WO2016056661A1 - Black phosphorus atom film, thermoelectric material, thermoelectric conversion element, and semiconductor element - Google Patents

Black phosphorus atom film, thermoelectric material, thermoelectric conversion element, and semiconductor element Download PDF

Info

Publication number
WO2016056661A1
WO2016056661A1 PCT/JP2015/078841 JP2015078841W WO2016056661A1 WO 2016056661 A1 WO2016056661 A1 WO 2016056661A1 JP 2015078841 W JP2015078841 W JP 2015078841W WO 2016056661 A1 WO2016056661 A1 WO 2016056661A1
Authority
WO
WIPO (PCT)
Prior art keywords
black phosphorus
film
crystal structure
monoatomic
thermoelectric conversion
Prior art date
Application number
PCT/JP2015/078841
Other languages
French (fr)
Japanese (ja)
Inventor
貴博 山本
哲 小鍋
Original Assignee
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学 filed Critical 学校法人東京理科大学
Publication of WO2016056661A1 publication Critical patent/WO2016056661A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/02Preparation of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Definitions

  • the present invention relates to a black phosphorus atomic film, a thermoelectric material, a thermoelectric conversion element, and a semiconductor element.
  • thermoelectric conversion technology that converts thermal energy into electrical energy has been developed using a phenomenon called the Seebeck effect, which is a phenomenon in which a temperature difference of an object is directly converted into a voltage. ing.
  • thermoelectric conversion technology for example, inorganic materials such as bismuth-tellurium-based materials have been known.
  • inorganic materials have a very low mechanical strength and may have the disadvantage of being a fragile material, so their applications are limited.
  • an inorganic material containing a rare element has a high cost and may be difficult to secure resources, and may be difficult to continuously manufacture. Therefore, a thermoelectric material that does not contain a rare element has been demanded.
  • thermoelectric materials that do not contain rare elements for example, carbon atom materials such as carbon nanotubes, and organic materials such as organic conductive polymer thin films are known.
  • thermoelectric materials using these materials are not satisfactory because their thermoelectric conversion performance is not sufficient.
  • thermoelectric material which is a single light element
  • a black phosphorus monoatomic film is composed of a phosphorus element.
  • Phosphorus is a common element, which is advantageous in terms of securing resources.
  • a study of using a black phosphorus monoatomic film as a thermoelectric material has just started (for example, Documents 1 and 2), and development of a higher performance black phosphorus monoatomic film is expected as a thermoelectric material.
  • Reference 1 Large thermoelectric power factors in black phosphorus and phosphorene, Hongyan Lv, Wenjian Lu, Dingfu Shao, and Yuping Sun, arXiv: 1404.5171
  • Reference 2 Enhanced Thermoelectric Efficiency via Orthogonal Electrical and Thermal Conductances in Phosphorene, Ruixiang Fei, Alireza Faghaninia, Ryan Soklaski, Jia-An Yan, Cynthia Lo, and Li Yang, arXiv: 1405.2836
  • the present invention has been made in view of the above circumstances, is useful for thermoelectric conversion materials, has excellent thermoelectric conversion performance, and has a stretched crystal structure that can modulate thermoelectric conversion performance according to the degree of stretching.
  • the purpose is to provide. It is another object of the present invention to provide a thermoelectric conversion material and a thermoelectric conversion element that have a high thermoelectric conversion output and can modulate thermoelectric conversion performance. Furthermore, it aims at providing a semiconductor element.
  • thermoelectric conversion performance can be improved, and the thermoelectric conversion performance can be modulated according to the degree of extension.
  • the present embodiment has been completed. That is, the means for solving the above-mentioned problems include, for example, the following aspects.
  • thermoelectric material including the black phosphorus atom film according to any one of ⁇ 1> to ⁇ 4>.
  • thermoelectric material according to ⁇ 5> further including an unstretched black phosphorus atomic film.
  • the doping amount in the black phosphorus monoatomic film having a crystal structure stretched in the zigzag axis direction is 0.0100 to 0.0700 (e / atom) as the number of carriers per phosphorus atom ⁇
  • the doping amount in the black phosphorus monoatomic film having a crystal structure extended in the armchair axial direction is 0.00280 to 0.00350 (e / atom) as the number of carriers per phosphorus atom.
  • the thermoelectric material according to ⁇ 6> is 0.00280 to 0.00350 (e / atom) as the number of carriers per phosphorus atom.
  • the black phosphorus atomic film according to any one of ⁇ 1> to ⁇ 4>, Electrodes, An electrolyte material or a dielectric material disposed between the black phosphorus atomic film and the electrode; A thermoelectric conversion element.
  • a semiconductor device comprising:
  • thermoelectric conversion material that is useful for a thermoelectric conversion material, has excellent thermoelectric conversion performance, and has a stretched crystal structure that can modulate the thermoelectric conversion performance according to the degree of stretching.
  • thermoelectric conversion output is high, and the thermoelectric conversion material which can modulate thermoelectric conversion performance, and the thermoelectric conversion element are provided.
  • a semiconductor device is provided.
  • FIG. 1A is a schematic diagram showing a crystal structure of a black phosphorus monoatomic film, and is a cross-sectional view of the crystal structure cut along the armchair axis direction.
  • FIG. 1B is a schematic diagram showing a crystal structure of a black phosphorus monoatomic film, a cross-sectional view of the crystal structure cut along the zigzag axis direction;
  • FIG. 1C is a schematic diagram showing the crystal structure of a black phosphorus monoatomic film, and is a plan view of the crystal structure of the black phosphorus monoatomic film.
  • FIG. 2 is a schematic view showing an example of a thermoelectric conversion element using the black phosphorus monoatomic film of the present invention having a stretched crystal structure.
  • FIG. 3 is a graph showing the power factor increase rate of the black phosphorus monoatomic film of the present invention having an extended crystal structure relative to an unstretched black phosphorus monoatomic film.
  • Black phosphorus atomic film with stretched crystal structure The black phosphorus atomic film of the present invention having an extended crystal structure is 2% to 10% with respect to at least one of the zigzag axis direction and the armchair axis direction based on the unit cell in the unextended black phosphorus atomic film.
  • An extended black phosphorus atomic film having an extended crystal structure hereinafter, also referred to as “black phosphorus atomic film having an extended crystal structure”).
  • the black phosphorus atomic film is obtained from natural black phosphorus or synthesized black phosphorus. For example, silica sand and coke are added to ore containing apatite and the like, heated in an electric furnace at 1,300 ° C. to 1,400 ° C., distilled as steam, and then cooled to obtain yellow phosphorus. Then, the obtained yellow phosphorus is pressurized at, for example, about 12,000 atmospheres and heated at about 200 ° C. to obtain bulk black phosphorus.
  • the crystal structure of bulk black phosphorus is an orthorhombic layered structure.
  • the method for obtaining the atomic film of black phosphorus is not particularly limited.
  • an atomic film of black phosphorus can be obtained by attaching a release member having an adhesive layer such as an adhesive tape and a base material layer to the surface of bulk black phosphorus and peeling the release member from black phosphorus. it can.
  • This method is well known as a simple method.
  • a monoatomic film of black phosphorus can be obtained from bulk black phosphorus.
  • a multilayer atomic film of black phosphorus having two or more layers can be obtained by this method.
  • a monoatomic film or a multilayer atomic film of two or more layers of black phosphorus can be obtained, for example, by adjusting the peeling force when peeling the peeling member from bulk black phosphorus.
  • “monoatomic film” refers to a single-layer atomic film.
  • “Multilayer atomic film” refers to an atomic film having a structure of two or more layers.
  • the multilayer atomic film is a concept that includes both a black phosphorus multilayer atomic film having two or more layers and a laminate in which monoatomic films are stacked.
  • two or more layers of black phosphorus multilayer atomic films are distinguished from laminates of stacked black phosphorus monoatomic films in the following points.
  • the electronic states of the layers are mixed by van der Waals interaction between layers.
  • the black phosphorus atomic film having the stretched crystal structure is a two or more black phosphorus multilayer atomic film, as in the case of the black phosphorus monoatomic film, with respect to at least one of the zigzag axis direction and the armchair axis direction, It is possible to stretch 2% to 10%.
  • the black phosphorus atomic film is a multilayer atomic film, a stress is required for stretching to the same stretching rate. Therefore, the number of layers of the multilayer atomic film is preferably 2 or more and 6 or less, and preferably 2 or more and 4 or less from the viewpoint of easy extension.
  • the black phosphorus atomic film of the present invention may have an electron and may have a hole, but has a hole. It is preferable.
  • a black phosphorus atomic film having holes is used as a material constituting a thermoelectric conversion element or a semiconductor element described later, stable performance can be exhibited.
  • a black phosphorus atom film having holes is advantageous in that a state having holes is easily generated.
  • a black phosphorus monoatomic film having a stretched crystal structure As a black phosphorus atomic film having a stretched crystal structure, a black phosphorus monoatomic film having a stretched crystal structure will be described as an example.
  • FIG. 1C is a plan view of the crystal structure of the black phosphorus monoatomic film.
  • 1A is a cross-sectional view of the crystal structure cut along the armchair axis direction of FIG. 1C
  • FIG. 1B is a cross-sectional view of the crystal structure cut along the zigzag axis direction of FIG. 1C.
  • (z) represents an axial direction perpendicular to the armchair axial direction and the zigzag axial direction.
  • a region surrounded by the sides a and b is referred to as a unit cell in the crystal structure (hereinafter sometimes referred to as “unit cell”).
  • the black phosphorus monoatomic film has two crystal axes.
  • the crystal axis direction parallel to the direction along the a side is parallel to the zigzag direction and the direction along the b side.
  • Such a crystal axis direction is referred to as an armchair direction.
  • thermoelectric properties of the black phosphorus monoatomic film may be modulated.
  • thermoelectric conversion performance can be modulated according to the degree of expansion. It was found that thermoelectric conversion performance improved dramatically when stretched in the zigzag axis direction compared to unstretched black phosphorus monoatomic film, and could be modulated according to the degree of stretching. Moreover, the thermoelectric conversion output of the armchair axial direction was very high, and the knowledge that the thermoelectric conversion performance could be further improved by extending in the armchair axial direction was obtained.
  • thermoelectric conversion output is high, and the thermoelectric conversion material which can modulate thermoelectric conversion performance, and a thermoelectric conversion element are provided. Furthermore, since the black phosphorus monoatomic film of the present invention having an expanded crystal structure is a monoatomic film, it is excellent in flexibility.
  • the reason why the above-described effect can be obtained by the present invention is that, for example, when stretched in the zigzag axis direction, the lattice constant a on the a side in the unit cell of the black phosphorus monoatomic film is elongated and the lattice constant on the b side It is presumed that b shrinks that carriers such as electrons and holes easily move and the Seebeck coefficient increases.
  • the black phosphorus monoatomic film of the present invention having an extended crystal structure is based on a unit cell in an unstretched black phosphorus monoatomic film with respect to at least one of the zigzag axis direction and the armchair axis direction.
  • it is a black phosphorus monoatomic film stretched by 2% to 10% and has a stretched crystal structure.
  • a black phosphorus monoatomic film stretched by 4% to 10% is preferable.
  • the thermoelectric conversion performance is further improved. However, if the stretching exceeds 10%, the black phosphorus monoatomic film may be broken or cracked.
  • the lattice constant a is 3.363 ⁇ -3.
  • the range of 628 cm is shown, and the lattice constant b is in the range of 4.560 cm to 4.128 cm.
  • the lattice constant a is in the range of 3.296 mm to 3.268 mm and the lattice constant b is 4.720 mm
  • the range of 5.090cm is shown.
  • the black phosphorus monoatomic film of the present invention having an extended crystal structure is not particularly limited as a method for having a crystal structure extended in at least one of the zigzag axis direction and the armchair axis direction.
  • the black phosphorus monoatomic film placed on an extensible material, at least both ends of the extensible material and the black phosphorus monoatomic film are fixed, and the extensible material and the black phosphorus monoatomic film are A stretch of the black phosphorus monoatomic film between the stretchable material and the black phosphorus monoatomic film with the black phosphorous monoatomic film sandwiched between two stretchable materials.
  • the mode of fixing at least both ends of the stretchable material and the black phosphorus monoatomic film is not particularly limited, and the entire surface of the stretchable material and the black phosphorus monoatomic film may be fixed, and only the end portion is fixed. It may be fixed.
  • any means may be used as the means for fixing.
  • it may be fixed by an adhesive, an adhesive, or the like, may be fixed by a fixing member such as a screw, or may be fixed by other means.
  • a black phosphorus monoatomic film is attached to an adhesive layer of a peeling member (for example, an adhesive tape) having an adhesive layer and a base layer used for peeling a black phosphorus monoatomic film from bulk black phosphorus.
  • both ends are gripped and stretched in at least one of the zigzag axial direction and the armchair axial direction to provide a crystal structure stretched in the black phosphorus monoatomic film.
  • an elastic material for example, a rubber material
  • the elastic material is used so as to include a stretched state.
  • a black phosphorus monoatomic film is placed on a bendable material or a bendable material so that the bendable material or the bendable material and the black phosphorus monoatomic film are
  • fixing or bending the black phosphorus monoatomic film so that the bendable material or the bendable material is inside, the zigzag axis direction and the armchair axis
  • having an extended crystal structure means that at least a part of the black phosphorus monoatomic film is in at least one of the zigzag axis direction and the armchair axis direction.
  • the entire black phosphorus monoatomic film does not have to have a crystal structure that is extended in at least one of the zigzag axis direction and the armchair axis direction.
  • a crystal structure stretched in the black phosphorus monoatomic film by being bent or bent is provided, it is used so as to include a bent or bent state. Since the black phosphorus monoatomic film of the present invention can modulate the thermoelectric conversion action according to the degree of extension, it can be used for applications such as sensors as a thermoelectric material by utilizing such characteristics.
  • the modulation function works when the specimen expands or deforms due to heat, stress, etc., and how much expansion or deformation occurs. Can be measured like a sensor according to the degree of extension (ie, the degree of modulation) of the monoatomic film.
  • the black phosphorus monoatomic film has an effect of changing the electric resistance when the monoatomic film is deformed by simply applying a stress without depending on heat. Using this action, for example, a black phosphorus monoatomic film can be used as a material for a semiconductor element.
  • thermoelectric material ⁇ Thermoelectric material> Next, the thermoelectric material will be described.
  • the figure of merit Z is used as an index for evaluating the performance of thermoelectric materials. The higher the figure of merit Z is, the higher the thermoelectric conversion performance.
  • Z is represented by the following formula A.
  • P in the formula A is a thermoelectric output factor (hereinafter sometimes referred to as “power factor”), and is represented by the following formula B.
  • S represents the Seebeck coefficient
  • electrical conductivity
  • thermal conductivity.
  • thermoelectric conversion performance can be further improved. I understand. That is, it is considered that the performance as a thermoelectric material can be dramatically improved by improving the thermoelectric output factor P of the black phosphorus monoatomic film.
  • the power factor of the expanded black phosphorus monoatomic film is larger than that of the unstretched black phosphorus monoatomic film.
  • the improvement of thermoelectric conversion performance as a thermoelectric material can be achieved.
  • thermoelectric conversion performance as the thermoelectric material of the black phosphorus monoatomic film is improved by extending the crystal structure in at least one of the zigzag axis direction and the armchair axis direction. It was verified by stabilizing the crystal structure stretched in the axial direction and simulating the electronic state.
  • simulation used for the verification of the present invention will be described in detail.
  • an ultrasoft pseudopotential was used as the external potential
  • GGA-PW91 was used as the exchange correlation interaction functional.
  • the Monkhorst-Pack method was used for the k-point sampling method, and the k-point mesh was 12 ⁇ 10 ⁇ 1. Further, the cutoff energy of the wave function was 30 Ry, and the cutoff energy of the electron density was 300 Ry.
  • thermoelectric power factor In the simulation of the black phosphorus monoatomic film of the present invention having the stretched crystal structure, the Boltzmann based on the relaxation time approximation is used to calculate the thermoelectric power factor of the black phosphorus monoatomic film having the stretched crystal structure. Semiclassical transport theory was adopted.
  • the power factor P ⁇ in either the zigzag axis direction or the armchair axis direction of the black phosphorus monoatomic film having the stretched crystal structure is given by the following equation 3 using the electrical conductivity ⁇ ⁇ and the Seebeck coefficient S ⁇ . .
  • indicates the axial direction and indicates either the zigzag axial direction or the armchair axial direction.
  • the electrical conductivity ⁇ ⁇ and the Seebeck coefficient S ⁇ are given by the following formula 4.
  • L ⁇ ( ⁇ ) is given by the following equation (5).
  • the orbital energy and the group velocity are both calculated by the first principle calculation.
  • the power factor was calculated when the stretch ratio for stretching in the zigzag axis direction and the armchair axis direction was changed.
  • the k-point mesh used in the calculation of L ⁇ ( ⁇ ) is 120 ⁇ 100 ⁇ 1.
  • ⁇ ⁇ is a current relaxation time in the direction along the ⁇ axis (zigzag axis direction or armchair axis direction).
  • 1.34 ⁇ 10 ⁇ 13 sec which is an experimental value of bulk black phosphorus, was adopted as the current relaxation time in the direction along the zigzag axis.
  • the k-point mesh used for calculating L ⁇ ( ⁇ ) is 120 ⁇ 100 ⁇ 1.
  • the experimental value of 6.20 ⁇ 10 ⁇ 14 sec of bulk black phosphorus was adopted as the current relaxation time in the direction along the armchair axis.
  • thermoelectric material When used as a thermoelectric material, any form can be used as long as the black phosphorous monoatomic film of the present invention having an extended crystal structure is included in the thermoelectric material, and the mode is not particularly limited.
  • the black phosphorus monoatomic film of the present invention having an extended crystal structure can be used as a single monolayer.
  • two or more layers of black phosphorus monoatomic films adjusted to the same stretching ratio may be stacked to form two or more layers, or two or three or more black phosphorus monoatoms adjusted to different stretching ratios. Two or more layers may be formed by stacking the films.
  • a black phosphorus monoatomic film having a crystal structure extended in the zigzag axis direction and a black phosphorus monoatomic film having a crystal structure extended in the armchair axis direction may be stacked to form a multilayer.
  • the black phosphorus monoatomic film of the present invention having an expanded crystal structure and an unstretched black phosphorus monoatomic film may be stacked to form a multilayer. Note that, as described above, a laminated body having a multilayer structure in which black phosphorus monoatomic films are stacked is distinguished from a multilayer atomic film having two or more layers.
  • holes can be supplied by doping oxygen black by adsorbing the black phosphorus monoatomic film of the present invention having an extended crystal structure.
  • a thermoelectric material in which oxygen is adsorbed on a black phosphorus monoatomic film having an expanded crystal structure can be used as a thermoelectric conversion element as it is, for example.
  • electrical doping when a positive voltage is applied to the black phosphorus monoatomic film, holes are supplied, and when a negative voltage is applied, electrons are supplied.
  • the doping amount when the extended black phosphorus monoatomic film is doped depends on chemical doping and electrical doping.
  • the number of carriers per phosphorus atom is preferably in the range of 0.0100 to 0.0700 (e / atom). The number of carriers may be in this range regardless of whether the carriers are holes or electrons. From the viewpoint of further improving the thermoelectric conversion performance, a range of 0.0100 to 0.0300 (e / atom) is more preferable. When the doping amount is within this range, an elongated black phosphorus monoatomic film having better thermoelectric conversion performance can be obtained.
  • the doping amount when the black phosphorus monoatomic film extended in the armchair axial direction is doped is 0.00280 as the number of carriers per phosphorus atom regardless of chemical doping or electrical doping.
  • the range is preferably -0.00350 (e / atom), more preferably in the range of 0.0300-0.0345 (e / atom).
  • the number of carriers may be in the range of any carrier of holes or electrons.
  • the black phosphorus monoatomic film of the present invention having an expanded crystal structure has high thermoelectric conversion performance as described above.
  • the black phosphorus monoatomic film of the present invention having an expanded crystal structure can be suitably used as a thermoelectric material for a thermoelectric conversion element.
  • thermoelectric conversion element of the present invention comprises the black phosphorus monoatomic film of the present invention having an extended crystal structure and an electrode, and is provided between the black phosphorus monoatomic film of the present invention having an extended crystal structure and the electrode.
  • a structure in which an electrolyte material or a dielectric material is disposed is provided.
  • the thermoelectric conversion element of this invention may be further provided with members, such as a board
  • a substrate showing flexibility of a resin material or the like on the side where the electrolyte material of the black phosphorus monoatomic film of the present invention having an extended crystal structure provided opposite to the electrode with the electrolyte material interposed is not disposed Can be provided.
  • the electrode provided opposite to the black phosphorus monoatomic film of the present invention having a crystal structure stretched across the electrolyte material is used as the first electrode, the following structure is formed. It may be. That is, a second electrode different from the first electrode can be provided on the side where the electrolyte material of the black phosphorus monoatomic film of the present invention having an expanded crystal structure is not disposed.
  • the first electrode in the direction of the plane including the black phosphorus monoatomic film having the stretched crystal structure is disposed on the side where the electrolyte material of the black phosphorus monoatomic film of the present invention having the stretched crystal structure is disposed. It is also possible to provide a second electrode and a third electrode different from the above, and to provide the second electrode and the third electrode so as to face each other with an electrolyte material interposed therebetween. Further, on the plane including the first electrode provided facing the black phosphorus monoatomic film of the present invention having an expanded crystal structure with the electrolyte material interposed therebetween, the first material is in contact with the electrolyte material. A second electrode can be provided apart from the other electrode.
  • a functional layer can be provided between the electrode and the electrolyte material, or between the electrolyte material and the black phosphorus monoatomic film of the present invention having a stretched crystal structure, or both.
  • a thermoelectric conversion element having a structure in which a dielectric material is disposed between a black phosphorus monoatomic film of the present invention having an expanded crystal structure and an electrode, the structure exemplified above is used.
  • a structure using a dielectric material may be formed instead of the electrolyte material.
  • FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the thermoelectric conversion element of the present invention.
  • 1 is a black phosphorus monoatomic film of the present invention having an expanded crystal structure
  • 2 is an electrolyte material
  • 3 is an electrode.
  • thermoelectric conversion element shown in FIG. 2 for example, the electrolyte material 2 is provided on the electrode 3, and the black phosphorus monoatomic film 1 of the present invention having a crystal structure stretched on the electrolyte material 2 is provided.
  • a circuit is formed to connect the electrode 3 and the black phosphorus monoatomic film 1 of the present invention having an expanded crystal structure so that a voltage can be applied.
  • a circuit for connecting the electrode 3 and the black phosphorus monoatomic film 1 of the present invention having the stretched crystal structure is formed.
  • the electrode 3 is stretched.
  • the circuit for connecting the black phosphorus monoatomic film 1 of the present invention having the above crystal structure may not be formed.
  • the thermoelectric conversion element shown in FIG. 2 will be described as an example, the thermoelectric conversion element of the present invention is not limited to the thermoelectric conversion element shown in FIG.
  • thermoelectric conversion element of the present invention shown in FIG. 2, when a voltage is applied between the electrode 3 and the black phosphorus monoatomic film 1 having a stretched crystal structure, black phosphorus having a stretched crystal structure is generated by the electric field effect. Thermoelectric conversion performance is improved by injecting holes or electrons into the monoatomic film 1. When applying a voltage, injection of holes or electrons can be selected by selecting a positive voltage or a negative voltage.
  • injection of holes or electrons can be selected by selecting a positive voltage or a negative voltage.
  • FIG. 2 when a voltage is applied between the electrode 3 and the black phosphorus monoatomic film 1 having an expanded crystal structure, for example, when a temperature difference is generated between the A side and the B side, the expanded crystal The black phosphorus monoatomic film 1 having a structure exhibits an excellent thermoelectric conversion action and can efficiently generate power. Note that one of the temperature differences between the A side and the B side may be heated and the other may be cooled. Any means may be sufficient as a heating means and a cooling means, and the
  • thermoelectric conversion element of the present invention shown in FIG. 2, in the state where a voltage is applied between the electrode 3 and the black phosphorus monoatomic film 1 having the stretched crystal structure, If a temperature difference is generated at, power is generated efficiently.
  • the black phosphorus monoatomic film 1 of the present invention having a stretched crystal structure can be used as an anode or a cathode.
  • a thermoelectric conversion element using the black phosphorus monoatomic film 1 of the present invention having an expanded crystal structure as an anode, and a thermoelectric conversion element using the black phosphorus monoatomic film 1 having an expanded crystal structure as a cathode, Can be used in series.
  • thermoelectric conversion element of the present invention when an ionic gel that is a gel-like electrolyte material is used as the electrolyte material 2, the black phosphorus monoatomic film 1 of the present invention having an expanded crystal structure is used as an anode, It can also be used as a cathode.
  • thermoelectric conversion element of the present invention each member constituting the thermoelectric conversion element of the present invention will be described in detail.
  • reference numerals are omitted.
  • the material used for the electrode is not particularly limited as long as it is formed of a substance exhibiting conductivity.
  • metals, metal oxides, conductive polymers and the like are used.
  • the metal include magnesium, aluminum, gold, silver, copper, chromium, titanium, nickel, molybdenum, tantalum, indium, palladium, lithium, calcium, and alloys thereof.
  • Specific examples of the metal oxide include metal oxide films such as lithium oxide, magnesium oxide, aluminum oxide, indium tin oxide (ITO), tin oxide (NESA), indium oxide, zinc oxide, and indium zinc oxide. can give.
  • the conductive polymer examples include polyaniline, polythiophene, polythiophene derivatives, polypyrrole, polypyridine, a complex of polyethylenedioxythiophene and polystyrene sulfonic acid, and the like.
  • the shape used for the electrolyte material may be solid, gel, or liquid, and is not particularly limited.
  • An ionic liquid that is in the form of a liquid in that it exists stably in air, the types of cations and anions, and their combinations can be created without limit, and the vapor pressure is substantially zero. It can be preferably used. Moreover, it is more preferable to use an ionic gel from the point of handleability. Furthermore, if an ionic gel is used as an electrolyte material, a thermoelectric conversion element superior in flexibility can be obtained.
  • “(meth) acryl” is an expression including both “acryl” and “methacryl”.
  • solid electrolyte materials include CuI, CuBr, CuSCN, polyaniline, polypyrrole, polythiophene, arylamine-based polymers, polymers having (meth) acrylic groups, polyvinylcarbazole, triphenyldiamine polymers, and polyoligomers.
  • fluorine ion exchange resins having proton conductivity such as ethylene glycol methacrylate and perfluorosulfonate, perfluorocarbon copolymers, and perfluorocarbon sulfonic acids.
  • the liquid electrolyte material can produce an unlimited number of types of cations and anions and combinations thereof.
  • an ionic liquid that is a liquid electrolyte material
  • an imidazolium ion, a pyrrolidinium ion, a pyridinium ion, a piperidinium ion, or the like may be used as a cationic substance.
  • a halide ion (Cl ⁇ , Br ⁇ ), tetrafluoroborate ion (BF 4 ⁇ ), hexafluorophosphate ion (PF 6 ⁇ ), bis (trifluoromethanesulfonyl) imide ion ((CF 3 SO 2 ) 2 N ⁇ ) and the like are used as anions Is mentioned.
  • These cationic substances and anionic substances may be used alone or in combination of two or more.
  • the gel electrolyte material examples include an ionic gel obtained by gelling an ionic liquid.
  • the substance that gels the ionic liquid is not particularly limited as long as it is a substance that can gel the ionic liquid.
  • the ionic gel is obtained, for example, as follows. It can be obtained by adding poly (meth) acrylic acid or a salt thereof to the ionic liquid.
  • the gel electrolyte material may be a polymer ionic gel obtained by reacting an imidazolium compound or a salt thereof with an acid monomer such as acrylic acid, methacrylic acid, or vinyl sulfonic acid.
  • dielectric material Specific examples of the dielectric material include silicon oxide (SiO 2 ), silicon oxynitride (SiO x N y ), silicon nitride (SiN y ), hafnium oxide (HfO 2 ), and lanthanum oxide (La 2 O). 3 ), zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ) and the like, and are not particularly limited. These dielectric materials can be used in the form of a film, for example. A known method may be adopted as a method for forming the film-like dielectric material.
  • the black phosphorus monoatomic film having the stretched crystal structure is as described above.
  • the thermoelectric conversion element of the present invention has a stretched crystal structure so that at least one of the zigzag axis direction and the armchair axis direction, which is the extension direction of the black phosphorus monoatomic film, is parallel to the direction in which the temperature difference occurs. It is preferable to dispose a black phosphorus monoatomic film.
  • the black phosphorus monoatomic film of the present invention having an expanded crystal structure can modulate thermoelectric conversion performance according to the degree of expansion by stretching in at least one of the zigzag axis direction and the armchair axis direction.
  • the black phosphorus monoatomic film with the degree of expansion being changed may be arranged so that at least one of the zigzag axis direction and the armchair axis direction is parallel to the direction in which the temperature difference occurs.
  • parallel means that at least one of the zigzag axis direction and the armchair axis direction and the direction in which the temperature difference occurs are in a parallel relationship, and even if it is not in a completely parallel state, it can be regarded as having a parallel relationship at a glance. The parallel case is also included.
  • thermoelectric conversion element is configured using the black phosphorus monoatomic film of the present invention having the stretched crystal structure
  • the electrolyte material is stretched in advance in at least one of the zigzag axial direction and the armchair axial direction. You may provide on. Further, an unstretched black phosphorus monoatomic film is provided on the electrolyte material, and the black phosphorus monoatomic film is stretched along with the electrolyte material in at least one of the zigzag axial direction and the armchair axial direction, and then the electrolyte is placed on the electrode Materials may be provided.
  • thermoelectric conversion element by providing an unstretched black phosphorus monoatomic film on the electrolyte material
  • a black phosphorus monoatom is obtained by bending or bending the electrode side inside.
  • the membrane may be stretched in at least one of the zigzag axial direction and the armchair axial direction. In this case, what is necessary is just to be used for the use used in the state bent or bent with the electrode side of the thermoelectric conversion element inside.
  • thermoelectric conversion element of the present invention can be used as, for example, a power system integrated with a solar power generation element and a storage element. Moreover, since the thermoelectric conversion element of this invention uses the black phosphorus monoatomic film
  • thermoelectric conversion action when used as a wearable thermoelectric conversion element, can be modulated by the stretching action caused by the operation at the time of wearing, so that it can be used for applications such as sensors. Further, it can be used for a field effect transistor or a thin film transistor.
  • the black phosphorus monoatomic film having the stretched crystal structure of the present invention can be used as a material for a semiconductor element.
  • the semiconductor element includes an electrode and a black phosphorus monoatomic film having an extended crystal structure.
  • a semiconductor element in which a black phosphorus monoatomic film is disposed between one electrode and the other electrode, and a circuit for connecting the one electrode to the other electrode is disposed.
  • both electrodes may be arranged at both ends in the zigzag axis direction of the black phosphorus monoatomic film, or may be arranged at both ends in the armchair axis direction. What is necessary is just to arrange
  • a semiconductor element having a structure in which a black phosphorus monoatomic film having a stretched crystal structure is disposed between one electrode and the other electrode will be described as an example.
  • the black phosphorus monoatomic film having an expanded crystal structure disposed between both electrodes When a voltage is applied between one electrode and the other electrode, for example, holes can be injected into the black phosphorus monoatomic film having an expanded crystal structure disposed between both electrodes due to the field effect. it can.
  • the black phosphorus monoatomic film into which holes are injected becomes a black phosphorus monoatomic film having holes.
  • a black phosphorus monoatomic film having holes functions as a so-called P-type semiconductor.
  • the black phosphorus monoatomic film is a black phosphorus monoatomic film having holes
  • this semiconductor element has a black phosphorus monoatomic film having holes between one electrode and the other electrode. It becomes a structure.
  • the material of an electrode is not specifically limited, For example, the material similar to the material illustrated with the above-mentioned electroconversion element can be used.
  • the black phosphorus monoatomic film having the stretched crystal structure is used for the thermoelectric material, the thermoelectric conversion element, and the semiconductor element.
  • the black phosphorus monoatomic film having the stretched crystal structure is described.
  • a black phosphorus multilayer atomic film stretched by 2% to 10% can improve the power factor as compared with a non-stretched black phosphorus monoatomic film stretched by 2% to 10%.
  • the multilayer atomic film requires a stress for stretching. Therefore, when a multilayer atomic film is used, the degree of extension is preferably in the range of 2% to less than 8%, and preferably in the range of 2% to 6%.
  • the hole doping amount indicates an optimum doping amount for maximizing the effect as a thermoelectric material.
  • the stretch rate of the black phosphorus monoatomic film is larger than that of the unstretched black phosphorus monoatomic film, and the amount of hole doping is increased. It can be seen that the optimum amount is reduced. That is, it can be seen that the black phosphorus monoatomic film shows an excellent thermoelectric material having a higher thermoelectric conversion performance with a small amount of doping by stretching in the zigzag axis direction.
  • the optimum amount of hole doping tends to slightly increase compared to the case of an unstretched black phosphorus monoatomic film. It turns out that it is very few. That is, it can be seen that in the black phosphorus monoatomic film stretched in the armchair axial direction, the optimum amount of hole doping does not depend on the stretch rate and varies within a very narrow range. Then, it can be seen that the effect as a thermoelectric material can be maximized with a very small amount of hole doping as compared with the case of extending in the zigzag axis direction.
  • the power factor of the carbon nanotube thin film in the thermoelectric conversion element using the conventionally known carbon nanotube thin film was 0.11 mW / m ⁇ K 2 .
  • the black phosphorus monoatomic film of the present invention having an extended crystal structure, when extended in the zigzag axis direction as shown in Table 1, has a capacity of up to about 10 mW / m ⁇ K 2 .
  • the power factor can be modulated in the range, and when it is extended in the armchair axial direction, a huge power factor exceeding 10 mW / m ⁇ K 2 is obtained, and approximately 14 W / m ⁇ K 2 to 17 W / m ⁇ since K 2 about power factor in the range of possible modulation, it is found to exhibit excellent thermoelectric conversion performance as compared with the conventional thermoelectric material. Further, when the power factor is modulated in the zigzag axial direction and the lower limit value is 1 mW / m ⁇ K 2 , a thermoelectric conversion material exhibiting excellent thermoelectric conversion performance can be obtained.
  • thermoelectric conversion performance is maximized. Therefore, the amount of doping for the purpose is reduced.
  • the doping for maximizing the thermoelectric conversion performance is performed. The amount is extremely small. Therefore, for example, when the black phosphorus monoatomic film of the present invention having a stretched crystal structure is used for a thermoelectric conversion element, and this thermoelectric conversion element is used for a field effect transistor, the voltage applied to the gate electrode should be lowered. As a result, it is expected that leakage current can be suppressed and energy saving can be achieved.
  • the black phosphorus multilayer atomic film having the stretched crystal structure of the present invention was stretched in the zigzag axial direction or the armchair axial direction by the method described above.
  • the change in power factor was verified by simulation.
  • the results are shown in Tables 3 and 4.
  • the hole doping amount assumes that hole carriers are supplied by electrical doping. Further, the hole doping amount represents the number of carriers per phosphorus atom.
  • the black phosphorus multilayer atomic film was assumed to be a two-layer multilayer atomic film.
  • the power factor was improved also in the case of the two-layer black phosphorus multilayer atomic film having the stretched crystal structure as compared with the case where it was not stretched.
  • the black phosphorus atomic film having the stretched crystal structure is a multilayer atomic film having two or more layers, excellent performance as a thermoelectric material can be obtained.
  • the two-layer black phosphorus multi-layer atomic film has a change in power factor depending on the expansion rate. Therefore, the black phosphorus atomic film that can modulate the thermoelectric conversion performance according to the degree of expansion. Is obtained. Therefore, the black phosphorus multilayer atomic film is expected to be used in the same manner as the black phosphorus monoatomic film.
  • the black phosphorus multilayer atomic film is preferably extended by 2% to 6%.
  • the black phosphorus single-layer film is stretched to the same extent in the range of 2% to 8%.
  • the power factor is superior compared to the case where From this, it can be seen that by using the black phosphorus multilayer atomic film, a higher effect can be obtained with a smaller elongation rate than in the case of using the black phosphorus single layer film.
  • the number of carriers per phosphorus atom is, for example, in the range of 0.0300 to 0.1200 (e / atom) in the case of hole carriers. It is preferable. If the doping amount is within this range, an elongated black phosphorus multilayer atomic film having better thermoelectric conversion performance can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

An embodiment of the present invention is a crystalline black phosphorus atom film stretched 2%–10% in the zigzag axial direction and/or the armchair axial direction, with a unit cell of an unstretched black phosphorus atom film as a reference.

Description

黒リン原子膜、熱電材料、熱電変換素子、及び半導体素子Black phosphorus atomic film, thermoelectric material, thermoelectric conversion element, and semiconductor element
 本発明は、黒リン原子膜、熱電材料、熱電変換素子、及び半導体素子に関する。 The present invention relates to a black phosphorus atomic film, a thermoelectric material, a thermoelectric conversion element, and a semiconductor element.
 今日、消費されているエネルギーのうちの6割を超えるエネルギーが廃熱として環境中に放出されており、従来から、この廃熱エネルギーを有効利用することが検討されている。近年、例えば、物体の温度差が電圧に直接変換される現象である、いわゆるゼーベック効果と呼ばれる現象を利用して、熱エネルギーを電気エネルギーに変換する熱電変換技術の開発が行われるようになってきている。 Today, more than 60% of the consumed energy is released into the environment as waste heat, and it has been studied to use this waste heat energy effectively. In recent years, for example, thermoelectric conversion technology that converts thermal energy into electrical energy has been developed using a phenomenon called the Seebeck effect, which is a phenomenon in which a temperature difference of an object is directly converted into a voltage. ing.
 このような熱電変換技術に用いる材料としては、例えば、ビスマス-テルル系等の無機系材料が知られていた。しかし、無機系材料では、機械的強度が非常に弱く、脆弱な材料である難点を抱えていることもあり、用途が限られていた。そのうえ、希少元素を含む無機系材料では、コストが高い上に、資源確保が困難になる可能性が考えられ、継続的な製造が困難になる場合もあり得る。そのため、希少元素を含まない熱電材料が求められていた。
 一方、希少元素を含まない熱電材料として、例えば、カーボンナノチューブ等の炭素原子材料や、有機導電性高分子薄膜等の有機材料が知られている。しかし、これらの材料を用いた熱電材料は、熱電変換性能が十分ではなく満足できるものではなかった。
As materials used for such thermoelectric conversion technology, for example, inorganic materials such as bismuth-tellurium-based materials have been known. However, inorganic materials have a very low mechanical strength and may have the disadvantage of being a fragile material, so their applications are limited. In addition, an inorganic material containing a rare element has a high cost and may be difficult to secure resources, and may be difficult to continuously manufacture. Therefore, a thermoelectric material that does not contain a rare element has been demanded.
On the other hand, as thermoelectric materials that do not contain rare elements, for example, carbon atom materials such as carbon nanotubes, and organic materials such as organic conductive polymer thin films are known. However, thermoelectric materials using these materials are not satisfactory because their thermoelectric conversion performance is not sufficient.
 最近、これらの材料に代わる熱電材料として、単一軽元素である黒リンの単原子膜が注目されている。黒リン単原子膜は、リンの元素から構成されるものであり、リンは、ありふれた元素であるため、資源確保の点からも有利である。黒リン単原子膜を熱電材料として利用する検討は、始められたばかりであり(例えば、文献1,2)、熱電材料として、より高性能な黒リン単原子膜の開発が期待されている。
 文献1 Large thermoelectric power factors in black phosphorus and phosphorene、Hongyan Lv, Wenjian Lu, Dingfu Shao, and Yuping Sun、arXiv:1404.5171
 文献2 Enhanced Thermoelectric Efficiency via Orthogonal Electrical and Thermal Conductances in Phosphorene、Ruixiang Fei, Alireza Faghaninia, Ryan Soklaski, Jia-An Yan, Cynthia Lo, and Li Yang、arXiv:1405.2836
Recently, a monoatomic film of black phosphorus, which is a single light element, has attracted attention as a thermoelectric material that can replace these materials. A black phosphorus monoatomic film is composed of a phosphorus element. Phosphorus is a common element, which is advantageous in terms of securing resources. A study of using a black phosphorus monoatomic film as a thermoelectric material has just started (for example, Documents 1 and 2), and development of a higher performance black phosphorus monoatomic film is expected as a thermoelectric material.
Reference 1 Large thermoelectric power factors in black phosphorus and phosphorene, Hongyan Lv, Wenjian Lu, Dingfu Shao, and Yuping Sun, arXiv: 1404.5171
Reference 2 Enhanced Thermoelectric Efficiency via Orthogonal Electrical and Thermal Conductances in Phosphorene, Ruixiang Fei, Alireza Faghaninia, Ryan Soklaski, Jia-An Yan, Cynthia Lo, and Li Yang, arXiv: 1405.2836
 本発明は上記事情に鑑みなされたものであり、熱電変換材料に有用であり、熱電変換性能に優れ、伸張度合いに応じて熱電変換性能を変調し得る伸張された結晶構造を有する黒リン原子膜を提供することを目的とする。
 また、熱電変換出力が高く、熱電変換性能を変調し得る熱電変換材料、及び熱電変換素子を提供することを目的とする。さらに、半導体素子を提供することを目的とする。
The present invention has been made in view of the above circumstances, is useful for thermoelectric conversion materials, has excellent thermoelectric conversion performance, and has a stretched crystal structure that can modulate thermoelectric conversion performance according to the degree of stretching. The purpose is to provide.
It is another object of the present invention to provide a thermoelectric conversion material and a thermoelectric conversion element that have a high thermoelectric conversion output and can modulate thermoelectric conversion performance. Furthermore, it aims at providing a semiconductor element.
 本発明者は鋭意検討した結果、黒リン原子膜を所定の方向に対して伸張させることにより、熱電変換性能が向上するとともに、伸張の度合いに応じて熱電変換性能を変調できることを見出し、本発明の実施形態を完成させるに至った。
 すなわち、前記課題を解決するための手段は、例えば、以下のとおりの態様を含む。
As a result of intensive studies, the present inventors have found that by extending the black phosphorus atomic film in a predetermined direction, the thermoelectric conversion performance can be improved, and the thermoelectric conversion performance can be modulated according to the degree of extension. The present embodiment has been completed.
That is, the means for solving the above-mentioned problems include, for example, the following aspects.
<1> 未伸張の黒リン原子膜における単位胞を基準として、ジグザグ軸方向及びアームチェア軸方向の少なくとも一方に2%~10%伸張された結晶構造を有する黒リン原子膜。 <1> A black phosphorus atomic film having a crystal structure that is stretched by 2% to 10% in at least one of the zigzag axis direction and the armchair axis direction with reference to the unit cell in the unstretched black phosphorus atomic film.
<2> 前記黒リン原子膜が、正孔を有する<1>に記載の黒リン原子膜。 <2> The black phosphorus atomic film according to <1>, wherein the black phosphorus atomic film has holes.
<3> 前記黒リン原子膜が、単原子膜である<1>又は<2>に記載の黒リン原子膜。 <3> The black phosphorus atomic film according to <1> or <2>, wherein the black phosphorus atomic film is a monoatomic film.
<4> 前記黒リン原子膜が、多層原子膜である<1>又は<2>に記載の黒リン原子膜。 <4> The black phosphorus atomic film according to <1> or <2>, wherein the black phosphorus atomic film is a multilayer atomic film.
<5> <1>~<4>のいずれか1項に記載の黒リン原子膜を含む熱電材料。 <5> A thermoelectric material including the black phosphorus atom film according to any one of <1> to <4>.
<6> 更に、未伸張の黒リン原子膜を含む<5>に記載の熱電材料。 <6> The thermoelectric material according to <5>, further including an unstretched black phosphorus atomic film.
<7> 前記ジグザグ軸方向に伸張された結晶構造を有する黒リン単原子膜におけるドープ量が、リン原子1個あたりのキャリア数として、0.0100~0.0700(e/atom)である<5>又は<6>に記載の熱電材料。 <7> The doping amount in the black phosphorus monoatomic film having a crystal structure stretched in the zigzag axis direction is 0.0100 to 0.0700 (e / atom) as the number of carriers per phosphorus atom < The thermoelectric material according to 5> or <6>.
<8> 前記アームチェア軸方向に伸張された結晶構造を有する黒リン単原子膜におけるドープ量が、リン原子1個あたりのキャリア数として、0.00280~0.00350(e/atom)である<5>又<6>に記載の熱電材料。 <8> The doping amount in the black phosphorus monoatomic film having a crystal structure extended in the armchair axial direction is 0.00280 to 0.00350 (e / atom) as the number of carriers per phosphorus atom. <5> The thermoelectric material according to <6>.
<9> <1>~<4>のいずれか1項に記載の黒リン原子膜と、
 電極と、
 前記黒リン原子膜と前記電極との間に配置された電解質材料又は誘電体材料と、
 を備えた熱電変換素子。
<9> The black phosphorus atomic film according to any one of <1> to <4>,
Electrodes,
An electrolyte material or a dielectric material disposed between the black phosphorus atomic film and the electrode;
A thermoelectric conversion element.
<10> <1>~<4>のいずれか1項に記載の黒リン原子膜と、
 電極と、
 を備えた半導体素子。
<10> The black phosphorus atomic film according to any one of <1> to <4>,
Electrodes,
A semiconductor device comprising:
 本発明の実施形態によれば、熱電変換材料に有用であり、熱電変換性能に優れ、伸張度合いに応じて熱電変換性能を変調し得る伸張された結晶構造を有する黒リン原子膜が提供される。
 また、本発明の実施形態によれば、熱電変換出力が高く、熱電変換性能を変調し得る熱電変換材料、及び熱電変換素子が提供される。さらに、半導体素子が提供される。
According to an embodiment of the present invention, there is provided a black phosphorus atomic film that is useful for a thermoelectric conversion material, has excellent thermoelectric conversion performance, and has a stretched crystal structure that can modulate the thermoelectric conversion performance according to the degree of stretching. .
Moreover, according to embodiment of this invention, the thermoelectric conversion output is high, and the thermoelectric conversion material which can modulate thermoelectric conversion performance, and the thermoelectric conversion element are provided. Furthermore, a semiconductor device is provided.
図1Aは、黒リン単原子膜の結晶構造を示す模式図であり、アームチェア軸方向に沿って切断した結晶構造の断面図FIG. 1A is a schematic diagram showing a crystal structure of a black phosphorus monoatomic film, and is a cross-sectional view of the crystal structure cut along the armchair axis direction. 図1Bは、黒リン単原子膜の結晶構造を示す模式図であり、ジグザグ軸方向に沿って切断した結晶構造の断面図、FIG. 1B is a schematic diagram showing a crystal structure of a black phosphorus monoatomic film, a cross-sectional view of the crystal structure cut along the zigzag axis direction; 図1Cは、黒リン単原子膜の結晶構造を示す模式図であり、黒リン単原子膜の結晶構造の平面図である。FIG. 1C is a schematic diagram showing the crystal structure of a black phosphorus monoatomic film, and is a plan view of the crystal structure of the black phosphorus monoatomic film. 図2は、伸張された結晶構造を有する本発明の黒リン単原子膜を用いた熱電変換素子の一例を示す模式図である。FIG. 2 is a schematic view showing an example of a thermoelectric conversion element using the black phosphorus monoatomic film of the present invention having a stretched crystal structure. 図3は、伸張された結晶構造を有する本発明の黒リン単原子膜の、未伸張の黒リン単原子膜に対するパワーファクターの増加率を示すグラフである。FIG. 3 is a graph showing the power factor increase rate of the black phosphorus monoatomic film of the present invention having an extended crystal structure relative to an unstretched black phosphorus monoatomic film.
 以下、本発明の一例である実施形態について、詳細に説明する。なお、以下の説明において、本発明の実施形態をまとめて「本発明」という。 Hereinafter, an embodiment that is an example of the present invention will be described in detail. In the following description, embodiments of the present invention are collectively referred to as “the present invention”.
<伸張された結晶構造を有する黒リン原子膜>
 伸張された結晶構造を有する本発明の黒リン原子膜は、未伸張の黒リン原子膜における単位胞を基準として、ジグザグ軸方向及びアームチェア軸方向の少なくとも一方に対して、2%~10%伸張させた黒リン原子膜であり、伸張された結晶構造を有する(以下、「伸張された結晶構造を有する黒リン原子膜」ということがある)。
<Black phosphorus atomic film with stretched crystal structure>
The black phosphorus atomic film of the present invention having an extended crystal structure is 2% to 10% with respect to at least one of the zigzag axis direction and the armchair axis direction based on the unit cell in the unextended black phosphorus atomic film. An extended black phosphorus atomic film having an extended crystal structure (hereinafter, also referred to as “black phosphorus atomic film having an extended crystal structure”).
[黒リン原子膜]
 黒リン原子膜は、天然の黒リン、又は合成した黒リンから得られるものである。例えば、リン灰石等を含む鉱石にケイ砂とコークスを加え、電気炉中で1,300℃~1,400℃で加熱し、蒸気として留出させた後、冷却すると黄リンが得られる。そして、得られた黄リンを、例えば、約12,000気圧で加圧し、約200℃で加熱することにより、バルクの黒リンが得られる。
[Black phosphorus atomic film]
The black phosphorus atomic film is obtained from natural black phosphorus or synthesized black phosphorus. For example, silica sand and coke are added to ore containing apatite and the like, heated in an electric furnace at 1,300 ° C. to 1,400 ° C., distilled as steam, and then cooled to obtain yellow phosphorus. Then, the obtained yellow phosphorus is pressurized at, for example, about 12,000 atmospheres and heated at about 200 ° C. to obtain bulk black phosphorus.
 バルクの黒リンの結晶構造は、斜方晶系の層状構造である。黒リンの原子膜を得るための方法は特に限定されない。例えば、バルクの黒リンの表面に粘着テープのような粘着層と基材層とを有する剥離部材を貼りつけ、この剥離部材を黒リンから剥離させることで、黒リンの原子膜を得ることができる。この方法は、簡易的に得られる方法としてよく知られているものである。この方法によれば、バルクの黒リンから、黒リンの単原子膜が得られる。また、この方法によって、2層以上の黒リンの多層原子膜も得られる。単原子膜、又は2層以上の黒リンの多層原子膜は、例えば、剥離部材をバルクの黒リンから剥離するときの剥離力を調整することで得ることができる。 The crystal structure of bulk black phosphorus is an orthorhombic layered structure. The method for obtaining the atomic film of black phosphorus is not particularly limited. For example, an atomic film of black phosphorus can be obtained by attaching a release member having an adhesive layer such as an adhesive tape and a base material layer to the surface of bulk black phosphorus and peeling the release member from black phosphorus. it can. This method is well known as a simple method. According to this method, a monoatomic film of black phosphorus can be obtained from bulk black phosphorus. In addition, a multilayer atomic film of black phosphorus having two or more layers can be obtained by this method. A monoatomic film or a multilayer atomic film of two or more layers of black phosphorus can be obtained, for example, by adjusting the peeling force when peeling the peeling member from bulk black phosphorus.
 なお、本明細書において、「単原子膜」は、単層の原子膜を示す。「多層原子膜」は、2層以上の構造を有する原子膜を示す。多層原子膜は、2層以上の黒リン多層原子膜、及び、単原子膜を重ねた積層体の両者を包含する概念である。ただし、2層以上の黒リン多層原子膜と、黒リン単原子膜を重ねた積層体とは次の点で区別される。前者の多層原子膜の場合は、層間のファンデルワールス相互作用によって、層同士の電子状態が混成する。一方で、後者の積層体の場合には、ファンデルワールス相互作用による層同士の電子状態の混成が無いか、又は層同士の電子状態の混成が極めて小さい。つまり、前者の多層原子膜と後者の積層体とでは、ファンデルワールス力によって生じる層間強度が異なる。 In this specification, “monoatomic film” refers to a single-layer atomic film. “Multilayer atomic film” refers to an atomic film having a structure of two or more layers. The multilayer atomic film is a concept that includes both a black phosphorus multilayer atomic film having two or more layers and a laminate in which monoatomic films are stacked. However, two or more layers of black phosphorus multilayer atomic films are distinguished from laminates of stacked black phosphorus monoatomic films in the following points. In the case of the former multilayer atomic film, the electronic states of the layers are mixed by van der Waals interaction between layers. On the other hand, in the case of the latter laminate, there is no hybridization of electronic states between layers due to van der Waals interaction, or hybridization of electronic states between layers is extremely small. That is, the interlayer strength generated by van der Waals force is different between the former multilayer atomic film and the latter laminate.
 伸張された結晶構造を有する黒リン原子膜が、2層以上の黒リン多層原子膜の場合でも、黒リン単原子膜と同様に、ジグザグ軸方向及びアームチェア軸方向の少なくとも一方に対して、2%~10%伸張させることが可能である。
 黒リン原子膜が、多層原子膜である場合、同じ伸張率に伸張させるための応力を要する。そのため、伸張のし易さの点で、多層原子膜の層数は、2層以上6層以下であることがよく、2層以上4層以下であることが好ましい。
Even when the black phosphorus atomic film having the stretched crystal structure is a two or more black phosphorus multilayer atomic film, as in the case of the black phosphorus monoatomic film, with respect to at least one of the zigzag axis direction and the armchair axis direction, It is possible to stretch 2% to 10%.
In the case where the black phosphorus atomic film is a multilayer atomic film, a stress is required for stretching to the same stretching rate. Therefore, the number of layers of the multilayer atomic film is preferably 2 or more and 6 or less, and preferably 2 or more and 4 or less from the viewpoint of easy extension.
 また、本発明の黒リン原子膜は(単原子膜、多層原子膜のいずれも)、電子を有していてもよく、正孔を有していてもよいが、正孔を有していることが好ましい。正孔を有する黒リン原子膜を、例えば、後述する熱電変換素子や、半導体素子を構成する材料として用いると、安定した性能を発揮し得る。また、正孔を有している状態を生成しやすい点で、正孔を有している黒リン原子膜は有利である。 Moreover, the black phosphorus atomic film of the present invention (both monoatomic film and multilayer atomic film) may have an electron and may have a hole, but has a hole. It is preferable. For example, when a black phosphorus atomic film having holes is used as a material constituting a thermoelectric conversion element or a semiconductor element described later, stable performance can be exhibited. In addition, a black phosphorus atom film having holes is advantageous in that a state having holes is easily generated.
 以下、伸張された結晶構造を有する黒リン原子膜として、伸張された結晶構造を有する黒リン単原子膜を例に挙げて説明する。 Hereinafter, as a black phosphorus atomic film having a stretched crystal structure, a black phosphorus monoatomic film having a stretched crystal structure will be described as an example.
[伸張された結晶構造を有する黒リン単原子膜]
 バルクの黒リンから剥離した黒リン単原子膜は、図1A~図1Cに示すような結晶構造を形成している。図1Cは、黒リン単原子膜の結晶構造の平面図である。また、図1Aは、図1Cのアームチェア軸方向に沿って切断した結晶構造の断面図であり、図1Bは、図1Cのジグザグ軸方向に沿って切断した結晶構造の断面図である。
 なお、図1A~図1Cにおいて、(z)は、アームチェア軸方向及びジグザグ軸方向に対して垂直な軸方向を表す。
 ここで、図1Cにおいて、a辺とb辺で囲まれた領域を結晶構造中の単位胞(以下、「ユニットセル」ということがある)という。また、黒リン単原子膜は2つの結晶軸を有しており、本発明において、a辺に沿う方向と平行な結晶軸方向をジグザグ軸方向(Zigzag direction)、及びb辺に沿う方向と平行な結晶軸方向をアームチェア軸方向(Armchair direction)という。
[Black phosphorus monoatomic film with stretched crystal structure]
The black phosphorus monoatomic film peeled off from the bulk black phosphorus has a crystal structure as shown in FIGS. 1A to 1C. FIG. 1C is a plan view of the crystal structure of the black phosphorus monoatomic film. 1A is a cross-sectional view of the crystal structure cut along the armchair axis direction of FIG. 1C, and FIG. 1B is a cross-sectional view of the crystal structure cut along the zigzag axis direction of FIG. 1C.
1A to 1C, (z) represents an axial direction perpendicular to the armchair axial direction and the zigzag axial direction.
Here, in FIG. 1C, a region surrounded by the sides a and b is referred to as a unit cell in the crystal structure (hereinafter sometimes referred to as “unit cell”). The black phosphorus monoatomic film has two crystal axes. In the present invention, the crystal axis direction parallel to the direction along the a side is parallel to the zigzag direction and the direction along the b side. Such a crystal axis direction is referred to as an armchair direction.
 従来、バルクの黒リンは柔軟性に乏しく伸張させることは困難であった。一方、単原子膜は、単原子からなる単膜であるために、柔軟性が飛躍的に向上する。そのため、単原子膜であれば、伸張することが可能になると考えられる。黒リンの単原子膜が得られていることは知られているが、この単原子膜を伸張させると熱電物性が変調することは知られておらず、例えば、黒鉛の単原子膜(グラフェン)では熱電変換性能の変調は得られない。単原子膜を伸張させることができれば、結晶構造が変化すると考えられ、その結果、黒リン単原子膜の熱電物性を変調し得る可能性が考えられる。
 そこで、本発明者は、鋭意検討した結果、黒リン単原子膜をジグザグ軸方向及びアームチェア軸方向の少なくとも一方に伸張することで、未伸張の黒リン単原子膜に比べて、熱電変換性能が向上するとの知見が得られ、しかも、伸張度合いに応じて熱電変換性能を変調できることを見出した。ジグザグ軸方向に伸張すると、未伸張の黒リン単原子膜に比べて、熱電変換性能が飛躍的に向上し、伸張度合いに応じて変調できるとの知見が得られた。また、アームチェア軸方向の熱電変換出力は非常に高く、アームチェア軸方向に伸張させることで熱電変換性能をさらに向上できるとの知見が得られた。
 すなわち、本発明によれば、熱電変換性能に優れ、伸張度合いに応じて熱電変換性能を変調し得る伸張された結晶構造を有する黒リン単原子膜が提供される。また、本発明によれば、熱電変換出力が高く、熱電変換性能を変調し得る熱電変換材料、及び熱電変換素子が提供される。さらに、伸張された結晶構造を有する本発明の黒リン単原子膜は単原子膜であることから、柔軟性に優れている。
Conventionally, bulk black phosphorus has poor flexibility and has been difficult to stretch. On the other hand, since the monoatomic film is a monolayer composed of monoatoms, flexibility is dramatically improved. Therefore, it is considered that a monoatomic film can be extended. It is known that a monolayer of black phosphorus has been obtained, but it is not known that thermoelectric properties are modulated when this monolayer is stretched. For example, graphite monolayer (graphene) Then, the modulation of thermoelectric conversion performance cannot be obtained. If the monoatomic film can be stretched, the crystal structure is considered to change. As a result, the thermoelectric properties of the black phosphorus monoatomic film may be modulated.
Therefore, as a result of diligent study, the present inventor has extended the black phosphorus monoatomic film in at least one of the zigzag axial direction and the armchair axial direction, and compared with the unstretched black phosphorus monoatomic film, the thermoelectric conversion performance. It has been found that the thermoelectric conversion performance can be modulated according to the degree of expansion. It was found that thermoelectric conversion performance improved dramatically when stretched in the zigzag axis direction compared to unstretched black phosphorus monoatomic film, and could be modulated according to the degree of stretching. Moreover, the thermoelectric conversion output of the armchair axial direction was very high, and the knowledge that the thermoelectric conversion performance could be further improved by extending in the armchair axial direction was obtained.
That is, according to the present invention, there is provided a black phosphorus monoatomic film having an extended crystal structure that has excellent thermoelectric conversion performance and can modulate the thermoelectric conversion performance in accordance with the degree of extension. Moreover, according to this invention, the thermoelectric conversion output is high, and the thermoelectric conversion material which can modulate thermoelectric conversion performance, and a thermoelectric conversion element are provided. Furthermore, since the black phosphorus monoatomic film of the present invention having an expanded crystal structure is a monoatomic film, it is excellent in flexibility.
 本発明によって、上記効果が得られる理由としては、例えば、ジグザグ軸方向に伸張させた場合には、黒リン単原子膜のユニットセルにおけるa辺の格子定数aが伸びるとともに、b辺の格子定数bが縮まることにより、電子や正孔といったキャリアが移動しやすくなり、かつ、ゼーベック係数が増加するためと推測される。 The reason why the above-described effect can be obtained by the present invention is that, for example, when stretched in the zigzag axis direction, the lattice constant a on the a side in the unit cell of the black phosphorus monoatomic film is elongated and the lattice constant on the b side It is presumed that b shrinks that carriers such as electrons and holes easily move and the Seebeck coefficient increases.
 前述のように、伸張された結晶構造を有する本発明の黒リン単原子膜は、未伸張の黒リン単原子膜における単位胞を基準として、ジグザグ軸方向及びアームチェア軸方向の少なくとも一方に対して、2%~10%伸張させた黒リン単原子膜であり、伸張させた結晶構造を有する。中でも、4%~10%伸張させた黒リン単原子膜が好ましい。この範囲であると、熱電変換性能がより向上する。ただし、10%を超えて伸張させると、黒リン単原子膜に破れや亀裂が生じることがある。
 伸張された結晶構造を有する本発明の黒リン単原子膜は、ジグザグ軸方向に対して、2%~10%伸張させた場合において、後述するように、格子定数aは3.363Å~3.628Åの範囲を示し、格子定数bは4.560Å~4.128Åの範囲を示す。また、アームチェア軸方向に対して、2%~10%伸張させた場合において、後述するように、格子定数aは3.296Å~3.268Åの範囲を示し、格子定数bは4.720Å~5.090Åの範囲を示す。
As described above, the black phosphorus monoatomic film of the present invention having an extended crystal structure is based on a unit cell in an unstretched black phosphorus monoatomic film with respect to at least one of the zigzag axis direction and the armchair axis direction. Thus, it is a black phosphorus monoatomic film stretched by 2% to 10% and has a stretched crystal structure. Among these, a black phosphorus monoatomic film stretched by 4% to 10% is preferable. Within this range, the thermoelectric conversion performance is further improved. However, if the stretching exceeds 10%, the black phosphorus monoatomic film may be broken or cracked.
When the black phosphorus monoatomic film of the present invention having an expanded crystal structure is stretched by 2% to 10% with respect to the zigzag axis direction, the lattice constant a is 3.363Å-3. The range of 628 cm is shown, and the lattice constant b is in the range of 4.560 cm to 4.128 cm. Further, when the armchair is extended by 2% to 10% with respect to the axial direction of the armchair, the lattice constant a is in the range of 3.296 mm to 3.268 mm and the lattice constant b is 4.720 mm The range of 5.090cm is shown.
 伸張された結晶構造を有する本発明の黒リン単原子膜において、ジグザグ軸方向及びアームチェア軸方向の少なくとも一方に伸張された結晶構造を有するための方法としては、特に限定されない。例えば、黒リン単原子膜を伸張可能な材料の上に載置した状態で、伸張可能な材料と黒リン単原子膜との少なくとも両端を固定し、伸張可能な材料と黒リン単原子膜とをともに、両端、又はいずれか一端を移動させることにより伸張させる方法;黒リン単原子膜を2つの伸張可能な材料の間に挟み込んだ状態で、伸張可能な材料と黒リン単原子膜との少なくとも両端を固定し、伸張可能な材料と黒リン単原子膜とをともに、両端、又はいずれか一端を移動させることによりに伸張させる方法;等が挙げられる。 The black phosphorus monoatomic film of the present invention having an extended crystal structure is not particularly limited as a method for having a crystal structure extended in at least one of the zigzag axis direction and the armchair axis direction. For example, with the black phosphorus monoatomic film placed on an extensible material, at least both ends of the extensible material and the black phosphorus monoatomic film are fixed, and the extensible material and the black phosphorus monoatomic film are A stretch of the black phosphorus monoatomic film between the stretchable material and the black phosphorus monoatomic film with the black phosphorous monoatomic film sandwiched between two stretchable materials. A method in which at least both ends are fixed and the stretchable material and the black phosphorus monoatomic film are stretched together by moving both ends or one of the ends; and the like.
 伸張可能な材料と黒リン単原子膜との少なくとも両端を固定させる態様としては、特に限定されず、伸張可能な材料と黒リン単原子膜との全面を固定させてもよく、端部のみを固定してもよい。また、固定させる手段としては、いずれの手段を用いてもよい。例えば、粘着剤や、接着剤等により固定してもよく、ねじ等の固定部材で固定してもよく、それら以外の手段で固定してもよい。
 例えば、バルクの黒リンから、黒リン単原子膜を剥離するために用いた粘着層と基材層とを有する剥離部材(一例として、粘着テープ)の粘着層に黒リン単原子膜を付着させた状態のままで、両端部を把持して、ジグザグ軸方向及びアームチェア軸方向の少なくとも一方に伸張させることで、黒リン単原子膜に伸張した結晶構造を設けることができる。
 なお、伸張可能な材料として、弾性材料(例えば、ゴム材料等)を使用した場合には、弾性材料を伸張させた状態を含むように使用する。
The mode of fixing at least both ends of the stretchable material and the black phosphorus monoatomic film is not particularly limited, and the entire surface of the stretchable material and the black phosphorus monoatomic film may be fixed, and only the end portion is fixed. It may be fixed. Moreover, any means may be used as the means for fixing. For example, it may be fixed by an adhesive, an adhesive, or the like, may be fixed by a fixing member such as a screw, or may be fixed by other means.
For example, a black phosphorus monoatomic film is attached to an adhesive layer of a peeling member (for example, an adhesive tape) having an adhesive layer and a base layer used for peeling a black phosphorus monoatomic film from bulk black phosphorus. In this state, both ends are gripped and stretched in at least one of the zigzag axial direction and the armchair axial direction to provide a crystal structure stretched in the black phosphorus monoatomic film.
When an elastic material (for example, a rubber material) is used as the stretchable material, the elastic material is used so as to include a stretched state.
 さらに、他の方法としては、湾曲可能な材料、又は折り曲げ可能な材料の上に、黒リン単原子膜を載置して、湾曲可能な材料、又は折り曲げ可能な材料と黒リン単原子膜とを固定した状態で、湾曲可能な材料、又は折り曲げ可能な材料が内側になるように、黒リン単原子膜を湾曲、又は折り曲げることにより、黒リン単原子膜に、ジグザグ軸方向及びアームチェア軸方向の少なくとも一方に伸張された結晶構造を設けることも可能である。
 つまり、伸張された結晶構造を有する本発明の黒リン単原子膜において、伸張された結晶構造を有するとは、黒リン単原子膜の少なくとも一部分がジグザグ軸方向及びアームチェア軸方向の少なくとも一方に伸張されることで、伸張された結晶構造を有しているものであればよい。言い換えると、黒リン単原子膜の全体がジグザグ軸方向及びアームチェア軸方向の少なくとも一方に伸張されて結晶構造を有しているものでなくてもよい。
 なお、湾曲、又は折り曲げることにより黒リン単原子膜に伸張させた結晶構造を設ける場合には、湾曲、又は折り曲げた状態を含むように使用する。本発明の黒リン単原子膜は、伸張度合いに応じて熱電変換作用を変調し得るので、このような特性を利用して、例えば、熱電材料としてセンサー等の用途に使用が可能である。
 具体的には、例えば被検体に単原子膜を付した場合は、被検体が熱や応力などで膨張したり、変形したりした場合に変調機能が働き、どの程度の膨張、変形であるかを、単原子膜の伸張度合い(すなわち変調度合い)によりセンサーのように計測することが可能になる。
Further, as another method, a black phosphorus monoatomic film is placed on a bendable material or a bendable material so that the bendable material or the bendable material and the black phosphorus monoatomic film are By fixing or bending the black phosphorus monoatomic film so that the bendable material or the bendable material is inside, the zigzag axis direction and the armchair axis It is also possible to provide a crystal structure stretched in at least one of the directions.
That is, in the black phosphorus monoatomic film of the present invention having an extended crystal structure, having an extended crystal structure means that at least a part of the black phosphorus monoatomic film is in at least one of the zigzag axis direction and the armchair axis direction. What is necessary is just to have a stretched crystal structure by being stretched. In other words, the entire black phosphorus monoatomic film does not have to have a crystal structure that is extended in at least one of the zigzag axis direction and the armchair axis direction.
Note that in the case where a crystal structure stretched in the black phosphorus monoatomic film by being bent or bent is provided, it is used so as to include a bent or bent state. Since the black phosphorus monoatomic film of the present invention can modulate the thermoelectric conversion action according to the degree of extension, it can be used for applications such as sensors as a thermoelectric material by utilizing such characteristics.
Specifically, for example, when a specimen is provided with a monoatomic film, the modulation function works when the specimen expands or deforms due to heat, stress, etc., and how much expansion or deformation occurs. Can be measured like a sensor according to the degree of extension (ie, the degree of modulation) of the monoatomic film.
 なお、黒リン単原子膜は、熱によらず、単に応力を付与することにより、単原子膜が変形した場合の電気抵抗が変化する作用を有する。この作用を利用して、例えば、黒リン単原子膜は、半導体素子の材料として用いることも可能である。 Note that the black phosphorus monoatomic film has an effect of changing the electric resistance when the monoatomic film is deformed by simply applying a stress without depending on heat. Using this action, for example, a black phosphorus monoatomic film can be used as a material for a semiconductor element.
<熱電材料>
 次に、熱電材料について説明する。
 一般に、熱電材料の性能を評価するための指標として、性能指数Zが使用される。性能指数Zが高いほど、熱電変換性能が高い材料である。ここで、Zは以下の式Aによって表される。また、式A中のPは熱電出力因子(以下、「パワーファクター」ということがある)であり、以下の式Bによって表される。なお、式Bにおいて、Sはゼーベック係数、σは電気伝導率を表し、式Aにおいて、λは熱伝導率を表す。
<Thermoelectric material>
Next, the thermoelectric material will be described.
In general, the figure of merit Z is used as an index for evaluating the performance of thermoelectric materials. The higher the figure of merit Z is, the higher the thermoelectric conversion performance. Here, Z is represented by the following formula A. Further, P in the formula A is a thermoelectric output factor (hereinafter sometimes referred to as “power factor”), and is represented by the following formula B. In Formula B, S represents the Seebeck coefficient, σ represents electrical conductivity, and in Formula A, λ represents thermal conductivity.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 黒リン単原子膜を熱電材料として利用する場合において、熱伝導率については無視できると考えられるので、上記の式より、熱電出力因子Pを大きくすれば、さらなる熱電変換性能の向上を図れることが分かる。つまり、黒リン単原子膜の熱電出力因子Pを向上させることで、熱電材料としての性能が飛躍的に向上し得ると考えられる。 In the case where a black phosphorus monoatomic film is used as a thermoelectric material, it is considered that the thermal conductivity can be ignored. Therefore, if the thermoelectric output factor P is increased from the above equation, the thermoelectric conversion performance can be further improved. I understand. That is, it is considered that the performance as a thermoelectric material can be dramatically improved by improving the thermoelectric output factor P of the black phosphorus monoatomic film.
 したがって、黒リン単原子膜をジグザグ軸方向及びアームチェア軸方向の少なくとも一方に伸張することにより、未伸張の黒リン単原子膜に比べて、伸張した黒リン単原子膜のパワーファクターが大きな数値を示すことができれば、熱電材料としての熱電変換性能の向上が達成できることになる。 Therefore, by extending the black phosphorus monoatomic film in at least one of the zigzag axis direction and the armchair axis direction, the power factor of the expanded black phosphorus monoatomic film is larger than that of the unstretched black phosphorus monoatomic film. Can be achieved, the improvement of thermoelectric conversion performance as a thermoelectric material can be achieved.
 本発明者は、ジグザグ軸方向及びアームチェア軸方向の少なくとも一方に結晶構造を伸張することにより、黒リン単原子膜の熱電材料としての熱電変換性能が向上することについて、ジグザグ軸方向又はアームチェア軸方向に伸張された結晶構造の安定化と電子状態のシミュレーションを行うことによって検証した。以下、本発明の検証に用いたシミュレーションについて詳細に説明する。 The present inventor has described that the thermoelectric conversion performance as the thermoelectric material of the black phosphorus monoatomic film is improved by extending the crystal structure in at least one of the zigzag axis direction and the armchair axis direction. It was verified by stabilizing the crystal structure stretched in the axial direction and simulating the electronic state. Hereinafter, the simulation used for the verification of the present invention will be described in detail.
 伸張された結晶構造を有する本発明の黒リン単原子膜のシミュレーションによる検証において、伸張された黒リン単原子膜のパワーファクターを計算するために、2段階のプロセスを経た。第1段階は、伸張した結晶構造を有する黒リン単原子膜の電子状態の計算であり、第2段階はパワーファクターの計算である。なお、第1段階の電子状態計算には、第一原理計算ソフトウェアー「Quantum ESPRESSO」を用い、第2段階のパワーファクターの計算には、輸送係数計算ソフトウェアー「BoltzTrap」を用いた。以下に、第1段階と第2段階で用いた基本方程式の数式とシミュレーションで用いたパラメータ値を示す。なお、これらのソフトウェアーは、世界中で使用されている標準的なソフトウェアーである。また、伸張された結晶構造を有する本発明の黒リン単原子膜のシミュレーションによる検証結果については、後述する。 In the verification by the simulation of the black phosphorus monoatomic film of the present invention having the stretched crystal structure, a two-step process was performed to calculate the power factor of the stretched black phosphorus monoatomic film. The first stage is the calculation of the electronic state of the black phosphorus monoatomic film having the stretched crystal structure, and the second stage is the calculation of the power factor. Note that the first-principles calculation software “Quantum ESPRESSO” was used for the first stage electronic state calculation, and the transport coefficient calculation software “BoltzTrap” was used for the second-stage power factor calculation. In the following, formulas of basic equations used in the first stage and the second stage and parameter values used in the simulation are shown. These software are standard software used all over the world. Moreover, the verification result by the simulation of the black phosphorus monoatomic film of the present invention having the stretched crystal structure will be described later.
[電子状態計算]
 伸張された結晶構造を有する本発明の黒リン単原子膜のシミュレーションでは、伸張した結晶構造を有する黒リン単原子膜の電子状態を計算するために、密度汎関数理論に基づいた第一原理計算を行った。密度汎関数理論は、下記式1で表されるコーン-シャム方程式を用いた。この式を解くことで、コーン-シャム軌道と軌道エネルギーとを求める。また、コーン-シャムポテンシャルは下記式2で表される。
[Electronic state calculation]
In the simulation of the black phosphorus monoatomic film of the present invention having the stretched crystal structure, first-principles calculation based on density functional theory is used to calculate the electronic state of the black phosphorus monoatomic film having the stretched crystal structure. Went. In the density functional theory, a cone-sham equation represented by the following formula 1 was used. By solving this equation, the cone-sham orbit and the orbital energy are obtained. Further, the cone-sham potential is expressed by the following formula 2.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 伸張された結晶構造を有する本発明の黒リン単原子膜のシミュレーションにおいて、外部ポテンシャルには、ウルトラソフト擬ポテンシャルを使用し、交換相関相互作用汎関数には、GGA-PW91を使用した。k点サンプリング法にはMonkhorst-Pack法を用い、k点メッシュは12×10×1とした。また、波動関数のカットオフエネルギーは30Ry、電子密度のカットオフエネルギーは300Ryとした。 In the simulation of the black phosphorus monoatomic film of the present invention having an extended crystal structure, an ultrasoft pseudopotential was used as the external potential, and GGA-PW91 was used as the exchange correlation interaction functional. The Monkhorst-Pack method was used for the k-point sampling method, and the k-point mesh was 12 × 10 × 1. Further, the cutoff energy of the wave function was 30 Ry, and the cutoff energy of the electron density was 300 Ry.
[熱電出力因子(パワーファクター)の計算]
 伸張された結晶構造を有する本発明の黒リン単原子膜のシミュレーションでは、伸張した結晶構造を有する黒リン単原子膜の熱電出力因子(パワーファクター)を計算するために、緩和時間近似に基づくボルツマン半古典輸送理論を採用した。
 伸張した結晶構造を有する黒リン単原子膜のジグザグ軸方向又はアームチェア軸方向のいずれかのパワーファクターPαは、電気伝導率σαとゼーベック係数Sαを用いて、下記式3によって与えられる。なお、下記の式3~式5において、αは軸方向を示し、ジグザグ軸方向又はアームチェア軸方向のいずれかを示す。
[Calculation of thermoelectric power factor]
In the simulation of the black phosphorus monoatomic film of the present invention having the stretched crystal structure, the Boltzmann based on the relaxation time approximation is used to calculate the thermoelectric power factor of the black phosphorus monoatomic film having the stretched crystal structure. Semiclassical transport theory was adopted.
The power factor P α in either the zigzag axis direction or the armchair axis direction of the black phosphorus monoatomic film having the stretched crystal structure is given by the following equation 3 using the electrical conductivity σ α and the Seebeck coefficient S α. . In the following formulas 3 to 5, α indicates the axial direction and indicates either the zigzag axial direction or the armchair axial direction.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、電気伝導率σαとゼーベック係数Sαは、下記式4によって与えられる。
 また、Lα(ε)は下記式5によって与えられる。下記式5において、軌道エネルギー、及び群速度は、いずれも第一原理計算によって計算される。
Here, the electrical conductivity σ α and the Seebeck coefficient S α are given by the following formula 4.
L α (ε) is given by the following equation (5). In the following formula 5, the orbital energy and the group velocity are both calculated by the first principle calculation.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 伸張された結晶構造を有する本発明の黒リン単原子膜のシミュレーションにおいて、ジグザグ軸方向、及びアームチェア軸方向に伸張させる伸張率を変化させたときのパワーファクターについて計算を行った。本発明におけるジグザグ軸方向に伸張させるシミュレーションでは、Lα(ε)の計算の際に用いたk点メッシュは120×100×1とした。また、ταは、α軸(ジグザグ軸方向又はアームチェア軸方向)に沿った方向の電流緩和時間である。なお、本発明におけるシミュレーションでは、ジグザグ軸に沿った方向の電流緩和時間として、バルクの黒リンの実験値である1.34×10-13secを採用した。
 また、本発明におけるアームチェア軸方向に伸張させるシミュレーションでは、Lα(ε)の計算の際に用いたk点メッシュは120×100×1とした。なお、本発明におけるシミュレーションでは、アームチェア軸に沿った方向の電流緩和時間として、バルクの黒リンの実験値である6.20×10-14secを採用した。
In the simulation of the black phosphorus monoatomic film of the present invention having the stretched crystal structure, the power factor was calculated when the stretch ratio for stretching in the zigzag axis direction and the armchair axis direction was changed. In the simulation of extending in the zigzag axis direction according to the present invention, the k-point mesh used in the calculation of L α (ε) is 120 × 100 × 1. Further, τ α is a current relaxation time in the direction along the α axis (zigzag axis direction or armchair axis direction). In the simulation of the present invention, 1.34 × 10 −13 sec, which is an experimental value of bulk black phosphorus, was adopted as the current relaxation time in the direction along the zigzag axis.
In the simulation of extending in the armchair axial direction in the present invention, the k-point mesh used for calculating L α (ε) is 120 × 100 × 1. In the simulation according to the present invention, the experimental value of 6.20 × 10 −14 sec of bulk black phosphorus was adopted as the current relaxation time in the direction along the armchair axis.
[熱電材料の態様]
 熱電材料として用いる場合に、熱電材料中に、伸張された結晶構造を有する本発明の黒リン単原子膜を含んでいれば、いずれの形態でも用いることができ、その態様は特に限定されない。例えば、伸張された結晶構造を有する本発明の黒リン単原子膜を1層の単層で用いることができる。また、同じ伸張率に調整された、伸張された黒リン単原子膜を重ねて2層以上の多層にしてもよく、異なる伸張率に調整された2種、又は3種以上の黒リン単原子膜を重ねて2層以上の多層にしてもよい。ジグザグ軸方向に伸張された結晶構造を有する黒リン単原子膜とアームチェア軸方向に伸張された結晶構造を有する黒リン単原子膜とを重ねて多層にしたものでもよい。さらに、伸張された結晶構造を有する本発明の黒リン単原子膜と、未伸張の黒リン単原子膜とを重ねて多層にしたものでもよい。
 なお、黒リン単原子膜を重ねて多層にした構造の積層体は、既述のとおり、2層以上の多層原子膜とは区別される。
[Aspect of thermoelectric material]
When used as a thermoelectric material, any form can be used as long as the black phosphorous monoatomic film of the present invention having an extended crystal structure is included in the thermoelectric material, and the mode is not particularly limited. For example, the black phosphorus monoatomic film of the present invention having an extended crystal structure can be used as a single monolayer. In addition, two or more layers of black phosphorus monoatomic films adjusted to the same stretching ratio may be stacked to form two or more layers, or two or three or more black phosphorus monoatoms adjusted to different stretching ratios. Two or more layers may be formed by stacking the films. A black phosphorus monoatomic film having a crystal structure extended in the zigzag axis direction and a black phosphorus monoatomic film having a crystal structure extended in the armchair axis direction may be stacked to form a multilayer. Further, the black phosphorus monoatomic film of the present invention having an expanded crystal structure and an unstretched black phosphorus monoatomic film may be stacked to form a multilayer.
Note that, as described above, a laminated body having a multilayer structure in which black phosphorus monoatomic films are stacked is distinguished from a multilayer atomic film having two or more layers.
[ドープ]
 熱電変換性能をより向上させるために、伸張された結晶構造を有する本発明の黒リン単原子膜に対して、化学的ドーピング、又は電気的ドーピングを施すことが考えられる。化学的ドーピングでは、黒リン単原子膜に、価数の異なる不純物元素で置換、又は付着させることで、電気を流す電子や正孔といったキャリアを材料へ供給する。また、電気的ドーピングは、電界効果を用いた電気的なキャリアドーピングを行い、元素置換を伴わずに、電気を流す電子や正孔といったキャリアを材料へ供給する。
 なお、化学的ドーピングを行う場合には、熱電材料としての性能を最大限に発揮するための最適なドープ量を設定するために、労力を要する。しかしながら、電気的ドーピングは、化学組成を変化させずにキャリア量を変化させることができるため、最適なドープ量が簡便に設定し得る点で有用である。
[Dope]
In order to further improve the thermoelectric conversion performance, it is conceivable to perform chemical doping or electrical doping on the black phosphorus monoatomic film of the present invention having an extended crystal structure. In chemical doping, carriers such as electrons and holes that carry electricity are supplied to a material by replacing or attaching a black phosphorus monoatomic film with an impurity element having a different valence. In the electrical doping, electrical carrier doping using electric field effect is performed, and carriers such as electrons and holes that conduct electricity are supplied to the material without element substitution.
In addition, when performing chemical doping, labor is required in order to set the optimal dope amount for exhibiting the performance as a thermoelectric material to the maximum. However, since electrical doping can change the amount of carriers without changing the chemical composition, it is useful in that the optimum doping amount can be easily set.
 例えば、化学的ドーピングとして、一例を挙げると、伸張された結晶構造を有する本発明の黒リン単原子膜に対して、酸素を吸着させることによりドープして、正孔を供給することができる。伸張された結晶構造を有する黒リン単原子膜に酸素を吸着させた熱電材料は、例えば、そのまま熱電変換素子として用いることが可能になる。また、電気的ドーピングとしては、黒リン単原子膜に正電圧を印加すると、正孔が供給され、負電圧を印加すると電子が供給される。 For example, as an example of chemical doping, holes can be supplied by doping oxygen black by adsorbing the black phosphorus monoatomic film of the present invention having an extended crystal structure. A thermoelectric material in which oxygen is adsorbed on a black phosphorus monoatomic film having an expanded crystal structure can be used as a thermoelectric conversion element as it is, for example. As for electrical doping, when a positive voltage is applied to the black phosphorus monoatomic film, holes are supplied, and when a negative voltage is applied, electrons are supplied.
 伸張された結晶構造を有する本発明の黒リン単原子膜を用いた熱電材料において、伸張された黒リン単原子膜にドープを施した場合のドープ量は、化学的ドーピング、電気的ドーピングにかかわらず、ジグザグ軸方向に伸張された黒リン単原子膜において、リン原子1個あたりのキャリア数として、0.0100~0.0700(e/atom)の範囲であることが好ましい。このキャリア数は、正孔、又は電子のいずれのキャリアであってもこの範囲であればよい。より熱電変換性能を向上させる点から、0.0100~0.0300(e/atom)の範囲であることがより好ましい。この範囲のドープ量であれば、より優れた熱電変換性能を備えた伸張された黒リン単原子膜が得られる。
 また、アームチェア軸方向に伸張された黒リン単原子膜にドープを施した場合のドープ量は、化学的ドーピング、電気的ドーピングにかかわらず、リン原子1個あたりのキャリア数として、0.00280~0.00350(e/atom)であることが好ましく、0.0300~0.0345(e/atom)の範囲であることがより好ましい。このキャリア数も上記と同様に、正孔、又は電子のいずれのキャリアであってもこの範囲であればよい。
In the thermoelectric material using the black phosphorus monoatomic film of the present invention having an extended crystal structure, the doping amount when the extended black phosphorus monoatomic film is doped depends on chemical doping and electrical doping. In the black phosphorus monoatomic film stretched in the zigzag axis direction, the number of carriers per phosphorus atom is preferably in the range of 0.0100 to 0.0700 (e / atom). The number of carriers may be in this range regardless of whether the carriers are holes or electrons. From the viewpoint of further improving the thermoelectric conversion performance, a range of 0.0100 to 0.0300 (e / atom) is more preferable. When the doping amount is within this range, an elongated black phosphorus monoatomic film having better thermoelectric conversion performance can be obtained.
The doping amount when the black phosphorus monoatomic film extended in the armchair axial direction is doped is 0.00280 as the number of carriers per phosphorus atom regardless of chemical doping or electrical doping. The range is preferably -0.00350 (e / atom), more preferably in the range of 0.0300-0.0345 (e / atom). Similarly to the above, the number of carriers may be in the range of any carrier of holes or electrons.
<熱電変換素子>
 伸張された結晶構造を有する本発明の黒リン単原子膜は、前述のように高い熱電変換性能を備えている。伸張された結晶構造を有する本発明の黒リン単原子膜を熱電変換素子用の熱電材料として好適に用いることができる。
<Thermoelectric conversion element>
The black phosphorus monoatomic film of the present invention having an expanded crystal structure has high thermoelectric conversion performance as described above. The black phosphorus monoatomic film of the present invention having an expanded crystal structure can be suitably used as a thermoelectric material for a thermoelectric conversion element.
 本発明の熱電変換素子は、伸張された結晶構造を有する本発明の黒リン単原子膜と、電極とを備え、伸張された結晶構造を有する本発明の黒リン単原子膜と電極との間に、電解質材料又は誘電体材料が配置された構造を備えている。また、本発明の熱電変換素子は、さらに、基板や、他の電極などの部材を備えていてもよい。
 本発明の熱電変換素子が、伸張された結晶構造を有する本発明の黒リン単原子膜と電極との間に、電解質材料が配置された構造を備えた熱電変換素子である場合には、以下のような構造に形成することができる。
 例えば、電解質材料を挟んで電極と対向して設けられた伸張された結晶構造を有する本発明の黒リン単原子膜の電解質材料が配置されていない側に、樹脂材料等の柔軟性を示す基板を設けることができる。
 また、例えば、電解質材料を挟んで伸張された結晶構造を有する本発明の黒リン単原子膜と対向して設けられた電極を第1の電極とした場合に、次のような構造に形成されていてもよい。すなわち、伸張された結晶構造を有する本発明の黒リン単原子膜の電解質材料が配置されていない側に、第1の電極とは異なる第2の電極を設けることもできる。また、伸張された結晶構造を有する本発明の黒リン単原子膜の電解質材料が配置される側に、伸張された結晶構造を有する黒リン単原子膜を含む平面の方向に、第1の電極とは異なる第2の電極と第3の電極とを設け、前記第2の電極と前記第3の電極とを電解質材料を挟んで、対向するように設けることもできる。さらに、電解質材料を挟んで、伸張された結晶構造を有する本発明の黒リン単原子膜と対向して設けられた第1の電極を含む平面上に、前記電解質材料に接して、前記第1の電極と離間させて第2の電極を設けることもできる。そして、電極と電解質材料との間、電解質材料と伸張された結晶構造を有する本発明の黒リン単原子膜との間のいずれか一方、又は両方において、機能層を設けることも可能である。
 また、伸張された結晶構造を有する本発明の黒リン単原子膜と電極との間に、誘電体材料が配置された構造を備えた熱電変換素子とする場合には、上記に例示した構造を備えた熱電変換素子において、電解質材料に代えて、誘電体材料を用いた構造を形成すればよい。
The thermoelectric conversion element of the present invention comprises the black phosphorus monoatomic film of the present invention having an extended crystal structure and an electrode, and is provided between the black phosphorus monoatomic film of the present invention having an extended crystal structure and the electrode. In addition, a structure in which an electrolyte material or a dielectric material is disposed is provided. Moreover, the thermoelectric conversion element of this invention may be further provided with members, such as a board | substrate and another electrode.
When the thermoelectric conversion element of the present invention is a thermoelectric conversion element having a structure in which an electrolyte material is disposed between the black phosphorus monoatomic film of the present invention having an elongated crystal structure and an electrode, the following: The structure can be formed as follows.
For example, a substrate showing flexibility of a resin material or the like on the side where the electrolyte material of the black phosphorus monoatomic film of the present invention having an extended crystal structure provided opposite to the electrode with the electrolyte material interposed is not disposed Can be provided.
Further, for example, when the electrode provided opposite to the black phosphorus monoatomic film of the present invention having a crystal structure stretched across the electrolyte material is used as the first electrode, the following structure is formed. It may be. That is, a second electrode different from the first electrode can be provided on the side where the electrolyte material of the black phosphorus monoatomic film of the present invention having an expanded crystal structure is not disposed. Further, the first electrode in the direction of the plane including the black phosphorus monoatomic film having the stretched crystal structure is disposed on the side where the electrolyte material of the black phosphorus monoatomic film of the present invention having the stretched crystal structure is disposed. It is also possible to provide a second electrode and a third electrode different from the above, and to provide the second electrode and the third electrode so as to face each other with an electrolyte material interposed therebetween. Further, on the plane including the first electrode provided facing the black phosphorus monoatomic film of the present invention having an expanded crystal structure with the electrolyte material interposed therebetween, the first material is in contact with the electrolyte material. A second electrode can be provided apart from the other electrode. A functional layer can be provided between the electrode and the electrolyte material, or between the electrolyte material and the black phosphorus monoatomic film of the present invention having a stretched crystal structure, or both.
In the case of a thermoelectric conversion element having a structure in which a dielectric material is disposed between a black phosphorus monoatomic film of the present invention having an expanded crystal structure and an electrode, the structure exemplified above is used. In the provided thermoelectric conversion element, a structure using a dielectric material may be formed instead of the electrolyte material.
 図2は、本発明の熱電変換素子の構成の一例を示す模式断面図である。また、図2において、1は伸張された結晶構造を有する本発明の黒リン単原子膜、2は電解質材料、3は電極を表す。 FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the thermoelectric conversion element of the present invention. In FIG. 2, 1 is a black phosphorus monoatomic film of the present invention having an expanded crystal structure, 2 is an electrolyte material, and 3 is an electrode.
 図2の示す熱電変換素子は、例えば、電極3の上に電解質材料2が設けられ、電解質材料2の上に伸張された結晶構造を有する本発明の黒リン単原子膜1が設けられているが、これに限定されない。また、図2において、電極3と伸張された結晶構造を有する本発明の黒リン単原子膜1とを接続する回路を形成しており、電圧を印加できるようになっている。なお、図2では、電極3と伸張された結晶構造を有する本発明の黒リン単原子膜1とを接続する回路が形成されているが、本発明の熱電変換素子において、電極3と伸張された結晶構造を有する本発明の黒リン単原子膜1とを接続する回路は形成されていなくてもよい。
 以下、図2の示す熱電変換素子を例に挙げて説明するが、本発明の熱電変換素子は、図2に示す熱電変換素子に限定されるものではない。
In the thermoelectric conversion element shown in FIG. 2, for example, the electrolyte material 2 is provided on the electrode 3, and the black phosphorus monoatomic film 1 of the present invention having a crystal structure stretched on the electrolyte material 2 is provided. However, it is not limited to this. In FIG. 2, a circuit is formed to connect the electrode 3 and the black phosphorus monoatomic film 1 of the present invention having an expanded crystal structure so that a voltage can be applied. In FIG. 2, a circuit for connecting the electrode 3 and the black phosphorus monoatomic film 1 of the present invention having the stretched crystal structure is formed. However, in the thermoelectric conversion element of the present invention, the electrode 3 is stretched. The circuit for connecting the black phosphorus monoatomic film 1 of the present invention having the above crystal structure may not be formed.
Hereinafter, although the thermoelectric conversion element shown in FIG. 2 will be described as an example, the thermoelectric conversion element of the present invention is not limited to the thermoelectric conversion element shown in FIG.
 例えば、図2に示す本発明の熱電変換素子において、電極3と伸張した結晶構造を有する黒リン単原子膜1との間に電圧を印加すると、電界効果により、伸張した結晶構造を有する黒リン単原子膜1には、正孔、又は電子が注入されることで、熱電変換性能が向上する。そして、電圧を印加する際に、正電圧、又は負電圧を選択することにより、正孔、又は電子の注入を選択することができる。図2において、電極3と伸張した結晶構造を有する黒リン単原子膜1との間に電圧を印加した状態で、例えば、A側とB側とで温度差を生じさせると、伸張された結晶構造を有する黒リン単原子膜1は、優れた熱電変換作用を示し、効率的に発電されるようになる。なお、A側とB側との温度差は一方が加熱され、他方が冷却されるようにすればよい。加熱手段、及び冷却手段はいずれの手段でもよく、温度差が生じ得る手段を採用すればよい。 For example, in the thermoelectric conversion element of the present invention shown in FIG. 2, when a voltage is applied between the electrode 3 and the black phosphorus monoatomic film 1 having a stretched crystal structure, black phosphorus having a stretched crystal structure is generated by the electric field effect. Thermoelectric conversion performance is improved by injecting holes or electrons into the monoatomic film 1. When applying a voltage, injection of holes or electrons can be selected by selecting a positive voltage or a negative voltage. In FIG. 2, when a voltage is applied between the electrode 3 and the black phosphorus monoatomic film 1 having an expanded crystal structure, for example, when a temperature difference is generated between the A side and the B side, the expanded crystal The black phosphorus monoatomic film 1 having a structure exhibits an excellent thermoelectric conversion action and can efficiently generate power. Note that one of the temperature differences between the A side and the B side may be heated and the other may be cooled. Any means may be sufficient as a heating means and a cooling means, and the means which can produce a temperature difference should just be employ | adopted.
 上記のように、図2に示す本発明の熱電変換素子において、電極3と伸張された結晶構造を有する黒リン単原子膜1との間に電圧を印加した状態で、A側とB側とで温度差を生じさせると、効率的に発電される。 As described above, in the thermoelectric conversion element of the present invention shown in FIG. 2, in the state where a voltage is applied between the electrode 3 and the black phosphorus monoatomic film 1 having the stretched crystal structure, If a temperature difference is generated at, power is generated efficiently.
 本発明の熱電変換素子の一例としては、伸張された結晶構造を有する本発明の黒リン単原子膜1を陽極、又は陰極として用いることができる。そして、伸張された結晶構造を有する本発明の黒リン単原子膜1を陽極として用いた熱電変換素子と、伸張された結晶構造を有する黒リン単原子膜1を陰極として用いた熱電変換素子とを直列につないで使用することもできる。 As an example of the thermoelectric conversion element of the present invention, the black phosphorus monoatomic film 1 of the present invention having a stretched crystal structure can be used as an anode or a cathode. A thermoelectric conversion element using the black phosphorus monoatomic film 1 of the present invention having an expanded crystal structure as an anode, and a thermoelectric conversion element using the black phosphorus monoatomic film 1 having an expanded crystal structure as a cathode, Can be used in series.
 また、本発明の熱電変換素子において、電解質材料2としてゲル状の電解質材料であるイオン性ゲルを用いた場合には、伸張された結晶構造を有する本発明の黒リン単原子膜1を陽極、及び陰極として用いることもできる。 In the thermoelectric conversion element of the present invention, when an ionic gel that is a gel-like electrolyte material is used as the electrolyte material 2, the black phosphorus monoatomic film 1 of the present invention having an expanded crystal structure is used as an anode, It can also be used as a cathode.
 以下、本発明の熱電変換素子を構成する各部材について詳細に説明する。以下、符号は省略して説明する。 Hereinafter, each member constituting the thermoelectric conversion element of the present invention will be described in detail. In the following description, the reference numerals are omitted.
[電極]
 電極に用いる材料は、導電性を示す物質で形成されていれば、特に限定されるものではない。具体的には、例えば、金属、金属酸化物、導電性高分子等が使用される。
 金属としては、例えば、具体的には、マグネシウム、アルミニウム、金、銀、銅、クロム、チタン、ニッケル、モリブデン、タンタル、インジウム、パラジウム、リチウム、カルシウム及びこれらの合金が挙げられる。
 金属酸化物としては、例えば、具体的には、酸化リチウム、酸化マグネシウム、酸化アルミニウム、酸化スズインジウム(ITO)、酸化スズ(NESA)、酸化インジウム、酸化亜鉛、酸化インジウム亜鉛等の金属酸化膜があげられる。
 導電性高分子としては、例えば、具体的には、ポリアニリン、ポリチオフェン、ポリチオフェン誘導体、ポリピロール、ポリピリジン、ポリエチレンジオキシチオフェンとポリスチレンスルホン酸の錯体等があげられる。
[electrode]
The material used for the electrode is not particularly limited as long as it is formed of a substance exhibiting conductivity. Specifically, for example, metals, metal oxides, conductive polymers and the like are used.
Specific examples of the metal include magnesium, aluminum, gold, silver, copper, chromium, titanium, nickel, molybdenum, tantalum, indium, palladium, lithium, calcium, and alloys thereof.
Specific examples of the metal oxide include metal oxide films such as lithium oxide, magnesium oxide, aluminum oxide, indium tin oxide (ITO), tin oxide (NESA), indium oxide, zinc oxide, and indium zinc oxide. can give.
Specific examples of the conductive polymer include polyaniline, polythiophene, polythiophene derivatives, polypyrrole, polypyridine, a complex of polyethylenedioxythiophene and polystyrene sulfonic acid, and the like.
[電解質材料]
 電解質材料に用いる形状としては、固体状、ゲル状、液体状であってもよく、特に限定されない。空気中で安定に存在する点、カチオン、アニオンの種類と、それらの組み合わせを数限りなく作り出すことができる点や、蒸気圧が実質的に0である点で、液体状であるイオン性液体を好ましく用いることができる。また、取扱い性の点から、イオン性ゲルを用いることがより好ましい。さらに、イオン性ゲルを電解質材料として用いれば、柔軟性により優れた熱電変換素子が得られる。なお、以下において、「(メタ)アクリル」とは、「アクリル」及び「メタクリル」のいずれをも含む表現である。
[Electrolyte material]
The shape used for the electrolyte material may be solid, gel, or liquid, and is not particularly limited. An ionic liquid that is in the form of a liquid in that it exists stably in air, the types of cations and anions, and their combinations can be created without limit, and the vapor pressure is substantially zero. It can be preferably used. Moreover, it is more preferable to use an ionic gel from the point of handleability. Furthermore, if an ionic gel is used as an electrolyte material, a thermoelectric conversion element superior in flexibility can be obtained. In the following, “(meth) acryl” is an expression including both “acryl” and “methacryl”.
 固体状の電解質材料としては、具体的に、例えば、CuI、CuBr、CuSCN、ポリアニリン、ポリピロール、ポリチオフェン、アリールアミン系ポリマー、(メタ)アクリル基を有するポリマー、ポリビニルカルバゾール、トリフェニルジアミンポリマー、ポリオリゴエチレングリコールメタクリレート、パーフルオロスルフォネートなどのようなプロトン伝導性を有するフッ素系のイオン交換樹脂、パーフルオロカーボン共重合体、パーフルオロカーボンスルホン酸等が挙げられる。 Specific examples of solid electrolyte materials include CuI, CuBr, CuSCN, polyaniline, polypyrrole, polythiophene, arylamine-based polymers, polymers having (meth) acrylic groups, polyvinylcarbazole, triphenyldiamine polymers, and polyoligomers. Examples thereof include fluorine ion exchange resins having proton conductivity such as ethylene glycol methacrylate and perfluorosulfonate, perfluorocarbon copolymers, and perfluorocarbon sulfonic acids.
 液体状の電解質材料としては、上記のように、カチオン、アニオンの種類と、それらの組み合わせを数限りなく作り出すことができる。例えば、液体状の電解質材料であるイオン性液体の一例としては、イミダゾリウムイオン、ピロリジニウムイオン、ピリジニウムイオン、ピペリジニウムイオン等をカチオン性物質として用いるものが挙げられ、ハロゲン化物イオン(Cl、Br)、テトラフルオロホウ酸イオン(BF )、ヘキサフルオロリン酸イオン(PF )、ビス(トリフルオロメタンスルホニル)イミドイオン((CFSO)等をアニオンとして用いるものが挙げられる。これらのカチオン性物質、及びアニオン性物質は、それぞれ、1種単独で用いてもよいし2種以上を用いてもよい。 As described above, the liquid electrolyte material can produce an unlimited number of types of cations and anions and combinations thereof. For example, as an example of an ionic liquid that is a liquid electrolyte material, an imidazolium ion, a pyrrolidinium ion, a pyridinium ion, a piperidinium ion, or the like may be used as a cationic substance. A halide ion (Cl , Br ), tetrafluoroborate ion (BF 4 ), hexafluorophosphate ion (PF 6 ), bis (trifluoromethanesulfonyl) imide ion ((CF 3 SO 2 ) 2 N ) and the like are used as anions Is mentioned. These cationic substances and anionic substances may be used alone or in combination of two or more.
 また、ゲル状の電解質材料としては、例えば、イオン性液体をゲル化させたイオン性ゲルが挙げられる。イオン性液体をゲル化させる物質としては、イオン性液体をゲル化できる物質であれば、特に限定されない。イオン性ゲルは、例えば、次のようにして得られる。イオン性液体に対して、ポリ(メタ)アクリル酸またはそれらの塩を加えることで得られる。または、(メタ)アクリル酸の単量体と、アクリル酸アルキルエステル、アルキル分岐アクリル酸及びそれらのエステル、ハロゲン化ビニル、酢酸ビニル、ビニルアルコール、ジビニルエーテル、無水マレイン酸、アクリロニトリル、スチレン、及びそれらの組み合わせからなる群から選ばれる少なくとも一つの単量体と、を共重合させた共重合体を加えることで得られる。
 また、ゲル状の電解質材料としては、イミダゾリウム化合物及びその塩と、アクリル酸、メタクリル酸、ビニルスルホン酸などの酸モノマーとを反応させてポリマーイオン性ゲルとしてもよい。
Examples of the gel electrolyte material include an ionic gel obtained by gelling an ionic liquid. The substance that gels the ionic liquid is not particularly limited as long as it is a substance that can gel the ionic liquid. The ionic gel is obtained, for example, as follows. It can be obtained by adding poly (meth) acrylic acid or a salt thereof to the ionic liquid. Or (meth) acrylic acid monomers and acrylic acid alkyl esters, alkyl branched acrylic acids and their esters, vinyl halides, vinyl acetate, vinyl alcohol, divinyl ether, maleic anhydride, acrylonitrile, styrene, and the like It is obtained by adding a copolymer obtained by copolymerizing at least one monomer selected from the group consisting of:
The gel electrolyte material may be a polymer ionic gel obtained by reacting an imidazolium compound or a salt thereof with an acid monomer such as acrylic acid, methacrylic acid, or vinyl sulfonic acid.
[誘電体材料]
 誘電体材料としては、例えば、具体的には、酸化シリコン(SiO)、酸窒化シリコン(SiO)、窒化シリコン(SiN)、酸化ハフニウム(HfO)、酸化ランタン(La)、酸化ジルコニウム(ZrO)、酸化アルミニウム(Al)、チタン酸バリウム(BaTiO)、チタン酸ストロンチウム(SrTiO)等が挙げられ、特に限定されるものではない。これらの誘電体材料は、例えば、膜状に形成して使用することができる。膜状の誘電体材料を形成する方法は公知の方法を採用すればよい。
[Dielectric material]
Specific examples of the dielectric material include silicon oxide (SiO 2 ), silicon oxynitride (SiO x N y ), silicon nitride (SiN y ), hafnium oxide (HfO 2 ), and lanthanum oxide (La 2 O). 3 ), zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), barium titanate (BaTiO 3 ), strontium titanate (SrTiO 3 ) and the like, and are not particularly limited. These dielectric materials can be used in the form of a film, for example. A known method may be adopted as a method for forming the film-like dielectric material.
[伸張された結晶構造を有する黒リン単原子膜]
 伸張された結晶構造を有する黒リン単原子膜は前述したものを用いる。本発明の熱電変換素子において、黒リン単原子膜の伸張方向であるジグザグ軸方向及びアームチェア軸方向の少なくとも一方と温度差が生じる方向とが、平行になるように、伸張した結晶構造を有する黒リン単原子膜を配置することが好ましい。また、伸張された結晶構造を有する本発明の黒リン単原子膜は、ジグザグ軸方向及びアームチェア軸方向の少なくとも一方に伸張することで、伸張度合いに応じて熱電変換性能を変調し得ることから、所望の熱電変換性能に応じて、伸張度合いを変化させた黒リン単原子膜をジグザグ軸方向及びアームチェア軸方向の少なくとも一方と温度差が生じる方向とが平行となるように配置すればよい。なお、平行とは、ジグザグ軸方向及びアームチェア軸方向の少なくとも一方と温度差が生じる方向とが平行関係にあるほか、完全な平行状態になくても、一見して平行関係にあると見なせるほぼ平行な場合も含まれる。
[Black phosphorus monoatomic film with stretched crystal structure]
The black phosphorus monoatomic film having the stretched crystal structure is as described above. The thermoelectric conversion element of the present invention has a stretched crystal structure so that at least one of the zigzag axis direction and the armchair axis direction, which is the extension direction of the black phosphorus monoatomic film, is parallel to the direction in which the temperature difference occurs. It is preferable to dispose a black phosphorus monoatomic film. In addition, the black phosphorus monoatomic film of the present invention having an expanded crystal structure can modulate thermoelectric conversion performance according to the degree of expansion by stretching in at least one of the zigzag axis direction and the armchair axis direction. Depending on the desired thermoelectric conversion performance, the black phosphorus monoatomic film with the degree of expansion being changed may be arranged so that at least one of the zigzag axis direction and the armchair axis direction is parallel to the direction in which the temperature difference occurs. . Note that the term “parallel” means that at least one of the zigzag axis direction and the armchair axis direction and the direction in which the temperature difference occurs are in a parallel relationship, and even if it is not in a completely parallel state, it can be regarded as having a parallel relationship at a glance. The parallel case is also included.
 伸張された結晶構造を有する本発明の黒リン単原子膜を用いて熱電変換素子を構成する際に、例えば、ジグザグ軸方向及びアームチェア軸方向の少なくとも一方に予め伸張させた状態で、電解質材料の上に設けてもよい。また、未伸張の黒リン単原子膜を電解質材料の上に設けて、電解質材料とともに黒リン単原子膜をジグザグ軸方向及びアームチェア軸方向の少なくとも一方に伸張させた後、電極の上に電解質材料を設けてもよい。さらに、未伸張の黒リン単原子膜を電解質材料の上に設けて熱電変換素子を得た後で、電極側を内側にして湾曲、又は折り曲げた熱電変換素子とすることで、黒リン単原子膜をジグザグ軸方向及びアームチェア軸方向の少なくとも一方に伸張させてもよい。この場合には、熱電変換素子の電極側を内側にして湾曲、又は折り曲げた状態で使用する用途に用いられればよい。 When the thermoelectric conversion element is configured using the black phosphorus monoatomic film of the present invention having the stretched crystal structure, for example, the electrolyte material is stretched in advance in at least one of the zigzag axial direction and the armchair axial direction. You may provide on. Further, an unstretched black phosphorus monoatomic film is provided on the electrolyte material, and the black phosphorus monoatomic film is stretched along with the electrolyte material in at least one of the zigzag axial direction and the armchair axial direction, and then the electrolyte is placed on the electrode Materials may be provided. Further, after obtaining a thermoelectric conversion element by providing an unstretched black phosphorus monoatomic film on the electrolyte material, a black phosphorus monoatom is obtained by bending or bending the electrode side inside. The membrane may be stretched in at least one of the zigzag axial direction and the armchair axial direction. In this case, what is necessary is just to be used for the use used in the state bent or bent with the electrode side of the thermoelectric conversion element inside.
 本発明の熱電変換素子は、例えば、太陽熱発電素子、蓄電素子と一体化した電力システムとして使用することが可能である。
 また、本発明の熱電変換素子は、黒リン単原子膜を用いていることから、柔軟性に優れる。したがって、ポータブル(携帯性、可搬性)、または、ウェアラブル(着用性、身につけられる)な熱電変換素子として使用することが可能である。本発明の黒リン単原子膜は、伸張度合いに応じて熱電変換作用を変調し得るので、このような特性を利用して、既述したように例えばセンサー等の用途に使用が可能である。また、ウェアラブルな熱電変換素子として使用するような場合には、着用時の動作によって生じる伸張作用によって、熱電変換作用を変調し得るので、センサー等の用途に使用できる。
 さらに、電界効果型トランジスタや、薄膜トランジスタに使用することが可能である。
The thermoelectric conversion element of the present invention can be used as, for example, a power system integrated with a solar power generation element and a storage element.
Moreover, since the thermoelectric conversion element of this invention uses the black phosphorus monoatomic film | membrane, it is excellent in a softness | flexibility. Therefore, it can be used as a thermoelectric conversion element that is portable (portability, portability) or wearable (wearability, worn). Since the black phosphorus monoatomic film of the present invention can modulate the thermoelectric conversion action according to the degree of expansion, it can be used for applications such as sensors as described above using such characteristics. In addition, when used as a wearable thermoelectric conversion element, the thermoelectric conversion action can be modulated by the stretching action caused by the operation at the time of wearing, so that it can be used for applications such as sensors.
Further, it can be used for a field effect transistor or a thin film transistor.
<半導体素子>
 本発明の伸張された結晶構造を有する黒リン単原子膜は、半導体素子の材料として用いることが可能である。半導体素子は、電極と伸張された結晶構造を有する黒リン単原子膜とを備えている。具体的には、例えば、一方の電極と他方の電極との間に黒リン単原子膜を配置し、一方の電極と他方の電極とを接続する回路が配置されている半導体素子が挙げられる。このとき、両電極は、黒リン単原子膜のジグザグ軸方向における両末端に配置してもよく、アームチェア軸方向における両末端に配置してもよい。電極は、使用目的に応じて配置すればよい。
 以下、一方の電極と他方の電極との間に、伸張された結晶構造を有する黒リン単原子膜が配置された構造を有する半導体素子を例に挙げて説明する。
<Semiconductor element>
The black phosphorus monoatomic film having the stretched crystal structure of the present invention can be used as a material for a semiconductor element. The semiconductor element includes an electrode and a black phosphorus monoatomic film having an extended crystal structure. Specifically, for example, a semiconductor element in which a black phosphorus monoatomic film is disposed between one electrode and the other electrode, and a circuit for connecting the one electrode to the other electrode is disposed. At this time, both electrodes may be arranged at both ends in the zigzag axis direction of the black phosphorus monoatomic film, or may be arranged at both ends in the armchair axis direction. What is necessary is just to arrange | position an electrode according to the intended purpose.
Hereinafter, a semiconductor element having a structure in which a black phosphorus monoatomic film having a stretched crystal structure is disposed between one electrode and the other electrode will be described as an example.
 一方の電極と他方の電極との間に電圧を印加すると、電界効果により、両電極間に配置された、伸張した結晶構造を有する黒リン単原子膜に、例えば、正孔を注入することができる。そして、正孔が注入された黒リン単原子膜は、正孔を有する黒リン単原子膜となる。正孔を有する黒リン単原子膜は、いわゆるP型半導体として機能する。黒リン単原子膜が、正孔を有する黒リン単原子膜である場合、この半導体素子は、一方の電極と他方の電極との間に正孔を有する黒リン単原子膜が配置されている構造となる。
 電極の材質は、特に限定されるものではないが、例えば、前述の電変換素子で例示した材質と同様の材質が使用できる。
When a voltage is applied between one electrode and the other electrode, for example, holes can be injected into the black phosphorus monoatomic film having an expanded crystal structure disposed between both electrodes due to the field effect. it can. The black phosphorus monoatomic film into which holes are injected becomes a black phosphorus monoatomic film having holes. A black phosphorus monoatomic film having holes functions as a so-called P-type semiconductor. When the black phosphorus monoatomic film is a black phosphorus monoatomic film having holes, this semiconductor element has a black phosphorus monoatomic film having holes between one electrode and the other electrode. It becomes a structure.
Although the material of an electrode is not specifically limited, For example, the material similar to the material illustrated with the above-mentioned electroconversion element can be used.
 上記構成の半導体素子は、一方の電極と他方の電極との間に、正孔を有し、伸張した結晶構造を有する黒リン単原子膜が配置されており、両電極間に一定の電圧が印加されている。例えば、この半導体素子に応力を加え、半導体素子を変形させると、黒リン単原子膜が伸張度合いに応じて、黒リン単原子膜の抵抗値が変化する。そのため、半導体素子の変形の度合い、つまり、黒リン単原子膜の伸張の度合いによって、半導体素子を流れる電流値が異なることになる。この原理を利用することで、半導体素子は、例えば、被検体に貼りつけて、応力センサー(例えば、歪みセンサー)として利用することが期待される。 In the semiconductor device having the above structure, a black phosphorus monoatomic film having a hole and having an extended crystal structure is disposed between one electrode and the other electrode, and a constant voltage is applied between both electrodes. Applied. For example, when stress is applied to the semiconductor element to deform the semiconductor element, the resistance value of the black phosphorus monoatomic film changes according to the degree of expansion of the black phosphorus monoatomic film. Therefore, the value of current flowing through the semiconductor element varies depending on the degree of deformation of the semiconductor element, that is, the degree of expansion of the black phosphorus monoatomic film. By utilizing this principle, the semiconductor element is expected to be used as a stress sensor (for example, a strain sensor) by being attached to a subject, for example.
 上記の説明において、伸張された結晶構造を有する黒リン単原子膜を、熱電材料、熱電変換素子、及び半導体素子に用いた場合について説明したが、伸張された結晶構造を有する黒リン単原子膜に代えて、伸張された結晶構造を有する黒リン多層原子膜を用いることも可能である。例えば、2%~10%伸張させた黒リン多層原子膜は、2%~10%伸張させた黒リン単原子膜と同様に、未伸張の場合に比べて、パワーファクターが向上し得る。ただし、多層原子膜は、伸張させる応力を要する。そのため、多層原子膜を用いる場合、その伸張度合いは、2%~8%未満の範囲がよく、2%~6%の範囲であることが好ましい。 In the above description, the case where the black phosphorus monoatomic film having the stretched crystal structure is used for the thermoelectric material, the thermoelectric conversion element, and the semiconductor element has been described. However, the black phosphorus monoatomic film having the stretched crystal structure is described. Instead, it is also possible to use a black phosphorus multilayer atomic film having a stretched crystal structure. For example, a black phosphorus multilayer atomic film stretched by 2% to 10% can improve the power factor as compared with a non-stretched black phosphorus monoatomic film stretched by 2% to 10%. However, the multilayer atomic film requires a stress for stretching. Therefore, when a multilayer atomic film is used, the degree of extension is preferably in the range of 2% to less than 8%, and preferably in the range of 2% to 6%.
 図2に示す熱電変換素子を想定して、既述の方法により、伸張された結晶構造を有する本発明の黒リン単原子膜において、ジグザグ軸方向又はアームチェア軸方向に伸張させた場合のパワーファクターの変化について、シミュレーションによる検証を行った。結果を表1及び表2に示す。なお、正孔のドープ量は、電気的ドーピングにより、正孔のキャリアが供給されことを想定したものである。また、正孔のドープ量は、リン原子1個あたりのキャリア数を表す。 Assuming the thermoelectric conversion element shown in FIG. 2, the power when the black phosphorus monoatomic film of the present invention having the stretched crystal structure is stretched in the zigzag axis direction or the armchair axis direction by the method described above. The change of the factor was verified by simulation. The results are shown in Tables 1 and 2. The hole doping amount assumes that hole carriers are supplied by electrical doping. Further, the hole doping amount represents the number of carriers per phosphorus atom.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 シミュレーションによる検証の結果、未伸張の黒リン単原子膜に比べて、伸張された結晶構造を有する本発明の黒リン単原子膜のパワーファクターは向上することがわかった。これにより、伸張した結晶構造を有する伸張された結晶構造を有する本発明の黒リン単原子膜は、熱電材料として優れた性能を示す。また、伸張率によって、パワーファクターに変化がみられることから、伸張度合いに応じて熱電変換性能を変調できる優れた黒リン単原子膜が得られた。 As a result of verification by simulation, it was found that the power factor of the black phosphorus monoatomic film of the present invention having an expanded crystal structure is improved as compared with the unstretched black phosphorus monoatomic film. Thereby, the black phosphorus monoatomic film of the present invention having an extended crystal structure having an extended crystal structure exhibits excellent performance as a thermoelectric material. In addition, since the power factor was changed depending on the extension ratio, an excellent black phosphorus monoatomic film capable of modulating the thermoelectric conversion performance according to the extension degree was obtained.
 上記のシミュレーションによる検証の結果から、未伸張の黒リン単原子膜のパワーファクターに対する伸張された結晶構造を有する本発明の黒リン単原子膜のパワーファクターの増加率を求めた。結果を図3に示す。例えば、未伸張の黒リン単原子膜における単位胞を基準として、ジグザグ軸方向に10%伸張させた黒リン単原子膜は、160%を超える程度に増加しており、黒リン単原子膜をジグザグ軸方向に伸張させることで熱電変換性能が飛躍的に向上することがわかった。また、アームチェア軸方向に10%伸張させた黒リン単原子膜のパワーファクターは、未伸張の黒リン単原子膜のパワーファクターに対して20%程度増加しており、熱電変換性能が向上することがわかった。 From the result of the verification by the above simulation, the increase rate of the power factor of the black phosphorus monoatomic film of the present invention having the stretched crystal structure with respect to the power factor of the unstretched black phosphorus monoatomic film was obtained. The results are shown in FIG. For example, the black phosphorus monoatomic film stretched by 10% in the zigzag axis direction on the basis of the unit cell in the unstretched black phosphorus monoatomic film is increased to over 160%. It was found that the thermoelectric conversion performance is dramatically improved by extending in the zigzag axis direction. Further, the power factor of the black phosphorus monoatomic film stretched by 10% in the armchair axial direction is increased by about 20% with respect to the power factor of the unstretched black phosphorus monoatomic film, and the thermoelectric conversion performance is improved. I understood it.
 表1,2中において、正孔のドープ量は、熱電材料としての効果を最大限に発揮するための最適なドープ量を示している。シミュレーションによる検証の結果、ジグザグ軸方向に伸張させた場合には、未伸張の黒リン単原子膜の場合に比べて、黒リン単原子膜の伸張率が大きくなるとともに、正孔のドープ量の最適量が少なくなることがわかる。つまり、黒リン単原子膜は、ジグザグ軸方向に伸張させることで、少ないドープ量でより熱電変換性能が高い、優れた熱電材料を示すことがわかる。
 一方、アームチェア軸方向に伸張させた場合には、未伸張の黒リン単原子膜の場合に比べて、正孔のドープ量の最適量はわずかに増加する傾向があるものの、その増加量は極めて少ないことがわかる。つまり、アームチェア軸方向に伸張させた黒リン単原子膜において、正孔のドープ量の最適量は伸張率に依存せず、非常に狭い範囲で変化することがわかる。そして、ジグザグ軸方向に伸張させた場合に比べると、非常に少ない正孔のドープ量で熱電材料としての効果を最大限に発揮することがわかる。
In Tables 1 and 2, the hole doping amount indicates an optimum doping amount for maximizing the effect as a thermoelectric material. As a result of simulation verification, when stretched in the zigzag axis direction, the stretch rate of the black phosphorus monoatomic film is larger than that of the unstretched black phosphorus monoatomic film, and the amount of hole doping is increased. It can be seen that the optimum amount is reduced. That is, it can be seen that the black phosphorus monoatomic film shows an excellent thermoelectric material having a higher thermoelectric conversion performance with a small amount of doping by stretching in the zigzag axis direction.
On the other hand, when the armchair is stretched in the axial direction, the optimum amount of hole doping tends to slightly increase compared to the case of an unstretched black phosphorus monoatomic film. It turns out that it is very few. That is, it can be seen that in the black phosphorus monoatomic film stretched in the armchair axial direction, the optimum amount of hole doping does not depend on the stretch rate and varies within a very narrow range. Then, it can be seen that the effect as a thermoelectric material can be maximized with a very small amount of hole doping as compared with the case of extending in the zigzag axis direction.
 また、表1,2中において、格子定数aは図1Cに示すユニットセルにおけるジグザグ軸方向の格子定数を示し、格子定数bは図1Cに示すユニットセルにおけるアームチェア軸方向における格子定数を示す。表1に示す結果のように、黒リン単原子膜は、伸張度合いに応じて、格子定数aが増加し、格子定数bが低下することが分かる。つまり、伸張させた黒リン単原子膜は、格子定数aと格子定数bとが、上記のような結晶構造をとることで、パワーファクターが向上すると考えられる。 In Tables 1 and 2, the lattice constant a indicates the lattice constant in the zigzag axis direction in the unit cell shown in FIG. 1C, and the lattice constant b indicates the lattice constant in the armchair axis direction in the unit cell shown in FIG. 1C. As can be seen from the results shown in Table 1, in the black phosphorus monoatomic film, the lattice constant a increases and the lattice constant b decreases according to the degree of extension. That is, it is considered that the power factor of the stretched black phosphorus monoatomic film is improved when the lattice constant a and the lattice constant b have the above crystal structure.
 なお、従来から知られているカーボンナノチューブ薄膜を用いた熱電変換素子におけるカーボンナノチューブ薄膜のパワーファクターは0.11mW/m・Kであった。これに対し、伸張された結晶構造を有する本発明の黒リン単原子膜は、表1に示す結果のように、ジグザグ軸方向に伸張させた場合には、10mW/m・K程度までの範囲でパワーファクターが変調可能であり、アームチェア軸方向に伸張させた場合には、10mW/m・Kを超える巨大なパワーファクターが得られ、およそ14W/m・K~17W/m・K程度の範囲でパワーファクターが変調可能であるから、従来の熱電材料に比べて優れた熱電変換性能を示すことがわかる。
 また、ジグザグ軸方向に伸張させた場合において、パワーファクターが変調させる下限値を1mW/m・Kとすれば、優れた熱電変換性能を示す熱電変換材料が得られる。
In addition, the power factor of the carbon nanotube thin film in the thermoelectric conversion element using the conventionally known carbon nanotube thin film was 0.11 mW / m · K 2 . On the other hand, the black phosphorus monoatomic film of the present invention having an extended crystal structure, when extended in the zigzag axis direction as shown in Table 1, has a capacity of up to about 10 mW / m · K 2 . The power factor can be modulated in the range, and when it is extended in the armchair axial direction, a huge power factor exceeding 10 mW / m · K 2 is obtained, and approximately 14 W / m · K 2 to 17 W / m · since K 2 about power factor in the range of possible modulation, it is found to exhibit excellent thermoelectric conversion performance as compared with the conventional thermoelectric material.
Further, when the power factor is modulated in the zigzag axial direction and the lower limit value is 1 mW / m · K 2 , a thermoelectric conversion material exhibiting excellent thermoelectric conversion performance can be obtained.
 伸張された結晶構造を有する本発明の黒リン単原子膜は、熱電変換性能が優れていることから、黒リン単原子膜を積層させた熱電材料としたとしても、伸張された結晶構造を有する本発明の黒リン単原子膜を含んでいることで、単なるバルクの黒リンよりも、優れた熱電変換性能を示す熱電材料が得られると考えられる。 Since the black phosphorus monoatomic film of the present invention having an extended crystal structure has excellent thermoelectric conversion performance, it has an extended crystal structure even if a black phosphorous monoatomic film is laminated. By including the black phosphorus monoatomic film of the present invention, it is considered that a thermoelectric material exhibiting thermoelectric conversion performance superior to that of mere bulk black phosphorus can be obtained.
 上記の結果のように、ジグザグ軸方向に伸張させた場合には、伸張された結晶構造を有する本発明の黒リン単原子膜に電気的ドーピングを施した場合、熱電変換性能を最大限に発揮するためのドープ量は少なく抑えられる。また、アームチェア軸方向に伸張させた場合には、伸張された結晶構造を有する本発明の黒リン単原子膜に電気的ドーピングを施した場合、熱電変換性能を最大限に発揮するためのドープ量は極めて少ない。
 したがって、例えば、伸張された結晶構造を有する本発明の黒リン単原子膜を熱電変換素子に用い、この熱電変換素子を電界効果型トランジスタに用いた場合、ゲート電極に印加する電圧を低くすることが可能となり、その結果、リーク電流が抑えられること、及び省エネルギーが図れることが期待される。
As shown in the above results, when stretched in the zigzag axis direction, when the black phosphorus monoatomic film of the present invention having the stretched crystal structure is electrically doped, the thermoelectric conversion performance is maximized. Therefore, the amount of doping for the purpose is reduced. In addition, in the case where the armchair is stretched in the axial direction, when the black phosphorus monoatomic film of the present invention having the stretched crystal structure is electrically doped, the doping for maximizing the thermoelectric conversion performance is performed. The amount is extremely small.
Therefore, for example, when the black phosphorus monoatomic film of the present invention having a stretched crystal structure is used for a thermoelectric conversion element, and this thermoelectric conversion element is used for a field effect transistor, the voltage applied to the gate electrode should be lowered. As a result, it is expected that leakage current can be suppressed and energy saving can be achieved.
 次に、図2に示す熱電変換素子を想定して、既述の方法により、本発明の伸張された結晶構造を有する黒リン多層原子膜において、ジグザグ軸方向又はアームチェア軸方向に伸張させた場合のパワーファクターの変化について、シミュレーションによる検証を行った。結果を表3及び表4に示す。なお、正孔のドープ量は、電気的ドーピングにより、正孔のキャリアが供給されることを想定したものである。また、正孔のドープ量は、リン原子1個あたりのキャリア数を表す。なお、黒リン多層原子膜は、2層の多層原子膜を想定した。 Next, assuming the thermoelectric conversion element shown in FIG. 2, the black phosphorus multilayer atomic film having the stretched crystal structure of the present invention was stretched in the zigzag axial direction or the armchair axial direction by the method described above. The change in power factor was verified by simulation. The results are shown in Tables 3 and 4. The hole doping amount assumes that hole carriers are supplied by electrical doping. Further, the hole doping amount represents the number of carriers per phosphorus atom. The black phosphorus multilayer atomic film was assumed to be a two-layer multilayer atomic film.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 シミュレーションによる検証の結果、伸張された結晶構造を有する2層の黒リン多層原子膜の場合も、未伸張の場合に比べて、パワーファクターが向上することが分かった。これにより、伸張した結晶構造を有する黒リン原子膜は、2層以上の多層原子膜の場合であっても、熱電材料として優れた性能が得られる。また、2層の黒リン多層原子膜は、単原子膜の場合と同様に、伸張率によって、パワーファクターに変化がみられることから、伸張度合いに応じて熱電変換性能を変調できる黒リン原子膜が得られる。
 したがって、黒リン多層原子膜も、黒リン単原子膜と同様の使用方法が期待される。
As a result of the verification by simulation, it was found that the power factor was improved also in the case of the two-layer black phosphorus multilayer atomic film having the stretched crystal structure as compared with the case where it was not stretched. Thereby, even if the black phosphorus atomic film having the stretched crystal structure is a multilayer atomic film having two or more layers, excellent performance as a thermoelectric material can be obtained. In addition, as in the case of the monolayer film, the two-layer black phosphorus multi-layer atomic film has a change in power factor depending on the expansion rate. Therefore, the black phosphorus atomic film that can modulate the thermoelectric conversion performance according to the degree of expansion. Is obtained.
Therefore, the black phosphorus multilayer atomic film is expected to be used in the same manner as the black phosphorus monoatomic film.
 ただし、2層の黒リン多層原子膜をジグザグ方向に伸張させた場合、8%以上伸張させるとパワーファクターが頭打ちになる傾向がみられる。これは、伸張された単原子膜の電子状態と、伸張された2層以上の多層原子膜の電子状態とでは、異なるためである。そのため、ジグザグ方向に伸張させる場合、黒リン多層原子膜は、2%~6%伸張させて用いることがよい。 However, when a two-layer black phosphorus multilayer atomic film is stretched in a zigzag direction, the power factor tends to reach its peak when stretched by 8% or more. This is because the electronic state of the stretched monoatomic film is different from the electronic state of the stretched multilayer atomic film of two or more layers. Therefore, when extending in the zigzag direction, the black phosphorus multilayer atomic film is preferably extended by 2% to 6%.
 また、上記のシミュレーションの結果のように、2層の黒リン多層原子膜は、ジグザグ方向に伸張させた場合、伸張率が2%~8%の範囲において、黒リン単層膜を同程度伸張させた場合に比べ、パワーファクターが優れている。このことから、黒リン多層原子膜を用いることで、黒リン単層膜を用いる場合に比べ、少ない伸張率でより高い効果が得られることが分かる。 In addition, as shown in the above simulation results, when the two-layer black phosphorus multilayer atomic film is stretched in the zigzag direction, the black phosphorus single-layer film is stretched to the same extent in the range of 2% to 8%. The power factor is superior compared to the case where From this, it can be seen that by using the black phosphorus multilayer atomic film, a higher effect can be obtained with a smaller elongation rate than in the case of using the black phosphorus single layer film.
 ジグザグ軸方向に伸張された黒リン多層原子膜において、リン原子1個あたりのキャリア数として、例えば、正孔のキャリアである場合、0.0300~0.1200(e/atom)の範囲であることが好ましい。この範囲のドープ量であれば、より優れた熱電変換性能を備えた伸張された黒リン多層原子膜が得られる。 In the black phosphorus multilayer atomic film extended in the zigzag axis direction, the number of carriers per phosphorus atom is, for example, in the range of 0.0300 to 0.1200 (e / atom) in the case of hole carriers. It is preferable. If the doping amount is within this range, an elongated black phosphorus multilayer atomic film having better thermoelectric conversion performance can be obtained.
 なお、2014年10月10日に出願された日本国特許出願2014-209402号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The entire disclosure of Japanese Patent Application No. 2014-209402 filed on October 10, 2014 is incorporated herein by reference.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (10)

  1.  未伸張の黒リン原子膜における単位胞を基準として、ジグザグ軸方向及びアームチェア軸方向の少なくとも一方に2%~10%伸張された結晶構造を有する黒リン原子膜。 A black phosphorus atomic film having a crystal structure that is stretched 2% to 10% in at least one of the zigzag axis direction and the armchair axis direction based on the unit cell in the unstretched black phosphorus atomic film.
  2.  前記黒リン原子膜が、正孔を有する請求項1に記載の黒リン原子膜。 The black phosphorus atomic film according to claim 1, wherein the black phosphorus atomic film has holes.
  3.  前記黒リン原子膜が、単原子膜である請求項1又は請求項2に記載の黒リン原子膜。 The black phosphorus atomic film according to claim 1 or 2, wherein the black phosphorus atomic film is a monoatomic film.
  4.  前記黒リン原子膜が、多層原子膜である請求項1又は請求項2に記載の黒リン原子膜。 The black phosphorus atomic film according to claim 1 or 2, wherein the black phosphorus atomic film is a multilayer atomic film.
  5.  請求項1~請求項4のいずれか1項に記載の黒リン原子膜を含む熱電材料。 A thermoelectric material comprising the black phosphorus atomic film according to any one of claims 1 to 4.
  6.  更に、未伸張の黒リン原子膜を含む請求項5に記載の熱電材料。 The thermoelectric material according to claim 5, further comprising an unstretched black phosphorus atomic film.
  7.  前記ジグザグ軸方向に伸張された結晶構造を有する黒リン単原子膜におけるドープ量が、リン原子1個あたりのキャリア数として、0.0100~0.0700(e/atom)である請求項5又は請求項6に記載の熱電材料。 The doping amount in the black phosphorus monoatomic film having a crystal structure stretched in the zigzag axis direction is 0.0100 to 0.0700 (e / atom) as the number of carriers per phosphorus atom. The thermoelectric material according to claim 6.
  8.  前記アームチェア軸方向に伸張された結晶構造を有する黒リン単原子膜におけるドープ量が、リン原子1個あたりのキャリア数として、0.00280~0.00350(e/atom)である請求項5又は請求項6に記載の熱電材料。 6. The doping amount in the black phosphorus monoatomic film having a crystal structure extended in the armchair axis direction is 0.00280 to 0.00350 (e / atom) as the number of carriers per phosphorus atom. Or the thermoelectric material of Claim 6.
  9.  請求項1~請求項4のいずれか1項に記載の黒リン原子膜と、
     電極と、
     前記黒リン原子膜と前記電極との間に配置された電解質材料又は誘電体材料と、
     を備えた熱電変換素子。
    The black phosphorus atomic film according to any one of claims 1 to 4,
    Electrodes,
    An electrolyte material or a dielectric material disposed between the black phosphorus atomic film and the electrode;
    A thermoelectric conversion element.
  10.  請求項1~請求項4のいずれか1項に記載の黒リン原子膜と、
     電極と、
     を備えた半導体素子。
    The black phosphorus atomic film according to any one of claims 1 to 4,
    Electrodes,
    A semiconductor device comprising:
PCT/JP2015/078841 2014-10-10 2015-10-09 Black phosphorus atom film, thermoelectric material, thermoelectric conversion element, and semiconductor element WO2016056661A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014209402A JP2017214226A (en) 2014-10-10 2014-10-10 Black phosphorous atomic monolayer deposition, thermoelectric material, and thermoelectric conversion element
JP2014-209402 2014-10-10

Publications (1)

Publication Number Publication Date
WO2016056661A1 true WO2016056661A1 (en) 2016-04-14

Family

ID=55653265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078841 WO2016056661A1 (en) 2014-10-10 2015-10-09 Black phosphorus atom film, thermoelectric material, thermoelectric conversion element, and semiconductor element

Country Status (2)

Country Link
JP (1) JP2017214226A (en)
WO (1) WO2016056661A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105948004A (en) * 2016-05-06 2016-09-21 吉林大学 Method for preparation of black phosphorus under water self-elevating pressure
CN106129811A (en) * 2016-07-13 2016-11-16 东南大学 A kind of method realizing laser semiconductor with the different stacking provisions of few layer black phosphorus
CN106409990A (en) * 2016-09-29 2017-02-15 成都新柯力化工科技有限公司 Preparation method of stable black phosphorus composite micro-sheet
CN107447193A (en) * 2016-11-14 2017-12-08 深圳大学 A kind of black phosphorus film and preparation method thereof
CN111517294A (en) * 2020-06-26 2020-08-11 昆明理工大学 Preparation method of metal-doped nano black phosphorus
WO2020262035A1 (en) * 2019-06-27 2020-12-30 堺化学工業株式会社 Production method for black phosphorus-containing composition and black phosphorus-containing composition
CN112909097A (en) * 2021-02-27 2021-06-04 成都市水泷头化工科技有限公司 Graphene/black phosphorus alkene composite thin film transistor and preparation method thereof
CN114975863A (en) * 2022-08-01 2022-08-30 深圳市汉嵙新材料技术有限公司 Black phosphorus cathode, preparation method thereof and lithium ion battery

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
FEI, R. ET AL.: "Lattice vibrational modes and Raman scattering spectra of strained phosphorene", APPL. PHYS. LETT., vol. 105, 28 August 2014 (2014-08-28), pages 083120 - 1 -083120-4 *
FEI, R. ET AL.: "Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black Phosphorus", NANO LETT., vol. 14, 29 April 2014 (2014-04-29), pages 2884 - 2889 *
HAN, X. ET AL.: "Strain and Orientation Modulated Bandgaps and Effective Masses of Phosphorene Nanoribbons", NANO LETT., vol. 14, 3 July 2014 (2014-07-03), pages 4607 - 4614 *
LI, Y. ET AL.: "Modulation of the Electronic Properties of Ultrathin Black Phosphorus by Strain and Electrical Field", J. PHYS. CHEM. C, vol. 118, 24 September 2014 (2014-09-24), pages 23970 - 23976 *
LV , H. Y. ET AL.: "Enhanced thermoelectric performance of phosphorene by strain-induced band convergence", PHYS. REV. B, vol. 90, 26 August 2014 (2014-08-26), pages 085433 - 1 -085433-8 *
PENG, X. ET AL.: "Strain-engineered direct- indirect band gap transition and its mechanism in two-dimensional phosphorene", PHYS. REV. B, vol. 90, 4 August 2014 (2014-08-04), pages 085402 - 1 -085402-10 *
WEI, Q. ET AL.: "Superior mechanical flexibility of phosphorene and few-layer black phosphorus", APPL. PHYS. LETT., vol. 104, 27 June 2014 (2014-06-27), pages 251915 - 1 -251915-5, XP012187513, DOI: doi:10.1063/1.4885215 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105948004A (en) * 2016-05-06 2016-09-21 吉林大学 Method for preparation of black phosphorus under water self-elevating pressure
CN106129811A (en) * 2016-07-13 2016-11-16 东南大学 A kind of method realizing laser semiconductor with the different stacking provisions of few layer black phosphorus
CN106409990A (en) * 2016-09-29 2017-02-15 成都新柯力化工科技有限公司 Preparation method of stable black phosphorus composite micro-sheet
CN107447193A (en) * 2016-11-14 2017-12-08 深圳大学 A kind of black phosphorus film and preparation method thereof
WO2020262035A1 (en) * 2019-06-27 2020-12-30 堺化学工業株式会社 Production method for black phosphorus-containing composition and black phosphorus-containing composition
JP2021004161A (en) * 2019-06-27 2021-01-14 堺化学工業株式会社 Method for producing black phosphorus-containing composition and black phosphorus-containing composition
JP7248242B2 (en) 2019-06-27 2023-03-29 堺化学工業株式会社 Method for producing black phosphorus-containing composition and black phosphorus-containing composition
CN111517294A (en) * 2020-06-26 2020-08-11 昆明理工大学 Preparation method of metal-doped nano black phosphorus
CN112909097A (en) * 2021-02-27 2021-06-04 成都市水泷头化工科技有限公司 Graphene/black phosphorus alkene composite thin film transistor and preparation method thereof
CN112909097B (en) * 2021-02-27 2023-04-18 贵溪穿越光电科技有限公司 Graphene/black phosphorus alkene composite thin film transistor and preparation method thereof
CN114975863A (en) * 2022-08-01 2022-08-30 深圳市汉嵙新材料技术有限公司 Black phosphorus cathode, preparation method thereof and lithium ion battery
CN114975863B (en) * 2022-08-01 2022-09-30 深圳市汉嵙新材料技术有限公司 Black phosphorus cathode, preparation method thereof and lithium ion battery

Also Published As

Publication number Publication date
JP2017214226A (en) 2017-12-07

Similar Documents

Publication Publication Date Title
WO2016056661A1 (en) Black phosphorus atom film, thermoelectric material, thermoelectric conversion element, and semiconductor element
Pu et al. Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting
Lei et al. Double-network thermocells with extraordinary toughness and boosted power density for continuous heat harvesting
Gueye et al. All-polymeric flexible transparent heaters
Zhang et al. Thermoswitchable on-chip microsupercapacitors: one potential self-protection solution for electronic devices
Li et al. Soft and flexible PEDOT/PSS films for applications to soft actuators
Weng et al. Electric-fish-inspired actuator with integrated energy-storage function
Zhou et al. Self-chargeable flexible solid-state supercapacitors for wearable electronics
Chen et al. MXene@ nitrogen-doped carbon films for supercapacitor and piezoresistive sensing applications
Tian et al. Engineering the volumetric effect of Polypyrrole for auto-deformable supercapacitor
Li et al. Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments
Ahmed et al. A free-standing, flexible PEDOT: PSS film and its nanocomposites with graphene nanoplatelets as electrodes for quasi-solid-state supercapacitors
Mu et al. Fully integrated design of intrinsically stretchable electrodes for stretchable supercapacitors
Shin et al. Solvent-assisted optimal BaTiO3 nanoparticles-polymer composite cluster formation for high performance piezoelectric nanogenerators
Mu et al. High-performance-integrated stretchable supercapacitors based on a polyurethane organo/hydrogel electrolyte
Wang et al. Engineering electrochemical actuators with large bending strain based on 3D-structure titanium carbide MXene composites
Zhu et al. High-performance stretchable PZT particles/Cu@ Ag branch nanofibers composite piezoelectric nanogenerator for self-powered body motion monitoring
Gao et al. Dielectric elastomer actuators based on stretchable and self-healable hydrogel electrodes
JP6158062B2 (en) Power generation device
Terasawa et al. Electrochemical and electromechanical properties of carbon black/carbon fiber composite polymer actuator with higher performance than single-walled carbon nanotube polymer actuator
Luo et al. Recent Progresses in Liquid‐Free Soft Ionic Conductive Elastomers
Lu et al. Swift assembly of adaptive thermocell arrays for device-level healable and energy-autonomous motion sensors
Fang et al. Anhydrous Thermogalvanic Gel for Simultaneous Waste Heat Recovery and Thermal Management of Electronics
Terasawa et al. Performance enhancement of PEDOT: poly (4-styrenesulfonate) actuators by using ethylene glycol
Li et al. Scalable van der Waals graphene films for electro‐optical regulation and thermal camouflage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP