WO2016059273A1 - Device for measuring magnetic fields - Google Patents

Device for measuring magnetic fields Download PDF

Info

Publication number
WO2016059273A1
WO2016059273A1 PCT/ES2015/070709 ES2015070709W WO2016059273A1 WO 2016059273 A1 WO2016059273 A1 WO 2016059273A1 ES 2015070709 W ES2015070709 W ES 2015070709W WO 2016059273 A1 WO2016059273 A1 WO 2016059273A1
Authority
WO
WIPO (PCT)
Prior art keywords
filament
carriage
magnetic field
air gap
probe
Prior art date
Application number
PCT/ES2015/070709
Other languages
Spanish (es)
French (fr)
Inventor
Carles Colldelram Peroliu
Libert Ribo Mor
Josep Campmany Guillot
Liudmila Nikitina
Original Assignee
Consorci Per A La Construcció, Equipament I Explotació Del Laboratori De Llum De Sincrotró
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consorci Per A La Construcció, Equipament I Explotació Del Laboratori De Llum De Sincrotró filed Critical Consorci Per A La Construcció, Equipament I Explotació Del Laboratori De Llum De Sincrotró
Publication of WO2016059273A1 publication Critical patent/WO2016059273A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00

Definitions

  • the present invention relates to a magnetic field measuring device, especially a magnetic field measuring device of magnets and closed magnetic structures used in the field of particle accelerators.
  • the measurement of the magnetic field generated by the magnets that are part of said accelerators is necessary for the quality control of said magnets, either during their production process or during operation.
  • the state of the art measuring devices measure the magnetic field in the area located in the air gap of the magnets, which constitutes a step through which the accelerated particles run.
  • Said measuring devices consist of a detector or probe that travels through the passage or air gap located between the poles of the magnets and that detects the magnetic field and its variations along the displacement.
  • the measuring devices have different configurations. If the air gap has an open configuration, that is, if the cross section of the air gap is not completely surrounded by the poles of the magnets and there is a longitudinal side opening that communicates the air gap with the outside, it is possible to take advantage of said opening to introduce through of it the probe or detector inside the air gap.
  • the measuring device may consist of
  • a bench comprising a base arranged on the ground and a carriage that travels thereon in parallel with respect to the longitudinal direction of the air gap, the base and the carriage being located outside the magnet.
  • the car supports an arm that extends in a cantilever and in turn supports the probe.
  • the arm is arranged at the height of the opening and extends perpendicularly with respect to the longitudinal direction of the air gap, so that the probe is disposed inside the air gap through said opening.
  • the carriage and the arm move along the opening and in parallel with respect to the air gap and, in this way, the probe travels through the interior of the air gap and along the same, measuring the values of the magnetic field at different points of the path of travel along the air gap.
  • the probe To make an accurate measurement of the magnetic field it is essential that the probe deviates as little as possible with respect to the direction of travel of the measurement. That is, the probe must describe a movement as tight as possible with respect to an ideal path along which it is intended to know the magnetic field of a structure. Normally, this path is contained in a plane or in a straight line.
  • the base of the bank along which the car travels must have great flatness, so that the position of the probe is adjusted with a precision of a few tens of microns to the predetermined trajectory. For this reason, it is necessary to use calibrated granite blocks of considerable size.
  • the car itself and its drive and displacement mechanisms must also be very precise to avoid unwanted movements during the displacement of the probe.
  • closed configuration air gaps, that is, air gaps with a cross-section totally surrounded by the magnetic poles of the magnets or other structures that prevent the existence of a lateral opening, it is not possible to use the type of measuring device described above. , since there is no longitudinal lateral opening through which to dispose and move the probe in the air gap.
  • the known measuring devices used require having several of their components inside the air gap in addition to the probe.
  • This conceptual solution which is currently the only one used, assumes that these measuring devices must necessarily have a small size in order to be introduced into the air gap, which has a limited section.
  • the smaller size of the measuring device implies a smaller size of its components, including the guides through which the probe moves, which are placed inside the air gap.
  • measuring devices with smaller drive and displacement mechanisms it is much more difficult to obtain a precise displacement of the probe compared to the larger measuring devices described above. Therefore, with these types of devices it is more difficult to obtain accurate measurements.
  • these devices must be produced and designed according to the characteristics, shapes and dimensions of each specific magnet and air gap to be measured, so that the same measuring device can hardly be used with magnets or air gaps of different sizes or configurations.
  • the objective of the present invention is to solve the drawbacks of the devices known in the art, by providing a magnetic field measuring device comprising magnetic field detector means and support means of said movable detector means for moving said means of movement. detector in a magnetic field, characterized in that the support means of the detector means comprise at least one filament tensioned between two fixing points, the detector means being arranged in said at least one filament.
  • the support means comprise a structure that includes two arms and a space located between said arms, the at least one filament being arranged in said space and each of said arms including a corresponding fixing point.
  • the support means comprise a base arranged on the floor and a carriage movable on said base in a travel plane defined by the upper surface of the base, said structure being supported on said carriage.
  • the filament is arranged through the magnet air gap with the probe attached thereto by inserting it through one of the magnet's end holes and removing it through the opposite hole.
  • the filament is fixed to the support structure of the filament and tensioned, so that it runs parallel to the air gap and passes through it.
  • the probe attached to it is suspended inside the air gap.
  • the device carriage To move the probe along the air gap, the device carriage travels on the base in a parallel direction with respect to the air gap and the probe also travels along the air gap, carrying out magnetic field measurements in different positions along said air gap.
  • the filament it is possible to arrange all the driving and guiding elements that make it possible to move the probe along the air gap outside the air gap and the magnet, so that it is possible to use a lot of devices larger and more accurate for that purpose.
  • bases and known trolleys used to perform measurements on magnets with open air gaps or with longitudinal openings, whose reliability and proper functioning are proven.
  • the support means comprise means for adjusting the position of the structure with respect to the carriage.
  • the adjustment means comprise a drive device associated with each of the opposite ends of the carriage in the longitudinal direction of the at least one filament.
  • each drive device is associated with a connection element associated with the structure, the connection element comprising an elastically deformable zone.
  • each drive device is independently operable, so that the simultaneous drive and with the same movement of the drive devices causes the structure to move in a perpendicular direction with respect to the carriage travel plane and the drive of each device Actuation with a different movement from each other causes the structure to tilt through the elastic deformation of the elastically deformable area of the connecting element.
  • This inclination can be carried out by varying the relative height between the two ends of the filament attached to the fixing points. This operation is performed without using any articulation, since the elastic deformation of the connecting elements that support the support structure of the filament in the carriage allows incline very precisely said structure.
  • each fixing point comprises a jaw that removably retains a corresponding end of the at least one filament.
  • the jaw comprises tension adjustment means of the at least one filament. Also preferably, the jaw comprises tension detecting means of the at least one filament.
  • fixing points or jaws allow the free ends of the filament to be removably attached to them and tension the filament, adjust the tension of the filament, control and measure the tension of the filament and rotate the filament around its own longitudinal axis to vary the inclination of the probe.
  • the at least one filament is made of carbon fiber. Also advantageously, the at least one filament comprises a substantially flat cross section.
  • filament means any suitable element in the form of wire, cable, cord, strip, tape, band or the like.
  • - Figure 1 is a general perspective view of a measuring device according to the present invention.
  • - Figures 2a - 2e are views showing the operation of the adjustment means that allow to regulate the position of the support structure of the filament with respect to the carriage.
  • - Figure 3 is a view of the filament and filament support structure that supports the magnetic field detector or probe.
  • FIGS. 4a - 4f are detailed views showing the attachment of the filament to the support structure of the filament.
  • - Figure 5 is a general perspective view of the measuring device of the invention by measuring a magnet in a particle accelerator.
  • a magnetic field measuring device 1 according to the present invention is shown in Figure 1.
  • the measuring device 1 comprises an elongated base or bench 2 resting on the ground.
  • the base 2 preferably comprises a block of high quality natural granite machined with very precise tolerances to achieve maximum flatness on its upper face.
  • the upper face of the base 2 is provided with longitudinal guides 3 which extend in the longitudinal direction of the base (direction Y) and along which a platform 4 moves.
  • the platform 4 is in turn provided in its upper face of guides 5 extending in transverse direction (X direction) with respect to guides 4 and along which a carriage 6 travels.
  • carriage 6 can move along the longitudinal direction of the base and transversely with respect thereto within a plane P of displacement (defined by the directions X and Y).
  • Figure 2a shows a perspective view of the carriage 6 described above and of adjustment means that allow to adjust the position of the structure 7 with respect to the carriage 6.
  • the structure 7 (of which only its lower part is shown for the sake of clarity) is supported on the upper part of the carriage 6 through two movable vertical connecting plates 8 along the Z axis.
  • the plates 8 are associated with the ends of the carriage 6 opposite in the Y direction and are connected at their top to the respective ends of the lower part of the structure 7, for example, by screws.
  • Each plate 8 comprises a zone 8a of elastic deformation in the form of narrowing whose function will be explained later.
  • respective spindle mechanisms 10 are associated to each plate 8 and to each side of the carriage 6.
  • each mechanism 10 causes the displacement of the respective plate 8 with respect to the carriage 6 along guides 9 associated with the carriage 6 and, therefore, causes the displacement of the respective lateral end of structure 7 (not shown in Figures 2b and 2c for clarity purposes) in the Z direction.
  • both mechanisms 10 on each side of the carriage 6 are driven at the same speed and in the same direction, the structure 7 will rise or fall with respect to the carriage 6 (along the Z direction) without tilting, i.e. both ends of the structure 7 will move at the same speed and in the same direction along the Z axis, so that the structure 7 will not vary its inclination with respect to the plane P, but only its height (see schematic figure 2d) .
  • the structure 7 will be inclined in the plane defined by the directions Z and Y. That is, the ends of structure 7 will move at different speeds or in different directions from each other along the Z axis (see schematic figure 2e).
  • each plate 8 is provided with a narrowing 8a or elastic deformation zone (see also the detailed view of Figure 2c).
  • the narrowing 8a is formed by forming two opposite grooves on each of the faces of the plate 8. Said narrowing 8a allows the plate 8 to bend at this point, so that the structure 7 fixed to said plate 8 can be tilted slightly in the ZY plane.
  • the inclination in the schematic representation of Figure 2e has been exaggerated to better illustrate the invention.
  • the structure 7 is substantially C-shaped or fork and comprises two arms 1 1 that extend distally with respect to the carriage 6 in the XY plane and that form a free space 12 between them.
  • each arm 1 1 there is arranged a fixing point 13 which serves to removably fix to each arm 1 1 the free end of a support filament 14.
  • a fixing point 13 which serves to removably fix to each arm 1 1 the free end of a support filament 14.
  • a probe or magnetic field detector S of known type, for example, a Hall detector.
  • the probe S may be attached to the filament 14 directly, for example, by glue, or through an intermediate element, such as a flange.
  • a data cable (not shown) running through the filament 14 connects the probe S to a computer or control center. The connection of the S probe to the computer or control center could also be wireless.
  • Each fixing point 13 comprises a jaw 13 formed by a cylinder 15 having a longitudinal through hole 16 that passes through its longitudinal central axis.
  • the hole 16 reaches a recess 17 in the intermediate part of the cylinder 15 that communicates said hole 16 with the outside.
  • the filament 14 is inserted into the hole 16 until its free end is placed at the height of the recess 17, in this case, at the height of the end wall 17a of the recess 17.
  • a flange 18 with a substantially complementary shape with respect to the recess 17 it is introduced into said recess 17 and is fixed to the cylinder 15 by means of screws (not shown) that are screwed into corresponding holes 19a present in the cylinder 15 and through other corresponding through holes 19b present in the flange 18 , so that the free end of the filament 14 is retained in a sandwich and under pressure between the facing surfaces of the recess 17 of the cylinder 15 and of the flange 18 ( Figure 4b).
  • the cylinder 15 is mounted inside bearings 20 which allow the longitudinal displacement of the cylinder 15 with respect thereto.
  • the bearings 20 are mounted inside bearings 21 that allow the rotation of the bearings 20 and, therefore, of the cylinder 15, around its longitudinal axis.
  • the cylinder 15 is disposed inside a housing 22 and supported therein through the bearings 20 and 21, so that the cylinder 15 can move longitudinally with respect to the housing 22 and can rotate with respect thereto about the longitudinal axis of the cylinder 15.
  • the rear end of the cylinder 15 (the end located on the left in Figures 4a and 4b) is attached through a screw 23 (only the head being visible thereof) to the rear of the housing 22.
  • the screw 23 is a tensioner, so that by turning the screw 23 in one direction or another it is possible to move the cylinder 15 with respect to the housing 22 in a corresponding longitudinal direction. Therefore, by turning the screw 23 it is possible to regulate the tension of the filament 14 fixed to the cylinder 15.
  • FIG 4e the presence of a structure 24 associated with the cylinder 15 and associated with some regulation screws 25 associated with the housing 22.
  • the screws 25 are arranged transversely with respect to the longitudinal axis of the cylinder 15 and tangentially with respect to the outer surface of the housing 22.
  • the rotation of the adjustment screws 25 in one direction or another makes the structure 24 rotate pushed by the free end of the screws 25.
  • the rotation of the structure 24 causes the cylinder 15 to rotate with respect to the housing 22 in a corresponding direction around its longitudinal axis.
  • a tension detector 26 (see Figure 4f) is arranged to detect the tension applied in the screw 23, being able to observe only one head thereof.
  • the housing 22 is articulated through two pivot points 27 to the arms of a C-shaped flange 28, which is in turn fixed to the free end of a corresponding arm 1 1 of structure 7 (see figure 3).
  • These pivot points 27 form a vertical axis of rotation and allow automatic alignment between the longitudinal axes of the cylinders 15 of each fixing point 13 when tensioning the filament 14, since the tension of the filament 14 itself will orient the cylinders 15 and housings 22 by rotating them around pivot points 27 to align with the filament 14. In this way, the presence of points at which the filament 14 can be bent due to a lack of alignment between the cylinders 15 (at the entrance of each hole 16 of each cylinder 15) is avoided.
  • the device 1 of the present invention is shown during the measurement of the magnetic field in a magnet or group or structure of magnets 29.
  • the magnet 29 has an inner air gap 30 through which accelerated particles pass when the magnet 29 is mounted in a particle accelerator.
  • the magnet 29 is disposed in the free space 12 located between the arms 1 1 of the structure 7.
  • the base 2 and the carriage 6 are arranged outside the magnet 29, adjacent thereto.
  • the arms 1 1 of the structure 7 extend towards the side of the magnet 29.
  • the fixing points 13 located at the free ends of the arms 1 1 of the structure 7 are positioned aligned with the air gap 30 of the magnet 13. This placement can be carried out by displacing the structure 7 on the X, Y, Z axes as described above.
  • the filament 14 with the probe S is passed through the air gap 30 before fixing its two free ends to the corresponding fixing points 13.
  • the free ends of the filament 14 are fixed to the respective fixing points 13 of the structure 7, tensing the filament 14 until a suitable tension is achieved that prevents the probe S from oscillating beyond a certain interval (as described in Figures 4a-4f). In this way, the probe S is suspended in the filament 14 ready to pass through the air gap 30. It is possible to make additional adjustments of the position of the probe S by regulating the position of the structure 7 in any of the axes X, Y, Z, regulating the inclination of the structure 7 and, therefore, of the filament 14 (as described in Figures 2a-d) or regulating the inclination of the filament around its longitudinal axis (by arrangement 24, 25 shown previously).
  • the clearance 12 between the arms 1 1 be at least twice as long as the length of the air gap 30.
  • the probe S it is arranged in one of the entrances of the air gap 30 and the carriage 6 begins to move longitudinally (direction Y) along the base 2, in parallel with respect to the air gap 30, so that the structure 7 and, therefore, filament 14 and probe S also move longitudinally.
  • the probe S moves from one end to the other of the air gap 30 suspended in the filament 14, taking measurements of the magnetic field at different points along said displacement.
  • the elements that support the filament 14 and the probe S are arranged outside the closed configuration air gap 30 of the magnet 29 and also move out of it, so that the size of the device 1 is not limited by the dimensions of the air gap 30. This makes it possible to obtain a more precise measurement and with lower tolerances compared to the state-of-the-art measuring devices for closed configuration air gaps, which require placing several of its components within the air gap 30.
  • the device 1 of the present invention allows measurements in magnets with closed configuration air gaps of different sizes and shapes, unlike the prior art devices, which should be designed specifically to adapt to the specific characteristics and dimensions of a particular closed configuration air gap.
  • the device 1 of the present invention can also be used for perform measurements on magnets with open configuration air gaps, which allows their use with magnets that present virtually any possible configuration.
  • the tensioned filament 14 allows the probe S to be positioned so that its oscillation with respect to the longitudinal axis of the filament 14 does not distort the magnetic field measurements made therewith.
  • a carbon fiber filament of 6 meters in length and a cross section of 16 x 1.4 mm, it is possible to achieve oscillations of 44 hertz with voltages of 455 MPa. This frequency allows very precise measurements of the magnetic field with the S probe.
  • the voltage necessary to obtain these oscillation frequencies is much lower than the filament rupture limit (2800 MPa).
  • the filament 14 will consist of a flat strip.
  • the flat shape allows for greater stability of the S probe.
  • the filament will be made of a carbon fiber material.
  • Carbon fiber is a lightweight and highly tensile material, which makes it ideal for application in filament 14 of the present invention.
  • the carbon fiber material is oriented longitudinally to exhibit maximum tensile strength.
  • the carbon fiber material comprises 70% fiber and 30% epoxy.
  • the carbon fiber material and the flat section are preferable, it would be possible to use other materials and cross-sectional shapes for the filament 14.
  • the number of filaments used could also be greater than one, although preferably a single filament 14 will be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

The invention comprises means (S) for detecting magnetic fields and means for supporting said detector means (S), which can be moved in order to move said detector means (S) into a magnetic field. The means for supporting the detector means (S) comprise at last one filament (14) which is taut between two points (13) of attachment, the detector means (S) being arranged on said at least one filament (14).

Description

DESCRIPCIÓN  DESCRIPTION
Titulo.  Title.
Dispositivo de medición de campo magnético. Magnetic field measurement device.
Objeto de la invención. Object of the invention.
La presente invención se refiere a un dispositivo de medición de campo magnético, especialmente a un dispositivo de medición de campo magnético de imanes y estructuras magnéticas cerrados usados en el ámbito de los aceleradores de partículas. The present invention relates to a magnetic field measuring device, especially a magnetic field measuring device of magnets and closed magnetic structures used in the field of particle accelerators.
Antecedentes de la invención. En el ámbito de los aceleradores de partículas, la medición del campo magnético generado por los imanes que forman parte de dichos aceleradores es necesaria para el control de calidad de dichos imanes, ya sea durante su proceso de producción o durante su funcionamiento. Los dispositivos de medición del estado de la técnica miden el campo magnético en la zona situada en el entrehierro de los imanes, que constituye un paso por el que discurren las partículas aceleradas. Dichos dispositivos de medición consisten en un detector o sonda que se desplaza por el paso o entrehierro situado entre los polos de los imanes y que detecta el campo magnético y sus variaciones a lo largo del desplazamiento. Background of the invention. In the field of particle accelerators, the measurement of the magnetic field generated by the magnets that are part of said accelerators is necessary for the quality control of said magnets, either during their production process or during operation. The state of the art measuring devices measure the magnetic field in the area located in the air gap of the magnets, which constitutes a step through which the accelerated particles run. Said measuring devices consist of a detector or probe that travels through the passage or air gap located between the poles of the magnets and that detects the magnetic field and its variations along the displacement.
Dependiendo de las características del entrehierro situado entre los polos, los dispositivos de medición presentan diferentes configuraciones. Si el entrehierro presenta una configuración abierta, es decir, si la sección transversal del entrehierro no está totalmente rodeada por los polos de los imanes y existe una abertura lateral longitudinal que comunica el entrehierro con el exterior, es posible aprovechar dicha abertura para introducir a través de la misma la sonda o detector en el interior del entrehierro. En este caso, el dispositivo de medición puede consistir en Depending on the characteristics of the air gap between the poles, the measuring devices have different configurations. If the air gap has an open configuration, that is, if the cross section of the air gap is not completely surrounded by the poles of the magnets and there is a longitudinal side opening that communicates the air gap with the outside, it is possible to take advantage of said opening to introduce through of it the probe or detector inside the air gap. In this case, the measuring device may consist of
i un banco que comprende una base dispuesta en el suelo y un carro que se desplaza sobre la misma en paralelo con respecto a la dirección longitudinal del entrehierro, estando situados la base y el carro fuera del imán. El carro soporta un brazo que se extiende en voladizo y que soporta a su vez la sonda. i a bench comprising a base arranged on the ground and a carriage that travels thereon in parallel with respect to the longitudinal direction of the air gap, the base and the carriage being located outside the magnet. The car supports an arm that extends in a cantilever and in turn supports the probe.
El brazo queda dispuesto a la altura de la abertura y se extiende perpendicularmente con respecto a la dirección longitudinal del entrehierro, de modo que la sonda queda dispuesta en el interior del entrehierro a través de dicha abertura. Para medir el campo magnético a lo largo del entrehierro, el carro y el brazo se desplazan a lo largo de la abertura y en paralelo con respecto al entrehierro y, de este modo, la sonda se desplaza por el interior del entrehierro y a lo largo del mismo, midiendo los valores del campo magnético en diferentes puntos de la trayectoria de desplazamiento a lo largo del entrehierro. Para realizar una medición precisa del campo magnético es imprescindible que la sonda se desvíe lo menos posible con respecto a la dirección de desplazamiento de la medición. Es decir, la sonda debe describir un movimiento lo más ajustado posible con respecto a un trayecto ideal a lo largo del cual se pretende conocer el campo magnético de una estructura. Normalmente, este trayecto está contenido en un plano o en una recta. The arm is arranged at the height of the opening and extends perpendicularly with respect to the longitudinal direction of the air gap, so that the probe is disposed inside the air gap through said opening. In order to measure the magnetic field along the air gap, the carriage and the arm move along the opening and in parallel with respect to the air gap and, in this way, the probe travels through the interior of the air gap and along the same, measuring the values of the magnetic field at different points of the path of travel along the air gap. To make an accurate measurement of the magnetic field it is essential that the probe deviates as little as possible with respect to the direction of travel of the measurement. That is, the probe must describe a movement as tight as possible with respect to an ideal path along which it is intended to know the magnetic field of a structure. Normally, this path is contained in a plane or in a straight line.
De este modo, la base del banco a lo largo de la que se desplaza el carro debe presentar una gran planitud, de manera que la posición de la sonda se ajuste con una precisión de unas decenas de mieras a la trayectoria predeterminada. Por este motivo, es necesario utilizar bloques de granito calibrados y de dimensiones considerables. El propio carro y los mecanismos de accionamiento y desplazamiento del mismo también deben ser muy precisos para evitar movimientos no deseados durante el desplazamiento de la sonda. En el caso de entrehierros de configuración cerrada, es decir, entrehierros con una sección transversal totalmente rodeada por los polos magnéticos de los imanes u otras estructuras que impiden la existencia de una abertura lateral, no es posible utilizar el tipo de dispositivo de medición descrito anteriormente, ya que no existe ninguna abertura lateral longitudinal a través de la que disponer y desplazar la sonda en el entrehierro. Thus, the base of the bank along which the car travels must have great flatness, so that the position of the probe is adjusted with a precision of a few tens of microns to the predetermined trajectory. For this reason, it is necessary to use calibrated granite blocks of considerable size. The car itself and its drive and displacement mechanisms must also be very precise to avoid unwanted movements during the displacement of the probe. In the case of closed configuration air gaps, that is, air gaps with a cross-section totally surrounded by the magnetic poles of the magnets or other structures that prevent the existence of a lateral opening, it is not possible to use the type of measuring device described above. , since there is no longitudinal lateral opening through which to dispose and move the probe in the air gap.
En estos casos, los dispositivos de medición conocidos utilizados requieren disponer varios de sus componentes dentro del entrehierro además de la sonda. Esta solución conceptual, que actualmente es la única que se utiliza, supone que dichos dispositivos de medición deben tener necesariamente un tamaño reducido para poder introducirse en el entrehierro, que tiene una sección limitada. El menor tamaño del dispositivo de medición implica un menor tamaño de sus componentes, incluidas las guías por las que se desplaza la sonda, que se colocan en el interior del entrehierro. De este modo, usando dispositivos de medición con mecanismos de accionamiento y desplazamiento más pequeños, es mucho más difícil obtener un desplazamiento preciso de la sonda en comparación con los dispositivos de medición de mayor tamaño descritos anteriormente. Por lo tanto, con este tipo de dispositivos es más difícil obtener mediciones precisas. Además, normalmente, estos dispositivos deben ser producidos y diseñados según las características, formas y dimensiones de cada imán y entrehierro específico que debe medirse, de modo que difícilmente un mismo dispositivo de medición puede ser utilizado con imanes o entrehierros de distintos tamaños o configuraciones. In these cases, the known measuring devices used require having several of their components inside the air gap in addition to the probe. This conceptual solution, which is currently the only one used, assumes that these measuring devices must necessarily have a small size in order to be introduced into the air gap, which has a limited section. The smaller size of the measuring device implies a smaller size of its components, including the guides through which the probe moves, which are placed inside the air gap. Thus, using measuring devices with smaller drive and displacement mechanisms, it is much more difficult to obtain a precise displacement of the probe compared to the larger measuring devices described above. Therefore, with these types of devices it is more difficult to obtain accurate measurements. In addition, normally, these devices must be produced and designed according to the characteristics, shapes and dimensions of each specific magnet and air gap to be measured, so that the same measuring device can hardly be used with magnets or air gaps of different sizes or configurations.
Finalmente, la disposición de estos dispositivos en el interior del entrehierro requiere el montaje y el desmontaje de los mismos cada vez que se desea realizar una medición. Estos procesos de montaje y desmontaje resultan con frecuencia difíciles y complejos, de modo que el consumo de tiempo y de recursos que ello implica también constituyen un inconveniente a solventar. Finally, the arrangement of these devices inside the air gap requires their assembly and disassembly each time a measurement is desired. These assembly and disassembly processes are often difficult and complex, so that the consumption of time and resources that this implies also constitutes an inconvenience to be solved.
Descripción de la invención. Description of the invention
El objetivo de la presente invención es solventar los inconvenientes que presentan los dispositivos conocidos en la técnica, proporcionando un dispositivo de medición de campo magnético que comprende medios de detector de campo magnético y medios de soporte de dichos medios de detector desplazables para mover dichos medios de detector en un campo magnético, caracterizado por el hecho de que los medios de soporte de los medios de detector comprenden al menos un filamento tensado entre dos puntos de fijación, estando dispuestos los medios de detector en dicho al menos un filamento. The objective of the present invention is to solve the drawbacks of the devices known in the art, by providing a magnetic field measuring device comprising magnetic field detector means and support means of said movable detector means for moving said means of movement. detector in a magnetic field, characterized in that the support means of the detector means comprise at least one filament tensioned between two fixing points, the detector means being arranged in said at least one filament.
Preferiblemente, los medios de soporte comprenden una estructura que incluye dos brazos y un espacio situado entre dichos brazos, estando dispuesto el al menos un filamento en dicho espacio e incluyendo cada uno de dichos brazos un punto de fijación correspondiente. Preferably, the support means comprise a structure that includes two arms and a space located between said arms, the at least one filament being arranged in said space and each of said arms including a corresponding fixing point.
También preferiblemente, los medios de soporte comprenden una base dispuesta en el suelo y un carro desplazable sobre dicha base en un plano de desplazamiento definido por la superficie superior de la base, estando soportada dicha estructura en dicho carro. Also preferably, the support means comprise a base arranged on the floor and a carriage movable on said base in a travel plane defined by the upper surface of the base, said structure being supported on said carriage.
Gracias a estas características, es posible obtener un dispositivo de medición de campo magnético que permite disponer fácilmente el detector o sonda de medición de campo magnético dentro de un entrehierro o paso de un imán sin aberturas laterales longitudinales y desplazar la sonda a lo largo de dicho entrehierro con gran precisión. El filamento se dispone a través del entrehierro del imán con la sonda fijada al mismo introduciéndolo por uno de los orificios extremos del imán y extrayéndolo por el orificio opuesto. A continuación, el filamento se fija a la estructura de soporte del filamento y se tensa, de modo que el mismo discurre en paralelo con respecto al entrehierro y pasa a través del mismo. Al tensar el filamento, la sonda unida al mismo queda suspendida en el interior del entrehierro. Thanks to these characteristics, it is possible to obtain a magnetic field measurement device that allows the magnetic field measurement detector or probe to be easily disposed within a gap or passage of a magnet without longitudinal lateral openings and to move the probe along said air gap with great precision. The filament is arranged through the magnet air gap with the probe attached thereto by inserting it through one of the magnet's end holes and removing it through the opposite hole. Next, the filament is fixed to the support structure of the filament and tensioned, so that it runs parallel to the air gap and passes through it. When the filament is tensioned, the probe attached to it is suspended inside the air gap.
Para desplazar la sonda a lo largo del entrehierro, el carro del dispositivo se desplaza sobre la base en una dirección en paralelo con respecto al entrehierro y la sonda también se desplaza a lo largo del entrehierro, llevando a cabo mediciones del campo magnético en diferentes posiciones a lo largo de dicho entrehierro. To move the probe along the air gap, the device carriage travels on the base in a parallel direction with respect to the air gap and the probe also travels along the air gap, carrying out magnetic field measurements in different positions along said air gap.
Gracias al filamento, es posible disponer todos los elementos de accionamiento y de guiado que hacen posible el movimiento de la sonda a lo largo del entrehierro fuera del entrehierro y del imán, de modo que es posible usar dispositivos mucho más grandes y precisos para tal propósito. De hecho, es posible utilizar bases y carros ya conocidos usados para realizar mediciones en imanes con entrehierros abiertos o con aberturas longitudinales, cuya fiabilidad y buen funcionamiento están comprobados. Thanks to the filament, it is possible to arrange all the driving and guiding elements that make it possible to move the probe along the air gap outside the air gap and the magnet, so that it is possible to use a lot of devices larger and more accurate for that purpose. In fact, it is possible to use bases and known trolleys used to perform measurements on magnets with open air gaps or with longitudinal openings, whose reliability and proper functioning are proven.
Ventajosamente, los medios de soporte comprenden medios de ajuste de la posición de la estructura con respecto al carro. Advantageously, the support means comprise means for adjusting the position of the structure with respect to the carriage.
También ventajosamente, los medios de ajuste comprenden un dispositivo de accionamiento asociado a cada uno de los extremos opuestos del carro en la dirección longitudinal del al menos un filamento. Also advantageously, the adjustment means comprise a drive device associated with each of the opposite ends of the carriage in the longitudinal direction of the at least one filament.
Según una realización de la invención, cada dispositivo de accionamiento está asociado a un elemento de conexión asociado a la estructura, comprendiendo el elemento de conexión una zona deformable elásticamente. According to an embodiment of the invention, each drive device is associated with a connection element associated with the structure, the connection element comprising an elastically deformable zone.
Preferiblemente, cada dispositivo de accionamiento es accionable independientemente, de modo que el accionamiento simultáneo y con el mismo movimiento de los dispositivos de accionamiento provoca el desplazamiento de la estructura en una dirección perpendicular con respecto al plano de desplazamiento del carro y el accionamiento de cada dispositivo de accionamiento con un movimiento distinto entre sí provoca la inclinación de la estructura a través de la deformación elástica de la zona deformable elásticamente del elemento de conexión. Preferably, each drive device is independently operable, so that the simultaneous drive and with the same movement of the drive devices causes the structure to move in a perpendicular direction with respect to the carriage travel plane and the drive of each device Actuation with a different movement from each other causes the structure to tilt through the elastic deformation of the elastically deformable area of the connecting element.
Gracias a estas características, es posible mover o inclinar el filamento que soporta la sonda en un plano perpendicular con respecto al plano de desplazamiento del carro y paralelo con respecto al filamento, es decir, es posible modificar la altura del filamento o modificar la inclinación del mismo. Thanks to these characteristics, it is possible to move or tilt the filament that supports the probe in a perpendicular plane with respect to the plane of displacement of the carriage and parallel with respect to the filament, that is, it is possible to modify the height of the filament or modify the inclination of the same.
Esta inclinación puede llevarse a cabo variando la altura relativa entre los dos extremos del filamento unidos a los puntos de fijación. Esta operación se realiza sin utilizar ninguna articulación, ya que la deformación elástica de los elementos de conexión que soportan la estructura de soporte del filamento en el carro permite inclinar de forma muy precisa dicha estructura. This inclination can be carried out by varying the relative height between the two ends of the filament attached to the fixing points. This operation is performed without using any articulation, since the elastic deformation of the connecting elements that support the support structure of the filament in the carriage allows incline very precisely said structure.
Según una realización de la invención, cada punto de fijación comprende una mordaza que retiene de forma amovible un extremo correspondiente del al menos un filamento. According to one embodiment of the invention, each fixing point comprises a jaw that removably retains a corresponding end of the at least one filament.
Preferiblemente, la mordaza comprende medios de ajuste de tensión del al menos un filamento. También preferiblemente, la mordaza comprende medios de detector de la tensión del al menos un filamento. Preferably, the jaw comprises tension adjustment means of the at least one filament. Also preferably, the jaw comprises tension detecting means of the at least one filament.
Estos puntos de fijación o mordazas permiten fijar de forma amovible a los mismos los extremos libres del filamento y tensar el filamento, ajustar la tensión del filamento, controlar y medir la tensión del filamento y hacer girar el filamento alrededor de su propio eje longitudinal para variar la inclinación de la sonda. These fixing points or jaws allow the free ends of the filament to be removably attached to them and tension the filament, adjust the tension of the filament, control and measure the tension of the filament and rotate the filament around its own longitudinal axis to vary the inclination of the probe.
Ventajosamente, el al menos un filamento está hecho de fibra de carbono. También ventajosamente, el al menos un filamento comprende una sección transversal sustancialmente plana. Advantageously, the at least one filament is made of carbon fiber. Also advantageously, the at least one filament comprises a substantially flat cross section.
En la presente invención, por filamento se entenderá cualquier elemento adecuado en forma de hilo, cable, cordón, tira, cinta, banda o similares. In the present invention, filament means any suitable element in the form of wire, cable, cord, strip, tape, band or the like.
Descripción de las figuras Description of the figures
Con el fin de facilitar la descripción de cuanto se ha expuesto anteriormente se adjuntan unos dibujos en los que, esquemáticamente y tan sólo a título de ejemplo no limitativo, se representa un caso práctico de realización del dispositivo de medición de la invención, en los cuales: In order to facilitate the description of what has been set forth above, some drawings are attached in which, schematically and only by way of non-limiting example, a practical case of carrying out the measuring device of the invention is represented, in which :
-La figura 1 es una vista general en perspectiva de un dispositivo de medición según la presente invención. - Las figuras 2a - 2e son vistas que muestran el funcionamiento de los medios de ajuste que permiten regular la posición de la estructura de soporte del filamento con respecto al carro. -La figura 3 es una vista de la estructura de soporte del filamento y del filamento que soporta el detector o sonda de campo magnético. -Figure 1 is a general perspective view of a measuring device according to the present invention. - Figures 2a - 2e are views showing the operation of the adjustment means that allow to regulate the position of the support structure of the filament with respect to the carriage. -Figure 3 is a view of the filament and filament support structure that supports the magnetic field detector or probe.
-Las figuras 4a - 4f son vistas en detalle que muestran la fijación del filamento a la estructura de soporte del filamento. - Figures 4a - 4f are detailed views showing the attachment of the filament to the support structure of the filament.
-La figura 5 es una vista general en perspectiva del dispositivo de medición de la invención realizando una medición en un imán de un acelerador de partículas. -Figure 5 is a general perspective view of the measuring device of the invention by measuring a magnet in a particle accelerator.
Descripción de una realización preferida. Description of a preferred embodiment.
En la figura 1 se muestra un dispositivo 1 de medición de campo magnético según la presente invención. A magnetic field measuring device 1 according to the present invention is shown in Figure 1.
El dispositivo 1 de medición comprende una base o bancada 2 alargada apoyada en el suelo. Por motivos de precisión, la base 2 comprende preferiblemente un bloque de granito natural de alta calidad mecanizado con tolerancias muy precisas para conseguir la máxima planitud en su cara superior. The measuring device 1 comprises an elongated base or bench 2 resting on the ground. For reasons of precision, the base 2 preferably comprises a block of high quality natural granite machined with very precise tolerances to achieve maximum flatness on its upper face.
La cara superior de la base 2 está dotada de unas guías longitudinales 3 que se extienden en la dirección longitudinal de la base (dirección Y) y a lo largo de las que se desplaza una plataforma 4. La plataforma 4 está dotada a su vez en su cara superior de unas guías 5 que se extienden en dirección transversal (dirección X) con respecto a las guías 4 y a lo largo de las que se desplaza un carro 6. De este modo, el carro 6 puede desplazarse a lo largo de la dirección longitudinal de la base y transversalmente con respecto a la misma dentro de un plano P de desplazamiento (definido por las direcciones X e Y). The upper face of the base 2 is provided with longitudinal guides 3 which extend in the longitudinal direction of the base (direction Y) and along which a platform 4 moves. The platform 4 is in turn provided in its upper face of guides 5 extending in transverse direction (X direction) with respect to guides 4 and along which a carriage 6 travels. Thus, carriage 6 can move along the longitudinal direction of the base and transversely with respect thereto within a plane P of displacement (defined by the directions X and Y).
Las características de la base 2 y del carro 6 y de los diferentes mecanismos, guías 3, 4, 5 y otros componentes que permiten el movimiento del carro 6 con respecto a la base 2 no se describirán de forma más detallada, ya que dichos elementos son conocidos y de uso habitual en la técnica. Una estructura 7 en forma de C, cuyas características se explicarán de forma más detallada más adelante, está soportada en la parte superior del carro 6. The characteristics of base 2 and carriage 6 and the different mechanisms, guides 3, 4, 5 and other components that allow the movement of the carriage 6 with respect to the base 2 will not be described in more detail, since said elements are known and commonly used in the art. A C-shaped structure 7, the characteristics of which will be explained in more detail below, is supported on the upper part of the carriage 6.
En la figura 2a se muestra una vista en perspectiva del carro 6 descrito anteriormente y de medios de ajuste que permiten regular la posición de la estructura 7 con respecto al carro 6. Figure 2a shows a perspective view of the carriage 6 described above and of adjustment means that allow to adjust the position of the structure 7 with respect to the carriage 6.
La estructura 7 (de la que se muestra solamente su parte inferior a efectos de claridad) está soportada en la parte superior del carro 6 a través de dos placas 8 de conexión verticales desplazables a lo largo del eje Z. Las placas 8 están asociadas a los extremos del carro 6 opuestos en la dirección Y y están unidas por su parte superior a los extremos respectivos de la parte inferior de la estructura 7, por ejemplo, mediante tornillos. Cada placa 8 comprende una zona 8a de deformación elástica en forma de estrechamiento cuya función se explicará más adelante. Tal como puede observarse en la vista en detalle de la figura 2b, en la que no se ha representado una de las placas 8 a efectos de claridad, y en la vista en detalle de la figura 2c, unos mecanismos 10 de husillo respectivos están asociados a cada placa 8 y a cada lado del carro 6. El accionamiento de cada mecanismo 10 provoca el desplazamiento de la placa 8 respectiva con respecto al carro 6 a lo largo de unas guías 9 asociadas al carro 6 y, por lo tanto, provoca el desplazamiento del extremo lateral respectivo de la estructura 7 (no representada en las figuras 2b y 2c a efectos de claridad) en la dirección Z. The structure 7 (of which only its lower part is shown for the sake of clarity) is supported on the upper part of the carriage 6 through two movable vertical connecting plates 8 along the Z axis. The plates 8 are associated with the ends of the carriage 6 opposite in the Y direction and are connected at their top to the respective ends of the lower part of the structure 7, for example, by screws. Each plate 8 comprises a zone 8a of elastic deformation in the form of narrowing whose function will be explained later. As can be seen in the detail view of Figure 2b, in which one of the plates 8 has not been shown for clarity purposes, and in the detail view of Figure 2c, respective spindle mechanisms 10 are associated to each plate 8 and to each side of the carriage 6. The actuation of each mechanism 10 causes the displacement of the respective plate 8 with respect to the carriage 6 along guides 9 associated with the carriage 6 and, therefore, causes the displacement of the respective lateral end of structure 7 (not shown in Figures 2b and 2c for clarity purposes) in the Z direction.
Si ambos mecanismos 10 en cada lado del carro 6 son accionados a la misma velocidad y en el mismo sentido, la estructura 7 se elevará o descenderá con respecto al carro 6 (a lo largo de la dirección Z) sin inclinarse, es decir, ambos extremos de la estructura 7 se desplazarán a la misma velocidad y en el mismo sentido a lo largo del eje Z, de modo que la estructura 7 no variará su inclinación con respecto al plano P, sino solamente su altura (ver la figura esquemática 2d). No obstante, si un mecanismo 10 es accionado a una velocidad diferente con respecto a la del otro mecanismo 10 o es accionado en sentido contrario, la estructura 7 se inclinará en el plano definido por las direcciones Z e Y. Es decir, los extremos de la estructura 7 se desplazarán a diferentes velocidades o en direcciones distintas entre sí a lo largo del eje Z (ver la figura esquemática 2e). Para permitir esta inclinación sin el uso de ninguna articulación, cada placa 8 está dotada de un estrechamiento 8a o zona de deformación elástica (ver también la vista en detalle de la figura 2c). El estrechamiento 8a está formado mediante la conformación de dos ranuras opuestas en cada una de las caras de la placa 8. Dicho estrechamiento 8a permite que la placa 8 se doble en este punto, de modo que la estructura 7 fijada a dicha placa 8 puede inclinarse ligeramente en el plano ZY. La inclinación en la representación esquemática de la figura 2e se ha exagerado para ilustrar mejor la invención. Es preferible llevar a cabo la inclinación de la estructura 7 accionando los dos mecanismos 10 a la misma velocidad y en sentido contrario, de modo que el centro de giro de la estructura 7 esté situado en un punto intermedio entre los dos extremos de la estructura 7. Por lo tanto, gracias a los medios de ajuste formados por las placas 8, las guías 9 y los mecanismos 10 de husillo es posible regular la posición de la estructura 7 a lo largo del eje Z y la inclinación de la misma en el plano ZY. If both mechanisms 10 on each side of the carriage 6 are driven at the same speed and in the same direction, the structure 7 will rise or fall with respect to the carriage 6 (along the Z direction) without tilting, i.e. both ends of the structure 7 will move at the same speed and in the same direction along the Z axis, so that the structure 7 will not vary its inclination with respect to the plane P, but only its height (see schematic figure 2d) . However, if a mechanism 10 is driven at a different speed with respect to that of the other mechanism 10 or is driven in the opposite direction, the structure 7 will be inclined in the plane defined by the directions Z and Y. That is, the ends of structure 7 will move at different speeds or in different directions from each other along the Z axis (see schematic figure 2e). To allow this inclination without the use of any articulation, each plate 8 is provided with a narrowing 8a or elastic deformation zone (see also the detailed view of Figure 2c). The narrowing 8a is formed by forming two opposite grooves on each of the faces of the plate 8. Said narrowing 8a allows the plate 8 to bend at this point, so that the structure 7 fixed to said plate 8 can be tilted slightly in the ZY plane. The inclination in the schematic representation of Figure 2e has been exaggerated to better illustrate the invention. It is preferable to carry out the inclination of the structure 7 by operating the two mechanisms 10 at the same speed and in the opposite direction, so that the center of rotation of the structure 7 is located at an intermediate point between the two ends of the structure 7 Therefore, thanks to the adjustment means formed by the plates 8, the guides 9 and the spindle mechanisms 10 it is possible to regulate the position of the structure 7 along the Z axis and the inclination thereof in the plane ZY.
Tal como se muestra en la figura 3, la estructura 7 tiene sustancialmente forma de C u horquilla y comprende dos brazos 1 1 que se extienden distalmente con respecto al carro 6 en el plano XY y que forman un espacio libre 12 entre los mismos. As shown in Figure 3, the structure 7 is substantially C-shaped or fork and comprises two arms 1 1 that extend distally with respect to the carriage 6 in the XY plane and that form a free space 12 between them.
En el extremo libre de cada brazo 1 1 está dispuesto un punto 13 de fijación que sirve para fijar de forma amovible a cada brazo 1 1 el extremo libre de un filamento 14 de soporte. De este modo, es posible disponer un filamento 14 entre los dos brazos 1 1 y a través del espacio libre 12, quedando dicho filamento 14 tensado y sujeto por sus extremos libres mediante los puntos 13 de fijación. At the free end of each arm 1 1 there is arranged a fixing point 13 which serves to removably fix to each arm 1 1 the free end of a support filament 14. In this way, it is possible to arrange a filament 14 between the two arms 1 1 and through the free space 12, said filament 14 being tensioned and held by its free ends by means of fixing points 13.
Aproximadamente en la parte intermedia del filamento 14 está dispuesta una sonda o detector S de campo magnético de tipo conocido, por ejemplo, un detector Hall. La sonda S puede estar fijada al filamento 14 directamente, por ejemplo, mediante pegamento, o a través de un elemento intermedio, tal como una brida. Un cable de datos (no mostrado) que discurre por el filamento 14 conecta la sonda S a un ordenador o centro de control. La conexión de la sonda S al ordenador o centro de control también podría ser inalámbrica. Approximately in the middle part of the filament 14 a probe or magnetic field detector S of known type, for example, a Hall detector. The probe S may be attached to the filament 14 directly, for example, by glue, or through an intermediate element, such as a flange. A data cable (not shown) running through the filament 14 connects the probe S to a computer or control center. The connection of the S probe to the computer or control center could also be wireless.
En las figuras 4a-4f se describen de forma detallada los puntos 13 de fijación mencionados anteriormente. The fixing points 13 mentioned above are described in detail in Figures 4a-4f.
Cada punto 13 de fijación comprende una mordaza 13 formada por un cilindro 15 que tiene un orificio 16 pasante longitudinal que pasa a través de su eje central longitudinal. El orificio 16 llega hasta un rebaje 17 en la parte intermedia del cilindro 15 que comunica dicho orificio 16 con el exterior. Each fixing point 13 comprises a jaw 13 formed by a cylinder 15 having a longitudinal through hole 16 that passes through its longitudinal central axis. The hole 16 reaches a recess 17 in the intermediate part of the cylinder 15 that communicates said hole 16 with the outside.
El filamento 14 se introduce en el orificio 16 hasta que su extremo libre queda colocado a la altura del rebaje 17, en este caso, a la altura de la pared extrema 17a del rebaje 17. A continuación, una brida 18 con una forma sustancialmente complementaria con respecto al rebaje 17 se introduce en dicho rebaje 17 y se fija al cilindro 15 mediante unos tornillos (no mostrados) que se enroscan en unos orificios 19a correspondientes presentes en el cilindro 15 y a través de otros orificios 19b pasantes correspondientes presentes en la brida 18, de modo que el extremo libre del filamento 14 queda retenido en sándwich y a presión entre las superficies enfrentadas del rebaje 17 del cilindro 15 y de la brida 18 (figura 4b). The filament 14 is inserted into the hole 16 until its free end is placed at the height of the recess 17, in this case, at the height of the end wall 17a of the recess 17. Next, a flange 18 with a substantially complementary shape with respect to the recess 17 it is introduced into said recess 17 and is fixed to the cylinder 15 by means of screws (not shown) that are screwed into corresponding holes 19a present in the cylinder 15 and through other corresponding through holes 19b present in the flange 18 , so that the free end of the filament 14 is retained in a sandwich and under pressure between the facing surfaces of the recess 17 of the cylinder 15 and of the flange 18 (Figure 4b).
Tal como puede observarse en las figuras 4c y 4d, el cilindro 15 está montado en el interior de unos rodamientos 20 que permiten el desplazamiento longitudinal del cilindro 15 con respecto a los mismos. A su vez, los rodamientos 20 están montados en el interior de unos rodamientos 21 que permiten el giro de los rodamientos 20 y, por lo tanto, del cilindro 15, alrededor de su eje longitudinal. As can be seen in Figures 4c and 4d, the cylinder 15 is mounted inside bearings 20 which allow the longitudinal displacement of the cylinder 15 with respect thereto. In turn, the bearings 20 are mounted inside bearings 21 that allow the rotation of the bearings 20 and, therefore, of the cylinder 15, around its longitudinal axis.
Haciendo referencia a la figura 4e, el cilindro 15 queda dispuesto en el interior de una carcasa 22 y soportado en la misma a través de los rodamientos 20 y 21 , de manera que el cilindro 15 puede desplazarse longitudinalmente con respecto a la carcasa 22 y puede girar con respecto a la misma alrededor del eje longitudinal del cilindro 15. El extremo posterior del cilindro 15 (el extremo situado a la izquierda en las figuras 4a y 4b) está unido a través de un tornillo 23 (siendo visible solamente la cabeza del mismo) a la parte posterior de la carcasa 22. El tornillo 23 es un tensor, de modo que al girar el tornillo 23 en uno u otro sentido es posible desplazar el cilindro 15 con respecto a la carcasa 22 en una dirección longitudinal correspondiente. Por lo tanto, haciendo girar el tornillo 23 es posible regular la tensión del filamento 14 fijado al cilindro 15. En la figura 4e también puede observarse la presencia de una estructura 24 asociada al cilindro 15 y asociada a unos tornillos 25 de regulación asociados a la carcasa 22. Los tornillos 25 están dispuestos de forma transversal con respecto al eje longitudinal del cilindro 15 y de forma tangencial con respecto a la superficie exterior de la carcasa 22. El giro de los tornillos 25 de regulación en uno u otro sentido hace que la estructura 24 gire empujada por el extremo libre de los tornillos 25. El giro de la estructura 24 hace que el cilindro 15 gire con respecto a la carcasa 22 en un sentido correspondiente alrededor de su eje longitudinal. Por lo tanto, haciendo girar los tornillos 25, es posible regular la inclinación del filamento 14 unido al cilindro 15 haciéndolo rotar alrededor del eje longitudinal del filamento 14 y, por lo tanto, es posible regular la inclinación de la sonda P haciéndola rotar alrededor del eje longitudinal del filamento 14. Referring to Figure 4e, the cylinder 15 is disposed inside a housing 22 and supported therein through the bearings 20 and 21, so that the cylinder 15 can move longitudinally with respect to the housing 22 and can rotate with respect thereto about the longitudinal axis of the cylinder 15. The rear end of the cylinder 15 (the end located on the left in Figures 4a and 4b) is attached through a screw 23 (only the head being visible thereof) to the rear of the housing 22. The screw 23 is a tensioner, so that by turning the screw 23 in one direction or another it is possible to move the cylinder 15 with respect to the housing 22 in a corresponding longitudinal direction. Therefore, by turning the screw 23 it is possible to regulate the tension of the filament 14 fixed to the cylinder 15. In Figure 4e the presence of a structure 24 associated with the cylinder 15 and associated with some regulation screws 25 associated with the housing 22. The screws 25 are arranged transversely with respect to the longitudinal axis of the cylinder 15 and tangentially with respect to the outer surface of the housing 22. The rotation of the adjustment screws 25 in one direction or another makes the structure 24 rotate pushed by the free end of the screws 25. The rotation of the structure 24 causes the cylinder 15 to rotate with respect to the housing 22 in a corresponding direction around its longitudinal axis. Therefore, by rotating the screws 25, it is possible to regulate the inclination of the filament 14 attached to the cylinder 15 by rotating it around the longitudinal axis of the filament 14 and, therefore, it is possible to regulate the inclination of the probe P by rotating it around the longitudinal axis of the filament 14.
A efectos de controlar y conocer la tensión del filamento 14, se dispone un detector 26 de tensión (ver figura 4f) para detectar la tensión aplicada en el tornillo 23, pudiendo observarse solamente un cabezal del mismo. In order to control and know the tension of the filament 14, a tension detector 26 (see Figure 4f) is arranged to detect the tension applied in the screw 23, being able to observe only one head thereof.
Finalmente, haciendo referencia nuevamente a la figura 4f, la carcasa 22 está articulada a través de dos puntos 27 de pivotamiento a los brazos de una brida 28 en forma de C, que está fijada a su vez al extremo libre de un brazo 1 1 correspondiente de la estructura 7 (ver figura 3). Estos puntos 27 de pivotamiento forman un eje de giro vertical y permiten la alineación automática entre los ejes longitudinales de los cilindros 15 de cada punto 13 de fijación al tensar el filamento 14, ya que la propia tensión del filamento 14 orientará los cilindros 15 y las carcasas 22 haciéndolos girar alrededor de los puntos 27 de pivotamiento para quedar alineados con el filamento 14. De esta manera, se evita la presencia de puntos en los que el filamento 14 puede quedar doblado debido a una falta de alineación entre los cilindros 15 (en la entrada de cada orificio 16 de cada cilindro 15). En la figura 5 se muestra el dispositivo 1 de la presente invención durante la medición del campo magnético en un imán o grupo o estructura de imanes 29. El imán 29 tiene un entrehierro interior 30 por el que pasan partículas aceleradas cuando el imán 29 está montado en un acelerador de partículas. El imán 29 se dispone en el espacio libre 12 situado entre los brazos 1 1 de la estructura 7. La base 2 y el carro 6 están dispuestos en el exterior del imán 29, de forma adyacente al mismo. Los brazos 1 1 de la estructura 7 se extienden hacia el lado del imán 29. Para colocar la sonda S (oculta por el imán 29 en la figura 5) en el interior del entrehierro 30, los puntos 13 de fijación situados en los extremos libres de los brazos 1 1 de la estructura 7 se colocan alineados con el entrehierro 30 del imán 13. Esta colocación puede llevarse a cabo desplazando la estructura 7 en los ejes X, Y, Z tal como se ha descrito anteriormente. El filamento 14 con la sonda S se hace pasar a través del entrehierro 30 antes de fijar sus dos extremos libres a los puntos 13 de fijación correspondientes. Finally, referring again to Figure 4f, the housing 22 is articulated through two pivot points 27 to the arms of a C-shaped flange 28, which is in turn fixed to the free end of a corresponding arm 1 1 of structure 7 (see figure 3). These pivot points 27 form a vertical axis of rotation and allow automatic alignment between the longitudinal axes of the cylinders 15 of each fixing point 13 when tensioning the filament 14, since the tension of the filament 14 itself will orient the cylinders 15 and housings 22 by rotating them around pivot points 27 to align with the filament 14. In this way, the presence of points at which the filament 14 can be bent due to a lack of alignment between the cylinders 15 (at the entrance of each hole 16 of each cylinder 15) is avoided. In Figure 5 the device 1 of the present invention is shown during the measurement of the magnetic field in a magnet or group or structure of magnets 29. The magnet 29 has an inner air gap 30 through which accelerated particles pass when the magnet 29 is mounted in a particle accelerator. The magnet 29 is disposed in the free space 12 located between the arms 1 1 of the structure 7. The base 2 and the carriage 6 are arranged outside the magnet 29, adjacent thereto. The arms 1 1 of the structure 7 extend towards the side of the magnet 29. To place the probe S (hidden by the magnet 29 in Figure 5) inside the air gap 30, the fixing points 13 located at the free ends of the arms 1 1 of the structure 7 are positioned aligned with the air gap 30 of the magnet 13. This placement can be carried out by displacing the structure 7 on the X, Y, Z axes as described above. The filament 14 with the probe S is passed through the air gap 30 before fixing its two free ends to the corresponding fixing points 13.
Cuando el filamento 14 se ha hecho pasar a través del entrehierro 30, los extremos libres del filamento 14 se fijan a los puntos 13 de fijación respectivos de la estructura 7, tensando el filamento 14 hasta alcanzar una tensión adecuada que evita que la sonda S oscile más allá de un intervalo determinado (tal como se describe en las figuras 4a-4f). De esta manera, la sonda S queda suspendida en el filamento 14 lista para pasar a través del entrehierro 30. Es posible realizar ajustes adicionales de la posición de la sonda S regulando la posición de la estructura 7 en cualquiera de los ejes X, Y, Z, regulando la inclinación de la estructura 7 y, por lo tanto, del filamento 14 (tal como se ha descrito en las figuras 2a-d) o regulando la inclinación del filamento alrededor de su eje longitudinal (mediante la disposición 24, 25 mostrada anteriormente). Para llevar a cabo el desplazamiento de la sonda S a lo largo de toda la longitud del entrehierro 30, es necesario que el espacio libre 12 entre los brazos 1 1 sea al menos el doble de largo que la longitud del entrehierro 30. La sonda S se dispone en una de las entradas del entrehierro 30 y el carro 6 comienza a desplazarse longitudinalmente (dirección Y) a lo largo de la base 2, en paralelo con respecto al entrehierro 30, de modo que la estructura 7 y, por lo tanto, el filamento 14 y la sonda S, también se desplazan longitudinalmente. La sonda S se desplaza de un extremo al otro del entrehierro 30 suspendida en el filamento 14, tomando medidas del campo magnético en distintos puntos a lo largo de dicho desplazamiento. When the filament 14 has been passed through the air gap 30, the free ends of the filament 14 are fixed to the respective fixing points 13 of the structure 7, tensing the filament 14 until a suitable tension is achieved that prevents the probe S from oscillating beyond a certain interval (as described in Figures 4a-4f). In this way, the probe S is suspended in the filament 14 ready to pass through the air gap 30. It is possible to make additional adjustments of the position of the probe S by regulating the position of the structure 7 in any of the axes X, Y, Z, regulating the inclination of the structure 7 and, therefore, of the filament 14 (as described in Figures 2a-d) or regulating the inclination of the filament around its longitudinal axis (by arrangement 24, 25 shown previously). To carry out the displacement of the probe S along the entire length of the air gap 30, it is necessary that the clearance 12 between the arms 1 1 be at least twice as long as the length of the air gap 30. The probe S it is arranged in one of the entrances of the air gap 30 and the carriage 6 begins to move longitudinally (direction Y) along the base 2, in parallel with respect to the air gap 30, so that the structure 7 and, therefore, filament 14 and probe S also move longitudinally. The probe S moves from one end to the other of the air gap 30 suspended in the filament 14, taking measurements of the magnetic field at different points along said displacement.
Tal como puede observarse, los elementos que soportan el filamento 14 y la sonda S están dispuestos fuera del entrehierro 30 de configuración cerrada del imán 29 y también se mueven fuera del mismo, de modo que el tamaño del dispositivo 1 no está limitado por las dimensiones del entrehierro 30. Esto permite obtener una medición más precisa y con menores tolerancias en comparación con los dispositivos de medición del estado de la técnica para entrehierros de configuración cerrada, que exigen colocar varios de sus componentes dentro del entrehierro 30. As can be seen, the elements that support the filament 14 and the probe S are arranged outside the closed configuration air gap 30 of the magnet 29 and also move out of it, so that the size of the device 1 is not limited by the dimensions of the air gap 30. This makes it possible to obtain a more precise measurement and with lower tolerances compared to the state-of-the-art measuring devices for closed configuration air gaps, which require placing several of its components within the air gap 30.
Además, esto implica que es posible realizar mediciones en imanes 29 con entrehierros 30 de configuración cerrada y sin aberturas laterales (como el mostrado en la figura 5) usando elementos ya conocidos y utilizados en la técnica (la base 2 y el carro 6) que hasta la presente invención solamente se usaban para medir imanes con entrehierros de configuración abierta. In addition, this implies that it is possible to make measurements on magnets 29 with closed configuration air gaps 30 and without side openings (as shown in Figure 5) using elements already known and used in the art (base 2 and carriage 6) that until the present invention they were only used to measure magnets with open configuration air gaps.
Gracias al mínimo tamaño del filamento 14 y de la sonda S, el dispositivo 1 de la presente invención permite realizar mediciones en imanes con entrehierros de configuración cerrada de distintos tamaños y formas, a diferencia de los dispositivos del estado de la técnica, que debían ser diseñados ex profeso para adaptarse a las características y dimensiones específicas de un entrehierro de configuración cerrada determinado. Thanks to the minimum size of the filament 14 and of the probe S, the device 1 of the present invention allows measurements in magnets with closed configuration air gaps of different sizes and shapes, unlike the prior art devices, which should be designed specifically to adapt to the specific characteristics and dimensions of a particular closed configuration air gap.
Asimismo, el dispositivo 1 de la presente invención también puede utilizarse para realizar mediciones en imanes con entrehierros de configuración abierta, lo que permite su uso con imanes que presentan prácticamente cualquier configuración posible. El filamento 14 tensado permite mantener colocada la sonda S de manera que su oscilación con respecto al eje longitudinal del filamento 14 no distorsione las mediciones del campo magnético realizadas con la misma. A título de ejemplo, con un filamento de fibra de carbono de 6 metros de longitud y una sección transversal de 16 x 1 ,4 mm, es posible conseguir oscilaciones de 44 hercios con tensiones de 455 MPa. Esta frecuencia permite realizar con la sonda S mediciones muy precisas del campo magnético. Asimismo, la tensión necesaria para obtener estas frecuencias de oscilación es muy inferior al límite de ruptura del filamento (2800 MPa). Also, the device 1 of the present invention can also be used for perform measurements on magnets with open configuration air gaps, which allows their use with magnets that present virtually any possible configuration. The tensioned filament 14 allows the probe S to be positioned so that its oscillation with respect to the longitudinal axis of the filament 14 does not distort the magnetic field measurements made therewith. By way of example, with a carbon fiber filament of 6 meters in length and a cross section of 16 x 1.4 mm, it is possible to achieve oscillations of 44 hertz with voltages of 455 MPa. This frequency allows very precise measurements of the magnetic field with the S probe. Likewise, the voltage necessary to obtain these oscillation frequencies is much lower than the filament rupture limit (2800 MPa).
Preferiblemente, el filamento 14 consistirá en una tira plana. La forma plana permite obtener una mayor estabilidad de la sonda S. Preferably, the filament 14 will consist of a flat strip. The flat shape allows for greater stability of the S probe.
También preferiblemente, el filamento estará hecho de un material de fibra de carbono. La fibra de carbono es un material ligero y muy resistente a tracción, lo que la hace ideal para su aplicación en el filamento 14 de la presente invención. Also preferably, the filament will be made of a carbon fiber material. Carbon fiber is a lightweight and highly tensile material, which makes it ideal for application in filament 14 of the present invention.
Es preferible que todas las fibras de carbono del material de fibra de carbono estén orientadas longitudinalmente para presentar la máxima resistencia a tracción. Preferiblemente, el material de fibra de carbono comprende un 70% de fibra y un 30% de epoxi. Aunque el material de fibra de carbono y la sección plana son preferibles, sería posible usar otros materiales y formas de sección transversal para el filamento 14. It is preferable that all carbon fibers of the carbon fiber material are oriented longitudinally to exhibit maximum tensile strength. Preferably, the carbon fiber material comprises 70% fiber and 30% epoxy. Although the carbon fiber material and the flat section are preferable, it would be possible to use other materials and cross-sectional shapes for the filament 14.
El número de filamentos utilizados también podría ser superior a uno, aunque preferiblemente se utilizará un único filamento 14. The number of filaments used could also be greater than one, although preferably a single filament 14 will be used.

Claims

REIVINDICACIONES
1 . Dispositivo (1 ) de medición de campo magnético que comprende medios (S) de detector de campo magnético y medios de soporte de dichos medios (S) de detector desplazables para mover dichos medios (S) de detector en un campo magnético, caracterizado por el hecho de que los medios de soporte de los medios (S) de detector comprenden al menos un filamento (14) tensado entre dos puntos (13) de fijación, estando dispuestos los medios (S) de detector en dicho al menos un filamento (14). one . Magnetic field measuring device (1) comprising magnetic field detector means (S) and support means of said movable detector means (S) for moving said detector means (S) in a magnetic field, characterized by the fact that the support means of the detector means (S) comprise at least one filament (14) tensioned between two fixing points (13), the detector means (S) being arranged in said at least one filament (14 ).
2. Dispositivo según la reivindicación 1 , caracterizado por el hecho de que los medios de soporte comprenden una estructura (7) que incluye dos brazos (1 1 ) y un espacio (12) situado entre dichos brazos (1 1 ), estando dispuesto el al menos un filamento (14) en dicho espacio (12) e incluyendo cada uno de dichos brazos (1 1 ) un punto (13) de fijación correspondiente. Device according to claim 1, characterized in that the support means comprise a structure (7) that includes two arms (1 1) and a space (12) located between said arms (1 1), the device being arranged at least one filament (14) in said space (12) and each of said arms (1 1) including a corresponding fixing point (13).
3. Dispositivo según la reivindicación 2, caracterizado por el hecho de que los medios de soporte comprenden una base (2) dispuesta en el suelo y un carro (6) desplazable sobre dicha base (2) en un plano (P) de desplazamiento definido por la superficie superior de la base (2), estando soportada dicha estructura (7) en dicho carro (6). Device according to claim 2, characterized in that the support means comprise a base (2) arranged on the ground and a carriage (6) movable on said base (2) in a defined displacement plane (P) by the upper surface of the base (2), said structure (7) being supported on said carriage (6).
4. Dispositivo según la reivindicación 3, caracterizado por el hecho de que los medios de soporte comprenden medios de ajuste de la posición de la estructura (7) con respecto al carro (6). Device according to claim 3, characterized in that the support means comprise means for adjusting the position of the structure (7) with respect to the carriage (6).
5. Dispositivo según la reivindicación 4, caracterizado por el hecho de que los medios de ajuste comprenden un dispositivo (9, 10) de accionamiento asociado a cada uno de los extremos opuestos del carro (6) en la dirección longitudinal del al menos un filamento (14). Device according to claim 4, characterized in that the adjustment means comprise a drive device (9, 10) associated with each of the opposite ends of the carriage (6) in the longitudinal direction of the at least one filament (14).
6. Dispositivo según la reivindicación 5, caracterizado por el hecho de que cada dispositivo (9, 10) de accionamiento está asociado a un elemento (8) de conexión asociado a la estructura (7), comprendiendo el elemento (8) de conexión una zona (8a) deformable elásticamente. Device according to claim 5, characterized in that each drive device (9, 10) is associated with a connection element (8) associated with the structure (7), the element (8) comprising connection an elastically deformable zone (8a).
7. Dispositivo según la reivindicación 6, caracterizado por el hecho de que cada dispositivo (9, 10) de accionamiento es accionable independientemente, de modo que el accionamiento simultáneo y con el mismo movimiento de los dispositivos (9, 10) de accionamiento provoca el desplazamiento de la estructura (7) en una dirección perpendicular con respecto al plano (P) de desplazamiento del carro (6) y el accionamiento de cada dispositivo (9, 10) de accionamiento con un movimiento distinto entre sí provoca la inclinación de la estructura (7) a través de la deformación elástica de la zona (8a) deformable elásticamente del elemento (8) de conexión. 7. Device according to claim 6, characterized in that each drive device (9, 10) is independently operable, so that the simultaneous drive and with the same movement of the drive devices (9, 10) causes displacement of the structure (7) in a perpendicular direction with respect to the plane (P) of travel of the carriage (6) and the actuation of each actuator device (9, 10) with a different movement from one another causes the structure to tilt (7) through the elastic deformation of the elastically deformable zone (8a) of the connecting element (8).
8. Dispositivo según la reivindicación 1 , caracterizado por el hecho de que cada punto de fijación comprende una mordaza (13) que retiene de forma amovible un extremo correspondiente del al menos un filamento (14). Device according to claim 1, characterized in that each fixing point comprises a jaw (13) that removably retains a corresponding end of the at least one filament (14).
9. Dispositivo según la reivindicación 8, caracterizado por el hecho de que la mordaza (13) comprende medios (23) de ajuste de tensión del al menos un filamento (14). Device according to claim 8, characterized in that the jaw (13) comprises tension adjustment means (23) of the at least one filament (14).
10. Dispositivo según la reivindicación 8 o 9, caracterizado por el hecho de que la mordaza (13) comprende medios (26) de detector de la tensión del al menos un filamento (14). Device according to claim 8 or 9, characterized in that the jaw (13) comprises means (26) for detecting the tension of the at least one filament (14).
1 1 . Dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado por el hecho de que el al menos un filamento (14) está hecho de fibra de carbono. eleven . Device according to any of the preceding claims, characterized in that the at least one filament (14) is made of carbon fiber.
12. Dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado por el hecho de que el al menos un filamento (14) comprende una sección transversal sustancialmente plana  12. Device according to any of the preceding claims, characterized in that the at least one filament (14) comprises a substantially flat cross section
PCT/ES2015/070709 2014-10-13 2015-09-30 Device for measuring magnetic fields WO2016059273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201431497 2014-10-13
ES201431497A ES2534959B1 (en) 2014-10-13 2014-10-13 Magnetic field measuring device

Publications (1)

Publication Number Publication Date
WO2016059273A1 true WO2016059273A1 (en) 2016-04-21

Family

ID=52997756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070709 WO2016059273A1 (en) 2014-10-13 2015-09-30 Device for measuring magnetic fields

Country Status (2)

Country Link
ES (1) ES2534959B1 (en)
WO (1) WO2016059273A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010091239A (en) * 2000-03-14 2001-10-23 장인순 Magnetic measuring device of cycloron electromagnet
WO2010076980A2 (en) * 2008-12-31 2010-07-08 Korea Institute Of Radiological & Medical Sciences Magnetic field profile measuring apparatus for electromagnet of closed-type cyclotron
WO2014017758A1 (en) * 2012-07-26 2014-01-30 성균관대학교 산학협력단 Magnetic field measurement apparatus for cyclotron electromagnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010091239A (en) * 2000-03-14 2001-10-23 장인순 Magnetic measuring device of cycloron electromagnet
WO2010076980A2 (en) * 2008-12-31 2010-07-08 Korea Institute Of Radiological & Medical Sciences Magnetic field profile measuring apparatus for electromagnet of closed-type cyclotron
WO2014017758A1 (en) * 2012-07-26 2014-01-30 성균관대학교 산학협력단 Magnetic field measurement apparatus for cyclotron electromagnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 201409, Derwent World Patents Index; AN 2013-W03446, XP055274844, RETRIEVED *

Also Published As

Publication number Publication date
ES2534959B1 (en) 2015-12-29
ES2534959A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
ES2425863T3 (en) Measuring probe for use in coordinate measuring machines
US9009985B2 (en) Probe deployment mechanism of measuring machine with isolated locator coupling
TWI601966B (en) Cross-bar unit for a test apparatus for circuit boards, and test apparatus containing the former
ES2712194T3 (en) Amplified piezoelectric actuator with coarse adjustment
ES2339150T3 (en) MEASURING MACHINE FOR HORIZONTAL ARM COORDINATES.
KR102171729B1 (en) Geodetic surveying device for easily installing level and reference points
CN208833601U (en) Light detection device and tensile testing machine for fabric tensile test
CN104848834B (en) A kind of self-leveling longitude and latitude instrument apparatus
JP2019113440A (en) Vibration tester
WO2016059273A1 (en) Device for measuring magnetic fields
ES2275321T3 (en) MEASURING DEVICE OF A WORK PIECE, IN PARTICULAR FOR RECTIFIERS.
CN109100218A (en) Correcting clamp for fabric tensile test
CN109100224A (en) Light detection device and tensile testing machine for fabric tensile test
ES2562628T3 (en) Test procedure and test device for the examination of elongated objects by means of a coil
CN110485495A (en) A kind of clamshell correct device and chute forming machine
US10753438B2 (en) Lifting drive device and measuring machine using the same
ES2250079T3 (en) DEVICE FOR REGULATING WHEEL ALIGNMENT.
CN209706777U (en) geological disaster deep displacement monitoring device
ES2262984T3 (en) CRANE OF EQUIPMENT, ESPECIALLY CRANE OF CAMARA.
CN212409679U (en) Center line positioning device for quickly setting drilling azimuth angle
CN107655857A (en) Pipe-type quantitative schlieren system and its adjusting means
ES2911759T3 (en) Procedure for determining a support geometry of a support and measurement system
ES2613080T3 (en) Procedure and device for mounting a measuring tape
ES2878324T3 (en) Coil base body for the production of an eddy current sensor, an eddy current sensor as well as a device for winding a coil wire on the coil base body for the production of an eddy current sensor of this type
CN208833591U (en) Correcting clamp for fabric tensile test

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850304

Country of ref document: EP

Kind code of ref document: A1