WO2016056180A1 - Gas turbine engine combustor and operating method for same - Google Patents

Gas turbine engine combustor and operating method for same Download PDF

Info

Publication number
WO2016056180A1
WO2016056180A1 PCT/JP2015/004730 JP2015004730W WO2016056180A1 WO 2016056180 A1 WO2016056180 A1 WO 2016056180A1 JP 2015004730 W JP2015004730 W JP 2015004730W WO 2016056180 A1 WO2016056180 A1 WO 2016056180A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
turbine engine
gas turbine
combustor
injection port
Prior art date
Application number
PCT/JP2015/004730
Other languages
French (fr)
Japanese (ja)
Inventor
邦夫 岡田
敦史 堀川
山下 誠二
雅英 餝
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2016056180A1 publication Critical patent/WO2016056180A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones

Definitions

  • the present invention relates to a combustor provided in a gas turbine engine.
  • a hydrogen-containing fuel is supplied to a first fuel nozzle that supplies a hydrogen-containing fuel to a primary combustion region upstream of a combustion chamber by a diffusion combustion method, and a reduction region downstream of the primary combustion region.
  • a combustor including a second fuel nozzle and an air outlet for supplying lean combustion air to a secondary combustion region downstream from the reduction region is shown.
  • NO x generated in the primary combustion region due to the oxidation reaction of hydrogen is reduced in the reduction region, and then the unburned fuel is burned in the secondary combustion region under the lean fuel condition, so that NO from the combustor X emissions are reduced.
  • a premixed combustion system and a diffusion combustion system are known as a general fuel injection system to a combustor of a gas turbine engine.
  • a premix combustion method fuel and air mixed in advance are supplied to the combustion chamber and burned.
  • NO x emissions from the combustor can be reduced by performing combustion in a lean fuel state.
  • hydrogen-containing fuel has a wide flammable range and a combustion speed of about 10 times faster than natural gas
  • the flame is injected into the fuel injection nozzle and the wall surface. There is a risk of damaging them or approaching a fire.
  • the present invention proposes a technique for suppressing the occurrence of flashback in a premixed combustion system in a combustor of a gas turbine engine that burns a fuel having a combustion speed higher than that of natural gas, such as a hydrogen-containing fuel.
  • a combustor of a gas turbine engine A liner that forms a combustion chamber therein; At least one first fuel injection port for injecting first fuel to the upstream portion of the combustion chamber, and pilot fuel for igniting the first fuel injected from the at least one first fuel injection port in the combustion chamber And at least one second fuel injection port for supplying a second fuel having a maximum combustion speed higher than that of the first fuel to the upstream portion of the combustion chamber It is characterized by having.
  • the first fuel having a relatively slow combustion speed and the second fuel having a relatively fast combustion speed can be supplied to the combustion chamber 35 alternatively or simultaneously.
  • a comparison is made in the process of gradually increasing or decreasing the fuel injection amount at startup or stop
  • a fuel with a relatively slow combustion rate can be burned, and a fuel with a relatively fast combustion rate can be burned in a state where the engine speed and engine operating load are increased.
  • the combustor of the gas turbine engine is formed by alternately arranging the at least one first fuel injection port and the at least one second fuel injection port around the at least one pilot fuel injection port.
  • a single annular injection port array may be formed.
  • the at least one annular injection port array may be provided on the inner peripheral surface of the liner on the downstream side of the at least one pilot fuel injection port of the combustion chamber.
  • a first annular injection port array in which the at least one first fuel injection port is arranged in an annular shape is formed around the at least one pilot fuel injection port, and the first A second annular injection port array in which the at least one second fuel injection port is arranged in an annular shape may be formed around the annular injection port array.
  • the at least one first fuel injection port that is annular around the at least one pilot fuel injection port is provided, and the at least one second fuel injection that is annular around the at least one first fuel injection port.
  • a mouth may be provided.
  • the gas turbine engine combustor gradually increases the injection amount of the first fuel from zero at start-up, and gradually decreases the injection amount of the first fuel to a predetermined value when the gas turbine engine reaches a predetermined rated operating condition.
  • the first fuel having a relatively low combustion speed is combusted at the time of start-up including ignition, so that the occurrence of backfire in the burner at the time of start-up can be suppressed.
  • the second fuel is combusted after the engine speed and the engine operating load have increased to the rated operating conditions, stable operation can be performed even when the second fuel having a relatively high combustion speed is used. it can.
  • the supply amount of the second fuel to the fuel injection device is determined by the control device after the injection amount of the first fuel is reduced to the predetermined value at the start-up. Control may be made to increase the injection amount of the first fuel when the injection amount of the second fuel for maintaining the operating condition is insufficient. According to this configuration, when the supply amount of the second fuel fluctuates, the shortage of the injection amount of the second fuel can be compensated with the first fuel.
  • the control device gradually reduces the injection amount of the second fuel to zero and stops the injection amount of the first fuel while the gas turbine engine maintains the rated operating condition when stopped.
  • the injection amount of the first fuel and the injection amount of the second fuel are controlled so that the injection amount of the first fuel is gradually reduced to zero when the injection amount of the second fuel becomes zero. May be.
  • the main fuel of the combustor is switched from the second fuel to the first fuel before the stop, thereby preventing the second fuel from remaining in the combustor after the operation stop and its downstream pipe. Can do. Thereby, it is possible to prevent explosive combustion from occurring due to the unburned second fuel remaining at the next start-up.
  • the second fuel may be hydrogen or a hydrogen-containing fuel
  • the first fuel may be natural gas or a hydrogen-containing fuel having a lower hydrogen content than the second fuel
  • the operation method of the combustor of the gas turbine engine according to the present invention is as follows: Igniting the pilot burner; Igniting the main burner with a flame of the pilot burner and burning the first fuel as the main fuel in the main burner; Switching the start-up fuel so that when the gas turbine engine reaches a predetermined rated operating condition, the main burner burns the second fuel having a maximum combustion speed faster than the first fuel as the main fuel. It is characterized by.
  • the pilot fuel and the first fuel having a relatively slow combustion speed are combusted at the time of start-up, so that it is possible to suppress the occurrence of flashback in the burner at the time of start-up (particularly at the time of ignition). Further, since the second fuel is burned after the engine speed and the engine operating load are increased, stable operation can be performed even when the second fuel having a relatively high combustion speed is used.
  • performing the start-up fuel switching gradually reduces the injection amount of the first fuel to a predetermined value and reduces the injection amount of the second fuel to the gas turbine engine. May gradually increase to maintain the rated operating conditions.
  • the second fuel supply amount to the main burner is the second fuel for maintaining the rated operating condition.
  • Increasing the injection amount of the first fuel may be performed when the injection amount is insufficient. According to this, when the supply amount of the second fuel fluctuates, the shortage of the injection amount of the second fuel can be compensated with the first fuel.
  • the main fuel of the combustor is switched from the second fuel to the first fuel before the stop, thereby preventing the second fuel from remaining in the combustor after the stop and its downstream piping. be able to. Thereby, it is possible to prevent explosive combustion from occurring due to the unburned second fuel remaining at the next start-up.
  • performing the fuel switching at the time of stopping gradually reduces the injection amount of the second fuel to zero, and the gas turbine engine reduces the injection amount of the first fuel.
  • Increasing gradually may be included to maintain the rated operating conditions.
  • the second fuel is hydrogen or a hydrogen-containing fuel
  • the first fuel is natural gas or a hydrogen-containing fuel having a lower hydrogen content than the second fuel. Good.
  • the present invention it is possible to suppress the occurrence of flashback in the burner in a combustor of a gas turbine engine that burns a fuel having a combustion speed higher than that of natural gas, such as a hydrogen-containing fuel.
  • FIG. 1 is a diagram illustrating a schematic configuration of a gas turbine engine including a combustor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the combustor according to the first embodiment of the present invention.
  • FIG. 3 is a layout diagram of the fuel injection port.
  • FIG. 4 is a graph showing a time-series change in the engine speed when the gas turbine engine is started.
  • FIG. 5 is a graph showing the relationship between the engine operating load of the gas turbine engine and the amount of fuel used.
  • FIG. 6 is a graph showing a time-series change in the fuel injection amount.
  • FIG. 7 is a layout diagram of the fuel injection port according to the first modification.
  • FIG. 1 is a diagram illustrating a schematic configuration of a gas turbine engine including a combustor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the combustor according to the first embodiment of
  • FIG. 8 is a layout diagram of the fuel injection port according to the second modification.
  • FIG. 9 is a layout diagram of the fuel injection port according to the third modification.
  • FIG. 10 is a layout diagram of the fuel injection port according to the fourth modification.
  • FIG. 11 is a layout diagram of the fuel injection port according to the fifth modification.
  • FIG. 12A is a schematic cross-sectional view showing the arrangement of each burner of the combustor according to the second embodiment of the present invention.
  • FIG. 12B is a schematic view of the arrangement of each burner of the combustor according to the second embodiment of the present invention viewed from the axial direction.
  • FIG. 13 is a schematic diagram showing the arrangement of each burner of the combustor according to the third embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing the arrangement of the burners of the combustor according to the fourth embodiment of the present invention.
  • a gas turbine engine 1 including a combustor 12 includes a compressor 11, a combustor 12 connected to the compressor 11 and an air supply passage 21, and a turbine 13 connected to the combustor 12 and a combustion gas supply passage 22. And.
  • the compressor 11 and the turbine 13 are connected by a rotating shaft 14, and a load such as a generator 15 and a starter (starting motor) 18 are connected to the rotating shaft 14.
  • the compressor 11 compresses the air sucked from the atmosphere and supplies it as combustion air to the combustor 12, and the combustor 12 has a high temperature generated by the mixed combustion of the combustion air and the fuel.
  • High-pressure combustion gas is supplied to the turbine 13, and the turbine 13 rotates blades with the combustion gas to convert the thermal energy of the combustion gas into rotational kinetic energy.
  • This rotational kinetic energy is used for compression power by the compressor 11, and is converted into electric energy by the generator 15.
  • the exhaust gas from the turbine 13 is sent to the boiler 16 connected to the turbine 13 through the exhaust passage 23 and used as a heat source for the boiler 16.
  • FIG. 2 is a sectional view showing a schematic configuration of the combustor 12 according to the first embodiment of the present invention
  • FIG. 3 is a layout diagram of the fuel injection port.
  • the pilot fuel injection port 40a is hatched
  • the first fuel injection port 41a is light
  • the second fuel injection port 42a so that the type of the fuel injection port can be easily understood.
  • the combustor 12 includes a cylindrical casing 31, a cylindrical liner 32 accommodated in the casing 31, and a fuel injection device 36.
  • a combustion chamber 35 is formed inside the liner 32, and an air passage 33 for introducing combustion air is formed between the casing 31 and the liner 32.
  • a fuel injection device 36 that injects fuel into the combustion chamber 35 is provided at one end of the liner 32.
  • one side where the fuel injection device 36 in the combustion chamber 35 is provided is referred to as an upstream side, and the other side is referred to as a downstream side.
  • the fuel injection device 36 includes a pilot burner 40 and a main burner 4.
  • the main burner 4 includes at least one first main burner 41 that ejects the first fuel to the upstream portion of the combustion chamber 35, and at least one second main burner 42 that ejects the second fuel to the upstream portion of the combustion chamber 35. have.
  • the fuel injection port (pilot fuel injection port 40 a) of the pilot burner 40 is provided at a position that substantially passes through the axial center of the cylindrical liner 32.
  • the pilot fuel injection port 40a there are at least a fuel injection port (first fuel injection port 41a) of the first main burner 41 and a fuel injection port (second fuel injection port 42a) of the second main burner 42.
  • a single annular jet row is provided.
  • the annular injection port row is formed by alternately arranging at least one first fuel injection port 41a and at least one second fuel injection port 42a. With the arrangement of the fuel injection ports 41a and 42a, the first fuel and the second fuel are distributed and supplied into the combustion chamber 35, thereby preventing the formation of a locally rich region of fuel. can do. As a result, it is possible to suppress an increase in the NO x emission amount due to the increase in the local flame temperature.
  • the pilot burner 40 uses the first fuel as the pilot fuel, and the pilot burner 40 directly injects the pilot fuel into the combustion chamber 35 to perform diffusion combustion.
  • the pilot fuel may be a fuel that is not the first fuel.
  • the pilot fuel may be a liquid fuel.
  • the first main burner 41 injects the first premixed gas in which the first fuel supplied from the first fuel supply source 51 and the combustion air are mixed in advance into the combustion chamber 35 to cause premix combustion.
  • the second main burner 42 injects the second premixed gas, in which the second fuel supplied from the second fuel supply source 52 and the combustion air are premixed, into the combustion chamber 35 and performs premix combustion.
  • the first fuel (or first fuel and pilot fuel) is natural gas, vented methane (VAM), natural gas mixed with less than 5% hydrogen, vented methane mixed with less than 5% hydrogen, or Liquid fuel such as kerosene or light oil.
  • the second fuel is hydrogen gas, by-product hydrogen, liquefied petroleum gas (LPG), natural gas mixed with 5% or more hydrogen, or vented methane mixed with 5% or more hydrogen.
  • LPG liquefied petroleum gas
  • the composition of the first fuel (or the first fuel and the pilot fuel) and the second fuel is different, and the second fuel has a higher combustion rate than the maximum combustion rate of the first fuel (or the first fuel and the pilot fuel). Maximum burning speed is fast. The maximum burning rate is determined by the composition of the gas.
  • the first fuel and the second fuel include a hydrogen-containing gas as the second fuel and a natural gas as the first fuel, a hydrogen-containing gas as the second fuel and a second fuel as the first fuel. And hydrogen-containing gas having a lower hydrogen content.
  • the pilot burner 40 is provided with a pilot fuel nozzle 43, and the outlet of the pilot fuel nozzle 43 is a fuel injection port 40a.
  • the pilot fuel nozzle 43 is connected to a first fuel supply source 51 or a pilot fuel supply source (not shown) via a pilot fuel supply pipe 44.
  • the pilot fuel supply pipe 44 is provided with a pilot fuel control valve 61 that adjusts the flow rate of pilot fuel (first fuel) ejected from the pilot burner 40.
  • An air nozzle 62 is formed around the pilot fuel nozzle 43 to inject combustion air from the air passage 33 into the combustion chamber 35.
  • the first main burner 41 includes a flow path member 46 that forms a premixing passage 45, a swirler 48 provided in an air intake 47 that opens upstream of the premixing passage 45, and a first main burner 41 that faces the air intake 47. And a first fuel nozzle 49 having an injection hole for injecting one fuel.
  • the outlet of the premixing passage 45 is a fuel injection port 41a.
  • the first fuel nozzle 49 is connected to the first fuel supply source 51 via the first fuel supply pipe 50.
  • the first fuel supply pipe 50 is provided with a first fuel control valve 63 that adjusts the flow rate of the first fuel.
  • the first fuel injected from the injection hole of the first fuel nozzle 49 toward the air intake 47 and the combustion air in the air passage 33 are swirled by the swirler 48.
  • the air is introduced into the premixing passage 45 through the air intake 47.
  • the first fuel and combustion air premixed in the premixing passage 45 are jetted into the combustion chamber 35 as a first premixed gas.
  • the second main burner 42 includes a flow path member 56 that forms a premixing passage 55, a swirler 58 provided in an air intake 57 that opens to the upstream side of the premixing passage 55, and a second main burner 42 that faces the air intake 57. And a second fuel nozzle 59 having an injection hole for injecting two fuels.
  • the outlet of the premixing passage 55 is a fuel injection port 42a.
  • the second fuel nozzle 59 and the second fuel supply source 52 are connected by a second fuel supply pipe 60.
  • the second fuel supply pipe 60 is provided with a second fuel control valve 64 that adjusts the flow rate of the second fuel.
  • the second fuel injected from the injection hole of the second fuel nozzle 59 toward the air intake port 57 and the combustion air in the air passage 33 are swirled by the swirler 58.
  • the air is introduced into the premixing passage 55 through the air intake 57.
  • the second fuel and combustion air premixed in the premixing passage 55 are jetted into the combustion chamber 35 as a second premixed gas.
  • the control device 5 is configured to control the fuel supply to the fuel injection device 36, that is, the injection amounts of the pilot fuel, the first fuel, and the second fuel.
  • the control device 5 includes a rotation speed sensor 71 that detects the engine rotation speed (for example, the rotation speed of the rotary shaft 14), a wattmeter 73 that detects power generated by the generator 15 that serves as an index of the engine operating load, An operation input device 72 for inputting an operation command to the control device 5 and the fuel control valves 61, 63, 64 are connected.
  • the control device 5 controls the pilot fuel control valve 61, Control signals are output to the first fuel control valve 63 and the second fuel control valve 64. Note that the pilot fuel control valve 61, the first fuel control valve 63, and the second fuel control valve 64 during standby are all closed.
  • FIG. 4 is a graph showing a time-series change in the engine speed when the gas turbine engine 1 is started
  • FIG. 5 is a graph showing the relationship between the engine operation load of the gas turbine engine 1 and the fuel consumption. Is a graph showing a time-series change of the fuel injection amount.
  • the vertical axis represents the fuel injection amount
  • the horizontal axis represents time
  • the solid line represents the first fuel injection amount from the first main burner 41
  • the broken line represents the second fuel injection amount from the second main burner 42. The amount of fuel injection is shown.
  • start-up control starter start-up, ignition, and idle control are performed.
  • the starter 18 When the starter 18 is started when the gas turbine engine 1 is started, the engine speed starts to increase.
  • the control device 5 receives the start signal from the operation input device 72, the control device 5 starts discharge or heat generation of a spark plug (not shown) and opens the pilot fuel control valve 61. Thereby, in the pilot burner 40, the 1st fuel and the combustion air which were injected to the combustion chamber 35 are ignited, and it carries out diffusion combustion.
  • the control device 5 opens the first fuel control valve 63.
  • the first main burner 41 the first premixed gas ejected to the combustion chamber 35 is ignited by the flame of the pilot burner 40 and premixed and combusted.
  • the control device 5 controls the opening degree of the first fuel control valve 63 so that the injection amount of the first fuel becomes zero from the injection amount (hereinafter referred to as “rated operation”). Gradually increase to “hour injection amount”). Even when the injection amount of the first fuel is zero, that is, when the first fuel control valve 63 is closed, the combustion air is jetted from the first main burner 41 to the combustion chamber 35, and the combustion chamber No back flow of gas from 35 to the premixing passage 45 occurs.
  • the control device 5 monitors the engine speed and the engine operating load through the start-up control, and starts fuel switching (start-up fuel switching) when these satisfy the rated operation conditions.
  • the rated operating condition is, for example, that the detected engine speed is equal to or higher than the speed at which the turbine 13 rotates autonomously, and the engine operating load is equal to or higher than a predetermined value.
  • the control device 5 that has started the fuel switching first stops the discharge or heat generation of the spark plug, closes the pilot fuel control valve 61, extinguishes the pilot burner 40, or fuel that can ensure a minimum flame holding performance. Reduce fuel flow to flow. Subsequently, the control device 5 gradually decreases the opening degree of the first fuel control valve 63 over a predetermined switching time, and changes the injection amount of the first fuel from the rated operation injection amount to the predetermined maintenance injection amount. Reduce gradually.
  • the maintenance injection amount is an injection amount of the first fuel that does not cause a backflow of gas in the first main burner 41.
  • control device 5 gradually increases the degree of opening of the second fuel control valve 64 over a predetermined switching time, and injects the second fuel so that the gas turbine engine 1 maintains the rated operating condition. The amount is gradually increased from zero.
  • the combustor 12 at the end of the fuel switching has the second fuel injection amount larger than the first fuel injection amount, and the main fuel of the main burner 4 is changed from the first fuel to the second fuel. It has been switched.
  • the control device 5 From the end of fuel switching until the stop signal is received, the control device 5 performs steady operation control. In the steady operation control, the control device 5 acquires the engine speed and the engine operation load, and controls the fuel injection amount so that these operation conditions maintain the required values.
  • the required value may be a desired value that satisfies at least the rated operating condition. For example, a preset value for the engine speed and the engine operating load, or a safety value is added to the rated operating condition (or the rated operating condition).
  • the predetermined threshold value can be used as the required value. Further, a plurality of required values may be set, and a different fuel injection amount control method may be performed according to each required value.
  • the supply amount of the second fuel to the fuel injection device 36 varies.
  • the second fuel is a hydrogen-containing gas containing byproduct hydrogen
  • the control device 5 increases or decreases the opening of the second fuel control valve 64 to increase or decrease the second fuel injection amount so as to keep the power generation amount constant.
  • the opening amount of the valve 63 can be increased to increase or decrease the injection amount of the first fuel.
  • control device 5 can increase the engine operating load while maintaining the engine speed by increasing the opening amount of the first fuel control valve 63 and increasing the injection amount of the first fuel. it can.
  • the supply amount of the second fuel to the fuel injection device 36 main burner 4 holds the required value of the operating condition. In the case where the amount of fuel injected is less than the amount required for the second fuel, replenishment by the first fuel may be performed.
  • the control device 5 When the control device 5 receives the stop signal from the operation input device 72, the control device 5 starts the stop control. In the stop control, first, fuel switching (fuel switching at stop) is started. The control device 5 that has started the fuel switching gradually decreases the opening of the second fuel control valve 64 over a predetermined switching time, and gradually decreases the injection amount of the second fuel to zero, so that the second main burner Extinguish 42. At the same time, the control device 5 gradually increases the opening degree of the first fuel control valve 63 over a predetermined switching time so that the gas turbine engine 1 maintains the rated operating condition so that the first fuel injection is performed. The amount is gradually increased from the maintenance injection amount. Here, when the flame holding property is insufficient, the pilot fuel may be gradually increased. Thus, the combustor 12 at the end of the fuel switching has the first fuel injection amount larger than the second fuel injection amount, and the main fuel of the main burner 4 is changed from the second fuel to the first fuel. It has been switched.
  • fuel switching fuel switching at stop
  • the control device 5 gradually decreases the opening of the first fuel control valve 63 so that the injection amount of the first fuel decreases from the rated operation injection amount to zero.
  • the stop control is terminated.
  • the stop control after switching the fuel of the combustor 12 from the second fuel to the first fuel (or the first fuel and the pilot fuel), after the second main burner 42 is extinguished, The first main burner 41 (or the first main burner 41 and the pilot burner 40) is extinguished.
  • the second fuel is prevented from staying in the combustor 12 and its downstream piping. Thereby, it is possible to prevent explosive combustion from occurring due to the unburned second fuel remaining at the next start-up.
  • the main burner 4 of the combustor 12 is configured to be able to burn two fuels (first fuel and second fuel) having different combustion speeds alternatively or simultaneously. Therefore, the main fuel of the combustor 12 can be switched between the first fuel and the second fuel. Utilizing this feature, operation control is performed in the combustor 12 such that backfire into the burner hardly occurs. Specifically, in a situation where the flow rate of fuel at the time of starting and stopping of the gas turbine engine 1 (combustor 12) is relatively slow, the first fuel having a combustion speed slower than that of the second fuel is burned.
  • the second fuel is burned by the combustor 12 in a state where the engine speed and the engine operation load are sufficiently increased (that is, the rated operation condition is satisfied). More specifically, at startup, the first main burner 41 burns the first fuel, and when the gas turbine engine 1 reaches a predetermined rated operating condition, the second main burner 42 burns the second fuel and the first main burner. The combustion amount of the burner 41 is reduced. Moreover, at the time of a stop, the 2nd main burner 42 is extinguished, the combustion amount of the 1st main burner 41 is increased, and after the 2nd main burner 42 extinguishes, the 1st main burner 41 is extinguished.
  • the first fuel or the pilot fuel is burned at the time of start-up and at the time of stop including the ignition time that is particularly likely to cause backfire. Can be suppressed. By suppressing the occurrence of backfire, burnout of the combustor 12 can be prevented. Since the second fuel is burned after the gas turbine engine 1 reaches the rated operating condition, the combustor 12 and the gas turbine are used even when a fuel having a higher combustion speed than natural gas such as hydrogen-containing fuel is used. The operation of the engine 1 can be stabilized.
  • the first fuel injection ports 41a and the second fuel injection ports 42a are alternately arranged.
  • the layout of the fuel injection port is not limited to the above. Therefore, hereinafter, modifications 1 to 5 of the layout of the fuel injection port of the first embodiment will be described. 7 to 11 are layout diagrams of the fuel injection ports according to the first to fifth modifications, respectively.
  • the annular fuel injection nozzle array is formed around the pilot fuel injection nozzle 40a, and the first fuel injection is alternately arranged.
  • the port 41a group and a plurality of second fuel injection ports 42a group are formed.
  • a double annular injection port array is formed around the pilot fuel injection port 40a, and the annular injection port arrays are alternately arranged.
  • the first fuel injection port 41a and the second fuel injection port 42a are formed.
  • a first annular injection port array in which a plurality of first fuel injection ports 41a are arranged in an annular shape is formed around the pilot fuel injection port 40a.
  • a second annular injection port array in which a plurality of second fuel injection ports 42a are arranged in an annular shape is formed around the annular injection port array.
  • annular first fuel injection port 41a is provided around the annular pilot fuel injection port 40a, and an annular first fuel injection port 41a is provided around the first fuel injection port 41a.
  • Two fuel injection ports 42a are provided.
  • FIG. 11 even if a vane 66 is provided in each fuel injection port 40a, 41a, 42a so that a swirl flow is formed by the fuel gas blown out from each fuel injection port 40a, 41a, 42a. Good.
  • the combustors 12 according to the second to fourth embodiments are different in that the combustors 12 according to the first embodiment, the first main burner 41, and the second main burner 42 are arranged differently. Therefore, hereinafter, only the arrangement of the first main burner 41 and the second main burner 42 will be described in detail, and the further description will be omitted.
  • FIG. 12A is a schematic cross-sectional view showing the arrangement of each burner (pilot burner 40, first main burner 41, and second main burner 42) of the combustor 12A according to the second embodiment of the present invention.
  • FIG. 12B is the schematic diagram which looked at arrangement
  • the fuel injection port 41a of the first main burner 41 and the fuel injection port 42a of the second main burner 42 of the combustor 12A according to the second embodiment are the fuel injection ports of the pilot burner 40.
  • FIG. 13 is a schematic diagram showing the arrangement of the pilot burner 40, the first main burner 41, and the second main burner 42 of the combustor 12B according to the third embodiment.
  • the fuel injection port 41 a of the first main burner 41 of the combustor 12 ⁇ / b> B according to the third embodiment is provided on the inner periphery of the fuel injection port 40 a of the pilot burner 40.
  • the fuel injection port 42 a of the second main burner 42 is annularly provided on the inner peripheral surface of the liner 32 on the downstream side of the fuel injection port 40 a of the pilot burner 40 and the fuel injection port 41 a of the first main burner 41. Yes. From the second main burner 42, fuel is ejected toward the inner side in the radial direction of the liner 32.
  • FIG. 14 is a schematic diagram showing the arrangement of the pilot burner 40, the first main burner 41, and the second main burner 42 of the combustor 12C according to the fourth embodiment.
  • the fuel injection port 41a of the first main burner 41 of the combustor 12C according to the fourth embodiment is provided on the inner peripheral surface of the liner 32 on the downstream side of the fuel injection port 40a of the pilot burner 40. It has been. From the first main burner 41, fuel is ejected toward the inner side in the radial direction of the liner 32.
  • the fuel injection port 42 a of the second main burner 42 is provided on the inner peripheral surface of the liner 32 on the downstream side of the fuel injection port of the first main burner 41. From the second main burner 42, fuel is ejected toward the inner side in the radial direction of the liner 32.
  • the fuel injection methods of the first main burner 41 and the second main burner 42 are both premixed combustion methods, but of the first main burner 41 and the second main burner 42 At least one may be a diffusion combustion system.
  • the combustor 12 according to the present invention it is possible to suppress the occurrence of flashback regardless of the diffusion combustion method and the premixed combustion method.
  • the first main burner 41 and the second main burner 42 are both configured to eject a mixed gas in which air and fuel are mixed in advance.
  • At least one of the first main burner 41 and the second main burner 42 may be configured to eject water, water vapor, or a mixed gas in which an inert gas and fuel are mixed in advance.
  • the combustion air flow path may be formed so that the combustion air is ejected into the combustion chamber 35 from a flow path different from the mixed gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

A fuel injecting device (36) for a combustor (12) has a pilot burner (40) and a main burner (4). The main burner (4) has at least one first fuel injection port (41a) to supply a first fuel to an upstream section of a combustion chamber (35) and at least one second fuel injection port (42a) to supply a second fuel to the upstream section of the combustion chamber (35). During startup, the operation of the combustor (12) is controlled so that the main burner (4) is ignited by the flame of the pilot burner (40) and the first fuel is burned as the primary fuel, and when a gas turbine engine 1 satisfies prescribed rated operation conditions, the fuel is switched so that the second fuel that has a faster maximum burning rate than the first fuel is burned as the primary fuel by the main burner (4).

Description

ガスタービンエンジンの燃焼器及びその運転方法Gas turbine engine combustor and method of operating the same
 本発明は、ガスタービンエンジンに備えらえれる燃焼器に関する。 The present invention relates to a combustor provided in a gas turbine engine.
 近年、ガスタービンエンジンの燃料として、従来の主要燃料であるLNG(Liquefied Natural Gas)に加え、石油をはじめとして化学や鉄鋼等の業界でそれぞれの生産工程で副次的に発生する水素(副生水素)を利用することが検討されている。副生水素を燃料とするガスタービンでそのエネルギーを回収することによれば、化石燃料使用量を減少させることによる燃料コスト削減及び資源有効利用と、水素燃焼時に二酸化炭素が発生しないことによる地球温暖化防止とに貢献することができる。 In recent years, as a fuel for gas turbine engines, in addition to LNG (Liquefied Natural Gas), which is the main fuel of the past, hydrogen generated as a by-product in each production process in industries such as petroleum and chemical and steel (byproduct) Use of hydrogen) is under consideration. By recovering the energy with a gas turbine that uses hydrogen as a byproduct, fuel costs can be reduced and resources can be effectively used by reducing the amount of fossil fuel used, and global warming due to the absence of carbon dioxide during hydrogen combustion. It can contribute to prevention.
 しかしながら、水素の火炎は天然ガスの火炎よりも100~200℃程度高いため、ガスタービンエンジンの燃焼器で天然ガス(NG)と同様に水素含有燃料を燃焼させると、天然ガスを燃焼させたときと比較して燃焼器の排出ガス中のNOXが増加する。そこで、NOX排出量の低減のために、燃焼室に水や蒸気を噴射することによる火炎の冷却や燃料の希釈等の対策が検討されてきた。 However, since hydrogen flames are about 100-200 ° C higher than natural gas flames, when hydrogen-containing fuel is burned in the same manner as natural gas (NG) in a gas turbine engine combustor, compared to NO X in the exhaust gas of the combustor is increased. Therefore, in order to reduce NO x emissions, measures such as flame cooling and fuel dilution by injecting water or steam into the combustion chamber have been studied.
 例えば、特許文献1では、燃焼室の上流側の一次燃焼領域へ水素含有燃料を拡散燃焼方式で供給する第1の燃料ノズルと、一次燃焼領域より下流側の還元領域へ水素含有燃料を供給する第2の燃料ノズルと、還元領域より下流側の二次燃焼領域へリーン燃焼用空気を供給する空気吹出口とを備えた燃焼器が示されている。この燃焼器では、水素の酸化反応によって一次燃焼領域で発生したNOXを還元領域で還元したのち、二次燃焼領域で燃料希薄条件で未燃分燃料を燃焼することにより、燃焼器からのNOX排出量を低減している。 For example, in Patent Document 1, a hydrogen-containing fuel is supplied to a first fuel nozzle that supplies a hydrogen-containing fuel to a primary combustion region upstream of a combustion chamber by a diffusion combustion method, and a reduction region downstream of the primary combustion region. A combustor including a second fuel nozzle and an air outlet for supplying lean combustion air to a secondary combustion region downstream from the reduction region is shown. In this combustor, NO x generated in the primary combustion region due to the oxidation reaction of hydrogen is reduced in the reduction region, and then the unburned fuel is burned in the secondary combustion region under the lean fuel condition, so that NO from the combustor X emissions are reduced.
特開2011-75174号公報JP 2011-75174 A
 ところで、ガスタービンエンジンの燃焼器への一般的な燃料噴射方式として、予混合燃焼方式と拡散燃焼方式とが知られている。予混合燃焼方式では、予め混合した燃料と空気を燃焼室に供給して燃焼させる。この方式では、燃料希薄状態で燃焼を行うことにより、燃焼器からのNOX排出量を低減することができる。しかし、水素含有燃料は天然ガスと比較して可燃範囲が広く燃焼速度が約10倍と速いため、天然ガスと同様に予熱混合方式で水素含有燃料を燃焼させると、火炎が燃料噴射ノズルや壁面等に接近してそれらを損傷させたり、逆火が発生したりするおそれがある。一方、拡散燃焼方式では、燃料と空気とをそれぞれ別の流路から燃焼室に供給して燃焼させる。この方式では、逆火は発生しにくいが、燃料と空気の混合の度合いが不均一となりやすいため、局所的に燃料の濃い領域が形成されることで局所火炎温度が高くなればNOX排出量が増加する。 By the way, as a general fuel injection system to a combustor of a gas turbine engine, a premixed combustion system and a diffusion combustion system are known. In the premix combustion method, fuel and air mixed in advance are supplied to the combustion chamber and burned. In this system, NO x emissions from the combustor can be reduced by performing combustion in a lean fuel state. However, since hydrogen-containing fuel has a wide flammable range and a combustion speed of about 10 times faster than natural gas, when hydrogen-containing fuel is burned by the preheating mixing method as with natural gas, the flame is injected into the fuel injection nozzle and the wall surface. There is a risk of damaging them or approaching a fire. On the other hand, in the diffusion combustion method, fuel and air are supplied to the combustion chamber from different flow paths and burned. In this method, backfire is unlikely to occur, but the degree of mixing of fuel and air tends to be uneven, so if the local flame temperature rises due to the formation of a locally dense region of fuel, NO x emissions Will increase.
 上記特許文献1では、逆火の発生を防止するために、拡散燃焼方式を採用している。これに対し、本発明では、水素含有燃料などの燃焼速度が天然ガスよりも速い燃料を燃焼するガスタービンエンジンの燃焼器において、予混合燃焼方式において逆火の発生を抑制する技術を提案する。 In the above-mentioned Patent Document 1, a diffusion combustion method is adopted in order to prevent the occurrence of flashback. On the other hand, the present invention proposes a technique for suppressing the occurrence of flashback in a premixed combustion system in a combustor of a gas turbine engine that burns a fuel having a combustion speed higher than that of natural gas, such as a hydrogen-containing fuel.
 本発明に係るガスタービンエンジンの燃焼器は、
内部に燃焼室を形成するライナと、
前記燃焼室の上流部へ第1燃料を噴出する少なくとも1つの第1燃料噴射口、前記少なくとも1つの第1燃料噴射口から噴射された前記第1燃料を着火させるためのパイロット燃料を前記燃焼室へ噴出する少なくとも1つのパイロット燃料噴射口、及び、前記燃焼室の上流部へ前記第1燃料よりも最大燃焼速度の速い第2燃料を供給する少なくとも1つの第2燃料噴射口を有する燃料噴射装置とを備えていることを特徴とする。
A combustor of a gas turbine engine according to the present invention,
A liner that forms a combustion chamber therein;
At least one first fuel injection port for injecting first fuel to the upstream portion of the combustion chamber, and pilot fuel for igniting the first fuel injected from the at least one first fuel injection port in the combustion chamber And at least one second fuel injection port for supplying a second fuel having a maximum combustion speed higher than that of the first fuel to the upstream portion of the combustion chamber It is characterized by having.
 上記構成によれば、比較的燃焼速度の遅い第1燃料と比較的燃焼速度の速い第2燃料とを、択一的に又は同時に燃焼室35へ供給することが可能となる。このような特徴を利用して、例えば水素含有燃料などの天然ガスと比較して燃焼速度の速い燃料を使用する場合に、起動時や停止時の燃料噴射量を漸次増大又は減少させる過程では比較的燃焼速度の遅い燃料を燃焼させて、エンジン回転数やエンジン運転負荷が上昇した状態で比較的燃焼速度の速い燃料を燃焼させることができる。このようにして燃焼器の主燃料を切り替えることで、バーナ内への逆火の発生を抑制可能な燃焼器の運転を行うことができる。 According to the above configuration, the first fuel having a relatively slow combustion speed and the second fuel having a relatively fast combustion speed can be supplied to the combustion chamber 35 alternatively or simultaneously. Utilizing such characteristics, for example, when using a fuel with a high combustion speed compared to natural gas such as hydrogen-containing fuel, a comparison is made in the process of gradually increasing or decreasing the fuel injection amount at startup or stop A fuel with a relatively slow combustion rate can be burned, and a fuel with a relatively fast combustion rate can be burned in a state where the engine speed and engine operating load are increased. By switching the main fuel of the combustor in this way, it is possible to operate the combustor capable of suppressing the occurrence of backfire into the burner.
 上記ガスタービンエンジンの燃焼器は、前記少なくとも1つのパイロット燃料噴射口の周囲に、前記少なくとも1つの第1燃料噴射口と前記少なくとも1つの第2燃料噴射口とが交互に並べられて成る、少なくとも一重の環状噴射口列が形成されているものであってよい。ここで、前記少なくとも一重の環状噴射口列が、前記燃焼室の前記少なくとも1つのパイロット燃料噴射口よりも下流側において前記ライナの内周面に設けられていてもよい。 The combustor of the gas turbine engine is formed by alternately arranging the at least one first fuel injection port and the at least one second fuel injection port around the at least one pilot fuel injection port. A single annular injection port array may be formed. Here, the at least one annular injection port array may be provided on the inner peripheral surface of the liner on the downstream side of the at least one pilot fuel injection port of the combustion chamber.
 或いは、上記ガスタービンエンジンの燃焼器は、前記少なくとも1つのパイロット燃料噴射口の周囲に前記少なくとも1つの第1燃料噴射口が環状に並べられた第1環状噴射口列が形成され、前記第1環状噴射口列の周囲に前記少なくとも1つの第2燃料噴射口が環状に並べられた第2環状噴射口列が形成されているものであってよい。 Alternatively, in the combustor of the gas turbine engine, a first annular injection port array in which the at least one first fuel injection port is arranged in an annular shape is formed around the at least one pilot fuel injection port, and the first A second annular injection port array in which the at least one second fuel injection port is arranged in an annular shape may be formed around the annular injection port array.
 或いは、前記少なくとも1つのパイロット燃料噴射口の周囲に環状の前記少なくとも1つの第1燃料噴射口が設けられ、前記少なくとも1つの第1燃料噴射口の周囲に環状の前記少なくとも1つの第2燃料噴射口が設けられているものであってよい。 Alternatively, the at least one first fuel injection port that is annular around the at least one pilot fuel injection port is provided, and the at least one second fuel injection that is annular around the at least one first fuel injection port. A mouth may be provided.
 上記いずれの構成においても、第1燃料と第2燃料とが燃焼室内に分散して供給されるので、局所的に燃料の濃い領域が形成されることを防止することができる。これにより、局所火炎温度が高くなることによるNOX排出量の増加を抑制することができる。 In any of the above configurations, since the first fuel and the second fuel are distributed and supplied into the combustion chamber, it is possible to prevent the formation of a locally rich region of fuel. Thus, it is possible to suppress the increase of the NO X emissions from the local flame temperature rises.
 上記ガスタービンエンジンの燃焼器が、起動時に、前記第1燃料の噴射量をゼロから漸次増大させ、ガスタービンエンジンが所定の定格運転条件となると前記第1燃料の噴射量を所定値まで漸次減少させるとともに前記第2燃料の噴射量を前記ガスタービンエンジンが前記定格運転条件を維持するように漸次増大させるように、前記第1燃料の噴射量及び前記第2燃料の噴射量を制御する制御装置を更に備えていてもよい。 The gas turbine engine combustor gradually increases the injection amount of the first fuel from zero at start-up, and gradually decreases the injection amount of the first fuel to a predetermined value when the gas turbine engine reaches a predetermined rated operating condition. And a control device for controlling the injection amount of the first fuel and the injection amount of the second fuel so that the injection amount of the second fuel is gradually increased so that the gas turbine engine maintains the rated operating condition. May be further provided.
 上記構成によれば、着火時を含む起動時に比較的燃焼速度の遅い第1燃料を燃焼させるので、起動時におけるバーナ内への逆火の発生を抑制することができる。また、エンジン回転数やエンジン運転負荷が定格運転条件まで上昇した状態になってから第2燃料を燃焼させるので、比較的燃焼速度の速い第2燃料を使用しても安定した運転を行うことができる。 According to the above configuration, the first fuel having a relatively low combustion speed is combusted at the time of start-up including ignition, so that the occurrence of backfire in the burner at the time of start-up can be suppressed. In addition, since the second fuel is combusted after the engine speed and the engine operating load have increased to the rated operating conditions, stable operation can be performed even when the second fuel having a relatively high combustion speed is used. it can.
 上記ガスタービンエンジンの燃焼器において、前記制御装置が、前記起動時に前記第1燃料の噴射量が前記所定値まで減少したあとで、前記燃料噴射装置への前記第2燃料の供給量が前記定格運転条件を維持するための前記第2燃料の噴射量に対し不足する場合には、前記第1燃料の噴射量を増大させるように制御してもよい。この構成によれば、第2燃料の供給量が変動する場合に、第2燃料の噴射量の不足分を第1燃料で補うことができる。 In the combustor of the gas turbine engine, the supply amount of the second fuel to the fuel injection device is determined by the control device after the injection amount of the first fuel is reduced to the predetermined value at the start-up. Control may be made to increase the injection amount of the first fuel when the injection amount of the second fuel for maintaining the operating condition is insufficient. According to this configuration, when the supply amount of the second fuel fluctuates, the shortage of the injection amount of the second fuel can be compensated with the first fuel.
 上記ガスタービンエンジンの燃焼器において、前記制御装置が、停止時に、前記第2燃料の噴射量をゼロまで漸次低減させるとともに前記第1燃料の噴射量を前記ガスタービンエンジンが前記定格運転条件を維持するように漸次増大させ、前記第2燃料の噴射量がゼロなると前記第1燃料の噴射量をゼロまで漸次低減させるように、前記第1燃料の噴射量及び前記第2燃料の噴射量を制御してもよい。 In the combustor of the gas turbine engine, the control device gradually reduces the injection amount of the second fuel to zero and stops the injection amount of the first fuel while the gas turbine engine maintains the rated operating condition when stopped. The injection amount of the first fuel and the injection amount of the second fuel are controlled so that the injection amount of the first fuel is gradually reduced to zero when the injection amount of the second fuel becomes zero. May be.
 上記構成によれば、停止前に、燃焼器の主燃料を第2燃料から第1燃料へ切り替えることで、運転停止後の燃焼器やその下流配管に第2燃料が残留することを防止することができる。これにより、次の起動時に残留している未燃の第2燃料により爆発的燃焼が生じることを防止することができる。 According to the above configuration, the main fuel of the combustor is switched from the second fuel to the first fuel before the stop, thereby preventing the second fuel from remaining in the combustor after the operation stop and its downstream pipe. Can do. Thereby, it is possible to prevent explosive combustion from occurring due to the unburned second fuel remaining at the next start-up.
 上記ガスタービンエンジンの燃焼器において、前記第2燃料が水素又は水素含有燃料であり、前記第1燃料が天然ガス又は前記第2燃料よりも水素含有率の低い水素含有燃料であってよい。 In the combustor of the gas turbine engine, the second fuel may be hydrogen or a hydrogen-containing fuel, and the first fuel may be natural gas or a hydrogen-containing fuel having a lower hydrogen content than the second fuel.
 本発明に係るガスタービンエンジンの燃焼器の運転方法は、
パイロットバーナに点火することと、
前記パイロットバーナの火炎でメインバーナに点火して当該メインバーナで第1燃料を主燃料として燃焼させることと、
ガスタービンエンジンが所定の定格運転条件となると、前記メインバーナで前記第1燃料よりも最大燃焼速度の速い第2燃料を前記主燃料として燃焼させるように起動時燃料切替を行うこととを含むことを特徴としている。
The operation method of the combustor of the gas turbine engine according to the present invention is as follows:
Igniting the pilot burner;
Igniting the main burner with a flame of the pilot burner and burning the first fuel as the main fuel in the main burner;
Switching the start-up fuel so that when the gas turbine engine reaches a predetermined rated operating condition, the main burner burns the second fuel having a maximum combustion speed faster than the first fuel as the main fuel. It is characterized by.
 上記運転方法によれば、起動時に比較的燃焼速度の遅いパイロット燃料と第1燃料を燃焼させるので、起動時(特に着火時)におけるバーナ内への逆火の発生を抑制することができる。また、エンジン回転数やエンジン運転負荷が上昇した状態となってから第2燃料を燃焼させるので、比較的燃焼速度の速い第2燃料を使用しても安定した運転を行うことができる。 According to the above operation method, the pilot fuel and the first fuel having a relatively slow combustion speed are combusted at the time of start-up, so that it is possible to suppress the occurrence of flashback in the burner at the time of start-up (particularly at the time of ignition). Further, since the second fuel is burned after the engine speed and the engine operating load are increased, stable operation can be performed even when the second fuel having a relatively high combustion speed is used.
 上記ガスタービンエンジンの燃焼器の運転方法において、前記起動時燃料切替を行うことが、前記第1燃料の噴射量を所定値まで漸次減少させるとともに、前記第2燃料の噴射量を前記ガスタービンエンジンが前記定格運転条件を維持するように漸次増大させることを含んでいてよい。 In the operation method of the combustor of the gas turbine engine, performing the start-up fuel switching gradually reduces the injection amount of the first fuel to a predetermined value and reduces the injection amount of the second fuel to the gas turbine engine. May gradually increase to maintain the rated operating conditions.
 上記ガスタービンエンジンの燃焼器の運転方法において、前記起動時燃料切替を行ったあとで、前記メインバーナへの前記第2燃料の供給量が前記定格運転条件を維持するための前記第2燃料の噴射量に対し不足する場合に、前記第1燃料の噴射量を増大させることが行われてもよい。このことによれば、第2燃料の供給量が変動する場合に、第2燃料の噴射量の不足分を第1燃料で補うことができる。 In the gas turbine engine combustor operating method, after the start-up fuel switching, the second fuel supply amount to the main burner is the second fuel for maintaining the rated operating condition. Increasing the injection amount of the first fuel may be performed when the injection amount is insufficient. According to this, when the supply amount of the second fuel fluctuates, the shortage of the injection amount of the second fuel can be compensated with the first fuel.
 上記ガスタービンエンジンの燃焼器の運転方法において、前記ガスタービンエンジンの停止時に、前記メインバーナで前記第1燃料を前記主燃料として燃焼させるように停止時燃料切替を行うことと、前記メインバーナを消火することとを更に含むことが望ましい。 In the operation method of the combustor of the gas turbine engine, when the gas turbine engine is stopped, switching the fuel at the time of stop so that the main fuel burns the first fuel as the main fuel; and It is desirable to further include extinguishing the fire.
 上記運転方法によれば、停止前に、燃焼器の主燃料を第2燃料から第1燃料へ切り替えることで、運転停止後の燃焼器やその下流配管に第2燃料が残留することを防止することができる。これにより、次の起動時に残留している未燃の第2燃料により爆発的燃焼が生じることを防止することができる。 According to the above operation method, the main fuel of the combustor is switched from the second fuel to the first fuel before the stop, thereby preventing the second fuel from remaining in the combustor after the stop and its downstream piping. be able to. Thereby, it is possible to prevent explosive combustion from occurring due to the unburned second fuel remaining at the next start-up.
 上記ガスタービンエンジンの燃焼器の運転方法において、前記停止時燃料切替を行うことが、前記第2燃料の噴射量をゼロまで漸次低減させるとともに、前記第1燃料の噴射量を前記ガスタービンエンジンが前記定格運転条件を維持するように漸次増大させることを含んでいてよい。 In the operation method of the combustor of the gas turbine engine, performing the fuel switching at the time of stopping gradually reduces the injection amount of the second fuel to zero, and the gas turbine engine reduces the injection amount of the first fuel. Increasing gradually may be included to maintain the rated operating conditions.
 上記ガスタービンエンジンの燃焼器の運転方法において、前記第2燃料が水素又は水素含有燃料であり、前記第1燃料が天然ガス又は前記第2燃料よりも水素含有率の低い水素含有燃料であってよい。 In the operation method of the combustor of the gas turbine engine, the second fuel is hydrogen or a hydrogen-containing fuel, and the first fuel is natural gas or a hydrogen-containing fuel having a lower hydrogen content than the second fuel. Good.
 本発明によれば、水素含有燃料などの燃焼速度が天然ガスと比較して速い燃料を燃焼するガスタービンエンジンの燃焼器において、バーナ内への逆火の発生を抑制することができる。 According to the present invention, it is possible to suppress the occurrence of flashback in the burner in a combustor of a gas turbine engine that burns a fuel having a combustion speed higher than that of natural gas, such as a hydrogen-containing fuel.
図1は、本発明の一実施形態に係る燃焼器を備えたガスタービンエンジンの概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a gas turbine engine including a combustor according to an embodiment of the present invention. 図2は、本発明の第1実施形態に係る燃焼器の概略構成を示す断面図である。FIG. 2 is a cross-sectional view showing a schematic configuration of the combustor according to the first embodiment of the present invention. 図3は、燃料噴射口のレイアウト図である。FIG. 3 is a layout diagram of the fuel injection port. 図4は、ガスタービンエンジンの起動時のエンジン回転数の時系列変化を示すグラフである。FIG. 4 is a graph showing a time-series change in the engine speed when the gas turbine engine is started. 図5は、ガスタービンエンジンのエンジン運転負荷と燃料使用量との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the engine operating load of the gas turbine engine and the amount of fuel used. 図6は、燃料噴射量の時系列変化を示すグラフである。FIG. 6 is a graph showing a time-series change in the fuel injection amount. 図7は、変形例1に係る燃料噴射口のレイアウト図である。FIG. 7 is a layout diagram of the fuel injection port according to the first modification. 図8は、変形例2に係る燃料噴射口のレイアウト図である。FIG. 8 is a layout diagram of the fuel injection port according to the second modification. 図9は、変形例3に係る燃料噴射口のレイアウト図である。FIG. 9 is a layout diagram of the fuel injection port according to the third modification. 図10は、変形例4に係る燃料噴射口のレイアウト図である。FIG. 10 is a layout diagram of the fuel injection port according to the fourth modification. 図11は、変形例5に係る燃料噴射口のレイアウト図である。FIG. 11 is a layout diagram of the fuel injection port according to the fifth modification. 図12Aは、本発明の第2実施形態に係る燃焼器の各バーナの配置を示した模式的断面図である。FIG. 12A is a schematic cross-sectional view showing the arrangement of each burner of the combustor according to the second embodiment of the present invention. 図12Bは、本発明の第2実施形態に係る燃焼器の各バーナの配置を軸方向から見た模式図であるFIG. 12B is a schematic view of the arrangement of each burner of the combustor according to the second embodiment of the present invention viewed from the axial direction. 図13は、本発明の第3実施形態に係る燃焼器の各バーナの配置を示した模式図である。FIG. 13 is a schematic diagram showing the arrangement of each burner of the combustor according to the third embodiment of the present invention. 図14は、本発明の第4実施形態に係る燃焼器の各バーナの配置を示した模式図である。FIG. 14 is a schematic diagram showing the arrangement of the burners of the combustor according to the fourth embodiment of the present invention.
 以下、図面を参照して本発明の実施の形態を説明する。まず、本発明の一実施形態に係る燃焼器12を備えたガスタービンエンジン1の概略構成から説明する。図1に示すように、ガスタービンエンジン1は、圧縮機11と、圧縮機11と空気供給通路21で接続された燃焼器12と、燃焼器12と燃焼ガス供給通路22で接続されたタービン13とを備えている。圧縮機11とタービン13は回転軸14で連結されており、この回転軸14には発電機15などの負荷や、スタータ(起動用モータ)18が接続されている。上記構成のガスタービンエンジン1において、圧縮機11は大気より吸い込んだ空気を圧縮して燃焼用空気として燃焼器12へ供給し、燃焼器12は燃焼用空気と燃料との混合燃焼によって生じた高温高圧の燃焼ガスをタービン13へ供給し、タービン13は燃焼ガスで羽根を回して燃焼ガスの熱エネルギーを回転運動エネルギーへ変換する。この回転運動エネルギーは、圧縮機11で圧縮動力に用いられ、また、発電機15で電気エネルギーへ変換される。更に、タービン13からの排出ガスは、タービン13と排気通路23で接続されたボイラ16へ送られ、ボイラ16の熱源として利用される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, a schematic configuration of a gas turbine engine 1 including a combustor 12 according to an embodiment of the present invention will be described. As shown in FIG. 1, a gas turbine engine 1 includes a compressor 11, a combustor 12 connected to the compressor 11 and an air supply passage 21, and a turbine 13 connected to the combustor 12 and a combustion gas supply passage 22. And. The compressor 11 and the turbine 13 are connected by a rotating shaft 14, and a load such as a generator 15 and a starter (starting motor) 18 are connected to the rotating shaft 14. In the gas turbine engine 1 having the above-described configuration, the compressor 11 compresses the air sucked from the atmosphere and supplies it as combustion air to the combustor 12, and the combustor 12 has a high temperature generated by the mixed combustion of the combustion air and the fuel. High-pressure combustion gas is supplied to the turbine 13, and the turbine 13 rotates blades with the combustion gas to convert the thermal energy of the combustion gas into rotational kinetic energy. This rotational kinetic energy is used for compression power by the compressor 11, and is converted into electric energy by the generator 15. Further, the exhaust gas from the turbine 13 is sent to the boiler 16 connected to the turbine 13 through the exhaust passage 23 and used as a heat source for the boiler 16.
 次に、本発明の第1実施形態に係る燃焼器12について説明する。図2は本発明の第1実施形態に係る燃焼器12の概略構成を示す断面図であり、図3は燃料噴射口のレイアウト図である。なお、図3及び以下に示す燃料噴射口のレイアウト図では、燃料噴射口の種類がわかりやすいようにパイロット燃料噴射口40aが斜線で、第1燃料噴射口41aが薄墨で、第2燃料噴射口42aが網掛けで、それぞれハッチングされている。 Next, the combustor 12 according to the first embodiment of the present invention will be described. FIG. 2 is a sectional view showing a schematic configuration of the combustor 12 according to the first embodiment of the present invention, and FIG. 3 is a layout diagram of the fuel injection port. In FIG. 3 and the layout diagram of the fuel injection port shown below, the pilot fuel injection port 40a is hatched, the first fuel injection port 41a is light, and the second fuel injection port 42a so that the type of the fuel injection port can be easily understood. Are shaded and hatched respectively.
 図2及び図3に示すように、燃焼器12は、円筒状のケーシング31と、ケーシング31内に収容された円筒状のライナ32と、燃料噴射装置36とを備えている。ライナ32の内部には、燃焼室35が形成されており、ケーシング31とライナ32との間に燃焼用空気を導入する空気通路33が形成されている。燃焼室35へ燃料を噴射する燃料噴射装置36は、ライナ32の一方の端部に設けられている。以下では、燃焼室35内の燃料噴射装置36が設けられた一方側を上流側とし、他方側を下流側ということとする。 2 and 3, the combustor 12 includes a cylindrical casing 31, a cylindrical liner 32 accommodated in the casing 31, and a fuel injection device 36. A combustion chamber 35 is formed inside the liner 32, and an air passage 33 for introducing combustion air is formed between the casing 31 and the liner 32. A fuel injection device 36 that injects fuel into the combustion chamber 35 is provided at one end of the liner 32. Hereinafter, one side where the fuel injection device 36 in the combustion chamber 35 is provided is referred to as an upstream side, and the other side is referred to as a downstream side.
 燃料噴射装置36は、パイロットバーナ40と、メインバーナ4とを備えている。メインバーナ4は、燃焼室35の上流部へ第1燃料を噴出する少なくとも1つの第1メインバーナ41と、燃焼室35の上流部へ第2燃料を噴出する少なくとも1つの第2メインバーナ42とを有している。パイロットバーナ40の燃料噴射口(パイロット燃料噴射口40a)は、円筒状のライナ32のほぼ軸心を通る位置に設けられている。そして、パイロット燃料噴射口40aの周囲に、第1メインバーナ41の燃料噴射口(第1燃料噴射口41a)と第2メインバーナ42の燃料噴射口(第2燃料噴射口42a)とから成る少なくとも一重の環状噴射口列が設けられている。環状噴射口列は、少なくとも1つの第1燃料噴射口41aと少なくとも1つの第2燃料噴射口42aとが交互に並べられて成る。このような燃料噴射口41a,42aの配置により、第1燃料と第2燃料とが燃焼室35内に分散して供給されることとなり、局所的に燃料の濃い領域が形成されることを防止することができる。ひいては、局所火炎温度が高くなることによるNOX排出量の増加を抑制することができる。 The fuel injection device 36 includes a pilot burner 40 and a main burner 4. The main burner 4 includes at least one first main burner 41 that ejects the first fuel to the upstream portion of the combustion chamber 35, and at least one second main burner 42 that ejects the second fuel to the upstream portion of the combustion chamber 35. have. The fuel injection port (pilot fuel injection port 40 a) of the pilot burner 40 is provided at a position that substantially passes through the axial center of the cylindrical liner 32. Around the pilot fuel injection port 40a, there are at least a fuel injection port (first fuel injection port 41a) of the first main burner 41 and a fuel injection port (second fuel injection port 42a) of the second main burner 42. A single annular jet row is provided. The annular injection port row is formed by alternately arranging at least one first fuel injection port 41a and at least one second fuel injection port 42a. With the arrangement of the fuel injection ports 41a and 42a, the first fuel and the second fuel are distributed and supplied into the combustion chamber 35, thereby preventing the formation of a locally rich region of fuel. can do. As a result, it is possible to suppress an increase in the NO x emission amount due to the increase in the local flame temperature.
 本実施形態に係るパイロットバーナ40はパイロット燃料として第1燃料を使用しており、パイロットバーナ40はパイロット燃料を燃焼室35へ直接に噴射して拡散燃焼させる。但し、パイロット燃料は第1燃料ではない燃料であってもよく、例えば、第1燃料が天然ガスの場合にパイロット燃料が液体燃料などで合ってもよい。第1メインバーナ41は、第1燃料供給源51から供給された第1燃料と燃焼用空気とが予め混合された第1予混合ガスを燃焼室35へ噴射して予混合燃焼させる。第2メインバーナ42は、第2燃料供給源52から供給された第2燃料と燃焼用空気とが予め混合された第2予混合ガスを燃焼室35へ噴射して予混合燃焼させる。 The pilot burner 40 according to the present embodiment uses the first fuel as the pilot fuel, and the pilot burner 40 directly injects the pilot fuel into the combustion chamber 35 to perform diffusion combustion. However, the pilot fuel may be a fuel that is not the first fuel. For example, when the first fuel is natural gas, the pilot fuel may be a liquid fuel. The first main burner 41 injects the first premixed gas in which the first fuel supplied from the first fuel supply source 51 and the combustion air are mixed in advance into the combustion chamber 35 to cause premix combustion. The second main burner 42 injects the second premixed gas, in which the second fuel supplied from the second fuel supply source 52 and the combustion air are premixed, into the combustion chamber 35 and performs premix combustion.
 第1燃料(又は、第1燃料及びパイロット燃料)は、天然ガス、通気メタン(VAM)、5%未満の水素が混合された天然ガス、5%未満の水素が混合された通気メタン、又は、灯油或いは軽油のような液体燃料などである。第2燃料は、水素ガス、副生水素、液化石油ガス(LPG)、5%以上の水素が混合された天然ガス、又は、5%以上の水素が混合された通気メタンなどである。このように、第1燃料(又は、第1燃料及びパイロット燃料)と第2燃料とは組成が異なり、第1燃料(又は、第1燃料及びパイロット燃料)の最大燃焼速度よりも第2燃料の最大燃焼速度が速い。最大燃焼速度は、ガスの組成により決まり、水素含有ガスでは水素の含有率が高いほど最大燃焼速度が速い。このような第1燃料と第2燃料の組み合わせの例として、第2燃料としての水素含有ガスと第1燃料としての天然ガス、第2燃料としての水素含有ガスと第1燃料としての第2燃料よりも水素含有率の低い水素含有ガス、などが挙げられる。 The first fuel (or first fuel and pilot fuel) is natural gas, vented methane (VAM), natural gas mixed with less than 5% hydrogen, vented methane mixed with less than 5% hydrogen, or Liquid fuel such as kerosene or light oil. The second fuel is hydrogen gas, by-product hydrogen, liquefied petroleum gas (LPG), natural gas mixed with 5% or more hydrogen, or vented methane mixed with 5% or more hydrogen. As described above, the composition of the first fuel (or the first fuel and the pilot fuel) and the second fuel is different, and the second fuel has a higher combustion rate than the maximum combustion rate of the first fuel (or the first fuel and the pilot fuel). Maximum burning speed is fast. The maximum burning rate is determined by the composition of the gas. In the hydrogen-containing gas, the higher the hydrogen content, the faster the maximum burning rate. Examples of such a combination of the first fuel and the second fuel include a hydrogen-containing gas as the second fuel and a natural gas as the first fuel, a hydrogen-containing gas as the second fuel and a second fuel as the first fuel. And hydrogen-containing gas having a lower hydrogen content.
 パイロットバーナ40は、パイロット燃料ノズル43を備えており、パイロット燃料ノズル43の出口が燃料噴射口40aとなっている。パイロット燃料ノズル43はパイロット燃料供給管44を介して第1燃料供給源51又は図示されないパイロット燃料供給源と接続される。パイロット燃料供給管44には、パイロットバーナ40から噴出するパイロット燃料(第1燃料)の流量を調整するパイロット燃料制御弁61が設けられている。パイロット燃料ノズル43の周囲には空気通路33の燃焼用空気を燃焼室35へ噴出するための空気ノズル62が形成されている。 The pilot burner 40 is provided with a pilot fuel nozzle 43, and the outlet of the pilot fuel nozzle 43 is a fuel injection port 40a. The pilot fuel nozzle 43 is connected to a first fuel supply source 51 or a pilot fuel supply source (not shown) via a pilot fuel supply pipe 44. The pilot fuel supply pipe 44 is provided with a pilot fuel control valve 61 that adjusts the flow rate of pilot fuel (first fuel) ejected from the pilot burner 40. An air nozzle 62 is formed around the pilot fuel nozzle 43 to inject combustion air from the air passage 33 into the combustion chamber 35.
 第1メインバーナ41は、予混合通路45を形成する流路部材46と、予混合通路45の上流側に開口した空気取入口47に設けられたスワーラ48と、空気取入口47に向けて第1燃料を噴射する噴射孔を有する第1燃料ノズル49とを備えている。予混合通路45の出口が燃料噴射口41aとなっている。第1燃料ノズル49は、第1燃料供給管50を介して第1燃料供給源51と接続されている。第1燃料供給管50には、第1燃料の流量を調整する第1燃料制御弁63が設けられている。上記構成の第1メインバーナ41において、第1燃料ノズル49の噴射孔から空気取入口47へ向けて噴射された第1燃料と、空気通路33の燃焼用空気とが、スワーラ48により旋回されながら空気取入口47を通じて予混合通路45へ導入される。予混合通路45で予混合した第1燃料と燃焼用空気は、第1予混合ガスとして燃焼室35に噴出する。 The first main burner 41 includes a flow path member 46 that forms a premixing passage 45, a swirler 48 provided in an air intake 47 that opens upstream of the premixing passage 45, and a first main burner 41 that faces the air intake 47. And a first fuel nozzle 49 having an injection hole for injecting one fuel. The outlet of the premixing passage 45 is a fuel injection port 41a. The first fuel nozzle 49 is connected to the first fuel supply source 51 via the first fuel supply pipe 50. The first fuel supply pipe 50 is provided with a first fuel control valve 63 that adjusts the flow rate of the first fuel. In the first main burner 41 configured as described above, the first fuel injected from the injection hole of the first fuel nozzle 49 toward the air intake 47 and the combustion air in the air passage 33 are swirled by the swirler 48. The air is introduced into the premixing passage 45 through the air intake 47. The first fuel and combustion air premixed in the premixing passage 45 are jetted into the combustion chamber 35 as a first premixed gas.
 第2メインバーナ42は、予混合通路55を形成する流路部材56と、予混合通路55の上流側に開口した空気取入口57に設けられたスワーラ58と、空気取入口57に向けて第2燃料を噴射する噴射孔を有する第2燃料ノズル59とを備えている。予混合通路55の出口が燃料噴射口42aとなっている。第2燃料ノズル59と第2燃料供給源52とは第2燃料供給管60で接続されている。第2燃料供給管60には、第2燃料の流量を調整する第2燃料制御弁64が設けられている。上記構成の第2メインバーナ42において、第2燃料ノズル59の噴射孔から空気取入口57へ向けて噴射された第2燃料と、空気通路33の燃焼用空気とが、スワーラ58により旋回されながら空気取入口57を通じて予混合通路55へ導入される。予混合通路55で予混合した第2燃料と燃焼用空気は、第2予混合ガスとして燃焼室35に噴出する。 The second main burner 42 includes a flow path member 56 that forms a premixing passage 55, a swirler 58 provided in an air intake 57 that opens to the upstream side of the premixing passage 55, and a second main burner 42 that faces the air intake 57. And a second fuel nozzle 59 having an injection hole for injecting two fuels. The outlet of the premixing passage 55 is a fuel injection port 42a. The second fuel nozzle 59 and the second fuel supply source 52 are connected by a second fuel supply pipe 60. The second fuel supply pipe 60 is provided with a second fuel control valve 64 that adjusts the flow rate of the second fuel. In the second main burner 42 configured as described above, the second fuel injected from the injection hole of the second fuel nozzle 59 toward the air intake port 57 and the combustion air in the air passage 33 are swirled by the swirler 58. The air is introduced into the premixing passage 55 through the air intake 57. The second fuel and combustion air premixed in the premixing passage 55 are jetted into the combustion chamber 35 as a second premixed gas.
 制御装置5は、燃料噴射装置36への燃料供給、即ち、パイロット燃料、第1燃料、及び第2燃料の噴射量を制御するように構成されている。制御装置5には、エンジン回転数(例えば、回転軸14の回転数)を検出する回転数センサ71と、エンジン運転負荷の指標となる発電機15での発電電力を検出する電力計73と、制御装置5へ動作指令を入力する操作入力装置72と、各燃料制御弁61,63,64とが接続されている。制御装置5は、操作入力装置72からの指令と回転数センサ71で検出されたエンジン回転数と電力計73で検出された発電電力(エンジン運転負荷)とに基づいて、パイロット燃料制御弁61、第1燃料制御弁63及び第2燃料制御弁64へ制御信号を出力する。なお、待機時のパイロット燃料制御弁61、第1燃料制御弁63、及び第2燃料制御弁64は全て閉止されている。 The control device 5 is configured to control the fuel supply to the fuel injection device 36, that is, the injection amounts of the pilot fuel, the first fuel, and the second fuel. The control device 5 includes a rotation speed sensor 71 that detects the engine rotation speed (for example, the rotation speed of the rotary shaft 14), a wattmeter 73 that detects power generated by the generator 15 that serves as an index of the engine operating load, An operation input device 72 for inputting an operation command to the control device 5 and the fuel control valves 61, 63, 64 are connected. Based on the command from the operation input device 72, the engine rotational speed detected by the rotational speed sensor 71, and the generated power (engine operating load) detected by the wattmeter 73, the control device 5 controls the pilot fuel control valve 61, Control signals are output to the first fuel control valve 63 and the second fuel control valve 64. Note that the pilot fuel control valve 61, the first fuel control valve 63, and the second fuel control valve 64 during standby are all closed.
 ここで、図4~6を用いて、上記制御装置5による燃焼器12の運転制御(運転方法)のうち特に起動制御及び停止制御について説明する。図4はガスタービンエンジン1の起動時のエンジン回転数の時系列変化を示すグラフであり、図5はガスタービンエンジン1のエンジン運転負荷と燃料使用量との関係を示すグラフであり、図6は燃料噴射量の時系列変化を示すグラフである。図6のグラフでは、縦軸が燃料噴射量であり、横軸が時刻であり、実線が第1メインバーナ41からの第1燃料の噴射量を、破線で第2メインバーナ42からの第2燃料の噴射量をそれぞれ示している。 Here, with reference to FIGS. 4 to 6, particularly the start control and stop control among the operation control (operation method) of the combustor 12 by the control device 5 will be described. 4 is a graph showing a time-series change in the engine speed when the gas turbine engine 1 is started, and FIG. 5 is a graph showing the relationship between the engine operation load of the gas turbine engine 1 and the fuel consumption. Is a graph showing a time-series change of the fuel injection amount. In the graph of FIG. 6, the vertical axis represents the fuel injection amount, the horizontal axis represents time, the solid line represents the first fuel injection amount from the first main burner 41, and the broken line represents the second fuel injection amount from the second main burner 42. The amount of fuel injection is shown.
 起動制御では、スタータ起動、着火、アイドルまでの制御が行われる。ガスタービンエンジン1の起動時にスタータ18が起動されると、エンジン回転数が増加し始める。制御装置5は、操作入力装置72より起動信号を受け取ると、図示しない点火プラグの放電又は発熱を開始させ、パイロット燃料制御弁61を開放する。これにより、パイロットバーナ40において、燃焼室35へ噴出した第1燃料と燃焼用空気とが点火され、拡散燃焼する。 In start-up control, starter start-up, ignition, and idle control are performed. When the starter 18 is started when the gas turbine engine 1 is started, the engine speed starts to increase. When the control device 5 receives the start signal from the operation input device 72, the control device 5 starts discharge or heat generation of a spark plug (not shown) and opens the pilot fuel control valve 61. Thereby, in the pilot burner 40, the 1st fuel and the combustion air which were injected to the combustion chamber 35 are ignited, and it carries out diffusion combustion.
 続いて、制御装置5は、第1燃料制御弁63を開放する。これにより、第1メインバーナ41において、燃焼室35へ噴出した第1予混合ガスが、パイロットバーナ40の火炎で着火し、予混合燃焼する。ここで制御装置5は、第1燃料制御弁63の開度を制御して、第1燃料の噴射量をゼロからガスタービンエンジン1が所定の定格運転条件となる噴射量(以下、「定格運転時噴射量」という)まで漸次増大させる。なお、第1燃料の噴射量がゼロのとき、即ち、第1燃料制御弁63が閉止しているときも、第1メインバーナ41から燃焼室35へ燃焼用空気が噴出しており、燃焼室35から予混合通路45へのガスの逆流は生じない。同様に、第2燃料の噴射量がゼロのとき、即ち、第2燃料制御弁64が閉止しているときも、第2メインバーナ42から燃焼室35へ燃焼用空気が噴出しており、燃焼室35から予混合通路55へのガスの逆流は生じない。 Subsequently, the control device 5 opens the first fuel control valve 63. As a result, in the first main burner 41, the first premixed gas ejected to the combustion chamber 35 is ignited by the flame of the pilot burner 40 and premixed and combusted. Here, the control device 5 controls the opening degree of the first fuel control valve 63 so that the injection amount of the first fuel becomes zero from the injection amount (hereinafter referred to as “rated operation”). Gradually increase to “hour injection amount”). Even when the injection amount of the first fuel is zero, that is, when the first fuel control valve 63 is closed, the combustion air is jetted from the first main burner 41 to the combustion chamber 35, and the combustion chamber No back flow of gas from 35 to the premixing passage 45 occurs. Similarly, when the injection amount of the second fuel is zero, that is, when the second fuel control valve 64 is closed, the combustion air is jetted from the second main burner 42 to the combustion chamber 35, and the combustion is performed. No back flow of gas from the chamber 35 to the premixing passage 55 occurs.
 制御装置5は、起動制御を通してエンジン回転数とエンジン運転負荷とを監視しており、これらが定格運転条件を満たすと、燃料切替(起動時燃料切替)を開始する。定格運転条件とは、例えば、検出されたエンジン回転数がタービン13が自律回転するような回転数以上であること、且つ、エンジン運転負荷が所定の値以上であることである。 The control device 5 monitors the engine speed and the engine operating load through the start-up control, and starts fuel switching (start-up fuel switching) when these satisfy the rated operation conditions. The rated operating condition is, for example, that the detected engine speed is equal to or higher than the speed at which the turbine 13 rotates autonomously, and the engine operating load is equal to or higher than a predetermined value.
 燃料切替を開始した制御装置5は、まず、点火プラグの放電又は発熱を停止し、パイロット燃料制御弁61を閉止し、パイロットバーナ40を消火するか、又は、保炎性を最小限確保できる燃料流量まで燃料流量を減少させる。続いて、制御装置5は、第1燃料制御弁63の開度を所定の切替時間をかけて徐々に小さくして、第1燃料の噴射量を定格運転時噴射量から所定の維持噴射量まで漸次低減させる。ここで、維持噴射量とは第1メインバーナ41でガスの逆流が生じない程度の第1燃料の噴射量である。それと同時に、制御装置5は、第2燃料制御弁64の開度を所定の切替時間をかけて徐々に大きくして、ガスタービンエンジン1が定格運転条件を維持するように、第2燃料の噴射量をゼロから漸次増大させる。このようにして、燃料切替終了時の燃焼器12は、第1燃料の噴射量よりも第2燃料の噴射量が多くなっており、メインバーナ4の主燃料が第1燃料から第2燃料へ切り替わっている。 The control device 5 that has started the fuel switching first stops the discharge or heat generation of the spark plug, closes the pilot fuel control valve 61, extinguishes the pilot burner 40, or fuel that can ensure a minimum flame holding performance. Reduce fuel flow to flow. Subsequently, the control device 5 gradually decreases the opening degree of the first fuel control valve 63 over a predetermined switching time, and changes the injection amount of the first fuel from the rated operation injection amount to the predetermined maintenance injection amount. Reduce gradually. Here, the maintenance injection amount is an injection amount of the first fuel that does not cause a backflow of gas in the first main burner 41. At the same time, the control device 5 gradually increases the degree of opening of the second fuel control valve 64 over a predetermined switching time, and injects the second fuel so that the gas turbine engine 1 maintains the rated operating condition. The amount is gradually increased from zero. Thus, the combustor 12 at the end of the fuel switching has the second fuel injection amount larger than the first fuel injection amount, and the main fuel of the main burner 4 is changed from the first fuel to the second fuel. It has been switched.
 燃料切替終了後から停止信号を受け取るまで、制御装置5は定常運転制御を行う。定常運転制御では、制御装置5は、エンジン回転数とエンジン運転負荷とを取得し、これらの運転条件が要求値を保持するように燃料噴射量を制御する。要求値は、少なくとも定格運転条件を満たす所望の値であってよく、例えば、エンジン回転数及びエンジン運転負荷について予め設定された値や、定格運転条件(又は、定格運転条件に安全値が加味された所定の閾値)などを要求値とすることができる。また、要求値が複数設定されて、各要求値に応じて異なる燃料噴射量の制御方法が行われてもよい。本実施形態に係る燃焼器12では、燃料噴射装置36への第2燃料の供給量が変動することが想定される。例えば、第2燃料が副生水素を含有する水素含有ガスである場合、副生水素の生成量が減少する状況が想定される。このような状況となれば、第2燃料の噴射量が不足して要求値を維持できなくなるおそれがある。本実施形態においては、エンジン回転数が低下して発電機15の発電量が低下する。そこで、制御装置5は、発電量を一定に保持するように、第2燃料制御弁64の開度を増減させて、第2燃料の噴射量を増減調整することに加えて、第1燃料制御弁63の開度を増大させて第1燃料の噴射量を増減調整することができる。また、例えば、制御装置5は、第1燃料制御弁63の開度を増大させて、第1燃料の噴射量を増やすことにより、エンジン回転数を維持しながら、エンジン運転負荷を増大させることができる。以上のように、定常運転制御時には、第2燃料の噴射量の増減調整に加えて、燃料噴射装置36(メインバーナ4)への第2燃料の供給量が運転条件の要求値を保持するために要求される第2燃料の噴射量よりも不足した場合には、第1燃料による不足分の補充が行われてもよい。 From the end of fuel switching until the stop signal is received, the control device 5 performs steady operation control. In the steady operation control, the control device 5 acquires the engine speed and the engine operation load, and controls the fuel injection amount so that these operation conditions maintain the required values. The required value may be a desired value that satisfies at least the rated operating condition. For example, a preset value for the engine speed and the engine operating load, or a safety value is added to the rated operating condition (or the rated operating condition). The predetermined threshold value) can be used as the required value. Further, a plurality of required values may be set, and a different fuel injection amount control method may be performed according to each required value. In the combustor 12 according to the present embodiment, it is assumed that the supply amount of the second fuel to the fuel injection device 36 varies. For example, when the second fuel is a hydrogen-containing gas containing byproduct hydrogen, a situation is assumed in which the amount of byproduct hydrogen produced decreases. In such a situation, there is a fear that the required value cannot be maintained because the injection amount of the second fuel is insufficient. In the present embodiment, the engine speed decreases and the power generation amount of the generator 15 decreases. Therefore, the control device 5 increases or decreases the opening of the second fuel control valve 64 to increase or decrease the second fuel injection amount so as to keep the power generation amount constant. The opening amount of the valve 63 can be increased to increase or decrease the injection amount of the first fuel. For example, the control device 5 can increase the engine operating load while maintaining the engine speed by increasing the opening amount of the first fuel control valve 63 and increasing the injection amount of the first fuel. it can. As described above, during steady operation control, in addition to the increase / decrease adjustment of the injection amount of the second fuel, the supply amount of the second fuel to the fuel injection device 36 (main burner 4) holds the required value of the operating condition. In the case where the amount of fuel injected is less than the amount required for the second fuel, replenishment by the first fuel may be performed.
 制御装置5は、操作入力装置72から停止信号を受け取ると、停止制御を開始する。停止制御では、先ず、燃料切替(停止時燃料切替)を開始する。燃料切替を開始した制御装置5は、第2燃料制御弁64の開度を所定の切替時間をかけて徐々に小さくして、第2燃料の噴射量をゼロまで漸次減少させ、第2メインバーナ42を消火する。それと同時に、制御装置5は、第1燃料制御弁63の開度を所定の切替時間をかけて徐々に大きくして、ガスタービンエンジン1が定格運転条件を維持するように、第1燃料の噴射量を維持噴射量から漸次増加させる。ここで、保炎性が不十分の場合は、パイロット燃料も漸次増加させるようにしてもよい。このようにして、燃料切替終了時の燃焼器12は、第2燃料の噴射量よりも第1燃料の噴射量が多くなっており、メインバーナ4の主燃料が第2燃料から第1燃料へ切り替わっている。 When the control device 5 receives the stop signal from the operation input device 72, the control device 5 starts the stop control. In the stop control, first, fuel switching (fuel switching at stop) is started. The control device 5 that has started the fuel switching gradually decreases the opening of the second fuel control valve 64 over a predetermined switching time, and gradually decreases the injection amount of the second fuel to zero, so that the second main burner Extinguish 42. At the same time, the control device 5 gradually increases the opening degree of the first fuel control valve 63 over a predetermined switching time so that the gas turbine engine 1 maintains the rated operating condition so that the first fuel injection is performed. The amount is gradually increased from the maintenance injection amount. Here, when the flame holding property is insufficient, the pilot fuel may be gradually increased. Thus, the combustor 12 at the end of the fuel switching has the first fuel injection amount larger than the second fuel injection amount, and the main fuel of the main burner 4 is changed from the second fuel to the first fuel. It has been switched.
 燃料切替が終了したあとで、制御装置5は、第1燃料の噴射量が定格運転時噴射量からゼロまで減少するように、第1燃料制御弁63の開度を徐々に小さくする。そして、第1燃料の噴射量がゼロとなり、第1メインバーナ41が消火すれば、停止制御を終了する。 After the fuel switching is completed, the control device 5 gradually decreases the opening of the first fuel control valve 63 so that the injection amount of the first fuel decreases from the rated operation injection amount to zero. When the first fuel injection amount becomes zero and the first main burner 41 extinguishes, the stop control is terminated.
 上記のように、停止制御においては、燃焼器12の燃料を第2燃料から第1燃料(又は、第1燃料及びパイロット燃料)へ切り替える燃料切替を行い、第2メインバーナ42が消火したあとで第1メインバーナ41(又は、第1メインバーナ41及びパイロットバーナ40)を消火する。このようにして、運転停止後のガスタービンエンジン1において、燃焼器12及びその下流配管等において第2燃料が留まらないようにしている。これにより、次回起動時に残留している未燃の第2燃料により爆発的燃焼が生じることを防止できる。 As described above, in the stop control, after switching the fuel of the combustor 12 from the second fuel to the first fuel (or the first fuel and the pilot fuel), after the second main burner 42 is extinguished, The first main burner 41 (or the first main burner 41 and the pilot burner 40) is extinguished. In this manner, in the gas turbine engine 1 after the operation is stopped, the second fuel is prevented from staying in the combustor 12 and its downstream piping. Thereby, it is possible to prevent explosive combustion from occurring due to the unburned second fuel remaining at the next start-up.
 以上説明した通り、本実施形態に係る燃焼器12のメインバーナ4は、燃焼速度の異なる2つの燃料(第1燃料と第2燃料)を択一的に又は同時に燃焼できるように構成されているので、燃焼器12の主燃料を第1燃料と第2燃料との間で切り替えることができる。この特徴を利用して、燃焼器12ではバーナ内への逆火が生じにくいような運転制御が為される。具体的には、ガスタービンエンジン1(燃焼器12)の起動時と停止時との燃料の流速が比較的遅い状況では、第2燃料よりも燃焼速度の遅い第1燃料を燃焼させる。また、エンジン回転数やエンジン運転負荷が十分に上昇した状態(即ち、定格運転条件が整った状態)で、燃焼器12で第2燃料を燃焼させる。より具体的には、起動時に、第1メインバーナ41で第1燃料を燃焼させ、ガスタービンエンジン1が所定の定格運転条件となると第2メインバーナ42で第2燃料を燃焼させるとともに第1メインバーナ41の燃焼量を低減させる。また、停止時に、第2メインバーナ42を消火するとともに第1メインバーナ41の燃焼量を増大させ、第2メインバーナ42が消火したあとで第1メインバーナ41を消火させる。このようにして、本実施形態に係る燃焼器12では、特に逆火が生じやすい着火時を含む起動時や停止時に第1燃料又はパイロット燃料を燃焼させるので、バーナ内への逆火の発生を抑制することができる。逆火の発生が抑制されることにより、燃焼器12の焼損を防止することができる。そして、ガスタービンエンジン1が定格運転条件となってから第2燃料を燃焼するので、水素含有燃料などの天然ガスと比較して燃焼速度の速い燃料を使用する場合でも、燃焼器12及びガスタービンエンジン1の運転を安定化することができる。 As described above, the main burner 4 of the combustor 12 according to the present embodiment is configured to be able to burn two fuels (first fuel and second fuel) having different combustion speeds alternatively or simultaneously. Therefore, the main fuel of the combustor 12 can be switched between the first fuel and the second fuel. Utilizing this feature, operation control is performed in the combustor 12 such that backfire into the burner hardly occurs. Specifically, in a situation where the flow rate of fuel at the time of starting and stopping of the gas turbine engine 1 (combustor 12) is relatively slow, the first fuel having a combustion speed slower than that of the second fuel is burned. Further, the second fuel is burned by the combustor 12 in a state where the engine speed and the engine operation load are sufficiently increased (that is, the rated operation condition is satisfied). More specifically, at startup, the first main burner 41 burns the first fuel, and when the gas turbine engine 1 reaches a predetermined rated operating condition, the second main burner 42 burns the second fuel and the first main burner. The combustion amount of the burner 41 is reduced. Moreover, at the time of a stop, the 2nd main burner 42 is extinguished, the combustion amount of the 1st main burner 41 is increased, and after the 2nd main burner 42 extinguishes, the 1st main burner 41 is extinguished. Thus, in the combustor 12 according to the present embodiment, the first fuel or the pilot fuel is burned at the time of start-up and at the time of stop including the ignition time that is particularly likely to cause backfire. Can be suppressed. By suppressing the occurrence of backfire, burnout of the combustor 12 can be prevented. Since the second fuel is burned after the gas turbine engine 1 reaches the rated operating condition, the combustor 12 and the gas turbine are used even when a fuel having a higher combustion speed than natural gas such as hydrogen-containing fuel is used. The operation of the engine 1 can be stabilized.
 以上説明した第1実施形態に係るガスタービンエンジン1の燃焼器12では、第1燃料噴射口41aと第2燃料噴射口42aとが交互に並べられている。但し、燃料噴射口のレイアウトは上記に限定されない。そこで、以下では、上記第1実施形態の燃料噴射口のレイアウトの変形例1~5を説明する。図7~11は、それぞれ変形例1~5に係る燃料噴射口のレイアウト図である。 In the combustor 12 of the gas turbine engine 1 according to the first embodiment described above, the first fuel injection ports 41a and the second fuel injection ports 42a are alternately arranged. However, the layout of the fuel injection port is not limited to the above. Therefore, hereinafter, modifications 1 to 5 of the layout of the fuel injection port of the first embodiment will be described. 7 to 11 are layout diagrams of the fuel injection ports according to the first to fifth modifications, respectively.
 図7に示す変形例1に係る燃料噴射口のレイアウトでは、パイロット燃料噴射口40aの周囲に環状噴射口列が形成されており、この環状噴射口列が、交互に並べられた第1燃料噴射口41a群と複数の第2燃料噴射口42a群とにより形成されている。 In the layout of the fuel injection port according to the first modification shown in FIG. 7, the annular fuel injection nozzle array is formed around the pilot fuel injection nozzle 40a, and the first fuel injection is alternately arranged. The port 41a group and a plurality of second fuel injection ports 42a group are formed.
 図8に示す変形例2に係る燃料噴射口のレイアウトでは、パイロット燃料噴射口40aの周囲に二重の環状噴射口列が形成されており、各環状噴射口列が、交互に並べられた第1燃料噴射口41aと第2燃料噴射口42aとにより形成されている。 In the fuel injection port layout according to the modified example 2 shown in FIG. 8, a double annular injection port array is formed around the pilot fuel injection port 40a, and the annular injection port arrays are alternately arranged. The first fuel injection port 41a and the second fuel injection port 42a are formed.
 図9に示す変形例3に係る燃料噴射口のレイアウトでは、パイロット燃料噴射口40aの周囲に複数の第1燃料噴射口41aが環状に並べられた第1環状噴射口列が形成され、第1環状噴射口列の周囲に複数の第2燃料噴射口42aが環状に並べられた第2環状噴射口列が形成されている。 In the fuel injection port layout according to the third modification shown in FIG. 9, a first annular injection port array in which a plurality of first fuel injection ports 41a are arranged in an annular shape is formed around the pilot fuel injection port 40a. A second annular injection port array in which a plurality of second fuel injection ports 42a are arranged in an annular shape is formed around the annular injection port array.
 図10に示す変形例4に係る燃料噴射口のレイアウトでは、環状のパイロット燃料噴射口40aの周囲に環状の第1燃料噴射口41aが設けられ、第1燃料噴射口41aの周囲に環状の第2燃料噴射口42aが設けられている。ここで、図11に示すように、各燃料噴射口40a,41a,42aから吹き出す燃料ガスにより旋回流が形成されるように、各燃料噴射口40a,41a,42aに羽根66が設けられてもよい。 In the fuel injection port layout according to the fourth modification shown in FIG. 10, an annular first fuel injection port 41a is provided around the annular pilot fuel injection port 40a, and an annular first fuel injection port 41a is provided around the first fuel injection port 41a. Two fuel injection ports 42a are provided. Here, as shown in FIG. 11, even if a vane 66 is provided in each fuel injection port 40a, 41a, 42a so that a swirl flow is formed by the fuel gas blown out from each fuel injection port 40a, 41a, 42a. Good.
 次に、本発明の第2~4実施形態に係るガスタービンエンジン1の燃焼器12を説明する。第2~4実施形態に係る燃焼器12は、前述の第1実施形態に係る燃焼器12と第1メインバーナ41と第2メインバーナ42の配置が異なる点で相違する。そこで、以下では第1メインバーナ41と第2メインバーナ42の配置についてのみ詳細に説明し、余の説明を省略する。 Next, the combustor 12 of the gas turbine engine 1 according to the second to fourth embodiments of the present invention will be described. The combustors 12 according to the second to fourth embodiments are different in that the combustors 12 according to the first embodiment, the first main burner 41, and the second main burner 42 are arranged differently. Therefore, hereinafter, only the arrangement of the first main burner 41 and the second main burner 42 will be described in detail, and the further description will be omitted.
[第2実施形態]
 図12Aは、本発明の第2実施形態に係る燃焼器12Aの各バーナ(パイロットバーナ40、第1メインバーナ41、及び第2メインバーナ42)の配置を示した模式的断面図である。また、図12Bは、第2実施形態に係る燃焼器12Aの各バーナの配置を軸方向からみた模式図である。図12A及び図12Bに示すように、第2実施形態に係る燃焼器12Aの第1メインバーナ41の燃料噴射口41aと第2メインバーナ42の燃料噴射口42aは、パイロットバーナ40の燃料噴射口40aよりも下流側のライナ32の内周面に交互に並べて設けられて環状を成している。そして、第1メインバーナ41の燃料噴射口41aと第2メインバーナ42の燃料噴射口42aからは、ライナ32の半径方向内側へ向けて燃料が噴出する。
[Second Embodiment]
FIG. 12A is a schematic cross-sectional view showing the arrangement of each burner (pilot burner 40, first main burner 41, and second main burner 42) of the combustor 12A according to the second embodiment of the present invention. Moreover, FIG. 12B is the schematic diagram which looked at arrangement | positioning of each burner of 12 A of combustors which concern on 2nd Embodiment from the axial direction. As shown in FIGS. 12A and 12B, the fuel injection port 41a of the first main burner 41 and the fuel injection port 42a of the second main burner 42 of the combustor 12A according to the second embodiment are the fuel injection ports of the pilot burner 40. It is alternately arranged on the inner peripheral surface of the liner 32 on the downstream side of 40a to form an annular shape. Then, fuel is ejected from the fuel injection port 41 a of the first main burner 41 and the fuel injection port 42 a of the second main burner 42 toward the inner side in the radial direction of the liner 32.
[第3実施形態]
 図13は、第3実施形態に係る燃焼器12Bのパイロットバーナ40、第1メインバーナ41、及び第2メインバーナ42の配置を示した模式図である。図13に示すように、第3実施形態に係る燃焼器12Bの第1メインバーナ41の燃料噴射口41aは、パイロットバーナ40の燃料噴射口40aの内周囲に設けられている。そして、第2メインバーナ42の燃料噴射口42aは、パイロットバーナ40の燃料噴射口40a及び第1メインバーナ41の燃料噴射口41aよりも下流側のライナ32の内周面に環状に設けられている。第2メインバーナ42からは、ライナ32の半径方向内側へ向けて燃料が噴出する。
[Third Embodiment]
FIG. 13 is a schematic diagram showing the arrangement of the pilot burner 40, the first main burner 41, and the second main burner 42 of the combustor 12B according to the third embodiment. As shown in FIG. 13, the fuel injection port 41 a of the first main burner 41 of the combustor 12 </ b> B according to the third embodiment is provided on the inner periphery of the fuel injection port 40 a of the pilot burner 40. The fuel injection port 42 a of the second main burner 42 is annularly provided on the inner peripheral surface of the liner 32 on the downstream side of the fuel injection port 40 a of the pilot burner 40 and the fuel injection port 41 a of the first main burner 41. Yes. From the second main burner 42, fuel is ejected toward the inner side in the radial direction of the liner 32.
[第4実施形態]
 図14は、第4実施形態に係る燃焼器12Cのパイロットバーナ40、第1メインバーナ41、及び第2メインバーナ42の配置を示した模式図である。図14に示すように、第4実施形態に係る燃焼器12Cの第1メインバーナ41の燃料噴射口41aは、パイロットバーナ40の燃料噴射口40aよりも下流側のライナ32の内周面に設けられている。第1メインバーナ41からは、ライナ32の半径方向内側へ向けて燃料が噴出する。そして、第2メインバーナ42の燃料噴射口42aは、第1メインバーナ41の燃料噴射口よりも下流側のライナ32の内周面に設けられている。第2メインバーナ42からは、ライナ32の半径方向内側へ向けて燃料が噴出する。
[Fourth Embodiment]
FIG. 14 is a schematic diagram showing the arrangement of the pilot burner 40, the first main burner 41, and the second main burner 42 of the combustor 12C according to the fourth embodiment. As shown in FIG. 14, the fuel injection port 41a of the first main burner 41 of the combustor 12C according to the fourth embodiment is provided on the inner peripheral surface of the liner 32 on the downstream side of the fuel injection port 40a of the pilot burner 40. It has been. From the first main burner 41, fuel is ejected toward the inner side in the radial direction of the liner 32. The fuel injection port 42 a of the second main burner 42 is provided on the inner peripheral surface of the liner 32 on the downstream side of the fuel injection port of the first main burner 41. From the second main burner 42, fuel is ejected toward the inner side in the radial direction of the liner 32.
 以上に本発明の好適な実施形態及びその変形例を説明したが、上記の構成は例えば以下のように変更することができる。 Although the preferred embodiment of the present invention and its modification have been described above, the above configuration can be modified as follows, for example.
 例えば、上記実施形態及びその変形例において、第1メインバーナ41と第2メインバーナ42の燃料噴射方式はいずれも予混合燃焼方式であるが、第1メインバーナ41及び第2メインバーナ42のうち少なくとも一方を拡散燃焼方式としてもよい。本発明に係る燃焼器12では、拡散燃焼方式と予混合燃焼方式とに関わらず逆火の発生を抑制することが可能である。 For example, in the above-described embodiment and its modifications, the fuel injection methods of the first main burner 41 and the second main burner 42 are both premixed combustion methods, but of the first main burner 41 and the second main burner 42 At least one may be a diffusion combustion system. In the combustor 12 according to the present invention, it is possible to suppress the occurrence of flashback regardless of the diffusion combustion method and the premixed combustion method.
 また、例えば、上記実施形態及びその変形例において、第1メインバーナ41と第2メインバーナ42とはいずれも空気と燃料とを予め混合した混合ガスを噴出するように構成されているが、第1メインバーナ41と第2メインバーナ42のうち少なくとも一方が、水、水蒸気、又は不活性ガスと燃料とを予め混合した混合ガスを噴出するように構成されていてもよい。この場合、燃焼用空気は混合ガスとは別の流路から燃焼室35内へ噴出するように燃焼用空気の流路が形成されてよい。 Further, for example, in the above-described embodiment and its modifications, the first main burner 41 and the second main burner 42 are both configured to eject a mixed gas in which air and fuel are mixed in advance. At least one of the first main burner 41 and the second main burner 42 may be configured to eject water, water vapor, or a mixed gas in which an inert gas and fuel are mixed in advance. In this case, the combustion air flow path may be formed so that the combustion air is ejected into the combustion chamber 35 from a flow path different from the mixed gas.
1 ガスタービンエンジン
4 メインバーナ
5 制御装置
11 圧縮機
12 燃焼器
13 タービン
14 回転軸
15 発電機
16 ボイラ
18 スタータ
31 ケーシング
32 ライナ
33 空気通路
35 燃焼室
36 燃料噴射装置
40 パイロットバーナ
40a パイロット燃料噴射口
41 第1メインバーナ
41a 第1燃料噴射口
42 第2メインバーナ
42a 第2燃料噴射口
DESCRIPTION OF SYMBOLS 1 Gas turbine engine 4 Main burner 5 Control apparatus 11 Compressor 12 Combustor 13 Turbine 14 Rotating shaft 15 Generator 16 Boiler 18 Starter 31 Casing 32 Liner 33 Air passage 35 Combustion chamber 36 Fuel injection device 40 Pilot burner 40a Pilot fuel injection port 41 1st main burner 41a 1st fuel injection port 42 2nd main burner 42a 2nd fuel injection port

Claims (15)

  1. 内部に燃焼室を形成するライナと、
    前記燃焼室の上流部へ第1燃料を噴出する少なくとも1つの第1燃料噴射口、前記少なくとも1つの第1燃料噴射口から噴射された前記第1燃料を着火させるためのパイロット燃料を前記燃焼室へ噴出する少なくとも1つのパイロット燃料噴射口、及び、前記燃焼室の上流部へ前記第1燃料よりも最大燃焼速度の速い第2燃料を噴出する少なくとも1つの第2燃料噴射口を有する燃料噴射装置とを備えている、
    ガスタービンエンジンの燃焼器。
    A liner that forms a combustion chamber therein;
    At least one first fuel injection port for injecting first fuel to the upstream portion of the combustion chamber, and pilot fuel for igniting the first fuel injected from the at least one first fuel injection port in the combustion chamber A fuel injection device having at least one pilot fuel injection port that jets to the upstream side of the combustion chamber and at least one second fuel injection port that jets the second fuel having a higher maximum combustion speed than the first fuel to the upstream portion of the combustion chamber And
    Gas turbine engine combustor.
  2. 前記少なくとも1つのパイロット燃料噴射口の周囲に、前記少なくとも1つの第1燃料噴射口と前記少なくとも1つの第2燃料噴射口とが交互に並べられて成る、少なくとも一重の環状噴射口列が形成されている、請求項1に記載のガスタービンエンジンの燃焼器。 Around the at least one pilot fuel injection port, an at least one annular injection port row is formed in which the at least one first fuel injection port and the at least one second fuel injection port are alternately arranged. The combustor of a gas turbine engine according to claim 1.
  3. 前記少なくとも一重の環状噴射口列が、前記燃焼室の前記少なくとも1つのパイロット燃料噴射口よりも下流側において前記ライナの内周面に設けられている、請求項2に記載のガスタービンエンジンの燃焼器。 The combustion of a gas turbine engine according to claim 2, wherein the at least one annular injection port array is provided on an inner peripheral surface of the liner at a downstream side of the at least one pilot fuel injection port of the combustion chamber. vessel.
  4. 前記少なくとも1つのパイロット燃料噴射口の周囲に前記少なくとも1つの第1燃料噴射口が環状に並べられた第1環状噴射口列が形成され、前記第1環状噴射口列の周囲に前記少なくとも1つの第2燃料噴射口が環状に並べられた第2環状噴射口列が形成されている、請求項1に記載のガスタービンエンジンの燃焼器。 A first annular injection port array in which the at least one first fuel injection port is arranged in an annular shape is formed around the at least one pilot fuel injection port, and the at least one pilot fuel injection port is arranged around the first annular injection port array. The combustor of the gas turbine engine according to claim 1, wherein a second annular injection nozzle row in which the second fuel injection nozzles are arranged in an annular shape is formed.
  5. 前記少なくとも1つのパイロット燃料噴射口の周囲に環状の前記少なくとも1つの第1燃料噴射口が設けられ、前記少なくとも1つの第1燃料噴射口の周囲に環状の前記少なくとも1つの第2燃料噴射口が設けられている、請求項1に記載のガスタービンエンジンの燃焼器。 The at least one first fuel injection port having an annular shape is provided around the at least one pilot fuel injection port, and the at least one second fuel injection port having an annular shape is provided around the at least one first fuel injection port. The combustor of the gas turbine engine according to claim 1, wherein the combustor is provided.
  6. 起動時に、前記第1燃料の噴射量をゼロから漸次増大させ、ガスタービンエンジンが所定の定格運転条件となると前記第1燃料の噴射量を所定値まで漸次減少させるとともに前記第2燃料の噴射量を前記ガスタービンエンジンが前記定格運転条件を維持するように漸次増大させるように、前記第1燃料の噴射量及び前記第2燃料の噴射量を制御する制御装置を更に備えている、請求項1~5のいずれか一項に記載のガスタービンエンジンの燃焼器。 At startup, the first fuel injection amount is gradually increased from zero, and when the gas turbine engine reaches a predetermined rated operating condition, the first fuel injection amount is gradually decreased to a predetermined value and the second fuel injection amount. The apparatus further comprises a control device for controlling the injection amount of the first fuel and the injection amount of the second fuel so that the gas turbine engine gradually increases so as to maintain the rated operating condition. The combustor for the gas turbine engine according to any one of claims 1 to 5.
  7. 前記制御装置が、前記起動時に前記第1燃料の噴射量が前記所定値まで減少したあとで、前記燃料噴射装置への前記第2燃料の供給量が前記定格運転条件を維持するための前記第2燃料の噴射量に対し不足する場合には、前記第1燃料の噴射量を増大させるように制御する、請求項6に記載のガスタービンエンジンの燃焼器。 After the control device reduces the first fuel injection amount to the predetermined value at the start-up, the second fuel supply amount to the fuel injection device maintains the rated operating condition. The combustor of the gas turbine engine according to claim 6, wherein control is performed to increase the injection amount of the first fuel when the fuel injection amount is insufficient with respect to two fuels.
  8. 前記制御装置が、停止時に、前記第2燃料の噴射量を漸次低減させるとともに前記第1燃料の噴射量を前記ガスタービンエンジンが前記定格運転条件を維持するように漸次増大させ、前記第2燃料の噴射量がゼロなると前記第1燃料の噴射量をゼロまで漸次低減させるように、前記第1燃料の噴射量及び前記第2燃料の噴射量を制御する、請求項6又は7に記載のガスタービンエンジンの燃焼器。 The control device gradually decreases the injection amount of the second fuel at the time of stop and gradually increases the injection amount of the first fuel so that the gas turbine engine maintains the rated operating condition. The gas according to claim 6 or 7, wherein the injection amount of the first fuel and the injection amount of the second fuel are controlled so that the injection amount of the first fuel is gradually reduced to zero when the injection amount of the fuel becomes zero. Turbine engine combustor.
  9. 前記第2燃料が水素又は水素含有燃料であり、前記第1燃料が天然ガス又は前記第2燃料よりも水素含有率の低い水素含有燃料である、請求項1~8のいずれか一項に記載のガスタービンエンジンの燃焼器。 The first fuel is hydrogen or a hydrogen-containing fuel, and the first fuel is natural gas or a hydrogen-containing fuel having a lower hydrogen content than the second fuel. Gas turbine engine combustor.
  10. パイロットバーナに点火することと、
    前記パイロットバーナの火炎でメインバーナに点火して当該メインバーナで第1燃料を主燃料として燃焼させることと、
    ガスタービンエンジンが所定の定格運転条件となると、前記メインバーナで前記第1燃料よりも最大燃焼速度の速い第2燃料を前記主燃料として燃焼させるように起動時燃料切替を行うこととを含む、
    ガスタービンエンジンの燃焼器の運転方法。
    Igniting the pilot burner;
    Igniting the main burner with a flame of the pilot burner and burning the first fuel as the main fuel in the main burner;
    When the gas turbine engine reaches a predetermined rated operating condition, the start burner is switched so that the main fuel burns the second fuel having a maximum combustion speed faster than the first fuel as the main fuel.
    A method of operating a combustor of a gas turbine engine.
  11. 前記起動時燃料切替を行うことが、
    前記第1燃料の噴射量を所定値まで漸次減少させるとともに、前記第2燃料の噴射量を前記ガスタービンエンジンが前記定格運転条件を維持するように漸次増大させることを含む、
    請求項10に記載のガスタービンエンジンの燃焼器の運転方法。
    Performing the start-up fuel switching,
    Gradually reducing the injection amount of the first fuel to a predetermined value, and gradually increasing the injection amount of the second fuel so that the gas turbine engine maintains the rated operating condition.
    The operation method of the combustor of the gas turbine engine according to claim 10.
  12. 前記起動時燃料切替を行ったあとで、前記メインバーナへの前記第2燃料の供給量が前記定格運転条件を維持するための前記第2燃料の噴射量に対し不足する場合に、前記第1燃料の噴射量を増大させることを含む、
    請求項11に記載のガスタービンエンジンの燃焼器の運転方法。
    When the fuel supply amount to the main burner is insufficient with respect to the injection amount of the second fuel for maintaining the rated operating condition after the start-up fuel switching, Including increasing the fuel injection amount,
    The operation method of the combustor of the gas turbine engine according to claim 11.
  13. 前記ガスタービンエンジンの停止時に、前記メインバーナで前記第1燃料を前記主燃料として燃焼させるように停止時燃料切替を行うことと、
    前記メインバーナを消火することとを更に含む、
    請求項10~12のいずれか一項に記載のガスタービンエンジンの燃焼器の運転方法。
    When the gas turbine engine is stopped, performing fuel switching at the time of stopping so that the main fuel is burned as the main fuel by the main burner;
    Extinguishing the main burner,
    The method of operating a combustor of a gas turbine engine according to any one of claims 10 to 12.
  14. 前記停止時燃料切替を行うことが、
    前記第2燃料の噴射量をゼロまで漸次低減させるとともに、前記第1燃料の噴射量を前記ガスタービンエンジンが前記定格運転条件を維持するように漸次増大させることを含む、
    請求項13に記載のガスタービンエンジンの燃焼器の運転方法。
    Performing the fuel switching at the time of stopping,
    Gradually reducing the injection amount of the second fuel to zero, and gradually increasing the injection amount of the first fuel so that the gas turbine engine maintains the rated operating condition.
    A method for operating a combustor of a gas turbine engine according to claim 13.
  15. 前記第2燃料が水素又は水素含有燃料であり、前記第1燃料が天然ガス又は前記第2燃料よりも水素含有率の低い水素含有燃料である、請求項10~14のいずれか一項に記載のガスタービンエンジンの燃焼器の運転方法。 The first fuel is hydrogen or a hydrogen-containing fuel, and the first fuel is natural gas or a hydrogen-containing fuel having a lower hydrogen content than the second fuel. Of operating a combustor of a gas turbine engine in Japan.
PCT/JP2015/004730 2014-10-08 2015-09-16 Gas turbine engine combustor and operating method for same WO2016056180A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-207507 2014-10-08
JP2014207507A JP2016075448A (en) 2014-10-08 2014-10-08 Combustor for gas turbine engine and operating method therefor

Publications (1)

Publication Number Publication Date
WO2016056180A1 true WO2016056180A1 (en) 2016-04-14

Family

ID=55652820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004730 WO2016056180A1 (en) 2014-10-08 2015-09-16 Gas turbine engine combustor and operating method for same

Country Status (2)

Country Link
JP (1) JP2016075448A (en)
WO (1) WO2016056180A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10794296B2 (en) 2016-10-24 2020-10-06 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combustor and method of operating the same
CN114877372A (en) * 2021-02-05 2022-08-09 丰田自动车株式会社 Combustor of gas turbine engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3794283B1 (en) * 2018-05-15 2024-03-13 Air Products and Chemicals, Inc. Combustor and method of operating a combustor
JP7200077B2 (en) * 2019-10-01 2023-01-06 三菱重工業株式会社 Gas turbine combustor and its operation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130422A (en) * 1997-07-09 1999-02-02 Ishikawajima Harima Heavy Ind Co Ltd Low nox combustor for two-fluid cycle
JP2000130757A (en) * 1998-10-23 2000-05-12 Hitachi Ltd Gas turbine combustor for gasification power plant
JP2011075174A (en) * 2009-09-30 2011-04-14 Hitachi Ltd HYDROGEN-CONTAINING FUEL COMBUSTOR AND LOW NOx OPERATION METHOD THEREOF
JP2014105601A (en) * 2012-11-26 2014-06-09 Hitachi Ltd Gas turbine combustor and method for operating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130422A (en) * 1997-07-09 1999-02-02 Ishikawajima Harima Heavy Ind Co Ltd Low nox combustor for two-fluid cycle
JP2000130757A (en) * 1998-10-23 2000-05-12 Hitachi Ltd Gas turbine combustor for gasification power plant
JP2011075174A (en) * 2009-09-30 2011-04-14 Hitachi Ltd HYDROGEN-CONTAINING FUEL COMBUSTOR AND LOW NOx OPERATION METHOD THEREOF
JP2014105601A (en) * 2012-11-26 2014-06-09 Hitachi Ltd Gas turbine combustor and method for operating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10794296B2 (en) 2016-10-24 2020-10-06 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combustor and method of operating the same
CN114877372A (en) * 2021-02-05 2022-08-09 丰田自动车株式会社 Combustor of gas turbine engine

Also Published As

Publication number Publication date
JP2016075448A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
US20150275755A1 (en) Multi-fuel-capable gas turbine combustor
EP2551596B1 (en) Combustor, burner, and gas turbine
EP2902708B1 (en) Multi-fuel-supporting gas-turbine combustor
JP6262616B2 (en) Gas turbine combustor
CN107975429B (en) Gas turbine combustor and method of operating the same
JP4728176B2 (en) Burner, gas turbine combustor and burner cooling method
JP5075900B2 (en) Hydrogen-containing fuel compatible combustor and its low NOx operation method
JP5889754B2 (en) Gas turbine combustor
JP7044669B2 (en) Gas turbine combustor
US9739488B2 (en) Gas turbine combustor with two kinds of gas fuel supply systems
JP4997217B2 (en) Gas turbine operating method and gas turbine combustor
JP6474951B2 (en) Combustor
WO2016056180A1 (en) Gas turbine engine combustor and operating method for same
JP2012031730A (en) LOW-NOx COMBUSTION METHOD FOR GAS TURBINE COMBUSTOR
JP6148133B2 (en) Gas turbine combustor and gas turbine system
JP6004920B2 (en) Gas turbine combustor and gas turbine combustor control method
JP7167772B2 (en) combustor
JP5514174B2 (en) Gas turbine combustor
WO2014102920A1 (en) Combustor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848205

Country of ref document: EP

Kind code of ref document: A1