves the camera body up and down, and a camera carriage that moves the elevating part on a rail. In this case, the camera can be set at an arbitrary position on the lower surface of the bridge, and an image without a blind spot can be obtained.
 カメラ本体は、複数の視差画像を得る二眼カメラであることが好ましい。この場合には視差を利用して、橋梁の損傷部のサイズや位置を知ることができる。 The camera body is preferably a binocular camera that obtains a plurality of parallax images. In this case, the size and position of the damaged portion of the bridge can be known using parallax.
 画像処理部は、複数の視差に基づき複数の主桁間にある部材の位置をカメラ本体からの距離として検出し、懸垂台車及びカメラ台車の移動距離に基づき部材の三次元座標位置を特定し、三次元座標位置に基づき部材を回避するカメラ本体の撮影位置を特定することが好ましい。この場合には、各種補強部材を無くした透視画像を得ることができる。 The image processing unit detects a position of a member between a plurality of main beams based on a plurality of parallaxes as a distance from the camera body, specifies a three-dimensional coordinate position of the member based on a moving distance of the suspension carriage and the camera carriage, It is preferable to specify the photographing position of the camera body that avoids the member based on the three-dimensional coordinate position. In this case, it is possible to obtain a fluoroscopic image without various reinforcing members.
 第1懸垂台車及び第2懸垂台車は、下フランジの下面に接触する下面接触車輪を有することが好ましい。この場合には、第1車輪及び第2車輪を確実に下フランジの上面に接触させることができる他に、第1車輪又は第2車輪が退避位置になった時に懸垂台車の姿勢が保持されるため、安定した走行が可能になる。 It is preferable that the first suspension carriage and the second suspension carriage have a lower surface contact wheel that contacts the lower surface of the lower flange. In this case, the first wheel and the second wheel can be reliably brought into contact with the upper surface of the lower flange, and the posture of the suspension carriage is maintained when the first wheel or the second wheel is in the retracted position. Therefore, stable running is possible.
 第1及び第2懸垂台車とカメラとを遠隔操作するコントローラを有することが好ましい。この場合には、任意の位置にカメラをセットして所望のエリアを撮影することができる。 It is preferable to have a controller for remotely operating the first and second suspension carts and the camera. In this case, a desired area can be photographed by setting the camera at an arbitrary position.
 本発明によれば、橋梁の構造による移動の制限を少なくして、橋梁の下面部分を確実に点検することができる。また、カメラや台車を再度取り付けることなく、点検対象の反対側の主桁や床版下面を容易に点検することができる。 According to the present invention, it is possible to reliably inspect the lower surface portion of the bridge with less restriction on movement due to the structure of the bridge. In addition, the main girder and the bottom of the floor slab on the opposite side of the inspection object can be easily inspected without re-installing the camera or the carriage.
本発明の橋梁検査ロボットシステムの橋梁検査状態を示す正面図である。図である。It is a front view which shows the bridge inspection state of the bridge inspection robot system of this invention. FIG. 懸垂台車とカメラの動きを示す正面図である。It is a front view which shows the movement of a suspension cart and a camera. 懸垂台車の一部を切り欠いて示す正面図である。It is a front view which notches and shows a part of suspension cart. 懸垂台車の車輪の配置とカメラ台車とを示す平面図である。It is a top view which shows arrangement | positioning of the wheel of a suspension cart, and a camera cart. カメラを示す斜視図である。It is a perspective view which shows a camera. 他の実施形態における懸垂台車の車輪の配置とカメラ台車とを示す平面図である。It is a top view which shows arrangement | positioning of the wheel of the suspension trolley | bogie in another embodiment, and a camera trolley | bogie. 他の実施形態における懸垂台車の変位部を示す正面断面図である。It is front sectional drawing which shows the displacement part of the suspension trolley | bogie in other embodiment. 他の実施形態における懸垂台車の転接の動きを示す側面図である。It is a side view which shows the movement of rolling contact of the suspension trolley | bogie in other embodiment.
 図1に示すように、本発明の橋梁検査ロボットシステム10は、第1懸垂台車11及び第2懸垂台車12と、レール13と、障害物センサ(障害物検出部)14(図4参照)と、カメラ15と、画像処理部16(図3参照)とを備える。 As shown in FIG. 1, the bridge inspection robot system 10 of the present invention includes a first suspension carriage 11 and a second suspension carriage 12, a rail 13, and an obstacle sensor (obstacle detection unit) 14 (see FIG. 4). The camera 15 and the image processing unit 16 (see FIG. 3) are provided.
 検査対象の橋梁20は、例えば橋脚21、鋼鈑桁22、鉄筋コンクリート製の床版23から構成されており、橋脚21の上に鋼鈑桁22により床版23が固定されている。以下、説明の便宜上、橋梁長手方向をX軸方向とし、橋梁長手方向に直交する幅方向をY軸方向とし、上下方向をZ軸方向として説明する。 The bridge 20 to be inspected is composed of, for example, a bridge pier 21, a steel slab girder 22, and a floor slab 23 made of reinforced concrete, and the floor slab 23 is fixed on the pier 21 by a steel spar 22. Hereinafter, for convenience of explanation, the longitudinal direction of the bridge is defined as the X-axis direction, the width direction orthogonal to the longitudinal direction of the bridge is defined as the Y-axis direction, and the vertical direction is described as the Z-axis direction.
 図2及び図3に示すように、鋼鈑桁22は、橋梁20の長手方向に配される複数の主桁25と、これら主桁25を繋ぐ横桁(図示省略)や対傾構26などの補強部材とから構成されている。主桁25は、複数のI型鋼材30を添接板31により連結して構成されている。I型鋼材30は、垂直板30aの上端に上フランジ30b、下端に下フランジ30cを配した断面がI型に構成されている。添接板31は図示省略のボルトナットによる締結や、溶接等によりI型鋼材30に取り付けられており、I型鋼材30同士をX軸方向に連結する。 As shown in FIG. 2 and FIG. 3, the steel girder 22 includes a plurality of main girders 25 arranged in the longitudinal direction of the bridge 20, and reinforcement such as a horizontal girder (not shown) that connects these main girders 25 and a tilting structure 26. It is comprised from the member. The main girder 25 is configured by connecting a plurality of I-type steel materials 30 by means of an attachment plate 31. The I-type steel material 30 has an I-shaped cross section in which an upper flange 30b is arranged at the upper end of the vertical plate 30a and a lower flange 30c is arranged at the lower end. The attachment plate 31 is attached to the I-type steel material 30 by fastening with bolts and nuts (not shown), welding, or the like, and connects the I-type steel materials 30 to each other in the X-axis direction.
 対傾構26はL型鋼材27、取付板28等を用いて三角形を基本とする補強部材として構成されている。対傾構26の他にI型鋼材30の間には、荷重分散横桁、補強横桁などの各種部材が配されているが、これらの図示は省略している。 The anti-tilt structure 26 is configured as a reinforcing member based on a triangle using an L-shaped steel material 27, a mounting plate 28, and the like. Various members such as a load distribution cross beam and a reinforcing cross beam are arranged between the I-type steel members 30 in addition to the counter tilting structure 26, but these are not shown.
 図4に示すように、第1懸垂台車11は、矩形状の基台40と、基台40に取り付けられる第1~第3車輪41~43と、下面接触車輪44と、連結ブロック45(図2参照)とを有する。第1~第3車輪41~43は、第1~第3変位部46~48により、図2及び図3に実線で示す走行位置と、二点鎖線で示す退避位置との間で変位する。なお、本実施形態では、予め予想される全ての障害物に対して退避可能なように最大開き角度となる一定位置を退避位置としている。しかし、障害物に対して各車輪41~43が当たることが無い位置であればよく、障害物のサイズに応じて退避位置(退避角度)を変更してもよい。 As shown in FIG. 4, the first suspension carriage 11 includes a rectangular base 40, first to third wheels 41 to 43 attached to the base 40, a lower surface contact wheel 44, and a connecting block 45 (see FIG. 4). 2). The first to third wheels 41 to 43 are displaced by the first to third displacement portions 46 to 48 between a traveling position indicated by a solid line in FIGS. 2 and 3 and a retracted position indicated by a two-dot chain line. In the present embodiment, a certain position that is the maximum opening angle is set as the retreat position so that all obstacles predicted in advance can be retreated. However, the position may be any position where the wheels 41 to 43 do not hit the obstacle, and the retraction position (retraction angle) may be changed according to the size of the obstacle.
 図4に示すように、第1車輪41,第2車輪42は、基台40の一方の側縁部近くで前端側及び後端側の角部近くに設けられている。第3車輪43は、基台40の他方の側縁部近くでX方向中間位置に設けられている。左右の車輪は、例えば第1車輪41と第3車輪43との間、第3車輪43と第2車輪42との間で、互いにX軸方向にずらして配置されている。ずらし長さ(オフセット長さ)L2は、X軸方向での障害物長さL1よりも、長く設定されている。このオフセット長さL2を有することにより、一方の側縁部の車輪、例えば第1車輪41が障害物である添接板31を回避するために退避位置になっている時には、一方の残りの車輪、例えば第2車輪42や他方の側縁部の車輪、例えば第3車輪43は下フランジ30cの上面に確実に当接する。これにより、常に二点で懸垂されるので、下フランジ30cから懸垂台車11,12が脱落することを阻止する。また、下面接触車輪44が下フランジ30cの下面に接触しているので、懸垂台車11,12が傾斜することなく水平姿勢が維持される。 As shown in FIG. 4, the first wheel 41 and the second wheel 42 are provided near one side edge of the base 40 and near the corners on the front end side and the rear end side. The third wheel 43 is provided at an intermediate position in the X direction near the other side edge of the base 40. The left and right wheels are arranged so as to be shifted in the X-axis direction between the first wheel 41 and the third wheel 43 and between the third wheel 43 and the second wheel 42, for example. The shift length (offset length) L2 is set longer than the obstacle length L1 in the X-axis direction. By having this offset length L2, when one side edge wheel, for example, the first wheel 41 is in the retracted position to avoid the obstacle plate 31 that is an obstacle, one remaining wheel For example, the second wheel 42 and the wheel on the other side edge, for example, the third wheel 43 are surely in contact with the upper surface of the lower flange 30c. Thereby, since it is always suspended at two points, the suspension carts 11 and 12 are prevented from falling off from the lower flange 30c. Further, since the lower surface contact wheel 44 is in contact with the lower surface of the lower flange 30c, the horizontal position is maintained without the suspension carts 11 and 12 being inclined.
 図3に示すように、下面接触車輪44は、基台40の中央部に支持ブラケット50により取り付けられている。支持ブラケット50は、下面接触車輪44を回転自在に保持し、且つ下フランジ30cの下面に向けて下面接触車輪44を図示省略のコイルバネ等により押圧する。支持ブラケット50は、第1~第3変位部46~48のように、変位することはない。 As shown in FIG. 3, the lower surface contact wheel 44 is attached to the center of the base 40 by a support bracket 50. The support bracket 50 rotatably holds the lower surface contact wheel 44 and presses the lower surface contact wheel 44 toward the lower surface of the lower flange 30c by a coil spring (not shown). The support bracket 50 is not displaced like the first to third displacement portions 46 to 48.
 各車輪41~44はモータを内蔵しており、第1コントローラ51の制御により各車輪41~44が同期して回転する。これにより、第1懸垂台車11は下フランジ30cから下方に懸垂した状態でX方向に走行する。なお、モータ内蔵型車輪の代わりに、外部モータにより各車輪41~44を回転させてもよい。 The wheels 41 to 44 have a built-in motor, and the wheels 41 to 44 rotate in synchronization with the control of the first controller 51. Accordingly, the first suspension carriage 11 travels in the X direction while being suspended downward from the lower flange 30c. Each wheel 41 to 44 may be rotated by an external motor instead of the motor built-in type wheel.
 第1変位部46は、車輪保持ブラケット55と、車輪保持ブラケット55を揺動自在に保持する揺動部56とを有する。車輪保持ブラケット55は、下フランジ30cの上面に対して第1車輪41が垂直に接するようにL字状に折り曲げられている。第1変位部46の揺動部56は、図示省略のモータにより車輪保持ブラケット55を揺動させて、第1車輪41を下フランジ30cの上面に接触させる走行位置(実線表示)と、下フランジ30cの上面から退避した退避位置(二点鎖線表示)との間で変位させる。他の第2変位部47(図4参照)、第3変位部48も、第1変位部46と同じに構成されている。以下の説明において、同じ構成部材には同じ符号を付して重複した説明を省略している。第2懸垂台車12も、第1懸垂台車11と同じに構成されている。なお、車輪41~43の配置は第1懸垂台車11とは左右が逆になっている。 The first displacement portion 46 includes a wheel holding bracket 55 and a swinging portion 56 that swingably holds the wheel holding bracket 55. The wheel holding bracket 55 is bent in an L shape so that the first wheel 41 is perpendicular to the upper surface of the lower flange 30c. The swinging portion 56 of the first displacement portion 46 swings the wheel holding bracket 55 by a motor (not shown) to bring the first wheel 41 into contact with the upper surface of the lower flange 30c (indicated by a solid line), and the lower flange It is displaced between the retracted position retracted from the upper surface of 30c (indicated by a two-dot chain line). The other second displacement portion 47 (see FIG. 4) and the third displacement portion 48 are configured in the same manner as the first displacement portion 46. In the following description, the same constituent members are denoted by the same reference numerals, and redundant description is omitted. The second suspension carriage 12 is also configured in the same manner as the first suspension carriage 11. The arrangement of the wheels 41 to 43 is opposite to that of the first suspension carriage 11.
 図4に示すように、第1懸垂台車11、第2懸垂台車12には、各車輪41~43の走行方向前方の障害物を検出する障害物センサ14が設けられている。障害物センサ14は、車輪41~43が乗り越えることができない高さを有する障害物、例えば添接板31や取付ボルトナット等を検出する。障害物センサ14は、アクチュエータにより機械的に障害物を検出するものや、光学的、磁気的、その他の方法で障害物を検出することができるものが用いられる。 As shown in FIG. 4, the first suspension carriage 11 and the second suspension carriage 12 are provided with an obstacle sensor 14 that detects an obstacle ahead of each of the wheels 41 to 43 in the traveling direction. The obstacle sensor 14 detects an obstacle having such a height that the wheels 41 to 43 cannot get over, such as the attachment plate 31 and the mounting bolt nut. As the obstacle sensor 14, a sensor that detects an obstacle mechanically by an actuator or a sensor that can detect an obstacle by optical, magnetic, or other methods is used.
 図2に示すように、第1懸垂台車11及び第2懸垂台車12には、レール13が連結ブロック45を介し着脱自在に取り付けられている。レール13は、第1懸垂台車11及び第2懸垂台車12を連結し、二つの主桁25間に架け渡される。図1に示すように、レール13は、主桁25の間隔L3よりも長い全長L4を有し、第1懸垂台車11及び第2懸垂台車12の一方又は両方から橋梁20の幅方向(Y方向)に突出している。 As shown in FIG. 2, a rail 13 is detachably attached to the first suspension carriage 11 and the second suspension carriage 12 via a connection block 45. The rail 13 connects the first suspension carriage 11 and the second suspension carriage 12 and is spanned between the two main girders 25. As shown in FIG. 1, the rail 13 has a total length L4 that is longer than the interval L3 of the main girder 25, and the width direction (Y direction) of the bridge 20 from one or both of the first suspension carriage 11 and the second suspension carriage 12. ).
 図2に示すように、カメラ15は、カメラ本体70と、保持部71と、昇降部72と、カメラ台車73とを有する。図5に示すように、カメラ本体70は二眼カメラから構成されており、複数の撮影レンズ70aがY方向に並べて設けられる。カメラ本体70は保持部71により昇降部72の上端に取り付けられている。保持部71は、Y軸を中心としてカメラ本体70を例えば270°の角度範囲で回転させ、且つZ軸を中心としてカメラ本体70を例えば270°の角度範囲で回転させる。なお、これらの回転角度範囲は適宜変更してよく、要するにカメラ本体70の姿勢を代えて、橋梁20の下面部の全域を死角無く撮影することができればよい。 As shown in FIG. 2, the camera 15 includes a camera body 70, a holding unit 71, an elevating unit 72, and a camera carriage 73. As shown in FIG. 5, the camera body 70 is constituted by a twin-lens camera, and a plurality of photographing lenses 70a are arranged in the Y direction. The camera body 70 is attached to the upper end of the elevating part 72 by a holding part 71. The holding unit 71 rotates the camera body 70 around the Y axis in an angle range of 270 °, for example, and rotates the camera body 70 around the Z axis in an angle range of 270 °, for example. Note that these rotation angle ranges may be changed as appropriate. In short, it is only necessary to change the posture of the camera body 70 and capture the entire area of the lower surface of the bridge 20 without blind spots.
 カメラ本体70は、通常のカメラに比べて高機能化されている。例えば、LEDなどの高輝度照明器70bを有し、且つ例えば1/500秒以上の高速でシャッタ制御されることにより、カメラブレの影響が抑えられる。また、光学シフト方式などのブレ補正制御機能を有し、カメラブレの影響が抑えられる。更に、高感度撮影機能を有しノイズが低減される他に、測光エリアや制御プログラムの改良により、高精度露光制御機能によって野外の暗部での明るさ変動に対応可能にしている。二眼機能により奥行き情報を得て障害物を除去する画像処理が確実に行われる。また、二眼機能の適切な基線長さの選定と点検前校正の簡易化により、損傷部の長さを正確に測定することができる。 The camera body 70 has higher functionality than a normal camera. For example, the influence of camera shake can be suppressed by having a high brightness illuminator 70b such as an LED and performing shutter control at a high speed of, for example, 1/500 second or more. In addition, it has a shake correction control function such as an optical shift method, and the influence of camera shake can be suppressed. Furthermore, in addition to having a high-sensitivity shooting function and reducing noise, the high-precision exposure control function can cope with brightness fluctuations in outdoor dark areas by improving the photometry area and control program. Image processing for obtaining depth information and removing obstacles by the binocular function is reliably performed. In addition, the length of the damaged portion can be accurately measured by selecting an appropriate baseline length for the binocular function and simplifying calibration before inspection.
 図2に示すように、昇降部72はカメラ台車73に取り付けられ、カメラ本体70を鉛直方向(Z軸方向)で移動自在に保持する。昇降部72の昇降ストロークは、例えば2mである。最下降時には、カメラ台車73の凹部73a(図4参照)内にカメラ本体70の下部が収納される。この収納時には、カメラ本体70が、鋼鈑桁22の各種部材に当接することが無い位置に保持される。カメラ本体70は、最下降状態において、鋼鈑桁22の下面部分の全体を視野に入れることができる視野角を有し、更にズーム機能も有する。また、最上昇時には、床版23の下面に接近することができる。 As shown in FIG. 2, the elevating unit 72 is attached to a camera carriage 73, and holds the camera body 70 so as to be movable in the vertical direction (Z-axis direction). The raising / lowering stroke of the raising / lowering part 72 is 2 m, for example. At the lowest position, the lower part of the camera body 70 is housed in the recess 73a (see FIG. 4) of the camera carriage 73. At the time of storage, the camera body 70 is held at a position where it does not come into contact with various members of the steel girder 22. The camera main body 70 has a viewing angle that allows the entire lower surface portion of the steel girder 22 to be in the field of view in the lowest lowered state, and further has a zoom function. Further, when it is at its highest position, it can approach the lower surface of the floor slab 23.
 図4及び図5に示すように、カメラ台車73は、2本のレール13間に取り付けられ、レール13上を移動する。カメラ台車73の前端部及び後端部には、レール13の一部が挿入されるレール溝73bが形成されている。カメラ台車73は、レール13を自走できる構造であれば良く、移動方式は特に限定はされない。例えば、駆動車輪、ラックアンドピニオン、ワイヤによる牽引、ボールネジなどによりレール13を走行する。なお、実施形態では2本のレール13としているが、これは1本のレールや3本以上のレールでも良い。レール13の断面形状も矩形に限られることなく、円形や楕円形、その他の多角形であってもよい。また、レール13によるカメラ台車73の保持案内方式も特に図示のものに限定されるものではなく、他の保持案内方式を用いても良い。 As shown in FIGS. 4 and 5, the camera carriage 73 is attached between the two rails 13 and moves on the rails 13. A rail groove 73 b into which a part of the rail 13 is inserted is formed in the front end portion and the rear end portion of the camera carriage 73. The camera carriage 73 only needs to have a structure capable of traveling on the rail 13, and the movement method is not particularly limited. For example, the rail 13 is driven by drive wheels, rack and pinion, traction by wire, ball screw, and the like. In the embodiment, the two rails 13 are used, but this may be one rail or three or more rails. The cross-sectional shape of the rail 13 is not limited to a rectangle, but may be a circle, an ellipse, or another polygon. Further, the holding guide method of the camera carriage 73 by the rail 13 is not particularly limited to the illustrated one, and other holding guide methods may be used.
 図2に示すように、本実施形態では、懸垂台車11,12が走行する主桁25の間(内側)のみならず、懸垂台車11,12が走行する主桁25の外側も撮影が可能なように、主桁25を超えてレール13上を移動する。このため、懸垂台車11,12の連結ブロック45がカメラ台車73の走行の障害にならないように、懸垂台車11,12の下方にレール13が取り付けられている。なお、懸垂台車11,12へのレール13の取り付けは、カメラ台車73の走行の障害にならない構造であれば良く、両持ち構造の他に片持ち構造であってもよい。レール13の両端には、カメラ台車73がレール13から脱落することがないように、ストッパ13aが取り付けられている。 As shown in FIG. 2, in this embodiment, it is possible to photograph not only between (inside) the main beam 25 on which the suspended carriages 11 and 12 travel, but also on the outside of the main beam 25 on which the suspended carriages 11 and 12 travel. Thus, it moves on the rail 13 beyond the main girder 25. For this reason, the rail 13 is attached below the suspension carriages 11 and 12 so that the connecting block 45 of the suspension carriages 11 and 12 does not obstruct the traveling of the camera carriage 73. The rails 13 may be attached to the suspension carts 11 and 12 as long as they do not obstruct the traveling of the camera cart 73 and may be a cantilever structure in addition to the both-end support structure. Stoppers 13 a are attached to both ends of the rail 13 so that the camera carriage 73 does not fall off the rail 13.
 カメラ本体70はカメラ台車73の凹部73a内に収納可能にされており、昇降部72が最下端まで下降すると、カメラ本体70が凹部73a内に入る。このカメラ本体70の収納状態では、懸垂台車11,12の下部をカメラ台車73が通り抜けることができ、主桁25の内側から外側に移動し、主桁25の外側部分を撮影することができる。なお、カメラ本体70は凹部73a内に必ずしも収納する必要はなく、昇降部72が最下位まで下降した状態で、カメラ本体70の最上部位が、主桁25間に存在する各種補強部材の最下部位よりも下側に位置していれば良い。 The camera body 70 can be stored in the recess 73a of the camera carriage 73. When the elevating part 72 is lowered to the lowest end, the camera body 70 enters the recess 73a. In the stored state of the camera main body 70, the camera carriage 73 can pass through the lower part of the suspension carriages 11 and 12, move from the inside of the main girder 25 to the outside, and the outside part of the main girder 25 can be photographed. The camera body 70 is not necessarily housed in the recess 73a, and the uppermost part of the camera body 70 is the lowermost of various reinforcing members existing between the main beams 25 in a state where the elevating part 72 is lowered to the lowest position. What is necessary is just to be located below the site | part.
 図3に示すように、第1懸垂台車11の基台40には、第1コントローラ51が内蔵されている。第1コントローラ51は各懸垂台車11,12、カメラ本体70、保持部71、昇降部72、カメラ台車73などの各部を制御する他に、カメラ本体70からの画像データを点検者の手元にある第2コントローラ52に送信する。画像データは、有線又は無線方式で送信される。これら第1コントローラ51及び第2コントローラ52によりコントローラが構成される。 As shown in FIG. 3, the first controller 51 is built in the base 40 of the first suspension carriage 11. The first controller 51 controls each part such as the suspension carts 11 and 12, the camera main body 70, the holding unit 71, the lifting unit 72, the camera cart 73, and the image data from the camera main body 70 is in the hands of the inspector. Transmit to the second controller 52. Image data is transmitted in a wired or wireless manner. The first controller 51 and the second controller 52 constitute a controller.
 第2コントローラ52は、図1に示すように例えばノートパソコン等から構成されている。第2コントローラ52は、ディスプレイ52a、キーボード52b、演算処理部52c(図3参照)を有する他に、データ通信部52dやUSBポート等を有する。USBポートには必要に応じてジョイステック等の操作部材が接続されている。演算処理部52cは、所定のアプリケーションがインストールされることにより、画像処理部16や、懸垂台車11,12、カメラ台車73、昇降部72、保持部71を操作させるための制御部75や、モード切換部76として機能する。図3にはこの機能ブロックが図示されている。 The second controller 52 is composed of, for example, a notebook personal computer as shown in FIG. The second controller 52 includes a display 52a, a keyboard 52b, an arithmetic processing unit 52c (see FIG. 3), a data communication unit 52d, a USB port, and the like. An operation member such as a joystick is connected to the USB port as necessary. The arithmetic processing unit 52c is installed with a predetermined application so that the image processing unit 16, the suspension carts 11 and 12, the camera cart 73, the lifting unit 72, and the holding unit 71 are operated. It functions as the switching unit 76. FIG. 3 shows this functional block.
 第2コントローラ52は、キーボード52bやジョイステック等の操作部材の操作を受けて制御信号を発生させ、第1コントローラ51に制御信号を送り、各部を遠隔操作する。画像処理部16は、第1コントローラ51から送られてきた画像データを加工して、ディスプレイ52aにカメラ本体70からのスルー画像を表示する。この他に、第1コントローラ51からの画像データに基づき、各種補強部材の検出及び位置の特定、損傷部の検出、サイズ、位置の特定を行う。 The second controller 52 receives an operation of an operation member such as a keyboard 52b or a joystick, generates a control signal, sends the control signal to the first controller 51, and remotely operates each unit. The image processing unit 16 processes the image data sent from the first controller 51 and displays a through image from the camera body 70 on the display 52a. In addition, based on the image data from the first controller 51, various reinforcing members are detected and their positions are identified, damaged portions are detected, and their sizes and positions are identified.
 モード切換部76は、入力操作に応じて点検の自動モード及び手動モードを切り換える。自動モードでは、予め決められた手順に従い懸垂台車11,12及びカメラ台車73を移動させ、橋梁20の下面部分を撮影し、画像処理により各種補強部材及び損傷部を特定し、各種補強部材の位置、損傷部のサイズや評価などを記憶する。 The mode switching unit 76 switches between an automatic inspection mode and a manual mode according to an input operation. In the automatic mode, the suspension carts 11 and 12 and the camera cart 73 are moved according to a predetermined procedure, the lower surface portion of the bridge 20 is photographed, various reinforcing members and damaged portions are identified by image processing, and the positions of the various reinforcing members Memorize the size and evaluation of the damaged part.
 なお、予め設定しておくことにより、一定サイズ以上の損傷部を検出した時には、アラームを発して点検者に報知することもできる。この場合には、点検者は自動モードを中断して手動モードに切り換え、ズーム撮影や撮影角度を変えた撮影を行う。 It should be noted that, by setting in advance, when a damaged part of a certain size or more is detected, an alarm can be issued to notify the inspector. In this case, the inspector interrupts the automatic mode and switches to the manual mode to perform zoom shooting or shooting with a different shooting angle.
 また、予め要点検箇所をマップデータとしておおよその位置を入力しておくことにより、これらの要点検箇所が撮影可能な状態になった時にアラームを発して、点検者に報知することもできる。更には、二眼カメラの視差画像を用いて3D表示画像を作成する。 In addition, by inputting the approximate position as the map data in advance for the inspection required location, an alarm can be issued to notify the inspector when these inspection required locations are ready for photographing. Furthermore, a 3D display image is created using a parallax image of a binocular camera.
 以下、本発明の橋梁検査ロボットシステム10の作用を説明する。点検員は、梯子などにより橋梁20の下側に設けられている作業踊り場に降りることができる。作業踊り場では、検査対象の橋梁20の複数の主桁25それぞれに懸垂台車11,12が取り付けられる。この後に、カメラ台車73が取り付けられたレール13が懸垂台車11,12に取り付けられる。各種コネクタを接続した後に、自動モードを選択し、点検を指示すると、予め決められたプログラムに基づき各部が動作して、点検が自動で行われる。 Hereinafter, the operation of the bridge inspection robot system 10 of the present invention will be described. The inspector can go down to the work landing provided on the lower side of the bridge 20 by a ladder or the like. At the work landing, suspension carts 11 and 12 are attached to the plurality of main girders 25 of the bridge 20 to be inspected. Thereafter, the rail 13 to which the camera carriage 73 is attached is attached to the suspension carriages 11 and 12. When the automatic mode is selected and inspection is instructed after various connectors are connected, each unit operates based on a predetermined program, and the inspection is automatically performed.
 自動点検では、橋脚21間の点検対象の主桁25の下フランジ30c上でX軸方向に懸垂台車11,12を往復させ、カメラ本体70により点検対象部位を撮影する。先ず行き工程で、撮影可能な範囲(床版23の下面全面と、主桁25の上フランジ30b下面、垂直部の側面の一部)をカメラ本体70の姿勢を変えずに、動画及び必要に応じて静止画を得る。また、この行き工程中に得られた複数の画像データを画像処理して、各種補強部材のXYZ軸上での座標位置(三次元座標位置)を特定する。座標位置の特定では、先ず、横桁、対傾構26、垂直部材などの補強部材が画像認識される。次に、認識した各補強部材について、複数の視差に基づきXYZ軸方向での各補強部材の位置をカメラ本体70からの距離として求める。求めた距離データとカメラ本体70の位置データとに基づき、各補強部材の位置を三次元座標位置として特定する。カメラ本体70の位置データは、懸垂台車11,12やカメラ台車73の移動距離に基づき特定することができる。移動距離は、各モータの回転数や、各車輪41~43の回転数などに基づき求めることができる。 In the automatic inspection, the suspension carriages 11 and 12 are reciprocated in the X-axis direction on the lower flange 30c of the main girder 25 to be inspected between the piers 21, and the inspection target part is photographed by the camera body 70. First, in the going-out process, a moving image and a necessary range (the entire lower surface of the floor slab 23, the lower surface of the upper flange 30b of the main girder 25, and a part of the side surface of the vertical portion) can be captured without changing the posture of the camera body 70. A still image is obtained accordingly. In addition, a plurality of image data obtained during the going process is subjected to image processing, and coordinate positions (three-dimensional coordinate positions) on the XYZ axes of various reinforcing members are specified. In specifying the coordinate position, first, a reinforcing member such as a cross beam, the tilting structure 26, and a vertical member is recognized. Next, for each recognized reinforcing member, the position of each reinforcing member in the XYZ axial directions is obtained as a distance from the camera body 70 based on a plurality of parallaxes. Based on the obtained distance data and the position data of the camera body 70, the position of each reinforcing member is specified as a three-dimensional coordinate position. The position data of the camera main body 70 can be specified based on the moving distance of the suspended carriages 11 and 12 and the camera carriage 73. The moving distance can be obtained based on the number of rotations of each motor, the number of rotations of the wheels 41 to 43, and the like.
 また、画像処理により各種補強部材を削除した透視画を橋梁20下部の撮影可能範囲内で得る。この複数の透視画を画像合成して、点検対象エリアの床版下面の全体画像を生成する。この全体画像に対して、周知の画像処理、例えばHaar-like特徴量(矩形領域の平均明度の差分値として求められるスカラ量であり、明度勾配の強度を表す)を用いたAdaBoost(Adaptive Boosting)による検出処理等の画像処理を行うことにより、損傷が疑われる箇所(損傷候補)を検出する。この場合、事前に用意した損傷/非損傷画像の特徴量から、学習により「損傷/非損傷」を判別する画像処理系を構築する。同様にして、点検対象エリアの主桁25の上フランジ面及びこれに連続する垂直面の一部について、透視画を画像合成して、点検対象エリアの第1回の撮影により得られる範囲で主桁25の全体画像を生成する。この全体画像から、損傷候補を検出する。同様にして、点検対象エリアの各補強部材の全体画像を生成し、この全体画像から損傷候補を検出する。 Also, a fluoroscopic image in which various reinforcing members are deleted by image processing is obtained within the shootable range below the bridge 20. The plurality of fluoroscopic images are combined to generate an entire image of the bottom surface of the floor slab in the inspection target area. AdaBoost (Adaptive Boosting) using well-known image processing, for example, Haar-like feature amount (scalar amount obtained as the difference value of the average brightness of the rectangular area, representing the intensity gradient) for this whole image By performing image processing such as detection processing by, a portion suspected of being damaged (damage candidate) is detected. In this case, an image processing system for discriminating “damage / non-damage” by learning from the feature amount of the damage / non-damage image prepared in advance is constructed. Similarly, a perspective image of the upper flange surface of the main girder 25 in the inspection target area and a part of the vertical plane continuous thereto is synthesized within the range obtained by the first imaging of the inspection target area. An entire image of the digit 25 is generated. Damage candidates are detected from this entire image. Similarly, an entire image of each reinforcing member in the inspection target area is generated, and damage candidates are detected from the entire image.
 損傷は、腐食、亀裂、塗布膜割れなどがある。これらの損傷は他の正常部位に比べて色が変化したり、部分的に膨らんだり、亀裂が発生したりしており、これらの色や形状の変化に基づき損傷部の種別を特定する。また、損傷部のエリアの大きさから、損傷部のサイズを特定し、このサイズに応じて損傷程度を評価する。これらの画像認識や損傷程度の評価の判定精度は、事前に用意した損傷/非損傷画像の特徴量の学習効果により高められており、損傷の有無やサイズ、評価が確実に行われる。 Damage includes corrosion, cracks, and cracks in the coating film. These damages change in color, partially swell, or have cracks compared to other normal sites, and the type of the damaged part is specified based on changes in these colors and shapes. Further, the size of the damaged portion is identified from the size of the area of the damaged portion, and the degree of damage is evaluated according to this size. The determination accuracy of the image recognition and the evaluation of the degree of damage is enhanced by the learning effect of the feature amount of the damage / non-damage image prepared in advance, and the presence / absence, size, and evaluation of the damage are reliably performed.
 戻り工程では、行き工程で得られた各補強部材の位置に基づき、点検対象エリアの床版23の下面、主桁25の内側面(上フランジ30b下面、垂直部の側面、下フランジ30cの上面)が写る複数の撮影点を特定する。この特定点に戻り工程の戻り時に、順次カメラ本体70を位置させるように、懸垂台車11,12、カメラ台車73、昇降部72、保持部71を制御する。これにより、行き工程で撮影が不可能であった部分につき、撮影データを補充し、点検対象エリア内で死角の無い撮影が行われる。この撮影データに基づき、行き工程と同じようにして、行き工程では死角であった部分につき撮影データが補充される。これにより、点検対象エリアの床版23の全体の透視画像、点検対象エリアの主桁25の上フランジ面、垂直面、下フランジ面の全体の透視画像、点検対象エリアの各補強部材全体の画像などが得られる。これらの全体画像から損傷候補を検出し、損傷データを得る。 In the returning process, based on the position of each reinforcing member obtained in the going process, the lower surface of the floor slab 23 in the inspection target area, the inner surface of the main girder 25 (the lower surface of the upper flange 30b, the side surface of the vertical portion, the upper surface of the lower flange 30c) ) To identify multiple shooting points. The suspension carriages 11 and 12, the camera carriage 73, the elevating part 72, and the holding part 71 are controlled so that the camera body 70 is sequentially positioned when returning to the specific point. As a result, the shooting data is supplemented for the portion where shooting was impossible in the going process, and shooting without a blind spot is performed in the inspection target area. Based on this shooting data, the shooting data is supplemented for the part that was a blind spot in the going process in the same way as the going process. As a result, the entire perspective image of the floor slab 23 in the inspection target area, the entire perspective image of the upper flange surface, vertical surface, and lower flange surface of the main girder 25 in the inspection target area, and the entire image of each reinforcing member in the inspection target area Etc. are obtained. Damage candidates are detected from these whole images to obtain damage data.
 また、損傷候補に対しては必要に応じてズーム撮影等を行い、損傷部のサイズ及び形状を計測し、損傷の種別を特定し、判定精度を上げる。そして、損傷部の座標位置と共に損傷種別や損傷画像を損傷データとして記憶する。損傷部の座標位置の特定は、各懸垂台車11,12、カメラ台車73、昇降部72の移動量や保持部71の変位量に基づき行われる。 Also, if necessary, perform zoom photography for damage candidates, measure the size and shape of the damaged part, specify the type of damage, and increase the determination accuracy. Then, the damage type and the damage image are stored as damage data together with the coordinate position of the damaged portion. Identification of the coordinate position of the damaged portion is performed based on the amount of movement of each of the suspended carriages 11 and 12, the camera carriage 73, the elevating part 72, and the amount of displacement of the holding part 71.
 点検調書作成モードでは、予め記憶されている所定の点検調書フォーマット文書に、損傷データを嵌め込んで点検調書を自動作成する。作成された点検調書は、点検員が確認して、編集や修正を加えることができる。自動取得した損傷データに基づき所定のフォーマットの点検調書文書に損傷データが嵌め込み合成されることにより、自動的に点検調書が作成されるため、点検者の作業時間を大幅に短縮することができる。 In the inspection record creation mode, the inspection record is automatically created by inserting the damage data into a predetermined inspection record format document stored in advance. The created inspection record can be checked by an inspector and edited or corrected. Since the inspection data is automatically created by fitting the damage data into the inspection document in a predetermined format based on the automatically acquired damage data, the work time of the inspector can be greatly shortened.
 カメラ本体70の視野はカメラ本体70を複数の主桁25間の中央に配置した時に、橋梁20の床版23の下面及び主桁25の垂直部が写る範囲とされている。なお、複数の主桁25間のY方向長さ(桁間長さ)が長くて一つの撮影画面範囲内に全体が写らない場合には、Y方向に撮影点を複数設けて、分割撮影し、得られた分割撮影画像を合成して、橋梁20の床版23の下面及び主桁25の垂直部が写るように撮影する。 The field of view of the camera body 70 is a range in which the lower surface of the floor slab 23 of the bridge 20 and the vertical part of the main beam 25 are reflected when the camera body 70 is arranged in the center between the plurality of main beams 25. If the length in the Y direction (inter-digit length) between the plurality of main girders 25 is long and the whole image is not captured within one shooting screen range, a plurality of shooting points are provided in the Y direction and divided shooting is performed. Then, the obtained divided photographed images are combined and photographed so that the lower surface of the floor slab 23 of the bridge 20 and the vertical portion of the main girder 25 are reflected.
 各補強部材の位置検出や損傷の検出に用いる画像は、動画データであっても、静止画データであってもよい。また、静止画は動画の1フレームから静止画を得てもよいし、複数のフレームの画像合成から得てもよい。 The image used for position detection and damage detection of each reinforcing member may be moving image data or still image data. Still images may be obtained from one frame of a moving image or may be obtained from image synthesis of a plurality of frames.
 図1に示すように、左側の主桁25は最も外側に位置するため、従来の検査方法では、懸垂台車やカメラを再度取り付けて、最も外側の主桁の外側面を再度点検する必要がある。これに対して、本実施形態では、最外側主桁25に懸垂している懸垂台車11のレール13が、外側に突出しており、カメラ15がこの懸垂台車11の下方を通過することができる構成になっている。したがって、懸垂台車の外側部分も、内側部分の点検の際に同様にして点検することができる。このため、再度、外側の点検のために、カメラを再度取り付ける必要がなく、外側部分の点検を容易に効率良く行うことができる。 As shown in FIG. 1, since the left main girder 25 is located on the outermost side, it is necessary to re-inspect the outer surface of the outermost main girder by reattaching the suspension carriage or camera in the conventional inspection method. . On the other hand, in this embodiment, the rail 13 of the suspension carriage 11 suspended from the outermost main girder 25 protrudes outward, and the camera 15 can pass below the suspension carriage 11. It has become. Therefore, the outer part of the suspension carriage can be inspected in the same manner when the inner part is inspected. For this reason, it is not necessary to mount the camera again for the outside inspection again, and the outside portion can be easily and efficiently inspected.
 以上のように、本実施形態では、X方向に懸垂台車11,12を移動させて、橋脚21の一方から他方への移動で、橋梁20の下面部分全体の概略画像が得て、この概略画像に基づき各種補強部材の位置情報を取得し、各種補強部材を削除した透視画像に基づき損傷候補を検出し、戻り工程で損傷候補をズーム撮影などにより撮影して損傷の有無、損傷部のサイズや種別等を精度よく判定することができる。 As described above, in the present embodiment, the suspension carts 11 and 12 are moved in the X direction, and a schematic image of the entire lower surface portion of the bridge 20 is obtained by moving the bridge pier 21 from one side to the other. The position information of various reinforcing members is acquired based on the above, damage candidates are detected based on a fluoroscopic image from which various reinforcing members are deleted, and the damage candidates are photographed by zoom photographing or the like in the return process to determine whether there is damage, the size of the damaged portion, etc. The type and the like can be determined with high accuracy.
 上記実施形態では、行き工程で補強部材の位置を特定し、戻り工程で、補強部材の位置に基づき最適な撮影位置を特定し、この特定位置で損傷の有無等の特定用撮影データを得たが、行き工程で補強部材の位置と損傷部とを特定してもよい。この場合には、一定距離移動して画像データを取得した後に、この画像データに基づき補強部材の位置特定や損傷の有無、サイズ、評価を行う。なお、行き工程中には若干の戻り工程が含まれるが、行き工程中の全工程を戻ることはないので、その分だけ点検に要する時間を短縮することができる。 In the above-described embodiment, the position of the reinforcing member is specified in the going process, the optimal shooting position is specified based on the position of the reinforcing member in the returning process, and specific shooting data such as the presence or absence of damage is obtained at this specific position. However, the position of the reinforcing member and the damaged portion may be specified in the going process. In this case, after acquiring the image data by moving a certain distance, the position of the reinforcing member is specified, the presence / absence of the damage, the size, and the evaluation are performed based on the image data. The going process includes a few returning processes. However, since all the processes in the going process are not returned, the time required for the inspection can be shortened accordingly.
 カメラ本体70は、複数の視差画像を得る二眼カメラであることが好ましいが、二眼カメラを用いることなく、一眼カメラの移動による視差を用いて、補強部材や損傷を特定してもよい。また、一眼カメラによる場合に、撮影光軸を例えばZ軸に固定し、撮影光軸に凸面鏡を配したり、魚眼レンズを用いたりして、360°全方向を撮影してもよい。この場合には、歪んで得られる全周画像を周知の画像処理により歪みを無くした後に、補強部材や損傷を特定することが好ましい。 The camera body 70 is preferably a binocular camera that obtains a plurality of parallax images, but the reinforcing member and damage may be specified using parallax due to movement of the single-lens camera without using the binocular camera. In the case of using a single-lens camera, the 360 ° omnidirectional imaging may be performed by fixing the photographic optical axis to, for example, the Z axis and arranging a convex mirror on the photographic optical axis or using a fisheye lens. In this case, it is preferable to specify the reinforcing member and damage after eliminating the distortion of the entire circumference image obtained by distortion by known image processing.
 上記実施形態では、懸垂台車11,12に障害物センサ14を設けて障害物検出部を構成したが、これに代えて、又は加えて、カメラ本体70による画像データに基づき、懸垂台車11,12の前方の障害物、例えば添接板31やボルトナット等を検出してもよい。 In the above embodiment, the obstacle sensors 14 are provided on the suspension carts 11 and 12 to configure the obstacle detection unit. Instead of or in addition to this, the suspension vehicles 11 and 12 are based on image data from the camera body 70. Obstacles in front of them, such as the attachment plate 31 and bolts and nuts, may be detected.
 上記実施形態では、各懸垂台車11,12に、左右に第1~第3車輪41~43を設けたが、懸垂台車11,12はレール13により一体化されるため、内側に位置する第3車輪43は省略し、左右の第1車輪41,第2車輪42のみで、懸垂台車11,12を支持してもよい。この場合には、障害物に対して退避位置にする車輪は必ず一つとして、他の3個の車輪は常に走行位置に保持する。また、第1車輪41を基台40の一方の側縁部に第2車輪42を基台40の他方の側縁部に設けてもよい。 In the above-described embodiment, the first to third wheels 41 to 43 are provided on the left and right sides of the suspension carriages 11 and 12, respectively. However, since the suspension carriages 11 and 12 are integrated by the rail 13, the third carriage located inside is provided. The wheel 43 may be omitted, and the suspension carts 11 and 12 may be supported by the left and right first wheels 41 and the second wheels 42 only. In this case, there is always one wheel that is in the retracted position with respect to the obstacle, and the other three wheels are always held in the traveling position. Further, the first wheel 41 may be provided on one side edge of the base 40 and the second wheel 42 may be provided on the other side edge of the base 40.
 上記実施形態では、第1懸垂台車11及び第2懸垂台車12を、走行位置と退避位置との間で変位可能な第1~第3車輪41~43と、下フランジ30cの下面に接触して回転する下面接触車輪44とから構成したが、この他に、図6に示す第2実施形態のように、左右の変位可能な車輪総数を4個として第1~第3車輪41~43の他に第5車輪66と第4変位部67とを設け、更に安定した走行を実現させてもよい。この場合にも、左右の車輪は、障害物のX軸方向長さL1よりも、そのオフセット長さL2を長く設定する。なお、図示は省略したが、左右の車輪は2個に限定されることなく、それぞれ3個以上としてもよい。 In the above embodiment, the first suspension carriage 11 and the second suspension carriage 12 are brought into contact with the first to third wheels 41 to 43 that can be displaced between the travel position and the retracted position, and the lower surface of the lower flange 30c. In addition to the rotating lower surface contact wheels 44, in addition to the first to third wheels 41 to 43, the total number of right and left displaceable wheels is four as in the second embodiment shown in FIG. The fifth wheel 66 and the fourth displacement portion 67 may be provided in the rear to achieve more stable traveling. Also in this case, the left and right wheels are set to have an offset length L2 longer than the length L1 of the obstacle in the X-axis direction. Although illustration is omitted, the left and right wheels are not limited to two, and may be three or more.
 上記実施形態では、車輪41~43を退避位置と走行位置とで揺動させるタイプとしたが、下フランジ30cの上方に、走行車輪を退避させるエリアがある場合には、障害物を乗り越えるように走行車輪を上昇させて退避位置にしてもよい。この場合には、図7に示すように、懸垂台車79の車輪80を保持する車輪保持ブラケット81を保持枠82内で昇降自在に保持する。保持枠82内には車輪保持ブラケット81を下方に押圧するコイルバネ83が縮装されている。したがって、添接板31が下フランジ30cから突出した部分に車輪80が当たると、コイルバネ83の付勢に抗して車輪保持ブラケット81が二点鎖線で表示するように上方に退避するため、車輪80が添接板31を乗り越えて、通過することができる。 In the above embodiment, the wheels 41 to 43 are swung between the retracted position and the traveling position. However, when there is an area for retracting the traveling wheel above the lower flange 30c, the obstacle is overcome. The traveling wheel may be raised to the retracted position. In this case, as shown in FIG. 7, the wheel holding bracket 81 that holds the wheel 80 of the suspension carriage 79 is held in the holding frame 82 so as to be movable up and down. A coil spring 83 that presses the wheel holding bracket 81 downward is mounted in the holding frame 82. Therefore, when the wheel 80 hits the portion where the contact plate 31 protrudes from the lower flange 30c, the wheel holding bracket 81 retreats upward as indicated by a two-dot chain line against the bias of the coil spring 83. 80 can pass over the attachment plate 31.
 上記実施形態では、車輪41~44,80を用いて、懸垂台車11,12を走行させたが、例えば、図8に示すように、転接車輪89を用いてもよい。この転接車輪89は、車輪本体90とプーリ91と無端ベルト92とを有する。車輪本体90は、三角形の各頂点を丸く形成した略三角に形成されている。プーリ91は、車輪本体90の各頂点近くに配されている。無端ベルト92は、プーリ91及び車輪本体90の外周面に配されて、図示しないモータにより回転される。この場合には、下フランジ30cから突出した添接板31に無端ベルト92が当たると、無端ベルト92の回転負荷が増大する。この負荷増大に応じて車輪本体90を図示省略のモータにより回転させることにより、二点鎖線で表示されるように転接車輪89が転がって、無端ベルト92が添接板31を乗り超えることができる。転接車輪89は、図7に示す車輪保持ブラケット81と同様の構成により又は別の周知の昇降機構により、添接板31を乗り上げる時に車輪本体90が上方に退避可能に保持され、且つ車輪本体90の無端ベルト92が下フランジ30cの上面に付勢される。 In the above embodiment, the suspended carriages 11 and 12 are caused to travel using the wheels 41 to 44 and 80. However, for example, a rolling wheel 89 may be used as shown in FIG. The rolling wheel 89 includes a wheel body 90, a pulley 91, and an endless belt 92. The wheel body 90 is formed in a substantially triangular shape in which each vertex of the triangle is formed in a round shape. The pulley 91 is disposed near each vertex of the wheel body 90. The endless belt 92 is disposed on the outer peripheral surfaces of the pulley 91 and the wheel main body 90 and is rotated by a motor (not shown). In this case, when the endless belt 92 hits the attachment plate 31 protruding from the lower flange 30c, the rotational load of the endless belt 92 increases. When the wheel main body 90 is rotated by a motor (not shown) according to this load increase, the rolling wheel 89 rolls as indicated by a two-dot chain line, and the endless belt 92 gets over the attachment plate 31. it can. The rolling wheel 89 has a configuration similar to that of the wheel holding bracket 81 shown in FIG. 7 or another known lifting mechanism so that the wheel body 90 is held so as to be retractable upward when it rides on the attachment plate 31. 90 endless belts 92 are urged toward the upper surface of the lower flange 30c.
 上記実施形態では、二眼カメラを用いたが、この他に、赤外線カメラ等を更に設けて、点検を行ってもよい。また、懸垂台車11,12に、ロボットハンド等を設けて、腐食が進行している部位に叩くなどの点検処理を付加してもよい。この場合には、腐食の進行状態の確認を確実に行うことができる。更には、ロボットハンドを用いて異物の除去や回収を行ってもよい。この場合には、回収箱や落下防止ネットなどを用いて、異物の落下を阻止する。また、ロボットハンドの先端に吸引チューブを設けて、粉塵などを吸い取ってもよい。更には、空気吹き出しと吸引とを別ノズルを用いて行い、吹き出しノズルにより粉塵を吹き飛ばし、この吹き飛ばした粉塵を吸引ノズルにより回収してもよい。 In the above embodiment, a twin-lens camera is used, but in addition to this, an infrared camera or the like may be further provided for inspection. In addition, a robot hand or the like may be provided on the suspension carts 11 and 12, and an inspection process such as hitting a site where corrosion is progressing may be added. In this case, the progress of corrosion can be confirmed reliably. Furthermore, foreign matter may be removed or collected using a robot hand. In this case, the collection of foreign matter is prevented by using a collection box or a fall prevention net. Further, a suction tube may be provided at the tip of the robot hand to suck up dust and the like. Furthermore, air blowing and suction may be performed using separate nozzles, dust may be blown off by the blowing nozzle, and the blown-off dust may be collected by the suction nozzle.
 本発明の検査対象となる橋梁20は、河川、海洋及び陸上のいずれの位置に配置された橋梁も該当する。橋梁の用途も限定されることなく、人道橋、道路橋及び鉄道橋のいずれの用途でもよい。また、鋼鈑桁22を例にして説明したが、下フランジ30cを有する複数の桁を有する橋梁であればよく、構造形式や材料などは特に限定されない。 The bridge 20 to be inspected according to the present invention corresponds to a bridge arranged at any position in the river, the ocean, and the land. The use of the bridge is not limited, and any use of a humanitarian bridge, a road bridge, and a railway bridge may be used. Moreover, although the steel girder 22 has been described as an example, it may be a bridge having a plurality of girders having the lower flange 30c, and the structure type and material are not particularly limited.

Claims (10)

  1.  下フランジを有する複数の主桁を、前記主桁の長手方向に直交する方向に離間して並べてなる橋梁を検査する橋梁検査ロボットシステムにおいて、
     複数の前記主桁に取り付けられて前記主桁の長手方向に走行する第1懸垂台車及び第2懸垂台車と、
     前記第1懸垂台車及び前記第2懸垂台車に取り付けられ、前記第1懸垂台車及び前記第2懸垂台車が取り付けられる前記主桁の間隔よりも長く形成され、少なくとも一方の前記懸垂台車から突出するレールと、
     前記レールに取り付けられて走行し、一方の前記懸垂台車を超えて移動自在なカメラと、
     前記カメラの撮影データに基づき前記橋梁の損傷部を特定する画像処理部と
    を備える橋梁検査ロボットシステム。
    In a bridge inspection robot system for inspecting a bridge formed by arranging a plurality of main girders having a lower flange apart from each other in a direction perpendicular to the longitudinal direction of the main girders,
    A first suspension carriage and a second suspension carriage which are attached to a plurality of the main girders and run in the longitudinal direction of the main girders;
    A rail that is attached to the first suspension carriage and the second suspension carriage and that is formed longer than an interval between the main girders to which the first suspension carriage and the second suspension carriage are attached and protrudes from at least one of the suspension carriages When,
    A camera that is attached to the rail and travels beyond one of the suspension carts, and
    A bridge inspection robot system comprising: an image processing unit that identifies a damaged portion of the bridge based on image data of the camera.
  2.  前記第1懸垂台車及び前記第2懸垂台車は、
     前記下フランジの上面に当接し、前記主桁の長手方向に離間して配置される第1車輪及び第2車輪と、
     前記第1車輪及び前記第2車輪を個別に前記下フランジの上面に接触する走行位置、前記下フランジの上面から退避した退避位置の間で変位する第1変位部及び第2変位部と
    を有する請求項1記載の橋梁検査ロボットシステム。
    The first suspension carriage and the second suspension carriage are:
    A first wheel and a second wheel that are in contact with the upper surface of the lower flange and are spaced apart in the longitudinal direction of the main beam;
    A travel position where the first wheel and the second wheel are individually in contact with the upper surface of the lower flange; and a first displacement portion and a second displacement portion which are displaced between a retracted position retracted from the upper surface of the lower flange. The bridge inspection robot system according to claim 1.
  3.  前記第1変位部及び前記第2変位部は、前記第1車輪及び前記第2車輪の走行の障害となる障害物を検出する障害物センサを有し、前記障害物センサからの障害物検出信号に基づき前記第1車輪又は前記第2車輪を走行位置から退避位置にする請求項2記載の橋梁検査ロボットシステム。 The first displacement unit and the second displacement unit have an obstacle sensor that detects an obstacle that is an obstacle to travel of the first wheel and the second wheel, and an obstacle detection signal from the obstacle sensor The bridge inspection robot system according to claim 2, wherein the first wheel or the second wheel is moved from the traveling position to the retracted position based on the above.
  4.  前記障害物の前記主桁長手方向長さに比べて、前記懸垂台車に前記主桁の長手方向に離間して配される前記第1車輪及び前記第2車輪の主桁長手方向でのオフセット長さが長い請求項3記載の橋梁検査ロボットシステム。 The offset length of the first wheel and the second wheel in the longitudinal direction of the main girder that is spaced apart from the obstacle in the longitudinal direction of the main girder in the longitudinal direction of the main girder as compared to the longitudinal length of the main girder The bridge inspection robot system according to claim 3, wherein the length of the bridge inspection robot system is long.
  5.  前記第1懸垂台車及び前記第2懸垂台車は、
     前記下フランジの上面に当接し、前記主桁の長手方向に離間して配置される第1車輪及び第2車輪と、
     前記第1車輪及び前記第2車輪を個別に前記下フランジの上面に接触する走行位置、前記下フランジの上面からの突出物を乗り越える乗り越え位置の間で変位する第1変位部及び第2変位部と
    を有する請求項1記載の橋梁検査ロボットシステム。
    The first suspension carriage and the second suspension carriage are:
    A first wheel and a second wheel that are in contact with the upper surface of the lower flange and are spaced apart in the longitudinal direction of the main beam;
    A first displacement portion and a second displacement portion that are displaced between a travel position where the first wheel and the second wheel individually contact the upper surface of the lower flange, and a position where the first wheel and the second wheel get over the protrusion from the upper surface of the lower flange. The bridge inspection robot system according to claim 1.
  6.  前記カメラは、カメラ本体と、前記カメラ本体を昇降させる昇降部と、前記昇降部を前記レール上で移動させるカメラ台車とを有する請求項1から5いずれか1項記載の橋梁検査ロボットシステム。 The bridge inspection robot system according to any one of claims 1 to 5, wherein the camera includes a camera body, an elevating unit that moves the camera body up and down, and a camera carriage that moves the elevating unit on the rail.
  7.  前記カメラ本体は、複数の視差画像を得る二眼カメラである請求項6記載の橋梁検査ロボットシステム。 The bridge inspection robot system according to claim 6, wherein the camera body is a twin-lens camera that obtains a plurality of parallax images.
  8.  前記画像処理部は、複数の視差に基づき前記複数の主桁間にある部材の位置を前記カメラ本体からの距離として検出し、前記懸垂台車及びカメラ台車の移動距離に基づき前記部材の三次元座標位置を特定し、前記三次元座標位置に基づき前記部材を回避する前記カメラ本体の撮影位置を特定する請求項7記載の橋梁検査ロボットシステム。 The image processing unit detects a position of a member between the plurality of main girders based on a plurality of parallaxes as a distance from the camera body, and three-dimensional coordinates of the member based on a moving distance of the suspension carriage and the camera carriage The bridge inspection robot system according to claim 7, wherein a position is specified, and an imaging position of the camera body that avoids the member is specified based on the three-dimensional coordinate position.
  9.  前記第1懸垂台車及び前記第2懸垂台車は、前記下フランジの下面に接触する下面接触車輪を有する請求項1から8いずれか1項記載の橋梁検査ロボットシステム。 The bridge inspection robot system according to any one of claims 1 to 8, wherein the first suspension carriage and the second suspension carriage have a lower surface contact wheel that contacts a lower surface of the lower flange.
  10.  前記第1懸垂台車と前記第2懸垂台車と前記カメラとを遠隔操作するコントローラを有する請求項1から9いずれか1項記載の橋梁検査ロボットシステム。 The bridge inspection robot system according to any one of claims 1 to 9, further comprising a controller for remotely operating the first suspension carriage, the second suspension carriage, and the camera.
PCT/JP2015/078968 2014-10-14 2015-10-13 Bridge-inspecting robot system WO2016060139A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014210150A JP6355517B2 (en) 2014-10-14 2014-10-14 Bridge inspection robot system
JP2014-210150 2014-10-14

Publications (1)

Publication Number Publication Date
WO2016060139A1 true WO2016060139A1 (en) 2016-04-21

Family

ID=55746682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078968 WO2016060139A1 (en) 2014-10-14 2015-10-13 Bridge-inspecting robot system

Country Status (2)

Country Link
JP (1) JP6355517B2 (en)
WO (1) WO2016060139A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106774384A (en) * 2016-12-05 2017-05-31 王源浩 A kind of bridge machinery intelligent barrier avoiding robot
CN107178033A (en) * 2017-06-01 2017-09-19 黄河交通学院 It is a kind of to be used for the mobile device of bridge machinery and reinforcing
CN107881910A (en) * 2017-12-20 2018-04-06 厦门大学嘉庚学院 A kind of bridge detection robot
WO2018066435A1 (en) * 2016-10-07 2018-04-12 富士フイルム株式会社 Self position estimation device, self position estimation method, program, and image processing device
CN110687904A (en) * 2019-12-09 2020-01-14 广东科凯达智能机器人有限公司 Visual navigation routing inspection and obstacle avoidance method for inspection robot

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6465838B2 (en) * 2016-06-22 2019-02-06 株式会社富士ピー・エス Inspection device
JP6715340B2 (en) * 2016-10-14 2020-07-01 富士フイルム株式会社 Imaging plan generation device, imaging plan generation method, and program
JP2018126684A (en) * 2017-02-08 2018-08-16 ジビル調査設計株式会社 Structure cleaning device
JP6897216B2 (en) * 2017-03-24 2021-06-30 東京電力ホールディングス株式会社 Under-bridge inspection device and under-bridge inspection method
JP7114194B2 (en) * 2019-03-22 2022-08-08 アルパイン株式会社 Control program, control method and unmanned mobile body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998914U (en) * 1982-12-22 1984-07-04 日本軽金属株式会社 Easy-to-install bridge inspection equipment
JPS61164307U (en) * 1985-03-29 1986-10-11
JPS6223468A (en) * 1985-07-24 1987-01-31 Kawasaki Heavy Ind Ltd Automatic painting and maintenance apparatus for bridge
JPS6386110U (en) * 1986-11-20 1988-06-06
JP2003119721A (en) * 2001-10-18 2003-04-23 Kawada Kogyo Kk Work truck for elevated structure
JP2013085018A (en) * 2011-10-06 2013-05-09 Panasonic Corp Imaging apparatus
JP2014016818A (en) * 2012-07-09 2014-01-30 Canon Inc Image processing apparatus, image processing method, and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294318A (en) * 2003-03-27 2004-10-21 Jfe Engineering Kk Apparatus and method for checking bridge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998914U (en) * 1982-12-22 1984-07-04 日本軽金属株式会社 Easy-to-install bridge inspection equipment
JPS61164307U (en) * 1985-03-29 1986-10-11
JPS6223468A (en) * 1985-07-24 1987-01-31 Kawasaki Heavy Ind Ltd Automatic painting and maintenance apparatus for bridge
JPS6386110U (en) * 1986-11-20 1988-06-06
JP2003119721A (en) * 2001-10-18 2003-04-23 Kawada Kogyo Kk Work truck for elevated structure
JP2013085018A (en) * 2011-10-06 2013-05-09 Panasonic Corp Imaging apparatus
JP2014016818A (en) * 2012-07-09 2014-01-30 Canon Inc Image processing apparatus, image processing method, and program

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066435A1 (en) * 2016-10-07 2018-04-12 富士フイルム株式会社 Self position estimation device, self position estimation method, program, and image processing device
JPWO2018066435A1 (en) * 2016-10-07 2019-07-18 富士フイルム株式会社 Self-position estimation apparatus, self-position estimation method, program, and image processing apparatus
CN110178157A (en) * 2016-10-07 2019-08-27 富士胶片株式会社 Self-position estimation device, self-position estimation method, program and image processing apparatus
EP3525169A4 (en) * 2016-10-07 2019-10-23 FUJIFILM Corporation Self position estimation device, self position estimation method, program, and image processing device
US11107240B2 (en) 2016-10-07 2021-08-31 Fujifilm Corporation Self position estimation device, self position estimation method, program, and image processing device
CN110178157B (en) * 2016-10-07 2023-07-14 富士胶片株式会社 Self-position estimation device, self-position estimation method, program, and image processing device
CN106774384A (en) * 2016-12-05 2017-05-31 王源浩 A kind of bridge machinery intelligent barrier avoiding robot
CN107178033A (en) * 2017-06-01 2017-09-19 黄河交通学院 It is a kind of to be used for the mobile device of bridge machinery and reinforcing
CN107881910A (en) * 2017-12-20 2018-04-06 厦门大学嘉庚学院 A kind of bridge detection robot
CN110687904A (en) * 2019-12-09 2020-01-14 广东科凯达智能机器人有限公司 Visual navigation routing inspection and obstacle avoidance method for inspection robot
WO2021114508A1 (en) * 2019-12-09 2021-06-17 广东科凯达智能机器人有限公司 Visual navigation inspection and obstacle avoidance method for line inspection robot

Also Published As

Publication number Publication date
JP6355517B2 (en) 2018-07-11
JP2016079614A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6355518B2 (en) Bridge inspection robot system
JP6355517B2 (en) Bridge inspection robot system
Sutter et al. A semi-autonomous mobile robot for bridge inspection
JP5531148B1 (en) Structure inspection device
KR101030229B1 (en) Bridge inspecting system using inspection moving car
CN102015220B (en) Bridge inspection robot capable of climbing obstacle
CN105510350B (en) Tunnel surface image acquiring device and tunnel surface detection device
US10212354B2 (en) Movable imaging device and movable imaging method
JP4214872B2 (en) Inspection method for bridge equipment
CN105113403A (en) Intelligent detecting equipment and method for bottom of bridge
JP2006002417A (en) Structure inspecting vehicle
CN107642036A (en) Bridge quick visualization detection means and its system and method
CN113091667B (en) Inspection robot and inspection method
KR20090100786A (en) Bridge inspecting robot using rail in steel box
CN107735643A (en) Camera device and image capture method
JP2019158793A (en) Crack investigation device
JP6173626B1 (en) Structure inspection device
JP4694398B2 (en) Concrete structure inspection equipment
JP6317686B2 (en) Structure inspection device and structure inspection method
JP6602624B2 (en) Structure inspection system
TWI662170B (en) Detection apparatus for detecting bottom of bridge
CN110696016A (en) Intelligent robot suitable for subway vehicle train inspection work
KR102195061B1 (en) Method for inspecting passage type structure
KR100944103B1 (en) Bridge inspecting robot between one girder and the other girder
JP6482248B2 (en) Narrow gap inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851172

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851172

Country of ref document: EP

Kind code of ref document: A1