WO2016054035A1 - Lecithin drying using fatty acids - Google Patents
Lecithin drying using fatty acids Download PDFInfo
- Publication number
- WO2016054035A1 WO2016054035A1 PCT/US2015/052932 US2015052932W WO2016054035A1 WO 2016054035 A1 WO2016054035 A1 WO 2016054035A1 US 2015052932 W US2015052932 W US 2015052932W WO 2016054035 A1 WO2016054035 A1 WO 2016054035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fatty acid
- lecithin
- acid blend
- blend
- asphalt
- Prior art date
Links
- 239000000194 fatty acid Substances 0.000 title claims abstract description 157
- 235000014113 dietary fatty acids Nutrition 0.000 title claims abstract description 156
- 229930195729 fatty acid Natural products 0.000 title claims abstract description 156
- 235000010445 lecithin Nutrition 0.000 title claims abstract description 145
- 239000000787 lecithin Substances 0.000 title claims abstract description 145
- 229940067606 lecithin Drugs 0.000 title claims abstract description 145
- 150000004665 fatty acids Chemical class 0.000 title claims abstract description 71
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 title claims abstract description 60
- 238000001035 drying Methods 0.000 title abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 139
- -1 lecithin fatty acid Chemical class 0.000 claims abstract description 86
- 239000010426 asphalt Substances 0.000 claims abstract description 64
- 238000000034 method Methods 0.000 claims abstract description 64
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 52
- 239000000463 material Substances 0.000 claims abstract description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000011541 reaction mixture Substances 0.000 claims abstract description 25
- 238000007670 refining Methods 0.000 claims abstract description 11
- 235000021588 free fatty acids Nutrition 0.000 claims abstract description 10
- 238000007664 blowing Methods 0.000 claims abstract description 5
- 239000011230 binding agent Substances 0.000 claims description 32
- 239000000654 additive Substances 0.000 claims description 13
- 238000005056 compaction Methods 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 241000196324 Embryophyta Species 0.000 claims description 10
- 230000000996 additive effect Effects 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 8
- 239000002518 antifoaming agent Substances 0.000 claims description 6
- 235000005687 corn oil Nutrition 0.000 claims description 5
- 239000002285 corn oil Substances 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- 240000008042 Zea mays Species 0.000 claims description 4
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 4
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 4
- 235000005822 corn Nutrition 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 235000004977 Brassica sinapistrum Nutrition 0.000 claims description 3
- 238000005553 drilling Methods 0.000 claims description 3
- 238000003801 milling Methods 0.000 claims description 3
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 claims description 2
- 235000006008 Brassica napus var napus Nutrition 0.000 claims description 2
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 claims description 2
- 239000003570 air Substances 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- 238000010924 continuous production Methods 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 claims description 2
- 235000012343 cottonseed oil Nutrition 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 230000005764 inhibitory process Effects 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 claims description 2
- 239000008158 vegetable oil Substances 0.000 claims description 2
- 240000000385 Brassica napus var. napus Species 0.000 claims 1
- 244000068988 Glycine max Species 0.000 claims 1
- 235000010469 Glycine max Nutrition 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 8
- 235000019198 oils Nutrition 0.000 description 15
- 239000003921 oil Substances 0.000 description 14
- 239000000047 product Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 235000013305 food Nutrition 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010685 fatty oil Substances 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 244000188595 Brassica sinapistrum Species 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 102000014384 Type C Phospholipases Human genes 0.000 description 1
- 108010079194 Type C Phospholipases Proteins 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 235000013345 egg yolk Nutrition 0.000 description 1
- 210000002969 egg yolk Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000001095 phosphatidyl group Chemical group 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000009875 water degumming Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/03—Specific additives for general use in well-drilling compositions
- C09K8/035—Organic additives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23D—EDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
- A23D9/00—Other edible oils or fats, e.g. shortenings, cooking oils
- A23D9/007—Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
- A23D9/013—Other fatty acid esters, e.g. phosphatides
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23D—EDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
- A23D9/00—Other edible oils or fats, e.g. shortenings, cooking oils
- A23D9/02—Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/08—Esters of oxyacids of phosphorus
- C07F9/09—Esters of phosphoric acids
- C07F9/10—Phosphatides, e.g. lecithin
- C07F9/103—Extraction or purification by physical or chemical treatment of natural phosphatides; Preparation of compositions containing phosphatides of unknown structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L95/00—Compositions of bituminous materials, e.g. asphalt, tar, pitch
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/52—Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
- C09K8/528—Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning inorganic depositions, e.g. sulfates or carbonates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B15/00—Solidifying fatty oils, fats, or waxes by physical processes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B7/00—Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C1/00—Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
- C11C1/002—Sources of fatty acids, e.g. natural glycerides, characterised by the nature, the quantities or the distribution of said acids
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C1/00—Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
- C11C1/005—Splitting up mixtures of fatty acids into their constituents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2555/00—Characteristics of bituminous mixtures
- C08L2555/30—Environmental or health characteristics, e.g. energy consumption, recycling or safety issues
- C08L2555/34—Recycled or waste materials, e.g. reclaimed bitumen, asphalt, roads or pathways, recycled roof coverings or shingles, recycled aggregate, recycled tires, crumb rubber, glass or cullet, fly or fuel ash, or slag
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2555/00—Characteristics of bituminous mixtures
- C08L2555/40—Mixtures based upon bitumen or asphalt containing functional additives
- C08L2555/60—Organic non-macromolecular ingredients, e.g. oil, fat, wax or natural dye
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/32—Anticorrosion additives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/30—Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways
Definitions
- This disclosure relates to the drying of lecithin using fatty acids
- aspects of the present invention provide methods for producing a dry lecithin fatty acid blend, comprising: obtaining a lecithin-containing material, derived from a crude plant-based oil refining stream, comprising 15-50 wt% water, 10-30 wt% acetone insoluble matter, and 10-20 wt% free fatty acid; adding a fatty acid source to the lecithin-containing material to obtain a reaction mixture; and blowing a dry gas through the reaction mixture to obtain a lecithin fatty acid biend comprising less than 1 wt% water, 20-40 wt% acetone insoluble matter, and 35-48 wt% fatty acid.
- aspects of the present invention provide methods for producing a dry lecithin fatty acid blend, comprising: obtaining a lecithin-containing material derived from a crude plant- based oil refining stream; adding a fatty acid source to the lecithin-containing material to obtain a reaction mixture; heating the reaction mixture to a temperature ranging from 90-130°C to obtain a lecithin fatty acid blend,
- lecithin fatty acid blend/asphalt binder mixture compositions for asphalt applications comprising: 0.25-3 wt% lecithin fatty acid blend comprising less than 2 wt% water, 20-40 wt% acetone insoluble matter, and 35-48 wt% fatty acid; and 97-99.75 wt% asphalt binder.
- aspects of the present invention provide methods of incorporating fatty acid lecithin blends in asphalt applications, comprising: obtaining a lecithin fatty acid blend, comprising less than 2 wt% water, between 20 and 40 wt% acetone insoluble matter, and between 35 and 48 wt% fatty acid; and adding the lecithin fatty acid blend to an asphalt binder; wherein the amount of the lecithin fatty acid blend ranges from 0.25 to 3 wt% of the lecithin fatty acid blend/asphalt binder mixture.
- asphalt binder is the bituminous material that together with the lecithin fatty acid blend comprise the binder phase of an asphalt.
- Asphalt can be utilized in road paving (i.e. asphalt pavement, in roofing applications, and other end-use applications known to one of skill in the art. Asphalt refers to a blend of lecithin fatty acids
- the asphalt binder used in this invention may be material acquired from bituminous material producing refineries, flux, refineiy vacuum tower bottoms, pitch, and other residues of processing of vacuum tower bottoms.
- the asphalt binder is obtained from reclaimed asphalt pavement and/or recycled asphalt shingles.
- aspects of the present invention provide methods of incorporating fatty acid lecithin blends in asphalt applications, comprising: obtaining a lecithin fatty acid blend, comprising less than 2 wt% water, between 5 and 75 wt% acetone insoluble matter, and between 25 and 95 wt% fatty acid; and adding the lecithin fatty acid blend to aggregates to be used in asphalt pavements, wherein the amount of the lecithin fatty acid blend ranges from 0.25 to 3 wt% of the lecithin fatty acid blend/aggregate mixture.
- aspects of the present invention provide methods of incorporated fatty acid lecithin blends in asphalt applications, comprising: obtaining a lecithin fatty acid blend, comprising less than 2 wt% water, between 5 and 75 wt% acetone insoluble matter, and between 25 and 95 wt% fatty acid; and adding the lecithin fatty acid blend to treat reclaimed asphalt pavement millings (RAP) to be reused in asphalt pavements thereby obtaining a total mixture, wherein the amount of the leci thin fatty acid blend ranges from 0.25 to 3 wt% of the total mixture.
- RAP reclaimed asphalt pavement millings
- AI Acetone Insoluble Matter
- Acid Value is a measure of the residual acid groups present in a compound and is reported in units of mg KOH gram material. The acid number is measured according to the method of AOCS method Ja 6-55 (201 1).
- Gums utilized herein are derived from plant-based materials, preferably com, soy, canola (rapeseed), and cottonseed and are comprised of water, acetone insoluble matter (mostly phosphatides), free fatly acids, and oil.
- Lecithin is a complex mixture of acetone-insoluble phosphatides combined with various amounts of other substances, such as triglycerides, fatty acids, and carbohydrates.
- Lecithin contains at least 50% of acetone insoluble matter.
- Phosphatides include phosphatidic acid, phosphatidylinositol,
- phosphatidylethalnolamine phosphatidylcholine
- other phospholipids phosphatidylethalnolamine, phosphatidylcholine, and other phospholipids.
- reaction utilized herein primarily refers to the physical reaction of drying and the blending of lecithin-containing material and a fatty acid source.
- the lecithin-containing material utilized herein is preferably derived from crude refining streams (from the processing of crude plant-based oils) containing fatty acids and phosphatidyl material
- the lecithin-containing material may be gums resulting from a degumming processes carried out on crude plant-based oils, for example, but not limited to, water degumming, caustic and acidic degumming, phospholipase A and phospholipase C degumming, or other enzymatically produced gums.
- the lecithin-containing material may come from other oils or other crude triacylglyceride (i.e.
- the lecithin-containing material may come from animal sources, such as egg yolks and various animal sources.
- the lecithin-containing materia! preferably comes from crude products rather than food-grade products.
- crude products that are dark in color, odorous, or otherwise undesirable for food and personal care applications are preferred sources for the lecithin-containing materia! (however, food-grade lecithin may also be used as the lecithin-containi g material),
- the lecithin-containing material comprises water, phosphatides (typically defined by acetone insoluble matter), free fatty acids, and oil.
- the lecithin-containing material comprises between 15 wt% and 50 wt% water (more preferably between 20-40 wt% water), between ! O wt% and 30 wt% acetone insoluble matter (mostly phosphatides), between 10 wt% and 20 wt% free fatty acids, with the remaining balance being oil (i.e. primarily triacyiglyeerides with some diacylglycerides and
- a fatty acid source is added to the lecithin-containing materia!.
- the fatty acid source serves as a mixing and heat transfer aid for the lecithin-containing material and also helps reduce the viscosity of the lecithin-containing material.
- fatty acid sources may be used.
- crude waste streams for example deodorized distillate streams, vegetable oils, and recovered corn oil streams (and derivatives thereof, for example, polymerized corn oil streams)
- fatty acid source is comprised of at least 10% by weight free fatty acid, for example, at least 50% by weight free fatty acid, and preferably at least 85% by weight free fatty acid.
- the fatty acid source should provide both a heat transfer and fiuidizing effect via the breaking down of physical structures at the oil/water interface. Together these provide for efficient release of water (decreased foaming) and lower required temperatures with reduced cycle times.
- the fatty acid source has a viscosity ranging from 20 to 400 cSt at 25°C, and more preferably 30 to 200 cSt at 25°C.
- the fatty acid source may be Cargiil's Agri-PureTM (AP) or Agri-PureTMGold (APG) vegetable based products: AP 138 (deodorized distillate; solid at 25°C; 20 cSt at 40°C), APG 45 (recovered com oil; 40 cSt at 25°C), or APG 55 (modified recovered corn oil; 135 cSt at 25°C).
- AP Cargiil's Agri-PureTM
- APG Agri-PureTMGold
- the fatty acid source is first heated in a reactor to a temperature ranging from 90-130°C.
- the fatty oil source is heated to a temperature ranging from 100-120°C, and more preferably around 1 10°C.
- the lecithin-containing material is added to the reactor housing the heated fatty acid source. Without being bound by any theory, it is believed that this temperature range not only facilitates the drying of lecithin but also beneficial darkening of color.
- the lecithin-containing material is added to the fatty acid source such that the ratio of fatty acid source to lecithin-containing material ranges from about 5:95 to 30:70.
- the weight ratio of fatty acid source to lecithin-containing material ratio is about 10:90 (for example, when recovered corn oil or acid oil is used as the fatty acid source).
- the weight ratio of fatty acid source to lecithin-containing material ratio is from about 15:85 to about 28:72 (for example, about 25:75) (for example, when deodorized distillate is used as the fatty acid source). It shall be understood that the weight ratio of fatty acid source to lecithin-containing material may vary based on the desired results for the industrial application.
- a nominal amount of anti-foam agent may be added to the m ixture as well. If an anti-foam ing agent is added, it typically makes up less than 0.1 wt% of the reaction mixture.
- an objective of the present invention is to maintain the reaction mixture (fatty acid source/lecithin-containing material) at the elevated temperatures described above and to continuously stir the reaction mixture to maintain its stability. Drying the Reaction Mi ture
- Dry gas for example, carbon dioxide, nitrogen, oxygen, air, or a combination of any of these is passed through the reaction mixture to facilitate in the removal of the water content in the gums. Typically, this is carried out by blowing the dry gas through the reaction mixture. Typically, nitrogen or air is blown through the reaction mixture at a pressure ranging between 0 psig and 1 psig and at a rate ranging between 5 cubic feet per minute (cfm) and 200 cubic feet per minute. In some preferred embodiments, the blowing rate is between 125 and 175 cfm. Reduced pressures (e.g, vacuum conditions) may be employed but may not be preferred due to increased cost and increased foam formation.
- Reduced pressures e.g, vacuum conditions
- Dry gas is continuously blown through the reaction mixture until the water content is reduced to the desired level.
- the water content is reduced to less than 1 wt%.
- This overall reaction may be carried out as a batch process or a semi-continuous process
- reaction time typically, the reaction lasts between 6 and 20 hours to reduce the water content to desired levels.
- a critical parameter in determining reaction time is the ability to transfer heat throughout the system (which, as stated above, is facilitated by the fatty acid source). It shall be understood that the removal of water and the dry gas sparge causes cooling in the reactor, so the ability to maintain and transfer heat throughout the system is an objective of the present invention.
- the resulting product is a lecithin fatty acid blend with a majority of the water content removed, as described above.
- the lecithin fatty acid blend may comprise less than 2 wt% of water, and more preferably less than 1 wt% water, and more preferably less than 0.9 wt% water, and more preferably less than 0.5 wt% water, and even more preferably less than 0.3 wt% water.
- Water content is measured according to the AOCS method Ja 2b-87 (2009).
- the lecithin fatty acid blend may comprises between 5 and 75% acetone insoluble matter, and more preferably 20 to 40 wt% acetone insoluble matter, and even more preferably around 33 wt% acetone insoluble matter as measured by the AOCS method Ja 4-46 (201 1). Additionally, the lecithin fatty acid blend may comprise between 25 and 95 wt% fatty acid, and more preferably between 35 and 48 wt% fatty acid (contributed from both the lecithin material and the fatty acid source) as measured by the AOCS method Ja 6-55 (201 1). Any remaining balance of the lecithin fatt acid blend may comprise oil and other natural impurities.
- the lecithin fatty acid blend has a final viscosity of 200-3000 cSt at 25°C as measured by AOCS method Ja 10-87 method (note that this method is used for all viscosity values defined herein).
- the viscosity of the lecithin fatty acid blend ranges from 300-800 cSt at 25°C.
- the lecithin fatty acid blend is typically a fluid, albeit viscous, particularly below room temperature, typically having pour points below 0 °C, and more typically a pour point of around -20°C.
- the color of the lecithin fatty acid blend is typically a dark brown. Although the Gardner test may be used to determine color, many of the lecithin fatty acid blends will surpass the scale of the test. Because the lecithin fatty acid blend is typically used in asphalt and oilfield applications, color typically is not a main consideration factor,
- the resulting lecithin fatty acid blend may be used as an anti-stripping agent in asphalt applications, it is surprising that this crude lecithin fatty acid blend, having a lower acetone insoluble matter than that of food grade lecithin material, performs better than food grade lecithin material as an anti-stripping agent.
- phosphotidyl material in the lecithin fatty acid blend synergistically interacts with moisture, and/or calcium, or other metal content of the rock aggregate which consequently enhances adhesion between the binder (i.e. bituminous material) and the aggregate.
- the lecithin fatty acid blend described herein is thoroughly mixed with an asphalt binder.
- blend/asphalt binder mixture is mixed until a homogenous product is reached (typically, the mixture may be heated between 70-140°C and agitated to facilitate a homogenous blend).
- the mixture comprises 0.25-3 wt % of the lecithin fatty acid blend with the balance being asphalt binder.
- the resultant processed lecithin fatty acid blend/asphalt binder mixture is then typically mixed at approximately 2 wt% to 7 wt% (for example, about 5% by weight) use level with an aggregate substrate, or according to the mix design called for by the road manufacturer.
- the lecithin fatty acid blend described herein is thoroughly mixed with an asphalt binder and may comprise from 0.25 to 3 wt% of the total blend.
- the lecithin fatty acid blend may be used to treat reclaimed asphalt pavement millings (RAP) to be retssed in asphalt pavements, and the lecithin fatty acid blend may comprise from 0.25 to 3 wt% of the total lecithin fatty acid blend/asphalt binder mixture.
- Lecithin is may be used as a reagent in the manufacture of organophilic clays and as a beneficial additive to invert drilling mud formulation in which these clays are utilized. Further, in these invert mud formulations fatty acids may be used as primary emu!sifiers.
- the lecithin fatty acid blend of this invention therefore is particularly suited for use as a reagent and beneficial additive for
- organophilic clay manufacture or in the modification of invert mud formulations are organophilic clay manufacture or in the modification of invert mud formulations.
- this lecithin fatty acid blend may also be used as a surfactant, de-dust aid, or an emulsifying agent in oil field (e.g., drilling and corrosion inhibition) and mining applications. Even more generally, this lecithin fatty acid blend may be used in applications involving interfacial interactions with monovalent and divalent metal containing substrates (e.g., calcium-containing substrates).
- monovalent and divalent metal containing substrates e.g., calcium-containing substrates.
- this lecithin fatty acid blend may be used as a compaction aid additive (as further discussed below).
- compaction aid additives to produce "warm mix” asphalt pavements.
- Warm mix pavements can be produced and compacted at lower production temperatures, require less compaction effort to achieve target mixture density, and as a result can retain the properties necessary for compaction at lower temperature enabling an increase in the maximum haul distance of the asphalt mixture from the plant to the job site.
- compaction aid additives may be beneficial, include but are not limited to, increased lubrication of aggregates during asphalt mixture compaction, reduction of the binder viscosity at production temperatures, and better coating and wettability of the aggregates.
- a diverse range of chemicals and additives may exhibit one or more of the properties attributed to compaction aid additives when added to an asphalt/bitumen mixture.
- the lecithin fatty acid blend described herein can be used as a compaction aid additive to be mixed with asphalt/bitumen, thereby creating a warm mix composition, which may be subsequently added to an aggregate material to produce a warm mix asphalt pavement.
- Such a compaction aid additive achieves a number of the benefits including at a minimum decreasing production and construction temperatures through increase in aggregate lubrication and aggregate wettability.
- the additive would be used at dosages preferably in the range of between about 0.05 and 10% by weight of the asphalt binder.
- the compaction aid additive can include components in addition to the lecithin fatty acid blend, such as surfactants and other high melting point solids such as waxes, plasticizers, and other components known by those skilled in the art as useful for the manufacture of warm mix asphalt pavement.
- the acid value of the AP-138 is 190-200 mg KOH/g.
- cfm cubic feet per minute
- a nominal amount of anti-foam (TEGO Antifoam MR1015) is also added to the reactor.
- the batch reactor is charged with AP-138 (Cargill manufactured fatty acid source containing 92 wt% fatty acid) and heated to a temperature of 1 10°C.
- AP-138 Cargill manufactured fatty acid source containing 92 wt% fatty acid
- Wet corn gums containing 38 wt% water and TEGO Antifoam MR1Q15 are gradually added to the batch reactor and the temperature is gradually increased to 140°C.
- the composition of the reaction mixture is provided in
- Table 2 details the composition of the final lecithin-fatty acid blend derived from drying the wet corn gums blend described in Table 1.
- Table 3 details the properties of the lecithin fatty acid blend product described in Table 2.
- Testing the performance of the lecithin and fatty acid blend in asphalt applications may be carried out via several methods - such as the boil method (ASTM D 3625- 12), the bottle rolling test, the Tensile Recovery Test (AASHTO T283- Hand/or the Homburg Wheel Tracking Test.
- ASTM D 3625- 12 the boil method
- AASHTO T283- Hand/or the Homburg Wheel Tracking Test A purpose of these tests is to observe how well the binder binds to the rock aggregate.
- the boil method described above once the samples have been boiled in water for 10 minutes, the coated aggregate is removed and observations regarding how much asphalt binder has been stripped from the rock are made.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Polymers & Plastics (AREA)
- Wood Science & Technology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Food Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Medicinal Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Fats And Perfumes (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15846646.6A EP3200601B1 (en) | 2014-09-29 | 2015-09-29 | Lecithin drying using fatty acids |
BR112017006429-4A BR112017006429B1 (en) | 2014-09-29 | 2015-09-29 | production method of a dry lecithin blend with fatty acids for asphalt applications |
US15/515,330 US11352537B2 (en) | 2014-09-29 | 2015-09-29 | Lecithin drying using fatty acids |
US17/804,894 US11713408B2 (en) | 2014-09-29 | 2022-06-01 | Lecithin drying using fatty acids |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462056954P | 2014-09-29 | 2014-09-29 | |
US62/056,954 | 2014-09-29 | ||
US201462084612P | 2014-11-26 | 2014-11-26 | |
US62/084,612 | 2014-11-26 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/515,330 A-371-Of-International US11352537B2 (en) | 2014-09-29 | 2015-09-29 | Lecithin drying using fatty acids |
US17/804,894 Continuation US11713408B2 (en) | 2014-09-29 | 2022-06-01 | Lecithin drying using fatty acids |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016054035A1 true WO2016054035A1 (en) | 2016-04-07 |
Family
ID=55631362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/052932 WO2016054035A1 (en) | 2014-09-29 | 2015-09-29 | Lecithin drying using fatty acids |
Country Status (4)
Country | Link |
---|---|
US (2) | US11352537B2 (en) |
EP (1) | EP3200601B1 (en) |
BR (1) | BR112017006429B1 (en) |
WO (1) | WO2016054035A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3298210A4 (en) * | 2015-05-20 | 2019-01-02 | Cargill, Incorporated | Modified lecithin for asphalt applications |
US11352537B2 (en) | 2014-09-29 | 2022-06-07 | Cargill, Incorporated | Lecithin drying using fatty acids |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2793996A (en) * | 1955-12-08 | 1957-05-28 | Pan American Petroleum Corp | Oil base drilling fluid |
US4200551A (en) * | 1978-11-27 | 1980-04-29 | A. E. Staley Manufacturing Company | Cold-water-dispersible lecithin concentrates |
US6440478B1 (en) * | 1993-08-30 | 2002-08-27 | K.E.S. Associates | Feed block for animals |
US20040161520A1 (en) * | 2002-07-23 | 2004-08-19 | Jonathan Maynes | Process for removing oil and/or sugar from lecithin |
US8232418B1 (en) * | 2008-08-01 | 2012-07-31 | Corn Products International, Inc. | Method for the preparation of lecithin |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE557154C (en) * | 1930-11-16 | 1934-05-02 | Hanseatische Muehlenwerke Akt | Asphalt and tar emulsions |
US2020662A (en) | 1933-06-08 | 1935-11-12 | American Lecithin Co | Process for the production of phosphatide preparation |
US2150732A (en) * | 1935-02-14 | 1939-03-14 | Refining Inc | Method of treating vegetable oils and product obtained thereby |
US2383097A (en) | 1941-08-15 | 1945-08-21 | Texas Co | Bituminous coating compositions and processes |
US2574930A (en) | 1947-03-24 | 1951-11-13 | Shell Dev | Bituminous composition |
US2592564A (en) | 1948-05-22 | 1952-04-15 | Standard Oil Co | Asphalt cutback containing an aliphatic phosphoric acid ester |
US2508431A (en) | 1949-02-17 | 1950-05-23 | California Research Corp | Bitumen-treating agent |
US2673813A (en) * | 1950-12-21 | 1954-03-30 | Standard Oil Co | Asphalt additive composition |
US2901369A (en) | 1957-01-16 | 1959-08-25 | Shell Dev | Process of forming foamed asphalt |
US3357918A (en) * | 1964-05-27 | 1967-12-12 | Central Soya Co | Fluidized lecithin composition and method |
US3340203A (en) * | 1965-05-27 | 1967-09-05 | Chevron Res | Rapid-setting bituminous emulsions and method for preparing same |
JPS5133571B2 (en) | 1972-08-23 | 1976-09-20 | ||
US5131225A (en) | 1990-08-31 | 1992-07-21 | Sundstrand Corporation | Apparatus for separating and compressing oxygen from an air stream |
US5120357A (en) | 1991-02-06 | 1992-06-09 | Amico, Inc. | Lecithin corrosion inhibitor |
US5164002A (en) | 1991-10-07 | 1992-11-17 | Ballenger Jr William T | Antistripping asphalt compositions and additives used therein |
EP0713917A1 (en) | 1994-11-28 | 1996-05-29 | Societe Des Produits Nestle S.A. | Process for hydrolysis of polyunsaturated fatty acid triglycerides |
EP0718373A1 (en) | 1994-12-20 | 1996-06-26 | Bridgestone/Firestone, Inc. | Polymer modified asphaltic compounds with improved dispersion and improved products therefrom |
ES2141672B1 (en) * | 1995-12-04 | 2000-09-16 | Kao Corp | ASPHALT EMULSION. |
US5820663A (en) | 1997-12-08 | 1998-10-13 | Vitech International Inc. | Phosphate ester asphalt additives |
US20030212168A1 (en) | 1999-02-11 | 2003-11-13 | White Donald H. | Petroleum asphalts modified by liquefied biomass additives |
US6822012B1 (en) | 2000-03-23 | 2004-11-23 | Ashland Inc | Peelable polymeric coating composition |
US20050027024A1 (en) | 2000-03-23 | 2005-02-03 | Zhiqiang Zhang | Peelable coating composition |
CA2315955A1 (en) | 2000-08-08 | 2002-02-08 | Q-X Enviro Products Ltd. | Dust control composition |
US7842746B2 (en) | 2002-05-02 | 2010-11-30 | Archer-Daniels-Midland Company | Hydrogenated and partially hydrogenated heat-bodied oils and uses thereof |
US20040111955A1 (en) | 2002-12-13 | 2004-06-17 | Mullay John J. | Emulsified water blended fuels produced by using a low energy process and novel surfuctant |
US7456313B2 (en) | 2006-01-10 | 2008-11-25 | Rohm And Haas Company | Liquid-phase (AMM)oxidation process |
CN101410429A (en) | 2006-03-27 | 2009-04-15 | 匹兹堡州立大学 | Oligomeric polyols from palm-based oils and polyurethane compositions made therefrom |
GB2462322A (en) | 2008-08-05 | 2010-02-10 | Aggregate Ind Uk Ltd | Asphalt Rejuvenation |
CA2762727C (en) | 2009-05-22 | 2017-06-20 | Michael John Hora | Blown corn stillage oil |
US9035012B2 (en) | 2010-07-08 | 2015-05-19 | Dow Global Technologies Llc | Polyurethanes made with copper catalysts |
EP2706977B1 (en) | 2011-05-10 | 2020-03-04 | Archer-Daniels-Midland Company | Dispersants having biobased compounds |
CN102532925A (en) | 2012-01-11 | 2012-07-04 | 李国涛 | Modified emulsified asphalt used for half warm mix modification and preparation method of the same |
CA2859272A1 (en) | 2012-04-26 | 2013-10-31 | Arizona Chemical Company, Llc | Rejuvenation of reclaimed asphalt |
US9394507B2 (en) * | 2012-06-08 | 2016-07-19 | Alm Holding Company | Biodiesel emulsion for cleaning bituminous coated equipment |
KR101496628B1 (en) | 2013-02-19 | 2015-02-26 | 허정도 | Compositions of new, highly visco-elastic, warm-mix modifiers and their manufacturing methods, and compositions of warm, modified, virgin and recycled asphalt concrete mixes and their manufacturing methods |
WO2016054035A1 (en) | 2014-09-29 | 2016-04-07 | Cargill, Incorporated | Lecithin drying using fatty acids |
BR112017024622B1 (en) | 2015-05-20 | 2023-03-07 | Cargill, Incorporated | LECITIN MODIFICATION METHOD FOR ASPHALT APPLICATIONS |
-
2015
- 2015-09-29 WO PCT/US2015/052932 patent/WO2016054035A1/en active Application Filing
- 2015-09-29 BR BR112017006429-4A patent/BR112017006429B1/en active IP Right Grant
- 2015-09-29 US US15/515,330 patent/US11352537B2/en active Active
- 2015-09-29 EP EP15846646.6A patent/EP3200601B1/en active Active
-
2022
- 2022-06-01 US US17/804,894 patent/US11713408B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2793996A (en) * | 1955-12-08 | 1957-05-28 | Pan American Petroleum Corp | Oil base drilling fluid |
US4200551A (en) * | 1978-11-27 | 1980-04-29 | A. E. Staley Manufacturing Company | Cold-water-dispersible lecithin concentrates |
US6440478B1 (en) * | 1993-08-30 | 2002-08-27 | K.E.S. Associates | Feed block for animals |
US20040161520A1 (en) * | 2002-07-23 | 2004-08-19 | Jonathan Maynes | Process for removing oil and/or sugar from lecithin |
US8232418B1 (en) * | 2008-08-01 | 2012-07-31 | Corn Products International, Inc. | Method for the preparation of lecithin |
Non-Patent Citations (1)
Title |
---|
See also references of EP3200601A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11352537B2 (en) | 2014-09-29 | 2022-06-07 | Cargill, Incorporated | Lecithin drying using fatty acids |
EP3298210A4 (en) * | 2015-05-20 | 2019-01-02 | Cargill, Incorporated | Modified lecithin for asphalt applications |
US10689406B2 (en) | 2015-05-20 | 2020-06-23 | Cargill, Incorporated | Modified lecithin for asphalt applications |
US11345718B2 (en) | 2015-05-20 | 2022-05-31 | Cargill, Incorporated | Modified lecithin for asphalt applications |
US20240043454A1 (en) * | 2015-05-20 | 2024-02-08 | Cargill, Incorporated | Modified lecithin for asphalt applications |
Also Published As
Publication number | Publication date |
---|---|
EP3200601A1 (en) | 2017-08-09 |
US20170218249A1 (en) | 2017-08-03 |
US11713408B2 (en) | 2023-08-01 |
BR112017006429B1 (en) | 2021-02-17 |
EP3200601B1 (en) | 2019-11-27 |
US20220290029A1 (en) | 2022-09-15 |
BR112017006429A2 (en) | 2017-12-12 |
US11352537B2 (en) | 2022-06-07 |
EP3200601A4 (en) | 2018-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11713408B2 (en) | Lecithin drying using fatty acids | |
US11898039B2 (en) | Additive for asphalt mixes containing reclaimed bituminous products | |
CN103374232B (en) | Warm mix asphalt binder compositions containing lubricating additives | |
US11820786B2 (en) | Modified lecithin for asphalt applications | |
MX2011003487A (en) | Stable emulsions for producing polymer modified asphalt. | |
CA2954584A1 (en) | Calcium/magnesium compound slurry for bituminous road material | |
FR3017385A1 (en) | PARAFFINIC COLD-COLD BITUMINOUS MATERIAL MOUNTED IN QUICK COHESION | |
JP2000143993A (en) | Additive composition for asphalt | |
FR3023554A1 (en) | CALCO-MAGNESIAN COMPOUND MILK FOR BITUMINOUS ROAD MATERIAL | |
JP2007262406A (en) | Additive composition for asphalt | |
BE1021856B1 (en) | CALCO-MAGNESIAN COMPOUND FOR BITUMINOUS ROAD MATERIAL | |
JP3905379B2 (en) | Heating asphalt additive | |
JP2024517446A (en) | Epoxy-functional and phospholipid-containing adhesion promoters and warm mix additives for asphalt applications | |
FR2971785A1 (en) | Use of composition for manufacturing a bituminous product, and as an emulsifying composition capable of forming a stable emulsion with bitumen, comprising a phospholipids, and a fatty-acid salt | |
SA516371502B1 (en) | Polymer-bitumen primary mixtures that can be used for preparing polymer-bitumen binders, and products obtained from these primary mixtures | |
PL389668A1 (en) | Sulphur polymer obtained from the sulphur solvent modification and method for production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15846646 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15515330 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017006429 Country of ref document: BR |
|
REEP | Request for entry into the european phase |
Ref document number: 2015846646 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 112017006429 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170329 |