WO2016056580A1 - Turbine blade cooling structure and gas turbine engine - Google Patents

Turbine blade cooling structure and gas turbine engine Download PDF

Info

Publication number
WO2016056580A1
WO2016056580A1 PCT/JP2015/078451 JP2015078451W WO2016056580A1 WO 2016056580 A1 WO2016056580 A1 WO 2016056580A1 JP 2015078451 W JP2015078451 W JP 2015078451W WO 2016056580 A1 WO2016056580 A1 WO 2016056580A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
flow path
housing
gas turbine
path
Prior art date
Application number
PCT/JP2015/078451
Other languages
French (fr)
Japanese (ja)
Inventor
豪 堀内
敦史 堀川
山下 誠二
雅英 餝
剛生 小田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2016056580A1 publication Critical patent/WO2016056580A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply

Definitions

  • the present invention relates to a turbine blade cooling structure and a gas turbine engine.
  • the blade body is constituted by a hollow housing, and the compressed air generated by the compressor is caused to flow into the internal space of the housing, and also through a large number of holes formed in the housing.
  • the temperature of the stationary blade is lowered by preventing the hot gas from coming into direct contact with the blade surface by forming a cooling air film on the surface of the housing by flowing out to the outside of the housing (see Patent Document 1).
  • an object of the present invention is to provide a cooling structure for a turbine blade and a gas turbine engine that can suppress compressed air used for cooling the turbine blade as much as possible.
  • a turbine blade cooling structure includes: Embedded in a turbine having a stationary blade ring and a moving blade ring, and cooling a plurality of stationary blades constituting the stationary blade ring, A housing constituting the stationary blade; A flow path formed inside the housing; Including a hydrogen source connected to the flow path; The housing is configured to be cooled by hydrogen supplied to the flow path from the hydrogen supply source.
  • a first form of a gas turbine engine according to the present invention is: It has a turbine with a stationary blade ring and a moving blade ring, The plurality of stationary blades constituting the stationary blade ring has a housing and a flow path formed inside the housing, The flow path is connected to a hydrogen source; The housing is configured to be cooled by hydrogen supplied to the flow path from the hydrogen supply source.
  • the engine includes a compressor that generates compressed air, and a combustor that burns fuel using the compressed air generated by the compressor.
  • the engine further includes a first path that connects the hydrogen supply source and the flow path to send hydrogen supplied from the hydrogen supply source to the flow path, and hydrogen discharged from the flow path to the combustor.
  • a second path for supplying to is provided.
  • the combustor includes a fuel injection unit, and a combustion chamber for burning fuel injected from the fuel injection unit,
  • the second path is disposed outside the combustion chamber, and the hydrogen passing through the second path absorbs heat from the combustion chamber.
  • the second path directly connects the flow path and the fuel injection nozzle of the combustor, and the hydrogen discharged from the flow path does not absorb heat from the combustion chamber of the combustor. Supplied to the injection nozzle.
  • the second path is connected to the fuel injection unit, and the hydrogen is injected into the combustion chamber as fuel.
  • the stationary blade is cooled by hydrogen. Therefore, it is not necessary to cool all the stationary blades with the compressed air generated by the compressor. Therefore, it is possible to improve the output and efficiency of the gas turbine by using the compressed air generated by the compressor for driving the turbine.
  • FIG. 4A and 4B are diagrams illustrating a configuration of a stationary blade according to the first embodiment, in which FIG. 4A is a transverse sectional view of the stationary blade, FIG. 4B is a longitudinal sectional view of the stationary blade, and FIG. 4C is FIG.
  • FIG. 5A and 5B are diagrams illustrating a configuration of a stationary blade according to the second embodiment, in which FIG. 5A is a transverse sectional view of the stationary blade, FIG. 5B is a longitudinal sectional view of the stationary blade, and FIGS. ) Is a partial enlarged cross-sectional view of the stationary blade shown in FIG.
  • FIG. 1 is a diagram schematically showing a schematic configuration and functions of a gas turbine engine (hereinafter simply referred to as “engine”).
  • engine gas turbine engine
  • the configuration of the engine (generally indicated by reference numeral 10) will be briefly described along with its operation.
  • the compressor 11 sucks the atmosphere 12 and generates compressed air 13.
  • the compressed air 13 is combusted together with the fuel 15 in the combustor 14 to generate high-temperature and high-pressure combustion gas 16.
  • Combustion gas 16 is supplied to turbine 17 and used for rotation of rotor 18.
  • the rotation of the rotor 18 is transmitted to the compressor 11 and used to generate the compressed air 13.
  • the rotation of the rotor 18 is transmitted to, for example, a generator 19 and used for power generation.
  • FIG. 2 shows a part of the combustor 14 included in the engine 10 according to the first embodiment.
  • a plurality of combustors 14 are arranged at equal intervals around the central axis of the engine 10 (not shown, but coincides with the rotational central axis of the rotor 18 shown in FIG. 1).
  • Each combustor 14 has a cylindrical combustor housing 22 fixed to the outer casing 21 of the engine 10.
  • the combustor housing 22 has a combustion cylinder 23 disposed concentrically inside the combustor housing 22.
  • the combustor housing 22 and the combustion cylinder 23 have an outer casing 21 such that their center shafts 24 intersect with an engine center shaft (not shown) at a predetermined angle from the compressor side toward the turbine side. It is fixed at an angle.
  • the combustor housing 22 has a cylindrical portion 25, one end (the end on the right side in the drawing) of the cylindrical portion 25 is connected to the outer casing 21, and the other end (the end on the left side in the drawing) of the cylindrical portion 25. ) Is closed by a lid 26.
  • the combustion cylinder 23 is fixed to the combustor housing 22.
  • the base end side (the left side in FIG. 2) of the combustion cylinder 23 is fixed to the cylinder portion 25 of the combustor housing 22 via the support cylinder 27, and between the cylinder portion 25 of the combustor housing 22 and the combustion cylinder 23.
  • An annular gap 28 (a part of the combustion air supply passage 45) is formed.
  • the support cylinder 27 has a plurality of openings 29 (a part of the combustion air supply passage 45).
  • the combustion cylinder 23 forms a combustion chamber 32 on the inner side thereof, the end portion is concentrically connected to the cylindrical tail cylinder 33, the end portion of the tail cylinder 33 is connected to the transition cylinder 34, and The end of the transition cylinder 34 is connected to the turbine chamber 35 of the turbine 17, whereby the combustion gas generated in the combustion chamber 32 passes through the inner space of the transition cylinder 34 and the turbine chamber of the turbine 17. 35.
  • an outer cylinder 36 is externally mounted on the tail cylinder 33 and the transition cylinder 34, and an annular gap 37 (a part of the combustion air supply path 45) is provided between the tail cylinder 33 and the transition cylinder 34 and the outer cylinder 36. Is formed.
  • the gap 37 communicates with a gap 28 between the combustor housing tube portion 25 and the combustion tube 23.
  • the end opening 38 of the outer cylinder 36 is opened to a compressed air storage chamber 39 formed inside the outer casing 21. Therefore, the compressed air 13 discharged from the compressor 11 can move to the gaps 37 and 28 via the compressed air storage chamber 39.
  • the combustion cylinder 23 has a fuel injection unit 40 connected to the base end side thereof.
  • the fuel injection unit 40 includes a fuel injection nozzle 41 that injects fuel and a combustion air injection nozzle 42 that injects combustion air.
  • the fuel injection nozzle 41 is disposed along the central axis 24.
  • the fuel injection nozzle 41 has a first fuel injection path 41 a formed along the central axis 24, and a plurality of second fuel injection paths 41 b formed at equal intervals around the central axis 24.
  • the first fuel injection path 41 a is connected to a hydrocarbon fuel supply source 70.
  • the second fuel injection path 41 b is connected to the water vapor supply source 50.
  • the second fuel injection path 41b is also connected to a hydrogen supply source 52 as will be described later.
  • the combustion air injection nozzle 42 is configured by an opening formed around the fuel injection nozzle 41.
  • a space 44 (a part of the combustion air supply passage 45) behind the combustion air injection nozzle 42 is formed around the combustion cylinder 23, the tail cylinder 33, and the transition cylinder 34 through the opening 29 of the support cylinder 27.
  • the gaps 28 and 37 are connected to each other.
  • the gaps 28 and 37, the support cylinder opening 29, and the space 44 form a combustion air supply passage 45, and the compressed air supplied from the compressed air storage chamber 39 is injected into the combustion air. It is injected from the nozzle 42 into the combustion chamber 32.
  • the compressed air 13 injected into the combustion chamber 32 is referred to as “combustion air 13 ′”.
  • the combustion air injection nozzle 42 is constituted by a turning guide vane (swirler).
  • the swirl guide vane includes a plurality of vanes, and the combustion air injected from the combustion air supply passage 45 to the combustion chamber 32 based on the pressure difference between the combustion air supply passage 45 (space 44) and the combustion chamber 32 behind.
  • a swirling force is applied to the combustion chamber 32 to form a swirling flow in the combustion chamber 32.
  • the combustion cylinder 23 includes an inner cylinder (liner) 46 and an outer cylinder 47 that covers the inner cylinder 46, and an annular space 48 is provided between the inner cylinder 46 and the outer cylinder 47. Is formed.
  • One end side of the annular space 48 on the left side in the drawing is connected to a plurality of second fuel injection paths 41 b formed inside the fuel injection nozzle 41 via a connecting pipe 49.
  • the annular space 48 is connected to the hydrogen supply source 52 through the connecting pipe 51 and the like at the other end on the right side in the drawing.
  • the base end and the end of the annular space 48 are sealed, and the hydrogen supplied from the hydrogen supply source 52 is supplied to the second fuel injection path 41 b via the annular space 48 and the plurality of connecting pipes 49. From there, it is injected into the combustion chamber 32.
  • Hydrogen 65 and combustion air 13 ′ are supplied as fuel.
  • Hydrogen 65 is supplied from a hydrogen supply source 52 and is preferably 90% or more, more preferably 95% or more, and most preferably 99% or more of a gas composed of hydrogen (H 2 ) (hereinafter referred to as “pure hydrogen”). Naturally, it may contain impurities that are inevitably included.)
  • a gas containing hydrogen that is generated as a by-product in the manufacturing process of a chemical factory or the like hereinafter, this gas is referred to as “subsidiary”). It may be any of “raw hydrogen”.
  • the combustion air 13 ′ is high-pressure compressed air generated by the compressor 11 as described above, and its temperature is about 400 degrees Celsius to about 500 degrees Celsius.
  • the temperature of the supplied hydrogen 65 is 100 degrees or more lower than that of the high-pressure compressed air, and preferably about 15 to 30 degrees Celsius.
  • the hydrocarbon fuel 71 supplied from the hydrocarbon fuel supply source 70 is injected into the combustion space 32 from the first fuel injection path 41a.
  • the hydrogen 65 supplied from the hydrogen supply source 52 passes through the turbine 17 as described later, and then enters the end side of the annular space 48 formed in the combustion cylinder 23.
  • the hydrogen 65 in the annular space 48 cools the inner cylinder 46 heated by the flame 66 generated in the combustion chamber 32.
  • the hydrogen 65 moves to the base end side of the annular space 48 and enters the second fuel injection path 41 b of the fuel injection nozzle 41 through the connecting pipe 49, where it mixes with the water vapor 76 supplied from the water vapor supply source 50. And then injected into the combustion chamber 32.
  • the combustion air (compressed air) 13 enters the combustion air supply path 45 from the compressed air storage chamber 39 through the terminal opening 38 of the transition cylinder 34, and passes outside the transition cylinder 34, the tail cylinder 33, and the combustion cylinder 23. Then, the fuel is injected from the periphery of the fuel injection nozzle 41 into the combustion chamber 32 through the turning guide vanes that function as the combustion air injection nozzle 42. The mixture of the hydrocarbon raw material 71, hydrogen 65, and water vapor 76 is burned together with the combustion air 13 'injected from the combustion air injection nozzle 42 to form a flame 66, and high-temperature combustion gas is generated.
  • the hot gas obtained by the combustion of the fuel is supplied from the tail cylinder 33 through the transition cylinder 34 to the turbine chamber 35 where it is used to drive the turbine 17.
  • the hydrogen discharged from the turbine 17 is supplied to the fuel injection nozzle 41 after cooling the combustion cylinder 23 in the annular space 48, but the hydrogen discharged from the turbine 17 is supplied to the annular space 48. You may supply directly to the fuel-injection nozzle 41, without going through.
  • the hydrogen 65 that has absorbed heat when passing through the annular space 48 of the combustion cylinder 23 is supplied to the second fuel injection path 41b in the second fuel injection path 41b. Is cooled in contact with the fuel and injected into the combustion chamber 32. Further, since hydrogen and water vapor are injected into the combustion chamber 32 in a mixed state, it is possible to lower the flame temperature as compared with the case where hydrogen and water vapor are not mixed. As a result, nitrogen contained in the combustion gas can be reduced. Oxide can be minimized.
  • the hydrocarbon fuel such as natural gas is supplied from the hydrocarbon fuel supply source 70.
  • the fuel supplied from the hydrocarbon fuel supply source 70 is not limited to this. Good. Further, water vapor may be introduced instead of the fuel.
  • the hydrocarbon fuel supply source 70 is provided, but this hydrocarbon fuel supply source 70 may be omitted.
  • the combustion cylinder 23 is formed by the inner cylinder 46 and the outer cylinder 47 to form an annular space for supplying hydrogen between them.
  • the space formed around the inner cylinder 46 is the circumference. It is not necessary to have an annular space that is continuous in the direction, and the hydrogen supply space can be reduced by a method other than the double tube structure using the inner cylinder and the outer cylinder, for example, by arranging a large number of tubes around the inner cylinder. It may be formed.
  • the turbine 17 includes an annular turbine chamber 35 formed between the outer casing 21 and the inner casing 71, and a stationary blade ring 72 and a moving blade ring 73 are provided in the turbine chamber 35.
  • a plurality of stages are alternately arranged from the left side to the right side of the figure.
  • the stationary blade ring 72 is fixed so as not to rotate, and the moving blade ring 73 is supported so as to be rotatable about an engine central axis (not shown).
  • the stationary blade ring 72 includes a plurality of stationary blades 74 arranged at equal intervals in the circumferential direction
  • the moving blade ring 73 includes a plurality of moving blades 75 arranged at equal intervals in the circumferential direction.
  • FIG. 4 shows the first stage vane 74 closest to the combustor 14.
  • the stationary blade 74 includes an outer flange 81 and an inner flange 82 that are respectively located on the outer side and the inner side with respect to a radial direction with respect to the engine central axis, and a radially extending outer flange 81 and an inner flange 82.
  • a hollow wing housing 83 is integrally connected, and the outer casing 21 and the inner casing 71 are engaged by engaging the outer flange 81 and the inner flange 82 with the engaging portions of the corresponding outer casing 21 and inner casing 71, respectively.
  • the turbine chamber 35 is formed between the outer flange 81 and the inner flange 82.
  • the blade housing 83 has a blade-shaped cross section, and gradually becomes narrower from the front edge side close to the combustor 14 toward the rear edge side away from the combustor 14.
  • a partition wall 88 extending in the radial direction is formed in the interior 84 of the wing housing 83, whereby the interior space of the wing housing 83 is separated from the front chamber 89 (a part of the flow path 97) on the front edge side and the rear edge side. It is partitioned into a rear chamber 90 (a part of the flow path 122).
  • the partition wall 88 has a radially outer end connected to the outer flange 81, and the radially inner end separates the front chamber 89 and the rear chamber 90 between the inner flange 82 and the inner flange 82.
  • a communication path 91 (a part of the flow path 97) to be communicated is formed.
  • a plurality of protrusions 92 are formed on the inner surface portion facing the front chamber 89 of the wing housing 83 and located between the inner cylinder 85 and the partition wall 88.
  • a plurality of rod-shaped protrusions 93 are formed on the inner surface portion facing the rear chamber 90 of the wing housing 83 and positioned on the rear side of the partition wall 88.
  • the opening 94 of the inner cylinder 85 is connected to the hydrogen supply source 52 via the connection pipe 96
  • the opening 95 of the rear chamber 90 is connected to the annular space 48 around the combustion chamber 32 via the connection pipe 51 described above. Has been.
  • normal temperature hydrogen 65 supplied from the hydrogen supply source 52 is supplied to the inner cylinder 85 through the connection pipe 96 to the first stage stationary blade 74.
  • the supplied hydrogen 65 is ejected from the hole 86 of the inner cylinder 85 to the periphery thereof, hits the inner surface on the front edge side of the blade housing 83 that receives the most thermal stress, and the portion is cooled from the inside to prevent the blade housing 83 from being burned out. To do.
  • the hydrogen 65 moves from the front chamber 89 toward the communication path 91 through the gap 87 around the inner cylinder 85. At this time, the hydrogen 65 comes into contact with the plurality of protrusions 92 and absorbs heat of the blade housing 83 through the protrusions 92.
  • the hydrogen 65 contacts the wall of the anterior chamber 89 and absorbs heat therefrom.
  • the hydrogen 65 that has entered the rear chamber 90 from the communication path 91 absorbs heat from the blade housing 83 while coming into contact with the plurality of protrusions 93, enters the connection pipe 51 through the opening 95, and burns as described above via the connection pipe 51.
  • hydrogen supplied from the hydrogen supply source 52 is used for cooling the first stage stationary blade particularly subjected to thermal stress, not the compressed air generated by the compressor 11. Therefore, since more compressed air can be used for driving the turbine, the output can be improved and the efficiency can be improved.
  • FIG. 5 shows another embodiment of the wing housing 83.
  • a front partition wall 102 and a rear partition wall 103 that extend in the radial direction substantially parallel to the blade housing 83 are formed in the interior (passage) 101 of the blade housing 83.
  • the front partition wall 102 is connected to the outer flange 81 and the inner flange 82 at the outer end and the inner end in the radial direction, respectively, and a front chamber 104 (a part of the flow path 122) located on the front side of the front partition wall 102. )
  • the central chamber 105 (a part of the flow path 122) located between the front partition wall 102 and the rear partition wall 103 is completely separated.
  • the rear partition wall 103 divides a space located behind the front partition wall 102 into a front central chamber 105 and a rear rear chamber 106 (a part of the flow path 122).
  • the rear partition wall 103 has a radially outer end connected to the outer flange 81, but the radially inner end is separated from the inner flange 82 and between the inner flange 82 and the central chamber 105.
  • a communication path 107 (a part of the flow path 122) communicating with the rear chamber 106 is formed.
  • a front inner cylinder 108 extending in the radial direction is arranged.
  • the front inner cylinder 108 is formed with a large number of holes 109 penetrating inside and outside.
  • the front inner cylinder 108 is disposed closer to the front partition wall 102.
  • the cross-sectional shape of the front inner cylinder 108 is a gap 110 (a part of the flow path 122) having a substantially constant width between the front inner cylinder 108 and the surrounding blade housing 83. Is determined to be formed.
  • a plurality of holes 111 communicating between the inside and the outside are formed in the front edge of the wing housing 83.
  • a rear inner cylinder 112 extending in the blade radial direction is disposed.
  • the rear inner cylinder 112 has a large number of holes 113 penetrating inside and outside.
  • the rear inner cylinder 112 is disposed closer to the front partition wall 102.
  • the cross-sectional shape of the rear inner cylinder 112 is a gap 114 (a part of the flow path 122) having a substantially constant width between the front inner cylinder 108 and the surrounding blade housing 83. ) Is formed.
  • a plurality of protrusions 115 are formed on an inner surface portion that faces the central chamber 105 of the wing housing 83 and is located between the rear inner cylinder 112 and the rear partition wall 103. Further, a plurality of protrusions 116 are formed on the inner surface portion facing the rear chamber 106 of the wing housing 83 and positioned on the rear side of the rear partition wall.
  • the front inner cylinder 108 of the front chamber 104 is connected to a compressed air supply source 118 (for example, the compressed air storage chamber 39) through an opening 117 formed in the outer flange 81.
  • a compressed air supply source 118 for example, the compressed air storage chamber 39
  • the rear inner cylinder 112 of the central chamber 105 is connected to the hydrogen supply source 52 through an opening 119 formed in the outer flange 81.
  • the rear chamber 106 is connected to the connection pipe 51 and the annular space 48 around the combustion chamber 32 through an opening 120 formed in the outer flange 81.
  • the compressed air 121 supplied from the compressed air supply source 118 is supplied to the front inner cylinder 108 to the first stage stationary blade 74.
  • the supplied compressed air 121 is ejected from the hole 109 of the front inner cylinder 108 into the surrounding gap 110 and hits the inner surface of the front edge side of the blade housing 83 that receives the most thermal stress. 83 burnout is prevented.
  • the compressed air 121 is ejected to the outside from the hole 111 of the blade housing 83 to form film air (film-like air flow) on the surface of the front edge of the blade housing 83, and the hot gas is directly applied to the blade housing. It prevents hitting the leading edge of 83.
  • the room temperature hydrogen 65 supplied from the hydrogen supply source 52 is supplied to the rear inner cylinder 112.
  • the supplied hydrogen 65 is ejected from the hole 113 of the rear inner cylinder 112 into the surrounding gap 114, hits the inner surface of the blade housing 83, and cools the portion from the inside to prevent the blade housing 83 from burning. Thereafter, the hydrogen 65 moves through the central chamber 105 toward the communication path 107. At this time, the hydrogen 65 comes into contact with the plurality of protrusions 115 and absorbs heat of the blade housing 83 through the protrusions 115.
  • the hydrogen 65 that has entered the rear chamber 106 from the communication path 107 absorbs heat from the blade housing 83 while coming into contact with the plurality of protrusions 116, enters the connection pipe 51 through the opening 120, and the combustion described above through the connection pipe 51.
  • the compressed air generated by the compressor 11 is used for cooling the first stage stationary blade particularly subjected to thermal stress.
  • more compressed air can be used for driving the turbine, so that the output and the efficiency can be improved.
  • hydrogen is supplied only to the first stage stationary blade and the blade housing is cooled.
  • the above-described invention may be applied only to the second stage and subsequent stationary blades.
  • hydrogen may be supplied to a plurality of stages or all stages of stationary blades for cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Provided is a turbine stator blade cooling structure that can suppress the use of compressed air. Also provided is a gas turbine engine that is provided with the turbine stator blade cooling structure. A turbine blade cooling structure that is incorporated into a turbine that is provided with a stator blade ring and a rotor blade wing, and that cools a plurality of stator blades that constitute the stator blade ring. The turbine blade cooling structure includes a housing that constitutes the stator blades, a flow path that is formed inside the housing, and a hydrogen supply source that is connected to the flow path. The turbine blade cooling structure is configured such that the housing is cooled by hydrogen that is supplied to the flow path from the hydrogen supply source.

Description

タービン翼の冷却構造およびガスタービンエンジンTurbine blade cooling structure and gas turbine engine
 本発明は、タービン翼の冷却構造およびガスタービンエンジンに関する。 The present invention relates to a turbine blade cooling structure and a gas turbine engine.
 ガスタービンエンジンの出力向上及び効率の向上を図るためには、タービンに供給される高温ガスの温度を上昇させることが有効と考えられている。しかし、高温ガスの温度を上げると、タービンの翼、特に燃焼器に最も近い静翼に相当な熱負荷が作用する。そのため、多くのガスタービンエンジンでは、翼本体を中空のハウジングで構成し、圧縮機で生成された圧縮空気をハウジングの内部空間に流すことで、また、ハウジングに形成した多数の孔を介してハウジングの外側に流出させて該ハウジング表面上に冷却空気膜を形成して翼表面に直接高温ガスが接触するのを防ぐことで、静翼の温度を低下させている(特許文献1参照)。 In order to improve the output and efficiency of the gas turbine engine, it is considered effective to increase the temperature of the hot gas supplied to the turbine. However, when the temperature of the hot gas is increased, a considerable heat load acts on the blades of the turbine, particularly on the stationary blade closest to the combustor. For this reason, in many gas turbine engines, the blade body is constituted by a hollow housing, and the compressed air generated by the compressor is caused to flow into the internal space of the housing, and also through a large number of holes formed in the housing. The temperature of the stationary blade is lowered by preventing the hot gas from coming into direct contact with the blade surface by forming a cooling air film on the surface of the housing by flowing out to the outside of the housing (see Patent Document 1).
特開2011-220250号公報JP 2011-220250 A
 しかし、圧縮機で生成した圧縮空気をタービン翼の冷却に使用し過ぎると、出力の低下及び効率の低下を招きかねない。したがって、タービン翼の冷却に使用する圧縮空気の量を最小限に抑えることが望まれる。 However, if the compressed air generated by the compressor is used excessively for cooling the turbine blades, the output and efficiency may be reduced. Therefore, it is desirable to minimize the amount of compressed air used to cool the turbine blades.
 そこで、本発明は、タービン翼の冷却に使用する圧縮空気を出来るだけ抑制できるタービン翼の冷却構造およびガスタービンエンジンを提供することを目的とする。 Therefore, an object of the present invention is to provide a cooling structure for a turbine blade and a gas turbine engine that can suppress compressed air used for cooling the turbine blade as much as possible.
 この目的を達成するために、本発明に係るタービン翼の冷却構造は、
 静翼輪と動翼輪を備えたタービンに組み込まれ、前記静翼輪を構成する複数の静翼を冷却するものであって、
 前記静翼を構成するハウジングと、
 前記ハウジングの内部に形成された流路と、
 前記流路に接続された水素供給源を含み、
 前記水素供給源から前記流路に供給される水素によって前記ハウジングが冷却されるように構成されている。
In order to achieve this object, a turbine blade cooling structure according to the present invention includes:
Embedded in a turbine having a stationary blade ring and a moving blade ring, and cooling a plurality of stationary blades constituting the stationary blade ring,
A housing constituting the stationary blade;
A flow path formed inside the housing;
Including a hydrogen source connected to the flow path;
The housing is configured to be cooled by hydrogen supplied to the flow path from the hydrogen supply source.
 本発明に係るガスタービンエンジンの第1の形態は、
 静翼輪と動翼輪を備えたタービンを具備しており、
 前記静翼輪を構成する複数の静翼は、ハウジングと、前記ハウジングの内部に形成された流路とを有し、
 前記流路が水素供給源に接続されており、
 前記水素供給源から前記流路に供給される水素によって前記ハウジングが冷却されるように構成されている。
A first form of a gas turbine engine according to the present invention is:
It has a turbine with a stationary blade ring and a moving blade ring,
The plurality of stationary blades constituting the stationary blade ring has a housing and a flow path formed inside the housing,
The flow path is connected to a hydrogen source;
The housing is configured to be cooled by hydrogen supplied to the flow path from the hydrogen supply source.
 本発明に係るガスタービンエンジンの第2の形態において、
 前記エンジンは、圧縮空気を生成する圧縮機と、前記圧縮機で生成された圧縮空気を用いて燃料を燃焼させる燃焼器を備えており、
 前記エンジンはさらに、前記水素供給源と前記流路を接続して前記水素供給源から供給される水素を前記流路に送る第1の経路と、前記流路から排出される水素を前記燃焼器に供給する第2の経路を備えている。
In the second embodiment of the gas turbine engine according to the present invention,
The engine includes a compressor that generates compressed air, and a combustor that burns fuel using the compressed air generated by the compressor.
The engine further includes a first path that connects the hydrogen supply source and the flow path to send hydrogen supplied from the hydrogen supply source to the flow path, and hydrogen discharged from the flow path to the combustor. A second path for supplying to is provided.
 本発明に係るガスタービンエンジンの第3の形態において、
 前記燃焼器は、燃料噴射部と、前記燃料噴射部から噴射された燃料を燃焼する燃焼室とを有し、
 前記第2の経路は前記燃焼室の外側に配置され、前記燃焼室の熱を前記第2の経路を通る水素が吸収する。
In a third embodiment of the gas turbine engine according to the present invention,
The combustor includes a fuel injection unit, and a combustion chamber for burning fuel injected from the fuel injection unit,
The second path is disposed outside the combustion chamber, and the hydrogen passing through the second path absorbs heat from the combustion chamber.
 本発明に係るガスタービンエンジンの第3の形態において、
前記第2の経路は、前記流路と前記燃焼器の燃料噴射ノズルを直接連結しており、前記流路から排出された前記水素が前記燃焼器の燃焼室から熱を吸収することなく前記燃料噴射ノズルに供給される。
In a third embodiment of the gas turbine engine according to the present invention,
The second path directly connects the flow path and the fuel injection nozzle of the combustor, and the hydrogen discharged from the flow path does not absorb heat from the combustion chamber of the combustor. Supplied to the injection nozzle.
 本発明に係るガスタービンエンジンの第4の形態において、
 前記第2の経路は前記燃料噴射部に接続されており、前記水素が燃料として前記燃焼室に噴射される。
In the fourth embodiment of the gas turbine engine according to the present invention,
The second path is connected to the fuel injection unit, and the hydrogen is injected into the combustion chamber as fuel.
 本発明に係る冷却構造及びガスタービンエンジンによれば、静翼は水素によって冷却される。したがって、すべての静翼を圧縮機で生成した圧縮空気で冷却する必要がない。そのため、圧縮機で生成された圧縮空気をタービンの駆動に利用して、ガスタービンの出力向上、効率の向上を図ることができる。 According to the cooling structure and the gas turbine engine according to the present invention, the stationary blade is cooled by hydrogen. Therefore, it is not necessary to cool all the stationary blades with the compressed air generated by the compressor. Therefore, it is possible to improve the output and efficiency of the gas turbine by using the compressed air generated by the compressor for driving the turbine.
本発明に係るガスタービンエンジンの概略構成を示す図。The figure which shows schematic structure of the gas turbine engine which concerns on this invention. 図1のガスタービンエンジンに含まれる燃焼器の縦断面図。The longitudinal cross-sectional view of the combustor contained in the gas turbine engine of FIG. 実施形態1に係るガスタービンエンジンに含まれる燃焼器の縦断面図である。1 is a longitudinal sectional view of a combustor included in a gas turbine engine according to Embodiment 1. FIG. 実施形態1に係る静翼の構成を示す図で、図4(a)は静翼の横断面図、図4(b)は静翼の縦断面図、図4(c)は図4(a)に示す静翼の部分拡大断面図。4A and 4B are diagrams illustrating a configuration of a stationary blade according to the first embodiment, in which FIG. 4A is a transverse sectional view of the stationary blade, FIG. 4B is a longitudinal sectional view of the stationary blade, and FIG. 4C is FIG. FIG. 実施形態2に係る静翼の構成を示す図で、図5(a)は静翼の横断面図、図5(b)は静翼の縦断面図、図5(c)と図5(d)は図5(a)に示す静翼の部分拡大断面図。5A and 5B are diagrams illustrating a configuration of a stationary blade according to the second embodiment, in which FIG. 5A is a transverse sectional view of the stationary blade, FIG. 5B is a longitudinal sectional view of the stationary blade, and FIGS. ) Is a partial enlarged cross-sectional view of the stationary blade shown in FIG.
 以下、添付図面を参照して本発明に係るタービン静翼の冷却構造及び該タービン静翼の冷却構造を備えたガスタービンエンジンの実施形態を説明する。 Hereinafter, embodiments of a turbine stationary blade cooling structure and a gas turbine engine equipped with the turbine stationary blade cooling structure according to the present invention will be described with reference to the accompanying drawings.
 本発明に係るタービン静翼の冷却構造について説明する前に、ガスタービンエンジンとそれに組み込まれた燃焼器の構成と動作を説明する。先ず、図1は、ガスタービンエンジン(以下、単に「エンジン」という。)の概略の構成と機能を模式的に示す図である。エンジン(全体を符号10で示す。)の構成をその動作と共に簡単に説明すると、このエンジン10において、圧縮機11は大気12を吸引して圧縮空気13を生成する。圧縮空気13は燃焼器14で燃料15と共に燃焼され、高温高圧の燃焼ガス16が生成される。燃焼ガス16はタービン17に供給され、ロータ18の回転に利用される。ロータ18の回転は圧縮機11に伝達され、圧縮空気13の生成に利用される。また、ロータ18の回転は例えば発電機19に伝達されて発電に利用される。 DETAILED DESCRIPTION Before describing a turbine stationary blade cooling structure according to the present invention, the configuration and operation of a gas turbine engine and a combustor incorporated therein will be described. First, FIG. 1 is a diagram schematically showing a schematic configuration and functions of a gas turbine engine (hereinafter simply referred to as “engine”). The configuration of the engine (generally indicated by reference numeral 10) will be briefly described along with its operation. In the engine 10, the compressor 11 sucks the atmosphere 12 and generates compressed air 13. The compressed air 13 is combusted together with the fuel 15 in the combustor 14 to generate high-temperature and high-pressure combustion gas 16. Combustion gas 16 is supplied to turbine 17 and used for rotation of rotor 18. The rotation of the rotor 18 is transmitted to the compressor 11 and used to generate the compressed air 13. The rotation of the rotor 18 is transmitted to, for example, a generator 19 and used for power generation.
 図2は、実施形態1に係るエンジン10に含まれる燃焼器14の一部を示す。 FIG. 2 shows a part of the combustor 14 included in the engine 10 according to the first embodiment.
 燃焼器14は、エンジン10の中心軸(図示しないが、図1に示すロータ18の回転中心軸に一致する。)の周囲に等間隔に複数個配置されている。各燃焼器14は、エンジン10のアウターケーシング21に固定された筒状の燃焼器ハウジング22を有する。燃焼器ハウジング22は、燃焼器ハウジング22の内側に同心的に配置された燃焼筒23を有する。図示するように、燃焼器ハウジング22と燃焼筒23は、それらの中心軸24が圧縮機側からタービン側に向かってエンジン中心軸(図示せず)と所定角度をもって交差するように、アウターケーシング21に斜めに固定されている。 A plurality of combustors 14 are arranged at equal intervals around the central axis of the engine 10 (not shown, but coincides with the rotational central axis of the rotor 18 shown in FIG. 1). Each combustor 14 has a cylindrical combustor housing 22 fixed to the outer casing 21 of the engine 10. The combustor housing 22 has a combustion cylinder 23 disposed concentrically inside the combustor housing 22. As shown in the drawing, the combustor housing 22 and the combustion cylinder 23 have an outer casing 21 such that their center shafts 24 intersect with an engine center shaft (not shown) at a predetermined angle from the compressor side toward the turbine side. It is fixed at an angle.
 実施形態では、燃焼器ハウジング22は筒部25を有し、筒部25の一端(図上右側の端部)がアウターケーシング21に連結され、筒部25の他端(図上左側の端部)が蓋26で閉じられている。 In the embodiment, the combustor housing 22 has a cylindrical portion 25, one end (the end on the right side in the drawing) of the cylindrical portion 25 is connected to the outer casing 21, and the other end (the end on the left side in the drawing) of the cylindrical portion 25. ) Is closed by a lid 26.
 燃焼筒23は燃焼器ハウジング22に固定されている。実施形態では、燃焼筒23の基端側(図2の左側)が支持筒27を介して燃焼器ハウジング22の筒部25に固定され、燃焼器ハウジング22の筒部25と燃焼筒23の間に環状の隙間28(燃焼空気供給路45の一部)が形成されている。図示するように、支持筒27には複数の開口29(燃焼空気供給路45の一部)が形成されている。 The combustion cylinder 23 is fixed to the combustor housing 22. In the embodiment, the base end side (the left side in FIG. 2) of the combustion cylinder 23 is fixed to the cylinder portion 25 of the combustor housing 22 via the support cylinder 27, and between the cylinder portion 25 of the combustor housing 22 and the combustion cylinder 23. An annular gap 28 (a part of the combustion air supply passage 45) is formed. As shown in the figure, the support cylinder 27 has a plurality of openings 29 (a part of the combustion air supply passage 45).
 燃焼筒23は、その内側に燃焼室32を形成しており、末端部が円筒状の尾筒33と同心的に連結され、また、尾筒33の末端部が遷移筒34に連結され、さらに、遷移筒34の末端がタービン17のタービン室35に連結されており、これにより、燃焼室32で生成された燃焼ガスが尾筒33、遷移筒34の内部空間を介してタービン17のタービン室35に供給される。 The combustion cylinder 23 forms a combustion chamber 32 on the inner side thereof, the end portion is concentrically connected to the cylindrical tail cylinder 33, the end portion of the tail cylinder 33 is connected to the transition cylinder 34, and The end of the transition cylinder 34 is connected to the turbine chamber 35 of the turbine 17, whereby the combustion gas generated in the combustion chamber 32 passes through the inner space of the transition cylinder 34 and the turbine chamber of the turbine 17. 35.
 図示するように、尾筒33と遷移筒34には外筒36が外装され、尾筒33及び遷移筒34と外筒36との間に環状の隙間37(燃焼空気供給路45の一部)が形成されている。この隙間37は、燃焼器ハウジング筒部25と燃焼筒23の間の隙間28に連通している。また、外筒36の末端開口38は、アウターケーシング21の内側に形成された圧縮空気貯留室39に開放されている。したがって、圧縮機11から排出された圧縮空気13が圧縮空気貯留室39を介して隙間37,28に移動できる。 As shown in the drawing, an outer cylinder 36 is externally mounted on the tail cylinder 33 and the transition cylinder 34, and an annular gap 37 (a part of the combustion air supply path 45) is provided between the tail cylinder 33 and the transition cylinder 34 and the outer cylinder 36. Is formed. The gap 37 communicates with a gap 28 between the combustor housing tube portion 25 and the combustion tube 23. Further, the end opening 38 of the outer cylinder 36 is opened to a compressed air storage chamber 39 formed inside the outer casing 21. Therefore, the compressed air 13 discharged from the compressor 11 can move to the gaps 37 and 28 via the compressed air storage chamber 39.
 図2、3に示すように、燃焼筒23は、その基端側に燃料噴射部40が連結されている。燃料噴射部40は、燃料を噴射する燃料噴射ノズル41と、燃焼用空気を噴射する燃焼空気噴射ノズル42を有する。実施形態では、中心軸24に沿って、燃料噴射ノズル41が配置されている。また、燃料噴射ノズル41は、中心軸24に沿って第1燃料噴射路41aが形成され、中心軸24の回りに等間隔に複数の第2燃料噴射路41bが形成されている。第1燃料噴射路41aは、炭化水素燃料供給源70に接続されている。第2燃料噴射路41bは、水蒸気供給源50に接続されている。第2燃料噴射路41bはまた、後述するように水素供給源52にも接続されている。 As shown in FIGS. 2 and 3, the combustion cylinder 23 has a fuel injection unit 40 connected to the base end side thereof. The fuel injection unit 40 includes a fuel injection nozzle 41 that injects fuel and a combustion air injection nozzle 42 that injects combustion air. In the embodiment, the fuel injection nozzle 41 is disposed along the central axis 24. The fuel injection nozzle 41 has a first fuel injection path 41 a formed along the central axis 24, and a plurality of second fuel injection paths 41 b formed at equal intervals around the central axis 24. The first fuel injection path 41 a is connected to a hydrocarbon fuel supply source 70. The second fuel injection path 41 b is connected to the water vapor supply source 50. The second fuel injection path 41b is also connected to a hydrogen supply source 52 as will be described later.
 実施形態では、燃焼空気噴射ノズル42は、燃料噴射ノズル41の周囲に形成された開口によって構成されている。また、燃焼空気噴射ノズル42の背後の空間44(燃焼空気供給路45の一部)は、支持筒27の開口29を介して燃焼筒23,尾筒33,遷移筒34の周囲に形成された隙間28,37に接続されており、その結果、隙間28,37,支持筒開口29,空間44が燃焼空気供給路45を形成し、圧縮空気貯留室39から供給される圧縮空気が燃焼空気噴射ノズル42から燃焼室32に噴射されるようになっている。以下、燃焼室32に噴射される圧縮空気13を「燃焼空気13’」という。 In the embodiment, the combustion air injection nozzle 42 is configured by an opening formed around the fuel injection nozzle 41. A space 44 (a part of the combustion air supply passage 45) behind the combustion air injection nozzle 42 is formed around the combustion cylinder 23, the tail cylinder 33, and the transition cylinder 34 through the opening 29 of the support cylinder 27. The gaps 28 and 37 are connected to each other. As a result, the gaps 28 and 37, the support cylinder opening 29, and the space 44 form a combustion air supply passage 45, and the compressed air supplied from the compressed air storage chamber 39 is injected into the combustion air. It is injected from the nozzle 42 into the combustion chamber 32. Hereinafter, the compressed air 13 injected into the combustion chamber 32 is referred to as “combustion air 13 ′”.
 実施形態では、燃焼空気噴射ノズル42は、旋回案内羽根(スワラ)によって構成されている。旋回案内羽根は、多数の羽根を備えており、背後の燃焼空気供給路45(空間44)と燃焼室32の圧力差に基づいて、燃焼空気供給路45から燃焼室32に噴射される燃焼空気に旋回力を付与し、燃焼室32に旋回流を形成する。 In the embodiment, the combustion air injection nozzle 42 is constituted by a turning guide vane (swirler). The swirl guide vane includes a plurality of vanes, and the combustion air injected from the combustion air supply passage 45 to the combustion chamber 32 based on the pressure difference between the combustion air supply passage 45 (space 44) and the combustion chamber 32 behind. A swirling force is applied to the combustion chamber 32 to form a swirling flow in the combustion chamber 32.
 図3に詳細に示すように、燃焼筒23は、内筒(ライナ)46と、該内筒46を覆う外筒47で構成されており、内筒46と外筒47の間に環状空間48が形成されている。環状空間48は、図上左側の一端側が、連結管49を介して、燃料噴射ノズル41の内部に形成されている複数の第2燃料噴射路41bに接続されている。環状空間48は、図上右側の他端側が接続管51等を介して水素供給源52に接続されている。図示するように、環状空間48の基端と末端は封止されており、水素供給源52から供給された水素は環状空間48と複数の連結管49を介して第2燃料噴射路41bに供給され、そこから燃焼室32に噴射される。 As shown in detail in FIG. 3, the combustion cylinder 23 includes an inner cylinder (liner) 46 and an outer cylinder 47 that covers the inner cylinder 46, and an annular space 48 is provided between the inner cylinder 46 and the outer cylinder 47. Is formed. One end side of the annular space 48 on the left side in the drawing is connected to a plurality of second fuel injection paths 41 b formed inside the fuel injection nozzle 41 via a connecting pipe 49. The annular space 48 is connected to the hydrogen supply source 52 through the connecting pipe 51 and the like at the other end on the right side in the drawing. As shown in the drawing, the base end and the end of the annular space 48 are sealed, and the hydrogen supplied from the hydrogen supply source 52 is supplied to the second fuel injection path 41 b via the annular space 48 and the plurality of connecting pipes 49. From there, it is injected into the combustion chamber 32.
 以上の構成を備えた燃焼器14の動作を説明する。本実施形態では、燃料として水素65と燃焼空気13’が供給される。水素65は、水素供給源52から供給され、好ましくは90%以上、さらに好ましくは95%以上、最も好ましくは99%以上が水素(H)からなる気体(以下、これらの気体を「純水素」という。当然、不可避的に含まれる不純物を含むものであってもよい。)であるが、化学工場等の製造過程で副次的に発生する水素を含む気体(以下、この気体を「副生水素」という。)のいずれであってもよい。以下、他の実施形態でも同様である。燃焼空気13’は、上述のように、圧縮機11で生成された高圧圧縮空気であり、その温度は、約摂氏400度~約摂氏500度である。一方で、供給される水素65の温度は高圧圧縮空気よりも100度以上低く、望ましくは約摂氏15度~30度である。 Operation | movement of the combustor 14 provided with the above structure is demonstrated. In this embodiment, hydrogen 65 and combustion air 13 ′ are supplied as fuel. Hydrogen 65 is supplied from a hydrogen supply source 52 and is preferably 90% or more, more preferably 95% or more, and most preferably 99% or more of a gas composed of hydrogen (H 2 ) (hereinafter referred to as “pure hydrogen”). Naturally, it may contain impurities that are inevitably included.) However, a gas containing hydrogen that is generated as a by-product in the manufacturing process of a chemical factory or the like (hereinafter, this gas is referred to as “subsidiary”). It may be any of “raw hydrogen”. Hereinafter, the same applies to other embodiments. The combustion air 13 ′ is high-pressure compressed air generated by the compressor 11 as described above, and its temperature is about 400 degrees Celsius to about 500 degrees Celsius. On the other hand, the temperature of the supplied hydrogen 65 is 100 degrees or more lower than that of the high-pressure compressed air, and preferably about 15 to 30 degrees Celsius.
 図2、3を参照して説明すると、炭化水素燃料供給源70から供給された炭化水素燃料71は第1燃料噴射路41aから燃焼空間32に噴射される。水素供給源52から供給された水素65は、後述するようにタービン17を経由した後、燃焼筒23に形成された環状空間48の末端側に入る。環状空間48の水素65は、後に説明するように、燃焼室32内で発生する火炎66によって加熱される内筒46を冷却する。その後、水素65は、環状空間48の基端側に移動し、連結管49を介して燃料噴射ノズル41の第2燃料噴射路41bに入り、そこで水蒸気供給源50から供給された水蒸気76と混合された後、燃焼室32に噴射される。一方、燃焼空気(圧縮空気)13は、圧縮空気貯留室39から遷移筒34の末端開口38を介して燃焼空気供給路45に入り、遷移筒34、尾筒33、燃焼筒23の外側の通り、燃焼空気噴射ノズル42として機能する旋回案内羽根を通じて、燃料噴射ノズル41の周囲から燃焼室32に噴射される。そして、これら炭化水素原料71と、水素65と水蒸気76との混合物は、燃焼空気噴射ノズル42から噴射される燃焼空気13’と共に燃焼されて火炎66を形成し、高温の燃焼ガスを生成する。 2 and 3, the hydrocarbon fuel 71 supplied from the hydrocarbon fuel supply source 70 is injected into the combustion space 32 from the first fuel injection path 41a. The hydrogen 65 supplied from the hydrogen supply source 52 passes through the turbine 17 as described later, and then enters the end side of the annular space 48 formed in the combustion cylinder 23. As will be described later, the hydrogen 65 in the annular space 48 cools the inner cylinder 46 heated by the flame 66 generated in the combustion chamber 32. Thereafter, the hydrogen 65 moves to the base end side of the annular space 48 and enters the second fuel injection path 41 b of the fuel injection nozzle 41 through the connecting pipe 49, where it mixes with the water vapor 76 supplied from the water vapor supply source 50. And then injected into the combustion chamber 32. On the other hand, the combustion air (compressed air) 13 enters the combustion air supply path 45 from the compressed air storage chamber 39 through the terminal opening 38 of the transition cylinder 34, and passes outside the transition cylinder 34, the tail cylinder 33, and the combustion cylinder 23. Then, the fuel is injected from the periphery of the fuel injection nozzle 41 into the combustion chamber 32 through the turning guide vanes that function as the combustion air injection nozzle 42. The mixture of the hydrocarbon raw material 71, hydrogen 65, and water vapor 76 is burned together with the combustion air 13 'injected from the combustion air injection nozzle 42 to form a flame 66, and high-temperature combustion gas is generated.
 燃料の燃焼によって得られた高温ガスは、尾筒33から遷移筒34を介して、タービン室35に供給され、そこでタービン17の駆動に利用される。 The hot gas obtained by the combustion of the fuel is supplied from the tail cylinder 33 through the transition cylinder 34 to the turbine chamber 35 where it is used to drive the turbine 17.
 なお、以上の説明では、タービン17から排出された水素は環状空間48で燃焼筒23を冷却した後に燃料噴射ノズル41に供給されるものとしたが、タービン17から排出された水素は環状空間48を経由することなく直接燃料噴射ノズル41に供給してもよい。 In the above description, the hydrogen discharged from the turbine 17 is supplied to the fuel injection nozzle 41 after cooling the combustion cylinder 23 in the annular space 48, but the hydrogen discharged from the turbine 17 is supplied to the annular space 48. You may supply directly to the fuel-injection nozzle 41, without going through.
 以上のとおり、実施形態の燃焼器14では、燃焼筒23の環状空間48を通過する際に吸熱した水素65は、第2燃料噴射路41bにおいて該第2燃料噴射路41bに供給される水蒸気76と接触して冷却され、燃焼室32に噴射される。また、水素と水蒸気が混合された状態で燃焼室32に噴射されるため、水素と水蒸気を混合しない場合に比べて火炎温度を低くすることが可能であり、これにより、燃焼ガスに含まれる窒素酸化物を最小限に抑制できる。 As described above, in the combustor 14 of the embodiment, the hydrogen 65 that has absorbed heat when passing through the annular space 48 of the combustion cylinder 23 is supplied to the second fuel injection path 41b in the second fuel injection path 41b. Is cooled in contact with the fuel and injected into the combustion chamber 32. Further, since hydrogen and water vapor are injected into the combustion chamber 32 in a mixed state, it is possible to lower the flame temperature as compared with the case where hydrogen and water vapor are not mixed. As a result, nitrogen contained in the combustion gas can be reduced. Oxide can be minimized.
 また、環状空間48で吸熱した水素65は適度に温度が上昇しているため、水蒸気76と混合しても該水蒸気75が燃料噴射ノズル内でドレン化することがない。したがって、常に所望の水蒸気を含んだ水素を燃焼室内に噴射することができ、燃焼ガスに含まれる窒素酸化物をより確実に抑制できる。 In addition, since the temperature of the hydrogen 65 that has absorbed heat in the annular space 48 has increased moderately, even when mixed with the water vapor 76, the water vapor 75 does not drain in the fuel injection nozzle. Therefore, hydrogen containing the desired water vapor can always be injected into the combustion chamber, and nitrogen oxides contained in the combustion gas can be more reliably suppressed.
 さらに、以上の説明では、炭化水素燃料供給源70から天然ガス等の炭化水素燃料を供給したが、炭化水素燃料供給源70から供給される燃料はこれに限るものでなく、水素であってもよい。また、燃料の代わりに水蒸気を導入してもよい。 Further, in the above description, the hydrocarbon fuel such as natural gas is supplied from the hydrocarbon fuel supply source 70. However, the fuel supplied from the hydrocarbon fuel supply source 70 is not limited to this. Good. Further, water vapor may be introduced instead of the fuel.
 さらにまた、以上の説明では、炭化水素燃料供給源70を設けたが、この炭化水素燃料供給源70を省略してもよい。 Furthermore, in the above description, the hydrocarbon fuel supply source 70 is provided, but this hydrocarbon fuel supply source 70 may be omitted.
 また、以上の説明では、燃焼筒23を内筒46と外筒47で形成することでそれらの間に水素供給用の環状空間を形成したが、内筒46の周囲に形成される空間は周方向に連続した環状空間である必要はないし、内筒と外筒を用いた二重管構造以外の方法、例えば、内筒の周囲に多数のチューブを配置するといった方法によって水素供給用の空間を形成してもよい。 In the above description, the combustion cylinder 23 is formed by the inner cylinder 46 and the outer cylinder 47 to form an annular space for supplying hydrogen between them. However, the space formed around the inner cylinder 46 is the circumference. It is not necessary to have an annular space that is continuous in the direction, and the hydrogen supply space can be reduced by a method other than the double tube structure using the inner cylinder and the outer cylinder, for example, by arranging a large number of tubes around the inner cylinder. It may be formed.
 次に、本発明に係るタービン静翼の冷却構造について説明する。まず、図2を参照すると、タービン17は、アウターケーシング21とインナーケーシング71の間に形成された環状のタービン室35を備えており、このタービン室35に静翼輪72と動翼輪73が図の左側から右側に向かって交互に複数段配置されている。周知のとおり、静翼輪72は回転不能に固定されており、動翼輪73はエンジン中心軸(図示せず)を中心に回転可能に支持されている。また、静翼輪72は周方向に等間隔に配置された複数の静翼74を備え、動翼輪73は周方向に等間隔に配置された複数の動翼75を備えている。 Next, the cooling structure of the turbine stationary blade according to the present invention will be described. First, referring to FIG. 2, the turbine 17 includes an annular turbine chamber 35 formed between the outer casing 21 and the inner casing 71, and a stationary blade ring 72 and a moving blade ring 73 are provided in the turbine chamber 35. A plurality of stages are alternately arranged from the left side to the right side of the figure. As is well known, the stationary blade ring 72 is fixed so as not to rotate, and the moving blade ring 73 is supported so as to be rotatable about an engine central axis (not shown). The stationary blade ring 72 includes a plurality of stationary blades 74 arranged at equal intervals in the circumferential direction, and the moving blade ring 73 includes a plurality of moving blades 75 arranged at equal intervals in the circumferential direction.
 図4は、燃焼器14に最も近い第1段の静翼74を示す。図示するように、実施形態では、静翼74は、エンジン中心軸に対する放射方向に関して外側と内側にそれぞれ位置する外側フランジ81と内側フランジ82と、放射方向に伸びて外側フランジ81と内側フランジ82を一体的に連結する中空の翼ハウジング83を有し、外側フランジ81と内側フランジ82をそれぞれ対応するアウターケーシング21とインナーケーシング71の係合部に係合することによって、アウターケーシング21とインナーケーシング71に着脱自在に連結され、外側フランジ81と内側フランジ82の間にタービン室35を形成している。実施形態では、翼ハウジング83は、その横断面が翼の形をしており、燃焼器14に近い前縁側から燃焼器14から離れた後縁側に向かって、次第に幅が細くなっている。 FIG. 4 shows the first stage vane 74 closest to the combustor 14. As shown in the drawing, in the embodiment, the stationary blade 74 includes an outer flange 81 and an inner flange 82 that are respectively located on the outer side and the inner side with respect to a radial direction with respect to the engine central axis, and a radially extending outer flange 81 and an inner flange 82. A hollow wing housing 83 is integrally connected, and the outer casing 21 and the inner casing 71 are engaged by engaging the outer flange 81 and the inner flange 82 with the engaging portions of the corresponding outer casing 21 and inner casing 71, respectively. The turbine chamber 35 is formed between the outer flange 81 and the inner flange 82. In the embodiment, the blade housing 83 has a blade-shaped cross section, and gradually becomes narrower from the front edge side close to the combustor 14 toward the rear edge side away from the combustor 14.
 翼ハウジング83の内部84には、放射方向に伸びる仕切壁88が形成されており、これにより、翼ハウジング83の内部空間が前縁側の前室89(流路97の一部)と後縁側の後室90(流路122の一部)に区画されている。仕切壁88は、放射方向外側の端部が外側フランジ81に接続されており、放射方向内側の端部が内側フランジ82から離れて内側フランジ82との間に、前室89と後室90を連絡する連絡路91(流路97の一部)を形成している。 A partition wall 88 extending in the radial direction is formed in the interior 84 of the wing housing 83, whereby the interior space of the wing housing 83 is separated from the front chamber 89 (a part of the flow path 97) on the front edge side and the rear edge side. It is partitioned into a rear chamber 90 (a part of the flow path 122). The partition wall 88 has a radially outer end connected to the outer flange 81, and the radially inner end separates the front chamber 89 and the rear chamber 90 between the inner flange 82 and the inner flange 82. A communication path 91 (a part of the flow path 97) to be communicated is formed.
 実施形態では、翼ハウジング83の前室89に臨み、且つ内筒85と仕切壁88の間に位置する内面部分には、複数の突条92が形成されている。また、翼ハウジング83の後室90に臨み且つ仕切壁88の後側に位置する内面部分には複数の棒状突起93が形成されている。 In the embodiment, a plurality of protrusions 92 are formed on the inner surface portion facing the front chamber 89 of the wing housing 83 and located between the inner cylinder 85 and the partition wall 88. A plurality of rod-shaped protrusions 93 are formed on the inner surface portion facing the rear chamber 90 of the wing housing 83 and positioned on the rear side of the partition wall 88.
 図4(b)に示すように、内筒85の内部空間(流路97の一部)と後室90は、外側フランジ81に形成した開口94,95を介して外部に連通している。具体的に、内筒85の開口94は接続管96を介して水素供給源52に接続され、後室90の開口95は上述した接続管51を介して燃焼室32回りの環状空間48に接続されている。 4B, the inner space of the inner cylinder 85 (a part of the flow path 97) and the rear chamber 90 communicate with the outside through openings 94 and 95 formed in the outer flange 81. As shown in FIG. Specifically, the opening 94 of the inner cylinder 85 is connected to the hydrogen supply source 52 via the connection pipe 96, and the opening 95 of the rear chamber 90 is connected to the annular space 48 around the combustion chamber 32 via the connection pipe 51 described above. Has been.
 このような構成によれば、第1段の静翼74には、水素供給源52から供給された常温の水素65が接続管96を通じて内筒85に供給される。供給された水素65は、内筒85の孔86からその周囲に噴出し、熱的ストレスを最も受ける翼ハウジング83の前縁側内面に当たり、その部分を内側から冷却して翼ハウジング83の焼損を防止する。その後、水素65は、内筒85の周囲の隙間87を通り、前室89から連絡路91に向かって移動する。このとき、水素65は複数の突条92に接触し、突条92を介して翼ハウジング83の熱を吸収する。同時に、水素65は前室89の壁に接触してそこから熱を吸収する。連絡路91から後室90に入った水素65は、複数の突起93と接触しながら翼ハウジング83から熱を吸収し、開口95を通じて接続管51に入り、この接続管51を介して上述した燃焼器14の環状空間48に供給される。 According to such a configuration, normal temperature hydrogen 65 supplied from the hydrogen supply source 52 is supplied to the inner cylinder 85 through the connection pipe 96 to the first stage stationary blade 74. The supplied hydrogen 65 is ejected from the hole 86 of the inner cylinder 85 to the periphery thereof, hits the inner surface on the front edge side of the blade housing 83 that receives the most thermal stress, and the portion is cooled from the inside to prevent the blade housing 83 from being burned out. To do. Thereafter, the hydrogen 65 moves from the front chamber 89 toward the communication path 91 through the gap 87 around the inner cylinder 85. At this time, the hydrogen 65 comes into contact with the plurality of protrusions 92 and absorbs heat of the blade housing 83 through the protrusions 92. At the same time, the hydrogen 65 contacts the wall of the anterior chamber 89 and absorbs heat therefrom. The hydrogen 65 that has entered the rear chamber 90 from the communication path 91 absorbs heat from the blade housing 83 while coming into contact with the plurality of protrusions 93, enters the connection pipe 51 through the opening 95, and burns as described above via the connection pipe 51. To the annular space 48 of the vessel 14.
 このように、本実施形態によれば、特に熱的ストレスを受ける第1段静翼の冷却に、圧縮機11で生成された圧縮空気ではなく、水素供給源52から供給される水素を利用しているので、より多くの圧縮空気をタービンの駆動に利用できるため出力の向上、効率の向上を図ることができる。 Thus, according to the present embodiment, hydrogen supplied from the hydrogen supply source 52 is used for cooling the first stage stationary blade particularly subjected to thermal stress, not the compressed air generated by the compressor 11. Therefore, since more compressed air can be used for driving the turbine, the output can be improved and the efficiency can be improved.
《実施形態2》
 図5は、翼ハウジング83の他の実施形態を示す。図示するように、本実施形態では、翼ハウジング83の内部(通路)101には、翼ハウジング83とほぼ平行に放射方向に伸びる前側仕切壁102と後側仕切壁103が形成されている。前側仕切壁102は、放射方向の外側端部と内側端部がそれぞれ外側フランジ81と内側フランジ82に連結されており、前側仕切壁102の前側に位置する前室104(流路122の一部)と前側仕切壁102と後側仕切壁103の間に位置する中央室105(流路122の一部)を完全に分離している。後側仕切壁103は、前側仕切壁102の背後に位置する空間を、前側の中央室105と後側の後室106(流路122の一部)に区画している。ただし、後側仕切壁103は、放射方向外側の端部が外側フランジ81に接続されているが、放射方向内側の端部は内側フランジ82から離れて内側フランジ82との間に、中央室105と後室106を連通する連絡路107(流路122の一部)を形成している。
<< Embodiment 2 >>
FIG. 5 shows another embodiment of the wing housing 83. As shown in the drawing, in the present embodiment, a front partition wall 102 and a rear partition wall 103 that extend in the radial direction substantially parallel to the blade housing 83 are formed in the interior (passage) 101 of the blade housing 83. The front partition wall 102 is connected to the outer flange 81 and the inner flange 82 at the outer end and the inner end in the radial direction, respectively, and a front chamber 104 (a part of the flow path 122) located on the front side of the front partition wall 102. ) And the central chamber 105 (a part of the flow path 122) located between the front partition wall 102 and the rear partition wall 103 is completely separated. The rear partition wall 103 divides a space located behind the front partition wall 102 into a front central chamber 105 and a rear rear chamber 106 (a part of the flow path 122). However, the rear partition wall 103 has a radially outer end connected to the outer flange 81, but the radially inner end is separated from the inner flange 82 and between the inner flange 82 and the central chamber 105. And a communication path 107 (a part of the flow path 122) communicating with the rear chamber 106 is formed.
 前室104には、放射方向に伸びる前側内筒108が配置されている。図5(c)に示すように、前側内筒108は、内外を貫通する多数の孔109が形成されている。実施形態では、前側内筒108は、前側仕切壁102寄りに配置されている。また、前側内筒108の横断面形状は、図5(a)に示すように、前側内筒108と周囲の翼ハウジング83との間にほぼ一定幅の隙間110(流路122の一部)が形成されるように決められている。さらに、翼ハウジング83の前縁には、内外を連通する複数の孔111が形成されている。 In the front chamber 104, a front inner cylinder 108 extending in the radial direction is arranged. As shown in FIG. 5C, the front inner cylinder 108 is formed with a large number of holes 109 penetrating inside and outside. In the embodiment, the front inner cylinder 108 is disposed closer to the front partition wall 102. Further, as shown in FIG. 5A, the cross-sectional shape of the front inner cylinder 108 is a gap 110 (a part of the flow path 122) having a substantially constant width between the front inner cylinder 108 and the surrounding blade housing 83. Is determined to be formed. Furthermore, a plurality of holes 111 communicating between the inside and the outside are formed in the front edge of the wing housing 83.
 中央室105には、翼放射方向に伸びる後側内筒112が配置されている。図5(d)に示すように、後側内筒112は、内外を貫通する多数の孔113が形成されている。実施形態では、後側内筒112は、前側仕切壁102寄りに配置されている。また、後側内筒112の横断面形状は、図5(a)に示すように、前側内筒108と周囲の翼ハウジング83との間にほぼ一定幅の隙間114(流路122の一部)が形成されるように決められている。 In the central chamber 105, a rear inner cylinder 112 extending in the blade radial direction is disposed. As shown in FIG. 5D, the rear inner cylinder 112 has a large number of holes 113 penetrating inside and outside. In the embodiment, the rear inner cylinder 112 is disposed closer to the front partition wall 102. In addition, as shown in FIG. 5A, the cross-sectional shape of the rear inner cylinder 112 is a gap 114 (a part of the flow path 122) having a substantially constant width between the front inner cylinder 108 and the surrounding blade housing 83. ) Is formed.
 実施形態では、翼ハウジング83の中央室105に臨み、後側内筒112と後側仕切壁103の間に位置する内面部分には、複数の突条115が形成されている。また、翼ハウジング83の後室106に臨み、後側仕切壁の後側に位置する内面部分には複数の突起116が形成されている。 In the embodiment, a plurality of protrusions 115 are formed on an inner surface portion that faces the central chamber 105 of the wing housing 83 and is located between the rear inner cylinder 112 and the rear partition wall 103. Further, a plurality of protrusions 116 are formed on the inner surface portion facing the rear chamber 106 of the wing housing 83 and positioned on the rear side of the rear partition wall.
 前室104の前側内筒108は、外側フランジ81に形成した開口117を介して圧縮空気供給源118(例えば、圧縮空気貯蔵室39)に接続されている。一方、中央室105の後側内筒112は、外側フランジ81に形成した開口119を介して水素供給源52に接続されている。さらに、後室106は外側フランジ81に形成した開口120を介して接続管51、さらに燃焼室32回りの環状空間48に接続されている。 The front inner cylinder 108 of the front chamber 104 is connected to a compressed air supply source 118 (for example, the compressed air storage chamber 39) through an opening 117 formed in the outer flange 81. On the other hand, the rear inner cylinder 112 of the central chamber 105 is connected to the hydrogen supply source 52 through an opening 119 formed in the outer flange 81. Further, the rear chamber 106 is connected to the connection pipe 51 and the annular space 48 around the combustion chamber 32 through an opening 120 formed in the outer flange 81.
 このような構成によれば、第1段の静翼74には、圧縮空気供給源118から供給された圧縮空気121が前側内筒108に供給される。供給された圧縮空気121は、前側内筒108の孔109からその周囲の隙間110に噴出し、熱的ストレスを最も受ける翼ハウジング83の前縁側内面に当たり、その部分を内側から冷却して翼ハウジング83の焼損を防止する。その後、圧縮空気121は、翼ハウジング83の孔111から外側に噴出し、翼ハウジング83の前縁の表面上にフィルムエア(膜状の空気流))を形成し、高温ガスが直に翼ハウジング83の前縁に当たるのを防止する。 According to such a configuration, the compressed air 121 supplied from the compressed air supply source 118 is supplied to the front inner cylinder 108 to the first stage stationary blade 74. The supplied compressed air 121 is ejected from the hole 109 of the front inner cylinder 108 into the surrounding gap 110 and hits the inner surface of the front edge side of the blade housing 83 that receives the most thermal stress. 83 burnout is prevented. Thereafter, the compressed air 121 is ejected to the outside from the hole 111 of the blade housing 83 to form film air (film-like air flow) on the surface of the front edge of the blade housing 83, and the hot gas is directly applied to the blade housing. It prevents hitting the leading edge of 83.
 水素供給源52から供給された常温の水素65は後側内筒112に供給される。供給された水素65は、後側内筒112の孔113からその周囲の隙間114に噴出し、翼ハウジング83の内面に当たり、その部分を内側から冷却して翼ハウジング83の焼損を防止する。その後、水素65は、中央室105を連絡路107に向かって移動する。このとき、水素65は複数の突条115に接触し、突条115を介して翼ハウジング83の熱を吸収する。連絡路107から後室106に入った水素65は、複数の突起116と接触しながら翼ハウジング83から熱を吸収し、開口120を通じて接続管51に入り、この接続管51を介して上述した燃焼器14の環状空間48に供給される。 The room temperature hydrogen 65 supplied from the hydrogen supply source 52 is supplied to the rear inner cylinder 112. The supplied hydrogen 65 is ejected from the hole 113 of the rear inner cylinder 112 into the surrounding gap 114, hits the inner surface of the blade housing 83, and cools the portion from the inside to prevent the blade housing 83 from burning. Thereafter, the hydrogen 65 moves through the central chamber 105 toward the communication path 107. At this time, the hydrogen 65 comes into contact with the plurality of protrusions 115 and absorbs heat of the blade housing 83 through the protrusions 115. The hydrogen 65 that has entered the rear chamber 106 from the communication path 107 absorbs heat from the blade housing 83 while coming into contact with the plurality of protrusions 116, enters the connection pipe 51 through the opening 120, and the combustion described above through the connection pipe 51. To the annular space 48 of the vessel 14.
 このように、本実施形態によれば、特に熱的ストレスを受ける第1段静翼の冷却に、圧縮機11で生成された圧縮空気だけでなく、水素供給源52から供給される水素も利用しているので、より多くの圧縮空気をタービンの駆動に利用できるため、出力の向上、効率の向上を図ることができる。 Thus, according to the present embodiment, not only the compressed air generated by the compressor 11 but also the hydrogen supplied from the hydrogen supply source 52 is used for cooling the first stage stationary blade particularly subjected to thermal stress. As a result, more compressed air can be used for driving the turbine, so that the output and the efficiency can be improved.
 なお、上述した実施形態では、第1段の静翼にのみ水素を供給してその翼ハウジングを冷却したが、第2段以後の静翼にのみ上述の発明を適用してもよいし、また、複数段又は全段の静翼に水素を供給して冷却してもよい。 In the above-described embodiment, hydrogen is supplied only to the first stage stationary blade and the blade housing is cooled. However, the above-described invention may be applied only to the second stage and subsequent stationary blades. Alternatively, hydrogen may be supplied to a plurality of stages or all stages of stationary blades for cooling.
10:ガスタービンエンジン
11:圧縮機
12:大気
13:圧縮空気
14:燃焼器
15:燃料
16:燃焼ガス
17:タービン
18:ロータ
19:発電機
21:アウターケーシング
22:燃焼器ハウジング
23:燃焼筒
24:中心軸(燃焼器ハウジング、燃焼筒の中心軸)
25:筒部
26:蓋
27:支持筒
28:隙間(燃焼空気供給路の一部)
29:支持筒の開口(燃焼空気供給路の一部)
32:燃焼室
33:尾筒
34:遷移筒
35:タービン室
36:外筒
37:隙間(燃焼空気供給路の一部)
38:末端開口
39:圧縮空気貯留室
40:燃料噴射部
41:燃料噴射ノズル
41a:第1燃料噴射路
41b:第2燃料噴射路
42:燃焼空気噴射ノズル
44:空間
45:燃焼空気供給路
46:内筒(ライナ)
47:外筒
48:環状空間
49:連結管
51:接続管
52:水素供給源
53:基端側尾筒部
54:末端側尾筒部
59:孔
65:水素
66:火炎
71:インナーケーシング
72:静翼輪
73:動翼輪
74:静翼
75:動翼
76:水蒸気
81:外側フランジ
82:内側フランジ
83:翼ハウジング
84:翼ハウジングの内部
85:内筒
86:孔
87:隙間(流路の一部)
88:仕切壁
89:前室
90:後室
91:連絡路
92:突条
93:棒状突起
94:開口
95:開口
96:接続管
97:流路
101:翼ハウジングの内部
102:前側仕切壁
103:後側仕切壁
104:前室
105:中央室
106:後室
107:連絡路
108:前側内筒
109:孔
110:隙間
111:孔
112:後側内筒
113:孔
114:隙間
115:突条
116:突起
117:開口
118:圧縮空気供給源
119:開口
120:開口
121:圧縮空気
122:流路
10: gas turbine engine 11: compressor 12: atmosphere 13: compressed air 14: combustor 15: fuel 16: combustion gas 17: turbine 18: rotor 19: generator 21: outer casing 22: combustor housing 23: combustion cylinder 24: Center axis (combustor housing, center axis of combustion cylinder)
25: cylinder part 26: lid 27: support cylinder 28: gap (a part of the combustion air supply path)
29: Opening of support cylinder (part of combustion air supply path)
32: Combustion chamber 33: Cylinder 34: Transition cylinder 35: Turbine chamber 36: Outer cylinder 37: Clearance (part of the combustion air supply path)
38: Terminal opening 39: Compressed air storage chamber 40: Fuel injection part 41: Fuel injection nozzle 41a: First fuel injection path 41b: Second fuel injection path 42: Combustion air injection nozzle 44: Space 45: Combustion air supply path 46 : Inner cylinder (liner)
47: outer cylinder 48: annular space 49: connecting pipe 51: connecting pipe 52: hydrogen supply source 53: proximal tail pipe part 54: distal tail pipe part 59: hole 65: hydrogen 66: flame 71: inner casing 72 : Stationary blade ring 73: moving blade ring 74: stationary blade 75: moving blade 76: water vapor 81: outer flange 82: inner flange 83: blade housing 84: inside of blade housing 85: inner cylinder 86: hole 87: gap (flow Part of the road)
88: partition wall 89: front chamber 90: rear chamber 91: communication path 92: protrusion 93: rod-shaped protrusion 94: opening 95: opening 96: connecting pipe 97: flow path 101: inside of the blade housing 102: front side partition wall 103 : Rear partition wall 104: front chamber 105: central chamber 106: rear chamber 107: communication path 108: front inner cylinder 109: hole 110: gap 111: hole 112: rear inner cylinder 113: hole 114: gap 115: protrusion Article 116: Projection 117: Opening 118: Compressed air supply source 119: Opening 120: Opening 121: Compressed air 122: Flow path

Claims (7)

  1.  静翼輪と動翼輪を備えたタービンに組み込まれ、前記静翼輪を構成する複数の静翼を冷却するタービン翼の冷却構造であって、
     前記静翼を構成するハウジングと、
     前記ハウジングの内部に形成された流路と、
     前記流路に接続された水素供給源を含み、
     前記水素供給源から前記流路に供給される水素によって前記ハウジングが冷却されるように構成されている、ことを特徴とするタービン翼の冷却構造。
    A turbine blade cooling structure that is incorporated in a turbine having a stationary blade ring and a moving blade wheel, and cools a plurality of stationary blades constituting the stationary blade ring,
    A housing constituting the stationary blade;
    A flow path formed inside the housing;
    Including a hydrogen source connected to the flow path;
    A cooling structure for a turbine blade, wherein the housing is cooled by hydrogen supplied from the hydrogen supply source to the flow path.
  2.  請求項1の冷却構造を備えたガスタービンエンジン。 A gas turbine engine having the cooling structure according to claim 1.
  3.  静翼輪と動翼輪を備えたタービンを具備するガスタービンエンジンにおいて、
     前記静翼輪を構成する複数の静翼は、ハウジングと、前記ハウジングの内部に形成された流路とを有し、
     前記流路が水素供給源に接続されており、
     前記水素供給源から前記流路に供給される水素によって前記ハウジングが冷却されるように構成されている、ことを特徴とするガスタービンエンジン。
    In a gas turbine engine including a turbine having a stationary blade wheel and a moving blade wheel,
    The plurality of stationary blades constituting the stationary blade ring has a housing and a flow path formed inside the housing,
    The flow path is connected to a hydrogen source;
    A gas turbine engine, wherein the housing is cooled by hydrogen supplied to the flow path from the hydrogen supply source.
  4.  前記エンジンは、圧縮空気を生成する圧縮機と、前記圧縮機で生成された圧縮空気を用いて燃料を燃焼させる燃焼器を備えており、
     前記エンジンはさらに、前記水素供給源と前記流路を接続して前記水素供給源から供給される水素を前記流路に送る第1の経路と、前記流路から排出される水素を前記燃焼器に供給する第2の経路を備えている請求項3のガスタービンエンジン。
    The engine includes a compressor that generates compressed air, and a combustor that burns fuel using the compressed air generated by the compressor.
    The engine further includes a first path that connects the hydrogen supply source and the flow path to send hydrogen supplied from the hydrogen supply source to the flow path, and hydrogen discharged from the flow path to the combustor. The gas turbine engine of claim 3, further comprising a second path for supplying to the engine.
  5.  前記燃焼器は、燃料噴射部と、前記燃料噴射部から噴射された燃料を燃焼する燃焼室とを有し、
     前記第2の経路は前記燃焼室の外側に配置され、前記燃焼室の熱を前記第2の経路を通る水素が吸収する請求項4のガスタービンエンジン。
    The combustor includes a fuel injection unit, and a combustion chamber for burning fuel injected from the fuel injection unit,
    The gas turbine engine according to claim 4, wherein the second path is disposed outside the combustion chamber, and hydrogen passing through the second path absorbs heat of the combustion chamber.
  6.  前記第2の経路は、前記流路と前記燃焼器の燃料噴射ノズルを直接連結しており、前記流路から排出された前記水素が前記燃焼器の燃焼室から熱を吸収することなく前記燃料噴射ノズルに供給される請求項4のガスタービンエンジン。 The second path directly connects the flow path and the fuel injection nozzle of the combustor, and the hydrogen discharged from the flow path does not absorb heat from the combustion chamber of the combustor. The gas turbine engine of claim 4, wherein the gas turbine engine is supplied to an injection nozzle.
  7.  前記第2の経路は前記燃料噴射部に接続されており、前記水素が燃料として前記燃焼室に噴射されるようにしてある請求項5又は6のガスタービンエンジン。 The gas turbine engine according to claim 5 or 6, wherein the second path is connected to the fuel injection section, and the hydrogen is injected as fuel into the combustion chamber.
PCT/JP2015/078451 2014-10-10 2015-10-07 Turbine blade cooling structure and gas turbine engine WO2016056580A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-209305 2014-10-10
JP2014209305A JP2016079828A (en) 2014-10-10 2014-10-10 Turbine blade cooling structure and gas turbine engine

Publications (1)

Publication Number Publication Date
WO2016056580A1 true WO2016056580A1 (en) 2016-04-14

Family

ID=55653189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078451 WO2016056580A1 (en) 2014-10-10 2015-10-07 Turbine blade cooling structure and gas turbine engine

Country Status (2)

Country Link
JP (1) JP2016079828A (en)
WO (1) WO2016056580A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082302A (en) * 1996-09-06 1998-03-31 Toshiba Corp Turbine rotor blade and hydrogen burning turbine plant equipped therewith
JP2001515556A (en) * 1996-02-26 2001-09-18 ウエスチングハウス・エレクトリック・コーポレイション Hydrogen fuel power plant using heat transfer heat exchanger
JP2003254004A (en) * 2002-02-26 2003-09-10 Mitsubishi Heavy Ind Ltd Gas turbine and gas turbine combined power generation system
JP2005105906A (en) * 2003-09-30 2005-04-21 Hitachi Ltd Hydride turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515556A (en) * 1996-02-26 2001-09-18 ウエスチングハウス・エレクトリック・コーポレイション Hydrogen fuel power plant using heat transfer heat exchanger
JPH1082302A (en) * 1996-09-06 1998-03-31 Toshiba Corp Turbine rotor blade and hydrogen burning turbine plant equipped therewith
JP2003254004A (en) * 2002-02-26 2003-09-10 Mitsubishi Heavy Ind Ltd Gas turbine and gas turbine combined power generation system
JP2005105906A (en) * 2003-09-30 2005-04-21 Hitachi Ltd Hydride turbine

Also Published As

Publication number Publication date
JP2016079828A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
EP2925983B1 (en) Cooled combustor seal
WO2016056579A1 (en) Combustor and gas turbine engine
US8438851B1 (en) Combustor assembly for use in a turbine engine and methods of assembling same
US9062885B2 (en) Fuel nozzle, gas turbine combustor with the same, and gas turbine with the same
JP5675218B2 (en) Impingement cooled transition piece rear frame
JP5860620B2 (en) Injection nozzle for turbomachine
JP6900198B2 (en) Gas cartridge for premixed fuel nozzle
JP2008261605A (en) Gas turbine combustor
KR102228706B1 (en) Nozzles for combustors, combustors and gas turbines
JP2013250046A (en) Fuel injection assembly for use in turbine engine and method of assembling the same
JP5657794B2 (en) Gas turbine combustion chamber
JP2010169386A (en) Nozzle for turbomachine
WO2017170477A1 (en) Gas turbine
US20140352312A1 (en) Injector for introducing a fuel-air mixture into a combustion chamber
JP2019190281A (en) Compressor diffuser and gas turbine
JP2011141111A (en) Turbomachine nozzle
JP2011237167A (en) Fluid cooled injection nozzle assembly for gas turbomachine
JP2017142044A (en) Rotation detonation combustor
US11402098B2 (en) Gas turbine combustor and gas turbine
WO2016056580A1 (en) Turbine blade cooling structure and gas turbine engine
US20160290652A1 (en) Swirler assembly
JP6326205B2 (en) Fuel nozzle, combustor, and gas turbine
KR102146564B1 (en) Combustor and gas turbine with reduction structure of combustion resonance
KR102154221B1 (en) Combustor and gas turbine including fuel injection member of fuel turning injection type
US20240003545A1 (en) Jet nozzle, combustor, and gas turbine including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15849277

Country of ref document: EP

Kind code of ref document: A1