WO2016052958A1 - Polymer powder and method for preparing same - Google Patents

Polymer powder and method for preparing same Download PDF

Info

Publication number
WO2016052958A1
WO2016052958A1 PCT/KR2015/010225 KR2015010225W WO2016052958A1 WO 2016052958 A1 WO2016052958 A1 WO 2016052958A1 KR 2015010225 W KR2015010225 W KR 2015010225W WO 2016052958 A1 WO2016052958 A1 WO 2016052958A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
polymer powder
mixed composition
melt
producing
Prior art date
Application number
PCT/KR2015/010225
Other languages
French (fr)
Korean (ko)
Inventor
강경민
강성용
신준범
황덕율
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to JP2017517009A priority Critical patent/JP6476286B2/en
Priority to US15/515,583 priority patent/US10450409B2/en
Priority to CN201580052931.9A priority patent/CN106715583B/en
Priority to EP15845673.1A priority patent/EP3202824B1/en
Priority claimed from KR1020150136095A external-priority patent/KR20160038801A/en
Publication of WO2016052958A1 publication Critical patent/WO2016052958A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • It relates to a polymer powder and a method for producing the same.
  • Thermoplastic Composites applied to interior materials or components used in construction, vehicles and filters may include polymer powders for various purposes, for example, they may include structures in which the powders are impregnated into fibers. .
  • it is intended to produce spherical fine particles at low cost using a ball mill grinding method or a freeze grinding method.
  • the freeze grinding method has to use expensive nitrogen in order to reduce the size of the particles, there is a problem in terms of cost and time because it undergoes a multi-step grinding process.
  • the particle shape is closer to the spherical shape than the freeze grinding, but in order to obtain such spherical particles, a separate process of dispersing and recovering them in a solvent is required, which is also disadvantageous in terms of cost and time.
  • the particle size distribution of the produced particles is wide and nonuniform, there is a problem that aggregation occurs well.
  • One embodiment of the present invention provides a polymer powder having a narrow particle size distribution and uniform particle size in a certain range, thereby ensuring excellent fluidity and applicability.
  • Another embodiment of the present invention is advantageous in terms of cost and time, and provides a method for producing the polymer powder capable of minimizing physical property changes with temperature and the like.
  • a polymer having an average particle diameter of about 20 ⁇ m to about 300 ⁇ m, particles having a particle size of less than about 10 ⁇ m or less, and particles having a particle size of greater than about 300 ⁇ m of about 10 mass% or less Provide powder.
  • the polymer powder is polylactic acid (PLA), polypropylene, polystyrene, acrylonitrile-butadiene-styrene (ABS), polymethyl methacrylate (PMMA), polyethylene glycol (PEG), thermoplastic polyurethane (TPU), polydimethyl Siloxane (PDMS), high density polyethylene (HDPE), low density polyethylene (LDPE), high impact polystyrene (HIPS), polyethylene oxide (PEO), polyethylene carbonate (PEC), polyhydroxyalkanoate (PHA), poly At least one selected from the group consisting of hydroxybutyrate (PHB) and combinations thereof.
  • PLA polylactic acid
  • PEG polyethylene glycol
  • TPU thermoplastic polyurethane
  • PDMS polydimethyl Siloxane
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • HIPS high impact polystyrene
  • PEO polyethylene oxide
  • PEC polyethylene carbonate
  • PDA polyhydroxyalkanoate
  • the polymer powder may have a weight average molecular weight (Mw) of about 10,000 to about 300,000.
  • the polymer powder may have an angle of repose less than about 45 degrees.
  • forming a melt of the polymer Injecting a supercritical fluid into the melt of the polymer to form a mixed composition; And it provides a method for producing a polymer powder comprising the step of preparing a polymer powder by spraying the mixed composition.
  • the melt of the polymer may be formed by melting the polymer at about 100 ° C to about 290 ° C.
  • the forming of the mixed composition may include adding the supercritical fluid to the melt of the polymer and then pressing the dispersion to disperse the supercritical fluid in the melt of the polymer.
  • Forming the mixed composition may be a step of pressing the supercritical fluid to a melt of the polymer to a pressure of about 50 bar to about 500 bar.
  • the mixed composition may be formed by adding about 5 to about 15 parts by weight of the supercritical fluid based on 100 parts by weight of the melt of the polymer.
  • the supercritical fluid may include at least one selected from the group consisting of carbon dioxide, helium, nitrogen, methane, ethane, propane, ethylene, propylene, methylene, and combinations thereof.
  • the mixed composition may have a viscosity of about 10 ⁇ 3 Pa ⁇ s to about 10 3 Pa ⁇ s.
  • Spraying the mixed composition to prepare a polymer powder may be spraying the mixed composition through a nozzle having an average aperture of about 0.01 to about 3.0 mm.
  • the spraying of the mixed composition to prepare a polymer powder may include cooling the mixed composition at about ⁇ 30 ° C. to about 30 ° C. simultaneously with the spray.
  • the weight average molecular weight (Mw) difference between the polymer and the polymer powder may be about 200,000 or less.
  • the thermal decomposition temperature difference between the polymer and the polymer powder may be about 50 ° C or less.
  • the polymer powder has a narrow particle size distribution and a small and uniform particle size, thereby ensuring excellent fluidity and applicability.
  • Method for producing the polymer powder is advantageous in terms of cost and time, it is possible to produce the polymer powder having excellent physical properties by minimizing the change in physical properties according to the temperature.
  • Figure 1 (a) is a SEM photograph of a polymer powder prepared according to an embodiment of the present invention, (b) is a SEM photograph of a polymer powder prepared according to a conventional manufacturing method.
  • Figure 2 shows a particle size distribution graph according to the particle diameter of the polymer powder prepared according to an embodiment of the present invention.
  • a polymer having an average particle diameter of about 20 ⁇ m to about 300 ⁇ m, particles having a particle size of less than about 10 ⁇ m or less, and particles having a particle size of greater than about 300 ⁇ m of about 10 mass% or less Provide powder.
  • the polymer powder has an average particle diameter of about 20 ⁇ m to about 300 ⁇ m, and by having an average particle diameter in the above range, when applied to interior building materials and interior decoration materials based on particle size, it is possible to secure excellent processability.
  • the polymer powder has a particle diameter of less than about 10 ⁇ m and particles having a particle size of greater than about 300 ⁇ m, respectively, 10 mass% or less, and may be, for example, about 5 mass% or less. Specifically, the particles having a particle diameter of less than about 10 ⁇ m may be about 5 mass% or less, and the particles having a particle diameter of about 300 ⁇ m or less may be about 1 mass% or less. Since the polymer powder has such a particle size distribution, excellent fluidity and formability can be ensured when applied to interior building materials and interior decoration materials.
  • the polymer powder is polylactic acid (PLA), polypropylene, polystyrene, acrylonitrile-butadiene-styrene (ABS), polymethyl methacrylate (PMMA), polyethylene glycol (PEG), thermoplastic polyurethane (TPU) , Polydimethylsiloxane (PDMS), high density polyethylene (HDPE), low density polyethylene (LDPE), high impact polystyrene (HIPS), polyethylene oxide (PEO), polyethylene carbonate (PEC), polyhydroxyalkanoate (PHA) ), Polyhydroxybutyrate (PHB), and combinations thereof.
  • PLA polylactic acid
  • ABS polypropylene
  • PMMA polymethyl methacrylate
  • PEG polyethylene glycol
  • TPU thermoplastic polyurethane
  • PDMS Polydimethylsiloxane
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • HIPS high impact polystyrene
  • PEO polyethylene oxide
  • PEC polyethylene carbonate
  • the polymer powder may include polylactic acid, and in this case, it may be easy to prepare a polymer powder having an average particle diameter and particle size distribution in the above range by the manufacturing method described below.
  • the average particle diameter and particle size distribution in the above range not only excellent fluidity and processability can be secured, but also an environmentally friendly effect due to polylactic acid itself can be obtained.
  • the polymer powder may have a weight average molecular weight (Mw) of about 10,000 to about 300,000, for example, about 50,000 to about 200,000.
  • Mw weight average molecular weight
  • the polymer powder satisfies the weight average molecular weight (Mw) in the range together with the average particle diameter and particle size distribution in the above range, thereby ensuring excellent fluidity and formability, and at the same time, the interior materials and the like to which the same is applied can secure excellent strength. have.
  • the polymer powder may have an angle of repose less than about 45 degrees, for example less than about 40 degrees.
  • the 'rest angle' refers to the maximum inclination angle that can maintain the inclination when the granulated material is stacked on the plane in a natural state.
  • the angle of repose can be measured by the injection stabilization angle measuring method for measuring the angle of the inclined plane and the horizontal plane of the pile with respect to the pile formed by pouring the granulated material on a flat horizontal plane, and replaces the container having a flat bottom With respect to the shape of the cockle formed while the material is discharged through the hole made in, it can be measured by the discharge stabilization angle measuring method for measuring the angle formed by the inclined surface and the bottom surface of the flat shape.
  • Another embodiment of the invention comprises forming a melt of a polymer; Injecting a supercritical fluid into the melt of the polymer to form a mixed composition; And it provides a method for producing a polymer powder comprising the step of preparing a polymer powder by spraying the mixed composition.
  • the polymer powder is prepared using a super critical fluid (SCF), and specifically, the supercritical fluid may be used as an additive.
  • SCF super critical fluid
  • the production method can prevent the loss of raw materials because the polymer powder can be prepared at a relatively low temperature, and the polymer powder prepared by the production method can secure excellent physical properties in terms of thermal decomposition, particle size distribution, and molecular weight. .
  • the method may include forming a melt of the polymer.
  • the melt of the polymer is formed by melting a raw material composed of a polymer at a predetermined temperature, and the raw material composed of the polymer may be pellet-shaped granules.
  • the melt of the polymer may be formed by melting the polymer at about 100 ° C to about 290 ° C.
  • the polymer may be melted to have an appropriate viscosity without melting the physical properties of the polymer itself by melting at a temperature in the above range.
  • the melt of the polymer may have a viscosity of about 10 ⁇ 3 Pa ⁇ s to about 10 3 Pa ⁇ s.
  • the melt of the polymer can be well mixed with the supercritical fluid in subsequent steps by having a viscosity in the above range, and can ensure excellent processability.
  • the manufacturing method may include the step of adding a supercritical fluid to the melt of the polymer to form a mixed composition.
  • the supercritical fluid is introduced after the melt of the polymer is formed, thereby forming a mixed composition having an appropriate viscosity at a relatively low temperature.
  • the forming of the mixed composition may include dispersing the supercritical fluid in the melt of the polymer by injecting the supercritical fluid into the melt of the polymer. That is, the mixed composition may be mixed in a state in which the supercritical fluid is dispersed in the melt of the polymer.
  • the step of forming the mixed composition may be a step of pressing the supercritical fluid to the melt of the polymer to a pressure of about 50 bar to about 500 bar, for example, about 50 bar to about Pressurizing to a pressure of 300 bar.
  • the supercritical fluid can be uniformly dispersed in the melt of the polymer and form a mixed composition having a viscosity advantageous for processing.
  • the forming of the mixed composition may be performed at about 100 °C to about 290 °C.
  • the temperature is raised to a high temperature of about 300 ° C. or more to control the viscosity of the melt.
  • the manufacturing process is performed at such a high temperature, there is a problem that the loss of the raw material is increased and the manufacturing cost is increased, and the thermal properties of the resulting particle shape are not good.
  • the manufacturing method is such that the step of forming the mixed composition is carried out at a temperature in the range, thereby uniformly mixing with the supercritical fluid without damaging the physical properties of the polymer melt to form a mixed composition having an appropriate viscosity. And the resulting polymer powder can exhibit excellent thermal properties.
  • the forming of the mixed composition may be a step in which the melt of the polymer is injected while the melt of the polymer is injected. At this time, the melt of the polymer may be injected at a rate of about 2 to about 100 rpm, and the supercritical fluid may be injected of the melt of the polymer at a flow rate of about 0.01 to about 40 g / l.
  • the melt of the polymer and the supercritical fluid can be injected and dispersed evenly by injecting at a rate and a flow rate in the above range, and the mixed composition thus prepared can easily ensure a viscosity advantageous for processing.
  • the mixed composition may be formed by adding about 5 to about 15 parts by weight of the supercritical fluid based on 100 parts by weight of the melt of the polymer.
  • the supercritical fluid is added in a small amount compared to the polymer melt, and the polymer melt is mixed with it at a relatively low temperature, thereby easily preparing a mixed composition having a viscosity advantageous for processing without deterioration of thermal properties.
  • the mixed composition When the supercritical fluid is included in less than about 5 parts by weight relative to 100 parts by weight of the melt of the polymer, the mixed composition has a problem that it is difficult to secure a viscosity advantageous for processing, and when included in excess of about 15 parts by weight. There is a fear that phase separation of supercritical fluid occurs.
  • the supercritical fluid is a fluid present in the state of exceeding the critical temperature and the critical pressure inherent in the material and exhibits the properties of both gas and liquid, specifically, carbon dioxide, helium, nitrogen, methane, ethane, propane, ethylene, propylene, methylene And at least one selected from the group consisting of a combination thereof.
  • the supercritical fluid may comprise carbon dioxide, in which case it is possible to secure the advantages of relatively low cost and good mixing with the melt of the polymer.
  • the mixed composition prepared by injecting the supercritical fluid into the melt of the polymer may have a viscosity of about 10 ⁇ 3 Pa ⁇ s to about 10 3 Pa ⁇ s. Since the mixed composition has a viscosity in the above range, it is easy to spray it to ensure excellent processability in the production of the polymer powder, thereby the polymer powder prepared may have a uniform size and narrow particle size distribution.
  • the manufacturing method may include the step of preparing a polymer powder by spraying the mixed composition.
  • the mixed composition may be sprayed through a nozzle, and specifically, the average diameter of the nozzle may be about 0.01 to about 3.0 mm.
  • the average composition of the nozzle satisfies the above range so that the mixed composition can be easily introduced, from which polymer powder having an appropriate size and narrow particle size distribution can be produced.
  • the mixed composition may be injected after being injected with air in the nozzle, the temperature of the injected air may be about 200 °C to about 500 °C, the pressure may be about 100 psi to about 1000 psi . In addition, the injection speed of the air may be about 10 m / s to about 50 m / s.
  • the mixed composition is injected into a nozzle having a diameter in the range together with air satisfying the temperature, pressure and injection speed in the above range, so that the polymer powder prepared by spraying it can easily secure a proper size and narrow particle size distribution. And may not impair the physical properties of the polymer itself.
  • the step of preparing the polymer powder by spraying the mixed composition may be the step of cooling the mixed composition at a temperature of about -30 °C to about 30 °C at the same time as the spray.
  • the uniformity of the polymer powder size can be improved and a narrow particle size distribution can be satisfied.
  • it is possible to secure excellent fluidity without aggregation of the polymer powder it is possible to maintain the spherical shape well.
  • the manufacturing method can minimize the loss of raw materials due to heat, and there is little change in physical properties such as thermal properties and molecular weight of the polymer powder relative to the raw materials, thereby obtaining advantages in terms of cost and excellent physical properties.
  • the raw material for producing the polymer powder is a polymer
  • the polymer means a state before forming a melt of the polymer.
  • a difference in weight average molecular weight (Mw) of the polymer and the polymer powder may be about 200,000 or less, for example, about 150,000 or less, for example, about 5,000 to 150,000.
  • the polymer powder can easily secure excellent physical properties due to the properties of the polymer itself.
  • the thermal decomposition temperature difference between the polymer and the polymer powder may be about 50 ° C or less, for example, about 20 ° C or less, for example, may be about 2 ° C to 20 ° C.
  • the 'pyrolysis temperature' is a measurement of the temperature at which the polymer is decomposed by applying heat to the polymer, and specifically, it may be measured using a pyrolysis analyzer (TGA).
  • TGA pyrolysis analyzer
  • a pellet-like polylactic acid resin was introduced into an extruder, and the polylactic acid resin was melted at a temperature of 250 ° C. to prepare a polylactic acid melt. Subsequently, 5 parts by weight of carbon dioxide supercritical fluid was added to 100 parts by weight of the polylactic acid melt, followed by pressure mixing and dispersing to prepare a mixed composition. Subsequently, the mixed composition was injected into a spray nozzle, sprayed into a chamber having a temperature of 20 ° C, and cooled to prepare a polylactic acid powder.
  • Pellet-shaped polylactic acid resin was freeze-pulverized, and polylactic acid powder was prepared through a ball-mill process.
  • a pellet-like polylactic acid resin was introduced into an extruder, and the polylactic acid resin was melted at a temperature of 250 ° C. to prepare a polylactic acid melt.
  • the polylactic acid powder was prepared by heating the polylactic acid melt to 400 ° C, injecting it into a spray nozzle, spraying the same in a chamber having a temperature of 20 ° C, and simultaneously cooling.
  • Example 1 and Comparative Example 1 the average particle diameter and particle size distribution were measured using a laser diffraction particle size distribution analyzer (Microtrac, S3500 Series), and are shown in Table 1 below.
  • a photograph of the polylactic acid powder prepared according to Example 1 is shown in FIG. 1 (a), and a photograph of the polylactic acid powder prepared according to Comparative Example 1 is described in FIG. 1 (b). It was.
  • a particle size distribution graph according to the particle diameter of the polymer powder of Example 1 is described in FIG. 2.
  • the polylactic acid powder of Example 1 prepared according to an embodiment of the present invention having an average particle diameter of 20 ⁇ m to 300 ⁇ m, It turns out that all the particle
  • the polylactic acid powder of Example 1 is produced according to the method for producing a polymer powder according to an embodiment of the present invention exhibits an average particle size range of the above range in the shape of a sphere. .
  • the polylactic acid powder of Comparative Example 1 prepared through freeze grinding and ball-mill processes has a larger average particle diameter and an uneven particle size distribution than Example 1.
  • Example 2 the polylactic acid powder of Example 1 prepared according to an embodiment of the present invention, compared to Comparative Example 2, the weight average molecular weight of the raw material in the form of pellets during the manufacturing process reduced And it can be seen that the change in the pyrolysis temperature is small, thereby implementing better physical properties due to the polylactic acid itself.

Abstract

Provided is a polymer powder having an average particle diameter of 20-300 μm, wherein particles with a particle diameter of smaller than 10 μm account for 10 mass% or less, and particles with a particle diameter of greater than 300 μm account for 10 mass% or less. In addition, provided is a method for preparing the polymer powder, the method comprising the steps of: forming a molten material of a polymer; feeding a super critical fluid to the molten material of the polymer to form a mixed composition; and spraying the mixed composition to prepare a polymer powder.

Description

중합체 분말 및 이의 제조방법Polymer powder and preparation method thereof
중합체 분말 및 이의 제조방법에 관한 것이다.It relates to a polymer powder and a method for producing the same.
건축, 차량 및 필터 등에 사용되는 내장재 또는 부품에 적용되는 복합재(Thermoplastic Composite)는 다양한 목적에 기인하여 고분자 분말을 포함할 수 있고, 예를 들어, 상기 분말이 섬유에 함침된 구조를 포함할 수 있다. 이러한 고분자 분말의 경우 입자의 크기가 작을수록 후속 공정이 유리하며, 입도 분포가 좁고 균일한 크기를 가질수록 다양한 응용성을 확보할 수 있다. 종래에는 볼밀(ball mill) 분쇄 방식 또는 냉동 분쇄 방식 등을 사용하여 저비용으로 구형의 미립자를 제조하고자 하였다. 다만, 상기 냉동 분쇄 방식은 입자의 크기를 작게 하기 위하여 고비용의 질소를 사용해야 하고, 다단계의 분쇄 과정을 거치기 때문에 비용 및 시간 측면에서 문제가 있다. 또한, 이러한 냉동 분쇄 방식으로 제조된 최종 입자의 형태가 비교적 뾰족한 파쇄 모양을 갖기 때문에 유동성 측면에서 불리하여 다양한 응용성을 확보할 수 없는 문제가 있다. 상기 볼밀(ball mill) 분쇄 방식의 경우 냉동 분쇄보다는 입자의 형태가 구형에 가깝지만, 이러한 구형의 입자를 얻기 위해서는 용매에 분산시킨 후 회수하는 별도의 공정이 필요하여, 이 역시 비용 및 시간 측면에서 불리하고, 제조된 입자의 입도 분포가 넓고 불균일하며, 응집이 잘 발생하는 문제가 있다. Thermoplastic Composites applied to interior materials or components used in construction, vehicles and filters may include polymer powders for various purposes, for example, they may include structures in which the powders are impregnated into fibers. . In the case of such a polymer powder, the smaller the particle size, the more advantageous the subsequent process, and the narrower the particle size distribution and the uniform size, the more various applications can be secured. Conventionally, it is intended to produce spherical fine particles at low cost using a ball mill grinding method or a freeze grinding method. However, the freeze grinding method has to use expensive nitrogen in order to reduce the size of the particles, there is a problem in terms of cost and time because it undergoes a multi-step grinding process. In addition, since the final particles produced by the freeze grinding method have a relatively sharp fracture shape, there is a problem in that it is disadvantageous in terms of fluidity and thus various applications cannot be secured. In the case of the ball mill grinding method, the particle shape is closer to the spherical shape than the freeze grinding, but in order to obtain such spherical particles, a separate process of dispersing and recovering them in a solvent is required, which is also disadvantageous in terms of cost and time. And, the particle size distribution of the produced particles is wide and nonuniform, there is a problem that aggregation occurs well.
따라서, 비용 및 시간 측면에서 유리하고 제조 과정에서 온도 등에 의한 물성의 변화가 적으면서도, 입도 분포가 좁고 균일하여 우수한 물성을 나타내는 구형의 분말을 제조하기 위한 방법이 필요한 실정이다.Therefore, there is a need for a method for producing spherical powder, which is advantageous in terms of cost and time and has a small change in physical properties due to temperature and the like in the manufacturing process, and has a narrow and uniform particle size and excellent physical properties.
본 발명의 일 구현예는 입도 분포가 좁으면서도 입자 크기가 일정 범위로 균일하여, 우수한 유동성 및 응용성을 확보할 수 있는 중합체 분말을 제공한다.One embodiment of the present invention provides a polymer powder having a narrow particle size distribution and uniform particle size in a certain range, thereby ensuring excellent fluidity and applicability.
본 발명의 다른 구현예는 비용 및 시간 측면에서 유리하고, 온도 등에 따른 물성 변화를 최소화 할 수 있는 상기 중합체 분말의 제조방법을 제공한다.Another embodiment of the present invention is advantageous in terms of cost and time, and provides a method for producing the polymer powder capable of minimizing physical property changes with temperature and the like.
본 발명의 일 구현예에서, 평균 입경이 약 20㎛ 내지 약 300㎛이고, 입경이 약 10㎛ 미만인 입자가 약 10 질량% 이하이고, 입경이 약 300㎛ 초과인 입자가 약 10 질량% 이하인 중합체 분말을 제공한다.In one embodiment of the invention, a polymer having an average particle diameter of about 20 μm to about 300 μm, particles having a particle size of less than about 10 μm or less, and particles having a particle size of greater than about 300 μm of about 10 mass% or less Provide powder.
상기 중합체 분말은 폴리락트산(PLA), 폴리프로필렌, 폴리스티렌, 아크릴로니트릴-부타디엔-스티렌(ABS), 폴리메틸메타크릴레이트(PMMA), 폴리에틸렌글리콜(PEG), 열가소성 폴리우레탄(TPU), 폴리디메틸실록산(PDMS), 고밀도 폴리에틸렌(HDPE), 저밀도 폴리에틸렌(LDPE), 내충격 폴리스티렌(High Impact Polystyrene, HIPS), 폴리에틸렌옥사이드(PEO), 폴리에틸렌카보네이트(PEC), 폴리하이드록시알카노에이트(PHA), 폴리하이드록시부티레이트(PHB) 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다. The polymer powder is polylactic acid (PLA), polypropylene, polystyrene, acrylonitrile-butadiene-styrene (ABS), polymethyl methacrylate (PMMA), polyethylene glycol (PEG), thermoplastic polyurethane (TPU), polydimethyl Siloxane (PDMS), high density polyethylene (HDPE), low density polyethylene (LDPE), high impact polystyrene (HIPS), polyethylene oxide (PEO), polyethylene carbonate (PEC), polyhydroxyalkanoate (PHA), poly At least one selected from the group consisting of hydroxybutyrate (PHB) and combinations thereof.
상기 중합체 분말은 중량평균분자량(Mw)이 약 10,000 내지 약 300,000일 수 있다.The polymer powder may have a weight average molecular weight (Mw) of about 10,000 to about 300,000.
상기 중합체 분말은 안식각이 약 45도 미만일 수 있다. The polymer powder may have an angle of repose less than about 45 degrees.
본 발명의 다른 구현예에서, 중합체의 용융물을 형성하는 단계; 상기 중합체의 용융물에 초임계 유체를 투입하여 혼합 조성물을 형성하는 단계; 및 상기 혼합 조성물을 분사하여 중합체 분말을 제조하는 단계를 포함하는 중합체 분말의 제조방법을 제공한다.In another embodiment of the invention, forming a melt of the polymer; Injecting a supercritical fluid into the melt of the polymer to form a mixed composition; And it provides a method for producing a polymer powder comprising the step of preparing a polymer powder by spraying the mixed composition.
상기 중합체의 용융물은 중합체를 약 100℃ 내지 약 290℃에서 용융시켜 형성될 수 있다.The melt of the polymer may be formed by melting the polymer at about 100 ° C to about 290 ° C.
상기 혼합 조성물을 형성하는 단계는, 상기 중합체의 용융물에 상기 초임계 유체를 투입한 후 가압하여 상기 중합체의 용융물에 상기 초임계 유체를 분산시키는 단계를 포함할 수 있다.The forming of the mixed composition may include adding the supercritical fluid to the melt of the polymer and then pressing the dispersion to disperse the supercritical fluid in the melt of the polymer.
상기 혼합 조성물을 형성하는 단계는, 상기 중합체의 용융물에 상기 초임계 유체를 투입한 후 약 50 bar 내지 약 500 bar의 압력이 되도록 가압하는 단계일 수 있다. Forming the mixed composition may be a step of pressing the supercritical fluid to a melt of the polymer to a pressure of about 50 bar to about 500 bar.
상기 혼합 조성물은 상기 중합체의 용융물 100 중량부에 대하여 상기 초임계 유체 약 5 내지 약 15 중량부를 투입하여 형성될 수 있다.The mixed composition may be formed by adding about 5 to about 15 parts by weight of the supercritical fluid based on 100 parts by weight of the melt of the polymer.
상기 초임계 유체는 이산화탄소, 헬륨, 질소, 메탄, 에탄, 프로판, 에틸렌, 프로필렌, 메틸렌 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다. The supercritical fluid may include at least one selected from the group consisting of carbon dioxide, helium, nitrogen, methane, ethane, propane, ethylene, propylene, methylene, and combinations thereof.
상기 혼합 조성물은 점도가 약 10-3 Pa·s 내지 약 103 Pa·s일 수 있다.The mixed composition may have a viscosity of about 10 −3 Pa · s to about 10 3 Pa · s.
상기 혼합 조성물을 분사하여 중합체 분말을 제조하는 단계는, 상기 혼합 조성물을 평균 구경이 약 0.01 내지 약 3.0㎜인 노즐을 통해 분사하는 단계일 수 있다.Spraying the mixed composition to prepare a polymer powder may be spraying the mixed composition through a nozzle having an average aperture of about 0.01 to about 3.0 mm.
상기 혼합 조성물을 분사하여 중합체 분말을 제조하는 단계는, 상기 혼합 조성물을 분사와 동시에 약 -30℃ 내지 약 30℃에서 냉각시키는 단계일 수 있다.The spraying of the mixed composition to prepare a polymer powder may include cooling the mixed composition at about −30 ° C. to about 30 ° C. simultaneously with the spray.
상기 중합체와 상기 중합체 분말의 중량평균분자량(Mw) 차이는 약 200,000 이하일 수 있다.The weight average molecular weight (Mw) difference between the polymer and the polymer powder may be about 200,000 or less.
상기 중합체와 상기 중합체 분말의 열분해 온도 차이는 약 50℃ 이하일 수 있다.The thermal decomposition temperature difference between the polymer and the polymer powder may be about 50 ° C or less.
상기 중합체 분말은 입도 분포가 좁으면서도 입자 크기가 작고 균일하여, 우수한 유동성 및 응용성을 확보할 수 있다. The polymer powder has a narrow particle size distribution and a small and uniform particle size, thereby ensuring excellent fluidity and applicability.
상기 중합체 분말의 제조방법은 비용 및 시간 측면에서 유리하고, 온도 등에 따른 물성 변화를 최소화하여 우수한 물성을 가지는 상기 중합체 분말을 제조할 수 있다.Method for producing the polymer powder is advantageous in terms of cost and time, it is possible to produce the polymer powder having excellent physical properties by minimizing the change in physical properties according to the temperature.
도 1의 (a)는 본 발명의 일 구현예에 따라 제조된 중합체 분말을 촬영한 SEM 사진이고, (b)는 종래의 제조 방법에 따라 제조된 중합체 분말을 촬영한 SEM 사진이다. Figure 1 (a) is a SEM photograph of a polymer powder prepared according to an embodiment of the present invention, (b) is a SEM photograph of a polymer powder prepared according to a conventional manufacturing method.
도 2는 본 발명의 일 구현예에 따라 제조된 중합체 분말의 입경에 따른 입도 분포 그래프를 나타낸 것이다. Figure 2 shows a particle size distribution graph according to the particle diameter of the polymer powder prepared according to an embodiment of the present invention.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 발명의 일 구현예에서, 평균 입경이 약 20㎛ 내지 약 300㎛이고, 입경이 약 10㎛ 미만인 입자가 약 10 질량% 이하이고, 입경이 약 300㎛ 초과인 입자가 약 10 질량% 이하인 중합체 분말을 제공한다.In one embodiment of the invention, a polymer having an average particle diameter of about 20 μm to about 300 μm, particles having a particle size of less than about 10 μm or less, and particles having a particle size of greater than about 300 μm of about 10 mass% or less Provide powder.
상기 중합체 분말은 평균 입경이 약 20㎛ 내지 약 300㎛이고, 상기 범위의 평균 입경을 가짐으로써 입자 크기를 바탕으로 내장 건축재 및 인테리어 장식재 등에 적용할 때, 우수한 가공성을 확보할 수 있다. The polymer powder has an average particle diameter of about 20 μm to about 300 μm, and by having an average particle diameter in the above range, when applied to interior building materials and interior decoration materials based on particle size, it is possible to secure excellent processability.
또한, 상기 중합체 분말은 입경이 약 10㎛ 미만인 입자와 입경이 약 300㎛ 초과인 입자가 각각 10질량% 이하인 것으로서, 예를 들어 약 5 질량% 이하일 수 있다. 구체적으로, 입경이 약 10㎛ 미만인 입자는 약 5질량% 이하이고, 입경이 약 300㎛ 초과인 입자는 약 1질량% 이하일 수 있다. 상기 중합체 분말이 이러한 입도 분포를 가짐으로써 내장 건축재 및 인테리어 장식재 등에 적용할 때 우수한 유동성 및 성형성을 확보할 수 있다.In addition, the polymer powder has a particle diameter of less than about 10 μm and particles having a particle size of greater than about 300 μm, respectively, 10 mass% or less, and may be, for example, about 5 mass% or less. Specifically, the particles having a particle diameter of less than about 10 μm may be about 5 mass% or less, and the particles having a particle diameter of about 300 μm or less may be about 1 mass% or less. Since the polymer powder has such a particle size distribution, excellent fluidity and formability can be ensured when applied to interior building materials and interior decoration materials.
구체적으로, 상기 중합체 분말은 폴리락트산(PLA), 폴리프로필렌, 폴리스티렌, 아크릴로니트릴-부타디엔-스티렌(ABS), 폴리메틸메타크릴레이트(PMMA), 폴리에틸렌글리콜(PEG), 열가소성 폴리우레탄(TPU), 폴리디메틸실록산(PDMS), 고밀도 폴리에틸렌(HDPE), 저밀도 폴리에틸렌(LDPE), 내충격 폴리스티렌(High Impact Polystyrene, HIPS), 폴리에틸렌옥사이드(PEO), 폴리에틸렌카보네이트(PEC), 폴리하이드록시알카노에이트(PHA), 폴리하이드록시부티레이트(PHB) 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다. Specifically, the polymer powder is polylactic acid (PLA), polypropylene, polystyrene, acrylonitrile-butadiene-styrene (ABS), polymethyl methacrylate (PMMA), polyethylene glycol (PEG), thermoplastic polyurethane (TPU) , Polydimethylsiloxane (PDMS), high density polyethylene (HDPE), low density polyethylene (LDPE), high impact polystyrene (HIPS), polyethylene oxide (PEO), polyethylene carbonate (PEC), polyhydroxyalkanoate (PHA) ), Polyhydroxybutyrate (PHB), and combinations thereof.
예를 들어, 상기 중합체 분말은 폴리락트산을 포함할 수 있고, 이 경우 후술하는 제조방법에 의해 상기 범위의 평균 입경 및 입도 분포를 갖는 중합체 분말을 제조하기 용이할 수 있다. 또한, 상기 범위의 평균 입경 및 입도 분포에 기인하여 우수한 유동성 및 가공성을 확보할 뿐만 아니라, 폴리락트산 자체에 기인한 친환경적 효과도 얻을 수 있다. For example, the polymer powder may include polylactic acid, and in this case, it may be easy to prepare a polymer powder having an average particle diameter and particle size distribution in the above range by the manufacturing method described below. In addition, due to the average particle diameter and particle size distribution in the above range, not only excellent fluidity and processability can be secured, but also an environmentally friendly effect due to polylactic acid itself can be obtained.
상기 중합체 분말은 중량평균분자량(Mw)이 약 10,000 내지 약 300,000일 수 있고, 예를 들어 약 50,000 내지 약 200,000일 수 있다. 상기 중합체 분말이 상기 범위의 평균 입경 및 입도 분포와 함께 상기 범위의 중량평균분자량(Mw)을 만족함으로써 우수한 유동성 및 성형성을 확보할 수 있고, 이와 동시에 이를 적용한 내장재 등이 우수한 강도를 확보할 수 있다. The polymer powder may have a weight average molecular weight (Mw) of about 10,000 to about 300,000, for example, about 50,000 to about 200,000. The polymer powder satisfies the weight average molecular weight (Mw) in the range together with the average particle diameter and particle size distribution in the above range, thereby ensuring excellent fluidity and formability, and at the same time, the interior materials and the like to which the same is applied can secure excellent strength. have.
상기 중합체 분말은 안식각이 약 45도 미만일 수 있고, 예를 들어 약 40도 미만일 수 있다. 상기 '안식각'은 입자화된 재료를 평면에 자연상태로 쌓아 올렸을 때 그 경사를 유지할 수 있는 최대 경사각을 의미한다. 구체적으로, 상기 안식각은 평평한 수평면에 입자화된 재료를 부어 형성된 더미에 대하여, 더미의 경사면과 상기 수평면의 각도를 측정하는 주입 안정 각도 측정방법으로 측정될 수 있고, 이를 대체하여 바닥이 평면인 용기에 만들어진 구멍을 통해 상기 재료가 배출되면서 형성되는 꼬깔 형태에 대하여, 꼬깔 형태의 경사면과 평면인 바닥면이 이루는 각도를 측정하는 배출 안정 각도 측정방법으로 측정될 수 있다. 상기 중합체 분말이 상기 범위의 안식각을 나타냄으로써 우수한 유동성을 확보할 수 있고, 다양한 분야의 응용성을 확보할 수 있다. The polymer powder may have an angle of repose less than about 45 degrees, for example less than about 40 degrees. The 'rest angle' refers to the maximum inclination angle that can maintain the inclination when the granulated material is stacked on the plane in a natural state. Specifically, the angle of repose can be measured by the injection stabilization angle measuring method for measuring the angle of the inclined plane and the horizontal plane of the pile with respect to the pile formed by pouring the granulated material on a flat horizontal plane, and replaces the container having a flat bottom With respect to the shape of the cockle formed while the material is discharged through the hole made in, it can be measured by the discharge stabilization angle measuring method for measuring the angle formed by the inclined surface and the bottom surface of the flat shape. When the polymer powder exhibits a repose angle in the above range, excellent fluidity can be secured and applicability in various fields can be secured.
본 발명의 다른 구현예는 중합체의 용융물을 형성하는 단계; 상기 중합체의 용융물에 초임계 유체를 투입하여 혼합 조성물을 형성하는 단계; 및 상기 혼합 조성물을 분사하여 중합체 분말을 제조하는 단계를 포함하는 중합체 분말의 제조방법을 제공한다. Another embodiment of the invention comprises forming a melt of a polymer; Injecting a supercritical fluid into the melt of the polymer to form a mixed composition; And it provides a method for producing a polymer powder comprising the step of preparing a polymer powder by spraying the mixed composition.
상기 중합체 분말의 제조방법은 초임계 유체(SCF, Super critical fluid)를 사용하는 것으로, 구체적으로 상기 초임계 유체를 첨가제로 사용할 수 있다. 이 로써 상기 제조방법은 비교적 낮은 온도에서 중합체 분말을 제조할 수 있으므로 원료 손실을 방지할 수 있고, 상기 제조방법으로 제조된 중합체 분말이 열분해 특성 및 입도 분포, 분자량 측면에서 우수한 물성을 확보할 수 있다.The polymer powder is prepared using a super critical fluid (SCF), and specifically, the supercritical fluid may be used as an additive. As a result, the production method can prevent the loss of raw materials because the polymer powder can be prepared at a relatively low temperature, and the polymer powder prepared by the production method can secure excellent physical properties in terms of thermal decomposition, particle size distribution, and molecular weight. .
구체적으로, 상기 제조방법은 중합체의 용융물을 형성하는 단계를 포함할 수 있다. 상기 중합체의 용융물은 중합체로 구성된 원료를 일정 온도에서 용융시켜 형성되는 것으로, 상기 중합체로 구성된 원료는 펠릿(pellet) 형상의 알갱이일 수 있다. Specifically, the method may include forming a melt of the polymer. The melt of the polymer is formed by melting a raw material composed of a polymer at a predetermined temperature, and the raw material composed of the polymer may be pellet-shaped granules.
상기 중합체의 용융물은 상기 중합체를 약 100℃ 내지 약 290℃에서 용융시켜 형성할 수 있다. 상기 중합체가 상기 범위의 온도에서 용융됨으로써 중합체 자체의 물성을 손상시키기 않으면서, 적절한 점도를 갖도록 용융될 수 있다.The melt of the polymer may be formed by melting the polymer at about 100 ° C to about 290 ° C. The polymer may be melted to have an appropriate viscosity without melting the physical properties of the polymer itself by melting at a temperature in the above range.
상기 중합체의 용융물은 점도가 약 10-3 Pa·s 내지 약 103 Pa·s일 수 있다. 상기 중합체의 용용물이 상기 범위의 점도를 가짐으로써 후속 단계에서 초임계 유체와 잘 혼합될 수 있고, 우수한 가공성을 확보할 수 있다. The melt of the polymer may have a viscosity of about 10 −3 Pa · s to about 10 3 Pa · s. The melt of the polymer can be well mixed with the supercritical fluid in subsequent steps by having a viscosity in the above range, and can ensure excellent processability.
상기 제조방법은 상기 중합체의 용융물에 초임계 유체를 투입하여 혼합 조성물을 형성하는 단계를 포함할 수 있다. 상기 초임계 유체는 상기 중합체의 용융물이 형성된 후에 투입되는 것으로서, 이를 통해 비교적 낮은 온도에서 적절한 점도를 가지는 혼합 조성물을 형성할 수 있다. The manufacturing method may include the step of adding a supercritical fluid to the melt of the polymer to form a mixed composition. The supercritical fluid is introduced after the melt of the polymer is formed, thereby forming a mixed composition having an appropriate viscosity at a relatively low temperature.
구체적으로, 상기 혼합 조성물을 형성하는 단계는 상기 중합체의 용융물에 상기 초임계 유체를 투입한 후 가압하여 상기 중합체의 용융물에 상기 초임계 유체를 분산시키는 단계를 포함할 수 있다. 즉, 상기 혼합 조성물은 상기 중합체의 용율물 내에 상기 초임계 유체가 분산된 상태로 혼합된 것일 수 있다. Specifically, the forming of the mixed composition may include dispersing the supercritical fluid in the melt of the polymer by injecting the supercritical fluid into the melt of the polymer. That is, the mixed composition may be mixed in a state in which the supercritical fluid is dispersed in the melt of the polymer.
이때, 상기 혼합 조성물을 형성하는 단계는 상기 중합체의 용융물에 상기 초임계 유체를 투입한 후 약 50 bar 내지 약 500 bar의 압력이 되도록 가압하는 단계일 수 있고, 예를 들어, 약 50 bar 내지 약 300 bar의 압력이 되도록 가압하는 단계일 수 있다. 이 단계에서 압력이 상기 범위를 유지하도록 가압함으로써, 상기 초임계 유체가 상기 중합체의 용융물 내에 균일하게 분산될 수 있고, 가공에 유리한 점도를 갖는 혼합 조성물을 형성할 수 있다.In this case, the step of forming the mixed composition may be a step of pressing the supercritical fluid to the melt of the polymer to a pressure of about 50 bar to about 500 bar, for example, about 50 bar to about Pressurizing to a pressure of 300 bar. By pressurizing the pressure to maintain the range in this step, the supercritical fluid can be uniformly dispersed in the melt of the polymer and form a mixed composition having a viscosity advantageous for processing.
또한, 상기 혼합 조성물을 형성하는 단계는 약 100℃ 내지 약 290℃에서 수행될 수 있다. 기존에는 중합체 또는 고분자 원료를 용융시켜 분사 등의 방법으로 입자 형상을 제조할 때, 약 300℃ 이상의 고온으로 온도를 승온시켜 용융물의 점도 등을 조절하였다. 이렇게 고온에서 제조 과정이 진행되는 경우, 원료의 손실이 커지고 제조 비용이 증가하며, 제조된 입자 형상의 결과물의 열적 특성이 좋지 않은 문제가 있었다. 이에 관하여, 상기 제조방법은 상기 혼합 조성물을 형성하는 단계가 상기 범위의 온도에서 수행됨으로써, 상기 중합체 용융물의 물성이 손상되지 않으면서도 상기 초임계 유체와 고르게 혼합되어 적절한 점도를 가지는 혼합 조성물을 형성할 수 있고, 결과적으로 제조된 중합체 분말이 우수한 열적 특성을 나타낼 수 있다. In addition, the forming of the mixed composition may be performed at about 100 ℃ to about 290 ℃. Conventionally, when preparing a particle shape by melting a polymer or a polymer raw material by spraying or the like, the temperature is raised to a high temperature of about 300 ° C. or more to control the viscosity of the melt. When the manufacturing process is performed at such a high temperature, there is a problem that the loss of the raw material is increased and the manufacturing cost is increased, and the thermal properties of the resulting particle shape are not good. In this regard, the manufacturing method is such that the step of forming the mixed composition is carried out at a temperature in the range, thereby uniformly mixing with the supercritical fluid without damaging the physical properties of the polymer melt to form a mixed composition having an appropriate viscosity. And the resulting polymer powder can exhibit excellent thermal properties.
상기 혼합 조성물을 형성하는 단계는 상기 중합체의 용융물이 주입됨과 동시에 상기 초임계 유체가 상기 중합체의 용융물이 투입되는 단계일 수 있다. 이 때, 상기 중합체의 용융물은 약 2 내지 약 100 rpm의 속도로 주입되고, 상기 초임계 유체는 약 0.01 내지 약 40 g/ℓ의 유량으로 상기 중합체의 용융물이 주입될 수 있다. 상기 중합체의 용융물 및 상기 초임계 유체가 상기 범위의 속도 및 유량으로 주입됨으로써 고르게 혼합 및 분산되는 것이 가능하고, 이렇게 제조된 상기 혼합 조성물이 가공에 유리한 점도를 용이하게 확보할 수 있다.The forming of the mixed composition may be a step in which the melt of the polymer is injected while the melt of the polymer is injected. At this time, the melt of the polymer may be injected at a rate of about 2 to about 100 rpm, and the supercritical fluid may be injected of the melt of the polymer at a flow rate of about 0.01 to about 40 g / l. The melt of the polymer and the supercritical fluid can be injected and dispersed evenly by injecting at a rate and a flow rate in the above range, and the mixed composition thus prepared can easily ensure a viscosity advantageous for processing.
상기 혼합 조성물은 상기 중합체의 용융물 100 중량부에 대하여, 상기 초임계 유체를 약 5 내지 약 15 중량부 투입하여 형성될 수 있다. 상기 초임계 유체는 상기 중합체 용융물 대비 미량 첨가되는 것으로, 상기 중합체 용융물이 비교적 낮은 온도에서 이와 혼합되어 열적 특성이 변성되지 않으면서도 가공에 유리한 점도 갖는 혼합 조성물을 용이하게 제조할 수 있다.The mixed composition may be formed by adding about 5 to about 15 parts by weight of the supercritical fluid based on 100 parts by weight of the melt of the polymer. The supercritical fluid is added in a small amount compared to the polymer melt, and the polymer melt is mixed with it at a relatively low temperature, thereby easily preparing a mixed composition having a viscosity advantageous for processing without deterioration of thermal properties.
상기 초임계 유체가 상기 중합체의 용융물 100 중량부 대비, 약 5 중량부 미만으로 포함되는 경우에는 상기 혼합 조성물이 가공에 유리한 점도를 확보하기 어려운 문제가 있고, 약 15 중량부를 초과하여 포함되는 경우에는 초임계유체의 상분리 현상이 생길 우려가 있다. When the supercritical fluid is included in less than about 5 parts by weight relative to 100 parts by weight of the melt of the polymer, the mixed composition has a problem that it is difficult to secure a viscosity advantageous for processing, and when included in excess of about 15 parts by weight. There is a fear that phase separation of supercritical fluid occurs.
상기 초임계 유체는 물질 고유의 임계온도 및 임계압력을 초과한 상태에 존재하여 기체 및 액체의 속성을 모두 나타내는 유체로서, 구체적으로 이산화탄소, 헬륨, 질소, 메탄, 에탄, 프로판, 에틸렌, 프로필렌, 메틸렌 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다. 예를 들어, 상기 초임계 유체는 이산화탄소를 포함할 수 있고, 이 경우 비용이 상대적으로 저렴하고 상기 중합체의 용용물과 잘 혼합되는 장점을 확보할 수 있다. The supercritical fluid is a fluid present in the state of exceeding the critical temperature and the critical pressure inherent in the material and exhibits the properties of both gas and liquid, specifically, carbon dioxide, helium, nitrogen, methane, ethane, propane, ethylene, propylene, methylene And at least one selected from the group consisting of a combination thereof. For example, the supercritical fluid may comprise carbon dioxide, in which case it is possible to secure the advantages of relatively low cost and good mixing with the melt of the polymer.
상기 중합체의 용융물에 상기 초임계 유체를 투입하여 제조된 혼합 조성물은 그 점도가 약 10-3 Pa·s 내지 약 103 Pa·s일 수 있다. 상기 혼합 조성물이 상기 범위의 점도를 가짐으로써 이를 분사하기 용이하여 중합체 분말의 제조에 있어서 우수한 가공성을 확보할 수 있고, 이로써 제조된 상기 중합체 분말이 균일한 크기 및 좁은 입도 분포를 가질 수 있다.The mixed composition prepared by injecting the supercritical fluid into the melt of the polymer may have a viscosity of about 10 −3 Pa · s to about 10 3 Pa · s. Since the mixed composition has a viscosity in the above range, it is easy to spray it to ensure excellent processability in the production of the polymer powder, thereby the polymer powder prepared may have a uniform size and narrow particle size distribution.
상기 제조방법은 상기 혼합 조성물을 분사하여 중합체 분말을 제조하는 단계를 포함할 수 있다. 구체적으로, 상기 혼합 조성물은 노즐을 통해 분사될 수 있고, 구체적으로 상기 노즐의 평균 구경이 약 0.01 내지 약 3.0㎜일 수 있다. 상기 노즐의 평균 구경이 상기 범위를 만족함으로써 상기 혼합 조성물이 잘 유입될 수 있고, 이로부터 적절한 크기 및 좁은 입도 분포를 갖는 중합체 분말이 제조될 수 있다. The manufacturing method may include the step of preparing a polymer powder by spraying the mixed composition. Specifically, the mixed composition may be sprayed through a nozzle, and specifically, the average diameter of the nozzle may be about 0.01 to about 3.0 mm. The average composition of the nozzle satisfies the above range so that the mixed composition can be easily introduced, from which polymer powder having an appropriate size and narrow particle size distribution can be produced.
구체적으로, 상기 혼합 조성물은 상기 노즐에 공기와 함께 주입된 후 분사될 수 있고, 이 때 주입되는 공기의 온도는 약 200℃ 내지 약 500℃이고, 압력은 약 100 psi 내지 약 1000 psi일 수 있다. 또한, 상기 공기의 주입 속도는 약 10 m/s 내지 약 50 m/s일 수 있다. 상기 혼합 조성물이 상기 범위의 온도, 압력 및 주입 속도를 만족하는 공기와 함께 상기 범위의 직경을 갖는 노즐에 주입됨으로써, 이를 분사하여 제조된 중합체 분말이 적절한 크기 및 좁은 입도 분포를 용이하게 확보할 수 있고, 중합체 자체의 물성을 손상시키지 않을 수 있다. Specifically, the mixed composition may be injected after being injected with air in the nozzle, the temperature of the injected air may be about 200 ℃ to about 500 ℃, the pressure may be about 100 psi to about 1000 psi . In addition, the injection speed of the air may be about 10 m / s to about 50 m / s. The mixed composition is injected into a nozzle having a diameter in the range together with air satisfying the temperature, pressure and injection speed in the above range, so that the polymer powder prepared by spraying it can easily secure a proper size and narrow particle size distribution. And may not impair the physical properties of the polymer itself.
또한, 상기 혼합 조성물을 분사하여 중합체 분말을 제조하는 단계는 상기 혼합 조성물을 분사와 동시에 약 -30℃ 내지 약 30℃의 온도에서 냉각시키는 단계일 수 있다. 상기 혼합 조성물이 분사와 동시에 상기 범위의 온도에서 냉각됨으로써, 상기 중합체 분말 크기의 균일성이 향상될 수 있고, 좁은 입도 분포를 만족시킬 수 있다. 또한, 상기 중합체 분말이 응집되지 않고 우수한 유동성을 확보할 수 있으며, 구형의 형상을 잘 유지할 수 있다. In addition, the step of preparing the polymer powder by spraying the mixed composition may be the step of cooling the mixed composition at a temperature of about -30 ℃ to about 30 ℃ at the same time as the spray. As the mixed composition is cooled at a temperature in the above range at the same time as the spraying, the uniformity of the polymer powder size can be improved and a narrow particle size distribution can be satisfied. In addition, it is possible to secure excellent fluidity without aggregation of the polymer powder, it is possible to maintain the spherical shape well.
상기 중합체 분말의 제조방법은 초임계 유체를 이용함으로써 비교적 낮은 온도에서 적절한 점도를 확보할 수 있다. 이로써, 상기 제조방법은 열에 의한 원료 손실을 최소화할 수 있고, 원료 대비 상기 중합체 분말의 열적 특성 및 분자량 등의 물성의 변화가 적어, 비용 및 우수한 물성 확보의 측면에서 이점을 얻을 수 있다.In the method of preparing the polymer powder, it is possible to secure an appropriate viscosity at a relatively low temperature by using a supercritical fluid. As a result, the manufacturing method can minimize the loss of raw materials due to heat, and there is little change in physical properties such as thermal properties and molecular weight of the polymer powder relative to the raw materials, thereby obtaining advantages in terms of cost and excellent physical properties.
구체적으로, 상기 중합체 분말의 제조를 위한 원료는 중합체이며, 상기 중합체는 중합체의 용융물을 형성하기 이전의 상태를 의미한다. 이 때, 상기 중합체와 상기 중합체 분말의 중량평균분자량(Mw) 차이는 약 200,000 이하일 수 있고, 예를 들어, 약 150,000 이하일 수 있고, 예를 들어, 약 5,000 내지 150,000일 수 있다. 상기 중량평균분자량(Mw)의 차이가 작을수록 상기 중합체 분말의 제조 과정에서 원료의 손실이 적음을 의미하며, 상기 중합체 분말의 원료 대비 중량평균분자량(Mw)의 변화가 상기 범위를 만족함으로써, 상기 중합체 분말이 중합체 자체의 특성에 기인한 우수한 물성을 용이하게 확보할 수 있다. Specifically, the raw material for producing the polymer powder is a polymer, and the polymer means a state before forming a melt of the polymer. In this case, a difference in weight average molecular weight (Mw) of the polymer and the polymer powder may be about 200,000 or less, for example, about 150,000 or less, for example, about 5,000 to 150,000. The smaller the difference in the weight average molecular weight (Mw) means less loss of raw materials in the manufacturing process of the polymer powder, the change in weight average molecular weight (Mw) compared to the raw material of the polymer powder satisfies the above range, The polymer powder can easily secure excellent physical properties due to the properties of the polymer itself.
또한, 상기 중합체와 상기 중합체 분말의 열분해 온도 차이는 약 50℃ 이하일 수 있고, 예를 들어 약 20℃ 이하일 수 있고, 예를 들어, 약 2℃ 내지 20℃일 수 있다. 상기 '열분해 온도'는 상기 중합체에 열을 가하여 이것이 분해되는 온도를 측정한 것으로서, 구체적으로 열분해해석장치(TGA)를 이용하여 측정할 수 있다. 상기 열분해 온도 차이가 작을수록 상기 중합체 분말의 제조 과정에서 원료의 물성 변화가 적은 것을 의미하며, 상기 중합체와 상기 중합체 분말의 열분해 온도 차이가 상기 범위를 만족함으로써, 상기 중합체 분말이 중합체 자체의 특성에 기인한 우수한 물성을 용이하게 확보할 수 있다. In addition, the thermal decomposition temperature difference between the polymer and the polymer powder may be about 50 ° C or less, for example, about 20 ° C or less, for example, may be about 2 ° C to 20 ° C. The 'pyrolysis temperature' is a measurement of the temperature at which the polymer is decomposed by applying heat to the polymer, and specifically, it may be measured using a pyrolysis analyzer (TGA). The smaller the difference in pyrolysis temperature is, the smaller the change in physical properties of the raw materials in the manufacturing process of the polymer powder, and the difference in thermal decomposition temperature of the polymer and the polymer powder satisfies the above range, whereby the polymer powder Excellent physical properties due to can be easily secured.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.The following presents specific embodiments of the present invention. However, the embodiments described below are merely for illustrating or explaining the present invention in detail, and thus the present invention is not limited thereto.
<실시예 및 비교예><Examples and Comparative Examples>
실시예 1Example 1
펠릿(pellet) 형상의 폴리락트산 수지를 압출기에 투입하였고, 상기 폴리락트산 수지를 250℃의 온도에서 용융시켜 폴리락트산 용융물을 제조하였다. 이어서, 상기 폴리락트산 용융물 100 중량부에 대하여, 5 중량부의 이산화탄소 초임계 유체를 투입한 후 가압하여 혼합 및 분산시킴으로써 혼합 조성물을 제조하였다. 이어서, 상기 혼합 조성물을 분사 노즐에 주입하여, 온도가 20℃인 챔버 내에 분사시킴과 동시에 냉각시킴으로써 폴리락트산 분말을 제조하였다. A pellet-like polylactic acid resin was introduced into an extruder, and the polylactic acid resin was melted at a temperature of 250 ° C. to prepare a polylactic acid melt. Subsequently, 5 parts by weight of carbon dioxide supercritical fluid was added to 100 parts by weight of the polylactic acid melt, followed by pressure mixing and dispersing to prepare a mixed composition. Subsequently, the mixed composition was injected into a spray nozzle, sprayed into a chamber having a temperature of 20 ° C, and cooled to prepare a polylactic acid powder.
비교예 1Comparative Example 1
펠릿(pellet) 형상의 폴리락트산 수지를 냉동 분쇄하였고, 볼-밀(ball-mill) 공정을 통하여 폴리락트산 분말을 제조하였다.Pellet-shaped polylactic acid resin was freeze-pulverized, and polylactic acid powder was prepared through a ball-mill process.
비교예 2Comparative Example 2
펠릿(pellet) 형상의 폴리락트산 수지를 압출기에 투입하였고, 상기 폴리락트산 수지를 250℃의 온도에서 용융시켜 폴리락트산 용융물을 제조하였다. 상기 폴리락트산 용융물을 400℃까지 승온시키고, 분사 노즐에 주입하여 온도가 20℃인 챔버 내에 분사시킴과 동시에 냉각시킴으로써 폴리락트산 분말을 제조하였다.A pellet-like polylactic acid resin was introduced into an extruder, and the polylactic acid resin was melted at a temperature of 250 ° C. to prepare a polylactic acid melt. The polylactic acid powder was prepared by heating the polylactic acid melt to 400 ° C, injecting it into a spray nozzle, spraying the same in a chamber having a temperature of 20 ° C, and simultaneously cooling.
<평가><Evaluation>
실험예 1: 평균 입경 및 입도 분포의 측정Experimental Example 1 Measurement of Average Particle Size and Particle Size Distribution
상기 실시예 1 및 비교예 1에 대하여, 레이저 회절 입도분포측정기(Microtrac社, S3500 Series)를 이용하여 평균 입경 및 입도 분포를 측정하여, 하기 표 1에 기재하였다. 또한, 상기 실시예 1에 따라 제조된 폴리락트산 분말을 촬영한 사진을 도 1 (a)에 기재하였고, 상기 비교예 1에 따라 제조된 폴리락트산 분말을 촬영한 사진을 도 1 (b)에 기재하였다. 또한, 상기 실시예 1의 중합체 분말의 입경에 따른 입도 분포 그래프를 도 2에 기재하였다.For Example 1 and Comparative Example 1, the average particle diameter and particle size distribution were measured using a laser diffraction particle size distribution analyzer (Microtrac, S3500 Series), and are shown in Table 1 below. In addition, a photograph of the polylactic acid powder prepared according to Example 1 is shown in FIG. 1 (a), and a photograph of the polylactic acid powder prepared according to Comparative Example 1 is described in FIG. 1 (b). It was. In addition, a particle size distribution graph according to the particle diameter of the polymer powder of Example 1 is described in FIG. 2.
표 1
평균입경(㎛) 입경 10㎛ 미만의 입자(질량%) 입경 300㎛ 초과의 입자(질량%)
실시예 1 70 4 0.45
비교예 1 40 5 20
Table 1
Average particle size (㎛) Particles of less than 10 μm in particle size (mass%) Particles (mass%) with a particle diameter greater than 300 µm
Example 1 70 4 0.45
Comparative Example 1 40 5 20
실험예 2: 중량평균분자량(Mw) 및 열분해 온도(TExperimental Example 2: Weight average molecular weight (Mw) and pyrolysis temperature (T decdec ) 차이의 측정) Measure the difference
상기 실시예 1 및 비교예 2에 대하여, 원료인 펠릿(pellet) 형상의 폴리락트산 수지 및 제조된 폴리락트산 분말 각각의 중량평균분자량(Mw)을 측정하여 그 차이를 도출하였고, 열중량분석(TGA)을 이용하여 각각의 열분해 온도(Tdec)를 측정하여 그 차이를 도출하였다. 그 결과는 하기 표 2에 기재하였다. For Examples 1 and 2, the weight average molecular weight (Mw) of each of the pellet-shaped polylactic acid resin and the prepared polylactic acid powder as raw materials was measured to derive the difference, and thermogravimetric analysis (TGA). Each pyrolysis temperature (T dec ) was measured using) to derive the difference. The results are shown in Table 2 below.
표 2
중량평균분자량(Mw) 열분해 온도(℃)
펠릿 분말 △Mw 펠릿 분말 △Tdec
실시예 1 200,000 100,000 100,000 347.54 345.20 2.34
비교예 2 200,000 30,000 170,000 347.54 310.20 37.34
TABLE 2
Weight average molecular weight (Mw) Pyrolysis Temperature (℃)
Pellet powder △ Mw Pellet powder △ T dec
Example 1 200,000 100,000 100,000 347.54 345.20 2.34
Comparative Example 2 200,000 30,000 170,000 347.54 310.20 37.34
상기 표 1 및 도 2의 결과를 참조할 때, 본 발명의 일 구현예에 따라 제조된 실시예 1의 폴리락트산 분말이 20㎛ 내지 300㎛의 평균 입경을 가지면서, 입경 10㎛ 미만의 입자와 입경 300㎛ 초과의 입자가 모두 10 질량% 이하인 입도 분포를 가지는 것을 알 수 있다. Referring to the results of Table 1 and Figure 2, the polylactic acid powder of Example 1 prepared according to an embodiment of the present invention having an average particle diameter of 20 ㎛ to 300 ㎛, It turns out that all the particle | grains more than 300 micrometers have particle size distribution which is 10 mass% or less.
또한, 도 1의 결과를 통해, 실시예 1의 폴리락트산 분말은 본 발명의 일 구현예에 따른 중합체 분말의 제조방법에 따라 제조됨으로써 구형의 형상으로 상기 범위의 평균 입경 범위를 나타냄을 확인할 수 있다. In addition, through the results of Figure 1, it can be seen that the polylactic acid powder of Example 1 is produced according to the method for producing a polymer powder according to an embodiment of the present invention exhibits an average particle size range of the above range in the shape of a sphere. .
반면, 냉동 분쇄 및 볼-밀 공정을 통하여 제조된 비교예 1의 폴리락트산 분말은 실시예 1에 비하여 평균 입경이 크고, 입도 분포가 고르지 않은 것을 알 수 있다. On the other hand, it can be seen that the polylactic acid powder of Comparative Example 1 prepared through freeze grinding and ball-mill processes has a larger average particle diameter and an uneven particle size distribution than Example 1.
또한, 상기 표 2의 결과를 참조할 때, 본 발명의 일 구현예에 따라 제조된 실시예 1의 폴리락트산 분말은 비교예 2에 비하여, 제조 과정에서의 펠릿 형태의 원료 대비 중량평균분자량의 감소 및 열분해 온도의 변화가 적은 것을 알 수 있고, 이로써 폴리락트산 자체에 기인하는 우수한 물성을 더 잘 구현함을 알 수 있다.In addition, when referring to the results of Table 2, the polylactic acid powder of Example 1 prepared according to an embodiment of the present invention, compared to Comparative Example 2, the weight average molecular weight of the raw material in the form of pellets during the manufacturing process reduced And it can be seen that the change in the pyrolysis temperature is small, thereby implementing better physical properties due to the polylactic acid itself.

Claims (15)

  1. 평균 입경이 20㎛ 내지 300㎛이고, The average particle diameter is 20 µm to 300 µm,
    입경이 10㎛ 미만인 입자가 10질량% 이하이고, 입경이 300㎛ 초과인 입자가 10질량% 이하인10 mass% or less of particle | grains whose particle diameter is less than 10 micrometers, and 10 mass% or less of particle | grains whose particle diameter is more than 300 micrometers
    중합체 분말.Polymer powder.
  2. 제1항에 있어서, The method of claim 1,
    상기 중합체 분말은 폴리락트산(PLA), 폴리프로필렌, 폴리스티렌, 아크릴로니트릴-부타디엔-스티렌(ABS), 폴리메틸메타크릴레이트(PMMA), 폴리에틸렌글리콜(PEG), 열가소성 폴리우레탄(TPU), 폴리디메틸실록산(PDMS), 고밀도 폴리에틸렌(HDPE), 저밀도 폴리에틸렌(LDPE), 내충격 폴리스티렌(High Impact Polystyrene, HIPS), 폴리에틸렌옥사이드(PEO), 폴리에틸렌카보네이트(PEC), 폴리하이드록시알카노에이트(PHA), 폴리하이드록시부티레이트(PHB) 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 The polymer powder is polylactic acid (PLA), polypropylene, polystyrene, acrylonitrile-butadiene-styrene (ABS), polymethyl methacrylate (PMMA), polyethylene glycol (PEG), thermoplastic polyurethane (TPU), polydimethyl Siloxane (PDMS), high density polyethylene (HDPE), low density polyethylene (LDPE), high impact polystyrene (HIPS), polyethylene oxide (PEO), polyethylene carbonate (PEC), polyhydroxyalkanoate (PHA), poly At least one selected from the group consisting of hydroxybutyrate (PHB) and combinations thereof
    중합체 분말. Polymer powder.
  3. 제1항에 있어서, The method of claim 1,
    상기 중합체 분말은 중량평균분자량(Mw)이 10,000 내지 300,000인The polymer powder has a weight average molecular weight (Mw) of 10,000 to 300,000
    중합체 분말. Polymer powder.
  4. 제1항에 있어서, The method of claim 1,
    상기 중합체 분말은 안식각이 45도 미만인 The polymer powder has an angle of repose less than 45 degrees.
    중합체 분말. Polymer powder.
  5. 중합체의 용융물을 형성하는 단계;Forming a melt of the polymer;
    상기 중합체의 용융물에 초임계 유체를 투입하여 혼합 조성물을 형성하는 단계; 및Injecting a supercritical fluid into the melt of the polymer to form a mixed composition; And
    상기 혼합 조성물을 분사하여 중합체 분말을 제조하는 단계를 포함하는 Spraying the mixed composition to produce a polymer powder
    중합체 분말의 제조방법.Method for producing a polymer powder.
  6. 제5항에 있어서, The method of claim 5,
    상기 중합체의 용융물은 중합체를 100℃ 내지 290℃에서 용융시켜 형성되는 The melt of the polymer is formed by melting the polymer at 100 ° C to 290 ° C.
    중합체 분말의 제조방법. Method for producing a polymer powder.
  7. 제5항에 있어서, The method of claim 5,
    상기 혼합 조성물을 형성하는 단계는, Forming the mixed composition,
    상기 중합체의 용융물에 상기 초임계 유체를 투입한 후 가압하여 상기 중합체의 용융물에 상기 초임계 유체를 분산시키는 단계를 포함하는 And injecting the supercritical fluid into the melt of the polymer to pressurize to disperse the supercritical fluid in the melt of the polymer.
    중합체 분말의 제조방법.Method for producing a polymer powder.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 혼합 조성물을 형성하는 단계는, Forming the mixed composition,
    상기 중합체의 용융물에 상기 초임계 유체를 투입한 후 50 bar 내지 500 bar의 압력이 되도록 가압하는 단계인 Injecting the supercritical fluid into the melt of the polymer and pressurizing it to a pressure of 50 bar to 500 bar
    중합체 분말의 제조방법. Method for producing a polymer powder.
  9. 제5항에 있어서, The method of claim 5,
    상기 혼합 조성물은 상기 중합체의 용융물 100 중량부에 대하여 상기 초임계 유체 5 내지 15 중량부를 투입하여 형성되는 The mixed composition is formed by adding 5 to 15 parts by weight of the supercritical fluid based on 100 parts by weight of the melt of the polymer.
    중합체 분말의 제조방법. Method for producing a polymer powder.
  10. 제5항에 있어서, The method of claim 5,
    상기 초임계 유체는 이산화탄소, 헬륨, 질소, 메탄, 에탄, 프로판, 에틸렌, 프로필렌, 메틸렌 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 The supercritical fluid includes at least one selected from the group consisting of carbon dioxide, helium, nitrogen, methane, ethane, propane, ethylene, propylene, methylene and combinations thereof
    중합체 분말의 제조방법. Method for producing a polymer powder.
  11. 제5항에 있어서, The method of claim 5,
    상기 혼합 조성물은 점도가 10-3 Pa·s 내지 103 Pa·s인The mixed composition has a viscosity of 10 −3 Pa · s to 10 3 Pa · s
    중합체 분말의 제조방법.Method for producing a polymer powder.
  12. 제5항에 있어서, The method of claim 5,
    상기 혼합 조성물을 분사하여 중합체 분말을 제조하는 단계는,Spraying the mixed composition to prepare a polymer powder,
    상기 혼합 조성물을 평균 구경이 0.01 내지 3.0㎜인 노즐을 통해 분사하는 단계인Spraying the mixed composition through a nozzle having an average aperture of 0.01 to 3.0 mm
    중합체 분말의 제조방법. Method for producing a polymer powder.
  13. 제5항에 있어서, The method of claim 5,
    상기 혼합 조성물을 분사하여 중합체 분말을 제조하는 단계는,Spraying the mixed composition to prepare a polymer powder,
    상기 혼합 조성물을 분사와 동시에 -30℃ 내지 30℃에서 냉각시키는 단계인Cooling the mixed composition at -30 ° C to 30 ° C at the same time as the spraying;
    중합체 분말의 제조방법. Method for producing a polymer powder.
  14. 제5항에 있어서, The method of claim 5,
    상기 중합체와 상기 중합체 분말의 중량평균분자량(Mw) 차이는 200,000 이하인 The weight average molecular weight (Mw) difference between the polymer and the polymer powder is 200,000 or less
    중합체 분말의 제조방법.Method for producing a polymer powder.
  15. 제5항에 있어서, The method of claim 5,
    상기 중합체와 상기 중합체 분말의 열분해 온도 차이는 50℃ 이하인 Pyrolysis temperature difference between the polymer and the polymer powder is 50 ℃ or less
    중합체 분말의 제조방법.Method for producing a polymer powder.
PCT/KR2015/010225 2014-09-29 2015-09-25 Polymer powder and method for preparing same WO2016052958A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017517009A JP6476286B2 (en) 2014-09-29 2015-09-25 Method for producing polymer powder
US15/515,583 US10450409B2 (en) 2014-09-29 2015-09-25 Polymer powder and method for preparing same
CN201580052931.9A CN106715583B (en) 2014-09-29 2015-09-25 Polymer powder and process for producing the same
EP15845673.1A EP3202824B1 (en) 2014-09-29 2015-09-25 Polymer powder and method for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140130551 2014-09-29
KR10-2014-0130551 2014-09-29
KR10-2015-0136095 2015-09-25
KR1020150136095A KR20160038801A (en) 2014-09-29 2015-09-25 Polymer powder and the preparing method for the same

Publications (1)

Publication Number Publication Date
WO2016052958A1 true WO2016052958A1 (en) 2016-04-07

Family

ID=55630923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010225 WO2016052958A1 (en) 2014-09-29 2015-09-25 Polymer powder and method for preparing same

Country Status (1)

Country Link
WO (1) WO2016052958A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3594270A4 (en) * 2017-03-09 2021-01-13 LG Hausys, Ltd. Thermoplastic polyurethane particles and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924236B1 (en) * 2009-06-23 2009-10-29 충남대학교산학협력단 Methods and apparatus for preparing ultra-fine particles with narrow particle size distribution
JP2010070670A (en) * 2008-09-19 2010-04-02 Nippon Polyurethane Ind Co Ltd Powdery thermoplastic polyurethane resin composition, sheet-formed polyurethane resin formed article produced by using the same and method for producing the article
KR20100131244A (en) * 2009-06-05 2010-12-15 주식회사 리젠 바이오텍 Biodegradable polymeric microparticles and their preparation method
JP2011507676A (en) * 2007-12-07 2011-03-10 エクスプレイ ミクロパーティクルズ アクティエボラーグ Methods and structures for generating particles
JP2014097440A (en) * 2012-11-13 2014-05-29 Ricoh Co Ltd Production method of particle and particle production apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507676A (en) * 2007-12-07 2011-03-10 エクスプレイ ミクロパーティクルズ アクティエボラーグ Methods and structures for generating particles
JP2010070670A (en) * 2008-09-19 2010-04-02 Nippon Polyurethane Ind Co Ltd Powdery thermoplastic polyurethane resin composition, sheet-formed polyurethane resin formed article produced by using the same and method for producing the article
KR20100131244A (en) * 2009-06-05 2010-12-15 주식회사 리젠 바이오텍 Biodegradable polymeric microparticles and their preparation method
KR100924236B1 (en) * 2009-06-23 2009-10-29 충남대학교산학협력단 Methods and apparatus for preparing ultra-fine particles with narrow particle size distribution
JP2014097440A (en) * 2012-11-13 2014-05-29 Ricoh Co Ltd Production method of particle and particle production apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202824A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3594270A4 (en) * 2017-03-09 2021-01-13 LG Hausys, Ltd. Thermoplastic polyurethane particles and manufacturing method therefor
EP3594269A4 (en) * 2017-03-09 2021-01-20 LG Hausys, Ltd. Polylactic acid particles and manufacturing method therefor
US11066527B2 (en) 2017-03-09 2021-07-20 Lg Hausys, Ltd. Polylactic acid particles and manufacturing method therefor
US11118019B2 (en) 2017-03-09 2021-09-14 Lg Hausys, Ltd. Thermoplastic polyurethane particles having low impurity content and manufacturing method therefor
US11149120B2 (en) 2017-03-09 2021-10-19 Lg Hausys, Ltd. Method for manufacturing thermoplastic polymer particles
US11542372B2 (en) 2017-03-09 2023-01-03 Lg Hausys, Ltd. Thermoplastic polymer particles having a peak of cold crystallization temperature

Similar Documents

Publication Publication Date Title
KR102034425B1 (en) Polymer powder and the preparing method for the same
CN107108906B (en) Polyamide microparticles
WO2016052935A1 (en) Thermoplastic elastomer resin powder and method for preparing thermoplastic elastomer resin powder
Guo et al. Preceramic polymer‐derived SiOC fibers by electrospinning
KR102346169B1 (en) Thermoplastic polymer particle
US20130231434A1 (en) Wholly aromatic liquid crystalline polyester resin compound having improved fluidity
CN111356719A (en) Melt-dispersed composition
US10597510B2 (en) Flaky glass granules and resin composition using the same
WO2016052958A1 (en) Polymer powder and method for preparing same
Zhu et al. Toward uniform pore-size distribution and high porosity of isotactic polypropylene microporous membrane by adding a small amount of ultrafine full-vulcanized powder rubber
US20050209124A1 (en) Solid polyethylene glycol in powder form with bimodal particle size distribution, its production and its use
US10815363B2 (en) Glass flakes and resin composition
WO2017065542A1 (en) Method for manufacturing plastic substrate for electrostatic painting
CN109923080B (en) Sheet glass and resin composition
KR20180103751A (en) Method for preparing thermoplastic polymer particle
JP2009138177A (en) Fire resistant material and formulation thereof
CN109762310B (en) Preparation method of sound-proof and heat-proof polyester alloy material
WO2018164540A1 (en) Thermoplastic polymer particles
CN109456532A (en) A kind of glass fiber reinforced flame-retarded polypropylene composite and preparation method thereof
WO2018164541A1 (en) Method for manufacturing thermoplastic polymer particles
WO2015030516A1 (en) Foaming resin composition for foam sheet, foam sheet, method for producing particulate polylactic acid resin, and method for manufacturing foam sheet
WO2018164539A1 (en) Thermoplastic polyurethane particles and manufacturing method therefor
Liu et al. A designed surface modification to disperse silica powder into polyurethane
WO2019098578A1 (en) Lightweight sandwich steel sheet using polyamide, and manufacturing method therefor
WO2015030517A1 (en) Method for manufacturing fibrous particles of polylactic acid resin, colloid composition for forming foam sheet, foam sheet, and method for manufacturing foam sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517009

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15515583

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015845673

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015845673

Country of ref document: EP