WO2016056094A1 - Device for amino acid sequence analysis and method for amino acid sequence analysis - Google Patents

Device for amino acid sequence analysis and method for amino acid sequence analysis Download PDF

Info

Publication number
WO2016056094A1
WO2016056094A1 PCT/JP2014/077018 JP2014077018W WO2016056094A1 WO 2016056094 A1 WO2016056094 A1 WO 2016056094A1 JP 2014077018 W JP2014077018 W JP 2014077018W WO 2016056094 A1 WO2016056094 A1 WO 2016056094A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
reagent
amino acid
sample
extraction
Prior art date
Application number
PCT/JP2014/077018
Other languages
French (fr)
Japanese (ja)
Inventor
伸幸 秋永
松本 博幸
竜 此下
徹 江連
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2014/077018 priority Critical patent/WO2016056094A1/en
Publication of WO2016056094A1 publication Critical patent/WO2016056094A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to an amino acid sequence analyzer and an amino acid sequence analysis method.
  • Edman degradation is known as a method for sequentially analyzing the primary structures of proteins and peptides, that is, amino acid sequences from the N-terminus.
  • An amino acid sequence analyzer that analyzes the amino acid sequence of a sample using this Edman degradation reaction is known. (For example, refer to Patent Document 1).
  • the amino acid sequence analyzer is equipped with a reaction tank for reacting the sample.
  • the reaction vessel is provided with a sample support that holds a sample.
  • the sample support is formed of a porous material such as a glass fiber filter or a polyvinylidene fluoride (PVDF) film.
  • a predetermined reagent is supplied to the reaction tank in which the sample support is installed. Then, amino acids are sequentially released from the N-terminal side of the sample by Edman degradation reaction. The released amino acid is introduced into, for example, a high performance liquid chromatograph, and the amino acid sequence is analyzed.
  • the object of the present invention is to improve the recovery rate of amino acids released by the Edman degradation reaction.
  • An amino acid sequence analyzer includes an Edman decomposition reaction unit that performs an Edman decomposition reaction of a sample disposed in a reaction vessel, a reagent supply unit that supplies a reagent to the Edman decomposition reaction unit, and the Edman decomposition reaction
  • An amino acid analysis unit for analyzing amino acids released from the sample by Edman degradation reaction in the unit, and a control unit for controlling operations of the Edman degradation reaction unit, the reagent supply unit, and the amino acid analysis unit, After introducing the reagent from the reagent supply unit to release the amino acid at the N-terminal part of the sample, the released amino acid is introduced into the reaction vessel and extracted from the reaction vessel to the extraction container, and
  • a control system is provided that includes an extraction control unit that introduces a reagent into the reaction tank and extracts the liberated amino acid remaining in the reaction tank into the extraction container. And parts, in which with a.
  • An amino acid sequence analysis method is an amino acid sequence analysis method in which a step of performing an Edman degradation reaction of a sample placed in a reaction vessel is sequentially performed a plurality of times, and each step includes a reagent in the reaction vessel.
  • a cutting step for introducing and releasing an amino acid at the N-terminal portion of the sample; a first extraction step for introducing a reagent into the reaction vessel and extracting the amino acid liberated in the cutting step from the reaction vessel; and the reaction vessel And a second extraction step of extracting the liberated amino acid remaining in the reaction vessel from the reaction vessel into an extraction container.
  • the amino acid sequence analyzer and amino acid sequence analysis method of the embodiment of the present invention can improve the recovery rate of amino acids released by the Edman degradation reaction.
  • FIG. 5 is a schematic cross-sectional view and a plan view of blocks constituting the reaction tank of FIG. It is the schematic sectional drawing and top view of the block which comprise the reaction tank of FIG. It is a flowchart for demonstrating one Embodiment of the amino acid sequence analysis method. It is a figure for comparing the amount of amino acids recovered in the first extraction and the amount of amino acids recovered in the second extraction.
  • the reaction vessel has a reaction space and a main plane for holding a sample, and the reaction space is divided into upper and lower spaces on the main plane.
  • a sample support disposed in the reaction space, a reagent inlet that is provided on an inner wall surface of the space above the reaction space, into which a reagent from the reagent supply unit flows, and an inner wall surface of the space below the reaction space And a reagent outlet for recovering the reagent in the reaction space.
  • FIG. 1 is a schematic flow path configuration diagram for explaining an embodiment of an amino acid sequence analyzer.
  • FIG. 2 is a schematic block diagram of the embodiment.
  • the amino acid sequence analyzer 1 includes a first reagent supply unit 2, a second reagent supply unit 3, an Edman degradation reaction unit 4, an amino acid analysis unit 10, and a control unit 35.
  • the first reagent supply unit 2 supplies gas and reagents to the reaction tank 6 of the Edman decomposition reaction unit 4.
  • the second reagent supply unit 3 supplies gas and a reagent to the conversion flask 8 (extraction container) of the Edman decomposition reaction unit 4.
  • the first reagent supply unit 2 and the second reagent supply unit 3 constitute a reagent supply unit.
  • the first reagent supply unit 2 is connected to the reaction tank 6 of the Edman decomposition reaction unit 4 via the first reagent supply channel 11.
  • the first reagent supply unit 2 is provided with reagent containers 5a to 5e. Reagents are stored in the reagent containers 5a to 5e, respectively. Ethyl acetate is accommodated in the reagent container 5a.
  • the reagent container 5b contains n-butyl chloride. Trimethylamine is accommodated in the reagent container 5c.
  • the reagent container 5d contains an n-heptane solution of PITC (phenyl isothiocyanate).
  • the reagent container 5e contains trifluoroacetic acid.
  • the reagent containers 5a to 5e are connected to the first reagent supply channel 11 via three-way solenoid valves 12a to 12e, respectively.
  • the reagent containers 5a to 5e are connected to drains via electromagnetic valves 13a to 13e, respectively.
  • Gas supply channels 7a to 7e are connected to the reagent containers 5a to 5e, respectively.
  • the gas supply channels 7a to 7e are provided with solenoid valves 9a to 9e for controlling the supply of gas for pressurizing the reagent containers 5a to 5e.
  • This gas is, for example, N 2 gas.
  • One of the reagent containers 5a to 5e is selectively connected to the first reagent supply channel 11 by switching the three-way solenoid valves 12a to 12e, and N2 gas is supplied to the reagent container and pressurized to thereby form the reagent. Is supplied to the reaction vessel 6.
  • the first reagent supply channel 11 is also provided with an electromagnetic valve 9h that controls the supply of gas.
  • the second reagent supply unit 3 is connected to the conversion flask 8 of the Edman decomposition reaction unit 4 via the second reagent supply channel 20.
  • the second reagent supply unit 3 is provided with reagent containers 5f and 5g.
  • Reagent containers 5f and 5g are accommodated as reagents.
  • the reagent container 5f contains a mixture of acetonitrile and water.
  • the reagent container 5g contains a trifluoroacetic acid solution.
  • the reagent containers 5f and 5g are connected to the second reagent supply channel 20 via three-way solenoid valves 12f and 12g, respectively.
  • a gas supply channel 7f is connected to the reagent container 5f.
  • a gas supply channel 7g is connected to the reagent container 5g.
  • the gas supply passages 7f and 7g are provided with electromagnetic valves 9f and 9g for controlling the supply of gas for pressurizing the reagent containers 7f and 7g.
  • One of the reagent containers 5f and 5g is selectively connected to the second reagent supply flow path 20 by switching the three-way solenoid valves 12f and 12g, and a gas is supplied to the reagent container and pressurized to thereby supply the reagent. It is supplied to the conversion flask 8.
  • the second reagent supply channel 20 is also provided with an electromagnetic valve 9i that controls the supply of gas.
  • a flow path 14 is connected to the outlet side of the reaction tank 6.
  • the flow path 14 is connected to a flow path 18 that leads to the drain and the conversion flask 8 via a three-way solenoid valve 16.
  • the outlet side of the reaction vessel 6 is connected to either the conversion flask 8 or the drain by switching the three-way electromagnetic valve 16.
  • a second reagent supply flow path 20 In addition to the flow path 18 from the reaction tank 6 side, a second reagent supply flow path 20, an introduction flow path 22 and a drain are connected to the conversion flask 8. The drain of the conversion flask 8 is opened and closed by a solenoid valve 19.
  • the introduction flow path 22 communicates with one port of the 6-way valve 24 of the amino acid analyzer 10.
  • the sample is held in a reaction space provided inside the reaction vessel 6.
  • the reaction tank 6 has a structure in which the reagent passes through the sample support holding the sample. By passing the reagent through the sample support, amino acids are cut out from the N-terminal side of the sample, and the cut-out amino acids are guided to the conversion flask 8.
  • the conversion flask 8 is connected to the amino acid analysis unit 10 via the introduction flow path 22, and the amino acid cut out from the sample in the reaction vessel 6 is converted and dissolved in the conversion flask 8, and then the amino acid analysis unit. 10 is introduced.
  • FIG. 3 is a schematic cross-sectional view for explaining an example of the reaction vessel 6.
  • the reaction tank 6 includes a reaction space 42 inside.
  • the reaction tank 6 includes an inlet channel 44 (reagent inlet) and an outlet channel 46 (reagent outlet) that communicate with the reaction space 42.
  • the reaction tank 6 is configured by two blocks 36 and 38 being stacked one above the other.
  • the blocks 36 and 38 are, for example, cylindrical glass blocks.
  • the reaction space 42 is a space composed of a recess 42 a provided on the lower surface of the upper block 36 and a recess 42 b provided on the upper surface of the lower block 38.
  • the concave portion 42a and the concave portion 42b have a conical shape symmetrical to each other.
  • a sample support 48 is disposed in the reaction space 42.
  • the sample support 48 has a main plane, and can hold the sample in the main plane and allow the reagent to pass therethrough.
  • the shape of the main plane of the sample support 48 is, for example, the same circle as the plane shape of the reaction space 42.
  • a glass fiber filter or a PVDF membrane can be used as the sample support 48.
  • the sample support 48 is disposed at the lower boundary portion of the block 36 so that its main plane is horizontal.
  • the block 36 is detachably attached to the block 38. By removing the block 36 from the block 38, the sample support 48 can be installed in or removed from the reaction space 42.
  • a PTFE film 40 is sandwiched between the blocks 36 and 38. This is because when the blocks 36 and 38 are removed, dust and foreign substances may enter between the blocks 36 and 38, and those contaminants enter the downstream solenoid valve through the outlet channel 46 and break down. This is to prevent this from occurring.
  • the inlet channel 44 is provided in the block 36.
  • the outlet channel 46 is provided in the block 38.
  • the reaction space 42 is partitioned into two upper and lower spaces by a sample support 48.
  • the opening at the end of the inlet channel 44 on the reaction space 42 side is provided on the inner wall surface of the space above the reaction space 42 partitioned by the sample support 48.
  • the opening at the end of the outlet channel 46 on the reaction space 42 side is provided on the inner wall surface of the space below the reaction space 42 partitioned by the sample support 48.
  • Both the opening of the inlet channel 44 and the opening of the outlet channel 46 are provided at positions opposite to each other across the center of the sample support 48 near the end of the main plane of the sample support 48. .
  • the reagent that has flowed into the reaction space 42 through the inlet channel 44 reaches the entire reaction space 42, and the entire main plane of the sample support 48 is passed by the reagent.
  • the end of the inlet channel 44 on the upper surface side of the block 36 is provided on the central axis of the block 36, for example.
  • the end of the outlet channel 46 on the lower surface side of the block 38 is provided on the central axis of the block 38, for example.
  • FIG. 4 is a schematic cross-sectional view for explaining another example of the reaction vessel 6.
  • FIG. 5 is a schematic cross-sectional view and a plan view of blocks constituting the reaction tank of FIG.
  • the reaction space 42 is formed in a cylindrical shape whose central axis is inclined from the vertical direction.
  • the recesses 42a and 42b forming the reaction space 42 are both formed by, for example, inclining a flat bottom drill with respect to the recess forming surfaces of the blocks 36 and 38 to a certain depth.
  • the opening at the end of the inlet channel 44 on the reaction space 42 side is provided at the deepest portion of the recess 42 a, that is, at the uppermost portion of the reaction space 42. This makes it easier for the reagent to reach the entire reaction space 42. Further, the opening at the end of the outlet channel 46 on the reaction space 42 side is provided at the deepest part of the recess 42 b, that is, at the lowest part of the reaction space 42. This makes it difficult for the reagent to accumulate in the reaction space 42.
  • reaction vessel 6 is not limited to that shown in FIG. 3 or FIG.
  • the position where the inlet channel 44 and the outlet channel 46 are connected to the reaction space 42 is not particularly limited, and may be, for example, the central portion of the reaction space 42.
  • the amino acid analyzer 10 is a high performance liquid chromatograph.
  • the amino acid analysis unit 10 includes a six-way valve 24, a sample retention channel 26, a mobile phase feeding channel 27, and an analysis channel 28.
  • the sample retention channel 26, the mobile phase feeding channel 27, and the analysis channel 28 are connected to respective ports of the six-way valve 24.
  • the six-way valve 24 is connected between the introduction flow path 22 and the sample retention flow path 26 and the drain (state shown in FIG. 1), and between the mobile phase liquid supply flow path 27, the sample retention flow path 26, and the analysis flow path 28. Switch to one of the connected states.
  • the sample retention channel 26 includes a sample loop 26a that temporarily retains the amino acid introduced from the introduction channel 22.
  • the mobile phase liquid supply flow path 27 includes a liquid supply pump 30 for supplying the mobile phase solvent, and the analysis flow path 28 includes an analysis column 32 and a detector 34 downstream thereof.
  • the operations of the first reagent supply unit 2, the second reagent supply unit 3, the Edman decomposition reaction unit 4 and the amino acid analysis unit 10 are controlled by the control unit 35.
  • the control unit 35 introduces the reagent from the first reagent supply unit 2 into the reaction vessel 6 to release the amino acid at the N-terminal portion of the sample, and then introduces the released amino acid into the reaction vessel 6 to remove the amino acid.
  • An extraction control unit 35a is provided for extracting from the reaction tank 6 into the conversion flask 8 and introducing the reagent into the reaction tank 6 and extracting the liberated amino acid remaining in the reaction tank 6 into the conversion flask 8.
  • control unit 35 detection data obtained by the detector 34 of the amino acid analysis unit 10 is input to the control unit 35, and amino acid identification, quantification, yield calculation, and the like are performed in the control unit 35.
  • the control unit 35 is realized by, for example, a personal computer or a dedicated computer.
  • FIG. 6 is a flowchart for explaining an embodiment of the amino acid sequence analysis method. An embodiment of an amino acid sequence analysis method will be described with reference to FIGS.
  • sample Installation (Step S1)]
  • the sample support 48 for example, PVDF film holding the sample is sandwiched between the blocks 36 and 38 together with the PTFE film 40, so that the sample support 48 is installed in the reaction space 42 of the reaction tank 6.
  • step S2 Under the control of the control unit 35, the electromagnetic valve 9 c is switched, N 2 gas is supplied to the trimethylamine reagent container 5 c, and the pressure in the reagent container 5 c is increased, whereby the gas is supplied to the reaction tank 6 through the three-way electromagnetic valve 12 c. Trimethylamine is supplied to fill the reaction vessel 6. An n-heptane solution of PITC is supplied from the first reagent supply unit 2 to the reaction vessel 6 and reacted with the N-terminal amino group of the sample protein to produce PTC (phenylthiocarbamyl) -protein.
  • Ethyl acetate is supplied from the first reagent supply unit 2 to the reaction tank 6, and excess reagents and by-products in the reaction tank 6 are washed and discharged to the drain. This coupling reaction is carried out with the flow path 14 on the outlet side of the reaction vessel 6 connected to the drain.
  • Step S3 Trifluoroacetic acid is supplied from the first reagent supply unit 2 to the reaction tank 6, and the N-terminal peptide bond of the PTC-protein is cleaved to form an ATZ (anilinothiazolinone) -amino acid. This cutting reaction is also performed with the flow path 14 on the outlet side of the reaction tank 6 connected to the drain.
  • ATZ anilinothiazolinone
  • step S4 The flow path 14 on the outlet side of the reaction tank 6 is connected to the conversion flask 8 side, and n-butyl chloride is supplied from the first reagent supply unit 2 to the reaction tank 6 so that the ATZ-amino acid released from the sample is converted into the conversion flask. 8 is extracted.
  • n-butyl chloride is supplied from the first reagent supply unit 2 to the reaction tank 6 so that the ATZ-amino acid released from the sample is converted into the conversion flask. 8 is extracted.
  • about 400 ⁇ L (microliter) of n-butyl chloride is introduced into the reaction vessel 6.
  • a predetermined amount of n-butyl chloride is sent by being pushed by N 2 gas.
  • N 2 gas is supplied to the reaction vessel 6.
  • the inside of the reaction vessel 6 after the passage of n-butyl chloride is filled with N 2 gas.
  • the electromagnetic valve 9b is opened, the inside of the reagent container 5b is pressurized with N 2 gas, and n-butyl chloride contained in the reagent container 5b is transferred to the first reagent supply channel 11 via the electromagnetic valve 12b.
  • 400 ⁇ L is introduced.
  • a liquid sensor is provided in the middle of the first reagent supply channel 11, and when the liquid sensor detects a liquid, the liquid feeding is stopped, whereby the chloride introduced into the first reagent supply channel 11.
  • n-Butyl is weighed. Measurement can also be performed by controlling the opening time of the electromagnetic valves 9b and 12b.
  • the electromagnetic valve 9h is opened again and N 2 gas is introduced into the first reagent supply channel 11 at a flow rate of 1 mL / min for 30 seconds, for example. Thereafter, the electromagnetic valve 9h is closed. Thereby, the released ATZ-amino acid in the reaction vessel 6 is extracted into the conversion flask 8 with n-butyl chloride. The reaction tank 6 is filled with N 2 gas.
  • Step S5 In the state where the flow path 14 on the outlet side of the reaction tank 6 is connected to the conversion flask 8 side, n-butyl chloride is supplied again from the first reagent supply unit 2 to the reaction tank 6, thereby remaining in the reaction tank 6. ATZ-amino acids are extracted into the conversion flask 8. For example, as in the first extraction, about 400 ⁇ L of n-butyl chloride is introduced into the reaction vessel 6. For example, after feeding n-butyl chloride at a flow rate of 1 mL / min for 20 seconds, the liquid supply is stopped for about 30 seconds and again at a flow rate of 1 mL / min for 30 seconds. Thereafter, N 2 gas is supplied to the reaction vessel 6. A specific example of the extraction operation is the same as the first extraction.
  • step S6 A trifluoroacetic acid solution is supplied from the second reagent supply unit 3 to the conversion flask 8 to convert the ATZ-amino acid into a stable PTH (phenylthiohydantoin) -amino acid.
  • Step S7 A mixture of acetonitrile and water is supplied from the second reagent supply unit 3 to the conversion flask 8, and the PTH-amino acid is dissolved in the mixture of acetonitrile and water.
  • the reaction from the coupling reaction (step S2) to the dissolution (step S7) is an Edman decomposition reaction.
  • step S8 The PTH-amino acid obtained by the above Edman decomposition reaction is introduced into the high performance liquid chromatograph 10.
  • the introduction flow path 22-sample retention flow path 26-drain are connected by a 6-way valve 24, and N 2 gas is supplied to the conversion flask 8 via the electromagnetic valves 9i, 12f and 12g.
  • the mixed solution (sample solution) of acetonitrile and water containing PTH-amino acid in the conversion flask 8 is led out to the introduction flow path 22 side.
  • the sample solution led out to the introduction channel 22 side stays in the sample loop 26 a of the sample retention channel 26.
  • the 6-way valve 24 is switched so as to connect between the mobile phase liquid flow path 27, the sample retention flow path 26, and the analysis flow path 28, so that the sample solution depends on the mobile phase solvent from the mobile phase liquid flow path 27. It is transferred to the analytical column 32. The sample solution is separated for each component in the analysis column 32, and the composition component is detected in the detector 34. The detection signal obtained by the detector 34 is taken into the control unit 35, and amino acid identification, quantification, yield calculation, and the like are performed.
  • steps S2 to S8 are repeatedly executed, amino acids are sequentially released from the N-terminal of the sample, and amino acid separation analysis is performed with the high performance liquid chromatograph 10.
  • the operation of extracting the amino acid at the N-terminal part released by the Edman degradation reaction is performed twice. This improves the recovery rate of the free N-terminal amino acid.
  • the amino acid extraction operation in the Edman degradation method is usually one time.
  • FIG. 7 is a diagram for comparing the recovery amount of amino acid in the first extraction with the recovery amount of amino acid in the second extraction.
  • FIG. 8 is an enlarged view showing the second extraction of FIG. 7 and 8, the vertical axis represents the peak area (arbitrary unit), and the horizontal axis represents the detected amino acid symbol and detection cycle number.
  • the conditions for the first extraction and the second extraction are the same as in the above embodiment.
  • the sample is a horse-derived myoglobin sample (50 pmol).
  • the first extraction operation was measured twice (first collection 1, first collection 2).
  • the second extraction operation was measured four times (second recovery 1, second recovery 2, second recovery 3, second recovery 4).
  • FIG. 7 shows that amino acids are also recovered by the second extraction operation.
  • the amount is about 0 to 25% with respect to the amino acid recovery amount in the first extraction operation. It was confirmed that not all amino acids could be recovered by the first extraction operation alone. This shows that the recovery rate of amino acids is improved by performing the extraction operation twice.
  • the second extraction operation there is a peak area value that is low depending on the analysis (see second recovery 3). This is considered to be due to variations in amino acid recovery by the first extraction operation.
  • the fact that the extraction operation is performed twice can reduce variation in the recovery rate of amino acids as compared to the case where the extraction operation is performed only once.
  • FIG. 9 is a diagram for explaining the recovery amount of amino acids when the third extraction operation is performed.
  • the vertical axis represents the peak area (arbitrary unit), and the horizontal axis represents the detected amino acid symbol and detection cycle number.
  • the second extraction operation was performed under the same conditions.
  • n-butyl chloride (third recovery S3 in the figure) and ethyl acetate (third recovery S2 in the figure) were used as extraction solvents.
  • Other operations are the same as in the above embodiment.
  • FIG. 10 is a diagram for explaining the amino acid recovery amount in the second extraction operation when the first extraction operation condition is changed.
  • the vertical axis represents the peak area (arbitrary unit), and the horizontal axis represents the detected amino acid symbol and detection cycle number.
  • the extraction solvent n-butyl chloride
  • the extraction solvent was fed at a rate of 1 mL / min, stopped for 30 seconds, and again at a rate of 1 mL / min.
  • the inventor of this application assumed that a single stoppage of liquid feeding is insufficient to extract all free amino acids from the sample support (PVDF membrane). Therefore, the inventor of the present application changed the extraction solvent supply condition in the first extraction operation, and increased the stoppage of the supply to three times (each stopped for 30 seconds) (the first three-stage extraction in the figure, the second recovery). ).
  • the inventors of the present application assumed that the extraction solvent mainly passes through the central part of the reaction tank and the amino acid remains in the peripheral part of the space in the reaction tank at the liquid feeding speed in the above embodiment. Therefore, the inventor of the present application changed the liquid feeding speed from 1 mL / min to 0.4 mL / min and performed the first extraction operation (the first low-flow extraction in the figure, the second collection, the first low-flow extraction). Second recovery 2).
  • the total amount of extraction solvent at this time is about 400 ⁇ L.
  • FIG. 10 also shows the data of FIG. 8 (second recovery 1, second recovery 2, second recovery 3, second recovery 4) for comparison.

Abstract

The method for amino acid sequence analysis according to the present invention, said method involving a process for subjecting a sample disposed on a reaction tank to Edman degradation reaction, comprises: a cleavage step for introducing a reagent to the reaction tank and thus releasing the N-terminal amino acid of the sample; a first extraction step for introducing a reagent to the reaction tank and thus extracting the amino acid released in the cleavage step from the reaction tank to an extraction container; and a second extraction step for further introducing a reagent to the reaction tank and thus extracting the released amino acid that remains in the reaction tank from the reaction tank to the extraction container.

Description

アミノ酸配列分析装置及びアミノ酸配列分析方法Amino acid sequence analyzer and amino acid sequence analysis method
 本発明はアミノ酸配列分析装置及びアミノ酸配列分析方法に関するものである。 The present invention relates to an amino acid sequence analyzer and an amino acid sequence analysis method.
 蛋白質やペプチドの一次構造、すなわちアミノ酸配列をN末端から逐次分析する方法としてエドマン分解が知られている。このエドマン分解反応を用いて試料のアミノ酸配列を分析するアミノ酸配列分析装置が知られている。(例えば特許文献1を参照。)。 Edman degradation is known as a method for sequentially analyzing the primary structures of proteins and peptides, that is, amino acid sequences from the N-terminus. An amino acid sequence analyzer that analyzes the amino acid sequence of a sample using this Edman degradation reaction is known. (For example, refer to Patent Document 1).
 アミノ酸配列分析装置は試料を反応させるための反応槽を備えている。この反応槽には、試料を保持させた試料支持体が設置される。試料支持体は例えばガラスファイバフィルタやポリフッ化ビニリデン(PVDF)膜などの多孔質材料で形成される。 The amino acid sequence analyzer is equipped with a reaction tank for reacting the sample. The reaction vessel is provided with a sample support that holds a sample. The sample support is formed of a porous material such as a glass fiber filter or a polyvinylidene fluoride (PVDF) film.
 分析の際には、試料支持体が設置された反応槽に所定の試薬が供給される。そして、エドマン分解反応によって試料のN末端側からアミノ酸が逐次遊離する。遊離したアミノ酸は例えば高速液体クロマトグラフに導入されてアミノ酸配列の分析が行なわれる。 During the analysis, a predetermined reagent is supplied to the reaction tank in which the sample support is installed. Then, amino acids are sequentially released from the N-terminal side of the sample by Edman degradation reaction. The released amino acid is introduced into, for example, a high performance liquid chromatograph, and the amino acid sequence is analyzed.
特開平9-068534号公報JP-A-9-068534
 本発明は、エドマン分解反応によって遊離したアミノ酸の回収率を向上させることを目的とするものである。 The object of the present invention is to improve the recovery rate of amino acids released by the Edman degradation reaction.
 本発明の実施形態のアミノ酸配列分析装置は、反応槽に配置された試料のエドマン分解反応を行なうエドマン分解反応部と、上記エドマン分解反応部に試薬を供給する試薬供給部と、上記エドマン分解反応部においてエドマン分解反応によって試料から遊離したアミノ酸の分析を行なうアミノ酸分析部と、上記エドマン分解反応部、上記試薬供給部及び上記アミノ酸分析部の動作を制御する制御部であって、上記反応槽に上記試薬供給部から試薬を導入して試料のN末端部分のアミノ酸を遊離させた後、その遊離したアミノ酸を上記反応槽に試薬を導入して上記反応槽から抽出用容器に抽出させ、さらに上記反応槽に試薬を導入して上記反応槽に残留している上記遊離したアミノ酸を上記抽出用容器に抽出させる抽出制御部を備えている制御部と、を備えたものである。 An amino acid sequence analyzer according to an embodiment of the present invention includes an Edman decomposition reaction unit that performs an Edman decomposition reaction of a sample disposed in a reaction vessel, a reagent supply unit that supplies a reagent to the Edman decomposition reaction unit, and the Edman decomposition reaction An amino acid analysis unit for analyzing amino acids released from the sample by Edman degradation reaction in the unit, and a control unit for controlling operations of the Edman degradation reaction unit, the reagent supply unit, and the amino acid analysis unit, After introducing the reagent from the reagent supply unit to release the amino acid at the N-terminal part of the sample, the released amino acid is introduced into the reaction vessel and extracted from the reaction vessel to the extraction container, and A control system is provided that includes an extraction control unit that introduces a reagent into the reaction tank and extracts the liberated amino acid remaining in the reaction tank into the extraction container. And parts, in which with a.
 本発明の実施形態のアミノ酸配列分析方法は、反応槽に配置された試料のエドマン分解反応を行なう工程を順次に複数回行うアミノ酸配列分析方法であって、各工程は、上記反応槽に試薬を導入して試料のN末端部分のアミノ酸を遊離させる切断ステップと、上記反応槽に試薬を導入して上記切断ステップで遊離したアミノ酸を上記反応槽から抽出する第1抽出ステップと、さらに上記反応槽に試薬を導入して上記反応槽に残留している上記遊離したアミノ酸を上記反応槽から抽出用容器に抽出する第2抽出ステップと、を含む。 An amino acid sequence analysis method according to an embodiment of the present invention is an amino acid sequence analysis method in which a step of performing an Edman degradation reaction of a sample placed in a reaction vessel is sequentially performed a plurality of times, and each step includes a reagent in the reaction vessel. A cutting step for introducing and releasing an amino acid at the N-terminal portion of the sample; a first extraction step for introducing a reagent into the reaction vessel and extracting the amino acid liberated in the cutting step from the reaction vessel; and the reaction vessel And a second extraction step of extracting the liberated amino acid remaining in the reaction vessel from the reaction vessel into an extraction container.
 本発明の実施形態のアミノ酸配列分析装置及びアミノ酸配列分析方法は、エドマン分解反応によって遊離したアミノ酸の回収率を向上させることができる。 The amino acid sequence analyzer and amino acid sequence analysis method of the embodiment of the present invention can improve the recovery rate of amino acids released by the Edman degradation reaction.
アミノ酸配列分析装置の一実施形態を説明するための概略的な流路構成図である。It is a schematic flow-path block diagram for demonstrating one Embodiment of an amino acid sequence analyzer. 同実施形態の概略的なブロック図である。It is a schematic block diagram of the same embodiment. 反応槽の一例を説明するための概略的な断面図である。It is a schematic sectional drawing for explaining an example of a reaction vessel. 反応槽6の他の例を説明するための概略的な断面図である。図5は、図4の反応槽を構成するブロックの概略的な断面図及び平面図である。6 is a schematic cross-sectional view for explaining another example of the reaction vessel 6. FIG. FIG. 5 is a schematic cross-sectional view and a plan view of blocks constituting the reaction tank of FIG. 図4の反応槽を構成するブロックの概略的な断面図及び平面図である。It is the schematic sectional drawing and top view of the block which comprise the reaction tank of FIG. アミノ酸配列分析方法の一実施形態を説明するためのフローチャートである。It is a flowchart for demonstrating one Embodiment of the amino acid sequence analysis method. 1回目の抽出でのアミノ酸の回収量と2回目の抽出でのアミノ酸の回収量を比較するための図である。It is a figure for comparing the amount of amino acids recovered in the first extraction and the amount of amino acids recovered in the second extraction. 図7の2回目の抽出を拡大して示す図である。It is a figure which expands and shows the 2nd extraction of FIG. 3回目の抽出操作を行ったときのアミノ酸の回収量を説明するための図である。It is a figure for demonstrating the recovery amount of an amino acid when performing extraction operation of the 3rd time. 1回目の抽出操作条件を変更したときの2回目の抽出操作でのアミノ酸の回収量を説明するための図である。It is a figure for demonstrating the collection amount of the amino acid in the 2nd extraction operation when the 1st extraction operation conditions are changed.
 本発明の実施形態のアミノ酸配列分析装置及びアミノ酸配列分析方法において、上記反応槽は、反応空間、試料を保持する主平面を有し、その主平面で上記反応空間を上下の空間に区切るように上記反応空間内に配置された試料支持体、上記反応空間の上側の空間の内壁面に設けられ、上記試薬供給部からの試薬を流入させる試薬入口及び上記反応空間の下側の空間の内壁面に設けられ、上記反応空間内の試薬を回収する試薬出口を備えている例を挙げることができる。 In the amino acid sequence analyzer and the amino acid sequence analysis method of the embodiment of the present invention, the reaction vessel has a reaction space and a main plane for holding a sample, and the reaction space is divided into upper and lower spaces on the main plane. A sample support disposed in the reaction space, a reagent inlet that is provided on an inner wall surface of the space above the reaction space, into which a reagent from the reagent supply unit flows, and an inner wall surface of the space below the reaction space And a reagent outlet for recovering the reagent in the reaction space.
 図面を参照しながら本発明の一実施形態を説明する。
 図1は、アミノ酸配列分析装置の一実施形態を説明するための概略的な流路構成図である。図2は、同実施形態の概略的なブロック図である。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic flow path configuration diagram for explaining an embodiment of an amino acid sequence analyzer. FIG. 2 is a schematic block diagram of the embodiment.
 アミノ酸配列分析装置1は、第1試薬供給部2、第2試薬供給部3、エドマン分解反応部4及びアミノ酸分析部10、制御部35を備えている。第1試薬供給部2はエドマン分解反応部4の反応槽6にガスや試薬を供給するものである。第2試薬供給部3はエドマン分解反応部4のコンバージョンフラスコ8(抽出用容器)にガスや試薬を供給するものである。第1試薬供給部2と第2試薬供給部3によって試薬供給部が構成されている。 The amino acid sequence analyzer 1 includes a first reagent supply unit 2, a second reagent supply unit 3, an Edman degradation reaction unit 4, an amino acid analysis unit 10, and a control unit 35. The first reagent supply unit 2 supplies gas and reagents to the reaction tank 6 of the Edman decomposition reaction unit 4. The second reagent supply unit 3 supplies gas and a reagent to the conversion flask 8 (extraction container) of the Edman decomposition reaction unit 4. The first reagent supply unit 2 and the second reagent supply unit 3 constitute a reagent supply unit.
 第1試薬供給部2は第1試薬供給流路11を介してエドマン分解反応部4の反応槽6に接続されている。第1試薬供給部2には試薬容器5a~5eが設けられている。試薬容器5a~5eにはそれぞれ試薬が収容されている。試薬容器5aには酢酸エチルが収容されている。試薬容器5bには塩化n-ブチルが収容されている。試薬容器5cにはトリメチルアミンが収容されている。試薬容器5dにはPITC(フェニルイソチオシアネート)のn-ヘプタン溶液が収容されている。試薬容器5eにはトリフルオロ酢酸が収容されている。 The first reagent supply unit 2 is connected to the reaction tank 6 of the Edman decomposition reaction unit 4 via the first reagent supply channel 11. The first reagent supply unit 2 is provided with reagent containers 5a to 5e. Reagents are stored in the reagent containers 5a to 5e, respectively. Ethyl acetate is accommodated in the reagent container 5a. The reagent container 5b contains n-butyl chloride. Trimethylamine is accommodated in the reagent container 5c. The reagent container 5d contains an n-heptane solution of PITC (phenyl isothiocyanate). The reagent container 5e contains trifluoroacetic acid.
 試薬容器5a~5eは3方電磁弁12a~12eを介して第1試薬供給流路11にそれぞれ接続されている。また、試薬容器5a~5eは電磁弁13a~13eを介してドレインにそれぞれ接続されている。試薬容器5a~5eにはガス供給流路7a~7eがそれぞれ接続されている。ガス供給流路7a~7eには、各試薬容器5a~5eを加圧するためのガスの供給を制御する電磁弁9a~9eが設けられている。このガスは例えばN2ガスである。 The reagent containers 5a to 5e are connected to the first reagent supply channel 11 via three-way solenoid valves 12a to 12e, respectively. The reagent containers 5a to 5e are connected to drains via electromagnetic valves 13a to 13e, respectively. Gas supply channels 7a to 7e are connected to the reagent containers 5a to 5e, respectively. The gas supply channels 7a to 7e are provided with solenoid valves 9a to 9e for controlling the supply of gas for pressurizing the reagent containers 5a to 5e. This gas is, for example, N 2 gas.
 3方電磁弁12a~12eの切換えにより試薬容器5a~5eのいずれかが第1試薬供給流路11に選択的に接続され、その試薬容器にN2ガスが供給されて加圧されることで試薬が反応槽6に供給される。第1試薬供給流路11にもガスの供給の制御を行なう電磁弁9hが設けられている。 One of the reagent containers 5a to 5e is selectively connected to the first reagent supply channel 11 by switching the three-way solenoid valves 12a to 12e, and N2 gas is supplied to the reagent container and pressurized to thereby form the reagent. Is supplied to the reaction vessel 6. The first reagent supply channel 11 is also provided with an electromagnetic valve 9h that controls the supply of gas.
 第2試薬供給部3は第2試薬供給流路20を介してエドマン分解反応部4のコンバージョンフラスコ8に接続されている。第2試薬供給部3には試薬容器5f,5gが設けられている。試薬容器5f,5gにそれぞれ試薬として収容されている。試薬容器5fにはアセトニトリルと水の混合液が収容されている。試薬容器5gにはトリフルオロ酢酸溶液が収容されている。 The second reagent supply unit 3 is connected to the conversion flask 8 of the Edman decomposition reaction unit 4 via the second reagent supply channel 20. The second reagent supply unit 3 is provided with reagent containers 5f and 5g. Reagent containers 5f and 5g are accommodated as reagents. The reagent container 5f contains a mixture of acetonitrile and water. The reagent container 5g contains a trifluoroacetic acid solution.
 試薬容器5f,5gはそれぞれ3方電磁弁12f,12gを介して第2試薬供給流路20に接続されている。試薬容器5fにはガス供給流路7fが接続されている。試薬容器5gにはガス供給流路7gが接続されている。ガス供給流路7f,7gには各試薬容器7f,7gを加圧するためのガスの供給を制御する電磁弁9f,9gが設けられている。 The reagent containers 5f and 5g are connected to the second reagent supply channel 20 via three- way solenoid valves 12f and 12g, respectively. A gas supply channel 7f is connected to the reagent container 5f. A gas supply channel 7g is connected to the reagent container 5g. The gas supply passages 7f and 7g are provided with electromagnetic valves 9f and 9g for controlling the supply of gas for pressurizing the reagent containers 7f and 7g.
 3方電磁弁12f,12gの切換えにより試薬容器5f,5gのいずれかが第2試薬供給流路20に選択的に接続され、その試薬容器にガスが供給されて加圧されることで試薬がコンバージョンフラスコ8に供給される。第2試薬供給流路20にもガスの供給の制御を行なう電磁弁9iが設けられている。 One of the reagent containers 5f and 5g is selectively connected to the second reagent supply flow path 20 by switching the three- way solenoid valves 12f and 12g, and a gas is supplied to the reagent container and pressurized to thereby supply the reagent. It is supplied to the conversion flask 8. The second reagent supply channel 20 is also provided with an electromagnetic valve 9i that controls the supply of gas.
 エドマン分解反応部4において、反応槽6の出口側に流路14が接続されている。流路14は3方電磁弁16を介してドレインとコンバージョンフラスコ8へ通じる流路18に接続されている。反応槽6の出口側は3方電磁弁16の切換えによってコンバージョンフラスコ8とドレインのいずれか一方に接続される。 In the Edman decomposition reaction section 4, a flow path 14 is connected to the outlet side of the reaction tank 6. The flow path 14 is connected to a flow path 18 that leads to the drain and the conversion flask 8 via a three-way solenoid valve 16. The outlet side of the reaction vessel 6 is connected to either the conversion flask 8 or the drain by switching the three-way electromagnetic valve 16.
 コンバージョンフラスコ8には、反応槽6側からの流路18のほか、第2試薬供給流路20、導入流路22及びドレインが接続されている。コンバージョンフラスコ8のドレインは電磁弁19によって開閉されるようになっている。導入流路22はアミノ酸分析部10の6方バルブ24の1つのポートに通じている。 In addition to the flow path 18 from the reaction tank 6 side, a second reagent supply flow path 20, an introduction flow path 22 and a drain are connected to the conversion flask 8. The drain of the conversion flask 8 is opened and closed by a solenoid valve 19. The introduction flow path 22 communicates with one port of the 6-way valve 24 of the amino acid analyzer 10.
 試料は反応槽6の内部に設けられた反応空間内に保持される。反応槽6は、試料を保持した試料支持体を試薬が通液する構造となっている。試料支持体を試薬が通液することで、試料のN末端側からアミノ酸が切り出され、切り出されたアミノ酸がコンバージョンフラスコ8に導かれる。コンバージョンフラスコ8は導入流路22を介してアミノ酸分析部10に接続されており、反応槽6で試料から切り出されたアミノ酸はコンバージョンフラスコ8において転換及び溶解の処理が施された後、アミノ酸分析部10に導入される。 The sample is held in a reaction space provided inside the reaction vessel 6. The reaction tank 6 has a structure in which the reagent passes through the sample support holding the sample. By passing the reagent through the sample support, amino acids are cut out from the N-terminal side of the sample, and the cut-out amino acids are guided to the conversion flask 8. The conversion flask 8 is connected to the amino acid analysis unit 10 via the introduction flow path 22, and the amino acid cut out from the sample in the reaction vessel 6 is converted and dissolved in the conversion flask 8, and then the amino acid analysis unit. 10 is introduced.
 図3は反応槽6の一例を説明するための概略的な断面図である。
 反応槽6は内部に反応空間42を備えている。また、反応槽6は反応空間42に通じる入口流路44(試薬入口)及び出口流路46(試薬出口)を備えている。
FIG. 3 is a schematic cross-sectional view for explaining an example of the reaction vessel 6.
The reaction tank 6 includes a reaction space 42 inside. The reaction tank 6 includes an inlet channel 44 (reagent inlet) and an outlet channel 46 (reagent outlet) that communicate with the reaction space 42.
 反応槽6は、2つのブロック36,38が上下に積層されて構成されている。ブロック36,38は例えば円柱形状のガラス製ブロックである。反応空間42は、上側のブロック36の下面に設けられた凹部42aと下側のブロック38の上面に設けられた凹部42bからなる空間である。例えば、凹部42aと凹部42bは互いに対称な円錐形状である。 The reaction tank 6 is configured by two blocks 36 and 38 being stacked one above the other. The blocks 36 and 38 are, for example, cylindrical glass blocks. The reaction space 42 is a space composed of a recess 42 a provided on the lower surface of the upper block 36 and a recess 42 b provided on the upper surface of the lower block 38. For example, the concave portion 42a and the concave portion 42b have a conical shape symmetrical to each other.
 反応空間42内に試料支持体48が配置されている。試料支持体48は主平面を有し、その主平面において試料を保持するとともに試薬を透過させることができる。試料支持体48の主平面の形状は、例えば反応空間42の平面形状と同じ円形である。試料支持体48としては、ガラスファイバフィルタやPVDF膜を用いることができる。試料支持体48はその主平面が水平になるようにブロック36の下面境界部分に配置されている。 A sample support 48 is disposed in the reaction space 42. The sample support 48 has a main plane, and can hold the sample in the main plane and allow the reagent to pass therethrough. The shape of the main plane of the sample support 48 is, for example, the same circle as the plane shape of the reaction space 42. As the sample support 48, a glass fiber filter or a PVDF membrane can be used. The sample support 48 is disposed at the lower boundary portion of the block 36 so that its main plane is horizontal.
 ブロック36はブロック38に対して着脱可能に取り付けられている。ブロック36をブロック38から取り外すことにより、反応空間42へ試料支持体48を設置したり、取り外したりすることができるようになっている。 The block 36 is detachably attached to the block 38. By removing the block 36 from the block 38, the sample support 48 can be installed in or removed from the reaction space 42.
 ブロック36と38の間にPTFE膜40が挟み込まれている。これは、ブロック36と38を取り外したときにブロック36と38の間にごみや異物が混入する可能性があり、それらの混入物が出口流路46を通って下流の電磁弁に入って故障の原因となることを防止するためである。 A PTFE film 40 is sandwiched between the blocks 36 and 38. This is because when the blocks 36 and 38 are removed, dust and foreign substances may enter between the blocks 36 and 38, and those contaminants enter the downstream solenoid valve through the outlet channel 46 and break down. This is to prevent this from occurring.
 入口流路44はブロック36に設けられている。出口流路46はブロック38に設けられている。反応空間42は試料支持体48によって上下2つの空間に仕切られている。入口流路44の反応空間42側の端部の開口は、試料支持体48によって仕切られた反応空間42の上側の空間の内壁面に設けられている。出口流路46の反応空間42側の端部の開口は、試料支持体48によって仕切られた反応空間42の下側の空間の内壁面に設けられている。入口流路44の上記開口と出口流路46の上記開口は、ともに試料支持体48の主平面の端部近傍で、試料支持体48の中心を挟んで互いに反対側の位置に設けられている。これにより、入口流路44を通じて反応空間42へ流入した試薬は反応空間42全体に行き渡るようになり、試料支持体48の主平面全体が試薬によって通液される。 The inlet channel 44 is provided in the block 36. The outlet channel 46 is provided in the block 38. The reaction space 42 is partitioned into two upper and lower spaces by a sample support 48. The opening at the end of the inlet channel 44 on the reaction space 42 side is provided on the inner wall surface of the space above the reaction space 42 partitioned by the sample support 48. The opening at the end of the outlet channel 46 on the reaction space 42 side is provided on the inner wall surface of the space below the reaction space 42 partitioned by the sample support 48. Both the opening of the inlet channel 44 and the opening of the outlet channel 46 are provided at positions opposite to each other across the center of the sample support 48 near the end of the main plane of the sample support 48. . As a result, the reagent that has flowed into the reaction space 42 through the inlet channel 44 reaches the entire reaction space 42, and the entire main plane of the sample support 48 is passed by the reagent.
 ブロック36上面側の入口流路44の端部は、例えばブロック36の中心軸上に設けられている。ブロック38下面側の出口流路46の端部は、例えばブロック38の中心軸上に設けられている。これにより、入口流路44と出口流路46に接続する配管の位置決めを反応槽6の中心軸を基準としてすることができ、反応槽6への配管の接続が容易になる。 The end of the inlet channel 44 on the upper surface side of the block 36 is provided on the central axis of the block 36, for example. The end of the outlet channel 46 on the lower surface side of the block 38 is provided on the central axis of the block 38, for example. Thereby, the positioning of the piping connected to the inlet channel 44 and the outlet channel 46 can be made with reference to the central axis of the reaction tank 6, and the connection of the pipe to the reaction tank 6 is facilitated.
 なお、反応槽6の構造は図3に示されたものに限られない。
 図4は反応槽6の他の例を説明するための概略的な断面図である。図5は、図4の反応槽を構成するブロックの概略的な断面図及び平面図である。
In addition, the structure of the reaction tank 6 is not restricted to what was shown by FIG.
FIG. 4 is a schematic cross-sectional view for explaining another example of the reaction vessel 6. FIG. 5 is a schematic cross-sectional view and a plan view of blocks constituting the reaction tank of FIG.
 図4及び図5の例では、反応空間42が、中心軸が鉛直方向から傾斜した円柱形状に形成されている。反応空間42をなす凹部42a,42bはともに、例えば平底のドリルをブロック36と38の凹部形成面に対して傾斜させて一定の深さまで掘り込むことで形成されている。 4 and 5, the reaction space 42 is formed in a cylindrical shape whose central axis is inclined from the vertical direction. The recesses 42a and 42b forming the reaction space 42 are both formed by, for example, inclining a flat bottom drill with respect to the recess forming surfaces of the blocks 36 and 38 to a certain depth.
 入口流路44の反応空間42側の端部の開口は凹部42aの最深部、すなわち反応空間42の最上部に設けられている。これにより、試薬がさらに反応空間42全体に行き渡り易くなっている。また、出口流路46の反応空間42側の端部の開口は凹部42bの最深部、すなわち反応空間42の最下部に設けられている。これにより、反応空間42内に試薬が溜まりにくくなっている。 The opening at the end of the inlet channel 44 on the reaction space 42 side is provided at the deepest portion of the recess 42 a, that is, at the uppermost portion of the reaction space 42. This makes it easier for the reagent to reach the entire reaction space 42. Further, the opening at the end of the outlet channel 46 on the reaction space 42 side is provided at the deepest part of the recess 42 b, that is, at the lowest part of the reaction space 42. This makes it difficult for the reagent to accumulate in the reaction space 42.
 なお、反応槽6の構造は図3又は図4に示されたものに限られない。例えば、入口流路44及び出口流路46と反応空間42がつながる位置は、特に限定されず、例えば反応空間42の中央部であってもよい。 It should be noted that the structure of the reaction vessel 6 is not limited to that shown in FIG. 3 or FIG. For example, the position where the inlet channel 44 and the outlet channel 46 are connected to the reaction space 42 is not particularly limited, and may be, for example, the central portion of the reaction space 42.
 図1に戻って説明を続ける。
 アミノ酸分析部10は高速液体クロマトグラフである。アミノ酸分析部10は、6方バルブ24、サンプル滞留流路26、移動相送液流路27及び分析流路28を備えている。サンプル滞留流路26、移動相送液流路27及び分析流路28は6方バルブ24のそれぞれのポートに接続されている。6方バルブ24は、導入流路22-サンプル滞留流路26-ドレイン間を接続した状態(図1の状態)と、移動相送液流路27-サンプル滞留流路26-分析流路28間を接続した状態のいずれかに切り換える。
Returning to FIG. 1, the description will be continued.
The amino acid analyzer 10 is a high performance liquid chromatograph. The amino acid analysis unit 10 includes a six-way valve 24, a sample retention channel 26, a mobile phase feeding channel 27, and an analysis channel 28. The sample retention channel 26, the mobile phase feeding channel 27, and the analysis channel 28 are connected to respective ports of the six-way valve 24. The six-way valve 24 is connected between the introduction flow path 22 and the sample retention flow path 26 and the drain (state shown in FIG. 1), and between the mobile phase liquid supply flow path 27, the sample retention flow path 26, and the analysis flow path 28. Switch to one of the connected states.
 サンプル滞留流路26は導入流路22から導入されるアミノ酸を一時的に滞留させておくサンプルループ26aを備えている。移動相送液流路27は移動相溶媒を送液するための送液ポンプ30を備えており、分析流路28は分析カラム32及びその下流の検出器34を備えている。 The sample retention channel 26 includes a sample loop 26a that temporarily retains the amino acid introduced from the introduction channel 22. The mobile phase liquid supply flow path 27 includes a liquid supply pump 30 for supplying the mobile phase solvent, and the analysis flow path 28 includes an analysis column 32 and a detector 34 downstream thereof.
 図2に示されるように、第1試薬供給部2、第2試薬供給部3、エドマン分解反応部4及びアミノ酸分析部10の動作は制御部35により制御される。制御部35は、反応槽6に第1試薬供給部2から試薬を導入して試料のN末端部分のアミノ酸を遊離させた後、その遊離したアミノ酸を反応槽6に試薬を導入してアミノ酸を反応槽6からコンバージョンフラスコ8に抽出させ、さらに反応槽6に試薬を導入して反応槽6に残留している上記遊離したアミノ酸をコンバージョンフラスコ8に抽出させる抽出制御部35aを備えている。また、制御部35にはアミノ酸分析部10の検出器34で得られた検出データが入力され、制御部35においてアミノ酸の同定や定量、収率計算などが行なわれる。制御部35は例えばパーソナルコンピュータや専用のコンピュータにより実現される。 As shown in FIG. 2, the operations of the first reagent supply unit 2, the second reagent supply unit 3, the Edman decomposition reaction unit 4 and the amino acid analysis unit 10 are controlled by the control unit 35. The control unit 35 introduces the reagent from the first reagent supply unit 2 into the reaction vessel 6 to release the amino acid at the N-terminal portion of the sample, and then introduces the released amino acid into the reaction vessel 6 to remove the amino acid. An extraction control unit 35a is provided for extracting from the reaction tank 6 into the conversion flask 8 and introducing the reagent into the reaction tank 6 and extracting the liberated amino acid remaining in the reaction tank 6 into the conversion flask 8. Further, detection data obtained by the detector 34 of the amino acid analysis unit 10 is input to the control unit 35, and amino acid identification, quantification, yield calculation, and the like are performed in the control unit 35. The control unit 35 is realized by, for example, a personal computer or a dedicated computer.
 図6は、アミノ酸配列分析方法の一実施形態を説明するためのフローチャートである。図1から図6を参照してアミノ酸配列分析方法の一実施形態について説明する。 FIG. 6 is a flowchart for explaining an embodiment of the amino acid sequence analysis method. An embodiment of an amino acid sequence analysis method will be described with reference to FIGS.
 [試料の設置(ステップS1)]
 試料を保持させた試料支持体48(例えばPVDF膜)をブロック36と38の間にPTFE膜40とともに挟み込むことで、反応槽6の反応空間42内に試料支持体48を設置する。
[Sample Installation (Step S1)]
The sample support 48 (for example, PVDF film) holding the sample is sandwiched between the blocks 36 and 38 together with the PTFE film 40, so that the sample support 48 is installed in the reaction space 42 of the reaction tank 6.
 [カップリング反応(ステップS2)]
 制御部35の制御により、電磁弁9cを切り替え、N2ガスをトリメチルアミンの試薬容器5cに供給し、試薬容器5cの圧力を上げることで、3方電磁弁12cを介して反応槽6に気体のトリメチルアミンを供給して反応槽6内を満たす。第1試薬供給部2からPITCのn-ヘプタン溶液を反応槽6に供給し、試料であるタンパク質のN末端アミノ基に反応させ、PTC(フェニルチオカルバミル)-タンパク質を生成する。第1試薬供給部2から酢酸エチルを反応槽6に供給し、反応槽6内の過剰な試薬や副生成物を洗浄してドレインへ排出する。このカップリング反応は、反応槽6の出口側の流路14をドレインに接続した状態で行なう。
[Coupling reaction (step S2)]
Under the control of the control unit 35, the electromagnetic valve 9 c is switched, N 2 gas is supplied to the trimethylamine reagent container 5 c, and the pressure in the reagent container 5 c is increased, whereby the gas is supplied to the reaction tank 6 through the three-way electromagnetic valve 12 c. Trimethylamine is supplied to fill the reaction vessel 6. An n-heptane solution of PITC is supplied from the first reagent supply unit 2 to the reaction vessel 6 and reacted with the N-terminal amino group of the sample protein to produce PTC (phenylthiocarbamyl) -protein. Ethyl acetate is supplied from the first reagent supply unit 2 to the reaction tank 6, and excess reagents and by-products in the reaction tank 6 are washed and discharged to the drain. This coupling reaction is carried out with the flow path 14 on the outlet side of the reaction vessel 6 connected to the drain.
 [切断反応(ステップS3)]
 第1試薬供給部2からトリフルオロ酢酸を反応槽6に供給し、PTC-タンパク質のN末端ペプチド結合を切断し、ATZ(アニリノチアゾリノン)-アミノ酸を形成する。この切断反応も、反応槽6の出口側の流路14をドレインに接続した状態で行なう。
[Cleavage reaction (step S3)]
Trifluoroacetic acid is supplied from the first reagent supply unit 2 to the reaction tank 6, and the N-terminal peptide bond of the PTC-protein is cleaved to form an ATZ (anilinothiazolinone) -amino acid. This cutting reaction is also performed with the flow path 14 on the outlet side of the reaction tank 6 connected to the drain.
 [1回目の抽出(ステップS4)]
 反応槽6の出口側の流路14をコンバージョンフラスコ8側へ接続し、第1試薬供給部2から塩化n-ブチルを反応槽6に供給することで、試料から遊離したATZ-アミノ酸をコンバージョンフラスコ8に抽出する。例えば、約400μL(マイクロリットル)の塩化n-ブチルを反応槽6に導入する。所定量の塩化n-ブチルはN2ガスによって押されて送液される。塩化n-ブチルを例えば1mL/min(ミリリットル/分)の流量で20秒間送液した後、30秒間送液を停止し、再び1mL/minの流量で30秒間送液する。その後、反応槽6にN2ガスを供給する。塩化n-ブチルが通過した後の反応槽6の内部にはN2ガスが充満している。
[First extraction (step S4)]
The flow path 14 on the outlet side of the reaction tank 6 is connected to the conversion flask 8 side, and n-butyl chloride is supplied from the first reagent supply unit 2 to the reaction tank 6 so that the ATZ-amino acid released from the sample is converted into the conversion flask. 8 is extracted. For example, about 400 μL (microliter) of n-butyl chloride is introduced into the reaction vessel 6. A predetermined amount of n-butyl chloride is sent by being pushed by N 2 gas. For example, after feeding n-butyl chloride at a flow rate of 1 mL / min (milliliter / minute) for 20 seconds, the liquid supply is stopped for 30 seconds, and again at a flow rate of 1 mL / min for 30 seconds. Thereafter, N 2 gas is supplied to the reaction vessel 6. The inside of the reaction vessel 6 after the passage of n-butyl chloride is filled with N 2 gas.
 具体的な抽出動作例を説明する。
 (1)電磁弁9bを開いて試薬容器5b内をN2ガスで加圧し、試薬容器5bに収容されている塩化n-ブチルを、電磁弁12bを経由して第1試薬供給流路11に例えば400μL導入する。例えば第1試薬供給流路11の途中に液体センサが設けられており、その液体センサが液体を検知したときに送液が停止されることによって、第1試薬供給流路11に導入された塩化n-ブチルが計量される。なお、電磁弁9b,12bの開時間を制御することによっても計量は可能である。
A specific example of the extraction operation will be described.
(1) The electromagnetic valve 9b is opened, the inside of the reagent container 5b is pressurized with N 2 gas, and n-butyl chloride contained in the reagent container 5b is transferred to the first reagent supply channel 11 via the electromagnetic valve 12b. For example, 400 μL is introduced. For example, a liquid sensor is provided in the middle of the first reagent supply channel 11, and when the liquid sensor detects a liquid, the liquid feeding is stopped, whereby the chloride introduced into the first reagent supply channel 11. n-Butyl is weighed. Measurement can also be performed by controlling the opening time of the electromagnetic valves 9b and 12b.
 (2)電磁弁9hを開いて第1試薬供給流路11にN2ガスを例えば1mL/minの流量で20秒間導入する。その後、電磁弁9hを閉じる。これにより第1試薬供給流路11内の塩化n-ブチルが送液され、反応槽6に導入される。このとき、反応槽6は塩化n-ブチルで満たされた状態になる。この状態で30秒間送液を停止する。 (2) The electromagnetic valve 9h is opened and N 2 gas is introduced into the first reagent supply channel 11 at a flow rate of 1 mL / min for 20 seconds, for example. Thereafter, the electromagnetic valve 9h is closed. As a result, n-butyl chloride in the first reagent supply channel 11 is fed and introduced into the reaction vessel 6. At this time, the reaction vessel 6 is filled with n-butyl chloride. In this state, liquid feeding is stopped for 30 seconds.
 (3)再び電磁弁9hを開いて第1試薬供給流路11にN2ガスを例えば1mL/minの流量で30秒間導入する。その後、電磁弁9hを閉じる。これにより、反応槽6内の遊離したATZ-アミノ酸を塩化n-ブチルでコンバージョンフラスコ8に抽出する。反応槽6はN2ガスが充満した状態になる。 (3) The electromagnetic valve 9h is opened again and N 2 gas is introduced into the first reagent supply channel 11 at a flow rate of 1 mL / min for 30 seconds, for example. Thereafter, the electromagnetic valve 9h is closed. Thereby, the released ATZ-amino acid in the reaction vessel 6 is extracted into the conversion flask 8 with n-butyl chloride. The reaction tank 6 is filled with N 2 gas.
 [2回目の抽出(ステップS5)]
 反応槽6の出口側の流路14をコンバージョンフラスコ8側へ接続した状態で、第1試薬供給部2から塩化n-ブチルを反応槽6に再度供給することで、反応槽6に残存しているATZ-アミノ酸をコンバージョンフラスコ8に抽出する。例えば、上記1回目の抽出と同様に、約400μLの塩化n-ブチルを反応槽6に導入する。塩化n-ブチルを例えば1mL/minの流量で20秒間送液した後、約30秒間送液を停止し、再び1mL/minの流量で30秒間送液する。その後、反応槽6にN2ガスを供給する。具体的な抽出動作例は上記1回目の抽出と同じである。
[Second Extraction (Step S5)]
In the state where the flow path 14 on the outlet side of the reaction tank 6 is connected to the conversion flask 8 side, n-butyl chloride is supplied again from the first reagent supply unit 2 to the reaction tank 6, thereby remaining in the reaction tank 6. ATZ-amino acids are extracted into the conversion flask 8. For example, as in the first extraction, about 400 μL of n-butyl chloride is introduced into the reaction vessel 6. For example, after feeding n-butyl chloride at a flow rate of 1 mL / min for 20 seconds, the liquid supply is stopped for about 30 seconds and again at a flow rate of 1 mL / min for 30 seconds. Thereafter, N 2 gas is supplied to the reaction vessel 6. A specific example of the extraction operation is the same as the first extraction.
 [転換反応(ステップS6)]
 第2試薬供給部3からトリフルオロ酢酸溶液をコンバージョンフラスコ8に供給し、ATZ-アミノ酸を安定なPTH(フェニルチオヒダントイン)-アミノ酸へ転換する。
[Conversion reaction (step S6)]
A trifluoroacetic acid solution is supplied from the second reagent supply unit 3 to the conversion flask 8 to convert the ATZ-amino acid into a stable PTH (phenylthiohydantoin) -amino acid.
 [溶解(ステップS7)]
 第2試薬供給部3からアセトニトリルと水の混合液をコンバージョンフラスコ8に供給し、アセトニトリルと水の混合液にPTH-アミノ酸を溶解させる。上記のカップリング反応(ステップS2)からこの溶解(ステップS7)までの反応がエドマン分解反応である。
[Dissolution (Step S7)]
A mixture of acetonitrile and water is supplied from the second reagent supply unit 3 to the conversion flask 8, and the PTH-amino acid is dissolved in the mixture of acetonitrile and water. The reaction from the coupling reaction (step S2) to the dissolution (step S7) is an Edman decomposition reaction.
 [液体クロマトグラフへの導入(ステップS8)]
 以上のエドマン分解反応により得られたPTH-アミノ酸を高速液体クロマトグラフ10に導入する。そのために、6方バルブ24によって導入流路22-サンプル滞留流路26-ドレイン間を接続し、コンバージョンフラスコ8に電磁弁9i、12f及び12gを介してN2ガスを供給してコンバージョンフラスコ8内を加圧することで、コンバージョンフラスコ8内のPTH-アミノ酸を含むアセトニトリルと水の混合液(サンプル溶液)を導入流路22側へ導出する。導入流路22側へ導出されたサンプル溶液はサンプル滞留流路26のサンプルループ26aに滞留する。6方バルブ24が移動相送液流路27-サンプル滞留流路26-分析流路28間を接続するように切り換えられることで、サンプル溶液は移動相送液流路27からの移動相溶媒によって分析カラム32に移送される。サンプル溶液は分析カラム32において成分ごとに分離され、検出器34においてその組成成分が検出される。検出器34で得られた検出信号は制御部35に取り込まれ、アミノ酸の同定や定量、収率計算などが行なわれる。
[Introduction to liquid chromatograph (step S8)]
The PTH-amino acid obtained by the above Edman decomposition reaction is introduced into the high performance liquid chromatograph 10. For this purpose, the introduction flow path 22-sample retention flow path 26-drain are connected by a 6-way valve 24, and N 2 gas is supplied to the conversion flask 8 via the electromagnetic valves 9i, 12f and 12g. , The mixed solution (sample solution) of acetonitrile and water containing PTH-amino acid in the conversion flask 8 is led out to the introduction flow path 22 side. The sample solution led out to the introduction channel 22 side stays in the sample loop 26 a of the sample retention channel 26. The 6-way valve 24 is switched so as to connect between the mobile phase liquid flow path 27, the sample retention flow path 26, and the analysis flow path 28, so that the sample solution depends on the mobile phase solvent from the mobile phase liquid flow path 27. It is transferred to the analytical column 32. The sample solution is separated for each component in the analysis column 32, and the composition component is detected in the detector 34. The detection signal obtained by the detector 34 is taken into the control unit 35, and amino acid identification, quantification, yield calculation, and the like are performed.
 以上のステップS2~S8の動作を繰り返し実行し、試料のN末端からアミノ酸を順次遊離させて高速液体クロマトグラフ10でアミノ酸の分離分析を行なう。 The operations in steps S2 to S8 are repeatedly executed, amino acids are sequentially released from the N-terminal of the sample, and amino acid separation analysis is performed with the high performance liquid chromatograph 10.
 このように、上記実施形態はエドマン分解反応によって遊離したN末端部分のアミノ酸を抽出する操作を2回行う。これにより、遊離したN末端部分のアミノ酸の回収率が向上する。なお、エドマン分解法におけるアミノ酸抽出操作は通常1回である。 Thus, in the above embodiment, the operation of extracting the amino acid at the N-terminal part released by the Edman degradation reaction is performed twice. This improves the recovery rate of the free N-terminal amino acid. The amino acid extraction operation in the Edman degradation method is usually one time.
 遊離したN末端部分のアミノ酸を2回の抽出操作によって回収することによって回収率が向上することを説明する。 Explain that the recovery rate is improved by recovering the free N-terminal amino acid by two extraction operations.
 図7は、1回目の抽出でのアミノ酸の回収量と2回目の抽出でのアミノ酸の回収量を比較するための図である。図8は、図7の2回目の抽出を拡大して示す図である。図7、図8において、縦軸はピーク面積(任意単位)、横軸は検出されたアミノ酸の記号及び検出サイクル番号を示す。 FIG. 7 is a diagram for comparing the recovery amount of amino acid in the first extraction with the recovery amount of amino acid in the second extraction. FIG. 8 is an enlarged view showing the second extraction of FIG. 7 and 8, the vertical axis represents the peak area (arbitrary unit), and the horizontal axis represents the detected amino acid symbol and detection cycle number.
 1回目の抽出操作で抽出したアミノ酸のみと、2回目の抽出操作で抽出したアミノ酸のみを、それぞれ高速液体クロマトグラフで検出した。1回目の抽出及び2回目の抽出の条件は上記実施形態と同じである。サンプルはウマ由来ミオグロビンサンプル(50pmol)である。1回目の抽出操作については2回測定した(1回目回収1,1回目回収2)。2回目の抽出操作については4回測定した(2回目回収1,2回目回収2,2回目回収3,2回目回収4)。 Only the amino acid extracted by the first extraction operation and only the amino acid extracted by the second extraction operation were detected by high performance liquid chromatography. The conditions for the first extraction and the second extraction are the same as in the above embodiment. The sample is a horse-derived myoglobin sample (50 pmol). The first extraction operation was measured twice (first collection 1, first collection 2). The second extraction operation was measured four times (second recovery 1, second recovery 2, second recovery 3, second recovery 4).
 図7から、2回目の抽出操作によってもアミノ酸が回収されていることがわかる。その量は1回目の抽出操作のアミノ酸回収量に対して0~25%程度である。1回目の抽出操作だけではすべてのアミノ酸を回収できていないことが確認できた。このことから、2回の抽出操作を行うことにより、アミノ酸の回収率が向上することがわかる。 FIG. 7 shows that amino acids are also recovered by the second extraction operation. The amount is about 0 to 25% with respect to the amino acid recovery amount in the first extraction operation. It was confirmed that not all amino acids could be recovered by the first extraction operation alone. This shows that the recovery rate of amino acids is improved by performing the extraction operation twice.
 また、2回目の抽出操作に関して、分析によってはピーク面積値が低くなっているものがある(2回目回収3を参照。)。これは1回目の抽出操作によるアミノ酸の回収がばらついていることに起因すると考えられる。2回の抽出操作が行われることは、1回のみの抽出操作が行われる場合と比較して、アミノ酸の回収率のばらつきを低減することができる。 Also, regarding the second extraction operation, there is a peak area value that is low depending on the analysis (see second recovery 3). This is considered to be due to variations in amino acid recovery by the first extraction operation. The fact that the extraction operation is performed twice can reduce variation in the recovery rate of amino acids as compared to the case where the extraction operation is performed only once.
 2回目の抽出操作でアミノ酸の回収が確認されたことから、さらに抽出操作(3回目)を行うことでアミノ酸が回収されるかどうかを検証した。
 図9は、3回目の抽出操作を行ったときのアミノ酸の回収量を説明するための図である。図9において、縦軸はピーク面積(任意単位)、横軸は検出されたアミノ酸の記号及び検出サイクル番号を示す。
Since recovery of amino acids was confirmed by the second extraction operation, it was verified whether or not amino acids were recovered by further extraction operation (third time).
FIG. 9 is a diagram for explaining the recovery amount of amino acids when the third extraction operation is performed. In FIG. 9, the vertical axis represents the peak area (arbitrary unit), and the horizontal axis represents the detected amino acid symbol and detection cycle number.
 3回目の抽出操作は上記2回目の抽出操作を同じ条件で行った。また、3回目の抽出操作では、抽出溶媒として塩化n-ブチル(図中の3回目回収S3)と酢酸エチル(図中の3回目回収S2)を用いた。その他の操作は上記実施態様と同様である。 In the third extraction operation, the second extraction operation was performed under the same conditions. In the third extraction operation, n-butyl chloride (third recovery S3 in the figure) and ethyl acetate (third recovery S2 in the figure) were used as extraction solvents. Other operations are the same as in the above embodiment.
 3回目の抽出操作では、ほとんどピークは検出されなかった。このことから、2回目の抽出操作でアミノ酸をほぼ回収できていると考えられる。
 また、抽出溶媒を塩化n-ブチルから酢酸エチルに変更した場合でも、同様にピークは検出されなかった。なお、3回目の抽出操作での抽出溶媒として酢酸エチルを用いた実験では、1サイクル目からピークが検出されなかったので、効果なしと判断して9サイクルで分析を中止した(図9の3回目回収S2を参照。)。
In the third extraction operation, almost no peak was detected. From this, it is considered that amino acids were almost recovered by the second extraction operation.
Similarly, no peak was detected even when the extraction solvent was changed from n-butyl chloride to ethyl acetate. In the experiment using ethyl acetate as the extraction solvent in the third extraction operation, no peak was detected from the first cycle, so it was judged that there was no effect and the analysis was stopped in 9 cycles (3 in FIG. 9). (See second recovery S2).
 次に、2回目の抽出操作でアミノ酸の回収が確認されたことから、1回目の抽出効率をあげる検討を行った。
 図10は、1回目の抽出操作条件を変更したときの2回目の抽出操作でのアミノ酸の回収量を説明するための図である。図10において、縦軸はピーク面積(任意単位)、横軸は検出されたアミノ酸の記号及び検出サイクル番号を示す。
Next, since the recovery of amino acids was confirmed by the second extraction operation, studies were carried out to increase the first extraction efficiency.
FIG. 10 is a diagram for explaining the amino acid recovery amount in the second extraction operation when the first extraction operation condition is changed. In FIG. 10, the vertical axis represents the peak area (arbitrary unit), and the horizontal axis represents the detected amino acid symbol and detection cycle number.
 上記実施形態は1回目の抽出操作で、抽出溶媒(塩化n-ブチル)の送液を1mL/minで送液、30秒間停止、再び1mL/minで送液の順番で行っている。本願発明者は、この操作について、1回の送液停止だけは、遊離しているすべてのアミノ酸を試料支持体(PVDF膜)から抽出するには不十分である、と仮定した。そこで、本願発明者は1回目の抽出操作での抽出溶媒の送液条件を変更し、送液停止を3回(それぞれ30秒間停止)に増やした(図中の1回目3段階抽出2回目回収)。なお、1回目の送液停止と2回目の送液停止の間の送液、及び、2回目の送液停止と3回目の送液停止の間の送液について、1mL/minで10秒間行われた。このときの抽出溶媒の合計送液量は約400μLである。 In the above embodiment, in the first extraction operation, the extraction solvent (n-butyl chloride) was fed at a rate of 1 mL / min, stopped for 30 seconds, and again at a rate of 1 mL / min. The inventor of this application assumed that a single stoppage of liquid feeding is insufficient to extract all free amino acids from the sample support (PVDF membrane). Therefore, the inventor of the present application changed the extraction solvent supply condition in the first extraction operation, and increased the stoppage of the supply to three times (each stopped for 30 seconds) (the first three-stage extraction in the figure, the second recovery). ). In addition, about 10 seconds at 1 mL / min about the liquid feeding between the 1st liquid feeding stop and the 2nd liquid feeding stop, and the liquid feeding between the 2nd liquid feeding stop and the 3rd liquid feeding stop It was broken. The total amount of extraction solvent at this time is about 400 μL.
 また、本願発明者は、上記実施形態の送液速度では抽出溶媒が主に反応槽の中央部分を通過して反応槽内の空間の周縁部にアミノ酸が残っていると仮定した。そこで、本願発明者は送液速度を1mL/minから0.4mL/minに変更して1回目の抽出操作を行った(図中の1回目低流速抽出2回目回収1,1回目低流速抽出2回目回収2)。このときの抽出溶媒の合計送液量は約400μLである。 In addition, the inventors of the present application assumed that the extraction solvent mainly passes through the central part of the reaction tank and the amino acid remains in the peripheral part of the space in the reaction tank at the liquid feeding speed in the above embodiment. Therefore, the inventor of the present application changed the liquid feeding speed from 1 mL / min to 0.4 mL / min and performed the first extraction operation (the first low-flow extraction in the figure, the second collection, the first low-flow extraction). Second recovery 2). The total amount of extraction solvent at this time is about 400 μL.
 また、図10には、比較のために、図8のデータ(2回目回収1,2回目回収2,2回目回収3,2回目回収4)も図示されている。 FIG. 10 also shows the data of FIG. 8 (second recovery 1, second recovery 2, second recovery 3, second recovery 4) for comparison.
 図10に示されるように、1回目3段階抽出2回目回収、1回目低流速抽出2回目回収1、1回目低流速抽出2回目回収2のいずれのデータにおいても、2回目の抽出操作においてアミノ酸が検出されている。そして、図6を参照して説明した上記実施形態と比較して、大きな改善は見られなかった。
 なお、1回目の抽出操作において抽出溶媒の送液速度を遅くすることは、2回目の抽出操作におけるアミノ酸の回収量が少なくなっていることから、1回目の抽出効率が若干高いと思われる。
As shown in FIG. 10, in any of the data of the first three-stage extraction, the second collection, the first low flow rate extraction, the second collection 1, the first low flow rate extraction, the second collection 2, the amino acid in the second extraction operation Has been detected. And compared with the said embodiment demonstrated with reference to FIG. 6, the big improvement was not seen.
It should be noted that slowing the extraction solvent feed rate in the first extraction operation seems to have a slightly higher extraction efficiency because the amount of amino acid recovered in the second extraction operation is reduced.
 以上、本発明の実施形態を説明したが、上記実施形態における構成、配置、数値等は一例であり、本発明はこれに限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変更が可能である。 As mentioned above, although embodiment of this invention was described, the structure, arrangement | positioning, numerical value, etc. in the said embodiment are examples, This invention is not limited to this, The present invention described in the claim Various modifications within the range are possible.
1 アミノ酸配列分析装置
2 第1試薬供給部(試薬供給部)
3 第2試薬供給部(試薬供給部)
4 エドマン分解反応部
6 反応槽
8 コンバージョンフラスコ(抽出用容器)
10 高速液体クロマトグラフ(アミノ酸分析部)
35 制御部
35a 抽出制御部
36,38 ブロック
42 反応空間
44 入口流路(試薬入口)
46 出口流路(試薬出口)
48 試料支持体
1 Amino Acid Sequence Analyzer 2 First Reagent Supply Unit (Reagent Supply Unit)
3 Second reagent supply unit (reagent supply unit)
4 Edman decomposition reaction part 6 Reaction tank 8 Conversion flask (container for extraction)
10 High performance liquid chromatograph (Amino acid analysis part)
35 Control unit 35a Extraction control unit 36, 38 Block 42 Reaction space 44 Inlet channel (reagent inlet)
46 Outlet channel (reagent outlet)
48 Sample support

Claims (4)

  1.  反応槽に配置された試料のエドマン分解反応を行なうエドマン分解反応部と、
     前記エドマン分解反応部に試薬を供給する試薬供給部と、
     前記エドマン分解反応部においてエドマン分解反応によって試料から遊離したアミノ酸の分析を行なうアミノ酸分析部と、
     前記エドマン分解反応部、前記試薬供給部及び前記アミノ酸分析部の動作を制御する制御部であって、前記反応槽に前記試薬供給部から試薬を導入して試料のN末端部分のアミノ酸を遊離させた後、その遊離したアミノ酸を前記反応槽に試薬を導入して前記反応槽から抽出用容器に抽出させ、さらに前記反応槽に試薬を導入して前記反応槽に残留している前記遊離したアミノ酸を前記抽出用容器に抽出させる抽出制御部を備えている制御部と、を備えたアミノ酸配列分析装置。
    An Edman decomposition reaction part for performing an Edman decomposition reaction of the sample placed in the reaction vessel;
    A reagent supply unit for supplying a reagent to the Edman decomposition reaction unit;
    An amino acid analysis unit for analyzing amino acids released from the sample by Edman degradation reaction in the Edman degradation reaction unit;
    A control unit for controlling operations of the Edman degradation reaction unit, the reagent supply unit, and the amino acid analysis unit, wherein a reagent is introduced from the reagent supply unit into the reaction tank to release an amino acid at the N-terminal portion of the sample. After that, the released amino acid is introduced into the reaction vessel and extracted from the reaction vessel to the extraction vessel, and further introduced into the reaction vessel and the free amino acid remaining in the reaction vessel. An amino acid sequence analyzer comprising: a control unit including an extraction control unit for extracting the product into the extraction container.
  2.  前記反応槽は、反応空間、試料を保持する主平面を有し、その主平面で前記反応空間を上下の空間に区切るように前記反応空間内に配置された試料支持体、前記反応空間の上側の空間の内壁面に設けられ、前記試薬供給部からの試薬を流入させる試薬入口及び前記反応空間の下側の空間の内壁面に設けられ、前記反応空間内の試薬を回収する試薬出口を備えている請求項1に記載のアミノ酸配列分析装置。 The reaction vessel has a reaction space, a main plane for holding the sample, a sample support disposed in the reaction space so as to divide the reaction space into upper and lower spaces on the main plane, and an upper side of the reaction space A reagent inlet for allowing a reagent from the reagent supply section to flow in, and a reagent outlet for recovering the reagent in the reaction space. The amino acid sequence analyzer according to claim 1.
  3.  反応槽に配置された試料のエドマン分解反応を行なう工程を順次に複数回行うアミノ酸配列分析方法であって、
     各工程は、
     前記反応槽に試薬を導入して試料のN末端部分のアミノ酸を遊離させる切断ステップと、
     前記反応槽に試薬を導入して前記切断ステップで遊離したアミノ酸を前記反応槽から抽出用容器に抽出する第1抽出ステップと、
     さらに前記反応槽に試薬を導入して前記反応槽に残留している前記遊離したアミノ酸を前記反応槽から抽出用容器に抽出する第2抽出ステップと、を含むアミノ酸配列分析方法。
    An amino acid sequence analysis method for sequentially performing a step of performing an Edman degradation reaction of a sample placed in a reaction vessel a plurality of times,
    Each process is
    A cleavage step of introducing a reagent into the reaction vessel to liberate an amino acid at the N-terminal portion of the sample;
    A first extraction step of introducing a reagent into the reaction vessel and extracting the amino acid liberated in the cutting step from the reaction vessel into an extraction container;
    And a second extraction step of introducing a reagent into the reaction tank and extracting the liberated amino acid remaining in the reaction tank from the reaction tank to an extraction container.
  4.  前記反応槽は、反応空間、試料を保持する主平面を有し、その主平面で前記反応空間を上下の空間に区切るように前記反応空間内に配置された試料支持体、前記反応空間の上側の空間の内壁面に設けられ、前記試薬供給部からの試薬を流入させる試薬入口及び前記反応空間の下側の空間の内壁面に設けられ、前記反応空間内の試薬を回収する試薬出口を備えている請求項3に記載のアミノ酸配列分析方法。 The reaction vessel has a reaction space, a main plane for holding the sample, a sample support disposed in the reaction space so as to divide the reaction space into upper and lower spaces on the main plane, and an upper side of the reaction space A reagent inlet for allowing a reagent from the reagent supply section to flow in, and a reagent outlet for recovering the reagent in the reaction space. The amino acid sequence analysis method according to claim 3.
PCT/JP2014/077018 2014-10-08 2014-10-08 Device for amino acid sequence analysis and method for amino acid sequence analysis WO2016056094A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077018 WO2016056094A1 (en) 2014-10-08 2014-10-08 Device for amino acid sequence analysis and method for amino acid sequence analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077018 WO2016056094A1 (en) 2014-10-08 2014-10-08 Device for amino acid sequence analysis and method for amino acid sequence analysis

Publications (1)

Publication Number Publication Date
WO2016056094A1 true WO2016056094A1 (en) 2016-04-14

Family

ID=55652750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077018 WO2016056094A1 (en) 2014-10-08 2014-10-08 Device for amino acid sequence analysis and method for amino acid sequence analysis

Country Status (1)

Country Link
WO (1) WO2016056094A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136101A (en) * 1976-05-07 1977-11-14 Durrum Instr Method of successive decomposition of peptide or proteins
JPH01221664A (en) * 1987-06-19 1989-09-05 Applied Biosystems Inc Measurement for peptide sequence
JPH0968534A (en) * 1995-08-31 1997-03-11 Shimadzu Corp Amino acid sequence analyzing device
JPH1068720A (en) * 1996-08-28 1998-03-10 Shimadzu Corp Amino acid sequence determining device
JP2002139500A (en) * 2000-10-31 2002-05-17 Asahi Tekuneion Kk Method and apparatus for determining amino acid sequence protein or peptide
JP3185408U (en) * 2013-06-04 2013-08-15 株式会社島津製作所 Amino acid sequence analyzer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136101A (en) * 1976-05-07 1977-11-14 Durrum Instr Method of successive decomposition of peptide or proteins
JPH01221664A (en) * 1987-06-19 1989-09-05 Applied Biosystems Inc Measurement for peptide sequence
JPH0968534A (en) * 1995-08-31 1997-03-11 Shimadzu Corp Amino acid sequence analyzing device
JPH1068720A (en) * 1996-08-28 1998-03-10 Shimadzu Corp Amino acid sequence determining device
JP2002139500A (en) * 2000-10-31 2002-05-17 Asahi Tekuneion Kk Method and apparatus for determining amino acid sequence protein or peptide
JP3185408U (en) * 2013-06-04 2013-08-15 株式会社島津製作所 Amino acid sequence analyzer

Similar Documents

Publication Publication Date Title
JP4467454B2 (en) Multidimensional liquid chromatograph and analysis method using the same
JP5012148B2 (en) Liquid chromatograph
CN105730859B (en) For removing the bottle capping of matrix components and method from liquor sample
CN102612648B (en) Multi-function selector valve, fully automatic multi-function liquid chromatography device having same, and method for sample analysis using same
US20160161454A1 (en) High resolution analyte recovery system and method
US11774413B2 (en) Preparative liquid chromatograph
CN201993351U (en) Two-dimensional liquid chromatography connector device
WO2010038952A3 (en) Centrifugal-based microfluid apparatus, method of fabricationg the same, and method of testing samples using the microfluidic apparatus
GB2544143A (en) Multi-column separation apparatus and method
CN102308220A (en) Automated sample injection apparatus, multiport valve, and methods of making and using the same
US20190302065A1 (en) Preparative liquid chromatograph
US20210372972A1 (en) Field flow fractionation device
AU2022235560A1 (en) Microfluidic device, microfluidic system and method for the isolation of particles
CN109890505A (en) Microfluidic device and method for analyzing nucleic acid
KR20110114560A (en) Solvent feed systems for chromatography systems and methods of making and using the same
WO2016056094A1 (en) Device for amino acid sequence analysis and method for amino acid sequence analysis
CN101206197A (en) System for on-line desalinization, enrichment and mass spectrum of double split flow noy upgrade liquid chromatogram
JP3185408U (en) Amino acid sequence analyzer
CN100554927C (en) A kind of automatic flow-path separation device
US20150059451A1 (en) Prevention of phase separation upon proportioning and mixing fluids
WO2016098169A1 (en) Liquid chromatograph
JP6384351B2 (en) Amino acid sequence analyzer
CN101620041B (en) Automatic flow-path separation device
Moskvin et al. Chromatomembrane methods: novel automatization possibilities of substances’ separation processes
CN100401060C (en) Interface assembly for pre-concentrating analytes in chromatography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP