WO2016056663A1 - Coating film, coating method using same and article coated with same - Google Patents

Coating film, coating method using same and article coated with same Download PDF

Info

Publication number
WO2016056663A1
WO2016056663A1 PCT/JP2015/078849 JP2015078849W WO2016056663A1 WO 2016056663 A1 WO2016056663 A1 WO 2016056663A1 JP 2015078849 W JP2015078849 W JP 2015078849W WO 2016056663 A1 WO2016056663 A1 WO 2016056663A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
coating
compound
carbon atoms
Prior art date
Application number
PCT/JP2015/078849
Other languages
French (fr)
Japanese (ja)
Inventor
央基 山口
翔 英
正道 森田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2016056663A1 publication Critical patent/WO2016056663A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • C09D133/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/10Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/04Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • the present invention relates to a coating, particularly a coating capable of imparting super-water repellency and super-oil repellency (hereinafter, collectively referred to as “super-liquid repellency”) to a surface, and further, a coating method using the coating and thereby It also relates to coated articles.
  • a coating particularly a coating capable of imparting super-water repellency and super-oil repellency (hereinafter, collectively referred to as “super-liquid repellency”) to a surface, and further, a coating method using the coating and thereby It also relates to coated articles.
  • Patent Document 1 a method of imparting super liquid repellency by chemically bonding a fluoroalkylsilane compound to a surface to be treated on which a cured coating film containing silica fine particles or the like is formed.
  • Patent Document 2 A method of forming a film by hydrolyzing alkoxysilane in a mixed state of alkoxysilane, perfluoroalkylsilane and silica fine particles has also been proposed (Patent Document 2).
  • Non-patent Document 1 a coating obtained by copolymerizing fine particles having radical polymerizable groups on the surface and a fluorine-containing monomer has been proposed.
  • an object of the present invention is to provide a super-liquid-repellent film that achieves both super-liquid repellency, which is the original performance, and wear resistance.
  • the inventors of the present invention have made extensive studies, and at least a structural unit based on a fine particle having a polymerizable group and a compound having two or more polymerizable groups in the molecule (however, at least one of them has a fluoroalkyl group). It has been found that the above-described problems can be solved by using the polymer having the coating as a coating.
  • the fluoroalkyl group provides strong liquid repellency, and the copolymer may have a specific structure by copolymerization using a compound having two or more radical polymerizable groups in the molecule. It seems to have led to the acquisition of excellent wear resistance.
  • the present invention has been completed by further trial and error, and includes the following embodiments. Item 1.
  • the polymer contains the fine particles (1) and the compound (2). It is a polymer that can be obtained by polymerizing at the same time or sequentially polymerizing in at least two stages. Item 12. The coating according to Item 1. Item 3. Item 3.
  • the coating according to Item 2 wherein the polymer is a polymer that can be obtained by polymerizing at least one of the compounds (2) having two or more polymerizable groups in the molecule in the second and subsequent stages. .
  • Item 4. Item 4. The coating according to any one of Items 1 to 3, wherein the polymerizable groups are the same or different and are a vinyl group, a (meth) acryl group, a styryl group, or a maleimide group.
  • At least one of the compounds (2) is represented by the following general formula (1):
  • X represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a CFX 1 X 2 group (where X 1 and X 2 are the same or different and represent a hydrogen atom, a fluorine atom or a chlorine atom)
  • Y is a direct bond, a hydrocarbon group having 1 to 10 carbon atoms which may have an oxygen atom, a —CH 2 CH 2 N (R 1 ) SO 2 — group (provided that , R 1 is an alkyl group having 1 to 4 carbon atoms, and the right end of the formula is bonded to Rf and the left
  • X represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a CFX 1 X 2 group (where X 1 and X 2 are the same or different and represent a hydrogen atom, a fluorine atom or a chlorine atom)
  • Y is a direct bond, a hydrocarbon group having 1 to 10 carbon atoms which may have an oxygen atom, a —CH 2 CH 2 N (R 1 ) SO 2 — group (provided that , R 1 is an alkyl group having 1 to 4 carbon atoms, and the right end of the formula is bonded to Z 1 and the left
  • Z 1 is a residue obtained by removing m + 1 hydrogen atoms from a hydrocarbon optionally having an oxygen atom and / or a fluorine atom, or a carbon atom or an oxygen atom
  • Z 2 is A residue obtained by removing n hydrogen atoms from a hydrocarbon optionally having an oxygen atom and / or a fluorine atom, or a carbon atom or an oxygen atom
  • m is an integer of 1 to 3
  • n is 1 to Item 6.
  • Item 7. Item 7.
  • Item 8 The coating according to any one of Items 1 to 6, wherein the water has a static contact angle of 150 ° or more and n-hexadecane has a static contact angle of 90 ° or more.
  • Item 8. The coating according to any one of Items 1 to 7, wherein the falling angle of water during film formation is 10 ° or less.
  • Item 9. A coating method comprising a step of bringing an object to be treated into contact with the film according to any one of Items 1 to 8. Item 10.
  • Item 9. A composition containing the fine particles (1), which is used for coating with the film according to any one of Items 1 to 8.
  • Item 11 Item 9.
  • a composition containing the compound (2) which is used for coating with the film according to any one of Items 1 to 8.
  • a coating composition comprising (A) at least one fine particle having a polymerizable group on the surface; and (B) at least one compound having two or more polymerizable groups in the molecule.
  • Item 13 A coating composition comprising (1) at least one fine particle having a polymerizable group on the surface; and (2) a polymer having a polymerizable group and a structural unit based on at least one compound.
  • Item 14. Item 14. The coating composition according to any one of Items 10 to 13, wherein when the composition is applied to a substrate, the static contact angle with respect to water on the coating surface is 150 ° or more, and n-hexadecane is used. A coating composition having a static contact angle of 90 ° or more.
  • Item 15. Item 15. The coating composition according to any one of Items 10 to 14, wherein a falling angle with respect to water of an application surface when the composition is applied to a substrate is 10 ° or less.
  • a coating film having excellent liquid repellency and wear resistance can be provided.
  • Conventional super-liquid-repellent coatings could not be applied to the surface of articles that require wear resistance, but the scope of application can be extended to articles that require wear resistance by using the present invention.
  • the “fluoroalkyl group” means an alkyl group in which at least one hydrogen atom is substituted with a fluorine atom, and includes a fluoropolyether group unless otherwise specifically used.
  • the fine particles having polymerizable groups on the surface used in the present invention are not particularly limited, and examples thereof include silica fine particles, metal oxide fine particles, carbon black, fullerene, and carbon nanotubes. It is desirable that the polymerizable group be present on the surface of the fine particles.
  • the size of the fine particles is preferably 0.5 nm to 1000 nm, preferably 1 nm to 100 nm, more preferably 5 nm to 70 nm, as the average particle size at the time of primary dispersion defined by DIN 53206.
  • the particle diameter is within this range, it is easy to obtain the surface roughness necessary for imparting a super-repellent state. It is expected that the ratio of the roughness of the surface constructed from fine particles having an average particle diameter of 0.5 nm or more to the roughness of the smooth plane will be high.
  • the roughness of the surface constructed from an average particle diameter of 1000 nm or less does not become a large unevenness that should be called a surface shape as compared with the diameter of a droplet.
  • Measurement of the average particle size during primary dispersion of the fine particles can be performed using a transmission electron microscope or a scanning electron microscope. More specifically, the average particle diameter is obtained by photographing with a transmission electron microscope or a scanning electron microscope, measuring the diameter of 200 or more particles on the photograph, and calculating the arithmetic average value thereof. Can do.
  • higher-order aggregation states such as secondary aggregation defined by DIN 53206 may be imparted to the liquid repellency. If this higher-order aggregate is present at a certain ratio, it is easier to construct a pseudo-fractal state, so that the surface roughness becomes more rough, thereby improving the liquid repellency.
  • the ratio of the higher-order aggregation state appears in the apparent density.
  • the apparent density is obtained by measuring the volume when 0.2 g of powder is put into a 10 ml measuring cylinder.
  • the apparent density is preferably 0.01 ⁇ 0.5g / cm 3, more preferably 0.015 ⁇ 0.3g / cm 3, even more preferably at 0.02 ⁇ 0.05g / cm 3 .
  • the polymerizable group is not particularly limited, and examples thereof include a radical polymerizable group, a cationic polymerizable group, and an anion polymerizable group.
  • a radical polymerizable group is preferable in terms of versatility and reactivity.
  • the radical polymerizable group is not particularly limited, and examples thereof include a vinyl group, a (meth) acryl group, a styryl group, and a maleimide group.
  • radical polymerizable group a (meth) acryl group and a styryl group are preferable in view of versatility and reactivity.
  • the manner in which the polymerizable group is bonded to the surface of the fine particle is not particularly limited, and examples thereof include a covalent bond, a coordinate bond, an ionic bond, a hydrogen bond, and a bond by van der Waals force.
  • the method for producing the fine particles having a polymerizable group is not particularly limited, but it is generally obtained by reacting a compound having a polymerizable group and a site reactive with the particle surface with the fine particles.
  • the site showing reactivity with the particle surface can be appropriately selected depending on the state of the particle surface.
  • the reaction is performed using silane coupling.
  • a compound is chemically bonded to the fine particles, it is difficult to select the number of compounds to be reacted.
  • a plurality of compounds exist in a chemically bonded state on the surface of the fine particles.
  • the coating film of the present invention can be obtained by performing a polymerization reaction described later using at least one of the above fine particles.
  • At least one kind of the fine particles may have a fluoroalkyl group.
  • the coating film of the present invention exhibits excellent liquid repellency by having a structural unit based on such fine particles. can do.
  • the fluoroalkyl group a perfluoroalkyl group is preferable from the viewpoint of liquid repellency.
  • the fine particles can be used singly or in combination of two or more.
  • the compound having a polymerizable group used in the present invention may be one kind or two or more kinds, but at least one kind has two or more polymerizable groups in the molecule.
  • a compound. 1.2.1 Compound having two or more polymerizable groups in the molecule The compound having two or more polymerizable groups in the molecule (also referred to as a polyfunctional polymerizable compound) is not particularly limited, but wear resistance From the viewpoint of safety, those having 2 to 8 polymerizable groups in the molecule are preferable, those having 3 to 6 polymerizable groups are more preferable, and those having 3 polymerizable groups are more preferable. Further preferred.
  • the polymerizable group is not particularly limited, and examples thereof include a radical polymerizable group, a cationic polymerizable group, and an anion polymerizable group.
  • a radical polymerizable group is preferable in terms of versatility and reactivity.
  • the radical polymerizable group is not particularly limited, and examples thereof include a vinyl group, a (meth) acryl group, a styryl group, and a maleimide group.
  • radical polymerizable group a (meth) acryl group and a styryl group are preferable in view of versatility and reactivity.
  • X represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a CFX 1 X 2 group (where X 1 and X 2 are the same or different and represent a hydrogen atom, a fluorine atom or a chlorine atom)
  • Y is a direct bond, a hydrocarbon group having 1 to 10 carbon atoms which may have an oxygen atom, a —CH 2 CH 2 N (R 1 ) SO 2 — group (provided that , R 1 is an alkyl group having 1 to 4 carbon atoms, and the right end of the formula is bonded to Z 1 and the left
  • Z 1 is a residue obtained by removing m + 1 hydrogen atoms from a hydrocarbon optionally having an oxygen atom and / or a fluorine atom, or a carbon atom or an oxygen atom
  • Z 2 is A residue obtained by removing n hydrogen atoms from a hydrocarbon optionally having an oxygen atom and / or a fluorine atom, or a carbon atom or an oxygen atom
  • m is an integer of 1 to 3
  • n is 1 to (It is an integer of 4 and the number obtained by multiplying m and n is 2 or more.)
  • the hydrocarbon may be cyclic or non-cyclic, and may be either linear or branched.
  • the hydrocarbon preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 2 carbon atoms.
  • the polyfunctional polymerizable compound may have a fluoroalkyl group. It is not particularly limited, specific examples, in the general formula (2), and the like that Z 1 and / or Z 2 is a fluoroalkyl group.
  • the coating of the present invention has structural features that can be obtained by copolymerization using fine particles having the polymerizable group on the surface and the polyfunctional polymerizable compound, This seems to have led to the acquisition of excellent wear resistance.
  • the ratio of the polyfunctional polymerizable compound to the fine particles having a polymerizable group on the surface is not particularly limited, and can be appropriately adjusted within a range where the effects of the present invention are not impaired. Although not particularly limited, for example, it can be 5 to 1000 parts by weight, preferably 10 to 750 parts by weight, and more preferably 20 to 500 parts by weight with respect to 100 parts by weight of the fine particles.
  • the said polyfunctional polymerizable compound can be used individually by 1 type or in mixture of 2 or more types.
  • 1.2.2 Compound having one polymerizable group in the molecule
  • one polymerizable group in the molecule in addition to the fine particles having a polymerizable group on the surface and the polyfunctional polymerizable compound, one polymerizable group in the molecule. You may further copolymerize at least 1 type compound (it is also called a monofunctional polymerizable compound) which has these.
  • the polymerizable group is not particularly limited, and examples thereof include a radical polymerizable group, a cationic polymerizable group, and an anion polymerizable group.
  • a radical polymerizable group is preferable in terms of versatility and reactivity.
  • the radical polymerizable group is not particularly limited, and examples thereof include a vinyl group, a (meth) acryl group, a styryl group, and a maleimide group.
  • radical polymerizable group a (meth) acryl group and a styryl group are preferable in view of versatility and reactivity.
  • X represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a CFX 1 X 2 group (where X 1 and X 2 are the same or different and represent a hydrogen atom, a fluorine atom or a chlorine atom)
  • Y is a direct bond, a hydrocarbon group having 1 to 10 carbon atoms which may have an oxygen atom, a —CH 2 CH 2 N (R 1 ) SO 2 — group (provided that , R 1 is an alkyl group having 1 to 4 carbon atoms, and the right end of the formula is bonded to R and the left end
  • the hydrocarbon group may be cyclic or non-cyclic, and may be linear or branched.
  • the hydrocarbon group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 2 carbon atoms.
  • the monofunctional radically polymerizable compound may have a fluoroalkyl group.
  • the monofunctional radically polymerizable compound is not particularly limited, but may have a fluoroalkyl group ester-bonded directly or via a divalent organic group to the carboxyl group and may have a substituent at the ⁇ -position.
  • Fluorine-containing acrylic acid ester etc. are mentioned. More specifically, it is not particularly limited, but examples thereof include those represented by the following general formula (1).
  • X represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a CFX 1 X 2 group (where X 1 and X 2 are the same or different and represent a hydrogen atom, a fluorine atom or a chlorine atom)
  • Y is a direct bond, a hydrocarbon group having 1 to 10 carbon atoms which may have an oxygen atom, a —CH 2 CH 2 N (R 1 ) SO 2 — group (provided that , R 1 is an alkyl group having 1 to 4 carbon atoms, and the right end of the formula is bonded to Rf and the left
  • the hydrocarbon group may be cyclic or non-cyclic, and may be either linear or branched.
  • the hydrocarbon group preferably has 1 to 6 carbon atoms, and more preferably has 1 to 2 carbon atoms.
  • acrylic acid ester represented by the above general formula (1) are as follows.
  • Rf is a fluoropolyether group
  • the molecular weight of the fluoropolyether group is 400 to 10,000, and a perfluoropolyether group is preferred.
  • Particularly preferred are perfluoropolyether groups having 6 to 8 carbon atoms. Specific examples are given below.
  • the above-mentioned monofunctional polymerizable compounds can be used singly or in combination of two or more.
  • the ratio of the monofunctional polymerizable compound to the polyfunctional polymerizable compound is not particularly limited and can be appropriately adjusted within a range in which the effects of the present invention are not impaired.
  • the amount can be 5 to 1,000 parts by weight, preferably 10 to 500 parts by weight, more preferably 20 to 300 parts by weight with respect to 100 parts by weight of the polyfunctional polymerizable compound.
  • a preferred embodiment of a combination of fine particles having a polymerizable group on the surface, a polyfunctional polymerizable compound, and a monofunctional polymerizable compound is not particularly limited, but fine particles having a polymerizable group on the surface and no fluoroalkyl group.
  • a combination of a polyfunctional polymerizable compound and a monofunctional polymerizable compound having a fluoroalkyl group may be mentioned. By using this combination, it becomes easy to obtain a super-repellent coating film that achieves both super-liquid repellency and wear resistance.
  • the film of the present invention exhibits super liquid repellency.
  • the static contact angle of water during film formation is 150 ° or more
  • the static contact angle of n-hexadecane (hereinafter sometimes referred to as n-HD) is 90 ° or more. It is.
  • the static contact angle of water and the static contact angle of n-HD are measured as follows.
  • the apparatus uses a contact angle meter Drop Master 701 to make water and n-HD both have a droplet volume of 2 ⁇ l and measure 5 points per sample.
  • the static contact angle becomes 150 ° or more, depending on the conditions, the liquid cannot stand on the surface of the base material. Therefore, in such a case, the static contact angle is measured using the needle of the syringe as a support, and the value obtained at that time is taken as the static contact angle.
  • the water falling angle of the coating of the present invention is preferably 0 ° to 10 °, more preferably 0 ° to 5 °, and still more preferably 0 ° to 3 °.
  • the falling angle of water shall be measured as follows.
  • the apparatus uses a contact angle meter Drop Master 701 to make a water droplet volume of 20 ⁇ l and measure three points for one sample.
  • a 20 ⁇ l droplet from the needle cannot be allowed to stand on a horizontal substrate, or can be left still, but before measurement or between 0 ° and 1 ° during measurement. It means that the water falls.
  • the coating film of the present invention preferably satisfies the above-mentioned range of the falling angle of water, and the falling angle of n-HD is preferably 0 ° to 30 °, more preferably 0 ° to 15 °. More preferably, it is 0 ° to 5 °.
  • the apparatus uses a contact angle meter Drop Master 701 to set the HD droplet volume to 20 ⁇ l and measure three points for one sample. Further, the fall angle of 0 ° here means that the HD falls before measurement or between 0 ° and 1 ° during measurement.
  • liquid repellency may be improved by performing a heat treatment after the coating is produced.
  • the temperature of the heat treatment at that time is not particularly limited, but is preferably 30 ° C. to 200 ° C., more preferably 40 ° C. to 150 ° C., and further preferably 60 ° C. to 120 ° C.
  • the heat treatment time is not particularly limited, but is preferably 1 minute to 12 hours, more preferably 2 minutes to 6 hours, and further preferably 3 minutes to 2 hours.
  • the film (coat) of the present invention comprises the fine particles (1) and the compound (2): It can be obtained by (i) simultaneously polymerizing on a workpiece or (ii) sequentially polymerizing in at least two stages.
  • the polymerization reaction can be performed in the presence or absence of a polymerization initiator.
  • polymerization can be performed using electromagnetic waves in a wavelength region of 350 nm or less, that is, ultraviolet rays, electron beams, X-rays, ⁇ rays, and the like.
  • the above (ii) it is preferable to polymerize at least one kind of the compound (2) having two or more polymerizable groups in the molecule on the object to be treated after the second stage. More preferably, at least one of the compounds (2) having two or more polymerizable groups in the molecule is preferably polymerized on the object to be treated in the final stage.
  • the fine particles (1) or a copolymer obtained by polymerizing the fine particles (1) and the compound (2) having one polymerizable group in the molecule in advance have two or more molecules in the molecule.
  • the compound (2) having a polymerizable group can be polymerized.
  • a solvent in which the fine particles (1) and the compound (2) and the polymerization initiator are uniformly dispersed or dissolved. More specifically, the fine particles (1), the compound (2) having two or more polymerizable groups in the molecule, and the compound (2) having one polymerizable group in the molecule are uniformly used in a solvent. Dispersing the fine particles (1) and a copolymer of the compound (2) having one polymerizable group in the molecule, and dissolving the copolymer and two or more polymerizable groups in the molecule An embodiment in which the compound (2) having a salt is uniformly dissolved in a solvent is exemplified.
  • a solvent is not particularly limited, and examples thereof include isopropyl alcohol (hereinafter sometimes referred to as IPA).
  • IPA isopropyl alcohol
  • the polymerization initiator used on the surface to be treated is not particularly limited.
  • radicals and cations are only obtained by irradiation with electromagnetic waves in a wavelength region of 350 nm or less, that is, ultraviolet rays, electron beams, X rays, ⁇ rays, and the like. That act as a catalyst for initiating the curing (crosslinking reaction) of the carbon-carbon double bond of the fluoropolymer, and usually generating radicals and cations with ultraviolet light, especially generating radicals It is preferable to use one. For example, the following can be illustrated.
  • it is possible to polymerize on an object to be treated without using an initiator, and the polymerization method at that time is not particularly limited. For example, a method of polymerizing using an electron beam, ⁇ -ray, etc. Can be mentioned.
  • Acetophenone series acetophenone, chloroacetophenone, diethoxyacetophenone, hydroxyacetophenone, ⁇ -aminoacetophenone, hydroxypropiophenone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinepropan-1-one, etc.
  • Benzoin series benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyldimethyl ketal, and the like.
  • Benzophenone series benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, hydroxy-propylbenzophenone, acrylated benzophenone, Michler's ketone, etc.
  • Thioxanthones thioxanthone, chlorothioxanthone, methylxanthone, diethylthioxanthone, dimethylthioxanthone and the like.
  • an initiator that generates radicals by thermal energy may be used.
  • the amount of the polymerization initiator that generates radicals by the above-mentioned light energy is not particularly limited, but it is usually preferably about 0.01 to 20 parts by weight with respect to 100 parts by weight of the monomer component. More preferably, it is about 1 to 10 parts by weight.
  • any known polymerization initiator for thermal radical polymerization reaction can be used without particular limitation.
  • azo initiators such as azobisisobutyronitrile, methyl azoisobutyrate, azobisdimethylvaleronitrile; benzoyl peroxide, potassium persulfate, ammonium persulfate, benzophenone derivatives, phosphine oxide derivatives, benzoketone derivatives, phenylthioether derivatives, Azide derivatives, diazo derivatives, disulfide derivatives and the like can be used.
  • azo initiators such as azobisisobutyronitrile, methyl azoisobutyrate, azobisdimethylvaleronitrile
  • benzoyl peroxide potassium persulfate, ammonium persulfate
  • benzophenone derivatives phosphine oxide derivatives
  • benzoketone derivatives benzoketone derivatives
  • phenylthioether derivatives Azide derivatives, diazo
  • the amount of the polymerization initiator used is not particularly limited, but usually it is preferably about 0.01 to 10 parts by weight and preferably about 3 to 7 parts by weight with respect to 100 parts by weight of the monomer component. More preferred.
  • the concentration of the fluorine-containing fine particles and / or fluorine-containing compound in the fluorine-based solvent is not particularly limited, but is usually preferably about 1 to 15% by weight, more preferably about 2 to 10% by weight. preferable.
  • the polymerization conditions such as the polymerization temperature and the polymerization time may be appropriately adjusted according to the type of monomer component, the amount used thereof, the type of polymerization initiator, the amount used, etc., but usually about 50 to 100 ° C.
  • the polymerization reaction may be performed at a temperature for 4 to 10 hours.
  • the above-mentioned photoradical initiator can be used to uniformly dissolve the material in the system.
  • a single solvent or a mixed solvent system may be used.
  • fluorinated solvent / IPA 50/50 (w / w)) mixed solution
  • fluorinated solvent / IPA 75/25 (w / w)) mixed solution
  • fluorinated solvent / IPA 95/5 (w / w)) w) mixed solutions and the like.
  • the fluorine-based solvent may be any of hydrocarbon compounds, alcohols, ethers, etc., as long as it has a fluorine atom in the molecule and the formed fluorine-containing polymer has good solubility. Any of aliphatic and aromatic may be used.
  • chlorinated fluorinated hydrocarbons particularly, having 2 to 5 carbon atoms
  • HCFC225 diichloropentafluoropropane
  • HCFC141b diichlorofluoroethane
  • CFC316 2, 3,3-tetrachlorohexafluorobutane
  • Vertrel XF chemical formula C 5 H 2 F 10
  • AC-6000 chemical name tridecafluorooctane
  • hydrofluoroether is a solvent having low chemical erosion with respect to various materials, and is a particularly suitable solvent as a solvent for forming a coating on an electronic component that is strongly required to eliminate the adverse effects of the solvent. Further, hydrofluoroether is an ideal solvent having excellent performance such as quick drying, low environmental pollution, nonflammability, and low toxicity.
  • hydrofluoroether the following general formula (7)
  • n is a number from 1 to 6, and x is a number from 1 to 6.
  • the compound shown by these is preferable.
  • examples of such a hydrofluoroether include Novec (trademark) 7100 (chemical formula C 4 F 9 OCH 3 ) (boiling point 61 ° C.) manufactured by Sumitomo 3M Limited, and Novec (trademark) 7200 (chemical formula expressed by Sumitomo 3M Limited).
  • C 4 F 9 OC 2 H 5 (boiling point 76 ° C.)
  • Novec TM 7300 chemical formula C 6 F 13 OCH 3 ) (boiling point 98 ° C.) manufactured by Sumitomo 3M Limited can be used.
  • the coating composition of the present invention is a composition used for forming the above-described coating film of the present invention on a surface to be treated.
  • the surface to be treated can be coated by forming the film of the present invention on the surface to be treated using the coating composition of the present invention.
  • the solid component in the composition is preferably about 0.01 to 10% by weight, more preferably about 1 to 6% by weight, Of these, the concentration of the fluorine compound is preferably about 0.01 to 5% by weight, more preferably about 0.5 to 3% by weight as the solid content concentration.
  • the concentration of the polyfunctional polymerizable group is preferably about 0.01 to 5% by weight, preferably about 0.5 to 3% by weight as the solid concentration, and the concentration of the fine particles is the solid concentration. Is preferably about 0.01 to 5% by weight, more preferably about 0.5 to 3% by weight.
  • the surface of the coating obtained thereby has a static contact angle to water of 150 ° or more, and the n-HD static contact angle is 90 ° or more, more preferably, Is a coating composition having a static contact angle with water of 150 ° or more, an n-HD static contact angle of 90 ° or more, and a sliding angle with respect to water of 10 ° or less.
  • a more preferable embodiment of the coating composition of the present invention is that the surface of the coating obtained thereby has a static contact angle with water of 150 ° or more, the static contact angle of n-HD is 90 ° or more, and water.
  • the sliding angle with respect to n-HD is 10 ° or less, the sliding angle with respect to n-HD is 30 ° or less, more preferably the static contact angle with respect to water of the coating surface obtained is 150 ° or more, and the static contact angle of n-HD Is 120 ° or more, the falling angle with respect to water is 5 ° or less, the falling angle with respect to n-HD is 20 ° or less, and more preferably, the static contact angle with respect to water on the coating surface obtained thereby is 150 °.
  • the coating composition has a static contact angle of n-HD of 150 ° or more, a sliding angle with respect to water of 3 ° or less, and a sliding angle with respect to n-HD of 5 ° or less.
  • the application target of the coating composition of the present invention is not particularly limited, and various durability such as solvent immersion, immersion in water, wiping, abrasion, high temperature and high humidity, etc., on various substrates such as plastic, metal, ceramics, etc. It is possible to form a film having good waterproof and moistureproof performance.
  • the treatment method using the coating composition of the present invention is not particularly limited, and the coating composition of the present invention may be brought into contact with the object to be treated, and then a polymerization reaction may be performed by an appropriate method.
  • a polymerization reaction may be performed by an appropriate method.
  • the method etc. which make the composition for coating of this invention contact a process target object by methods, such as brush coating, a spray, a spin coat, a dispenser, etc. are applicable.
  • the substrate is acetone, isopropyl alcohol (IPA), It is preferable to dry after washing with a solvent such as hydrofluoroether or a mixed solvent thereof.
  • IPA isopropyl alcohol
  • chemical cleaning such as acid (hydrochloric acid, nitric acid, hydrogen fluoride, etc.), UV ozone, sandblasting, glass beads, plasma, etc. Removing the oxide film formed on the surface by physical cleaning is also useful for improving durability. More preferably, the wear resistance is further improved by surface-modifying a compound having a site that is chemically adsorbed on the washed substrate and can chemically react with the coating composition in the structure.
  • the use of the coating of the present invention is not particularly limited.
  • water / oil repellent, protein / cell / microbe non-adhesive agent, frost-delay / anti-icing / snow-proofing agent, fingerprint anti-adhesive agent, fingerprint non-identification Agents, low friction agents and lubricants are not particularly limited.
  • the treatment substrate is not particularly limited as long as it can be applied, and various primer treatments may be used as necessary to enable application.
  • the substrate usable in the present invention is, for example, glass, resin (natural or synthetic resin, for example, a general plastic material, plate, film, or other forms), metal (aluminum, copper It may be a single metal such as iron or a composite such as an alloy), ceramics, semiconductor (silicon, germanium, etc.), fiber (woven fabric, non-woven fabric, etc.), fur, leather, wood, ceramics, stone, etc., building member, etc. Can be composed of any suitable material.
  • Example 1 Preparation of [Rf (C2) methacrylate / fine particle] copolymer and TMPTA coating
  • C 2 F 5 CH 2 OCOC (CH 3 ) CH 2 [hereinafter sometimes abbreviated as Rf (C2) methacrylate] 5.00 g, average having radical reactive groups on the surface
  • 2.52 g of silica fine particles having a primary particle size of 12 nm and 140 g of perfluorobutyl ethyl ether were charged, nitrogen purged, and heated to 70 ° C.
  • Example 4 Preparation of [Rf (C6) methacrylate / fine particle] copolymer and TMPTA coating
  • a thin film was prepared by the method described in Example 1 except that Rf (C6) methacrylate was used instead of Rf (C2) methacrylate.
  • a thin film was prepared by the method described in Example 1 except that the above may be used.
  • a thin film was prepared by the method described in Example 1 except that the substrate spray-treated in (Preparation of thin film) was heat-treated at 110 ° C.
  • Example 7 Preparation of [Rf (C6) methacrylate / fine particle] copolymer, TMPTA coating
  • [Rf (C6) methacrylate / fine particle] copolymer solution] A branch test tube was charged with 9.9 g of Rf (C6) methacrylate, 4.81 g of silica fine particles having a radical reactive group on the surface and an average primary particle diameter of 12 nm, and 185 g of perfluorobutyl ethyl ether, Nitrogen purged and heated to 70 ° C. AIBN 0.477g was thrown into this and it reacted for 6 hours. After polymerization, the solid content concentration was calculated.
  • Example 8 Preparation of [Rf (C6) Methacrylate / Fine Particles] Copolymer and DPEHA Coating Example 7 except that TMPTA in Example 7 was changed to dipentaerythritol hexaacrylate (hereinafter sometimes abbreviated as DPEHA). Same prescription.
  • Example 9 Preparation of [Rf (C6) methacrylate / fine particle] copolymer, TMPTA coating [ Preparation of [Rf (C6) methacrylate / fine particle] copolymer solution] It was produced by the same method as in Example 7.
  • TMPTA 0.801 g, IPA 20.0 g, and perfluorobutyl ethyl ether 10.0 g were put into a vial, irradiated with ultrasonic waves by an ultrasonic cleaner, and then the above-mentioned co-polymer having a solid content of 8.34%. 9.90 g of the polymer solution was added and irradiated with ultrasonic waves with an ultrasonic cleaner to obtain a photosensitive solution.
  • the photosensitive solution was treated on an acrylic substrate by a spray method, and then a film was formed by irradiation with an electron beam of 50 kGy in a nitrogen atmosphere.
  • Example 7 Thereafter, a thin film was produced in the same manner as in Example 7.
  • Test Examples 1 to 13 The test pieces obtained in Examples 1 to 6 and 8 and Comparative Examples 1 to 6 were measured for contact angles with water and n-HD. The contact angle measurement and apparatus were in accordance with the method described in the text. The results are shown in Table 1.
  • a falling angle of 0 ° means that a liquid of 20 ⁇ l cannot be landed on the base material from the needle, or even if it can land, the liquid falls before the measurement or between 0 ° and 1 ° during measurement. This means that the instrument used this time cannot measure.
  • the falling angles for water in Test Examples 1 to 7 and 13 and the falling angle for n-HD in Test Example 6 correspond thereto.
  • the static contact angle with respect to n-HD in Test Example 10 is 0 °, it means that the droplet spreads on the substrate and an accurate value is not obtained in this measurement.
  • the drop angle with respect to n-HD in Test Examples 1 and 2 is accurate because the liquid is falling without being able to maintain the advancing contact angle and the receding contact angle, or residual droplets remain on the substrate after the falling.
  • the value of the pseudo falling angle is shown instead of the falling angle. Even when the water falling angle of Test Example 10 was 85 °, which is the maximum falling angle of the apparatus, the droplets did not fall.
  • the drop angle of the n-HD in Test Example 8 was wet and spread while the droplets tumbled, and Test Example 10 could not be measured due to the chemical property that the static contact angle was approximately 0 °.
  • Test Examples 14-17 For each of the test pieces obtained in Examples 7 to 9 and Comparative Example 6, the water contact angle was measured to determine the initial contact angle, and then a rubbing tester (rubbing tester “Irimoto Seisakusho 151E 3 series made by Imoto Seisakusho) Spec. ”) (Paper contact area: 1 cm 2 ) with a paper waste cloth, wipe the surface a predetermined number of times with a load of 100 g, measure the contact angle with water, and wear resistance against wiping Sex was evaluated.
  • the wear resistance performance here is the number of wears that can maintain a super water-repellent state (the average value of the static contact angle of five times is 150 ° or more, or 150 ° or more when the average deviation is 140 ° or more and the standard deviation is combined).
  • FIG. 1 shows the result of the rubbing test.
  • the bar graph in the figure shows the average value of the number of wears that can maintain a super water-repellent state, and the samples evaluated multiple times show the lowest and highest values with the upper and lower bars.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a super-liquid-repellent coating film with improved abrasion resistance. A coating film contains a polymer having respective moieties based on: (1) at least one type of fine particles having a polymerizable group; and (2) at least one type of compound having a polymerizable group, wherein at least one type of the fine particles (1) and/or at least one type of the compound(s) (2) have a fluoroalkyl group, and at least one type of the compound(s) (2) is a compound having two or more polymerizable groups in the molecule.

Description

被膜、それによるコーティング方法及びそれによりコーティングされてなる物品Coating, coating method thereby, and article coated thereby
 本発明は、被膜、特に超撥水性及び超撥油性(以下、総称して「超撥液性」ということがある。)を表面に付与できる被膜に関し、さらに、その被膜によるコーティング方法及びそれによりコーティングされてなる物品にも関する。 The present invention relates to a coating, particularly a coating capable of imparting super-water repellency and super-oil repellency (hereinafter, collectively referred to as “super-liquid repellency”) to a surface, and further, a coating method using the coating and thereby It also relates to coated articles.
 超撥液性を対象物の表面に付与しうる被膜(以下、「超撥液性被膜」ということがある。)が種々提案されている。 Various coatings capable of imparting super liquid repellency to the surface of an object (hereinafter sometimes referred to as “super liquid repellent coating”) have been proposed.
 例えば、シリカ微粒子等を含む硬化塗膜を形成した被処理面に、フルオロアルキルシラン化合物を化学的に結合させることにより超撥液性を付与する方法が提案されている(特許文献1)。 For example, there has been proposed a method of imparting super liquid repellency by chemically bonding a fluoroalkylsilane compound to a surface to be treated on which a cured coating film containing silica fine particles or the like is formed (Patent Document 1).
 アルコキシシラン、パーフルオロアルキルシラン及びシリカ微粒子を混合した状態でアルコキシシランを加水分解させて被膜を形成する方法も提案されている(特許文献2)。 A method of forming a film by hydrolyzing alkoxysilane in a mixed state of alkoxysilane, perfluoroalkylsilane and silica fine particles has also been proposed (Patent Document 2).
 また、ラジカル重合性基を表面に有する微粒子及びフッ素含有モノマーを共重合することにより得られる被膜が提案されている(非特許文献1)。 In addition, a coating obtained by copolymerizing fine particles having radical polymerizable groups on the surface and a fluorine-containing monomer has been proposed (Non-patent Document 1).
特開2001-131318号公報JP 2001-131318 A 特開2010-89373号公報JP 2010-89373 A
 本発明者らは、従来の超撥液性被膜は、耐摩耗性が十分でないという問題があることを見出した。本発明はこの新たな課題を解決することを目的とするものである。特に、本発明は、本来の性能である超撥液性と、耐摩耗性とを両立する超撥液性被膜を提供することを課題とする。 The present inventors have found that the conventional super-liquid-repellent coating has a problem that the abrasion resistance is not sufficient. The present invention aims to solve this new problem. In particular, an object of the present invention is to provide a super-liquid-repellent film that achieves both super-liquid repellency, which is the original performance, and wear resistance.
 本発明者らは鋭意研究を重ね、少なくとも重合性基を有する微粒子及び分子内に2つ以上の重合性基を有する化合物(ただし、少なくともいずれかがフルオロアルキル基を有する)に基づく構成単位をそれぞれ有する重合体を被膜として用いることにより、上記課題を解決できることを見出した。フルオロアルキル基により強力な撥液性が得られるとともに、分子内に2つ以上のラジカル重合性基を有する化合物を用いて共重合を行うことにより重合体が特有の構造を有するものとなることが優れた耐摩耗性の獲得につながっているとみられる。本発明は、さらなる試行錯誤を重ねることにより完成されたものであり、以下の実施態様を含む。
項1.
(1)重合性基を有する、少なくとも一種の微粒子;及び
(2)重合性基を有する、少なくとも一種の化合物
に基づく構成単位をそれぞれ有する重合体を含有する被膜であって、
前記微粒子(1)の少なくとも一種、及び/又は前記化合物(2)の少なくとも一種が、フルオロアルキル基を有するものであり、かつ
前記化合物(2)の少なくとも一種が、分子内に2つ以上の重合性基を有する化合物である、被膜。
項2. 
前記重合体が、前記微粒子(1)及び前記化合物(2)を、
同時に重合するか、又は
少なくとも二段階に分けて
逐次的に重合する
ことにより得られうる重合体である、
項1に記載の被膜。
項3.
前記重合体が、分子内に2つ以上の重合性基を有する前記化合物(2)の少なくとも一種を、二段階目以降に重合させることにより得られうる重合体である、項2に記載の被膜。
項4.
前記重合性基が、同一又は異なって、ビニル基、(メタ)アクリル基、スチリル基又はマレイミド基である、項1~3のいずれか一項に記載の被膜。
項5.
前記化合物(2)の少なくとも一種が、下記一般式(1):
The inventors of the present invention have made extensive studies, and at least a structural unit based on a fine particle having a polymerizable group and a compound having two or more polymerizable groups in the molecule (however, at least one of them has a fluoroalkyl group). It has been found that the above-described problems can be solved by using the polymer having the coating as a coating. The fluoroalkyl group provides strong liquid repellency, and the copolymer may have a specific structure by copolymerization using a compound having two or more radical polymerizable groups in the molecule. It seems to have led to the acquisition of excellent wear resistance. The present invention has been completed by further trial and error, and includes the following embodiments.
Item 1.
(1) at least one kind of fine particles having a polymerizable group; and (2) a film containing a polymer each having a polymerizable group and a structural unit based on at least one compound,
At least one of the fine particles (1) and / or at least one of the compounds (2) has a fluoroalkyl group, and at least one of the compounds (2) has two or more polymerizations in the molecule. A film, which is a compound having a functional group.
Item 2.
The polymer contains the fine particles (1) and the compound (2).
It is a polymer that can be obtained by polymerizing at the same time or sequentially polymerizing in at least two stages.
Item 12. The coating according to Item 1.
Item 3.
Item 3. The coating according to Item 2, wherein the polymer is a polymer that can be obtained by polymerizing at least one of the compounds (2) having two or more polymerizable groups in the molecule in the second and subsequent stages. .
Item 4.
Item 4. The coating according to any one of Items 1 to 3, wherein the polymerizable groups are the same or different and are a vinyl group, a (meth) acryl group, a styryl group, or a maleimide group.
Item 5.
At least one of the compounds (2) is represented by the following general formula (1):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、Xは、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、CFX基(但し、XおよびXは、同一又は異なって、水素原子、フッ素原子又は塩素原子である。)、シアノ基、炭素数1~21の直鎖状若しくは分岐状のフルオロアルキル基、置換若しくは非置換のベンジル基、置換若しくは非置換のフェニル基、又は炭素数1~20の直鎖状または分岐状アルキル基であり、Yは、直接結合、酸素原子を有していてもよい炭素数1~10の炭化水素基、-CHCHN(R)SO-基(但し、Rは炭素数1~4のアルキル基であり、式の右端がRfに、左端がOにそれぞれ結合している。)、-CHCH(OY)CH-基(但し、Yは水素原子またはアセチル基であり、式の右端がRfに、左端がOにそれぞれ結合している。)、又は-(CH)SO-基(nは1~10であり、式の右端がRfに、左端がOにそれぞれ結合している。)であり、Rfは炭素数1~20の直鎖状若しくは分岐状のフルオロアルキル基、又は分子量400~5,000のフルオロポリエーテル基である。)で表される化合物である、項1~4のいずれか一項に記載の被膜。
項6.
分子内に2つ以上の重合性基を有する前記化合物(2)が、下記一般式(2):
(In the formula, X represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a CFX 1 X 2 group (where X 1 and X 2 are the same or different and represent a hydrogen atom, a fluorine atom or a chlorine atom) A cyano group, a linear or branched fluoroalkyl group having 1 to 21 carbon atoms, a substituted or unsubstituted benzyl group, a substituted or unsubstituted phenyl group, or a straight chain having 1 to 20 carbon atoms Or Y is a direct bond, a hydrocarbon group having 1 to 10 carbon atoms which may have an oxygen atom, a —CH 2 CH 2 N (R 1 ) SO 2 — group (provided that , R 1 is an alkyl group having 1 to 4 carbon atoms, and the right end of the formula is bonded to Rf and the left end is bonded to O.), —CH 2 CH (OY 1 ) CH 2 — group (provided that Y 1 is a hydrogen atom or an acetyl group, the right end of the formula is R In, attached respectively left end to O), or -. (CH 2) n SO 2 - group (n is 1 to 10, the right end of the formula is Rf, the left end is attached respectively to the O And Rf is a linear or branched fluoroalkyl group having 1 to 20 carbon atoms, or a fluoropolyether group having a molecular weight of 400 to 5,000). The coating according to any one of 1 to 4.
Item 6.
The compound (2) having two or more polymerizable groups in the molecule is represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、Xは、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、CFX基(但し、XおよびXは、同一又は異なって、水素原子、フッ素原子又は塩素原子である。)、シアノ基、炭素数1~21の直鎖状若しくは分岐状のフルオロアルキル基、置換若しくは非置換のベンジル基、置換若しくは非置換のフェニル基、又は炭素数1~20の直鎖状または分岐状アルキル基であり、Yは、直接結合、酸素原子を有していてもよい炭素数1~10の炭化水素基、-CHCHN(R)SO-基(但し、Rは炭素数1~4のアルキル基であり、式の右端がZに、左端がOにそれぞれ結合している。)、-CHCH(OY)CH-基(但し、Yは水素原子またはアセチル基であり、式の右端がZに、左端がOにそれぞれ結合している。)、又は-(CH)SO-基(nは1~10であり、式の右端がZに、左端がOにそれぞれ結合している。)であり、Zは酸素原子及び/又はフッ素原子を有していてもよい炭化水素から水素原子をそれぞれm+1個除いた残基、又は炭素原子若しくは酸素原子であり、Zは酸素原子及び/又はフッ素原子を有していてもよい炭化水素から水素原子をn個除いた残基、又は炭素原子若しくは酸素原子であり、mは1~3の整数であり、nは1~4の整数であり、かつmとnを乗じた数が2以上である。)で表される化合物である、項1~5のいずれか一項に記載の被膜。
項7.
製膜時の水の静的接触角が150°以上、n-ヘキサデカンの静的接触角が90°以上である、項1~6のいずれか一項に記載の被膜。
項8.
製膜時の水の転落角が10°以下である、項1~7のいずれか一項に記載の被膜。
項9.
項1~8のいずれかに記載の被膜に被処理物を接触させる工程を含む、コーティング方法。
項10.
項1~8のいずれか一項の被膜でコーティングするために用いられる、前記微粒子(1)を含有する組成物。
項11.
項1~8のいずれか一項の被膜でコーティングするために用いられる、前記化合物(2)を含有する組成物。
項12.
(A)重合性基を表面に有する、少なくとも一種の微粒子;及び
(B)分子内に2つ以上の重合性基を有する、少なくとも一種の化合物
を含有するコーティング用組成物。
項13.
(1)重合性基を表面に有する、少なくとも一種の微粒子;及び
(2)重合性基を有する、少なくとも一種の化合物
に基づく構成単位をそれぞれ有する重合体を含有する、コーティング用組成物。
項14.
項10~13のいずれか一項に記載のコーティング用組成物であって、その組成物を基材に塗布した際の塗布表面の水に対する静的接触角が150°以上、かつn-ヘキサデカンの静的接触角が90°以上である、コーティング用組成物。
項15.
項10~14のいずれか一項に記載のコーティング用組成物であって、その組成物を基材に塗布した際の塗布表面の水に対する転落角が10°以下である、コーティング用組成物。
(In the formula, X represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a CFX 1 X 2 group (where X 1 and X 2 are the same or different and represent a hydrogen atom, a fluorine atom or a chlorine atom) A cyano group, a linear or branched fluoroalkyl group having 1 to 21 carbon atoms, a substituted or unsubstituted benzyl group, a substituted or unsubstituted phenyl group, or a straight chain having 1 to 20 carbon atoms Or Y is a direct bond, a hydrocarbon group having 1 to 10 carbon atoms which may have an oxygen atom, a —CH 2 CH 2 N (R 1 ) SO 2 — group (provided that , R 1 is an alkyl group having 1 to 4 carbon atoms, and the right end of the formula is bonded to Z 1 and the left end to O.), —CH 2 CH (OY 1 ) CH 2 — group (provided that Y 1 is a hydrogen atom or an acetyl group, and the right end of the formula is Z 1 and the left end is bonded to O.) or — (CH 2 ) n SO 2 — group (n is 1 to 10, the right end of the formula is bonded to Z 1 and the left end is bonded to O. Z 1 is a residue obtained by removing m + 1 hydrogen atoms from a hydrocarbon optionally having an oxygen atom and / or a fluorine atom, or a carbon atom or an oxygen atom, and Z 2 is A residue obtained by removing n hydrogen atoms from a hydrocarbon optionally having an oxygen atom and / or a fluorine atom, or a carbon atom or an oxygen atom, m is an integer of 1 to 3, and n is 1 to Item 6. The film according to any one of Items 1 to 5, wherein the film is a compound represented by an integer of 4 and a number obtained by multiplying m and n is 2 or more.
Item 7.
Item 7. The coating according to any one of Items 1 to 6, wherein the water has a static contact angle of 150 ° or more and n-hexadecane has a static contact angle of 90 ° or more.
Item 8.
Item 8. The coating according to any one of Items 1 to 7, wherein the falling angle of water during film formation is 10 ° or less.
Item 9.
Item 9. A coating method comprising a step of bringing an object to be treated into contact with the film according to any one of Items 1 to 8.
Item 10.
Item 9. A composition containing the fine particles (1), which is used for coating with the film according to any one of Items 1 to 8.
Item 11.
Item 9. A composition containing the compound (2), which is used for coating with the film according to any one of Items 1 to 8.
Item 12.
A coating composition comprising (A) at least one fine particle having a polymerizable group on the surface; and (B) at least one compound having two or more polymerizable groups in the molecule.
Item 13.
A coating composition comprising (1) at least one fine particle having a polymerizable group on the surface; and (2) a polymer having a polymerizable group and a structural unit based on at least one compound.
Item 14.
Item 14. The coating composition according to any one of Items 10 to 13, wherein when the composition is applied to a substrate, the static contact angle with respect to water on the coating surface is 150 ° or more, and n-hexadecane is used. A coating composition having a static contact angle of 90 ° or more.
Item 15.
Item 15. The coating composition according to any one of Items 10 to 14, wherein a falling angle with respect to water of an application surface when the composition is applied to a substrate is 10 ° or less.
 本発明によれば、優れた撥液性及び耐摩耗性を備える被膜を提供できる。従来の超撥液性被膜では、耐摩耗性が求められる物品の表面に適用することができなかったが、本発明を利用することにより耐摩耗性が求められる物品についてまで適用範囲を拡張できる。 According to the present invention, a coating film having excellent liquid repellency and wear resistance can be provided. Conventional super-liquid-repellent coatings could not be applied to the surface of articles that require wear resistance, but the scope of application can be extended to articles that require wear resistance by using the present invention.
試験例13~17のラビング試験の結果を示すグラフである。18 is a graph showing the results of rubbing tests of Test Examples 13 to 17.
 本発明において「フルオロアルキル基」は、少なくとも一個の水素原子がフッ素原子で置換されたアルキル基を意味し、特に使い分けられていない限り、フルオロポリエーテル基も包含する。
1.被膜
1.1 重合性基を表面に有する微粒子
 本発明で用いる重合性基を表面に有する微粒子としては、特に限定されないが、例えば、シリカ微粒子、金属酸化物微粒子、カーボンブラック、フラーレン及びカーボンナノチューブ等を用いることができ、またその重合性基は微粒子表面に存在していることが望ましい。
In the present invention, the “fluoroalkyl group” means an alkyl group in which at least one hydrogen atom is substituted with a fluorine atom, and includes a fluoropolyether group unless otherwise specifically used.
1. Coating 1.1: Fine Particles Having Polymerizable Groups on the Surface The fine particles having polymerizable groups on the surface used in the present invention are not particularly limited, and examples thereof include silica fine particles, metal oxide fine particles, carbon black, fullerene, and carbon nanotubes. It is desirable that the polymerizable group be present on the surface of the fine particles.
 この微粒子のサイズは、DIN 53206で定義される一次分散時の平均粒子径が好ましくは0.5nm~1000nmであり、好ましくは1nm~100nmであり、さらに好ましくは5nm~70nmである。この範囲内の粒子径では超撥液状態を付与するために必要な表面の粗さを得やすい。平均粒子径が0.5nm以上の微粒子から構築される表面の粗さは平滑平面の粗さとの比率が高くなることが予想される。また、1000nm以下の平均粒子径から構築される表面の粗さは、液滴の径と比較し表面形状と呼ぶべきほどの大きな凹凸とはならない可能性が高い。 The size of the fine particles is preferably 0.5 nm to 1000 nm, preferably 1 nm to 100 nm, more preferably 5 nm to 70 nm, as the average particle size at the time of primary dispersion defined by DIN 53206. When the particle diameter is within this range, it is easy to obtain the surface roughness necessary for imparting a super-repellent state. It is expected that the ratio of the roughness of the surface constructed from fine particles having an average particle diameter of 0.5 nm or more to the roughness of the smooth plane will be high. In addition, it is highly possible that the roughness of the surface constructed from an average particle diameter of 1000 nm or less does not become a large unevenness that should be called a surface shape as compared with the diameter of a droplet.
 微粒子の一次分散時の平均粒子径の測定は、透過型電子顕微鏡又は走査型電子顕微鏡を用いて実施することができる。より具体的には、平均粒子径は、透過型電子顕微鏡又は走査型電子顕微鏡で撮影し、その写真上で200個以上の粒子の直径を測定し、その算術平均値を算出することによって求めることができる。また、用いる粒子の一次分散時の平均粒子径の他に、DIN 53206で定義される2次凝集をはじめとする高次凝集状態も撥液性に与えることがある。この高次凝集体がある割合で存在する方が、擬似フラクタル状態を構築しやすいため表面粗さがより粗くなることで撥液性が高まる。乾燥紛体状態では高次凝集状態の割合は見かけ密度に現れる。ここでは、見かけ密度は0.2gの紛体を10mlのメスシリンダーに投入した際の体積を計測し、求めた密度とする。この見かけ密度は好ましくは0.01~0.5g/cmであり、より好ましくは0.015~0.3g/cmであり、さらに好ましくは0.02~0.05g/cmである。 Measurement of the average particle size during primary dispersion of the fine particles can be performed using a transmission electron microscope or a scanning electron microscope. More specifically, the average particle diameter is obtained by photographing with a transmission electron microscope or a scanning electron microscope, measuring the diameter of 200 or more particles on the photograph, and calculating the arithmetic average value thereof. Can do. In addition to the average particle size at the time of primary dispersion of the particles to be used, higher-order aggregation states such as secondary aggregation defined by DIN 53206 may be imparted to the liquid repellency. If this higher-order aggregate is present at a certain ratio, it is easier to construct a pseudo-fractal state, so that the surface roughness becomes more rough, thereby improving the liquid repellency. In the dry powder state, the ratio of the higher-order aggregation state appears in the apparent density. Here, the apparent density is obtained by measuring the volume when 0.2 g of powder is put into a 10 ml measuring cylinder. The apparent density is preferably 0.01 ~ 0.5g / cm 3, more preferably 0.015 ~ 0.3g / cm 3, even more preferably at 0.02 ~ 0.05g / cm 3 .
 重合性基は、特に限定されないが、例えば、ラジカル重合性基、カチオン重合性基及びアニオン重合性基等が挙げられる。特に、ラジカル重合性基が汎用性や反応性の点で好ましい。 The polymerizable group is not particularly limited, and examples thereof include a radical polymerizable group, a cationic polymerizable group, and an anion polymerizable group. In particular, a radical polymerizable group is preferable in terms of versatility and reactivity.
 ラジカル重合性基は、特に限定されないが、例えば、ビニル基、(メタ)アクリル基、スチリル基及びマレイミド基等が挙げられる。 The radical polymerizable group is not particularly limited, and examples thereof include a vinyl group, a (meth) acryl group, a styryl group, and a maleimide group.
 ラジカル重合性基としては、(メタ)アクリル基及びスチリル基等が汎用性や反応性の点で好ましい。 As the radical polymerizable group, a (meth) acryl group and a styryl group are preferable in view of versatility and reactivity.
 重合性基が微粒子表面に結合している様式は、特に限定されず、例えば、共有結合、配位結合、イオン結合、水素結合及びファンデルワールス力による結合等が挙げられる。 The manner in which the polymerizable group is bonded to the surface of the fine particle is not particularly limited, and examples thereof include a covalent bond, a coordinate bond, an ionic bond, a hydrogen bond, and a bond by van der Waals force.
 重合性基を有する微粒子を作製する方法は特に限定されないが、一般的には重合性基および粒子表面と反応性を示す部位を有する化合物を微粒子に反応させることで得られる。粒子表面と反応性を示す部位は微粒子表面の状態によって適宜選択できる。一般的には、シランカップリングを用いて反応させる。また、微粒子上に化合物を化学結合させる場合は反応させる化合物の数を選定することが難しく、一般的には反応後、微粒子の表面には複数の化合物が化学結合された状態で存在する。 The method for producing the fine particles having a polymerizable group is not particularly limited, but it is generally obtained by reacting a compound having a polymerizable group and a site reactive with the particle surface with the fine particles. The site showing reactivity with the particle surface can be appropriately selected depending on the state of the particle surface. In general, the reaction is performed using silane coupling. In addition, when a compound is chemically bonded to the fine particles, it is difficult to select the number of compounds to be reacted. Generally, after the reaction, a plurality of compounds exist in a chemically bonded state on the surface of the fine particles.
 本発明の被膜は、上記微粒子を、少なくとも一種用いて後述の重合反応を行うことにより得られうるものである。 The coating film of the present invention can be obtained by performing a polymerization reaction described later using at least one of the above fine particles.
 上記微粒子は、少なくとも一種が、フルオロアルキル基を有していてもよく、この場合、そのような微粒子に基づく構成単位を有していることにより、本発明の被膜は優れた撥液性を発揮することができる。上記において、フルオロアルキル基としては、パーフルオロアルキル基が撥液性の点で好ましい。 At least one kind of the fine particles may have a fluoroalkyl group. In this case, the coating film of the present invention exhibits excellent liquid repellency by having a structural unit based on such fine particles. can do. In the above, as the fluoroalkyl group, a perfluoroalkyl group is preferable from the viewpoint of liquid repellency.
 上記微粒子は、一種単独又は二種以上混合して用いることができる。
1.2 重合性基を有する化合物
 本発明で用いる、重合性基を有する化合物は、一種又は二種以上であってもよいが、少なくとも一種は、分子内に2つ以上の重合性基を有する化合物である。
1.2.1 分子内に2つ以上の重合性基を有する化合物
 分子内に2つ以上の重合性基を有する化合物(多官能重合性化合物ともいう)としては、特に限定されないが、耐摩耗性の点で、分子内に2~8つの重合性基を有するものであれば好ましく、3~6つの重合性基を有するものであればより好ましく、3つの重合性基を有するものであればさらに好ましい。
The fine particles can be used singly or in combination of two or more.
1.2 Compound having a polymerizable group The compound having a polymerizable group used in the present invention may be one kind or two or more kinds, but at least one kind has two or more polymerizable groups in the molecule. A compound.
1.2.1 Compound having two or more polymerizable groups in the molecule The compound having two or more polymerizable groups in the molecule (also referred to as a polyfunctional polymerizable compound) is not particularly limited, but wear resistance From the viewpoint of safety, those having 2 to 8 polymerizable groups in the molecule are preferable, those having 3 to 6 polymerizable groups are more preferable, and those having 3 polymerizable groups are more preferable. Further preferred.
 重合性基は、特に限定されないが、例えば、ラジカル重合性基、カチオン重合性基、アニオン重合性基等が挙げられる。特に、ラジカル重合性基が汎用性や反応性の点で好ましい。 The polymerizable group is not particularly limited, and examples thereof include a radical polymerizable group, a cationic polymerizable group, and an anion polymerizable group. In particular, a radical polymerizable group is preferable in terms of versatility and reactivity.
 ラジカル重合性基は、特に限定されないが、例えば、ビニル基、(メタ)アクリル基、スチリル基及びマレイミド基等が挙げられる。 The radical polymerizable group is not particularly limited, and examples thereof include a vinyl group, a (meth) acryl group, a styryl group, and a maleimide group.
 ラジカル重合性基としては、(メタ)アクリル基及びスチリル基等が汎用性や反応性の点で好ましい。 As the radical polymerizable group, a (meth) acryl group and a styryl group are preferable in view of versatility and reactivity.
 多官能ラジカル重合性化合物としては、特に限定されないが、下記一般式(2)で表されるものも挙げられる。 Although it does not specifically limit as a polyfunctional radically polymerizable compound, What is represented by following General formula (2) is also mentioned.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、Xは、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、CFX基(但し、XおよびXは、同一又は異なって、水素原子、フッ素原子又は塩素原子である。)、シアノ基、炭素数1~21の直鎖状若しくは分岐状のフルオロアルキル基、置換若しくは非置換のベンジル基、置換若しくは非置換のフェニル基、又は炭素数1~20の直鎖状または分岐状アルキル基であり、Yは、直接結合、酸素原子を有していてもよい炭素数1~10の炭化水素基、-CHCHN(R)SO-基(但し、Rは炭素数1~4のアルキル基であり、式の右端がZに、左端がOにそれぞれ結合している。)、-CHCH(OY)CH-基(但し、Yは水素原子またはアセチル基であり、式の右端がZに、左端がOにそれぞれ結合している。)、又は-(CH)SO-基(nは1~10であり、式の右端がZに、左端がOにそれぞれ結合している。)であり、Zは酸素原子及び/又はフッ素原子を有していてもよい炭化水素から水素原子をそれぞれm+1個除いた残基、又は炭素原子若しくは酸素原子であり、Zは酸素原子及び/又はフッ素原子を有していてもよい炭化水素から水素原子をn個除いた残基、又は炭素原子若しくは酸素原子であり、mは1~3の整数であり、nは1~4の整数であり、かつmとnを乗じた数が2以上である。)
 上記一般式(2)において、炭化水素は、環状又は非環状のいずれであってもよく、また直鎖状又は分岐状のいずれであってもよい。特に限定されないが、上記一般式(2)において、炭化水素は、好ましくは炭素数1~10であり、より好ましくは炭素数1~6であり、さらに好ましくは炭素数1~2である。
(In the formula, X represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a CFX 1 X 2 group (where X 1 and X 2 are the same or different and represent a hydrogen atom, a fluorine atom or a chlorine atom) A cyano group, a linear or branched fluoroalkyl group having 1 to 21 carbon atoms, a substituted or unsubstituted benzyl group, a substituted or unsubstituted phenyl group, or a straight chain having 1 to 20 carbon atoms Or Y is a direct bond, a hydrocarbon group having 1 to 10 carbon atoms which may have an oxygen atom, a —CH 2 CH 2 N (R 1 ) SO 2 — group (provided that , R 1 is an alkyl group having 1 to 4 carbon atoms, and the right end of the formula is bonded to Z 1 and the left end to O.), —CH 2 CH (OY 1 ) CH 2 — group (provided that Y 1 is a hydrogen atom or an acetyl group, and the right end of the formula is Z 1 and the left end is bonded to O.) or — (CH 2 ) n SO 2 — group (n is 1 to 10, the right end of the formula is bonded to Z 1 and the left end is bonded to O. Z 1 is a residue obtained by removing m + 1 hydrogen atoms from a hydrocarbon optionally having an oxygen atom and / or a fluorine atom, or a carbon atom or an oxygen atom, and Z 2 is A residue obtained by removing n hydrogen atoms from a hydrocarbon optionally having an oxygen atom and / or a fluorine atom, or a carbon atom or an oxygen atom, m is an integer of 1 to 3, and n is 1 to (It is an integer of 4 and the number obtained by multiplying m and n is 2 or more.)
In the general formula (2), the hydrocarbon may be cyclic or non-cyclic, and may be either linear or branched. Although not particularly limited, in the general formula (2), the hydrocarbon preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 2 carbon atoms.
 上記した一般式(2)で表されるアクリル酸エステルの具体例は、次の通りである。 Specific examples of the acrylate ester represented by the general formula (2) are as follows.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 多官能重合性化合物は、フルオロアルキル基を有していてもよい。特に限定されないが、具体例として、上記一般式(2)において、Z及び/又はZがフルオロアルキル基であるもの等が挙げられる。 The polyfunctional polymerizable compound may have a fluoroalkyl group. It is not particularly limited, specific examples, in the general formula (2), and the like that Z 1 and / or Z 2 is a fluoroalkyl group.
 理論に束縛されないが、本発明の被膜は、前記重合性基を表面に有する微粒子と前記多官能重合性化合物とを用いて共重合を行うことにより得られうる構造的特徴を有しており、このことが優れた耐摩耗性の獲得につながっているとみられる。 Without being bound by theory, the coating of the present invention has structural features that can be obtained by copolymerization using fine particles having the polymerizable group on the surface and the polyfunctional polymerizable compound, This seems to have led to the acquisition of excellent wear resistance.
 多官能重合性化合物の、重合性基を表面に有する微粒子に対する比率は、特に限定されず、本発明の効果が損なわれない範囲内において適宜調整できる。特に限定されないが、例えば、上記微粒子100重量部に対して、5~1000重量部、好ましくは10~750重量部、より好ましくは20~500重量部とすることができる。 The ratio of the polyfunctional polymerizable compound to the fine particles having a polymerizable group on the surface is not particularly limited, and can be appropriately adjusted within a range where the effects of the present invention are not impaired. Although not particularly limited, for example, it can be 5 to 1000 parts by weight, preferably 10 to 750 parts by weight, and more preferably 20 to 500 parts by weight with respect to 100 parts by weight of the fine particles.
 上記多官能重合性化合物は、一種単独又は二種以上混合して用いることができる。
1.2.2 分子内に1つの重合性基を有する化合物
 本発明の被膜を得るにあたって、重合性基を表面に有する微粒子及び多官能重合性化合物に加えて、分子内に1つの重合性基を有する、少なくとも一種の化合物(単官能重合性化合物ともいう)をさらに共重合してもよい。
The said polyfunctional polymerizable compound can be used individually by 1 type or in mixture of 2 or more types.
1.2.2 Compound having one polymerizable group in the molecule In order to obtain the coating film of the present invention, in addition to the fine particles having a polymerizable group on the surface and the polyfunctional polymerizable compound, one polymerizable group in the molecule. You may further copolymerize at least 1 type compound (it is also called a monofunctional polymerizable compound) which has these.
 重合性基は、特に限定されないが、例えば、ラジカル重合性基、カチオン重合性基、アニオン重合性基等が挙げられる。特に、ラジカル重合性基が汎用性や反応性の点で好ましい。 The polymerizable group is not particularly limited, and examples thereof include a radical polymerizable group, a cationic polymerizable group, and an anion polymerizable group. In particular, a radical polymerizable group is preferable in terms of versatility and reactivity.
 ラジカル重合性基は、特に限定されないが、例えば、ビニル基、(メタ)アクリル基、スチリル基及びマレイミド基等が挙げられる。 The radical polymerizable group is not particularly limited, and examples thereof include a vinyl group, a (meth) acryl group, a styryl group, and a maleimide group.
 ラジカル重合性基としては、(メタ)アクリル基及びスチリル基等が汎用性や反応性の点で好ましい。 As the radical polymerizable group, a (meth) acryl group and a styryl group are preferable in view of versatility and reactivity.
 単官能ラジカル重合性化合物としては、特に限定されないが、例えば、下記一般式(6)で表されるものが挙げられる。 Although it does not specifically limit as a monofunctional radically polymerizable compound, For example, what is represented by following General formula (6) is mentioned.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、Xは、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、CFX基(但し、XおよびXは、同一又は異なって、水素原子、フッ素原子又は塩素原子である。)、シアノ基、炭素数1~21の直鎖状若しくは分岐状のフルオロアルキル基、置換若しくは非置換のベンジル基、置換若しくは非置換のフェニル基、又は炭素数1~20の直鎖状または分岐状アルキル基であり、Yは、直接結合、酸素原子を有していてもよい炭素数1~10の炭化水素基、-CHCHN(R)SO-基(但し、Rは炭素数1~4のアルキル基であり、式の右端がRに、左端がOにそれぞれ結合している。)、-CHCH(OY)CH-基(但し、Yは水素原子またはアセチル基であり、式の右端がRに、左端がOにそれぞれ結合している。)、又は-(CH)SO-基(nは1~10であり、式の右端がRに、左端がOにそれぞれ結合している。)であり、Rは酸素原子及び/又はフッ素原子を有していてもよい炭化水素基である。)
 上記一般式(6)において、炭化水素基は、環状又は非環状のいずれであってもよく、また直鎖状又は分岐状のいずれであってもよい。特に限定されないが、上記一般式(4)において、炭化水素基は、好ましくは炭素数1~10であり、より好ましくは炭素数1~6であり、さらに好ましくは炭素数1~2である。
(In the formula, X represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a CFX 1 X 2 group (where X 1 and X 2 are the same or different and represent a hydrogen atom, a fluorine atom or a chlorine atom) A cyano group, a linear or branched fluoroalkyl group having 1 to 21 carbon atoms, a substituted or unsubstituted benzyl group, a substituted or unsubstituted phenyl group, or a straight chain having 1 to 20 carbon atoms Or Y is a direct bond, a hydrocarbon group having 1 to 10 carbon atoms which may have an oxygen atom, a —CH 2 CH 2 N (R 1 ) SO 2 — group (provided that , R 1 is an alkyl group having 1 to 4 carbon atoms, and the right end of the formula is bonded to R and the left end is bonded to O.), —CH 2 CH (OY 1 ) CH 2 — group (provided that Y 1 is a hydrogen atom or an acetyl group, the right end of the formula is in the R . The left end is attached respectively to O), or - (CH 2) n SO 2 - group (n is 1 to 10, the right end of the formula is R, the left end is attached respectively to O). And R is a hydrocarbon group optionally having an oxygen atom and / or a fluorine atom.)
In the general formula (6), the hydrocarbon group may be cyclic or non-cyclic, and may be linear or branched. Although not particularly limited, in the general formula (4), the hydrocarbon group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 2 carbon atoms.
 単官能ラジカル重合性化合物は、フルオロアルキル基を有していてもよい。例えば、単官能ラジカル重合性化合物は、特に限定されないが、カルボキシル基に対して直接又は2価の有機基を介してエステル結合したフルオロアルキル基を有し、α位に置換基を有することのある含フッ素アクリル酸エステル等が挙げられる。より具体的には、特に限定されないが、例えば、下記一般式(1)で表されるもの等が挙げられる。 The monofunctional radically polymerizable compound may have a fluoroalkyl group. For example, the monofunctional radically polymerizable compound is not particularly limited, but may have a fluoroalkyl group ester-bonded directly or via a divalent organic group to the carboxyl group and may have a substituent at the α-position. Fluorine-containing acrylic acid ester etc. are mentioned. More specifically, it is not particularly limited, but examples thereof include those represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、Xは、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、CFX基(但し、XおよびXは、同一又は異なって、水素原子、フッ素原子又は塩素原子である。)、シアノ基、炭素数1~21の直鎖状若しくは分岐状のフルオロアルキル基、置換若しくは非置換のベンジル基、置換若しくは非置換のフェニル基、又は炭素数1~20の直鎖状または分岐状アルキル基であり、Yは、直接結合、酸素原子を有していてもよい炭素数1~10の炭化水素基、-CHCHN(R)SO-基(但し、Rは炭素数1~4のアルキル基であり、式の右端がRfに、左端がOにそれぞれ結合している。)、-CHCH(OY)CH-基(但し、Yは水素原子またはアセチル基であり、式の右端がRfに、左端がOにそれぞれ結合している。)、又は-(CH)SO-基(nは1~10であり、式の右端がRfに、左端がOにそれぞれ結合している。)であり、Rfは炭素数1~20の直鎖状若しくは分岐状のフルオロアルキル基、又は分子量400~5,000のフルオロポリエーテル基である。)
 上記一般式(1)において、炭化水素基は、環状又は非環状のいずれであってもよく、また直鎖状又は分岐状のいずれであってもよい。特に限定されないが、上記一般式(1)において、炭化水素基は、好ましくは1~6であり、より好ましくは炭素数1~2である。
(In the formula, X represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a CFX 1 X 2 group (where X 1 and X 2 are the same or different and represent a hydrogen atom, a fluorine atom or a chlorine atom) A cyano group, a linear or branched fluoroalkyl group having 1 to 21 carbon atoms, a substituted or unsubstituted benzyl group, a substituted or unsubstituted phenyl group, or a straight chain having 1 to 20 carbon atoms Or Y is a direct bond, a hydrocarbon group having 1 to 10 carbon atoms which may have an oxygen atom, a —CH 2 CH 2 N (R 1 ) SO 2 — group (provided that , R 1 is an alkyl group having 1 to 4 carbon atoms, and the right end of the formula is bonded to Rf and the left end is bonded to O.), —CH 2 CH (OY 1 ) CH 2 — group (provided that Y 1 is a hydrogen atom or an acetyl group, the right end of the formula is R In, attached respectively left end to O), or -. (CH 2) n SO 2 - group (n is 1 to 10, the right end of the formula is Rf, the left end is attached respectively to the O Rf is a linear or branched fluoroalkyl group having 1 to 20 carbon atoms or a fluoropolyether group having a molecular weight of 400 to 5,000.)
In the general formula (1), the hydrocarbon group may be cyclic or non-cyclic, and may be either linear or branched. Although not particularly limited, in the general formula (1), the hydrocarbon group preferably has 1 to 6 carbon atoms, and more preferably has 1 to 2 carbon atoms.
 上記した一般式(1)で表されるアクリル酸エステルの具体例は、次の通りである。 Specific examples of the acrylic acid ester represented by the above general formula (1) are as follows.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 また、Rfがフルオロポリエーテル基の場合、フルオロポリエーテル基の分子量は400~10,000であり、パーフルオロポリエーテル基が好ましい。特に炭素数が6~8のパーフルオロポリエーテル基が好ましい。具体例を以下に挙げる。 Further, when Rf is a fluoropolyether group, the molecular weight of the fluoropolyether group is 400 to 10,000, and a perfluoropolyether group is preferred. Particularly preferred are perfluoropolyether groups having 6 to 8 carbon atoms. Specific examples are given below.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記した単官能重合性化合物は、一種単独又は二種以上混合して用いることができる。 The above-mentioned monofunctional polymerizable compounds can be used singly or in combination of two or more.
 単官能重合性化合物の、多官能重合性化合物に対する比率は、特に限定されず、本発明の効果が損なわれない範囲内において適宜調整できる。特に限定されないが、例えば、多官能重合性化合物100重量部に対して、5~1,000重量部、好ましくは10~500重量部、より好ましくは20~300重量部とすることができる。 The ratio of the monofunctional polymerizable compound to the polyfunctional polymerizable compound is not particularly limited and can be appropriately adjusted within a range in which the effects of the present invention are not impaired. Although not particularly limited, for example, the amount can be 5 to 1,000 parts by weight, preferably 10 to 500 parts by weight, more preferably 20 to 300 parts by weight with respect to 100 parts by weight of the polyfunctional polymerizable compound.
 重合性基を表面に有する微粒子、多官能重合性化合物、及び単官能重合性化合物の組合せの好ましい態様としては、特に限定されないが、重合性基を表面に有する微粒子、フルオロアルキル基を有さない多官能重合性化合物、及びフルオロアルキル基を有する単官能重合性化合物の組合せが挙げられる。この組合せとすることにより、超撥液性と、耐摩耗性とを両立する超撥液性被膜が得られやすくなる。 A preferred embodiment of a combination of fine particles having a polymerizable group on the surface, a polyfunctional polymerizable compound, and a monofunctional polymerizable compound is not particularly limited, but fine particles having a polymerizable group on the surface and no fluoroalkyl group. A combination of a polyfunctional polymerizable compound and a monofunctional polymerizable compound having a fluoroalkyl group may be mentioned. By using this combination, it becomes easy to obtain a super-repellent coating film that achieves both super-liquid repellency and wear resistance.
 本発明の被膜は、超撥液性を示す。特に限定されないが、好ましい実施態様では、製膜時の水の静的接触角が150°以上、n-ヘキサデカン(以下、n-HDと記載する時がある)の静的接触角が90°以上である。なお、本発明において、水の静的接触角及びn-HDの静的接触角はそれぞれ以下のようにして測定するものとする。装置は、接触角計Drop Master 701を用いて、水、n-HDともに液滴体積2μlとし、1サンプルに対して5点測定をする。静的接触角が150°以上になってくると条件によっては、その液体は自立して基材表面に存在することができなくなる。そのため、そのような場合はシリンジのニードルを支持体として静的接触角を測定し、その時の得られた値を静的接触角とする。 The film of the present invention exhibits super liquid repellency. Although not particularly limited, in a preferred embodiment, the static contact angle of water during film formation is 150 ° or more, and the static contact angle of n-hexadecane (hereinafter sometimes referred to as n-HD) is 90 ° or more. It is. In the present invention, the static contact angle of water and the static contact angle of n-HD are measured as follows. The apparatus uses a contact angle meter Drop Master 701 to make water and n-HD both have a droplet volume of 2 μl and measure 5 points per sample. When the static contact angle becomes 150 ° or more, depending on the conditions, the liquid cannot stand on the surface of the base material. Therefore, in such a case, the static contact angle is measured using the needle of the syringe as a support, and the value obtained at that time is taken as the static contact angle.
 本発明の被膜は、水の転落角が、好ましくは、0°~10°であり、より好ましくは、0°~5°であり、さらに好ましくは0°~3°である。水の転落角は以下のようにして測定するものとする。装置は、接触角計Drop Master 701を用いて、水の液滴体積を20μlとし、1サンプルに対して3点測定をする。また、ここでの転落角0°はニードルから20μlの液滴が水平な基材に静置させることができない、もしくは静置させることはできても測定前もしくは測定時0°から1°の間で水が転落することを意味する。 The water falling angle of the coating of the present invention is preferably 0 ° to 10 °, more preferably 0 ° to 5 °, and still more preferably 0 ° to 3 °. The falling angle of water shall be measured as follows. The apparatus uses a contact angle meter Drop Master 701 to make a water droplet volume of 20 μl and measure three points for one sample. In addition, when the drop angle is 0 °, a 20 μl droplet from the needle cannot be allowed to stand on a horizontal substrate, or can be left still, but before measurement or between 0 ° and 1 ° during measurement. It means that the water falls.
 本発明の被膜は好ましくは、上述の水の転落角の範囲を満足し、尚且つn-HDの転落角が、好ましくは、0°~30°であり、より好ましくは、0°~15°であり、さらに好ましくは0°~5°である。装置は、接触角計Drop Master 701を用いて、HDの液滴体積を20μlとし、1サンプルに対して3点測定をする。また、ここでの転落角0°は測定前もしくは測定時0°から1°の間でHDが転落することを意味する。 The coating film of the present invention preferably satisfies the above-mentioned range of the falling angle of water, and the falling angle of n-HD is preferably 0 ° to 30 °, more preferably 0 ° to 15 °. More preferably, it is 0 ° to 5 °. The apparatus uses a contact angle meter Drop Master 701 to set the HD droplet volume to 20 μl and measure three points for one sample. Further, the fall angle of 0 ° here means that the HD falls before measurement or between 0 ° and 1 ° during measurement.
 なお、被膜作製後に熱処理を施すことによって、撥液性が向上する場合がある。その際の熱処理の温度は特に限定されないが、好ましくは30℃~200℃、より好ましくは40℃~150℃、さらに好ましくは60℃~120℃である。また、熱処理の時間も特に限定はされないが、好ましくは1分~12時間、より好ましくは2分~6時間、さらに好ましくは3分~2時間である。 In addition, liquid repellency may be improved by performing a heat treatment after the coating is produced. The temperature of the heat treatment at that time is not particularly limited, but is preferably 30 ° C. to 200 ° C., more preferably 40 ° C. to 150 ° C., and further preferably 60 ° C. to 120 ° C. Also, the heat treatment time is not particularly limited, but is preferably 1 minute to 12 hours, more preferably 2 minutes to 6 hours, and further preferably 3 minutes to 2 hours.
 2.被膜の製造方法
 本発明の被膜(コート)は、前記微粒子(1)及び前記化合物(2)を:
(i)被処理物上で同時に重合するか、又は
(ii)少なくとも二段階に分けて逐次的に重合する
ことにより得られうる。
2. Method for Producing Film The film (coat) of the present invention comprises the fine particles (1) and the compound (2):
It can be obtained by (i) simultaneously polymerizing on a workpiece or (ii) sequentially polymerizing in at least two stages.
 特に限定されないが、上記(ii)では、二段階に分けて重合することが好ましい。 Although not particularly limited, in the above (ii), it is preferable to polymerize in two stages.
 重合反応は、重合開始剤の存在下、非存在下のいずれにおいても行うことができる。特に限定されないが、例えば、350nm以下の波長領域の電磁波、つまり紫外光線、電子線、X線、γ線等を利用して重合を行うこともできる。 The polymerization reaction can be performed in the presence or absence of a polymerization initiator. Although not particularly limited, for example, polymerization can be performed using electromagnetic waves in a wavelength region of 350 nm or less, that is, ultraviolet rays, electron beams, X-rays, γ rays, and the like.
 特に限定されないが、上記(ii)において、分子内に2つ以上の重合性基を有する前記化合物(2)の少なくとも一種を、二段階目以降に被処理物上で重合させることが好ましい。より好ましくは、分子内に2つ以上の重合性基を有する前記化合物(2)の少なくとも一種を、最後の段階で被処理物上にて重合させることが好ましい。具体的には、前記微粒子(1)、または前記微粒子(1)と分子内に1つの重合性基を有する前記化合物(2)を予め重合させた共重合体に、分子内に2つ以上の重合性基を有する前記化合物(2)を重合させることができる。 Although not particularly limited, in the above (ii), it is preferable to polymerize at least one kind of the compound (2) having two or more polymerizable groups in the molecule on the object to be treated after the second stage. More preferably, at least one of the compounds (2) having two or more polymerizable groups in the molecule is preferably polymerized on the object to be treated in the final stage. Specifically, the fine particles (1) or a copolymer obtained by polymerizing the fine particles (1) and the compound (2) having one polymerizable group in the molecule in advance, have two or more molecules in the molecule. The compound (2) having a polymerizable group can be polymerized.
 上記(i)に関しては前記微粒子(1)及び前記化合物(2)、並びに重合開始剤が均一に分散または溶解するような溶剤を使用することが好ましい。より具体的には、前記微粒子(1)、分子内に2つ以上の重合性基を有する前記化合物(2)および分子内に1つの重合性基を有する前記化合物(2)を溶剤に均一に溶解させる態様や、前記微粒子(1)と分子内に1つの重合性基を有する前記化合物(2)の共重合体とを分散させ、その共重合体と分子内に2つ以上の重合性基を有する前記化合物(2)を溶剤に均一に溶解させた態様が挙げられる。そのような溶剤として、特に限定されないが、例えば、イソプロピルアルコール(以下、IPAと表記することがある)等が挙げられる。この重合方法によって被処理面上で被膜を形成することによって、被処理面をコーティングすることができる。 Regarding (i) above, it is preferable to use a solvent in which the fine particles (1) and the compound (2) and the polymerization initiator are uniformly dispersed or dissolved. More specifically, the fine particles (1), the compound (2) having two or more polymerizable groups in the molecule, and the compound (2) having one polymerizable group in the molecule are uniformly used in a solvent. Dispersing the fine particles (1) and a copolymer of the compound (2) having one polymerizable group in the molecule, and dissolving the copolymer and two or more polymerizable groups in the molecule An embodiment in which the compound (2) having a salt is uniformly dissolved in a solvent is exemplified. Such a solvent is not particularly limited, and examples thereof include isopropyl alcohol (hereinafter sometimes referred to as IPA). The surface to be treated can be coated by forming a film on the surface to be treated by this polymerization method.
 被処理面上で用いる上記重合開始剤は、特に限定されないが、例えば、350nm以下の波長領域の電磁波、つまり紫外光線、電子線、X線、γ線等が照射されることによって初めてラジカルやカチオン等を発生し、含フッ素重合体の炭素-炭素二重結合の硬化(架橋反応)を開始させる触媒として働くものであり、通常、紫外光線でラジカルやカチオンを発生させるもの、特にラジカルを発生するものを使用することが好ましい。例えば次のものが例示できる。また、開始剤を用いず被処理物上で重合させることも可能であり、その際の重合の方法としては、特に限定されないが、例えば、電子線、γ線等を用いて重合する方法等が挙げられる。 The polymerization initiator used on the surface to be treated is not particularly limited. For example, radicals and cations are only obtained by irradiation with electromagnetic waves in a wavelength region of 350 nm or less, that is, ultraviolet rays, electron beams, X rays, γ rays, and the like. That act as a catalyst for initiating the curing (crosslinking reaction) of the carbon-carbon double bond of the fluoropolymer, and usually generating radicals and cations with ultraviolet light, especially generating radicals It is preferable to use one. For example, the following can be illustrated. In addition, it is possible to polymerize on an object to be treated without using an initiator, and the polymerization method at that time is not particularly limited. For example, a method of polymerizing using an electron beam, γ-ray, etc. Can be mentioned.
 アセトフェノン系:アセトフェノン、クロロアセトフェノン、ジエトキシアセトフェノン、ヒドロキシアセトフェノン、α-アミノアセトフェノン、ヒドロキシプロピオフェノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリンプロパン-1-オン等。 Acetophenone series: acetophenone, chloroacetophenone, diethoxyacetophenone, hydroxyacetophenone, α-aminoacetophenone, hydroxypropiophenone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinepropan-1-one, etc.
 ベンゾイン系:ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール等。 Benzoin series: benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyldimethyl ketal, and the like.
 ベンゾフェノン系:ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、ヒドロキシ-プロピルベンゾフェノン、アクリル化ベンゾフェノン、ミヒラーズケトン等。 Benzophenone series: benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, hydroxy-propylbenzophenone, acrylated benzophenone, Michler's ketone, etc.
 チオオキサンソン類:チオキサンソン、クロロチオキサンソン、メチルキサンソン、ジエチルチオキサンソン、ジメチルチオキサンソン等。 Thioxanthones: thioxanthone, chlorothioxanthone, methylxanthone, diethylthioxanthone, dimethylthioxanthone and the like.
 その他:ベンジル、α-アシルオキシムエステル、アシルホスフィンオキサイド、グリオキシエステル、3-ケトクマリン、2-エチルアンスラキノン、カンファーキノン、アンスラキノン等。 Other: benzyl, α-acyl oxime ester, acyl phosphine oxide, glyoxy ester, 3-ketocoumarin, 2-ethylanthraquinone, camphorquinone, anthraquinone, etc.
 なお、上述の光エネルギーによってラジカルを発生させる開始剤以外でも熱エネルギーによってラジカルを発生させる開始剤を用いてもよい。上述の光エネルギーによってラジカルを発生させる重合開始剤の使用量は、特に限定されないが、通常、単量体成分100重量部に対して、0.01~20重量部程度とすることが好ましく、0.1~10重量部程度とすることがより好ましい。 In addition to the above-described initiator that generates radicals by light energy, an initiator that generates radicals by thermal energy may be used. The amount of the polymerization initiator that generates radicals by the above-mentioned light energy is not particularly limited, but it is usually preferably about 0.01 to 20 parts by weight with respect to 100 parts by weight of the monomer component. More preferably, it is about 1 to 10 parts by weight.
 上述の熱エネルギーによってラジカルを発生させる開始剤については、公知の熱ラジカル重合反応用の重合開始剤であれば特に限定なく使用できる。例えば、アゾビスイソブチロニトリル、アゾイソ酪酸メチル、アゾビスジメチルバレロニトリル等のアゾ系開始剤;過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム、ベンゾフェノン誘導体、ホスフィンオキサイド誘導体、ベンゾケトン誘導体、フェニルチオエーテル誘導体、アジド誘導体、ジアゾ誘導体、ジスルフィド誘導体などを用いることができる。これらの重合開始剤は、一種単独又は二種以上混合して用いることができる。 As the initiator for generating radicals by the thermal energy described above, any known polymerization initiator for thermal radical polymerization reaction can be used without particular limitation. For example, azo initiators such as azobisisobutyronitrile, methyl azoisobutyrate, azobisdimethylvaleronitrile; benzoyl peroxide, potassium persulfate, ammonium persulfate, benzophenone derivatives, phosphine oxide derivatives, benzoketone derivatives, phenylthioether derivatives, Azide derivatives, diazo derivatives, disulfide derivatives and the like can be used. These polymerization initiators can be used singly or in combination of two or more.
 (ii)に関しては、重合の順序により適宜設定することができるが、分子内に2つ以上の重合性基を有する前記化合物(2)を二段階目以降で重合させる場合を例にとり、以下に説明する。前記微粒子(1)及び前記化合物(2)をあらかじめ重合する際は、フッ素系溶剤中で上述の熱開始ラジカル開始剤を用いて溶液重合を行うことが好ましい。この方法によれば、形成される含フッ素ポリマーがフッ素系溶剤に対して溶解性が良好であることから、沈殿物が形成されにくく、円滑にラジカル重合反応を進行させることができる。 With regard to (ii), it can be appropriately set depending on the order of polymerization, but the case where the compound (2) having two or more polymerizable groups in the molecule is polymerized in the second and subsequent stages is exemplified below. explain. When the fine particles (1) and the compound (2) are polymerized in advance, it is preferable to perform solution polymerization using the above-described thermally initiated radical initiator in a fluorinated solvent. According to this method, since the formed fluoropolymer has good solubility in a fluorine-based solvent, a precipitate is hardly formed and the radical polymerization reaction can proceed smoothly.
 重合開始剤の使用量は、特に限定されないが、通常、単量体成分100重量部に対して、0.01~10重量部程度とすることが好ましく、3~7重量部程度とすることがより好ましい。 The amount of the polymerization initiator used is not particularly limited, but usually it is preferably about 0.01 to 10 parts by weight and preferably about 3 to 7 parts by weight with respect to 100 parts by weight of the monomer component. More preferred.
 フッ素系溶剤中における含フッ素微粒子及び/又は含フッ素化合物の濃度については特に限定的ではないが、通常、1~15重量%程度とすることが好ましく、2~10重量%程度とすることがより好ましい。 The concentration of the fluorine-containing fine particles and / or fluorine-containing compound in the fluorine-based solvent is not particularly limited, but is usually preferably about 1 to 15% by weight, more preferably about 2 to 10% by weight. preferable.
 重合温度、重合時間などの重合条件は、単量体成分の種類、その使用量、重合開始剤の種類、その使用量などに応じて適宜調整すればよいが、通常、50~100℃程度の温度で4~10時間の重合反応を行えばよい。 The polymerization conditions such as the polymerization temperature and the polymerization time may be appropriately adjusted according to the type of monomer component, the amount used thereof, the type of polymerization initiator, the amount used, etc., but usually about 50 to 100 ° C. The polymerization reaction may be performed at a temperature for 4 to 10 hours.
 その後、分子内に2つ以上の重合性基を有する前記化合物(2)を用いた重合反応を行う際は、上述の光ラジカル開始剤を用い、系中のものを均一に溶解させることができる単一溶媒もしくは混合溶媒系を用いればよい。例えば、フッ素系溶剤/IPA(50/50(w/w))混合溶液、フッ素系溶剤/IPA(75/25(w/w))混合溶液、フッ素系溶剤/IPA(95/5(w/w))混合溶液などが挙げられる。 Then, when performing the polymerization reaction using the compound (2) having two or more polymerizable groups in the molecule, the above-mentioned photoradical initiator can be used to uniformly dissolve the material in the system. A single solvent or a mixed solvent system may be used. For example, fluorinated solvent / IPA (50/50 (w / w)) mixed solution, fluorinated solvent / IPA (75/25 (w / w)) mixed solution, fluorinated solvent / IPA (95/5 (w / w)) w)) mixed solutions and the like.
 上記フッ素系溶剤としては、分子中にフッ素原子を有し、形成される含フッ素ポリマーの溶解性が良好な溶媒であれば、炭化水素化合物、アルコール、エーテル等のいずれであってもよく、また、脂肪族及び芳香族のいずれであってもよい。例えば、塩素化フッ素化炭化水素(特に、炭素数2~5)、特にHCFC225(ジクロロペンタフルオロプロパン)(AK-225(旭硝子社製))、HCFC141b(ジクロロフルオロエタン)、CFC316(2,2,3,3-テトラクロロヘキサフルオロブタン,)、バートレルXF(化学式 C10)(デュポン社製)、AC-6000(化学名トリデカフルオロオクタン)(旭硝子製)、ヘキサフルオロ-m-キシレン、ペンタフルオロプロパノール、フッ素系エーテル等を用いることができる。 The fluorine-based solvent may be any of hydrocarbon compounds, alcohols, ethers, etc., as long as it has a fluorine atom in the molecule and the formed fluorine-containing polymer has good solubility. Any of aliphatic and aromatic may be used. For example, chlorinated fluorinated hydrocarbons (particularly, having 2 to 5 carbon atoms), particularly HCFC225 (dichloropentafluoropropane) (AK-225 (manufactured by Asahi Glass Co.)), HCFC141b (dichlorofluoroethane), CFC316 (2, 2, 3,3-tetrachlorohexafluorobutane), Vertrel XF (chemical formula C 5 H 2 F 10 ) (manufactured by DuPont), AC-6000 (chemical name tridecafluorooctane) (manufactured by Asahi Glass), hexafluoro-m- Xylene, pentafluoropropanol, fluorine ether, or the like can be used.
 本発明では、特に、フッ素系溶剤として、ハイドロフルオロエーテルを用いることが好ましい。ハイドロフルオロエーテルは各種の材料に対する化学的浸食性が低い溶剤であり、溶剤による悪影響を排除することが強く要求される電子部品に対する被膜を形成するための溶媒として、特に適した溶媒である。さらに、ハイドロフルオロエーテルは、速乾性、低環境汚染性、不燃性、低毒性などの優れた性能を有する理想的な溶剤である。 In the present invention, it is particularly preferable to use hydrofluoroether as the fluorinated solvent. Hydrofluoroether is a solvent having low chemical erosion with respect to various materials, and is a particularly suitable solvent as a solvent for forming a coating on an electronic component that is strongly required to eliminate the adverse effects of the solvent. Further, hydrofluoroether is an ideal solvent having excellent performance such as quick drying, low environmental pollution, nonflammability, and low toxicity.
 本発明では、ハイドロフルオロエーテルとしては下記一般式(7)、 In the present invention, as the hydrofluoroether, the following general formula (7),
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式中、nは1~6の数、xは1~6の数である。)
で示される化合物が好ましい。この様なハイドロフルオロエーテルとしては、例えば、住友スリーエム株式会社製のNovec(商標)7100(化学式COCH)(沸点61℃),住友スリーエム株式会社製のNovec(商標)7200(化学式COC)(沸点76℃),住友スリーエム株式会社製のNovec(商標)7300(化学式C13OCH)(沸点98℃)などを用いることができる。
(In the formula, n is a number from 1 to 6, and x is a number from 1 to 6.)
The compound shown by these is preferable. Examples of such a hydrofluoroether include Novec (trademark) 7100 (chemical formula C 4 F 9 OCH 3 ) (boiling point 61 ° C.) manufactured by Sumitomo 3M Limited, and Novec (trademark) 7200 (chemical formula expressed by Sumitomo 3M Limited). C 4 F 9 OC 2 H 5 ) (boiling point 76 ° C.), Novec ™ 7300 (chemical formula C 6 F 13 OCH 3 ) (boiling point 98 ° C.) manufactured by Sumitomo 3M Limited can be used.
 3.コーティング用組成物
 本発明のコーティング用組成物は、上記した本発明の被膜を被処理面で形成するために用いられる組成物である。本発明のコーティング用組成物を用いて、被処理面上で本発明の被膜を形成することにより、被処理面をコーティングすることができる。
3. Coating composition The coating composition of the present invention is a composition used for forming the above-described coating film of the present invention on a surface to be treated. The surface to be treated can be coated by forming the film of the present invention on the surface to be treated using the coating composition of the present invention.
 本発明のコーティング用組成物では、該組成物中における固形成分が0.01~10重量%程度であることが好ましく、1~6重量%程度であることがより好ましく、また、その固形成分の内、フッ素化合物の濃度は、固形分濃度として0.01~5重量%程度であることが好ましく、0.5~3重量%程度であることがより好ましい。多官能重合性基の濃度は、固形分濃度として、0.01~5%重量程度であることが好ましく、0.5~3重量%程度であることが好ましく、微粒子の濃度は、固形分濃度として、0.01~5%重量程度であることが好ましく、0.5~3重量%程度であることがより好ましい。
本発明のコーティング用組成物の好ましい態様は、それにより得られる被膜表面の水に対する静的接触角が150°以上、n-HDの静的接触角が90°以上である、より好ましくは、それにより得られる被膜表面の水に対する静的接触角が150°以上、n-HDの静的接触角が90°以上であり尚且つ、水に対する転落角が10°以下であるコーティング組成物である。本発明のコーティング用組成物のさらに好ましくい態様は、それにより得られる被膜表面の水に対する静的接触角が150°以上、n-HDの静的接触角が90°以上であり尚且つ、水に対する転落角が10°以下、n-HDに対する転落角が30°以下である、より好ましくはそれにより得られる被膜表面の水に対する静的接触角が150°以上、n-HDの静的接触角が120°以上であり尚且つ、水に対する転落角が5°以下、n-HDに対する転落角が20°以下である、さらに好ましくはそれにより得られる被膜表面の水に対する静的接触角が150°以上、n-HDの静的接触角が150°以上であり尚且つ、水に対する転落角が3°以下、n-HDに対する転落角が5°以下である、コーティング用組成物である。
In the coating composition of the present invention, the solid component in the composition is preferably about 0.01 to 10% by weight, more preferably about 1 to 6% by weight, Of these, the concentration of the fluorine compound is preferably about 0.01 to 5% by weight, more preferably about 0.5 to 3% by weight as the solid content concentration. The concentration of the polyfunctional polymerizable group is preferably about 0.01 to 5% by weight, preferably about 0.5 to 3% by weight as the solid concentration, and the concentration of the fine particles is the solid concentration. Is preferably about 0.01 to 5% by weight, more preferably about 0.5 to 3% by weight.
In a preferred embodiment of the coating composition of the present invention, the surface of the coating obtained thereby has a static contact angle to water of 150 ° or more, and the n-HD static contact angle is 90 ° or more, more preferably, Is a coating composition having a static contact angle with water of 150 ° or more, an n-HD static contact angle of 90 ° or more, and a sliding angle with respect to water of 10 ° or less. A more preferable embodiment of the coating composition of the present invention is that the surface of the coating obtained thereby has a static contact angle with water of 150 ° or more, the static contact angle of n-HD is 90 ° or more, and water. The sliding angle with respect to n-HD is 10 ° or less, the sliding angle with respect to n-HD is 30 ° or less, more preferably the static contact angle with respect to water of the coating surface obtained is 150 ° or more, and the static contact angle of n-HD Is 120 ° or more, the falling angle with respect to water is 5 ° or less, the falling angle with respect to n-HD is 20 ° or less, and more preferably, the static contact angle with respect to water on the coating surface obtained thereby is 150 °. As described above, the coating composition has a static contact angle of n-HD of 150 ° or more, a sliding angle with respect to water of 3 ° or less, and a sliding angle with respect to n-HD of 5 ° or less.
 本発明のコーティング用組成物の適用対象については特に限定はなく、プラスチック、金属、セラミックス等の各種の基材に対して、溶剤浸漬、水中浸漬、拭き取り、摩耗及び高温高湿等の各種耐久性が良好で優れた防水及び防湿性能を有する皮膜を形成できる。 The application target of the coating composition of the present invention is not particularly limited, and various durability such as solvent immersion, immersion in water, wiping, abrasion, high temperature and high humidity, etc., on various substrates such as plastic, metal, ceramics, etc. It is possible to form a film having good waterproof and moistureproof performance.
 本発明のコーティング用組成物による処理方法については、特に限定はなく、本発明のコーティング用組成物を処理対象物に接触させ、その後に適切な方法で重合反応を行えばよい。特に限定されないが、本発明のコーティング用組成物を処理対象物に刷毛塗り、スプレー、スピンコート、ディスペンサー等の方法で接触させる方法なども適用できる。 The treatment method using the coating composition of the present invention is not particularly limited, and the coating composition of the present invention may be brought into contact with the object to be treated, and then a polymerization reaction may be performed by an appropriate method. Although it does not specifically limit, The method etc. which make the composition for coating of this invention contact a process target object by methods, such as brush coating, a spray, a spin coat, a dispenser, etc. are applicable.
 なお、より高い耐久性を有する被膜を形成するためには、本発明のコーティング用組成物による処理に先だって、基材表面の汚染物質を取り除くために、基材をアセトン、イソプロピルアルコール(IPA)、ハイドロフルオロエーテルなどの溶剤もしくはそれらの混合溶媒などで洗浄した後、乾燥することが好ましい。更に、上記の洗浄に加えて、シリコン基材や金属製の基材であれば、酸(塩酸、硝酸、フッ化水素など)、UVオゾンなどの化学的洗浄、サンドブラスト、ガラスビーズ、プラズマなどの物理的洗浄で表面に形成される酸化膜を除去することも耐久性向上に有用である。更により好ましくは、上記洗浄した基材に化学吸着し、尚且つその構造中にコーティング用組成物とも化学反応できる部位を有する化合物を表面修飾しておくとより耐摩耗性能が向上する。 In order to form a film having higher durability, in order to remove contaminants on the surface of the substrate prior to the treatment with the coating composition of the present invention, the substrate is acetone, isopropyl alcohol (IPA), It is preferable to dry after washing with a solvent such as hydrofluoroether or a mixed solvent thereof. Furthermore, in addition to the above cleaning, if the substrate is made of silicon or metal, chemical cleaning such as acid (hydrochloric acid, nitric acid, hydrogen fluoride, etc.), UV ozone, sandblasting, glass beads, plasma, etc. Removing the oxide film formed on the surface by physical cleaning is also useful for improving durability. More preferably, the wear resistance is further improved by surface-modifying a compound having a site that is chemically adsorbed on the washed substrate and can chemically react with the coating composition in the structure.
 本発明の被膜の用途としては、特に限定されず、例えば、撥水撥油剤、タンパク質・細胞・微生物非付着剤、着霜遅延・防氷・防雪効果剤、指紋付着防止剤、指紋不認化剤、低摩擦剤及び潤滑剤等が挙げられる。また処理基材としては特に塗布できるのであれば特に制限はなく、また必要に応じて塗布を可能にするために各種のプライマー処理を用いてもよい。 The use of the coating of the present invention is not particularly limited. For example, water / oil repellent, protein / cell / microbe non-adhesive agent, frost-delay / anti-icing / snow-proofing agent, fingerprint anti-adhesive agent, fingerprint non-identification Agents, low friction agents and lubricants. Further, the treatment substrate is not particularly limited as long as it can be applied, and various primer treatments may be used as necessary to enable application.
 本発明に使用可能な基材は、例えばガラス、樹脂(天然又は合成樹脂、例えば一般的なプラスチック材料であってよく、板状、フィルム、その他の形態であってよい)、金属(アルミニウム、銅、鉄等の金属単体または合金等の複合体であってよい)、セラミックス、半導体(シリコン、ゲルマニウム等)、繊維(織物、不織布等)、毛皮、皮革、木材、陶磁器、石材等、建築部材等、任意の適切な材料で構成され得る。 The substrate usable in the present invention is, for example, glass, resin (natural or synthetic resin, for example, a general plastic material, plate, film, or other forms), metal (aluminum, copper It may be a single metal such as iron or a composite such as an alloy), ceramics, semiconductor (silicon, germanium, etc.), fiber (woven fabric, non-woven fabric, etc.), fur, leather, wood, ceramics, stone, etc., building member, etc. Can be composed of any suitable material.
 以下、実施例及び比較例を挙げて本発明を更に詳細に説明するが、本発明はかかる実施例によって限定されるものではない。
実施例1 [Rf(C2)メタクリレート/微粒子]共重合体、TMPTA被膜の作製
[[Rf(C2)メタクリレート/微粒子]共重合体溶液の調製]
 枝付試験管に、C2F5CH2OCOC(CH3)=CH2[以下、Rf(C2)メタクリレートと略することがある]5.00 g、ラジカル反応性基を表面に有し平均一次粒子径が12 nmのシリカ微粒子2.52 g、パーフルオロブチルエチルエーテル140 gを仕込み、窒素バージし、70℃に加熱した。これにAIBN 0.253 gを投入し、6時間反応した。重合後、固形分濃度を算出した。
(感光性溶液の調製)
バイアルにトリメチロールプロパントリアクリレート(以下、TMPTAと略すことがある)0.204 g、アルキルフェノン系光重合開始剤0.0211 g、IPA 0.999 g、パーフルオロブチルエチルエーテル8.81 gを投入し、超音波洗浄機で超音波を照射した後、上記、共重合体溶液よりパーフルオロブチルエチルエーテルで希釈した固形分2.01%の溶液9.98 gを投入し、超音波洗浄機で超音波を照射し、感光性溶液とした。
(被膜の作製)
 上記、感光性溶液をアクリル基材にスプレー法によって処理をした。その後、気体をフロー可能な金属製ボックスに処理したアクリル基材を投入し、10 L/minの流量で3分間ボックス内を窒素フローし、その後、ベルトコンベアー式のUV照射装置にボックスごと投入し1,800mJ/cmのUVを照射した。
実施例2 [Rf(C4)メタクリレート/微粒子]共重合体、TMPTA被膜の作製
Rf(C2)メタクリレートに代わり、C4F9CH2CH2OCOC(CH3)=CH2[以下、Rf(C4)メタクリレートと略することがある]を用いた以外は実施例1に記載の手法で薄膜を作製した。
実施例3 [Rf(C6)メタクリレート/微粒子]共重合体、TMPTA被膜の作製
Rf(C2)メタクリレートに代わり、C6F13CH2CH2OCOC(CH3)=CH2[以下、Rf(C6)メタクリレートと略することがある]、平均一次粒子径が12 nmのシリカの代わりに平均一次粒子径が7 nmのシリカを用いること以外は実施例1に記載の手法で薄膜を作製した。
実施例4 [Rf(C6)メタクリレート/微粒子]共重合体、TMPTA被膜の作製
Rf(C2)メタクリレートに代わり、Rf(C6)メタクリレートを用いた以外は実施例1に記載の手法で薄膜を作製した。
実施例5 [Rf(C6)アクリレート/微粒子]共重合体、TMPTA被膜の作製
Rf(C2)メタクリレートに代わり、C6F13CH2CH2OCOCH=CH2[以下、Rf(C6)アクリレートと略することがある]を用いた以外は実施例1に記載の手法で薄膜を作製した。
実施例6 [Rf(C8)メタクリレート/微粒子]共重合体、TMPTA被膜の作製
[共重合体溶液の調製]の項でRf(C2)メタクリレートに代わり、C8F17CH2CH2OCOC(CH3)=CH2[以下、Rf(C8)メタクリレートと略することがある]を用い、(薄膜の作製)でスプレー処理した基材を110℃で熱処理すること以外は実施例1に記載の手法で薄膜を作製した。
実施例7 [Rf(C6)メタクリレート/微粒子]共重合体、TMPTA被膜の作製
[[Rf(C6)メタクリレート/微粒子]共重合体溶液の調製]
枝付試験管に、Rf(C6)メタクリレート9.99 g、ラジカル反応性基を表面に有し平均一次粒子径が12 nmのシリカ微粒子4.81 g、パーフルオロブチルエチルエーテル185 gを仕込み、窒素バージし、70℃に加熱した。これにAIBN 0.477 gを投入し、6時間反応した。重合後、固形分濃度を算出した。
(感光性溶液の作製)
バイアルにTMPTAを0.805 g、アルキルフェノン系光重合開始剤0.0821 g、IPA 19.7 g、パーフルオロブチルエチルエーテル9.52 gを投入し、超音波洗浄機で超音波を照射した後、固形分を8.34%とした上記の共重合体溶液9.90 gを投入し、超音波洗浄機で超音波を照射し、感光性溶液とした。
(被膜の作製)
 実施例1と同様に感光性溶液をアクリル基材にスプレー法によって処理し、UV照射をすることで製膜した。
実施例8 [Rf(C6)メタクリレート/微粒子]共重合体、DPEHA被膜の作製
 実施例7のTMPTAからジペンタエリスリトールヘキサアクリレート(以下、DPEHAと略すことがある)に変更する以外は実施例7と同じ処方である。
実施例9 [Rf(C6)メタクリレート/微粒子]共重合体、TMPTA被膜の作製
[[Rf(C6)メタクリレート/微粒子]共重合体溶液の調製]
 実施例7と同じ手法で作製した。
(感光性溶液の作製)
 バイアルにTMPTA 0.801 g、IPA 20.0g、パーフルオロブチルエチルエーテル10.0 gを投入し、超音波洗浄機で超音波を照射した後、固形分を8.34%とした上記の共重合体溶液9.90 gを投入し、超音波洗浄機で超音波を照射し、感光性溶液とした。
(被膜の作製)
 上記、感光性溶液をアクリル基材にスプレー法によって処理し、その後 窒素雰囲気下にて50kGyの電子線を照射することで製膜した。
比較例1 TMPTA被膜の作製
(感光性溶液の調製)
 バイアルにTMPTA 0.823 g、アルキルフェノン系光重合開始剤0.0408 g、IPA 9.51 gを投入し、超音波洗浄機で超音波を照射し、感光性溶液とした。
(被膜の作製)
 上記、感光性溶液にアクリル基材を浸漬させ、60℃で乾燥させた後、気体をフロー可能な金属製ボックスに処理したアクリル基材を投入し、10 L/minの流量で3分間ボックス内を窒素フローし、その後、ベルトコンベアー式のUV照射装置にボックスごと投入し1,800mJ/cmのUVを照射した。
比較例2 フッ素含有多官能アクリレート被膜の作製
(感光性溶液の調製)
 バイアルにフッ素含有多官能アクリレート0.814 g、アルキルフェノン系光重合開始剤0.0443 g、IPA 9.60 g投入し、超音波洗浄機で超音波を照射し、感光性溶液とした。
(被膜の作製)
 比較例1と同じ手法で被膜を作製した。
比較例3 微粒子、TMPTA被膜の作製
 バイアルにTMPTA 0.405 g、アルキルフェノン系光重合開始剤0.0393 g、IPA 0.992 g、パーフルオロブチルエチルエーテル19.3 gを投入し、超音波洗浄機で超音波を照射した後、ラジカル反応性基を表面に有し平均一次粒子径が12 nmのシリカ微粒子0.401 gを投入し、超音波洗浄機で超音波を照射し、感光性溶液とした。
(被膜の作製)
 実施例1と同じ手法で被膜を作製した。
比較例4 Rf(C6)メタクリレート、TMPTA被膜の作製
(感光性溶液の調製)
 バイアルにTMPTA 0.404 g、Rf(C6)メタクリレート0.413 g、アルキルフェノン系光重合開始剤0.0393 g、IPA 0.992 g、パーフルオロブチルエチルエーテル18.8 gを投入し、超音波洗浄機で超音波を照射し、感光性溶液とした。
(被膜の作製)
 比較例1と同じ手法で被膜を作製した。
比較例5 Rf(C6)メタクリレートホモポリマー被膜の作製
(ポリマーの調製)
 枝付試験管に、Rf(C6)メタクリレート25.0 g、パーフルオロブチルエチルエーテル75.0 gを仕込み、10分間窒素バージし、70℃に加熱した。これにAIBN 0.136 gを投入し、6時間反応した。重合後固形分濃度を算出した。
(被膜の調製)
  バイアルに、上記、重合溶液0.50 g、パーフルオロブチルエチルエーテル11.5 gを投入した。その溶液にアクリル基材を浸漬させ、30分室温風乾することで被膜を作製した。
比較例6 [Rf(C6)メタクリレート/微粒子]共重合体薄膜の作製
 [Rf(C6)メタクリレート/微粒子]共重合体溶液をスクリュー管に7.47 g、IPAを9.92 g投入し超音波を照射し、[Rf(C6)メタクリレート/微粒子]共重合体を分散させた。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further in detail, this invention is not limited by this Example.
Example 1 Preparation of [Rf (C2) methacrylate / fine particle] copolymer and TMPTA coating [ Preparation of [Rf (C2) methacrylate / fine particle] copolymer solution]
In a branched test tube, C 2 F 5 CH 2 OCOC (CH 3 ) = CH 2 [hereinafter sometimes abbreviated as Rf (C2) methacrylate] 5.00 g, average having radical reactive groups on the surface First, 2.52 g of silica fine particles having a primary particle size of 12 nm and 140 g of perfluorobutyl ethyl ether were charged, nitrogen purged, and heated to 70 ° C. To this, 0.253 g of AIBN was added and reacted for 6 hours. After polymerization, the solid content concentration was calculated.
(Preparation of photosensitive solution)
In a vial, 0.204 g of trimethylolpropane triacrylate (hereinafter sometimes abbreviated as TMPTA), 0.0211 g of alkylphenone photopolymerization initiator, 0.999 g of IPA, and 8.81 g of perfluorobutyl ethyl ether. Then, after irradiating ultrasonic waves with an ultrasonic cleaner, 9.98 g of a 2.01% solid solution diluted with perfluorobutyl ethyl ether was added from the copolymer solution, and the ultrasonic cleaner Was irradiated with ultrasonic waves to obtain a photosensitive solution.
(Preparation of coating)
The photosensitive solution was treated on an acrylic substrate by a spray method. Then, the treated acrylic base material is put into a metal box that can flow gas, and the inside of the box is flown with nitrogen at a flow rate of 10 L / min for 3 minutes, and then the whole box is put into a belt conveyor type UV irradiation device. UV of 1,800 mJ / cm 2 was irradiated.
Example 2 Preparation of [Rf (C4) Methacrylate / Fine Particles] Copolymer, TMPTA Coating Instead of Rf (C2) methacrylate, C 4 F 9 CH 2 CH 2 OCOC (CH 3 ) = CH 2 [hereinafter Rf (C4 ) May be abbreviated as methacrylate], and a thin film was prepared by the method described in Example 1.
Example 3 Preparation of [Rf (C6) Methacrylate / Fine Particles] Copolymer, TMPTA Coating Instead of Rf (C2) methacrylate, C 6 F 13 CH 2 CH 2 OCOC (CH 3 ) = CH 2 [hereinafter, Rf (C6 ) May be abbreviated as methacrylate], and a thin film was prepared by the method described in Example 1 except that silica having an average primary particle size of 7 nm was used instead of silica having an average primary particle size of 12 nm.
Example 4 Preparation of [Rf (C6) methacrylate / fine particle] copolymer and TMPTA coating A thin film was prepared by the method described in Example 1 except that Rf (C6) methacrylate was used instead of Rf (C2) methacrylate. .
Example 5 Preparation of [Rf (C6) Acrylate / Fine Particles] Copolymer, TMPTA Coating Instead of Rf (C2) methacrylate, C 6 F 13 CH 2 CH 2 OCOCH = CH 2 [hereinafter abbreviated as Rf (C6) acrylate A thin film was prepared by the method described in Example 1 except that the above may be used.
Example 6 Preparation of [Rf (C8) Methacrylate / Fine Particles] Copolymer, TMPTA Coating
Instead of Rf (C2) methacrylate, C 8 F 17 CH 2 CH 2 OCOC (CH 3 ) = CH 2 [hereinafter sometimes abbreviated as Rf (C8) methacrylate] A thin film was prepared by the method described in Example 1 except that the substrate spray-treated in (Preparation of thin film) was heat-treated at 110 ° C.
Example 7 Preparation of [Rf (C6) methacrylate / fine particle] copolymer, TMPTA coating [ Preparation of [Rf (C6) methacrylate / fine particle] copolymer solution]
A branch test tube was charged with 9.9 g of Rf (C6) methacrylate, 4.81 g of silica fine particles having a radical reactive group on the surface and an average primary particle diameter of 12 nm, and 185 g of perfluorobutyl ethyl ether, Nitrogen purged and heated to 70 ° C. AIBN 0.477g was thrown into this and it reacted for 6 hours. After polymerization, the solid content concentration was calculated.
(Preparation of photosensitive solution)
0.805 g of TMPTA, 0.0821 g of alkylphenone photopolymerization initiator, 19.7 g of IPA, and 9.52 g of perfluorobutyl ethyl ether were put into a vial, and ultrasonic waves were irradiated with an ultrasonic cleaner. Thereafter, 9.90 g of the copolymer solution having a solid content of 8.34% was added, and an ultrasonic wave was irradiated with an ultrasonic cleaner to obtain a photosensitive solution.
(Preparation of coating)
In the same manner as in Example 1, the photosensitive solution was treated on an acrylic substrate by a spray method, and a film was formed by UV irradiation.
Example 8 Preparation of [Rf (C6) Methacrylate / Fine Particles] Copolymer and DPEHA Coating Example 7 except that TMPTA in Example 7 was changed to dipentaerythritol hexaacrylate (hereinafter sometimes abbreviated as DPEHA). Same prescription.
Example 9 Preparation of [Rf (C6) methacrylate / fine particle] copolymer, TMPTA coating [ Preparation of [Rf (C6) methacrylate / fine particle] copolymer solution]
It was produced by the same method as in Example 7.
(Preparation of photosensitive solution)
TMPTA 0.801 g, IPA 20.0 g, and perfluorobutyl ethyl ether 10.0 g were put into a vial, irradiated with ultrasonic waves by an ultrasonic cleaner, and then the above-mentioned co-polymer having a solid content of 8.34%. 9.90 g of the polymer solution was added and irradiated with ultrasonic waves with an ultrasonic cleaner to obtain a photosensitive solution.
(Preparation of coating)
The photosensitive solution was treated on an acrylic substrate by a spray method, and then a film was formed by irradiation with an electron beam of 50 kGy in a nitrogen atmosphere.
Comparative Example 1 Preparation of TMPTA coating ( Preparation of photosensitive solution)
A vial was charged with 0.823 g of TMPTA, 0.0408 g of an alkylphenone photopolymerization initiator and 9.51 g of IPA, and irradiated with ultrasonic waves with an ultrasonic cleaner to obtain a photosensitive solution.
(Preparation of coating)
After the acrylic base material is immersed in the above photosensitive solution and dried at 60 ° C., the treated acrylic base material is put into a metal box capable of flowing gas, and the inside of the box for 3 minutes at a flow rate of 10 L / min. Then, the box was put into a belt conveyor type UV irradiation apparatus and irradiated with 1,800 mJ / cm 2 of UV.
Comparative Example 2 Preparation of fluorine-containing polyfunctional acrylate coating ( Preparation of photosensitive solution)
The vial was charged with 0.814 g of a fluorine-containing polyfunctional acrylate, 0.0443 g of an alkylphenone-based photopolymerization initiator, and 9.60 g of IPA, and irradiated with ultrasonic waves with an ultrasonic cleaner to obtain a photosensitive solution.
(Preparation of coating)
A film was prepared in the same manner as in Comparative Example 1.
Comparative Example 3 Preparation of microparticles and TMPTA coating TMPTA 0.405 g, alkylphenone photopolymerization initiator 0.0393 g, IPA 0.992 g, perfluorobutyl ethyl ether 19.3 g were put into a vial. After irradiating ultrasonic waves with a washing machine, 0.401 g of silica fine particles having a radical reactive group on the surface and an average primary particle diameter of 12 nm are introduced, and ultrasonic waves are emitted by an ultrasonic washing machine to make the photosensitivity. It was set as the solution.
(Preparation of coating)
A film was prepared in the same manner as in Example 1.
Comparative Example 4 Preparation of Rf (C6) methacrylate and TMPTA coating ( Preparation of photosensitive solution)
TMPTA 0.404 g, Rf (C6) methacrylate 0.413 g, alkylphenone photopolymerization initiator 0.0393 g, IPA 0.992 g, perfluorobutyl ethyl ether 18.8 g were added to the vial. Ultrasonic waves were irradiated with a sonic cleaner to obtain a photosensitive solution.
(Preparation of coating)
A film was prepared in the same manner as in Comparative Example 1.
Comparative Example 5 Preparation of Rf (C6) methacrylate homopolymer coating (polymer preparation)
A branch test tube was charged with 25.0 g of Rf (C6) methacrylate and 75.0 g of perfluorobutyl ethyl ether, and was purged with nitrogen for 10 minutes and heated to 70 ° C. This was charged with 0.136 g of AIBN and reacted for 6 hours. After polymerization, the solid content concentration was calculated.
(Preparation of coating)
The above-mentioned polymerization solution 0.50 g and perfluorobutyl ethyl ether 11.5 g were put into a vial. The acrylic base material was immersed in the solution, and the film was produced by air drying at room temperature for 30 minutes.
Comparative Example 6 Preparation of [Rf (C6) Methacrylate / Fine Particles] Copolymer Thin Film 7.47 g of [Rf (C6) Methacrylate / Fine Particles] copolymer solution and 9.92 g of IPA were put into a screw tube and subjected to ultrasonic waves. Was irradiated to disperse the [Rf (C6) methacrylate / fine particles] copolymer.
 その後、実施例7と同様の方法で薄膜を作製した。
試験例1~13
 実施例1~6、8および比較例1~6で得られた試験片について、水とn-HDに対する接触角測定を行った。接触角の測定および装置に関しては本文中に記載の方法に準じた。結果を表1に示す。転落角が0°とは液体がニードルから20μlの液滴が基材に着弾させることができない、もしくは着弾させることはできても測定前もしくは測定時0°から1°の間で液体が転落し、今回用いた機器では測定ができないことを意味する。今回の試験例では、試験例1~7、13の水に対する転落角および試験例6のn-HDに対する転落角がそれに該当する。また、試験例10のn-HDに対する静的接触角が0°は基材上で液滴が濡れ広がり今回の測定では正確な値が得られていないことを意味する。
Thereafter, a thin film was produced in the same manner as in Example 7.
Test Examples 1 to 13
The test pieces obtained in Examples 1 to 6 and 8 and Comparative Examples 1 to 6 were measured for contact angles with water and n-HD. The contact angle measurement and apparatus were in accordance with the method described in the text. The results are shown in Table 1. A falling angle of 0 ° means that a liquid of 20 μl cannot be landed on the base material from the needle, or even if it can land, the liquid falls before the measurement or between 0 ° and 1 ° during measurement. This means that the instrument used this time cannot measure. In the present test example, the falling angles for water in Test Examples 1 to 7 and 13 and the falling angle for n-HD in Test Example 6 correspond thereto. In addition, when the static contact angle with respect to n-HD in Test Example 10 is 0 °, it means that the droplet spreads on the substrate and an accurate value is not obtained in this measurement.
 なお、試験例1、2のn-HDに対する転落角は、液が前進接触角と後退接触角を維持できず転落しているか、もしくは転落後に残渣液滴が基材上に残っていたため正確な転落角ではなく、擬似転落角の値を示している。試験例10の水の転落角は、装置の最大転落角の85°でも液滴が転落しなかった。試験例8、10のn-HDの転落角は、試験例8では濡れ広がりながら液滴が転落し、試験例10は静的接触角がほぼ0°という化学的性質上測定ができなかった。 In addition, the drop angle with respect to n-HD in Test Examples 1 and 2 is accurate because the liquid is falling without being able to maintain the advancing contact angle and the receding contact angle, or residual droplets remain on the substrate after the falling. The value of the pseudo falling angle is shown instead of the falling angle. Even when the water falling angle of Test Example 10 was 85 °, which is the maximum falling angle of the apparatus, the droplets did not fall. In the test examples 8 and 10, the drop angle of the n-HD in Test Example 8 was wet and spread while the droplets tumbled, and Test Example 10 could not be measured due to the chemical property that the static contact angle was approximately 0 °.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
試験例14~17
 実施例7~9また比較例6で得られた各試験片について、対水接触角を測定して初期接触角を求めた後、ラビングテスター(井元製作所製ラビングテスター「耐摩耗試験機151E 3連仕様」)のホルダー(試料に接する面積:1 cm)に紙製ウエスを装着し、荷重100 gにて所定回数、表面の拭き取りを行い、その後対水接触角を測定し、拭き取りに対する耐摩耗性を評価した。ここでの耐摩耗性能は超撥水状態(5回平均の静的接触角の値が150°以上、もしくは、平均140°以上でその標準偏差をあわせると150°以上)を維持できる摩耗回数と定義した。図1にラビング試験の結果を示す。図中の棒グラフは超撥水状態を維持できる摩耗回数の平均値を、また複数回評価したサンプルについては、上下のバーで最低値、最高値を示している。
Test Examples 14-17
For each of the test pieces obtained in Examples 7 to 9 and Comparative Example 6, the water contact angle was measured to determine the initial contact angle, and then a rubbing tester (rubbing tester “Irimoto Seisakusho 151E 3 series made by Imoto Seisakusho) Spec. ”) (Paper contact area: 1 cm 2 ) with a paper waste cloth, wipe the surface a predetermined number of times with a load of 100 g, measure the contact angle with water, and wear resistance against wiping Sex was evaluated. The wear resistance performance here is the number of wears that can maintain a super water-repellent state (the average value of the static contact angle of five times is 150 ° or more, or 150 ° or more when the average deviation is 140 ° or more and the standard deviation is combined). Defined. FIG. 1 shows the result of the rubbing test. The bar graph in the figure shows the average value of the number of wears that can maintain a super water-repellent state, and the samples evaluated multiple times show the lowest and highest values with the upper and lower bars.
 この結果、実施例7~9は比較例6と比較して劇的に耐摩耗性が向上していることが確認された。 As a result, it was confirmed that the wear resistance of Examples 7 to 9 was dramatically improved as compared with Comparative Example 6.

Claims (15)

  1. (1)重合性基を有する、少なくとも一種の微粒子;及び
    (2)重合性基を有する、少なくとも一種の化合物
    に基づく構成単位をそれぞれ有する重合体を含有する被膜であって、
    前記微粒子(1)の少なくとも一種、及び/又は前記化合物(2)の少なくとも一種が、フルオロアルキル基を有するものであり、かつ
    前記化合物(2)の少なくとも一種が、分子内に2つ以上の重合性基を有する化合物である、被膜。
    (1) at least one kind of fine particles having a polymerizable group; and (2) a film containing a polymer each having a polymerizable group and a structural unit based on at least one compound,
    At least one of the fine particles (1) and / or at least one of the compounds (2) has a fluoroalkyl group, and at least one of the compounds (2) has two or more polymerizations in the molecule. A film, which is a compound having a functional group.
  2. 前記重合体が、前記微粒子(1)及び前記化合物(2)を、
    同時に重合するか、又は
    少なくとも二段階に分けて
    逐次的に重合する
    ことにより得られうる重合体である、
    請求項1に記載の被膜。
    The polymer contains the fine particles (1) and the compound (2).
    It is a polymer that can be obtained by polymerizing at the same time or sequentially polymerizing in at least two stages.
    The coating according to claim 1.
  3. 前記重合体が、分子内に2つ以上の重合性基を有する前記化合物(2)の少なくとも一種を、二段階目以降に重合させることにより得られうる重合体である、請求項2に記載の被膜。 The said polymer is a polymer which can be obtained by polymerizing at least 1 type of the said compound (2) which has a 2 or more polymeric group in a molecule | numerator after a 2nd step. Coating.
  4. 前記重合性基が、同一又は異なって、ビニル基、(メタ)アクリル基、スチリル基又はマレイミド基である、請求項1~3のいずれか一項に記載の被膜。 The film according to any one of claims 1 to 3, wherein the polymerizable groups are the same or different and are a vinyl group, a (meth) acryl group, a styryl group, or a maleimide group.
  5. 前記化合物(2)の少なくとも一種が、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、CFX基(但し、XおよびXは、同一又は異なって、水素原子、フッ素原子又は塩素原子である。)、シアノ基、炭素数1~21の直鎖状若しくは分岐状のフルオロアルキル基、置換若しくは非置換のベンジル基、置換若しくは非置換のフェニル基、又は炭素数1~20の直鎖状または分岐状アルキル基であり、Yは、直接結合、酸素原子を有していてもよい炭素数1~10の炭化水素基、-CHCHN(R)SO-基(但し、Rは炭素数1~4のアルキル基であり、式の右端がRfに、左端がOにそれぞれ結合している。)、-CHCH(OY)CH-基(但し、Yは水素原子またはアセチル基であり、式の右端がRfに、左端がOにそれぞれ結合している。)、又は-(CH)SO-基(nは1~10であり、式の右端がRfに、左端がOにそれぞれ結合している。)であり、Rfは炭素数1~20の直鎖状若しくは分岐状のフルオロアルキル基、又は分子量400~5,000のフルオロポリエーテル基である。)で表される化合物である、請求項1~4のいずれか一項に記載の被膜。
    At least one of the compounds (2) is represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, X represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a CFX 1 X 2 group (where X 1 and X 2 are the same or different and represent a hydrogen atom, a fluorine atom or a chlorine atom) A cyano group, a linear or branched fluoroalkyl group having 1 to 21 carbon atoms, a substituted or unsubstituted benzyl group, a substituted or unsubstituted phenyl group, or a straight chain having 1 to 20 carbon atoms Or Y is a direct bond, a hydrocarbon group having 1 to 10 carbon atoms which may have an oxygen atom, a —CH 2 CH 2 N (R 1 ) SO 2 — group (provided that , R 1 is an alkyl group having 1 to 4 carbon atoms, and the right end of the formula is bonded to Rf and the left end is bonded to O.), —CH 2 CH (OY 1 ) CH 2 — group (provided that Y 1 is a hydrogen atom or an acetyl group, the right end of the formula is R In, attached respectively left end to O), or -. (CH 2) n SO 2 - group (n is 1 to 10, the right end of the formula is Rf, the left end is attached respectively to the O And Rf is a linear or branched fluoroalkyl group having 1 to 20 carbon atoms, or a fluoropolyether group having a molecular weight of 400 to 5,000). The coating according to any one of 1 to 4.
  6. 分子内に2つ以上の重合性基を有する前記化合物(2)が、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xは、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、CFX基(但し、XおよびXは、同一又は異なって、水素原子、フッ素原子又は塩素原子である。)、シアノ基、炭素数1~21の直鎖状若しくは分岐状のフルオロアルキル基、置換若しくは非置換のベンジル基、置換若しくは非置換のフェニル基、又は炭素数1~20の直鎖状または分岐状アルキル基であり、Yは、直接結合、酸素原子を有していてもよい炭素数1~10の炭化水素基、-CHCHN(R)SO-基(但し、Rは炭素数1~4のアルキル基であり、式の右端がZに、左端がOにそれぞれ結合している。)、-CHCH(OY)CH-基(但し、Yは水素原子またはアセチル基であり、式の右端がZに、左端がOにそれぞれ結合している。)、又は-(CH)SO-基(nは1~10であり、式の右端がZに、左端がOにそれぞれ結合している。)であり、Zは酸素原子及び/又はフッ素原子を有していてもよい炭化水素から水素原子をそれぞれm+1個除いた残基、又は炭素原子若しくは酸素原子であり、Zは酸素原子及び/又はフッ素原子を有していてもよい炭化水素から水素原子をn個除いた残基、又は炭素原子若しくは酸素原子であり、mは1~3の整数であり、nは1~4の整数であり、かつmとnを乗じた数が2以上である。)で表される化合物である、請求項1~5のいずれか一項に記載の被膜。
    The compound (2) having two or more polymerizable groups in the molecule is represented by the following general formula (2):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, X represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a CFX 1 X 2 group (where X 1 and X 2 are the same or different and represent a hydrogen atom, a fluorine atom or a chlorine atom) A cyano group, a linear or branched fluoroalkyl group having 1 to 21 carbon atoms, a substituted or unsubstituted benzyl group, a substituted or unsubstituted phenyl group, or a straight chain having 1 to 20 carbon atoms Or Y is a direct bond, a hydrocarbon group having 1 to 10 carbon atoms which may have an oxygen atom, a —CH 2 CH 2 N (R 1 ) SO 2 — group (provided that , R 1 is an alkyl group having 1 to 4 carbon atoms, and the right end of the formula is bonded to Z 1 and the left end to O.), —CH 2 CH (OY 1 ) CH 2 — group (provided that Y 1 is a hydrogen atom or an acetyl group, and the right end of the formula is Z 1 and the left end is bonded to O.) or — (CH 2 ) n SO 2 — group (n is 1 to 10, the right end of the formula is bonded to Z 1 and the left end is bonded to O. Z 1 is a residue obtained by removing m + 1 hydrogen atoms from a hydrocarbon optionally having an oxygen atom and / or a fluorine atom, or a carbon atom or an oxygen atom, and Z 2 is A residue obtained by removing n hydrogen atoms from a hydrocarbon optionally having an oxygen atom and / or a fluorine atom, or a carbon atom or an oxygen atom, m is an integer of 1 to 3, and n is 1 to The film according to any one of claims 1 to 5, which is an integer of 4 and a number obtained by multiplying m and n is 2 or more.
  7. 製膜時の水の静的接触角が150°以上、n-ヘキサデカンの静的接触角が90°以上である、請求項1~6のいずれか一項に記載の被膜。 The coating film according to any one of claims 1 to 6, wherein a static contact angle of water during film formation is 150 ° or more, and a static contact angle of n-hexadecane is 90 ° or more.
  8. 製膜時の水の転落角が10°以下である、請求項1~7のいずれか一項に記載の被膜。 The coating film according to any one of claims 1 to 7, wherein a falling angle of water during film formation is 10 ° or less.
  9. 請求項1~8のいずれかに記載の被膜に被処理物を接触させる工程を含む、コーティング方法。 A coating method comprising a step of bringing a workpiece into contact with the coating film according to any one of claims 1 to 8.
  10. 請求項1~8のいずれか一項の被膜でコーティングするために用いられる、前記微粒子(1)を含有する組成物。 A composition containing the fine particles (1) used for coating with the film according to any one of claims 1 to 8.
  11. 請求項1~8のいずれか一項の被膜でコーティングするために用いられる、前記化合物(2)を含有する組成物。 A composition containing the compound (2), which is used for coating with the film according to any one of claims 1 to 8.
  12. (A)重合性基を表面に有する、少なくとも一種の微粒子;及び
    (B)分子内に2つ以上の重合性基を有する、少なくとも一種の化合物
    を含有するコーティング用組成物。
    A coating composition comprising (A) at least one fine particle having a polymerizable group on the surface; and (B) at least one compound having two or more polymerizable groups in the molecule.
  13. (1)重合性基を表面に有する、少なくとも一種の微粒子;及び
    (2)重合性基を有する、少なくとも一種の化合物
    に基づく構成単位をそれぞれ有する重合体を含有する、コーティング用組成物。
    A coating composition comprising (1) at least one fine particle having a polymerizable group on the surface; and (2) a polymer having a polymerizable group and a structural unit based on at least one compound.
  14. 請求項10~13のいずれか一項に記載のコーティング用組成物であって、その組成物を基材に塗布した際の塗布表面の水に対する静的接触角が150°以上、かつn-ヘキサデカンの静的接触角が90°以上である、コーティング用組成物。 The coating composition according to any one of claims 10 to 13, wherein when the composition is applied to a substrate, the static contact angle with respect to water of the coated surface is 150 ° or more, and n-hexadecane A coating composition having a static contact angle of 90 ° or more.
  15. 請求項10~14のいずれか一項に記載のコーティング用組成物であって、その組成物を基材に塗布した際の塗布表面の水に対する転落角が10°以下である、コーティング用組成物。 The coating composition according to any one of claims 10 to 14, wherein a falling angle with respect to water of an application surface when the composition is applied to a substrate is 10 ° or less. .
PCT/JP2015/078849 2014-10-10 2015-10-09 Coating film, coating method using same and article coated with same WO2016056663A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-209313 2014-10-10
JP2014209313 2014-10-10

Publications (1)

Publication Number Publication Date
WO2016056663A1 true WO2016056663A1 (en) 2016-04-14

Family

ID=55653267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078849 WO2016056663A1 (en) 2014-10-10 2015-10-09 Coating film, coating method using same and article coated with same

Country Status (2)

Country Link
TW (1) TW201638292A (en)
WO (1) WO2016056663A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179678A1 (en) * 2016-04-13 2017-10-19 ダイキン工業株式会社 Super-liquid-repellent coating film and curable composition for forming super-liquid-repellent coating film
WO2017204306A1 (en) * 2016-05-27 2017-11-30 旭硝子株式会社 Protein adhesion inhibitor, cured product, method for producing cured product, and article
WO2019078115A1 (en) 2017-10-18 2019-04-25 ダイキン工業株式会社 Coating film
WO2020246607A1 (en) * 2019-06-05 2020-12-10 ダイキン工業株式会社 Composition
KR20220097944A (en) 2019-11-05 2022-07-08 다이킨 고교 가부시키가이샤 Film-forming composition, film, and chemical solution
WO2023013505A1 (en) 2021-08-02 2023-02-09 日本板硝子株式会社 Glass member and production method therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044062A1 (en) * 2002-11-13 2004-05-27 Asahi Glass Company, Limited Actinic radiation curable coating composition and molded articles having coating films made from the composition through curing
JP2007038199A (en) * 2004-11-15 2007-02-15 Jsr Corp Laminate production method
JP2007039619A (en) * 2004-11-15 2007-02-15 Jsr Corp Curable resin composition, and cured film and laminated material made therefrom
JP2009029979A (en) * 2007-07-30 2009-02-12 Jsr Corp Curable resin composition and reflection preventive coating
JP2009084395A (en) * 2007-09-28 2009-04-23 Mitsubishi Chemicals Corp Polymer, composition, cured product and optical recording medium
JP2009198748A (en) * 2008-02-21 2009-09-03 Toray Ind Inc Method for manufacturing antireflective film, and image display
JP2009235151A (en) * 2008-03-26 2009-10-15 Jsr Corp Curable composition for forming hard coat, cured film, and laminate
JP2011074232A (en) * 2009-09-30 2011-04-14 Dainippon Printing Co Ltd Curable resin composition for stain-resistant surface layer and optical film
JP2013076786A (en) * 2011-09-29 2013-04-25 Fujifilm Corp Manufacturing method of antireflection film, antireflection film, coating composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004044062A1 (en) * 2002-11-13 2004-05-27 Asahi Glass Company, Limited Actinic radiation curable coating composition and molded articles having coating films made from the composition through curing
JP2007038199A (en) * 2004-11-15 2007-02-15 Jsr Corp Laminate production method
JP2007039619A (en) * 2004-11-15 2007-02-15 Jsr Corp Curable resin composition, and cured film and laminated material made therefrom
JP2009029979A (en) * 2007-07-30 2009-02-12 Jsr Corp Curable resin composition and reflection preventive coating
JP2009084395A (en) * 2007-09-28 2009-04-23 Mitsubishi Chemicals Corp Polymer, composition, cured product and optical recording medium
JP2009198748A (en) * 2008-02-21 2009-09-03 Toray Ind Inc Method for manufacturing antireflective film, and image display
JP2009235151A (en) * 2008-03-26 2009-10-15 Jsr Corp Curable composition for forming hard coat, cured film, and laminate
JP2011074232A (en) * 2009-09-30 2011-04-14 Dainippon Printing Co Ltd Curable resin composition for stain-resistant surface layer and optical film
JP2013076786A (en) * 2011-09-29 2013-04-25 Fujifilm Corp Manufacturing method of antireflection film, antireflection film, coating composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179678A1 (en) * 2016-04-13 2017-10-19 ダイキン工業株式会社 Super-liquid-repellent coating film and curable composition for forming super-liquid-repellent coating film
US11578232B2 (en) 2016-04-13 2023-02-14 Daikin Industries, Ltd. Super-liquid-repellent coating film and curable composition for forming super-liquid-repellent coating film
WO2017204306A1 (en) * 2016-05-27 2017-11-30 旭硝子株式会社 Protein adhesion inhibitor, cured product, method for producing cured product, and article
WO2019078115A1 (en) 2017-10-18 2019-04-25 ダイキン工業株式会社 Coating film
WO2020246607A1 (en) * 2019-06-05 2020-12-10 ダイキン工業株式会社 Composition
JP2020196846A (en) * 2019-06-05 2020-12-10 ダイキン工業株式会社 Compositions
CN113966368A (en) * 2019-06-05 2022-01-21 大金工业株式会社 Composition comprising a metal oxide and a metal oxide
JP7415120B2 (en) 2019-06-05 2024-01-17 ダイキン工業株式会社 Composition
KR20220097944A (en) 2019-11-05 2022-07-08 다이킨 고교 가부시키가이샤 Film-forming composition, film, and chemical solution
WO2023013505A1 (en) 2021-08-02 2023-02-09 日本板硝子株式会社 Glass member and production method therefor

Also Published As

Publication number Publication date
TW201638292A (en) 2016-11-01

Similar Documents

Publication Publication Date Title
WO2016056663A1 (en) Coating film, coating method using same and article coated with same
JP7360051B2 (en) Super liquid repellent coating and composition for forming super liquid repellent curable coating
Qiang et al. Robust UV-cured superhydrophobic cotton fabric surfaces with self-healing ability
CN105793741B (en) The manufacture method of resin film, resin film constituent and resin film
JP2009545651A5 (en)
JP2009545652A5 (en)
JP4285238B2 (en) Fluorine-containing unsaturated compound, fluorine-containing polymer, and curable composition using them
WO1994012548A1 (en) Aqueous dispersion composition, process for producing the same, water- and oil-repellent, and parting agent
KR20120101289A (en) Surface treatment agent, articles, and fluorine-containing ether compounds
WO2004108772A1 (en) Curable surface modifier and curable composition for surface modification comprising the same
Vitale et al. Nanoheterogeneous networks by photopolymerization of perfluoropolyethers and acrylic co‐monomers
KR101748075B1 (en) Resin film and method of prodcing resin film
Liu et al. General water-based strategy for the preparation of superhydrophobic coatings on smooth substrates
Ito et al. Organic–Inorganic Hybrid Replica Molds with High Mechanical Strength for Step-and-Repeat Ultraviolet Nanoimprinting
WO2019078115A1 (en) Coating film
JP2010131569A (en) Base material having fluorine-containing polymer thin film and method for manufacturing the same
JP6776508B2 (en) Coating composition
JPWO2011129426A1 (en) Antifouling agent
Zang et al. Synthesis and characterization of fluorine‐containing polyacrylate latex with core–shell structure by UV‐initiated seeded emulsion polymerization
JP3605868B2 (en) Water and oil repellent materials
JP7415120B2 (en) Composition
Wang et al. Scalable preparation of efficiently self-healing and highly transparent omniphobic coating for glass
JP2011154396A (en) Method for manufacturing antireflective film improved in water repellency/oil repellency and scratch resistance
JP2018070832A (en) Composition, coating liquid, and article
TWI794143B (en) Coating composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15849648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP