WO2016056529A1 - Electrochemical luminescent cell and composition for forming luminescent layer of electrochemical luminescent cell - Google Patents

Electrochemical luminescent cell and composition for forming luminescent layer of electrochemical luminescent cell Download PDF

Info

Publication number
WO2016056529A1
WO2016056529A1 PCT/JP2015/078277 JP2015078277W WO2016056529A1 WO 2016056529 A1 WO2016056529 A1 WO 2016056529A1 JP 2015078277 W JP2015078277 W JP 2015078277W WO 2016056529 A1 WO2016056529 A1 WO 2016056529A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
group
salt
combination
light emitting
Prior art date
Application number
PCT/JP2015/078277
Other languages
French (fr)
Japanese (ja)
Inventor
文広 米川
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015193167A external-priority patent/JP6163185B2/en
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to US15/516,979 priority Critical patent/US10547019B2/en
Priority to KR1020177008860A priority patent/KR20170065522A/en
Priority to EP15848287.7A priority patent/EP3205924B1/en
Priority to CN201580053972.XA priority patent/CN106796001B/en
Publication of WO2016056529A1 publication Critical patent/WO2016056529A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/135OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising mobile ions

Definitions

  • the present invention relates to an electrochemiluminescence cell having a light emitting layer containing a light emitting material and two or more organic salts.
  • the present invention also relates to a composition for forming a light emitting layer of an electrochemiluminescence cell.
  • organic electroluminescence (organic EL) elements which are self-luminous elements using electrons and holes as carriers, has been rapidly progressing.
  • Organic EL has features such as being thinner and lighter than a liquid crystal element that does not emit light and requires a backlight, and has excellent visibility.
  • An organic EL element generally includes a pair of substrates on which electrodes are formed on the surfaces facing each other, and a light emitting layer disposed between the pair of substrates.
  • the light emitting layer is made of an organic thin film containing a light emitting substance that emits light when a voltage is applied.
  • a voltage is applied to the organic thin film from the anode and the cathode to inject holes and electrons.
  • holes and electrons are recombined in the organic thin film, and the excitons generated by the recombination return to the ground state, whereby light emission is obtained.
  • the organic EL device in addition to the light emitting layer, a hole injection layer and an electron injection layer for increasing the injection efficiency of holes and electrons between the light emitting layer and the electrode, and recombination of holes and electrons. It is necessary to provide a hole transport layer and an electron transport layer for improving efficiency. As a result, the organic EL element has a multi-layered structure, which complicates the structure and increases the manufacturing process. In organic EL, there are many limitations because it is necessary to consider the work function when selecting the electrode material used for the anode and the cathode.
  • Electrochemiluminescent cells generally have a light emitting layer that includes a salt and an organic light emitting material. When a voltage is applied, cations and anions derived from the salt move toward the cathode and the anode, respectively, in the light emitting layer, which results in a large electric field gradient (electric double layer) at the electrode interface. The formed electric double layer facilitates the injection of electrons and holes in the cathode and the anode, respectively. Therefore, the electrochemiluminescence cell does not require a multilayer structure like an organic EL.
  • the electrochemiluminescence cell is expected as a self-luminous element that can significantly reduce the manufacturing cost as compared with the organic EL.
  • ionic liquids in addition to lithium salts and potassium salts as salts used in electrochemiluminescence cells.
  • This ionic liquid is a non-volatile salt and has a higher reorientation rate due to an electric field than a solid electrolyte, so that ion mobility is ensured and an electric double layer is easily formed, and holes and electrons can be more easily injected. (See Patent Document 1 and Patent Document 2).
  • holes and electrons can be easily moved by adding additives to the layers responsible for the injection and transport of holes and electrons, such as the hole injection layer, hole transport layer, electron injection layer, and electron transport layer. Attempts have been made (see, for example, Patent Documents 3 to 6). In addition, attempts have been made to avoid a reduction in light emission luminance by adjusting the injection balance of holes and electrons into the light emitting layer (see Patent Document 7).
  • an electrochemiluminescence cell particularly an electrochemiluminescence cell having an ionic liquid in a light emitting layer
  • the movement of holes and electrons is already easy, but the thermal stability and electrochemical which affect the operating life Attempts have been made to improve the performance of electrochemiluminescent cells by improving stability or improving the compatibility between ionic liquids and luminescent materials.
  • Patent Document 8 describes that when a plurality of salts are incorporated into a light-emitting polymer layer, the lifetime of the electrochemiluminescent cell is improved.
  • the light emission luminance shown in this document has achieved the maximum luminance of 100 cd / m 2 or less at the maximum even when a voltage of 10 V or more is applied to the electrode, as high as necessary for practical use. Absent.
  • JP 2011-103234 A Special table 2012-516033 gazette JP 2013-171968 A Special table 2012-531737 gazette JP 2011-216893 A International Publication No. 2010/98386 Pamphlet International Publication No. 2013/171872 Pamphlet International Publication No. 2011/032010 Pamphlet
  • the ability to inject holes or electrons from each electrode can be controlled by considering the type of cation or anion of the salt used in the light emitting layer. Specifically, it has been found that the ability to inject holes and electrons into the light emitting layer can be made substantially equal by mixing two or more kinds of salts.
  • the present invention relates to an electrochemiluminescence cell having a light emitting layer and electrodes disposed on each surface thereof.
  • an electrochemiluminescence cell having a light emitting layer and electrodes arranged on each surface thereof The above-mentioned problem is solved by providing an electrochemiluminescent cell in which the light emitting layer contains a combination of an organic polymer light emitting material and two or more organic salts.
  • this invention solves the said subject by providing the composition for light emitting layer formation of an electrochemiluminescence cell containing the combination of an organic polymer light emitting material, an organic solvent, and 2 or more types of organic salts. is there.
  • an electrochemiluminescence cell having high luminous efficiency and excellent emission luminance is provided.
  • FIG. 1 is a schematic cross-sectional view of an electrochemiluminescence cell according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing a light emission mechanism of an electrochemiluminescence cell.
  • FIG. 2 (a) shows an electrochemiluminescence cell before voltage application
  • FIG. 2 (b) shows an electrochemiluminescence cell after voltage application.
  • FIG. 3 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 1 and Comparative Example 1.
  • FIG. 4 is a graph showing the measurement results of the light emission luminance of the electrochemiluminescence cells obtained in Example 2 and Comparative Example 2.
  • FIG. 3 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 1 and Comparative Example 1.
  • FIG. 4 is a graph showing the measurement results of the light emission luminance of the electrochemiluminescence cells obtained in Example 2 and Comparative Example 2.
  • FIG. 5 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 3 and Comparative Example 3.
  • FIG. 6 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 4 and Comparative Example 4.
  • FIG. 7 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 5 and Comparative Example 5.
  • FIG. 8 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 6 and Comparative Example 6.
  • FIG. 9 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 7 and Comparative Example 7.
  • FIG. 10 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 8 and Comparative Example 8.
  • FIG. 11 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 9 and Comparative Example 9.
  • FIG. 12 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 10 and Comparative Example 10.
  • FIG. 13 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 11 and Comparative Example 11.
  • FIG. 14 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 12 and Comparative Example 12.
  • the electrochemiluminescence cell 10 of this embodiment includes a light emitting layer 12 and electrodes 13 and 14 disposed on each surface thereof.
  • the electrochemiluminescence cell 10 includes a first electrode 13 and a second electrode 14 that are a pair of electrodes facing each other, and a light emitting layer 12 sandwiched between the pair of electrodes 13 and 14.
  • the light emitting layer emits light when a voltage is applied.
  • the electrochemiluminescence cell 10 is used as various displays. FIG.
  • the first electrode 13 is connected to the anode of the DC power source, and the second electrode 14 is connected to the cathode.
  • the first electrode 13 may be connected to the cathode and the second electrode 14 may be connected to the anode.
  • an AC power source as a power source instead of a DC power source.
  • the first electrode 13 and the second electrode 14 may be transparent electrodes having translucency, or may be translucent or opaque electrodes.
  • Transparent electrodes having translucency include those made of metal oxides such as indium-doped tin oxide (ITO) and fluorine-doped tin oxide (FTO), poly (3,4-ethylenedioxythiophene) with impurities added ( Examples thereof include those made of a polymer having transparency such as PEDOT) and those made of a carbon-based material such as carbon nanotube or graphene.
  • the translucent or opaque electrode include aluminum (Al), silver (Ag), gold (Au), platinum (Pt), tin (Sn), bismuth (Bi), copper (Cu), and chromium (Cr).
  • Metal materials such as zinc (Zn) and magnesium (Mg).
  • the first electrode 13 and the second electrode 14 are used as a transparent electrode because light emitted from the light emitting layer 12 can be easily extracted to the outside. Further, when one is a transparent electrode and the other is an opaque metal electrode, it is preferable because light emitted from the light emitting layer 12 can be taken out while being reflected by the metal electrode. Moreover, it is good also as a see-through light-emitting body by making both the 1st electrode 13 and the 2nd electrode 14 into a transparent electrode.
  • both the first electrode 13 and the second electrode 14 are metal electrodes made of Ag or the like having a high reflectivity, and the thickness of the light emitting layer 12 is controlled, so that the electrochemiluminescence cell 10 is laser-oscillated. It can also be an element.
  • the first electrode 13 is a transparent electrode and the second electrode 14 is an opaque or translucent metal electrode
  • the first electrode 13 is, for example, 10 nm or more and 500 nm or less from the viewpoint of realizing appropriate resistivity and light transmittance. It is preferable to have a thickness of
  • the second electrode 14 preferably has a thickness of, for example, 10 nm or more and 500 nm or less from the viewpoint of realizing an appropriate resistivity and light transmittance in the same manner as the first electrode 13.
  • the light emitting layer 12 is formed by mixing an organic polymer light emitting material and an organic salt.
  • the light emitting layer 12 may be in a solid state or a liquid state. When the light emitting layer 12 is solid, it can maintain a certain shape and can resist the force applied from the outside.
  • the organic salt contained in the light emitting layer 12 is a substance for ensuring ion mobility, forming an electric double layer easily, and facilitating injection of holes and electrons.
  • phosphonium salts, ammonium salts, pyridinium salts, imidazolium salts, pyrrolidinium salts, and the like can be used as organic salts.
  • these organic salts as the phosphonium salt and ammonium salt, for example, those represented by the following formula (1) can be used.
  • pyridinium salt, imidazolium salt, and pyrrolidinium salt include anions such as halide ions such as fluorine, bromine, iodine and chlorine, tetrafluoroborate (BF 4 ), benzotriazolate (N 3 (C 6 H 4 ) ), Tetraphenylborate (B (C 6 H 5 ) 4 ), hexafluorophosphate (PF 6 ), bis (trifluoromethylsulfonyl) imide (N (SO 2 CF 3 ) 2 ), bis (fluorosulfonyl) imide ( N (SO 2 F) 2 ), trifluoromethanesulfonate (SO 3 CF 3 ), methanesulfonate (SO 3 CH 3 ), tris (pentafluoroethyl) trifluorophosphate ((C 2 H 5 ) 3 PF 3 ), tri trifluoroacetic acid (CF 3 COO), amino acids, Bisuok
  • the molecular weight of the cation in the organic salt is 270 or more and 900 or less, particularly 300 or more and 850 or less, particularly 330 or more and 800 or less, and the luminous efficiency of the electrochemiluminescence cell is further improved and the emission luminance is further improved. To preferred.
  • the organic salt may be solid or liquid at normal temperature (25 ° C.).
  • organic salts for example, those represented by the following formula (1) can be used as the solid organic salt.
  • R 1 , R 2 , R 3 and R 4 are each an alkyl group, an alkoxyalkyl group, a trialkylsilylalkyl group, an alkenyl group, an alkynyl group, an aryl group, which may be substituted with a functional group, or Represents a heterocyclic group, R 1 , R 2 , R 3 and R 4 may be the same or different from each other, M represents N or P, and X ⁇ represents an anion.
  • liquid organic salts examples include ionic liquids that maintain a liquid state at room temperature (25 ° C.) while being ionic species.
  • a substance represented by the above formula (1) can be used as the liquid organic salt.
  • the organic salt represented by the formula (1) is in a solid or liquid state depending on the combination of the selected cation and anion and the structure of R 1 to R 4 which are side chains of the cation.
  • all of them may be solid at room temperature, or all of them may be liquid at room temperature. Further, at least one of them may be liquid at normal temperature, and at least one of them may be solid at normal temperature.
  • R 1 to R 4 may be an alkyl group, an alkoxyalkyl group, a trialkylsilylalkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heterocyclic group.
  • R 1 to R 4 may be the same as or different from each other.
  • the alkyl group used as any one of R 1 to R 4 is a linear or branched saturated aliphatic group having 1 to 20 carbon atoms, 3 to 20 saturated alicyclic groups are mentioned. Specifically, methyl group, ethyl group, propyl group, isopropyl group, butyl group, s-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, t-amyl group, hexyl group, heptyl group, Isoheptyl, t-heptyl, n-octyl, isooctyl, 2-ethylhexyl, t-octyl, nonyl, isononyl, decyl, isodecyl, undecyl, dodecyl, tridecyl, isotridecyl, Examples include tetradecyl group,
  • examples of the alkoxy group in the alkoxyalkyl group used as any one of R 1 to R 4 include the alkoxides of the alkyl groups described above.
  • examples of the alkyl group in the alkoxyalkyl group include the same alkyl groups as described above.
  • alkenyl group used as any one of R 1 to R 4 those having 2 to 20 carbon atoms are preferably used.
  • examples of the alkynyl group used as any one of R 1 to R 4 include an ethynyl group and a prop-2-yn-1-yl group.
  • examples of the aryl group used as any one of R 1 to R 4 include a phenyl group, a naphthyl group, and an anthracenyl group.
  • examples of the heterocyclic group include monovalent groups derived from pyridine, pyrrole, furan, imidazole, pyrazole, oxazole, imidazoline, pyrazine and the like.
  • one or two or more of the hydrogen atoms contained therein may be substituted with a functional group.
  • the functional group include an amino group, a nitrile group, a phenyl group, a benzyl group, a carboxyl group, and an alkoxy group having 1 to 12 carbon atoms.
  • a group in which the above-described alkyl group is substituted with a phenyl group as a functional group, that is, an aromatic alkyl group can be used.
  • a benzyl group that is a group in which a methyl group as an alkyl group is substituted with a phenyl group as a functional group can be used.
  • anion represented by X ⁇ in the formula (1) examples include halogen ions such as fluorine, bromine, iodine and chlorine, tetrafluoroborate (BF 4 ), benzotriazolate (N 3 (C 6 H 4 )).
  • the electrochemiluminescence cell 10 of this embodiment is characterized in that two or more different organic salts contained in the light emitting layer 12 are used in combination.
  • two or more kinds of organic salts in combination the ability of injecting holes and electrons into the light-emitting layer 12 becomes substantially equal, thereby increasing the luminous efficiency.
  • the electrochemiluminescence cell 10 of the present embodiment is excellent in emission luminance.
  • organic salts for example, in the case of two kinds of combinations, (a) a combination of organic salts having the same cation and different anions, and (b) anion having different cations and anions And (c) combinations of organic salts in which cations are different and anions are different.
  • a pyridinium ion that is a cation is common, and a combination of organic salts having different types of anions among the above-mentioned anions such as tetrafluoroborate ion and bis (trifluoromethanesulfonyl) imide ion is used.
  • anions such as tetrafluoroborate ion and bis (trifluoromethanesulfonyl) imide ion is used.
  • the aforementioned anions such as tetrafluoroborate ions and bis (trifluoromethanesulfonyl) imide ions are common, and a combination of organic salts in which the cations are imidazolium ions and pyrrolidinium ions can be mentioned.
  • a combination of a bis (trifluoromethanesulfonyl) imide salt of a pyridinium ion and a tetrafluoroborate ion salt of a pyrrolidinium ion may be mentioned.
  • the combination of organic salts includes (i) a combination of organic salts in which the cation is the same and the anion is different (the above (i) and (ii) or (iii) and (iv) Or (b) a combination of organic salts having different cations and the same anion (a combination of (i) and (iii) or (ii) and (iv)). preferable.
  • two or more organic salts are a combination of liquid organic salts.
  • two or more organic salts are a combination of solid organic salts.
  • the combination of two or more organic salts may be a combination of a liquid organic salt and a solid organic salt.
  • Preferred organic salt combinations include those represented by the formula (1).
  • the first organic salt and the second organic salt are: It has been found that it is preferable to have the same kind of cation and different anions. It was also found that (b) it is preferable that they have the same type of anion and the cation is different.
  • the first organic salt and the second organic salt have the same kind of cation, for example, the same kind of ammonium ion or the same kind of phosphonium ion.
  • the first organic salt and the second organic salt have different anions.
  • the first organic salt and the second organic salt are the same type of anion, for example, ions of halogen such as bistrifluoromethanesulfonylimide, fluorine, bromine, tetrafluoroborate (BF 4 ), hexa It has ions of halogen-containing compounds such as fluorophosphate (PF 6 ).
  • the first organic salt and the second organic salt have different cations.
  • any of the different cations can be an ammonium ion.
  • any heterogeneous cation can be a phosphonium ion.
  • one of the different cations can be an ammonium ion and the other can be a phosphonium ion.
  • R 1 , R 2 , R 3 and R 4 in the formula (1) are the same alkyl group, and the rest One is preferably an alkyl group different from the alkyl group, or an aromatic alkyl group. This is because one of R 1 , R 2 , R 3, and R 4 is a heterogeneous group, which is structurally asymmetrical, and the fluidity of the organic salt is easily obtained even when the number of carbons increases. is there. Since the molecular weight of the cation can be increased by increasing the number of carbon atoms, the charge density is structurally reduced, so the polar component required to stabilize the charge can be reduced. Leads to increased compatibility with non-polar organic light emitting materials.
  • the cation is the same kind of tetraalkylammonium ion, the same kind of trialkylbenzylammonium ion, the same kind of tetraalkylphosphonium ion, or It is the same kind of trialkylbenzylphosphonium ion, and different anions are ions of bistrifluoromethanesulfonylimide, halogen ions such as fluorine and bromine, or halogens such as tetrafluoroborate (BF 4 ) and hexafluorophosphate (PF 6 ).
  • BF 4 tetrafluoroborate
  • PF 6 hexafluorophosphate
  • the same type of anion is bistrifluoromethanesulfonylimide, halogen ions such as fluorine and bromine, or halogen-containing compounds such as tetrafluoroborate (BF 4 ) and hexafluorophosphate (PF 6 ).
  • a different cation is a combination of different tetraalkylammonium ions, a combination of different trialkylbenzylammonium ions, a combination of different tetraalkylphosphonium ions, a combination of different trialkylbenzylphosphonium ions, tetraalkylammonium Ion and trialkylbenzylammonium ion combination, tetraalkylphosphonium ion and trialkylbenzylphosphonium ion combination, tetraalkylammonium ion
  • the ratio between the first organic salt and the second organic salt can be selected from a wide range according to the type of these organic salts. For example, as illustrated in the examples described later, there may be a combination that exhibits the maximum light emission luminance at substantially equal mass ratios, or the first organic salt and the second organic salt are 20:80 or 80. In some cases, the combination shows the maximum luminance when the mass ratio is 20.
  • the combination of the first organic salt and the second organic salt is merely an example, and achieves the object of the present invention to make the injection ability of holes and electrons into the light emitting layer 12 substantially equal. Therefore, a combination of a plurality of types of ionic liquids such as three or more types can also be employed.
  • the organic salt represented by the formula (1) can be produced, for example, as follows.
  • a quaternary phosphonium halide obtained by reacting a tertiary phosphine compound corresponding to the target phosphonium cation and a halogenated hydrocarbon compound is used, and an ionic liquid in which the anion is halogen is prepared.
  • An anion component other than halogen can be obtained by reacting the quaternary phosphonium halide with a metal salt of the anion component to exchange anions.
  • an ionic liquid having a phosphonium cation in which three of R 1 , R 2 , R 3 and R 4 in formula (1) are alkyl groups, and the other is an aromatic alkyl group, and the anion component is halogen can be obtained by using a trialkylphosphine as the tertiary phosphine compound and a compound in which an aromatic alkyl group is bonded to halogen as the halogenated hydrocarbon compound. Further, among R 1 , R 2 , R 3 and R 4 in the formula (1), three have an alkyl group and the other one has a phosphonium cation which is an aromatic alkyl group, and the anion component is other than halogen.
  • the organic salt is a bis (trifluoromethylsulfonyl) imide, tetrafluoroborate (BF 4 ), hexafluorophosphate (PF 6 ), or bisoxalato borate (B (C 2). It can be obtained by anion exchange with O 4 ) 2 ), thiocyanate (SCN) or the like.
  • the ratio of the organic salt in the light emitting layer 12 is preferably 1% by mass or more and 30% by mass or less from the viewpoint of securing ion mobility and improving the film forming property of the light emitting layer 12. % Or less is more preferable.
  • the content of the organic salt in the light emitting layer 12 is preferably 10 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the organic polymer light emitting material.
  • the organic polymer light emitting material contained in the light emitting layer 12 functions as a carrier body of electrons and holes by being doped with anions and cations, and emits light when excited by the combination of electrons and holes.
  • organic polymer light emitting materials include various ⁇ -conjugated polymers. Specific examples include poly (paraphenylene vinylene), poly (fluorene), poly (1,4-phenylene), polythiophene, polypyrrole, poly (paraphenylene sulfide), polybenzothiadiazole, polybiothiophine and the like. it can.
  • derivatives obtained by introducing substituents into these and copolymers thereof can also be used as the organic polymer light-emitting material.
  • Examples of such a substituent include an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 18 carbon atoms, and [(—CH 2 CH 2 O—) n CH 3 ]. And a group represented by the formula (where n is an integer of 1 to 10).
  • Examples of the copolymer include those obtained by bonding each repeating unit of two or more kinds of the above-mentioned ⁇ -conjugated polymers.
  • Examples of the arrangement of each repeating unit in the copolymer include a random arrangement, an alternating arrangement, a block arrangement, or a combination thereof.
  • a commercial item can also be used as an organic polymer light-emitting material.
  • PFO-DMP Poly (9,9-dioctylfluorenyl-2,7-diyl) end capped with dimethylphenyl
  • LT-S934 Luminescence Technology under the name LT-S934
  • Aldrich Poly [(9,9-di-n-octylfluorenyl-2,7-diyl) -alt- (benzo [2,1,3] thiadiazol-4,8-diyl)]
  • Aldrich Poly [(9,9-di-n-octylfluorenyl-2,7-diyl) -alt- (benzo [2,1,3] thiadiazol-4,8-diyl)]
  • the ratio in the light emitting layer 12 is preferably 10% by mass or more and 95% by mass or less, and 20% by mass or more and 90% by mass or less. It is more preferable.
  • the light emitting layer 12 may contain substances other than organic polymer light emitting materials and organic salts.
  • substances other than organic polymer light emitting materials and organic salts include surfactants, polymer components for improving conductivity (polyethylene oxide, etc.), polymer components for improving film forming properties (polystyrene, polymethyl methacrylate (PMMA), etc.), organic salts, and the like. Other salts may be mentioned.
  • the amount of components other than the organic polymer light-emitting material and organic salt (excluding the solvent) in the light-emitting layer 12 is preferably 90 parts by mass or less when the entire light-emitting layer 12 is 100 parts by mass, and 60 parts by mass. More preferably, it is more preferably 30 parts by mass or less.
  • the film thickness of the light emitting layer 12 thus configured is preferably 10 nm or more and 200 nm or less, and more preferably 50 nm or more and 150 nm or less.
  • the film thickness of the light emitting layer 12 is within this range, it is preferable from the viewpoints that light emission can be sufficiently and efficiently obtained from the light emitting layer 12, defects in a light emission scheduled portion can be suppressed, and short circuit prevention can be achieved.
  • the electrochemiluminescence cell 10 of this embodiment can be manufactured by the following manufacturing method, for example.
  • a substrate provided with the first electrode 13 is prepared.
  • the first electrode 13 is formed from, for example, ITO, by forming a deposited ITO film in a pattern on the surface of a glass substrate or the like by using a photolithography method or a combination of the photolithography method and the lift-off method, A first electrode 13 made of ITO can be formed on the surface.
  • an organic salt and an organic polymer light-emitting material are dissolved in an organic solvent to prepare a composition for forming a light-emitting layer of an electrochemiluminescence cell.
  • an organic solvent from the viewpoint of efficiently mixing the organic salt and the organic polymer light-emitting material, it is preferable to use toluene, benzene, tetrahydrofuran, dimethyl chloride, chlorobenzene, chloroform, or the like as the organic solvent.
  • These organic solvents can be used individually by 1 type or in combination of 2 or more types.
  • the blending ratio (mass ratio) of the organic salt and the organic polymer light-emitting material in the composition for forming a light-emitting layer is preferably 1: 1 to 20 in the former: latter.
  • This composition for forming a light emitting layer is applied onto the first electrode 13 of the substrate by a spin coating method or the like. Thereafter, the coating film formed by this coating is dried to evaporate the organic solvent, thereby forming the light emitting layer 12.
  • the preparation of the light emitting layer forming composition and the formation of the light emitting layer 12 are preferably performed in an inert gas atmosphere having a moisture content of 100 ppm or less.
  • the inert gas include argon, nitrogen, helium and the like.
  • the second electrode 14 is formed on the formed light emitting layer 12.
  • an electrode having a predetermined pattern is formed on the light emitting layer 12 by evaporating aluminum (Al) into a film shape by, for example, a vacuum evaporation method through a mask.
  • Al aluminum
  • the second electrode 14 is formed on the light emitting layer 12.
  • the obtained electrochemiluminescence cell 10 may be vacuum-dried from the viewpoint of improving the film quality of the light emitting layer 12. This vacuum drying may be performed at room temperature or may be performed under heating.
  • the electrochemiluminescence cell 10 of the present embodiment emits light by the following light emission mechanism.
  • a voltage is applied to the light emitting layer 12 so that the first electrode 13 serves as an anode and the second electrode 14 serves as a cathode.
  • ions in the light emitting layer 12 move along the electric field, and a layer in which anion species are collected in the vicinity of the interface between the light emitting layer 12 and the first electrode 13 is formed.
  • a layer in which cationic species are collected in the vicinity of the interface with the second electrode 14 in the light emitting layer 12 is formed. In this way, an electric double layer is formed at the interface of each electrode.
  • the p-doped region 16 is spontaneously formed in the vicinity of the first electrode 13 that is the anode
  • the n-doped region 17 is spontaneously formed in the vicinity of the second electrode 14 that is the cathode.
  • These doped regions constitute a pin junction with a high carrier density.
  • the energy difference (band gap) between the highest occupied orbital (Highest Occupied Molecular Orbital) and the lowest unoccupied orbital (Lowest Unoccupied Molecular Orbital) corresponds to the desired wavelength. What is necessary is just to select a material.
  • the present invention further discloses the following electrochemiluminescence cell.
  • the electrochemiluminescence cell in an electrochemiluminescence cell having a light emitting layer and electrodes arranged on each surface thereof, The electrochemiluminescence cell in which the light emitting layer includes a combination of an organic polymer light emitting material and two or more organic salts.
  • the organic salt is an organic salt selected from a phosphonium salt, an ammonium salt, a pyridinium salt, an imidazolium salt, and a pyrrolidinium salt.
  • R 1 , R 2 , R 3 and R 4 are each an alkyl group, an alkoxyalkyl group, a trialkylsilylalkyl group, an alkenyl group, an alkynyl group, an aryl group, which may be substituted with a functional group, or Represents a heterocyclic group, R 1 , R 2 , R 3 and R 4 may be the same or different from each other, M represents N or P, and X ⁇ represents an anion.
  • the organic salt is a plurality of organic salts represented by the formula (1), and all of them are liquid at room temperature.
  • a plurality of organic salts represented by the formula (1) is used as the organic salt, at least one of them is liquid at normal temperature, and at least one of them is solid at normal temperature
  • the electrochemiluminescence cell of description [8] The light emitting layer includes a combination of two organic salts represented by the formula (1), The two organic salts have the same kind of cation, and the anion is different, [4] to [7]. [9] The electrochemiluminescence cell according to [8], wherein one of the different anions is bistrifluoromethanesulfonylimide and the other is halogen.
  • the light emitting layer includes a combination of two organic salts represented by the formula (1),
  • the two types of organic salts are the electrochemiluminescence cells according to any one of [4] to [7], wherein the two kinds of organic salts have the same kind of anion and the cation is different.
  • the electrochemiluminescence cell according to [10] wherein the different cations are all ammonium ions or phosphonium ions.
  • the electrochemiluminescence cell according to [10] wherein one of the different cations is an ammonium ion and the other is a phosphonium ion.
  • a composition for forming a light emitting layer of an electrochemiluminescent cell comprising a combination of an organic polymer light emitting material, an organic solvent, and two or more organic salts.
  • Example 1 and Comparative Example 1 A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode.
  • Mn average molecular weight
  • the composition for forming a light-emitting layer prepared above is applied by spin coating on the first electrode of the glass substrate at room temperature in a glove box in an argon atmosphere, and further, 30% on a hot plate at 50 ° C.
  • the organic solvent was evaporated by heating for minutes.
  • a solid light emitting layer having a thickness of 100 nm was formed.
  • a second electrode made of aluminum (Al) having a thickness of 30 nm was formed on the formed light emitting layer by the method described above. In this way, an electrochemiluminescence cell having an area of a 2 mm ⁇ 2 mm square of a planned emission portion was produced.
  • the first electrode was connected to the direct current anode
  • the second electrode was connected to the cathode
  • a voltage was applied up to 20 V
  • the maximum luminance during this period was defined as the emission luminance.
  • the luminance was measured using CS-2000 (manufactured by Konica Minolta). The results are shown in FIG.
  • Example 2 and Comparative Example 2 A combination of an ionic liquid tributyloctylammonium bistrifluoromethanesulfonylimide (N4448TFSI) and an ionic liquid trioctylmethylammonium bistrifluoromethanesulfonylimide (N8881TFSI) was used as an organic salt.
  • the mass ratio between the two was as shown in FIG. 4 (in FIG. 4, x on the horizontal axis represents the mass fraction). Except this, an electrochemiluminescence cell was produced in the same manner as in Example 1. About the obtained electrochemiluminescence cell, the same measurement as Example 1 was performed. The result is shown in FIG.
  • Example 3 and Comparative Example 3 A combination of ionic liquid trioctylbenzylphosphonium bistrifluoromethanesulfonylimide (P888BzTFSI) and ionic liquid trioctylbenzylphosphonium bromide (P888BzBr) was used as an organic salt. The mass ratio between the two was as shown in FIG. Except this, an electrochemiluminescence cell was produced in the same manner as in Example 1. About the obtained electrochemiluminescence cell, the same measurement as Example 1 was performed. The result is shown in FIG.
  • P888BzTFSI ionic liquid trioctylbenzylphosphonium bistrifluoromethanesulfonylimide
  • P888BzBr ionic liquid trioctylbenzylphosphonium bromide
  • Example 4 and Comparative Example 4 A combination of ionic liquid trioctylbenzylphosphonium bistrifluoromethanesulfonylimide (P888BzTFSI) and ionic liquid triethylpentylphosphonium bistrifluoromethanesulfonylimide (P2225TFSI) was used as an organic salt. The mass ratio between the two was as shown in FIG. Except this, an electrochemiluminescence cell was produced in the same manner as in Example 1. About the obtained electrochemiluminescence cell, the same measurement as Example 1 was performed. The result is shown in FIG.
  • P888BzTFSI ionic liquid trioctylbenzylphosphonium bistrifluoromethanesulfonylimide
  • P2225TFSI ionic liquid triethylpentylphosphonium bistrifluoromethanesulfonylimide
  • Example 5 and Comparative Example 5 A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode.
  • F8BT Poly [(9,9-di-n-octylfluorenyl-2,7-diyl) -alt- (benzo [2,1,3] thiadiazol-4,8-diyl)]
  • Aldrich's average molecular weight (Mn) 10000 to 20000) was used.
  • Example 1 As an organic salt, a combination of ionic liquid tributyloctylammonium bistrifluoromethanesulfonylimide (N4448TFSI) and ionic liquid tributyloctylammonium bromide (N4448Br) was used. The mass ratio between the two was as shown in FIG. Except this, an electrochemiluminescence cell was produced in the same manner as in Example 1. About the obtained electrochemiluminescence cell, the same measurement as Example 1 was performed. The result is shown in FIG.
  • N4448TFSI ionic liquid tributyloctylammonium bistrifluoromethanesulfonylimide
  • N4448Br ionic liquid tributyloctylammonium bromide
  • Example 6 and Comparative Example 6 A combination of ionic liquid trioctylmethylammonium bistrifluoromethanesulfonylimide (N8881TFSI) and ionic liquid trioctylhexadecammonium bistrifluoromethanesulfonylimide (N888 (16) TFSI) was used as an organic salt. The mass ratio between the two was as shown in FIG. Other than this, an electrochemiluminescence cell was produced in the same manner as in Example 5. About the obtained electrochemiluminescence cell, the same measurement as Example 5 was performed. The result is shown in FIG.
  • Example 7 and Comparative Example 7 A combination of ionic liquid trioctylbenzylphosphonium bistrifluoromethanesulfonylimide (P888BzTFSI) and ionic liquid triethylpentylphosphonium bistrifluoromethanesulfonylimide (P2225TFSI) was used as an organic salt. The mass ratio between the two was as shown in FIG. Other than this, an electrochemiluminescence cell was produced in the same manner as in Example 5. About the obtained electrochemiluminescence cell, the same measurement as Example 5 was performed. The result is shown in FIG.
  • P888BzTFSI ionic liquid trioctylbenzylphosphonium bistrifluoromethanesulfonylimide
  • P2225TFSI ionic liquid triethylpentylphosphonium bistrifluoromethanesulfonylimide
  • Example 8 and Comparative Example 8 A combination of an ionic liquid trioctylmethylammonium bistrifluoromethanesulfonylimide (N8881TFSI) and an ionic liquid trioctylbenzylphosphonium bistrifluoromethanesulfonylimide (P888BzTFSI) was used as an organic salt. The mass ratio between the two was as shown in FIG. Other than this, an electrochemiluminescence cell was produced in the same manner as in Example 5. About the obtained electrochemiluminescence cell, the same measurement as Example 5 was performed. The result is shown in FIG.
  • N8881TFSI ionic liquid trioctylmethylammonium bistrifluoromethanesulfonylimide
  • P888BzTFSI ionic liquid trioctylbenzylphosphonium bistrifluoromethanesulfonylimide
  • Example 9 and Comparative Example 9 A combination of ionic liquid tributyloctylammonium bistrifluoromethanesulfonylimide (N4448TFSI) and solid tributyloctylammonium tetrafluoroborate (N4448BF 4 ) was used as an organic salt. The mass ratio between the two was as shown in FIG. Except this, an electrochemiluminescence cell was produced in the same manner as in Example 1. About the obtained electrochemiluminescence cell, the same measurement as Example 1 was performed. The result is shown in FIG.
  • N4448TFSI ionic liquid tributyloctylammonium bistrifluoromethanesulfonylimide
  • N4448BF 4 solid tributyloctylammonium tetrafluoroborate
  • Example 10 and Comparative Example 10 A combination of ionic liquid tributyloctylammonium bistrifluoromethanesulfonylimide (N4448TFSI) and solid tributyloctylammonium hexafluorophosphate (N4448PF 6 ) was used as an organic salt. The mass ratio between the two was as shown in FIG. Except this, an electrochemiluminescence cell was produced in the same manner as in Example 1. About the obtained electrochemiluminescence cell, the same measurement as Example 1 was performed. The result is shown in FIG.
  • N4448TFSI ionic liquid tributyloctylammonium bistrifluoromethanesulfonylimide
  • N4448PF 6 solid tributyloctylammonium hexafluorophosphate
  • Example 11 and Comparative Example 11 A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode.
  • PFO-Spiro Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)]]
  • Solaris Chem Manufactured by SOL2412
  • Example 12 and Comparative Example 12 A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode.
  • PFO-Spiro Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)]]
  • Solaris Chem Manufactured by SOL2412 As an organic salt, a combination of solid tetrabutylphosphonium dibutyl phosphate (P4P4) and liquid tetrabutylphosphonium dimethyl phosphate (P4P1) was used. The mass ratio between the two was as shown in FIG. Except this, an electrochemiluminescence cell was produced in the same manner as in Example 1. About the obtained electrochemiluminescence cell, the same measurement as Example 1 was performed. The result is shown in FIG.
  • Electrochemiluminescence cell 12 Light emitting layer 13 1st electrode 14 2nd electrode 16 p doped area

Abstract

Provided is an electrochemical luminescent cell 10 having a luminescent layer 12 and electrodes 13, 14 provided on each surface of the luminescent layer 12. The luminescent layer 12 comprises an organic polymeric luminescent material and a combination of at least two organic salts. In particular, the luminescent layer preferably comprises a combination of at least two types of ionic liquids represented by formula (1) (wherein R1, R2, R3 and R4 each represent an optionally-substituted alkyl group, alkoxy alkyl group, trialkylsilylalkyl group, alkenyl group, alkynyl group, aryl group or heterocylic group. R1, R2, R3 and R4 may be the same or different. M represents N or P. X- represents an anion.)

Description

電気化学発光セル及び電気化学発光セルの発光層形成用組成物Electrochemiluminescence cell and composition for forming luminescent layer of electrochemiluminescence cell
 本発明は、発光材料及び2種以上の有機塩を含む発光層を有する電気化学発光セルに関する。また本発明は、電気化学発光セルの発光層形成用組成物に関する。 The present invention relates to an electrochemiluminescence cell having a light emitting layer containing a light emitting material and two or more organic salts. The present invention also relates to a composition for forming a light emitting layer of an electrochemiluminescence cell.
 近年、電子と正孔をキャリアとして自発光する素子である有機電界発光(有機EL)素子の開発が急激に進展している。有機ELはバックライトが必要な自発光しない素子である液晶素子よりも、薄型化及び軽量化が図れ、視認性に優れる等の特徴を有する。 In recent years, the development of organic electroluminescence (organic EL) elements, which are self-luminous elements using electrons and holes as carriers, has been rapidly progressing. Organic EL has features such as being thinner and lighter than a liquid crystal element that does not emit light and requires a backlight, and has excellent visibility.
 有機ELの素子は、一般に、各々の互いに対向する面に電極が形成された一対の基板と、一対の基板間に配された発光層とを備えている。このうち発光層は電圧が印加されることにより発光する発光物質を含む有機薄膜からなっている。このような有機ELの素子を発光させる場合、陽極と陰極から有機薄膜に電圧を印加して正孔と電子を注入する。このことにより、有機薄膜中で正孔と電子を再結合させ、再結合により生成された励起子が基底状態に戻ることにより発光が得られる。 An organic EL element generally includes a pair of substrates on which electrodes are formed on the surfaces facing each other, and a light emitting layer disposed between the pair of substrates. Among these, the light emitting layer is made of an organic thin film containing a light emitting substance that emits light when a voltage is applied. When such an organic EL device emits light, a voltage is applied to the organic thin film from the anode and the cathode to inject holes and electrons. As a result, holes and electrons are recombined in the organic thin film, and the excitons generated by the recombination return to the ground state, whereby light emission is obtained.
 有機ELの素子では、発光層の他に、該発光層と電極との間に、正孔や電子の注入効率を上げるための正孔注入層や電子注入層、並びに正孔と電子の再結合効率を向上させるための正孔輸送層や電子輸送層をそれぞれ設ける必要がある。このことにより、有機ELの素子は、多層構造となって構造が複雑になり、製造過程が多くなる。また有機ELでは、陽極と陰極に用いる電極材料の選択に仕事関数を考慮する必要があるため制限が多い。 In the organic EL device, in addition to the light emitting layer, a hole injection layer and an electron injection layer for increasing the injection efficiency of holes and electrons between the light emitting layer and the electrode, and recombination of holes and electrons. It is necessary to provide a hole transport layer and an electron transport layer for improving efficiency. As a result, the organic EL element has a multi-layered structure, which complicates the structure and increases the manufacturing process. In organic EL, there are many limitations because it is necessary to consider the work function when selecting the electrode material used for the anode and the cathode.
 これらの問題に対処する自発光素子として、電気化学発光セル(Light-emittingElectrochemical Cells:LEC)が近年注目されている。電気化学発光セルは、一般に塩と有機発光物質とを含む発光層を有する。電圧印加時には、発光層中で塩に由来するカチオン及びアニオンがそれぞれ陰極及び陽極に向かって移動し、これは電極界面における大きな電場勾配(電気二重層)をもたらす。形成される電気二重層は、陰極及び陽極それぞれにおける電子及び正孔の注入を容易にするため、電気化学発光セルでは有機ELのような多層構造が必要ない。また、電気化学発光セルでは陰極及び陽極として用いる材料の仕事関数を考慮する必要性がないことから材料の制限が少ない。これらの理由から、電気化学発光セルは、有機ELに比べて製造コストを大幅に低減できる自発光素子として期待されている。 Recently, attention has been paid to light-emitting electrochemical cells (LECs) as a self-luminous element to cope with these problems. Electrochemiluminescent cells generally have a light emitting layer that includes a salt and an organic light emitting material. When a voltage is applied, cations and anions derived from the salt move toward the cathode and the anode, respectively, in the light emitting layer, which results in a large electric field gradient (electric double layer) at the electrode interface. The formed electric double layer facilitates the injection of electrons and holes in the cathode and the anode, respectively. Therefore, the electrochemiluminescence cell does not require a multilayer structure like an organic EL. In addition, since there is no need to consider the work function of the material used as the cathode and anode in the electrochemiluminescence cell, there are few restrictions on the material. For these reasons, the electrochemiluminescence cell is expected as a self-luminous element that can significantly reduce the manufacturing cost as compared with the organic EL.
 電気化学発光セルに用いられる塩としては、リチウム塩やカリウム塩の他、イオン液体を用いる試みがなされている。このイオン液体は、不揮発性の塩であり、固体電解質と比較すると電界による再配向速度が速いため、イオンの移動性が確保され電気二重層が形成されやすく、正孔や電子の注入が更に容易なものとなる(特許文献1及び特許文献2参照)。 Attempts have been made to use ionic liquids in addition to lithium salts and potassium salts as salts used in electrochemiluminescence cells. This ionic liquid is a non-volatile salt and has a higher reorientation rate due to an electric field than a solid electrolyte, so that ion mobility is ensured and an electric double layer is easily formed, and holes and electrons can be more easily injected. (See Patent Document 1 and Patent Document 2).
 有機ELにおいては、正孔注入層、正孔輸送層、電子注入層、電子輸送層といった正孔や電子の注入や輸送を担う層に添加剤を加えることで、正孔や電子の移動を容易にする試みがなされている(例えば特許文献3ないし6参照)。また、正孔や電子の発光層への注入バランスを調整することで、発光輝度の低減を回避する試みもなされている(特許文献7参照)。 In organic EL, holes and electrons can be easily moved by adding additives to the layers responsible for the injection and transport of holes and electrons, such as the hole injection layer, hole transport layer, electron injection layer, and electron transport layer. Attempts have been made (see, for example, Patent Documents 3 to 6). In addition, attempts have been made to avoid a reduction in light emission luminance by adjusting the injection balance of holes and electrons into the light emitting layer (see Patent Document 7).
 その一方で、電気化学発光セル、特に発光層にイオン液体を有する電気化学発光セルにおいては、既に正孔や電子の移動が容易であるが、動作寿命に影響を与える熱安定性及び電気化学的安定性を改良することや、イオン液体と発光物質との適合性を改良することにより、電気化学発光セルの性能を改善する試みがなされている。例えば、特許文献8においては、複数の塩が発光ポリマー層に組み込まれたときに、電気化学発光セルの寿命等が改善することが記載されている。しかしながら、この文献で示されている発光輝度は、10V以上の電圧を電極に印加しても最大輝度が高々100cd/m以下と、実用面で必要とされるほどの高輝度は達成できていない。 On the other hand, in an electrochemiluminescence cell, particularly an electrochemiluminescence cell having an ionic liquid in a light emitting layer, the movement of holes and electrons is already easy, but the thermal stability and electrochemical which affect the operating life Attempts have been made to improve the performance of electrochemiluminescent cells by improving stability or improving the compatibility between ionic liquids and luminescent materials. For example, Patent Document 8 describes that when a plurality of salts are incorporated into a light-emitting polymer layer, the lifetime of the electrochemiluminescent cell is improved. However, the light emission luminance shown in this document has achieved the maximum luminance of 100 cd / m 2 or less at the maximum even when a voltage of 10 V or more is applied to the electrode, as high as necessary for practical use. Absent.
特開2011-103234号公報JP 2011-103234 A 特表2012-516033号公報Special table 2012-516033 gazette 特開2013-171968号公報JP 2013-171968 A 特表2012-531737号公報Special table 2012-531737 gazette 特開2011-216893号公報JP 2011-216893 A 国際公開第2010/98386号パンフレットInternational Publication No. 2010/98386 Pamphlet 国際公開第2013/171872号パンフレットInternational Publication No. 2013/171872 Pamphlet 国際公開第2011/032010号パンフレットInternational Publication No. 2011/032010 Pamphlet
 電気化学発光セルの発光効率を上げるためには、正孔や電子の輸送効率を上げることや、各電極からの正孔と電子の注入能力のバランスを調整することが不可欠であると考えられる。すなわち、各電極から正孔と電子が注入されるときに、どちらか一方が多量に注入されると、正孔又は電子が過剰に発光層に存在することになり、これが輸送の妨げとなることで発光効率が下がるか、あるいは発光輝度に影響を及ぼすことが考えられる。 In order to increase the luminous efficiency of the electrochemiluminescence cell, it is considered indispensable to increase the transport efficiency of holes and electrons and to adjust the balance between the hole and electron injection ability from each electrode. That is, when holes or electrons are injected from each electrode in a large amount, either holes or electrons will be excessively present in the light emitting layer, which will hinder transport. It is conceivable that the light emission efficiency decreases or the light emission luminance is affected.
 前記課題に鑑み、本発明者が鋭意研究した結果、各電極からの正孔又は電子の注入能力は、発光層において使用する塩のカチオン又はアニオンの種類を考慮することにより制御できることを見出した。具体的には、2種以上の複数種の塩を混合することにより、正孔及び電子の発光層への注入能力をほぼ等しいものにできることを見出した。 In view of the above problems, as a result of intensive studies by the present inventors, it has been found that the ability to inject holes or electrons from each electrode can be controlled by considering the type of cation or anion of the salt used in the light emitting layer. Specifically, it has been found that the ability to inject holes and electrons into the light emitting layer can be made substantially equal by mixing two or more kinds of salts.
 すなわち本発明は、発光層と、その各面に配された電極とを有する電気化学発光セルにおいて、
 発光層と、その各面に配された電極とを有する電気化学発光セルにおいて、
 前記発光層が、有機高分子発光材料、及び2種以上の有機塩の組み合わせを含む電気化学発光セルを提供することにより、前記課題を解決したものである。
That is, the present invention relates to an electrochemiluminescence cell having a light emitting layer and electrodes disposed on each surface thereof.
In an electrochemiluminescence cell having a light emitting layer and electrodes arranged on each surface thereof,
The above-mentioned problem is solved by providing an electrochemiluminescent cell in which the light emitting layer contains a combination of an organic polymer light emitting material and two or more organic salts.
 また本発明は、有機高分子発光材料、有機溶媒及び2種以上の有機塩の組み合わせを含有する、電気化学発光セルの発光層形成用組成物を提供することにより、前記課題を解決したものである。 Moreover, this invention solves the said subject by providing the composition for light emitting layer formation of an electrochemiluminescence cell containing the combination of an organic polymer light emitting material, an organic solvent, and 2 or more types of organic salts. is there.
 本発明によれば、発光効率が高く、発光輝度に優れた電気化学発光セルが提供される。 According to the present invention, an electrochemiluminescence cell having high luminous efficiency and excellent emission luminance is provided.
図1は、本発明の一実施形態における電気化学発光セルの概略断面図である。FIG. 1 is a schematic cross-sectional view of an electrochemiluminescence cell according to an embodiment of the present invention. 図2は、電気化学発光セルの発光機構を示す概念図であり、図2(a)は電圧印加前の電気化学発光セルを示し、図2(b)は電圧印加後の電気化学発光セルを示す。FIG. 2 is a conceptual diagram showing a light emission mechanism of an electrochemiluminescence cell. FIG. 2 (a) shows an electrochemiluminescence cell before voltage application, and FIG. 2 (b) shows an electrochemiluminescence cell after voltage application. Show. 図3は、実施例1及び比較例1で得られた電気化学発光セルの発光輝度の測定結果を示すグラフである。FIG. 3 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 1 and Comparative Example 1. 図4は、実施例2及び比較例2で得られた電気化学発光セルの発光輝度の測定結果を示すグラフである。FIG. 4 is a graph showing the measurement results of the light emission luminance of the electrochemiluminescence cells obtained in Example 2 and Comparative Example 2. 図5は、実施例3及び比較例3で得られた電気化学発光セルの発光輝度の測定結果を示すグラフである。FIG. 5 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 3 and Comparative Example 3. 図6は、実施例4及び比較例4で得られた電気化学発光セルの発光輝度の測定結果を示すグラフである。FIG. 6 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 4 and Comparative Example 4. 図7は、実施例5及び比較例5で得られた電気化学発光セルの発光輝度の測定結果を示すグラフである。FIG. 7 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 5 and Comparative Example 5. 図8は、実施例6及び比較例6で得られた電気化学発光セルの発光輝度の測定結果を示すグラフである。FIG. 8 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 6 and Comparative Example 6. 図9は、実施例7及び比較例7で得られた電気化学発光セルの発光輝度の測定結果を示すグラフである。FIG. 9 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 7 and Comparative Example 7. 図10は、実施例8及び比較例8で得られた電気化学発光セルの発光輝度の測定結果を示すグラフである。FIG. 10 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 8 and Comparative Example 8. 図11は、実施例9及び比較例9で得られた電気化学発光セルの発光輝度の測定結果を示すグラフである。FIG. 11 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 9 and Comparative Example 9. 図12は、実施例10及び比較例10で得られた電気化学発光セルの発光輝度の測定結果を示すグラフである。FIG. 12 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 10 and Comparative Example 10. 図13は、実施例11及び比較例11で得られた電気化学発光セルの発光輝度の測定結果を示すグラフである。FIG. 13 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 11 and Comparative Example 11. 図14は、実施例12及び比較例12で得られた電気化学発光セルの発光輝度の測定結果を示すグラフである。FIG. 14 is a graph showing the measurement results of the emission luminance of the electrochemiluminescence cells obtained in Example 12 and Comparative Example 12.
 以下、本発明の電気化学発光セルの好ましい実施形態について、図面を参照しながら説明する。図1に示すとおり、本実施形態の電気化学発光セル10は、発光層12と、その各面に配された電極13,14とを有する。電気化学発光セル10は、互いに対向する一対の電極である第1電極13及び第2電極14と、一対の電極13,14間に挟持された発光層12とを備えている。電気化学発光セル10は、電圧が印加されることにより発光層が発光するようになっている。電気化学発光セル10は、各種ディスプレイ等として使用されるものである。図1においては、電源として直流電源を用い、第1電極13を直流電源の陽極に接続し、第2電極14を陰極に接続している状態が示されている。しかしながら、図示とは反対に、第1電極13を陰極に接続し、第2電極14を陽極に接続してもよい。また、電源として直流電源の代わりに交流電源を用いることも可能である。 Hereinafter, preferred embodiments of the electrochemiluminescence cell of the present invention will be described with reference to the drawings. As shown in FIG. 1, the electrochemiluminescence cell 10 of this embodiment includes a light emitting layer 12 and electrodes 13 and 14 disposed on each surface thereof. The electrochemiluminescence cell 10 includes a first electrode 13 and a second electrode 14 that are a pair of electrodes facing each other, and a light emitting layer 12 sandwiched between the pair of electrodes 13 and 14. In the electrochemiluminescence cell 10, the light emitting layer emits light when a voltage is applied. The electrochemiluminescence cell 10 is used as various displays. FIG. 1 shows a state where a DC power source is used as a power source, the first electrode 13 is connected to the anode of the DC power source, and the second electrode 14 is connected to the cathode. However, contrary to the illustration, the first electrode 13 may be connected to the cathode and the second electrode 14 may be connected to the anode. Moreover, it is also possible to use an AC power source as a power source instead of a DC power source.
 第1電極13及び第2電極14は、透光性を有する透明電極であってもよいし、半透明又は不透明な電極であってもよい。透光性を有する透明電極としては、インジウムドープ酸化錫(ITO)やフッ素ドープ酸化錫(FTO)などの金属酸化物からなるもの、不純物を添加したポリ(3,4-エチレンジオキシチオフェン)(PEDOT)等の透明性を有する高分子からなるもの、カーボンナノチューブやグラフェンなどの炭素系材料からなるものなどを挙げることができる。半透明又は不透明な電極としては、例えば、アルミニウム(Al)、銀(Ag)、金(Au)、白金(Pt)、錫(Sn)、ビスマス(Bi)、銅(Cu)、クロム(Cr)、亜鉛(Zn)、マグネシウム(Mg)等の金属材料が挙げられる。 The first electrode 13 and the second electrode 14 may be transparent electrodes having translucency, or may be translucent or opaque electrodes. Transparent electrodes having translucency include those made of metal oxides such as indium-doped tin oxide (ITO) and fluorine-doped tin oxide (FTO), poly (3,4-ethylenedioxythiophene) with impurities added ( Examples thereof include those made of a polymer having transparency such as PEDOT) and those made of a carbon-based material such as carbon nanotube or graphene. Examples of the translucent or opaque electrode include aluminum (Al), silver (Ag), gold (Au), platinum (Pt), tin (Sn), bismuth (Bi), copper (Cu), and chromium (Cr). Metal materials such as zinc (Zn) and magnesium (Mg).
 第1電極13及び第2電極14のうち少なくとも一方を透明電極とすると、発光層12から発せられた光を容易に外部に取り出せるため好ましい。また一方を透明電極とし、他方を不透明な金属電極とした場合には、発光層12から発せられた光を金属電極で反射させつつ外部に取り出せるので好ましい。また、第1電極13及び第2電極14の両方を透明電極としてシースルー発光体としてもよい。更に、第1電極13及び第2電極14の両方を高い反射率を有する材質であるAg等からなる金属電極とし、発光層12の膜厚を制御することで、電気化学発光セル10をレーザー発振素子とすることもできる。 It is preferable to use at least one of the first electrode 13 and the second electrode 14 as a transparent electrode because light emitted from the light emitting layer 12 can be easily extracted to the outside. Further, when one is a transparent electrode and the other is an opaque metal electrode, it is preferable because light emitted from the light emitting layer 12 can be taken out while being reflected by the metal electrode. Moreover, it is good also as a see-through light-emitting body by making both the 1st electrode 13 and the 2nd electrode 14 into a transparent electrode. Furthermore, both the first electrode 13 and the second electrode 14 are metal electrodes made of Ag or the like having a high reflectivity, and the thickness of the light emitting layer 12 is controlled, so that the electrochemiluminescence cell 10 is laser-oscillated. It can also be an element.
 第1電極13を透明電極とし、第2電極14を不透明又は半透明な金属電極とした場合、第1電極13は、適切な抵抗率及び光透過性を実現する観点から、例えば10nm以上500nm以下の厚さを有していることが好ましい。第2電極14は、第1電極13と同様に適切な抵抗率及び光透過性を実現する観点から、例えば10nm以上500nm以下の厚さを有していることが好ましい。 When the first electrode 13 is a transparent electrode and the second electrode 14 is an opaque or translucent metal electrode, the first electrode 13 is, for example, 10 nm or more and 500 nm or less from the viewpoint of realizing appropriate resistivity and light transmittance. It is preferable to have a thickness of The second electrode 14 preferably has a thickness of, for example, 10 nm or more and 500 nm or less from the viewpoint of realizing an appropriate resistivity and light transmittance in the same manner as the first electrode 13.
 発光層12は、有機高分子発光材料と有機塩とが混合されてなるものである。発光層12は固体状及び液体状のいずれの状態であってもよい。発光層12が固体状である場合、一定の形状を維持して、外から加えられる力に抵抗することができる。 The light emitting layer 12 is formed by mixing an organic polymer light emitting material and an organic salt. The light emitting layer 12 may be in a solid state or a liquid state. When the light emitting layer 12 is solid, it can maintain a certain shape and can resist the force applied from the outside.
 発光層12に含まれる有機塩は、イオンの移動性が確保され電気二重層が形成されやすく、正孔や電子の注入を容易なものとするための物質である。本実施形態では、有機塩としてホスホニウム塩、アンモニウム塩、ピリジニウム塩、イミダゾリウム塩及びピロリジニウム塩などを用いることができる。これらの有機塩のうち、ホスホニウム塩及びアンモニウム塩としては、例えば後述する式(1)で表されるものを用いることができる。ピリジニウム塩、イミダゾリウム塩及びピロリジニウム塩としては、アニオンが例えば、フッ素、臭素、ヨウ素及び塩素等のハロゲン化物イオン、テトラフルオロボレート(BF)、ベンゾトリアゾレート(N(C))、テトラフェニルボレート(B(C)、ヘキサフルオロホスフェート(PF)、ビス(トリフルオロメチルスルホニル)イミド(N(SOCF)、ビス(フルオロスルホニル)イミド(N(SOF))、トリフルオロメタンスルホネート(SOCF)、メタンスルホネート(SOCH)、トリス(ペンタフルオロエチル)トリフルオロホスフェート((CPF)、トリフルオロ酢酸(CFCOO)、アミノ酸、ビスオキサラトボレート(B(C)、p-トルエンスルホネート(SOCH)、チオシアネート(SCN)、ジシアナミド(N(CN))、ジアルキルリン酸((RO)POO)、ジアルキルジチオリン酸((RO)PSS)、脂肪族カルボン酸(RCOO)等であるものを用いることができる。有機塩におけるカチオンの分子量は270以上900以下、特に300以上850以下、とりわけ330以上800以下であることが、電気化学発光セルの発光効率が一層高くなり、発光輝度が一層優れたものになる点から好ましい。 The organic salt contained in the light emitting layer 12 is a substance for ensuring ion mobility, forming an electric double layer easily, and facilitating injection of holes and electrons. In the present embodiment, phosphonium salts, ammonium salts, pyridinium salts, imidazolium salts, pyrrolidinium salts, and the like can be used as organic salts. Among these organic salts, as the phosphonium salt and ammonium salt, for example, those represented by the following formula (1) can be used. Examples of the pyridinium salt, imidazolium salt, and pyrrolidinium salt include anions such as halide ions such as fluorine, bromine, iodine and chlorine, tetrafluoroborate (BF 4 ), benzotriazolate (N 3 (C 6 H 4 ) ), Tetraphenylborate (B (C 6 H 5 ) 4 ), hexafluorophosphate (PF 6 ), bis (trifluoromethylsulfonyl) imide (N (SO 2 CF 3 ) 2 ), bis (fluorosulfonyl) imide ( N (SO 2 F) 2 ), trifluoromethanesulfonate (SO 3 CF 3 ), methanesulfonate (SO 3 CH 3 ), tris (pentafluoroethyl) trifluorophosphate ((C 2 H 5 ) 3 PF 3 ), tri trifluoroacetic acid (CF 3 COO), amino acids, Bisuokisaratobo Over preparative (B (C 2 O 4) 2), p- toluenesulfonate (SO 3 C 6 H 4 CH 3), thiocyanate (SCN), dicyanamide (N (CN) 2), dialkyl phosphate ((RO) 2 Those which are POO), dialkyldithiophosphoric acid ((RO) 2 PSS), aliphatic carboxylic acid (RCOO) and the like can be used. The molecular weight of the cation in the organic salt is 270 or more and 900 or less, particularly 300 or more and 850 or less, particularly 330 or more and 800 or less, and the luminous efficiency of the electrochemiluminescence cell is further improved and the emission luminance is further improved. To preferred.
 有機塩は、常温(25℃)において固体であっても液体であってもよい。有機塩のうち固体有機塩としては、例えば以下の式(1)で表されるものを用いることができる。 The organic salt may be solid or liquid at normal temperature (25 ° C.). Among organic salts, for example, those represented by the following formula (1) can be used as the solid organic salt.
Figure JPOXMLDOC01-appb-C000003
(式中、R、R、R及びRは、それぞれ官能基で置換されていてもよい、アルキル基、アルコキシアルキル基、トリアルキルシリルアルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。R、R、R及びRは互いに同一でも異なっていてもよい。MはN又はPを表す。Xはアニオンを表す。)
Figure JPOXMLDOC01-appb-C000003
(Wherein R 1 , R 2 , R 3 and R 4 are each an alkyl group, an alkoxyalkyl group, a trialkylsilylalkyl group, an alkenyl group, an alkynyl group, an aryl group, which may be substituted with a functional group, or Represents a heterocyclic group, R 1 , R 2 , R 3 and R 4 may be the same or different from each other, M represents N or P, and X represents an anion.)
 有機塩のうち液体有機塩としては、イオン種でありながら常温(25℃)において液体状態を維持するイオン液体を挙げることができる。液体有機塩としては、例えば前記の式(1)で表される物質を用いることができる。前記の式(1)で表される有機塩は、選択されるカチオン及びアニオンの組み合わせや、カチオンの側鎖であるRないしRの構造により、固体又は液体の状態となるものである。 Among organic salts, examples of liquid organic salts include ionic liquids that maintain a liquid state at room temperature (25 ° C.) while being ionic species. As the liquid organic salt, for example, a substance represented by the above formula (1) can be used. The organic salt represented by the formula (1) is in a solid or liquid state depending on the combination of the selected cation and anion and the structure of R 1 to R 4 which are side chains of the cation.
 式(1)で表される複数の有機塩を用いる場合、それらのすべてが常温において固体であってもよく、あるいはそれらのすべてが常温において液体であってもよい。更に、それらのうちの少なくとも1種が常温において液体であり、かつそれらのうちの少なくとも1種が常温において固体であってもよい。 When a plurality of organic salts represented by the formula (1) are used, all of them may be solid at room temperature, or all of them may be liquid at room temperature. Further, at least one of them may be liquid at normal temperature, and at least one of them may be solid at normal temperature.
 前記の式(1)において、RないしRは、アルキル基、アルコキシアルキル基、トリアルキルシリルアルキル基、アルケニル基、アルキニル基、アリール基又は複素環基であり得る。RないしRは互いに同一でもよく、異なっていてもよい。 In the formula (1), R 1 to R 4 may be an alkyl group, an alkoxyalkyl group, a trialkylsilylalkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heterocyclic group. R 1 to R 4 may be the same as or different from each other.
 前記の式(1)において、RないしRのいずれか一つとして用いられるアルキル基としては、炭素原子数が1ないし20の直鎖又は分岐鎖の飽和脂肪族基や、炭素原子数が3ないし20の飽和脂環式基が挙げられる。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、t-アミル基、ヘキシル基、ヘプチル基、イソヘプチル基、t-ヘプチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基、t-オクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロヘキシルメチル基、シクロデシル基等が挙げられる。 In the above formula (1), the alkyl group used as any one of R 1 to R 4 is a linear or branched saturated aliphatic group having 1 to 20 carbon atoms, 3 to 20 saturated alicyclic groups are mentioned. Specifically, methyl group, ethyl group, propyl group, isopropyl group, butyl group, s-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, t-amyl group, hexyl group, heptyl group, Isoheptyl, t-heptyl, n-octyl, isooctyl, 2-ethylhexyl, t-octyl, nonyl, isononyl, decyl, isodecyl, undecyl, dodecyl, tridecyl, isotridecyl, Examples include tetradecyl group, hexadecyl group, octadecyl group, icosyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclohexylmethyl group, and cyclodecyl group.
 前記の式(1)において、RないしRのいずれか一つとして用いられるアルコキシアルキル基におけるアルコキシ基としては、上述したアルキル基のアルコキシドが挙げられる。アルコキシアルキル基におけるアルキル基としては、上述したアルキル基と同様のものが挙げられる。 In the above formula (1), examples of the alkoxy group in the alkoxyalkyl group used as any one of R 1 to R 4 include the alkoxides of the alkyl groups described above. Examples of the alkyl group in the alkoxyalkyl group include the same alkyl groups as described above.
 前記の式(1)において、RないしRのいずれか一つとして用いられるアルケニル基としては、炭素原子数が2ないし20のものが好ましく用いられる。例えばビニル基、アリル基、イソプロペニル基、2-ブテニル基、2-メチルアリル基、1,1-ジメチルアリル基、3-メチル-2-ブテニル基、3-メチル-3-ブテニル基、4-ペンテニル基、ヘキセニル基、オクテニル基、ノネニル基、デセニル基等の直鎖状又は分岐鎖状のアルケニル基が挙げられる。 In the above formula (1), as the alkenyl group used as any one of R 1 to R 4 , those having 2 to 20 carbon atoms are preferably used. For example, vinyl, allyl, isopropenyl, 2-butenyl, 2-methylallyl, 1,1-dimethylallyl, 3-methyl-2-butenyl, 3-methyl-3-butenyl, 4-pentenyl And linear or branched alkenyl groups such as a group, a hexenyl group, an octenyl group, a nonenyl group, and a decenyl group.
 前記の式(1)において、RないしRのいずれか一つとして用いられるアルキニル基としては、例えばエチニル基、プロパ-2-イン-1-イル基等が挙げられる。 In the above formula (1), examples of the alkynyl group used as any one of R 1 to R 4 include an ethynyl group and a prop-2-yn-1-yl group.
 前記の式(1)において、RないしRのいずれか一つとして用いられるアリール基としては、フェニル基、ナフチル基、アントラセニル基等が挙げられる。複素環基としては、例えばピリジン、ピロール、フラン、イミダゾール、ピラゾール、オキサゾール、イミダゾリン、ピラジン等から誘導される一価の基が挙げられる。 In the above formula (1), examples of the aryl group used as any one of R 1 to R 4 include a phenyl group, a naphthyl group, and an anthracenyl group. Examples of the heterocyclic group include monovalent groups derived from pyridine, pyrrole, furan, imidazole, pyrazole, oxazole, imidazoline, pyrazine and the like.
 以上の各基は、それに含まれる水素原子のうちの1個又は2個以上が官能基で置換されていてもよい。官能基としては、例えばアミノ基、ニトリル基、フェニル基、ベンジル基、カルボキシル基、炭素数が1以上12以下のアルコキシ基などが挙げられる。例えば上述したアルキル基が、官能基としてのフェニル基等で置換された基、すなわち芳香族アルキル基を用いることができる。具体的には、アルキル基としてのメチル基が、官能基としてのフェニル基で置換された基であるベンジル基を用いることができる。 In each of the above groups, one or two or more of the hydrogen atoms contained therein may be substituted with a functional group. Examples of the functional group include an amino group, a nitrile group, a phenyl group, a benzyl group, a carboxyl group, and an alkoxy group having 1 to 12 carbon atoms. For example, a group in which the above-described alkyl group is substituted with a phenyl group as a functional group, that is, an aromatic alkyl group can be used. Specifically, a benzyl group that is a group in which a methyl group as an alkyl group is substituted with a phenyl group as a functional group can be used.
 前記の式(1)におけるXであるアニオンとしては、例えばフッ素、臭素、ヨウ素、塩素等のハロゲンのイオン、テトラフルオロボレート(BF)、ベンゾトリアゾレート(N(C))、テトラフェニルボレート(B(C)、ヘキサフルオロホスフェート(PF)、ビス(トリフルオロメチルスルホニル)イミド(N(SOCF)、ビス(フルオロスルホニル)イミド(N(SOF))、トリフルオロメタンスルホネート(SOCF)、メタンスルホネート(SOCH)、トリス(ペンタフルオロエチル)トリフルオロホスフェート((CPF)、トリフルオロ酢酸(CFCOO)、アミノ酸、ビスオキサラトボレート(B(C)、p-トルエンスルホネート(SOCH)、チオシアネート(SCN)、ジシアナミド(N(CN))、ジアルキルリン酸((RO)POO)、ジアルキルジチオリン酸((RO)PSS)、脂肪族カルボン酸(RCOO)、ジメチルホスフェート(P(OCH(=O)O )、ジブチルホスフェート(P(OC(=O)O)、ビス-2-エチルヘキシルホスフェート(P(O(C12)((C)))(=O)O )等が挙げられる。 Examples of the anion represented by X in the formula (1) include halogen ions such as fluorine, bromine, iodine and chlorine, tetrafluoroborate (BF 4 ), benzotriazolate (N 3 (C 6 H 4 )). ), Tetraphenylborate (B (C 6 H 5 ) 4 ), hexafluorophosphate (PF 6 ), bis (trifluoromethylsulfonyl) imide (N (SO 2 CF 3 ) 2 ), bis (fluorosulfonyl) imide ( N (SO 2 F) 2 ), trifluoromethanesulfonate (SO 3 CF 3 ), methanesulfonate (SO 3 CH 3 ), tris (pentafluoroethyl) trifluorophosphate ((C 2 H 5 ) 3 PF 3 ), tri trifluoroacetic acid (CF 3 COO), amino acids, Bisuo Kisara oxalatoborate (B (C 2 O 4) 2 , P- toluenesulfonate (SO 3 C 6 H 4 CH 3), thiocyanate (SCN), dicyanamide (N (CN) 2), dialkyl phosphate ((RO) 2 POO), dialkyl dithiophosphates ((RO) 2 PSS ), Aliphatic carboxylic acid (RCOO), dimethyl phosphate (P (OCH 3 ) 2 (═O) O 2 ), dibutyl phosphate (P (OC 4 H 9 ) 2 (═O) O), bis-2-ethylhexyl phosphate (P (O (C 6 H 12 ) ((C 2 H 5 ))) 2 (═O) O 2 ) and the like.
 本実施形態の電気化学発光セル10は、発光層12に含まれる有機塩として、異なる2種以上を組み合わせて用いる点に特徴の一つを有する。2種以上の複数種の有機塩を組み合わせて用いることにより、正孔及び電子の発光層12への注入能力がほぼ等しいものになり、それによって発光効率を高めることが可能になる。発光効率が高まることで本実施形態の電気化学発光セル10は発光輝度に優れたものとなる。 The electrochemiluminescence cell 10 of this embodiment is characterized in that two or more different organic salts contained in the light emitting layer 12 are used in combination. By using two or more kinds of organic salts in combination, the ability of injecting holes and electrons into the light-emitting layer 12 becomes substantially equal, thereby increasing the luminous efficiency. As the luminous efficiency is increased, the electrochemiluminescence cell 10 of the present embodiment is excellent in emission luminance.
 2種以上の複数の有機塩の組み合わせとしては、2種の組み合わせの場合を例にとると、(イ)カチオンが同種でアニオンが異種である有機塩の組み合わせ、(ロ)カチオンが異種でアニオンが同種である有機塩の組み合わせ、及び(ハ)カチオンが異種でアニオンが異種である有機塩の組み合わせなどが挙げられる。(イ)の場合には、例えばカチオンであるピリジニウムイオンが共通しており、テトラフルオロボレートイオンやビス(トリフルオロメタンスルホニル)イミドイオン等の前記したアニオンのうち異なる種類のアニオンを有する有機塩の組み合わせが挙げられる。(ロ)の場合には、例えばテトラフルオロボレートイオンやビス(トリフルオロメタンスルホニル)イミドイオン等の前記したアニオンが共通しており、カチオンがイミダゾリウムイオン及びピロリジニウムイオンである有機塩の組み合わせが挙げられる。(ハ)の場合には、例えばピリジニウムイオンのビス(トリフルオロメタンスルホニル)イミド塩と、ピロリジニウムイオンのテトラフルオロボレートイオン塩との組み合わせ等が挙げられる。 As a combination of two or more kinds of organic salts, for example, in the case of two kinds of combinations, (a) a combination of organic salts having the same cation and different anions, and (b) anion having different cations and anions And (c) combinations of organic salts in which cations are different and anions are different. In the case of (i), for example, a pyridinium ion that is a cation is common, and a combination of organic salts having different types of anions among the above-mentioned anions such as tetrafluoroborate ion and bis (trifluoromethanesulfonyl) imide ion is used. Can be mentioned. In the case of (b), for example, the aforementioned anions such as tetrafluoroborate ions and bis (trifluoromethanesulfonyl) imide ions are common, and a combination of organic salts in which the cations are imidazolium ions and pyrrolidinium ions can be mentioned. . In the case of (c), for example, a combination of a bis (trifluoromethanesulfonyl) imide salt of a pyridinium ion and a tetrafluoroborate ion salt of a pyrrolidinium ion may be mentioned.
 上記2種以上の複数の有機塩の組み合わせの態様のうち、(イ)カチオンが同種でアニオンが異種である有機塩の組み合わせ、又は(ロ)カチオンが異種でアニオンが同種である有機塩の組み合わせ、のいずれかであると、発光層の組成について設計しやすくなるため好ましい。すなわち、(ハ)カチオンが異種でアニオンが異種である有機塩の組み合わせ、である場合、カチオンAとカチオンBが存在し、また、アニオンaとアニオンbが存在するため、発光層中のカチオンとアニオンの組み合わせとしては、
(i)カチオンA+アニオンa
(ii)カチオンA+アニオンb
(iii)カチオンB+アニオンa
(iv)カチオンB+アニオンb
の4種類の組み合わせが考えられ、これがそのまま有機塩の種類となって存在することになる。つまり、例えば当初に想定していた(i)と(ii)の組み合わせの複数塩で設計していたところ、(iii)と(iv)の有機塩も混入してくる恐れがあり、これが発光輝度に影響を及ぼす可能性が否定できない。
Among the combinations of the above two or more organic salts, (a) a combination of organic salts having the same cation and different anions, or (b) a combination of organic salts having the same cation and different anions. Either of these is preferable because the composition of the light emitting layer can be easily designed. That is, (c) in the case of a combination of organic salts having different cations and different anions, cation A and cation B are present, and anion a and anion b are present. As a combination of anions,
(i) cation A + anion a
(ii) cation A + anion b
(iii) Cation B + anion a
(iv) Cation B + anion b
The following four types of combinations are conceivable, and these exist as organic salt types as they are. In other words, for example, when designing with a plurality of salts of the combination of (i) and (ii) that was originally assumed, there is a possibility that the organic salts of (iii) and (iv) may also be mixed in, and this is the emission luminance. There is no denying the possibility of affecting it.
 以上の観点から鑑みると、有機塩の組み合わせとしては、(イ)カチオンが同種でアニオンが異種である有機塩の組み合わせ(上記(i)と(ii)、又は、(iii)と(iv)の組み合わせ)、又は(ロ)カチオンが異種でアニオンが同種である有機塩の組み合わせ(上記(i)と(iii)、又は、(ii)と(iv)の組み合わせ)、のいずれかであることが好ましい。 In view of the above, the combination of organic salts includes (i) a combination of organic salts in which the cation is the same and the anion is different (the above (i) and (ii) or (iii) and (iv) Or (b) a combination of organic salts having different cations and the same anion (a combination of (i) and (iii) or (ii) and (iv)). preferable.
 また、2種以上の有機塩が、液体有機塩の組み合わせであることが好ましい。あるいは、2種以上の有機塩が固体有機塩の組み合わせであることも好ましい。更に、2種以上の有機塩の組み合わせは、液体有機塩と固体有機塩の組み合わせであってもよい。 Moreover, it is preferable that two or more organic salts are a combination of liquid organic salts. Alternatively, it is also preferable that two or more organic salts are a combination of solid organic salts. Further, the combination of two or more organic salts may be a combination of a liquid organic salt and a solid organic salt.
 好ましい有機塩の組み合わせとしては、式(1)で表されるものの組み合わせが挙げられる。この場合、式(1)で表される互いに異なる複数種の有機塩を組み合わせるに際しては、正孔及び電子の発光層12への注入能力がほぼ等しくなるような組み合わせを採用することが有利である。本発明者の検討の結果、式(1)に示される互いに異なる複数種の有機塩として例えば2種の組み合わせを採用する場合、第1の有機塩と第2の有機塩とは、(イ)同種のカチオンを有し、かつアニオンが異種であることが好ましいことが判明した。また、(ロ)同種のアニオンを有し、かつカチオンが異種であることも好ましいことが判明した。 Preferred organic salt combinations include those represented by the formula (1). In this case, when combining a plurality of different organic salts represented by the formula (1), it is advantageous to employ a combination in which the ability to inject holes and electrons into the light emitting layer 12 is substantially equal. . As a result of the study of the present inventor, when, for example, two types of combinations are used as the different organic salts represented by the formula (1), the first organic salt and the second organic salt are: It has been found that it is preferable to have the same kind of cation and different anions. It was also found that (b) it is preferable that they have the same type of anion and the cation is different.
 (イ)の場合、第1の有機塩と第2の有機塩は同種のカチオン、例えば同種のアンモニウムイオン又は同種のホスホニウムイオンを有している。そして、第1の有機塩と第2の有機塩は異種のアニオンを有している。一方、(ロ)の場合、第1の有機塩と第2の有機塩は同種のアニオン、例えばビストリフルオロメタンスルホニルイミド、フッ素、臭素等のハロゲンのイオン、あるいはテトラフルオロボレート(BF)、ヘキサフルオロホスフェート(PF)等のハロゲン含有化合物のイオンを有している。そして、第1の有機塩と第2の有機塩は異種のカチオンを有している。異種のカチオンはいずれもアンモニウムイオンであり得る。あるいは、異種のカチオンはいずれもホスホニウムイオンであり得る。更に、異種のカチオンのうちの一方がアンモニウムイオンであり、他方がホスホニウムイオンであり得る。 In the case of (a), the first organic salt and the second organic salt have the same kind of cation, for example, the same kind of ammonium ion or the same kind of phosphonium ion. The first organic salt and the second organic salt have different anions. On the other hand, in the case of (b), the first organic salt and the second organic salt are the same type of anion, for example, ions of halogen such as bistrifluoromethanesulfonylimide, fluorine, bromine, tetrafluoroborate (BF 4 ), hexa It has ions of halogen-containing compounds such as fluorophosphate (PF 6 ). The first organic salt and the second organic salt have different cations. Any of the different cations can be an ammonium ion. Alternatively, any heterogeneous cation can be a phosphonium ion. Furthermore, one of the different cations can be an ammonium ion and the other can be a phosphonium ion.
 (イ)及び(ロ)のいずれの場合であっても、カチオンとしては、式(1)において、R、R、R及びRのうち三つが同一のアルキル基であり、残りの一つが該アルキル基と異種のアルキル基であるか、又は芳香族アルキル基であることが好ましい。この理由は、R、R、R及びRのうち一つが異種の基であることで、構造的に非対称となり、炭素数が多くなっても有機塩の流動性が得やすいためである。炭素数を多くすることで、カチオンの分子量を大きくすることができるため、構造的に電荷密度が小さくなることから、電荷を安定化させるために必要となる極性成分を減らすことができ、このことは極性を持たない有機発光材料との相溶性が増すことにつながる。 In both cases (a) and (b), as the cation, three of R 1 , R 2 , R 3 and R 4 in the formula (1) are the same alkyl group, and the rest One is preferably an alkyl group different from the alkyl group, or an aromatic alkyl group. This is because one of R 1 , R 2 , R 3, and R 4 is a heterogeneous group, which is structurally asymmetrical, and the fluidity of the organic salt is easily obtained even when the number of carbons increases. is there. Since the molecular weight of the cation can be increased by increasing the number of carbon atoms, the charge density is structurally reduced, so the polar component required to stabilize the charge can be reduced. Leads to increased compatibility with non-polar organic light emitting materials.
 第1の有機塩と第2の有機塩の好ましい組み合わせとしては、(イ)の場合には、カチオンが、同種のテトラアルキルアンモニウムイオン、同種のトリアルキルベンジルアンモニウムイオン、同種のテトラアルキルホスホニウムイオン又は同種のトリアルキルベンジルホスホニウムイオンであり、異種のアニオンがビストリフルオロメタンスルホニルイミドのイオン、フッ素、臭素等のハロゲンのイオン、あるいはテトラフルオロボレート(BF)、ヘキサフルオロホスフェート(PF)等のハロゲン含有化合物のイオンとの組み合わせが挙げられる。(ロ)の場合には、同種のアニオンがビストリフルオロメタンスルホニルイミドや、フッ素、臭素等のハロゲンのイオン、あるいはテトラフルオロボレート(BF)、ヘキサフルオロホスフェート(PF)等のハロゲン含有化合物のイオンであり、異種のカチオンが、異種のテトラアルキルアンモニウムイオンの組み合わせ、異種のトリアルキルベンジルアンモニウムイオンの組み合わせ、異種のテトラアルキルホスホニウムイオンの組み合わせ、異種のトリアルキルベンジルホスホニウムイオンの組み合わせ、テトラアルキルアンモニウムイオンとトリアルキルベンジルアンモニウムイオンの組み合わせ、テトラアルキルホスホニウムイオンとトリアルキルベンジルホスホニウムイオンの組み合わせ、テトラアルキルアンモニウムイオンと、トリアルキルベンジルホスホニウムイオンの組み合わせ、テトラアルキルホスホニウムイオンと、トリアルキルベンジルアンモニウムイオンの組み合わせ、テトラアルキルホスホニウムイオンと、テトラアルキルアンモニウムイオンの組み合わせが挙げられる。 As a preferred combination of the first organic salt and the second organic salt, in the case of (i), the cation is the same kind of tetraalkylammonium ion, the same kind of trialkylbenzylammonium ion, the same kind of tetraalkylphosphonium ion, or It is the same kind of trialkylbenzylphosphonium ion, and different anions are ions of bistrifluoromethanesulfonylimide, halogen ions such as fluorine and bromine, or halogens such as tetrafluoroborate (BF 4 ) and hexafluorophosphate (PF 6 ). The combination with the ion of a containing compound is mentioned. In the case of (b), the same type of anion is bistrifluoromethanesulfonylimide, halogen ions such as fluorine and bromine, or halogen-containing compounds such as tetrafluoroborate (BF 4 ) and hexafluorophosphate (PF 6 ). A different cation is a combination of different tetraalkylammonium ions, a combination of different trialkylbenzylammonium ions, a combination of different tetraalkylphosphonium ions, a combination of different trialkylbenzylphosphonium ions, tetraalkylammonium Ion and trialkylbenzylammonium ion combination, tetraalkylphosphonium ion and trialkylbenzylphosphonium ion combination, tetraalkylammonium ion A combination of ON, a trialkylbenzylphosphonium ion, a combination of a tetraalkylphosphonium ion and a trialkylbenzylammonium ion, and a combination of a tetraalkylphosphonium ion and a tetraalkylammonium ion.
 第1の有機塩と第2の有機塩との比率は、これらの有機塩の種類に応じて、広い範囲から選択可能である。例えば、後述する実施例で例証されるとおり、略等質量比のときに、最高発光輝度を示す組み合わせの場合もあり、あるいは第1の有機塩と第2の有機塩とが20:80や80:20の質量比のときに最高発光輝度を示す組み合わせの場合もある。 The ratio between the first organic salt and the second organic salt can be selected from a wide range according to the type of these organic salts. For example, as illustrated in the examples described later, there may be a combination that exhibits the maximum light emission luminance at substantially equal mass ratios, or the first organic salt and the second organic salt are 20:80 or 80. In some cases, the combination shows the maximum luminance when the mass ratio is 20.
 前述したように、第1の有機塩と第2の有機塩との組み合わせは、あくまでも例示であり、正孔及び電子の発光層12への注入能力をほぼ等しくするという本発明の目的を達成するために、例えば3種以上等の複数種のイオン液体の組み合わせを採用することもできる。 As described above, the combination of the first organic salt and the second organic salt is merely an example, and achieves the object of the present invention to make the injection ability of holes and electrons into the light emitting layer 12 substantially equal. Therefore, a combination of a plurality of types of ionic liquids such as three or more types can also be employed.
 式(1)で表される有機塩は例えば、以下のように製造できる。カチオンがホスホニウムイオンである場合には、目的とするホスホニウムカチオンに対応した三級ホスフィン化合物とハロゲン化炭化水素化合物とを反応させて得られる四級ホスホニウムハライドを用い、アニオンがハロゲンであるイオン液体を得ることができる。アニオン成分がハロゲン以外のものは、前記の四級ホスホニウムハライドとアニオン成分の金属塩とを反応させアニオン交換することにより得ることができる。例えば式(1)中のR、R、R及びRのうち三つがアルキル基であり、残り一つが芳香族アルキル基であるホスホニウムカチオンを有し、アニオン成分がハロゲンであるイオン液体は、前記の三級ホスフィン化合物としてトリアルキルホスフィンを用い、前記のハロゲン化炭化水素化合物として芳香族アルキル基がハロゲンと結合した化合物を用いることで得ることができる。また、式(1)中のR、R、R及びRのうち三つがアルキル基であり、残り一つが芳香族アルキル基であるホスホニウムカチオンを有し、アニオン成分がハロゲン以外である有機塩は、前記したアニオン成分がハロゲンである有機塩を、ビス(トリフルオロメチルスルホニル)イミド、テトラフルオロボレート(BF)、ヘキサフルオロホスフェート(PF)、ビスオキサラトボレート(B(C)、チオシアネート(SCN)等とアニオン交換することで得ることができる。 The organic salt represented by the formula (1) can be produced, for example, as follows. When the cation is a phosphonium ion, a quaternary phosphonium halide obtained by reacting a tertiary phosphine compound corresponding to the target phosphonium cation and a halogenated hydrocarbon compound is used, and an ionic liquid in which the anion is halogen is prepared. Obtainable. An anion component other than halogen can be obtained by reacting the quaternary phosphonium halide with a metal salt of the anion component to exchange anions. For example, an ionic liquid having a phosphonium cation in which three of R 1 , R 2 , R 3 and R 4 in formula (1) are alkyl groups, and the other is an aromatic alkyl group, and the anion component is halogen Can be obtained by using a trialkylphosphine as the tertiary phosphine compound and a compound in which an aromatic alkyl group is bonded to halogen as the halogenated hydrocarbon compound. Further, among R 1 , R 2 , R 3 and R 4 in the formula (1), three have an alkyl group and the other one has a phosphonium cation which is an aromatic alkyl group, and the anion component is other than halogen. The organic salt is a bis (trifluoromethylsulfonyl) imide, tetrafluoroborate (BF 4 ), hexafluorophosphate (PF 6 ), or bisoxalato borate (B (C 2). It can be obtained by anion exchange with O 4 ) 2 ), thiocyanate (SCN) or the like.
 発光層12における有機塩の比率は、イオン移動度を確保し、かつ発光層12の製膜性を高める観点から、1質量%以上30質量%以下であることが好ましく、5質量%以上20質量%以下であることがより好ましい。発光層12中の有機塩の含有量は、有機高分子発光材料100質量部に対し、10質量部以上25質量部以下であることが好ましい。 The ratio of the organic salt in the light emitting layer 12 is preferably 1% by mass or more and 30% by mass or less from the viewpoint of securing ion mobility and improving the film forming property of the light emitting layer 12. % Or less is more preferable. The content of the organic salt in the light emitting layer 12 is preferably 10 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the organic polymer light emitting material.
 発光層12に含まれる有機高分子発光材料は、アニオン及びカチオンがドープされることにより電子及び正孔のキャリア体として働くとともに、電子及び正孔の結合により励起して発光する。このような有機高分子発光材料としては、各種のπ共役系ポリマーを挙げることができる。具体的には、ポリ(パラフェニレンビニレン)、ポリ(フルオレン)、ポリ(1,4-フェニレン)、ポリチオフェン、ポリピロール、ポリ(パラフェニレンスルフィド)、ポリベンゾチアジアゾール、ポリビオチオフィン等を挙げることができる。またこれらに置換基を導入させた誘導体、及びこれらのコポリマーも、有機高分子発光材
料として用いることができる。そのような置換基としては、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~18のアリール基、〔(-CHCHO-)CH〕で表される基(ただし、nが1~10の整数である)等を挙げることができる。またコポリマーとしては、前記で挙げたπ共役系ポリマーのうち2種類以上のポリマーの各繰り返し単位を結合させてなるものが挙げられる。コポリマーにおける各繰り返し単位の配列としては、ランダム配列、交互配列、ブロック配列、又はそれらを組み合わせた配列が挙げられる。更に有機高分子発光材料として市販品を用いることもできる。そのような市販品としては、例えばLT-S934の名称でLuminescence technology社から入手可能な化合物であるPFO-DMP(Poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with dimethylphenyl)や、アルドリッチ社から入手可能な化合物である(Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)])などが挙げられる。
The organic polymer light emitting material contained in the light emitting layer 12 functions as a carrier body of electrons and holes by being doped with anions and cations, and emits light when excited by the combination of electrons and holes. Examples of such organic polymer light emitting materials include various π-conjugated polymers. Specific examples include poly (paraphenylene vinylene), poly (fluorene), poly (1,4-phenylene), polythiophene, polypyrrole, poly (paraphenylene sulfide), polybenzothiadiazole, polybiothiophine and the like. it can. In addition, derivatives obtained by introducing substituents into these and copolymers thereof can also be used as the organic polymer light-emitting material. Examples of such a substituent include an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 18 carbon atoms, and [(—CH 2 CH 2 O—) n CH 3 ]. And a group represented by the formula (where n is an integer of 1 to 10). Examples of the copolymer include those obtained by bonding each repeating unit of two or more kinds of the above-mentioned π-conjugated polymers. Examples of the arrangement of each repeating unit in the copolymer include a random arrangement, an alternating arrangement, a block arrangement, or a combination thereof. Furthermore, a commercial item can also be used as an organic polymer light-emitting material. Examples of such commercially available products include PFO-DMP (Poly (9,9-dioctylfluorenyl-2,7-diyl) end capped with dimethylphenyl) which is a compound available from Luminescence Technology under the name LT-S934, It is a compound available from Aldrich (Poly [(9,9-di-n-octylfluorenyl-2,7-diyl) -alt- (benzo [2,1,3] thiadiazol-4,8-diyl)] ) And the like.
 これらの有機高分子発光材料は、その機能を十分に発揮させる観点から、発光層12における比率が、10質量%以上95質量%以下であることが好ましく、20質量%以上90質量%以下であることがより好ましい。 From the viewpoint of sufficiently exhibiting the function of these organic polymer light emitting materials, the ratio in the light emitting layer 12 is preferably 10% by mass or more and 95% by mass or less, and 20% by mass or more and 90% by mass or less. It is more preferable.
 発光層12には、有機高分子発光材料及び有機塩以外の物質を含有させていてもよい。そのような物質としては、例えば界面活性剤、導電性向上のためのポリマー成分(ポリエチレンオキシド等)、製膜性向上のためのポリマー成分(ポリスチレン、ポリメタクリル酸メチル(PMMA)等)、有機塩以外の塩等を挙げることができる。発光層12における有機高分子発光材料及び有機塩以外の成分(ただし溶媒を除く)の量は、発光層12全体を100質量部としたときに、90質量部以下とすることが好ましく、60質量部以下とすることが更に好ましく、30質量部以下とすることが特に好ましい。 The light emitting layer 12 may contain substances other than organic polymer light emitting materials and organic salts. Examples of such substances include surfactants, polymer components for improving conductivity (polyethylene oxide, etc.), polymer components for improving film forming properties (polystyrene, polymethyl methacrylate (PMMA), etc.), organic salts, and the like. Other salts may be mentioned. The amount of components other than the organic polymer light-emitting material and organic salt (excluding the solvent) in the light-emitting layer 12 is preferably 90 parts by mass or less when the entire light-emitting layer 12 is 100 parts by mass, and 60 parts by mass. More preferably, it is more preferably 30 parts by mass or less.
 このようにして構成される発光層12の膜厚は、10nm以上200nm以下であることが好ましく、50nm以上150nm以下であることがより好ましい。発光層12の膜厚がこの範囲であると、発光層12から十分かつ効率よく発光を得ることができることや発光予定部分の欠陥を抑えることができ短絡防止になること等の観点から好ましい。 The film thickness of the light emitting layer 12 thus configured is preferably 10 nm or more and 200 nm or less, and more preferably 50 nm or more and 150 nm or less. When the film thickness of the light emitting layer 12 is within this range, it is preferable from the viewpoints that light emission can be sufficiently and efficiently obtained from the light emitting layer 12, defects in a light emission scheduled portion can be suppressed, and short circuit prevention can be achieved.
 本実施形態の電気化学発光セル10は、例えば以下の製造方法により製造できる。まず、第1電極13が設けられた基板を準備する。第1電極13を例えばITOから形成する場合は、ガラス基板等の表面に、フォトリソグラフィー法又はフォトリソグラフィー法及びリフトオフ法を組み合わせて用いてITOの蒸着膜をパターン状に形成することによって、基板の表面にITOからなる第1電極13を形成することができる。 The electrochemiluminescence cell 10 of this embodiment can be manufactured by the following manufacturing method, for example. First, a substrate provided with the first electrode 13 is prepared. In the case where the first electrode 13 is formed from, for example, ITO, by forming a deposited ITO film in a pattern on the surface of a glass substrate or the like by using a photolithography method or a combination of the photolithography method and the lift-off method, A first electrode 13 made of ITO can be formed on the surface.
 次に、有機溶媒に有機塩と有機高分子発光材料とを溶解させて、電気化学発光セルの発光層形成用組成物を調製する。有機塩と有機高分子発光材料とを効率よく混合する等の観点から、有機溶媒としてトルエン、ベンゼン、テトラヒドロフラン、ジメチルクロライド、クロロベンゼン又はクロロホルム等を用いることが好ましい。これらの有機溶媒は1種を単独で、又は2種以上を組み合わせて用いることができる。発光層形成用組成物中の有機塩と有機高分子発光材料との配合比率(質量比)は前者:後者が1:1~20であることが好ましい。この発光層形成用組成物を、基板の第1電極13上に、スピンコーティング法等により塗布する。その後、この塗布によって形成された塗膜を乾燥させて有機溶媒を蒸発させ、発光層12を形成する。発光層形成用組成物の調製及び発光層12の形成は、好ましくは水分率100ppm以下の不活性ガス雰囲気下で行うことが好ましい。この場合の不活性ガスとしては、アルゴン、窒素、ヘリウム等が挙げられる。 Next, an organic salt and an organic polymer light-emitting material are dissolved in an organic solvent to prepare a composition for forming a light-emitting layer of an electrochemiluminescence cell. From the viewpoint of efficiently mixing the organic salt and the organic polymer light-emitting material, it is preferable to use toluene, benzene, tetrahydrofuran, dimethyl chloride, chlorobenzene, chloroform, or the like as the organic solvent. These organic solvents can be used individually by 1 type or in combination of 2 or more types. The blending ratio (mass ratio) of the organic salt and the organic polymer light-emitting material in the composition for forming a light-emitting layer is preferably 1: 1 to 20 in the former: latter. This composition for forming a light emitting layer is applied onto the first electrode 13 of the substrate by a spin coating method or the like. Thereafter, the coating film formed by this coating is dried to evaporate the organic solvent, thereby forming the light emitting layer 12. The preparation of the light emitting layer forming composition and the formation of the light emitting layer 12 are preferably performed in an inert gas atmosphere having a moisture content of 100 ppm or less. In this case, examples of the inert gas include argon, nitrogen, helium and the like.
 次に、形成された発光層12に第2電極14を形成する。この場合、発光層12上に、例えばマスクを介した真空蒸着法等によってアルミニウム(Al)を膜状に蒸着することにより、所定のパターンの電極を形成する。このようにして、発光層12上に第2電極14を形成する。これによって、図1に示す電気化学発光セル10が得られる。この得られた電気化学発光セル10は、発光層12の膜質改善の観点から、真空乾燥してもよい。この真空乾燥は、常温下で行ってもよく、あるいは加熱下に行うこともできる。 Next, the second electrode 14 is formed on the formed light emitting layer 12. In this case, an electrode having a predetermined pattern is formed on the light emitting layer 12 by evaporating aluminum (Al) into a film shape by, for example, a vacuum evaporation method through a mask. In this way, the second electrode 14 is formed on the light emitting layer 12. Thereby, the electrochemiluminescence cell 10 shown in FIG. 1 is obtained. The obtained electrochemiluminescence cell 10 may be vacuum-dried from the viewpoint of improving the film quality of the light emitting layer 12. This vacuum drying may be performed at room temperature or may be performed under heating.
 本実施形態の電気化学発光セル10は、以下の発光機構により発光する。図2(a)及び(b)に示すように、第1電極13が陽極となり第2電極14が陰極となるように発光層12に電圧が印加される。このことにより、発光層12内のイオンが電界に沿って移動し、発光層12における第1電極13との界面近傍にアニオン種が集まった層が形成される。一方、発光層12における第2電極14との界面近傍にカチオン種が集まった層が形成される。このようにして、それぞれの電極の界面に電気二重層が形成される。これにより陽極である第1電極13近傍にpドープ領域16が自発形成され、陰極である第2電極14近傍にnドープ領域17が自発形成される。そして、これらのドープ領域が高キャリア密度のp-i-n接合を構成する。その後、陽極と陰極から発光層12の有機高分子発光材料に正孔と電子がそれぞれ注入され、i層で再結合する。この再結合した正孔と電子とから励起子が生成され、この励起子が基底状態に戻ることにより光が発せられる。このようにして、発光層12から発光が得られる。所望の波長の光を得るためには、最高被占軌道(Highest Occupied Molecular Orbital)と最低空軌道(Lowest Unoccupied Molecular Orbital)のエネルギー差(バンドギャップ)が当該所望の波長に対応する有機高分子発光材料を選択すればよい。 The electrochemiluminescence cell 10 of the present embodiment emits light by the following light emission mechanism. As shown in FIGS. 2A and 2B, a voltage is applied to the light emitting layer 12 so that the first electrode 13 serves as an anode and the second electrode 14 serves as a cathode. As a result, ions in the light emitting layer 12 move along the electric field, and a layer in which anion species are collected in the vicinity of the interface between the light emitting layer 12 and the first electrode 13 is formed. On the other hand, a layer in which cationic species are collected in the vicinity of the interface with the second electrode 14 in the light emitting layer 12 is formed. In this way, an electric double layer is formed at the interface of each electrode. As a result, the p-doped region 16 is spontaneously formed in the vicinity of the first electrode 13 that is the anode, and the n-doped region 17 is spontaneously formed in the vicinity of the second electrode 14 that is the cathode. These doped regions constitute a pin junction with a high carrier density. Thereafter, holes and electrons are respectively injected from the anode and the cathode into the organic polymer light emitting material of the light emitting layer 12 and recombined in the i layer. Excitons are generated from the recombined holes and electrons, and light is emitted when the excitons return to the ground state. In this way, light emission can be obtained from the light emitting layer 12. In order to obtain light of the desired wavelength, the energy difference (band gap) between the highest occupied orbital (Highest Occupied Molecular Orbital) and the lowest unoccupied orbital (Lowest Unoccupied Molecular Orbital) corresponds to the desired wavelength. What is necessary is just to select a material.
 以上、本発明をその好ましい実施形態に基づき説明したが、本発明の範囲はかかる実施形態に制限されない。また本発明は更に以下の電気化学発光セルを開示する。
〔1〕
 発光層と、その各面に配された電極とを有する電気化学発光セルにおいて、
 前記発光層が、有機高分子発光材料、及び2種以上の有機塩の組み合わせを含む電気化学発光セル。
〔2〕
 前記有機塩が、ホスホニウム塩、アンモニウム塩、ピリジニウム塩、イミダゾリウム塩及びピロリジニウム塩から選ばれる有機塩である〔1〕に記載の電気化学発光セル。
〔3〕
 前記有機塩がイオン液体である〔1〕又は〔2〕に記載の電気化学発光セル。
〔4〕
 前記有機塩が、以下の式(1)で表される有機塩である〔1〕ないし〔3〕のいずれか一項に記載の電気化学発光セル。
Figure JPOXMLDOC01-appb-C000004
(式中、R、R、R及びRは、それぞれ官能基で置換されていてもよい、アルキル基、アルコキシアルキル基、トリアルキルシリルアルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。R、R、R及びRは互いに同一でも異なっていてもよい。MはN又はPを表す。Xはアニオンを表す。)
〔5〕
 前記有機塩がとして式(1)で表される複数の有機塩を用い、それらのすべてが常温において固体である〔4〕に記載の電気化学発光セル。
〔6〕
 前記有機塩がとして式(1)で表される複数の有機塩を用い、それらのすべてが常温において液体である〔4〕に記載の電気化学発光セル。
As mentioned above, although this invention was demonstrated based on the preferable embodiment, the range of this invention is not restrict | limited to this embodiment. The present invention further discloses the following electrochemiluminescence cell.
[1]
In an electrochemiluminescence cell having a light emitting layer and electrodes arranged on each surface thereof,
The electrochemiluminescence cell in which the light emitting layer includes a combination of an organic polymer light emitting material and two or more organic salts.
[2]
The electrochemiluminescence cell according to [1], wherein the organic salt is an organic salt selected from a phosphonium salt, an ammonium salt, a pyridinium salt, an imidazolium salt, and a pyrrolidinium salt.
[3]
The electrochemiluminescence cell according to [1] or [2], wherein the organic salt is an ionic liquid.
[4]
The electrochemiluminescence cell according to any one of [1] to [3], wherein the organic salt is an organic salt represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000004
(Wherein R 1 , R 2 , R 3 and R 4 are each an alkyl group, an alkoxyalkyl group, a trialkylsilylalkyl group, an alkenyl group, an alkynyl group, an aryl group, which may be substituted with a functional group, or Represents a heterocyclic group, R 1 , R 2 , R 3 and R 4 may be the same or different from each other, M represents N or P, and X represents an anion.)
[5]
The electrochemiluminescence cell according to [4], wherein the organic salt is a plurality of organic salts represented by the formula (1), and all of them are solid at room temperature.
[6]
The electrochemiluminescence cell according to [4], wherein the organic salt is a plurality of organic salts represented by the formula (1), and all of them are liquid at room temperature.
〔7〕
 前記有機塩がとして式(1)で表される複数の有機塩を用い、それらのうちの少なくとも1種が常温において液体であり、かつそれらのうちの少なくとも1種が常温において固体である〔4〕に記載の電気化学発光セル。
〔8〕
 前記発光層が、式(1)で表される2種の有機塩の組み合わせを含み、
 2種の有機塩は、同種のカチオンを有し、かつアニオンが異種である〔4〕ないし〔7〕のいずれか一項に記載の電気化学発光セル。
〔9〕
 異種のアニオンのうちの一方がビストリフルオロメタンスルホニルイミドであり、他方がハロゲンである〔8〕に記載の電気化学発光セル。
〔10〕
 前記発光層が、式(1)で表される2種の有機塩の組み合わせを含み、
 2種の有機塩は、同種のアニオンを有し、かつカチオンが異種である〔4〕ないし〔7〕のいずれか一項に記載の電気化学発光セル。
〔11〕
 異種のカチオンがいずれもアンモニウムイオンであるか、又はホスホニウムイオンである〔10〕に記載の電気化学発光セル。
〔12〕
 異種のカチオンのうちの一方がアンモニウムイオンであり、他方がホスホニウムイオンである〔10〕に記載の電気化学発光セル。
〔13〕
 式(1)において、R、R、R及びRのうち三つが同一のアルキル基であり、残りの一つが該アルキル基と異種のアルキル基であるか、又は芳香族アルキル基である〔4〕ないし〔12〕のいずれか一項に記載の電気化学発光セル。
〔14〕
 有機高分子発光材料、有機溶媒及び2種以上の有機塩の組み合わせを含有する、電気化学発光セルの発光層形成用組成物。
[7]
A plurality of organic salts represented by the formula (1) is used as the organic salt, at least one of them is liquid at normal temperature, and at least one of them is solid at normal temperature [4 ] The electrochemiluminescence cell of description.
[8]
The light emitting layer includes a combination of two organic salts represented by the formula (1),
The two organic salts have the same kind of cation, and the anion is different, [4] to [7].
[9]
The electrochemiluminescence cell according to [8], wherein one of the different anions is bistrifluoromethanesulfonylimide and the other is halogen.
[10]
The light emitting layer includes a combination of two organic salts represented by the formula (1),
The two types of organic salts are the electrochemiluminescence cells according to any one of [4] to [7], wherein the two kinds of organic salts have the same kind of anion and the cation is different.
[11]
The electrochemiluminescence cell according to [10], wherein the different cations are all ammonium ions or phosphonium ions.
[12]
The electrochemiluminescence cell according to [10], wherein one of the different cations is an ammonium ion and the other is a phosphonium ion.
[13]
In the formula (1), three of R 1 , R 2 , R 3 and R 4 are the same alkyl group, and the other one is an alkyl group different from the alkyl group, or an aromatic alkyl group. The electrochemiluminescence cell according to any one of [4] to [12].
[14]
A composition for forming a light emitting layer of an electrochemiluminescent cell, comprising a combination of an organic polymer light emitting material, an organic solvent, and two or more organic salts.
 以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
  〔実施例1及び比較例1〕
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極として用いた。有機高分子発光材料として、PFO-DMP(Poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with dimethylphenyl、Luminescencetechnology社製、LT-S934、平均分子量(Mn)=50000~150000)を用いた。有機塩としてイオン液体のトリブチルオクチルアンモニウムビストリフルオロメタンスルホニルイミド(N4448TFSI)と、イオン液体のトリブチルオクチルアンモニウムブロミド(N4448Br)との組み合わせを用いた。両者の質量比は図3(a)に示すとおりとした(図3(a)中、横軸のxは、質量分率を示す。以下の図4ないし図12の横軸についても同じである。)。
[Example 1 and Comparative Example 1]
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode. PFO-DMP (Poly (9,9-dioctylfluorenyl-2,7-diyl) end capped with dimethylphenyl, manufactured by Luminescencetechnology, LT-S934, average molecular weight (Mn) = 50,000-150,000) is used as the organic polymer light-emitting material. It was. A combination of ionic liquid tributyloctylammonium bistrifluoromethanesulfonylimide (N4448TFSI) and ionic liquid tributyloctylammonium bromide (N4448Br) was used as an organic salt. The mass ratio between the two was as shown in FIG. 3 (a) (in FIG. 3 (a), x on the horizontal axis represents the mass fraction. The same applies to the horizontal axes in FIGS. 4 to 12 below. .)
 アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のトルエン溶液(濃度:9g/L)と、混合イオン液体のトルエン溶液(濃度:9g/L)とを体積比で有機高分子発光材料溶液:イオン液体溶液=4:1で混合して発光層形成用組成物を調製した。次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して、更に50℃のホットプレート上で30分間加熱して有機溶媒を蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層を形成した。更に、形成された発光層上に、上述した方法により、30nm厚さのアルミニウム(Al)からなる第2電極を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セルを作製した。 Organic polymer light-emitting material in a volume ratio of a toluene solution (concentration: 9 g / L) of an organic polymer light-emitting material and a mixed ionic liquid toluene solution (concentration: 9 g / L) in a glove box under an argon atmosphere at room temperature The composition for light emitting layer formation was prepared by mixing with solution: ionic liquid solution = 4: 1. Next, the composition for forming a light-emitting layer prepared above is applied by spin coating on the first electrode of the glass substrate at room temperature in a glove box in an argon atmosphere, and further, 30% on a hot plate at 50 ° C. The organic solvent was evaporated by heating for minutes. In this way, a solid light emitting layer having a thickness of 100 nm was formed. Further, a second electrode made of aluminum (Al) having a thickness of 30 nm was formed on the formed light emitting layer by the method described above. In this way, an electrochemiluminescence cell having an area of a 2 mm × 2 mm square of a planned emission portion was produced.
 得られた電気化学発光セルに、第1電極を直流電流の陽極に接続し、第2電極を陰極に接続して、20Vまで電圧を印加し、その間の輝度の最高値を発光輝度とした。発光輝度はCS-2000(コニカミノルタ製)を用いて測定した。結果を図3に示す。 In the obtained electrochemiluminescence cell, the first electrode was connected to the direct current anode, the second electrode was connected to the cathode, a voltage was applied up to 20 V, and the maximum luminance during this period was defined as the emission luminance. The luminance was measured using CS-2000 (manufactured by Konica Minolta). The results are shown in FIG.
  〔実施例2及び比較例2〕
 有機塩としてイオン液体のトリブチルオクチルアンモニウムビストリフルオロメタンスルホニルイミド(N4448TFSI)と、イオン液体のトリオクチルメチルアンモニウムビストリフルオロメタンスルホニルイミド(N8881TFSI)との組み合わせを用いた。両者の質量比は図4に示すとおりとした(図4中、横軸のxは、質量分率を示す)。これ以外は実施例1と同様にして電気化学発光セルを作製した。得られた電気化学発光セルについて、実施例1と同様の測定を行った。その結果を図4に示す。
[Example 2 and Comparative Example 2]
A combination of an ionic liquid tributyloctylammonium bistrifluoromethanesulfonylimide (N4448TFSI) and an ionic liquid trioctylmethylammonium bistrifluoromethanesulfonylimide (N8881TFSI) was used as an organic salt. The mass ratio between the two was as shown in FIG. 4 (in FIG. 4, x on the horizontal axis represents the mass fraction). Except this, an electrochemiluminescence cell was produced in the same manner as in Example 1. About the obtained electrochemiluminescence cell, the same measurement as Example 1 was performed. The result is shown in FIG.
  〔実施例3及び比較例3〕
 有機塩としてイオン液体のトリオクチルベンジルホスホニウムビストリフルオロメタンスルホニルイミド(P888BzTFSI)と、イオン液体のトリオクチルベンジルホスホニウムブロミド(P888BzBr)との組み合わせを用いた。両者の質量比は図5に示すとおりとした。これ以外は実施例1と同様にして電気化学発光セルを作製した。得られた電気化学発光セルについて、実施例1と同様の測定を行った。その結果を図5に示す。
[Example 3 and Comparative Example 3]
A combination of ionic liquid trioctylbenzylphosphonium bistrifluoromethanesulfonylimide (P888BzTFSI) and ionic liquid trioctylbenzylphosphonium bromide (P888BzBr) was used as an organic salt. The mass ratio between the two was as shown in FIG. Except this, an electrochemiluminescence cell was produced in the same manner as in Example 1. About the obtained electrochemiluminescence cell, the same measurement as Example 1 was performed. The result is shown in FIG.
  〔実施例4及び比較例4〕
 有機塩としてイオン液体のトリオクチルベンジルホスホニウムビストリフルオロメタンスルホニルイミド(P888BzTFSI)と、イオン液体のトリエチルペンチルホスホニウムビストリフルオロメタンスルホニルイミド(P2225TFSI)との組み合わせを用いた。両者の質量比は図6に示すとおりとした。これ以外は実施例1と同様にして電気化学発光セルを作製した。得られた電気化学発光セルについて、実施例1と同様の測定を行った。その結果を図6に示す。
Example 4 and Comparative Example 4
A combination of ionic liquid trioctylbenzylphosphonium bistrifluoromethanesulfonylimide (P888BzTFSI) and ionic liquid triethylpentylphosphonium bistrifluoromethanesulfonylimide (P2225TFSI) was used as an organic salt. The mass ratio between the two was as shown in FIG. Except this, an electrochemiluminescence cell was produced in the same manner as in Example 1. About the obtained electrochemiluminescence cell, the same measurement as Example 1 was performed. The result is shown in FIG.
  〔実施例5及び比較例5〕
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極として用いた。有機高分子発光材料としてF8BT(Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)])、アルドリッチ社製、平均分子量(Mn)=10000~20000)を用いた。有機塩として、イオン液体のトリブチルオクチルアンモニウムビストリフルオロメタンスルホニルイミド(N4448TFSI)と、イオン液体のトリブチルオクチルアンモニウムブロミド(N4448Br)との組み合わせを用いた。両者の質量比は図7に示すとおりとした。これ以外は実施例1と同様にして電気化学発光セルを作製した。得られた電気化学発光セルについて、実施例1と同様の測定を行った。その結果を図7に示す。
[Example 5 and Comparative Example 5]
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode. F8BT (Poly [(9,9-di-n-octylfluorenyl-2,7-diyl) -alt- (benzo [2,1,3] thiadiazol-4,8-diyl)]) as an organic polymer light-emitting material Aldrich's average molecular weight (Mn) = 10000 to 20000) was used. As an organic salt, a combination of ionic liquid tributyloctylammonium bistrifluoromethanesulfonylimide (N4448TFSI) and ionic liquid tributyloctylammonium bromide (N4448Br) was used. The mass ratio between the two was as shown in FIG. Except this, an electrochemiluminescence cell was produced in the same manner as in Example 1. About the obtained electrochemiluminescence cell, the same measurement as Example 1 was performed. The result is shown in FIG.
  〔実施例6及び比較例6〕
 有機塩としてイオン液体のトリオクチルメチルアンモニウムビストリフルオロメタンスルホニルイミド(N8881TFSI)と、イオン液体のトリオクチルヘキサデカアンモニウムビストリフルオロメタンスルホニルイミド(N888(16)TFSI)との組み合わせを用いた。両者の質量比は図8に示すとおりとした。これ以外は実施例5と同様にして電気化学発光セルを作製した。得られた電気化学発光セルについて、実施例5と同様の測定を行った。その結果を図8に示す。
[Example 6 and Comparative Example 6]
A combination of ionic liquid trioctylmethylammonium bistrifluoromethanesulfonylimide (N8881TFSI) and ionic liquid trioctylhexadecammonium bistrifluoromethanesulfonylimide (N888 (16) TFSI) was used as an organic salt. The mass ratio between the two was as shown in FIG. Other than this, an electrochemiluminescence cell was produced in the same manner as in Example 5. About the obtained electrochemiluminescence cell, the same measurement as Example 5 was performed. The result is shown in FIG.
  〔実施例7及び比較例7〕
 有機塩としてイオン液体のトリオクチルベンジルホスホニウムビストリフルオロメタンスルホニルイミド(P888BzTFSI)と、イオン液体のトリエチルペンチルホスホニウムビストリフルオロメタンスルホニルイミド(P2225TFSI)との組み合わせを用いた。両者の質量比は図9に示すとおりとした。これ以外は実施例5と同様にして電気化学発光セルを作製した。得られた電気化学発光セルについて、実施例5と同様の測定を行った。その結果を図9に示す。
[Example 7 and Comparative Example 7]
A combination of ionic liquid trioctylbenzylphosphonium bistrifluoromethanesulfonylimide (P888BzTFSI) and ionic liquid triethylpentylphosphonium bistrifluoromethanesulfonylimide (P2225TFSI) was used as an organic salt. The mass ratio between the two was as shown in FIG. Other than this, an electrochemiluminescence cell was produced in the same manner as in Example 5. About the obtained electrochemiluminescence cell, the same measurement as Example 5 was performed. The result is shown in FIG.
  〔実施例8及び比較例8〕
 有機塩としてイオン液体のトリオクチルメチルアンモニウムビストリフルオロメタンスルホニルイミド(N8881TFSI)と、イオン液体のトリオクチルベンジルホスホニウムビストリフルオロメタンスルホニルイミド(P888BzTFSI)との組み合わせを用いた。両者の質量比は図10に示すとおりとした。これ以外は実施例5と同様にして電気化学発光セルを作製した。得られた電気化学発光セルについて、実施例5と同様の測定を行った。その結果を図10に示す。
[Example 8 and Comparative Example 8]
A combination of an ionic liquid trioctylmethylammonium bistrifluoromethanesulfonylimide (N8881TFSI) and an ionic liquid trioctylbenzylphosphonium bistrifluoromethanesulfonylimide (P888BzTFSI) was used as an organic salt. The mass ratio between the two was as shown in FIG. Other than this, an electrochemiluminescence cell was produced in the same manner as in Example 5. About the obtained electrochemiluminescence cell, the same measurement as Example 5 was performed. The result is shown in FIG.
  〔実施例9及び比較例9〕
 有機塩としてイオン液体のトリブチルオクチルアンモニウムビストリフルオロメタンスルホニルイミド(N4448TFSI)と、固体状のトリブチルオクチルアンモニウムテトラフルオロボレート(N4448BF4)との組み合わせを用いた。両者の質量比は図11に示すとおりとした。これ以外は実施例1と同様にして電気化学発光セルを作製した。得られた電気化学発光セルについて、実施例1と同様の測定を行った。その結果を図11に示す。
[Example 9 and Comparative Example 9]
A combination of ionic liquid tributyloctylammonium bistrifluoromethanesulfonylimide (N4448TFSI) and solid tributyloctylammonium tetrafluoroborate (N4448BF 4 ) was used as an organic salt. The mass ratio between the two was as shown in FIG. Except this, an electrochemiluminescence cell was produced in the same manner as in Example 1. About the obtained electrochemiluminescence cell, the same measurement as Example 1 was performed. The result is shown in FIG.
  〔実施例10及び比較例10〕
 有機塩としてイオン液体のトリブチルオクチルアンモニウムビストリフルオロメタンスルホニルイミド(N4448TFSI)と、固体状のトリブチルオクチルアンモニウムヘキサフルオロホスフェート(N4448PF6)との組み合わせを用いた。両者の質量比は図12に示すとおりとした。これ以外は実施例1と同様にして電気化学発光セルを作製した。得られた電気化学発光セルについて、実施例1と同様の測定を行った。その結果を図12に示す。
[Example 10 and Comparative Example 10]
A combination of ionic liquid tributyloctylammonium bistrifluoromethanesulfonylimide (N4448TFSI) and solid tributyloctylammonium hexafluorophosphate (N4448PF 6 ) was used as an organic salt. The mass ratio between the two was as shown in FIG. Except this, an electrochemiluminescence cell was produced in the same manner as in Example 1. About the obtained electrochemiluminescence cell, the same measurement as Example 1 was performed. The result is shown in FIG.
  〔実施例11及び比較例11〕
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極として用いた。有機高分子発光材料として、PFO-Spiro(Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(9,9’-spirobifluorene-2,7-diyl)]、Solaris Chem社製、型番SOL2412)を用いた。有機塩として、固体状のテトラオクチルホスホニウムブロミド(P8888Br)と、固体状のテトラオクチルホスホニウムパラトルエンスルフォネート(P8888TS)との組み合わせを用いた。両者の質量比は図13に示すとおりとした。これ以外は実施例1と同様にして電気化学発光セルを作製した。得られた電気化学発光セルについて、実施例1と同様の測定を行った。その結果を図13に示す。
[Example 11 and Comparative Example 11]
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode. PFO-Spiro (Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)]], Solaris Chem Manufactured by SOL2412). As an organic salt, a combination of solid tetraoctylphosphonium bromide (P8888Br) and solid tetraoctylphosphonium p-toluenesulfonate (P8888TS) was used. The mass ratio between the two was as shown in FIG. Except this, an electrochemiluminescence cell was produced in the same manner as in Example 1. About the obtained electrochemiluminescence cell, the same measurement as Example 1 was performed. The result is shown in FIG.
  〔実施例12及び比較例12〕
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極として用いた。有機高分子発光材料として、PFO-Spiro(Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(9,9’-spirobifluorene-2,7-diyl)]、Solaris Chem社製、型番SOL2412)を用いた。有機塩として、固体状のテトラブチルホスホニウムジブチルホスフェート(P4P4)と、液体状のテトラブチルホスホニウムジメチルホスフェート(P4P1)との組み合わせを用いた。両者の質量比は図14に示すとおりとした。これ以外は実施例1と同様にして電気化学発光セルを作製した。得られた電気化学発光セルについて、実施例1と同様の測定を行った。その結果を図14に示す。
[Example 12 and Comparative Example 12]
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode. PFO-Spiro (Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)]], Solaris Chem Manufactured by SOL2412). As an organic salt, a combination of solid tetrabutylphosphonium dibutyl phosphate (P4P4) and liquid tetrabutylphosphonium dimethyl phosphate (P4P1) was used. The mass ratio between the two was as shown in FIG. Except this, an electrochemiluminescence cell was produced in the same manner as in Example 1. About the obtained electrochemiluminescence cell, the same measurement as Example 1 was performed. The result is shown in FIG.
 図3ないし図14に示す結果から明らかなとおり、単独の有機塩を用いるよりも、2種の有機塩の組み合わせを用いる方が、発光輝度が増すことが判る。 As is clear from the results shown in FIGS. 3 to 14, it can be seen that the emission luminance is increased by using a combination of two organic salts rather than using a single organic salt.
10 電気化学発光セル
12 発光層
13 第1電極
14 第2電極
16 pドープ領域
17 nドープ領域
DESCRIPTION OF SYMBOLS 10 Electrochemiluminescence cell 12 Light emitting layer 13 1st electrode 14 2nd electrode 16 p doped area | region 17 n doped area | region

Claims (14)

  1.  発光層と、その各面に配された電極とを有する電気化学発光セルにおいて、
     前記発光層が、有機高分子発光材料、及び2種以上の有機塩の組み合わせを含む電気化学発光セル。
    In an electrochemiluminescence cell having a light emitting layer and electrodes arranged on each surface thereof,
    The electrochemiluminescence cell in which the light emitting layer includes a combination of an organic polymer light emitting material and two or more organic salts.
  2.  前記有機塩が、ホスホニウム塩、アンモニウム塩、ピリジニウム塩、イミダゾリウム塩及びピロリジニウム塩から選ばれる有機塩である請求項1に記載の電気化学発光セル。 The electrochemiluminescence cell according to claim 1, wherein the organic salt is an organic salt selected from a phosphonium salt, an ammonium salt, a pyridinium salt, an imidazolium salt, and a pyrrolidinium salt.
  3.  前記有機塩が、以下の式(1)で表される有機塩である請求項1又は2に記載の電気化学発光セル。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、R、R及びRは、それぞれ官能基で置換されていてもよい、アルキル基、アルコキシアルキル基、トリアルキルシリルアルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。R、R、R及びRは互いに同一でも異なっていてもよい。MはN又はPを表す。Xはアニオンを表す。)
    The electrochemiluminescence cell according to claim 1 or 2, wherein the organic salt is an organic salt represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 , R 2 , R 3 and R 4 are each an alkyl group, an alkoxyalkyl group, a trialkylsilylalkyl group, an alkenyl group, an alkynyl group, an aryl group, which may be substituted with a functional group, or Represents a heterocyclic group, R 1 , R 2 , R 3 and R 4 may be the same or different from each other, M represents N or P, and X represents an anion.)
  4.  2種以上の有機塩が液体有機塩の組み合わせである請求項1ないし3のいずれか一項に記載の電気化学発光セル。 The electrochemiluminescence cell according to any one of claims 1 to 3, wherein the two or more organic salts are a combination of liquid organic salts.
  5.  2種以上の有機塩が固体有機塩の組み合わせである請求項1ないし3のいずれか一項に記載の電気化学発光セル。 The electrochemiluminescence cell according to any one of claims 1 to 3, wherein the two or more organic salts are a combination of solid organic salts.
  6.  2種以上の有機塩の組み合わせが液体有機塩と固体有機塩の組み合わせである請求項1ないし3のいずれか一項に記載の電気化学発光セル。 The electrochemiluminescence cell according to any one of claims 1 to 3, wherein the combination of two or more organic salts is a combination of a liquid organic salt and a solid organic salt.
  7.  有機高分子発光材料、有機溶媒及び2種以上の有機塩の組み合わせを含有する、電気化学発光セルの発光層形成用組成物。 A composition for forming a light emitting layer of an electrochemiluminescent cell, comprising a combination of an organic polymer light emitting material, an organic solvent, and two or more organic salts.
  8.  前記有機塩が、ホスホニウム塩、アンモニウム塩、ピリジニウム塩、イミダゾリウム塩及びピロリジニウム塩から選ばれる有機塩である請求項7に記載の組成物。 The composition according to claim 7, wherein the organic salt is an organic salt selected from a phosphonium salt, an ammonium salt, a pyridinium salt, an imidazolium salt, and a pyrrolidinium salt.
  9.  前記有機塩が、以下の式(1)で表される有機塩である請求項7又は8に記載の組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、R、R及びRは、それぞれ官能基で置換されていてもよい、アルキル基、アルコキシアルキル基、トリアルキルシリルアルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。R、R、R及びRは互いに同一でも異なっていてもよい。MはN又はPを表す。Xはアニオンを表す。)
    The composition according to claim 7 or 8, wherein the organic salt is an organic salt represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 1 , R 2 , R 3 and R 4 are each an alkyl group, an alkoxyalkyl group, a trialkylsilylalkyl group, an alkenyl group, an alkynyl group, an aryl group, which may be substituted with a functional group, or Represents a heterocyclic group, R 1 , R 2 , R 3 and R 4 may be the same or different from each other, M represents N or P, and X represents an anion.)
  10.  2種以上の有機塩が液体有機塩の組み合わせである請求項7ないし9のいずれか一項に記載の組成物。 The composition according to any one of claims 7 to 9, wherein the two or more organic salts are a combination of liquid organic salts.
  11.  2種以上の有機塩が固体有機塩の組み合わせである請求項7ないし9のいずれか一項に記載の組成物。 The composition according to any one of claims 7 to 9, wherein the two or more organic salts are a combination of solid organic salts.
  12.  2種以上の有機塩の組み合わせが液体有機塩と固体有機塩の組み合わせである請求項7ないし9のいずれか一項に記載の組成物。 The composition according to any one of claims 7 to 9, wherein the combination of two or more organic salts is a combination of a liquid organic salt and a solid organic salt.
  13.  前記有機溶媒がトルエン、ベンゼン、テトラヒドロフラン、ジメチルクロライド、クロロベンゼン又はクロロホルムである請求項7ないし12のいずれか一項に記載の組成物。 The composition according to any one of claims 7 to 12, wherein the organic solvent is toluene, benzene, tetrahydrofuran, dimethyl chloride, chlorobenzene or chloroform.
  14.  請求項7ないし13のいずれか一項に記載の組成物を、発光層形成用材料として使用した電気化学発光セル。 An electrochemiluminescence cell using the composition according to any one of claims 7 to 13 as a material for forming a light emitting layer.
PCT/JP2015/078277 2014-10-09 2015-10-06 Electrochemical luminescent cell and composition for forming luminescent layer of electrochemical luminescent cell WO2016056529A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/516,979 US10547019B2 (en) 2014-10-09 2015-10-06 Electrochemical luminescent cell and composition for forming luminescent layer of electrochemical luminescent cell
KR1020177008860A KR20170065522A (en) 2014-10-09 2015-10-06 Electrochemical luminescent cell and composition for forming luminescent layer of electrochemical luminescent cell
EP15848287.7A EP3205924B1 (en) 2014-10-09 2015-10-06 Electrochemical luminescent cell and composition for forming luminescent layer of electrochemical luminescent cell
CN201580053972.XA CN106796001B (en) 2014-10-09 2015-10-06 Composition is used in the formation of the luminescent layer of electrochemical luminescence battery and electrochemical luminescence battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-208431 2014-10-09
JP2014208431 2014-10-09
JP2015-193167 2015-09-30
JP2015193167A JP6163185B2 (en) 2014-10-09 2015-09-30 Electrochemiluminescence cell and composition for forming luminescent layer of electrochemiluminescence cell

Publications (1)

Publication Number Publication Date
WO2016056529A1 true WO2016056529A1 (en) 2016-04-14

Family

ID=55653140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078277 WO2016056529A1 (en) 2014-10-09 2015-10-06 Electrochemical luminescent cell and composition for forming luminescent layer of electrochemical luminescent cell

Country Status (1)

Country Link
WO (1) WO2016056529A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124102A1 (en) * 2016-12-27 2018-07-05 国立大学法人北陸先端科学技術大学院大学 Electrochemical light emitting cell
WO2018151086A1 (en) * 2017-02-17 2018-08-23 日本化学工業株式会社 Electrochemical light emitting cell and composition for forming light emitting layer of electrochemical light emitting cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067601A (en) * 1998-08-17 2000-03-03 Fuji Photo Film Co Ltd Manufacture of electrochemical luminescence element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067601A (en) * 1998-08-17 2000-03-03 Fuji Photo Film Co Ltd Manufacture of electrochemical luminescence element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124102A1 (en) * 2016-12-27 2018-07-05 国立大学法人北陸先端科学技術大学院大学 Electrochemical light emitting cell
CN110121795A (en) * 2016-12-27 2019-08-13 国立大学法人北陆先端科学技术大学院大学 Electrochemical luminescence battery
WO2018151086A1 (en) * 2017-02-17 2018-08-23 日本化学工業株式会社 Electrochemical light emitting cell and composition for forming light emitting layer of electrochemical light emitting cell

Similar Documents

Publication Publication Date Title
JP6163185B2 (en) Electrochemiluminescence cell and composition for forming luminescent layer of electrochemiluminescence cell
JP5994038B1 (en) Electrochemiluminescence cell, composition for forming light emitting layer of electrochemiluminescence cell, and ionic compound for light emitting layer of electrochemiluminescence cell
JP5788018B2 (en) Use of copper complexes in organic light-emitting components and charge transport layers
JP6858709B2 (en) An electrochemical light emitting cell, a composition for forming a light emitting layer of an electrochemical light emitting cell, and an ionic compound for a light emitting layer of an electrochemical light emitting cell.
WO2016056529A1 (en) Electrochemical luminescent cell and composition for forming luminescent layer of electrochemical luminescent cell
KR20150087323A (en) Organic electroluminescent device and a method of producing an organic electroluminescent device
US20200185624A1 (en) Organic Electronic Component Having a Charge-Carrier Generation Layer
KR101556433B1 (en) Organic light emitting devices and method for manufacturing the same
JP2015216095A (en) Electrochemical light-emitting cell and composition for forming light-emitting layer of electrochemical light-emitting cell
US10439143B2 (en) Additive for light-emitting layer in light-emitting electrochemical cell, composition for forming light-emitting layer in light-emitting electrochemical cell, and light-emitting electrochemical cell
WO2017018328A1 (en) Additive for light-emitting layer in electrochemiluminescent cell, composition for forming light-emitting layer in electrochemiluminescent cell, and electrochemiluminescent cell
US20190341554A1 (en) Light-emitting electrochemical cell and composition for forming light-emitting layer of light-emitting electrochemical cell
JP2019054110A (en) Organic EL device using ionic compound carrier injection material
KR101943078B1 (en) Light emitting composition, light emitting electrochemical device and light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848287

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015848287

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015848287

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177008860

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15516979

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE