WO2016052871A1 - Device for controlling engine according to concentration of aqueous urea solution and method for controlling engine - Google Patents

Device for controlling engine according to concentration of aqueous urea solution and method for controlling engine Download PDF

Info

Publication number
WO2016052871A1
WO2016052871A1 PCT/KR2015/009335 KR2015009335W WO2016052871A1 WO 2016052871 A1 WO2016052871 A1 WO 2016052871A1 KR 2015009335 W KR2015009335 W KR 2015009335W WO 2016052871 A1 WO2016052871 A1 WO 2016052871A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
engine
reducing agent
fuel injection
exhaust gas
Prior art date
Application number
PCT/KR2015/009335
Other languages
French (fr)
Korean (ko)
Inventor
김정호
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Publication of WO2016052871A1 publication Critical patent/WO2016052871A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine control apparatus and an engine control method, and more particularly, to an engine control apparatus and an engine control method using the same in an engine system having a selective catalytic reduction device.
  • the selective catalytic reduction device may be provided as an exhaust gas aftertreatment device for reducing pollutants contained in exhaust gas discharged from the engine.
  • the selective catalytic reduction apparatus may reduce nitrogen oxide in the exhaust gas by spraying a reducing agent such as urea water in the flow direction of the exhaust gas.
  • One object of the present invention is to provide an engine control apparatus capable of controlling an engine according to an optimum engine control parameter suitable for the concentration of current urea water.
  • Another object of the present invention is to provide a method for controlling an engine using the engine control device.
  • the engine control apparatus is a reducing agent concentration sensor for measuring the concentration of the reducing agent supplied to the reducing agent injection module installed in the engine exhaust pipe, and the measurement And a control unit configured to calculate an engine control parameter capable of improving exhaust gas treatment performance when the reduced reducing agent concentration is equal to or less than a reference concentration, and then perform reducing agent concentration based exhaust gas control using the calculated engine control parameter.
  • the engine control parameter may include at least one of an EGR rate, a fuel injection timing, and a fuel injection pressure.
  • the controller may calculate a concentration factor of the measured reducing agent concentration with respect to the reference concentration of the reducing agent and the threshold concentration of the reducing agent and control the engine using the calculated concentration factor.
  • the optimum EGR rate at the measured reducing agent concentration is calculated by Equation 1 below, and the optimal injection timing at the measured reducing agent concentration is calculated by Equation 2 below:
  • the optimum fuel injection pressure at the measured reducing agent concentration may be calculated by Equation 3 below.
  • E is the normal fuel injection pressure
  • F is the limit fuel injection pressure
  • Q is the concentration factor of the measured reducing agent concentration
  • the controller may control the engine using the engine control parameter and the measured reducing agent concentration information.
  • the controller may perform at least one of increasing the EGR rate of the engine, delaying the fuel injection timing, or increasing the fuel injection pressure.
  • the engine control apparatus may further include an allowable threshold determination unit configured to determine whether the exhaust gas discharged to the atmosphere from the rear of the engine exhaust pipe exceeds an allowable threshold.
  • the controller may perform a control to enter a regulation immediately without a warning light and without proceeding to the reducing agent concentration based control mode.
  • the controller may output a warning signal to the user when the detected concentration of the reducing agent is equal to or less than a reference concentration.
  • the concentration of the reducing agent supplied to the reducing agent injection module is measured. It is determined whether the measured reducing agent concentration is less than or equal to the reference concentration. When the concentration of the reducing agent is below the reference concentration, the combustion conditions of the engine are changed so that nitrogen oxides emitted from the engine are discharged less than the current emission. The engine is controlled according to the changed combustion conditions.
  • changing the combustion conditions of the engine includes performing at least one of increasing the engine's EGR rate, delaying fuel injection timing, or reducing fuel injection pressure. can do.
  • the changing of the combustion condition may be performed within a range in which the emission of PM in the engine exhaust gas does not exceed the exhaust gas regulation.
  • the method may further comprise determining whether the exhaust gas discharged to the atmosphere when the combustion condition is changed exceeds an allowable limit value, and wherein the exhaust gas that is usually emitted is an allowable limit value.
  • exceeding may further comprise the step of reducing the engine power.
  • the method may further include outputting a warning signal to a user when the detected reducing agent concentration is less than or equal to a reference concentration.
  • the engine control parameter may improve the exhaust gas treatment performance of the engine based on the measured urea water concentration without immediately entering into the regulation.
  • the engine can be controlled based on the calculation. Therefore, even if the quality of the urea water concentration is slightly lowered, the merchandise can be improved by continuously operating the construction machine under the condition of maintaining the engine output or satisfying the exhaust gas regulation with the minimum output limit.
  • FIG. 1 is a block diagram illustrating an engine system in accordance with example embodiments.
  • FIG. 2 is a cross-sectional view illustrating an engine of the engine system of FIG. 1.
  • FIG. 3 is a block diagram illustrating an exhaust gas treatment system installed in the exhaust pipe of FIG. 1.
  • FIG. 4 is a block diagram illustrating an engine control apparatus of the engine system of FIG. 1.
  • 5A is a block diagram illustrating a first calculator of FIG. 4.
  • 5B is a block diagram illustrating a second calculator of FIG. 4.
  • 5C is a block diagram illustrating a third calculator of FIG. 4.
  • FIG. 6 is a flowchart illustrating an engine control method according to exemplary embodiments.
  • first, second, etc. are used herein to describe various members, parts, regions, and / or parts, it is obvious that these members, parts, regions, and / or parts should not be limited by these terms. Do. These terms are only used to distinguish one member, part, region or part from another region or part. Thus, the first member, part, region, or portion, which will be described below, may refer to the second member, component, region, or portion without departing from the teachings of the present invention.
  • top or “above” and “bottom” or “bottom” may be used herein to describe the relationship of certain elements to other elements as illustrated in the figures. It may be understood that relative terms are intended to include other directions of the device in addition to the direction depicted in the figures. For example, if the device is turned over in the figures, elements depicted as present on the face of the top of the other elements are oriented on the face of the bottom of the other elements described above. Thus, the exemplary term “top” may include both “bottom” and “top” directions depending on the particular direction of the figure. If the component faces in the other direction (rotated 90 degrees with respect to the other direction), the relative descriptions used herein may be interpreted accordingly.
  • FIG. 1 is a block diagram illustrating an engine system in accordance with example embodiments.
  • 2 is a cross-sectional view illustrating an engine of the engine system of FIG. 1.
  • FIG. 3 is a block diagram showing an exhaust gas treatment system engaged with the exhaust pipe of FIG. 1.
  • 4 is a block diagram illustrating an engine control apparatus of the engine system of FIG. 1.
  • FIG. 5A is a block diagram illustrating the first operation unit of FIG. 4
  • FIG. 5B is a block diagram illustrating the second operation unit of FIG. 4
  • FIG. 5C is a block diagram illustrating the third operation unit of FIG. 4.
  • the engine system discharges the exhaust gas from the engine 10 and the engine 10 to the outside, and compresses fresh air to supply the engine 10 to the turbocharger 30.
  • an EGR device 60 for recycling a portion of the exhaust gas at the front end of the turbocharger 30 to the engine 10.
  • the engine 10 may include a diesel engine as a driving source of construction machinery such as an excavator.
  • the engine 10 may generate power required by combustion through compression ignition.
  • the engine 10 has a plurality of cylinders having a combustion chamber 11 installed with an injector 18 for injecting fuel to burn fuel supplied from the injector 18.
  • the intake air supplied from the intake pipe 40 is supplied into the combustion chamber 11 through the intake port 14, and after combustion in the combustion chamber 11, the exhaust gas is discharged through the exhaust port 16 to the exhaust pipe 50.
  • the turbocharger 30 may be connected to the exhaust manifold 24 of the engine 10 through the exhaust pipe 50 and to the intake manifold 20 of the engine 10 through the intake pipes 40 and 42. .
  • the turbocharger 30 may supply fresh air to the intake manifold 20 and discharge the exhaust gas to the outside through the exhaust pipe 70.
  • EGR device 60 may include an EGR line 62, an EGR valve 64, and an EGR cooler 66.
  • the exhaust gas discharged from the exhaust manifold 24 of the engine 10 may be recycled to the intake manifold 20 of the engine 10 via the EGR line 62.
  • the EGR valve 62 is installed in the EGR line 60 and can adjust the amount (EGR rate) of the recycle exhaust gas.
  • An EGR cooler 66 may be installed in the EGR line 62 to cool the recycle exhaust gas.
  • the exhaust gas treatment system includes a selective catalyst reduction comprising a reducing agent injection module 82 for injecting a reducing agent for reducing nitrogen oxides in the exhaust gas discharged from the engine 10.
  • SCR reducing agent injection module 82 for injecting a reducing agent for reducing nitrogen oxides in the exhaust gas discharged from the engine 10.
  • SCR reducing agent injection module 80
  • DOC diesel oxidation catalyst
  • the SCR apparatus 80 includes a selective reduction catalyst (not shown) installed in the exhaust pipe 70 and a reducing agent for injecting a reducing agent into the exhaust pipe 70 in front of the selective reduction catalyst.
  • the reducing agent injection module 82 may inject a reducing agent such as urea water to reduce nitrogen oxides in the exhaust gas discharged from the engine. Since the temperature of the exhaust gas discharged from the engine is a high temperature of several hundred degrees ??, the reducing agent injected in the exhaust pipe 70 can be vaporized immediately. The vaporized reducing agent may be mixed with the exhaust gas, and the reducing agent and the nitrogen oxide may be catalytically reacted using the selective reduction catalyst to reduce the nitrogen oxide to nitrogen gas and water.
  • the reducing agent injection module 82 may be connected to the urea water supply module 92 through a pipe 84 to inject urea water into the exhaust pipe 70.
  • the urea water supply module 92 may be connected to the urea water storage tank 90 through a supply line 94a and a recovery line 94b.
  • the urea water storage tank 90 may store an aqueous solution of urea water called AdBlue or Diesel Exhaust Fluid (DEF) for ammonia generation.
  • the urea water concentration tank 96 is installed in the urea water storage tank 90 to detect the concentration of urea water supplied to the urea water supply module 92 in real time.
  • the urea water concentration sensor 96 may be installed in the pipe 84 or the supply line 94a connected to the reducing agent injection module 82.
  • the engine system models an engine control parameter as a combustion condition and calculates an optimal parameter value to improve exhaust gas treatment performance according to the detected concentration of urea water as a reducing agent, and calculates the calculated control parameter. It may include an engine control device for controlling the engine according to.
  • the engine control apparatus selects any one of a normal engine control mode and a reducing agent concentration based control mode according to the measured reducing agent concentration and calculates an engine control parameter for the selected control mode. It may include a first control unit 100. In addition, the engine control device may further include a second control unit 200 for controlling the engine according to the calculated control parameter.
  • the first control unit 100 determines whether the measured reducing agent concentration is less than or equal to the reference concentration, the engine control mode determination unit 110 and the reducing agent to select any one of the normal control mode and the reducing agent concentration-based control mode When the concentration-based control mode is selected, it may include a parameter calculation unit 120 for calculating the engine control parameters that can reduce the pollutants emitted from the engine to satisfy the exhaust gas regulation at the measured reducing agent concentration.
  • the urea water concentration sensor 96 may measure the concentration of urea water in the urea water storage tank 90 in real time using an ultrasonic method. For example, in consideration of the performance of the exhaust gas treatment system, exhaust gas regulation, and the like, a reference concentration of urea water (eg, 32.5%) and a limit concentration of urea (eg, 26%) may be set. have. However, if the user adds a diluent such as water to the urea water storage tank 90 or the concentration of urea water is not maintained smoothly, the concentration of urea water in the urea water storage tank 90 may drop below the reference concentration. have.
  • the engine control mode determiner 110 determines whether the detected concentration of urea is less than or equal to the reference concentration, and selects a normal engine control mode when the reference concentration is satisfied. have. For example, when the concentration of the detected urea water is less than the reference concentration (32.5%) and greater than the threshold concentration (26%), the exhaust gas regulation is performed at the detected urea concentration without immediately entering into regulation. It is possible to select to perform a control mode for calculating a control parameter that can be satisfied.
  • the engine control mode determination unit 110 may output a warning signal to the user when the detected concentration of the urea water is equal to or less than a reference concentration.
  • the engine control device may further include a warning display device for displaying a warning signal to a user.
  • the warning display device may include a warning light, a buzzer or a display device installed in the cab. When the warning display device is activated, the user may take measures to check the concentration of urea water and maintain the concentration of urea water at a reference concentration.
  • the parameter calculator 120 may calculate an engine control parameter that satisfies the exhaust gas regulation from the measured urea concentration.
  • the parameter calculating unit 120 controls at least one of the optimal engine EGR rate, fuel injection timing and fuel injection pressure to reduce pollutants, for example, nitrogen oxides, emitted from the engine at the measured urea water concentration. Parameters can be calculated.
  • the parameter calculating unit 120 maintains a current engine output or reduces an engine control parameter that can reduce NOx in exhaust gas with a minimum torque reduction.
  • the parameter calculator 120 may construct and store a control model for the urea water concentration based control mode based on the reducing agent concentration, the fuel injection timing and the exhaust gas treatment performance according to the injection pressure, the intake and exhaust dynamics of the engine, and the like. .
  • the parameter calculating unit 120 calculates an EGR rate capable of reducing nitrogen oxides (NOx) in exhaust gas at the measured reducing agent concentration.
  • the third calculator 126 may be included.
  • the first calculator 122 may calculate an optimal EGR rate for reducing nitrogen oxides in the exhaust gas at the currently measured urea solution concentration.
  • the first calculation unit 122 considers the normal EGR rate (A) at the urea water reference concentration and the limit EGR rate (B) at the urea water limit concentration according to the concentration factor (Q) of the urea water concentration currently measured. As the final control parameter, the optimal EGR rate can be calculated.
  • the urea water reference concentration is 30% and the urea water limit concentration is 25%
  • the urea water concentration factor (Q) is 0.75
  • the measured urea water concentration (X (%)) is 27.5%
  • the urea water concentration factor (Q) is 0.5
  • the urea water concentration factor (Q) is 0.25.
  • the normal EGR rate (A) is determined according to engine rpm, and the engine rpm at which the dynamic characteristics of the engine, particulate matter (PM), etc. satisfy the exhaust gas regulation at the urea water limit concentration.
  • the marginal EGR rate B can be determined accordingly. Therefore, the optimal EGR rate in the currently measured urea water concentration factor Q can be calculated by the following equation (1).
  • the optimal EGR rate (%) can be calculated by the following equation (2). .
  • the first calculator 122 may calculate an optimal EGR rate within a range in which pollutants such as PM do not exceed the exhaust gas regulation at the currently measured urea water concentration.
  • an EGR rate control signal may be output, and the EGR rate control signal may be input to the EGR controller 210 of the second controller 200.
  • the second calculator 124 may calculate an optimal fuel injection timing for reducing nitrogen oxide in the exhaust gas at the currently measured urea solution concentration.
  • the second calculation unit 124 determines the normal fuel injection timing (C) at the urea water reference concentration and the limit fuel injection timing (D) at the urea water limit concentration according to the concentration factor (Q) of the urea water concentration currently measured. In consideration, the optimum fuel injection timing can be calculated as the final control parameter.
  • the normal fuel injection timing (C) is determined according to the engine rpm at the urea water level concentration (in normal control mode), and the engine's dynamic characteristics, PM (particulate matters), etc. at the urea water limit concentration satisfy the emission regulations.
  • the limit fuel injection timing D according to the rpm can be determined. Therefore, the optimum fuel injection timing in the currently measured urea water concentration factor Q can be calculated by the following equation (3).
  • the optimum fuel injection timing is It can be calculated by the following equation (4).
  • the second calculator 124 may calculate the optimal fuel injection timing within a range in which pollutants such as PM do not exceed the exhaust gas regulation at the currently measured urea water concentration.
  • a fuel injection timing control signal may be output, and the fuel injection timing control signal may be input to the fuel injection timing controller 220 of the second controller 200. .
  • the third calculator 126 may calculate an optimal fuel injection pressure for reducing nitrogen oxides in the exhaust gas at the currently measured urea solution concentration.
  • the third calculation unit 126 calculates the normal fuel injection pressure E at the urea water reference concentration and the limit fuel injection pressure F at the urea water limit concentration according to the concentration factor Q of the currently measured urea water concentration. In consideration, the optimum fuel injection pressure can be calculated as the final control parameter.
  • the normal fuel injection pressure (E) is determined according to the engine rpm, and at the urea water limit concentration, the dynamic characteristics of the engine, the PM (particulate matters), etc. satisfy the emission regulations.
  • the limit fuel injection pressure F depending on the rpm can be determined. Therefore, the optimum fuel injection pressure in the currently measured urea water concentration factor Q can be calculated by the following equation (5).
  • the optimum fuel injection pressure bar can be calculated by the following equation (6). have.
  • the third calculator 126 may calculate an optimum fuel injection pressure within a range in which pollutants such as PM do not exceed the exhaust gas regulation at the currently measured urea water concentration.
  • a fuel injection pressure control signal may be output, and the fuel injection pressure control signal may be input to the fuel injection pressure controller 230 of the second controller 200. .
  • the first controller 100 when performing engine control according to the control parameter calculated by the parameter calculating unit 120, may determine whether the exhaust gas discharged from the engine exceeds an allowable limit value. It may further include a tolerance threshold determination unit 130 for determining whether or not.
  • the allowable threshold value determination unit 130 satisfies the exhaust gas regulation when the engine control is performed according to the control parameters calculated by the parameter calculating unit 120 (engine EGR rate, fuel injection timing, fuel injection pressure). It is possible to determine whether NOx / PM is released.
  • the allowable threshold value determination unit 130 receives and analyzes the control signals output from the parameter calculating unit 120 and analyzes the control signals.
  • the exhaust gas NOx / It is possible to predict whether the PM
  • the allowable threshold determination unit 130 measures the concentration of the pollutant in the exhaust gas discharged to the atmosphere from the rear end of the engine exhaust pipe 70, and determines whether the measured concentration exceeds the allowable threshold value. Can be.
  • torque reduction may be achieved by immediately entering the regulation without displaying a warning lamp and proceeding to the urea concentration concentration based control mode.
  • the allowable limit value determination unit 130 may output a control signal to raise a warning lamp and proceed to the normal control mode, and torque reduction in the normal control mode. This can be done.
  • the second control unit 200 may be included in an engine control unit (ECU) for controlling the engine system.
  • the second control unit may receive signals regarding engine rpm, engine torque, vehicle speed, throttle valve, air amount, and the like.
  • the first control unit 100 may be installed as a separate controller or implemented in the form of control logic embedded in the engine control unit (ECU).
  • the EGR controller 210 of the second control unit 200 controls the rate (that is, the EGR rate) of recirculating the engine 10 as EGR gas by adjusting the EGR valve 64 based on the EGR rate control signal. Can be.
  • the fuel injection timing controller 220 of the second controller 200 may control the fuel injection timing of the injector 18 based on the fuel injection timing control signal.
  • the fuel injection pressure controller 230 of the second controller 200 may control the fuel injection pressure of the injector 18 based on the fuel injection pressure control signal.
  • the second controller 200 may control the engine system based on a control signal for the normal control mode from the first controller 100.
  • the engine control apparatus when the concentration quality of urea water is lowered, it is possible to improve the exhaust gas treatment performance of the engine based on the measured urea water concentration without entering into regulation immediately.
  • the engine control parameter can be calculated and the engine can be controlled based on this.
  • the construction machine can continue to operate under conditions that maintain engine output or meet emission regulations with minimum power limitations.
  • FIG. 6 is a flowchart illustrating an engine control method according to exemplary embodiments.
  • the concentration of the reducing agent supplied to the reducing agent injection module 82 may be monitored in real time (S100).
  • the concentration of urea water supplied to the urea water supply module 92 from the urea water concentration sensor 96 installed in the urea water storage tank 90 may be measured in real time.
  • the normal engine control mode may be selected when the reference concentration is satisfied by determining whether the detected concentration of the urea water is less than or equal to the reference concentration, and if the concentration is less than or equal to the reference concentration, the urea concentration concentration based control mode may be selected. .
  • a reference concentration of urea water eg, 32.5%
  • a limit concentration of urea eg, 26%) may be set. have.
  • the concentration of urea water in the urea water storage tank 90 may drop below the reference concentration.
  • the exhaust gas is not regulated immediately, but the exhaust gas regulation is performed at the detected urea concentration. It is possible to select to perform a control mode for calculating a control parameter that can be satisfied.
  • the reducing agent concentration-based control mode calculates an engine control parameter that can improve the exhaust gas treatment performance at the measured reducing agent concentration and controls the engine based on this, and when the normal control mode is selected, normal control.
  • the engine is controlled according to the parameter (S130).
  • an optimum engine EGR rate, fuel injection timing, and fuel injection pressure may be used to improve exhaust gas treatment performance at the measured urea concentration.
  • At least one control parameter may be calculated.
  • Engine control parameters can be modeled and calculated to maintain current engine power or reduce NOx in the exhaust with minimal torque reduction.
  • an optimal EGR rate for reducing nitrogen oxides in the exhaust gas may be calculated at the currently measured urea concentration.
  • An optimal EGR rate can be determined as the final control parameter between the normal EGR rate at the urea water reference concentration and the limit EGR rate at the urea water limit concentration based on the currently measured urea water concentration. Accordingly, the optimum EGR rate can be calculated within a range in which pollutants such as PM do not exceed the exhaust gas regulation at the currently measured urea water concentration.
  • an optimal fuel injection timing for reducing nitrogen oxides in the exhaust gas at the currently measured urea concentration may be calculated.
  • the optimal fuel injection timing can be determined as the final control parameter between the normal fuel injection timing at the urea water reference concentration and the limit fuel injection timing at the urea water limit concentration based on the currently measured urea water concentration. Accordingly, the optimum fuel injection timing may be calculated within a range in which pollutants such as PM do not exceed the exhaust gas regulation at the currently measured urea water concentration.
  • an optimal fuel injection pressure for reducing nitrogen oxides in the exhaust gas may be calculated at the currently measured urea concentration.
  • the optimal fuel injection pressure can be determined as the final control parameter between the normal fuel injection pressure at the urea water reference concentration and the limit fuel injection pressure at the urea water limit concentration based on the concentration of the urea water concentration currently measured. Accordingly, the optimum fuel injection pressure may be calculated within a range in which pollutants such as PM do not exceed the exhaust gas regulation at the currently measured urea water concentration.
  • the detected concentration of urea is less than the reference concentration may output a warning signal to the user (S124).
  • a warning signal For example, the user is informed using a display device such as a warning light, buzzer or display device installed inside the cab, and the user checks the concentration of the urea water and maintains the concentration of the urea water at the reference concentration. Can be taken.
  • a warning lamp may be displayed to proceed to the normal control mode, and torque reduction may be achieved in the normal control mode.
  • EGR device 62 EGR line
  • pipe 90 urea water storage tank
  • first control unit 110 engine control mode determination unit
  • EGR controller 220 fuel injection timing controller

Abstract

An engine control device comprises: a reducing agent concentration sensor for measuring the concentration of a reducing agent, which is supplied to a reducing agent ejection module installed on an engine exhaust tube; and a control unit for conducting a control for changing the engine combustion condition, when the measured concentration of the reducing agent is equal to or less than a reference concentration, such that the amount of nitrogen oxide discharged from the engine becomes less than the amount of current discharge.

Description

요소수 농도에 따른 엔진 제어 장치 및 엔진 제어 방법Engine Control System and Engine Control Method According to Urea Water Concentration
본 발명은 엔진 제어 장치 및 엔진 제어 방법에 관한 것으로, 보다 상세하게는 선택적 촉매 환원 장치를 갖는 엔진 시스템에서의 엔진 제어 장치 및 이를 이용한 엔진 제어 방법에 관한 것이다.The present invention relates to an engine control apparatus and an engine control method, and more particularly, to an engine control apparatus and an engine control method using the same in an engine system having a selective catalytic reduction device.
선택적 촉매 환원 장치는 엔진으로부터 배출되는 배기가스 중에 함유된 공해 물질들을 감소시키기 위한 배기가스 후처리 장치로서 제공될 수 있다. 상기 선택적 촉매 환원 장치는 요소수와 같은 환원제를 배기가스의 유동 방향으로 분사하여 배기가스 내의 질소산화물을 환원시킬 수 있다.The selective catalytic reduction device may be provided as an exhaust gas aftertreatment device for reducing pollutants contained in exhaust gas discharged from the engine. The selective catalytic reduction apparatus may reduce nitrogen oxide in the exhaust gas by spraying a reducing agent such as urea water in the flow direction of the exhaust gas.
종래에는, 요소수의 농도 품질이 기준 농도보다 떨어질 경우, 경고등과 함께 배기가스 규제(inducement)에 의한 출력 제한이 발생하여 배기가스 규제 초과 및 상품성 저하를 유발시킬 수 있다.Conventionally, when the concentration quality of the urea water is lower than the reference concentration, output restriction due to the exhaust gas regulation may occur together with a warning lamp, which may cause the exhaust gas regulation to be exceeded and the deterioration of merchandise.
본 발명의 일 과제는 현재 요소수의 농도에 적합한 최적의 엔진 제어 파라미터에 따라 엔진을 제어할 수 있는 엔진 제어 장치를 제공하는 데 있다.One object of the present invention is to provide an engine control apparatus capable of controlling an engine according to an optimum engine control parameter suitable for the concentration of current urea water.
본 발명의 다른 과제는 상기 엔진 제어 장치를 이용하여 엔진을 제어하는 방법을 제공하는 데 있다.Another object of the present invention is to provide a method for controlling an engine using the engine control device.
상술한 본 발명의 일 과제를 달성하기 위하여, 본 발명의 예시적인 실시예들에 따른 엔진 제어 장치는 엔진 배기관에 설치된 환원제 분사 모듈로 공급되는 환원제의 농도를 측정하기 위한 환원제 농도 센서, 및 상기 측정된 환원제 농도가 기준 농도 이하인 경우 배기가스 처리 성능을 향상시킬 수 있는 엔진 제어 파라미터를 산출한 후 상기 산출된 엔진 제어 파라미터를 이용하여 환원제 농도기반 배기가스 제어를 수행하는 제어부를 포함한다.In order to achieve the above object of the present invention, the engine control apparatus according to the exemplary embodiments of the present invention is a reducing agent concentration sensor for measuring the concentration of the reducing agent supplied to the reducing agent injection module installed in the engine exhaust pipe, and the measurement And a control unit configured to calculate an engine control parameter capable of improving exhaust gas treatment performance when the reduced reducing agent concentration is equal to or less than a reference concentration, and then perform reducing agent concentration based exhaust gas control using the calculated engine control parameter.
예시적인 실시예들에 있어서, 상기 엔진 제어 파라미터는 EGR율, 연료 분사시기 및 연료 분사압력 중에서 적어도 하나를 포함할 수 있다.In example embodiments, the engine control parameter may include at least one of an EGR rate, a fuel injection timing, and a fuel injection pressure.
예시적인 실시예들에 있어서, 상기 제어부는 상기 환원제의 기준 농도와 상기 환원제의 한계 농도에 대한 상기 측정된 환원제 농도의 농도 팩터를 산정하고 상기 산정된 농도 팩터를 이용하여 상기 엔진을 제어할 수 있다.In example embodiments, the controller may calculate a concentration factor of the measured reducing agent concentration with respect to the reference concentration of the reducing agent and the threshold concentration of the reducing agent and control the engine using the calculated concentration factor. .
예시적인 실시예들에 있어서, 상기 측정된 환원제 농도에서 최적의 EGR율은 하기의 수학식 1에 의해 계산되고, 상기 측정된 환원제 농도에서 최적의 분사시기는 하기의 수학식 2에 의해 계산되고, 상기 측정된 환원제 농도에서의 최적의 연료 분사압력은 하기의 수학식 3에 의해 계산될 수 있다.In exemplary embodiments, the optimum EGR rate at the measured reducing agent concentration is calculated by Equation 1 below, and the optimal injection timing at the measured reducing agent concentration is calculated by Equation 2 below: The optimum fuel injection pressure at the measured reducing agent concentration may be calculated by Equation 3 below.
[수학식 1][Equation 1]
Figure PCTKR2015009335-appb-I000001
Figure PCTKR2015009335-appb-I000001
(여기서, A는 정상 EGR율, B는 한계 EGR율, Q는 측정된 환원제 농도의 농도 팩터임)(Where A is the normal EGR rate, B is the limit EGR rate, and Q is the concentration factor of the measured reducing agent concentration)
[수학식 2][Equation 2]
Figure PCTKR2015009335-appb-I000002
Figure PCTKR2015009335-appb-I000002
(여기서, C는 정상 연료 분사시기, D는 한계 연료 분사시기, Q는 측정된 환원제 농도의 농도 팩터임)(Where C is the normal fuel injection time, D is the limit fuel injection time, and Q is the concentration factor of the measured reducing agent concentration)
[수학식 3][Equation 3]
Figure PCTKR2015009335-appb-I000003
Figure PCTKR2015009335-appb-I000003
(여기서, E는 정상 연료 분사압력, F는 한계 연료 분사압력, Q는 측정된 환원제 농도의 농도 팩터임)Where E is the normal fuel injection pressure, F is the limit fuel injection pressure, and Q is the concentration factor of the measured reducing agent concentration.
예시적인 실시예들에 있어서, 상기 제어부는 상기 엔진 제어 파라미터 및 상기 측정된 환원제 농도 정보를 이용하여 상기 엔진을 제어할 수 있다.In example embodiments, the controller may control the engine using the engine control parameter and the measured reducing agent concentration information.
예시적인 실시예들에 있어서, 상기 제어부는 상기 엔진의 EGR율을 증가시키거나, 연료 분사시기를 지연시키거나 연료 분사압력을 증가시키는 것 중에서 적어도 하나를 수행할 수 있다.In example embodiments, the controller may perform at least one of increasing the EGR rate of the engine, delaying the fuel injection timing, or increasing the fuel injection pressure.
예시적인 실시예들에 있어서, 상기 엔진 제어 장치는 상기 엔진 배기관 후단에서 대기로 배출되는 배기가스가 허용 한계값을 초과하는 지 여부를 판단하는 허용 한계값 판단부를 더 포함할 수 있다.In example embodiments, the engine control apparatus may further include an allowable threshold determination unit configured to determine whether the exhaust gas discharged to the atmosphere from the rear of the engine exhaust pipe exceeds an allowable threshold.
예시적인 실시예들에 있어서, 상기 제어부는, 상기 배기가스가 상기 허용 한계값을 초과하는 경우, 경고등을 띄우고 상기 환원제 농도기반 제어모드로 진행하지 않고 곧바로 규제로 진입하는 제어를 수행할 수 있다.In example embodiments, when the exhaust gas exceeds the allowable limit value, the controller may perform a control to enter a regulation immediately without a warning light and without proceeding to the reducing agent concentration based control mode.
예시적인 실시예들에 있어서, 상기 제어부는, 상기 검출된 환원제의 농도가 기준 농도 이하인 경우 사용자에게 경고 신호를 출력할 수 있다.In example embodiments, the controller may output a warning signal to the user when the detected concentration of the reducing agent is equal to or less than a reference concentration.
상술한 본 발명의 다른 과제를 달성하기 위하여, 본 발명의 예시적인 실시예들에 따른 엔진 제어 방법에 있어서, 환원제 분사 모듈로 공급되는 환원제의 농도를 측정한다. 상기 측정된 환원제 농도가 기준 농도 이하인지 여부를 판단한다. 상기 환원제의 농도가 기준 농도 이하인 경우 엔진에서 배출되는 질소산화물이 현재의 배출량보다 적게 배출되도록 엔진의 연소 조건을 변경한다. 상기 변경된 연소 조건에 따라 엔진을 제어한다.In order to achieve the above object of the present invention, in the engine control method according to the exemplary embodiments of the present invention, the concentration of the reducing agent supplied to the reducing agent injection module is measured. It is determined whether the measured reducing agent concentration is less than or equal to the reference concentration. When the concentration of the reducing agent is below the reference concentration, the combustion conditions of the engine are changed so that nitrogen oxides emitted from the engine are discharged less than the current emission. The engine is controlled according to the changed combustion conditions.
예시적인 실시예들에 있어서, 상기 엔진의 연소 조건을 변경하는 단계는 엔진의 EGR율을 증가시키거나, 연료 분사시기를 지연시키거나 연료 분사압력을 감소시키는 것 중에서 적어도 하나를 수행하는 단계를 포함할 수 있다.In example embodiments, changing the combustion conditions of the engine includes performing at least one of increasing the engine's EGR rate, delaying fuel injection timing, or reducing fuel injection pressure. can do.
예시적인 실시예들에 있어서, 상기 연소 조건을 변경하는 단계는 엔진 배기가스 중에서 PM의 배출량이 배기가스 규제를 초과하지 않는 범위 이내에서 수행될 수 있다.In example embodiments, the changing of the combustion condition may be performed within a range in which the emission of PM in the engine exhaust gas does not exceed the exhaust gas regulation.
예시적인 실시예들에 있어서, 상기 방법은, 상기 연소 조건을 변경할 경우 대기로 배출되는 배기가스가 허용 한계값을 초과하는 지 여부를 판단하는 단계, 및 상기 대개로 배출되는 배기가스가 허용 한계값을 초과할 경우 엔진 출력을 감소하는 단계를 더 포함할 수 있다.In exemplary embodiments, the method may further comprise determining whether the exhaust gas discharged to the atmosphere when the combustion condition is changed exceeds an allowable limit value, and wherein the exhaust gas that is usually emitted is an allowable limit value. When exceeding may further comprise the step of reducing the engine power.
예시적인 실시예들에 있어서, 상기 방법은, 상기 검출된 환원제의 농도가 기준 농도 이하인 경우 사용자에게 경고 신호를 출력하는 단계를 더 포함할 수 있다.In example embodiments, the method may further include outputting a warning signal to a user when the detected reducing agent concentration is less than or equal to a reference concentration.
예시적인 실시예들에 따르면, 요소수의 농도 품질이 저하된 경우, 곧바로 규제(inducement)에 진입하지 않고, 측정된 요소수 농도에 기초하여 엔진의 배기가스 처리 성능을 향상시킬 수 있는 엔진 제어 파라미터를 산출하여 이를 기초로 엔진을 제어할 수 있다. 따라서, 요소수 농도 품질이 약간 저하되더라도 엔진 출력을 유지하거나 최소한의 출력 제한과 함께 배기가스 규제를 만족시키는 조건에서 건설기계를 계속적으로 운행함으로써, 상품성을 향상시킬 수 있다.According to exemplary embodiments, when the concentration quality of the urea water is degraded, the engine control parameter may improve the exhaust gas treatment performance of the engine based on the measured urea water concentration without immediately entering into the regulation. The engine can be controlled based on the calculation. Therefore, even if the quality of the urea water concentration is slightly lowered, the merchandise can be improved by continuously operating the construction machine under the condition of maintaining the engine output or satisfying the exhaust gas regulation with the minimum output limit.
다만, 본 발명의 효과는 상기 언급한 효과에 한정되는 것이 아니며, 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위에서 다양하게 확장될 수 있을 것이다.However, the effects of the present invention are not limited to the above-mentioned effects, and may be variously expanded within a range without departing from the spirit and scope of the present invention.
도 1은 예시적인 실시예들에 따른 엔진 시스템을 나타내는 블록도이다.1 is a block diagram illustrating an engine system in accordance with example embodiments.
도 2는 도 1의 엔진 시스템의 엔진을 나타내는 단면도이다.2 is a cross-sectional view illustrating an engine of the engine system of FIG. 1.
도 3은 도 1의 배기 파이프에 설치되는 배기가스 처리 시스템을 나타내는 블록도이다.FIG. 3 is a block diagram illustrating an exhaust gas treatment system installed in the exhaust pipe of FIG. 1.
도 4는 도 1의 엔진 시스템의 엔진 제어 장치를 나타내는 블록도이다.4 is a block diagram illustrating an engine control apparatus of the engine system of FIG. 1.
도 5a는 도 4의 제1 연산부를 나타내는 블록도이다.5A is a block diagram illustrating a first calculator of FIG. 4.
도 5b는 도 4의 제2 연산부를 나타내는 블록도이다.5B is a block diagram illustrating a second calculator of FIG. 4.
도 5c는 도 4의 제3 연산부를 나타내는 블록도이다.5C is a block diagram illustrating a third calculator of FIG. 4.
도 6은 예시적인 실시예들에 따른 엔진 제어 방법을 나타내는 순서도이다.6 is a flowchart illustrating an engine control method according to exemplary embodiments.
이하, 첨부된 도면을 참조하여 본 발명의 구체적인 실시예를 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. 또한, 도면에서 각 구성요소의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art, and the following examples can be modified in various other forms, and the scope of the present invention is It is not limited to an Example. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In addition, the thickness or size of each component in the drawings are exaggerated for convenience and clarity of description.
명세서 전체에 걸쳐서, 하나의 구성요소가 다른 구성요소 "상에", "연결되어", 또는 "커플링되어" 위치한다고 언급할 때는, 상술한 하나의 구성요소가 직접적으로 다른 구성요소 "상에", "연결되어", 또는 "커플링되어" 접촉하거나, 그 사이에 개재되는 또 다른 구성요소들이 존재할 수 있다고 해석될 수 있다. 반면에, 하나의 구성요소가 다른 구성요소 "직접적으로 상에", "직접 연결되어", 또는 "직접 커플링되어" 위치한다고 언급할 때는, 그 사이에 개재되는 다른 구성요소들이 존재하지 않는다고 해석된다. 동일한 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.Throughout the specification, when referring to one component "located", "connected", or "coupled" to another component, the above-described one component directly on another component " It may be interpreted that there may be other components that are in contact with, or “in connection with,” or “coupled to”. On the other hand, when one component is said to be located on another component "directly on", "directly connected", or "directly coupled", it is interpreted that there are no other components intervening therebetween. do. Like numbers refer to like elements. As used herein, the term "and / or" includes any and all combinations of one or more of the listed items.
본 명세서에서 제1, 제2 등의 용어가 다양한 부재, 부품, 영역 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역 및/또는 부분들은 이들 용어에 의해 한정되어서는 안됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역 또는 부분을 다른 영역 또는 부분과 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제1 부재, 부품, 영역 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제2 부재, 부품, 영역 또는 부분을 지칭할 수 있다.Although the terms first, second, etc. are used herein to describe various members, parts, regions, and / or parts, it is obvious that these members, parts, regions, and / or parts should not be limited by these terms. Do. These terms are only used to distinguish one member, part, region or part from another region or part. Thus, the first member, part, region, or portion, which will be described below, may refer to the second member, component, region, or portion without departing from the teachings of the present invention.
또한, "상의" 또는 "위의" 및 "하의" 또는 "아래의"와 같은 상대적인 용어들은 도면들에서 도해되는 것처럼 다른 요소들에 대한 어떤 요소들의 관계를 기술하기 위해 여기에서 사용될 수 있다. 상대적 용어들은 도면들에서 묘사되는 방향에 추가하여 장치의 다른 방향들을 포함하는 것을 의도한다고 이해될 수 있다. 예를 들어, 도면들에서 장치가 뒤집어 진다면(turned over), 다른 요소들의 상부의 면 상에 존재하는 것으로 묘사되는 요소들은 상술한 다른 요소들의 하부의 면 상에 방향을 가지게 된다. 그러므로, 예로써 든 "상의"라는 용어는, 도면의 특정한 방향에 의존하여 "하의" 및 "상의" 방향 모두를 포함할 수 있다. 구성 요소가 다른 방향으로 향한다면(다른 방향에 대하여 90도 회전), 본 명세서에 사용되는 상대적인 설명들은 이에 따라 해석될 수 있다.Also, relative terms such as "top" or "above" and "bottom" or "bottom" may be used herein to describe the relationship of certain elements to other elements as illustrated in the figures. It may be understood that relative terms are intended to include other directions of the device in addition to the direction depicted in the figures. For example, if the device is turned over in the figures, elements depicted as present on the face of the top of the other elements are oriented on the face of the bottom of the other elements described above. Thus, the exemplary term "top" may include both "bottom" and "top" directions depending on the particular direction of the figure. If the component faces in the other direction (rotated 90 degrees with respect to the other direction), the relative descriptions used herein may be interpreted accordingly.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" may include the plural forms as well, unless the context clearly indicates otherwise. Also, as used herein, "comprise" and / or "comprising" specifies the presence of the mentioned shapes, numbers, steps, actions, members, elements and / or groups of these. It is not intended to exclude the presence or the addition of one or more other shapes, numbers, acts, members, elements and / or groups.
이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명한다. 도면들에 있어서, 예를 들면, 제조 기술 및/또는 공차(tolerance)에 따라, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명 사상의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 되며, 예를 들면 제조상 초래되는 형상의 변화를 포함하여야 한다. 이하 실시예들은 하나 또는 복수 개를 조합하여 구성할 수도 있다.Embodiments of the present invention will now be described with reference to the drawings, which schematically illustrate ideal embodiments of the present invention. In the figures, for example, variations in the shape shown may be expected, depending on manufacturing techniques and / or tolerances. Accordingly, embodiments of the inventive concept should not be construed as limited to the specific shapes of the regions shown herein, but should include, for example, changes in shape resulting from manufacturing. The following embodiments may be configured by combining one or a plurality.
도 1은 예시적인 실시예들에 따른 엔진 시스템을 나타내는 블록도이다. 도 2는 도 1의 엔진 시스템의 엔진을 나타내는 단면도이다. 도 3은 도 1의 배기 파이프에 치되는 배기가스 처리 시스템을 나타내는 블록도이다. 도 4는 도 1의 엔진 시스템의 엔진 제어 장치를 나타내는 블록도이다. 도 5a는 도 4의 제1 연산부를 나타내는 블록도이고, 도 5b는 도 4의 제2 연산부를 나타내는 블록도이며, 도 5c는 도 4의 제3 연산부를 나타내는 블록도이다.1 is a block diagram illustrating an engine system in accordance with example embodiments. 2 is a cross-sectional view illustrating an engine of the engine system of FIG. 1. FIG. 3 is a block diagram showing an exhaust gas treatment system engaged with the exhaust pipe of FIG. 1. 4 is a block diagram illustrating an engine control apparatus of the engine system of FIG. 1. FIG. 5A is a block diagram illustrating the first operation unit of FIG. 4, FIG. 5B is a block diagram illustrating the second operation unit of FIG. 4, and FIG. 5C is a block diagram illustrating the third operation unit of FIG. 4.
도 1 내지 도 5c를 참조하면, 엔진 시스템은 엔진(10), 엔진(10)으로부터의 배기가스를 외부로 배출하고 신기(fresh air)를 압축하여 엔진(10)으로 공급하기 위한 터보차저(30), 및 터보차저(30)의 전단의 배기가스의 일부를 엔진(10)으로 재순환시키기 위한 EGR 장치(60)를 포함할 수 있다.1 to 5C, the engine system discharges the exhaust gas from the engine 10 and the engine 10 to the outside, and compresses fresh air to supply the engine 10 to the turbocharger 30. ) And an EGR device 60 for recycling a portion of the exhaust gas at the front end of the turbocharger 30 to the engine 10.
예시적인 실시예들에 있어서, 엔진(10)은 굴삭기와 같은 건설기계의 구동원으로서 디젤 엔진을 포함할 수 있다. 엔진(10)은 압축 착화를 통한 연소로 필요한 동력을 발생시킬 수 있다. 도 1 및 도 2에 도시된 바와 같이, 엔진(10)은 연료를 분사시키는 분사장치(18)가 설치되어 분사장치(18)로부터 공급되는 연료를 연소시키는 연소실(11)을 갖는 다수개의 실린더들(12)을 포함할 수 있다. 흡기관(40)으로부터 공급되는 흡기는 흡기 포트(14)를 통해 연소실(11) 내로 공급되고, 연소실(11) 내에서 연소된 후 배기가스는 배기 포트(16)를 통해 배기관(50)으로 배출될 수 있다.In exemplary embodiments, the engine 10 may include a diesel engine as a driving source of construction machinery such as an excavator. The engine 10 may generate power required by combustion through compression ignition. As shown in FIGS. 1 and 2, the engine 10 has a plurality of cylinders having a combustion chamber 11 installed with an injector 18 for injecting fuel to burn fuel supplied from the injector 18. And (12). The intake air supplied from the intake pipe 40 is supplied into the combustion chamber 11 through the intake port 14, and after combustion in the combustion chamber 11, the exhaust gas is discharged through the exhaust port 16 to the exhaust pipe 50. Can be.
터보차저(30)는 배기관(50)을 통해 엔진(10)의 배기 매니폴드(24)에 연결되고 흡기관(40, 42)을 통해 엔진(10)의 흡기 매니폴드(20)에 연결될 수 있다. 터보차저(30)는 신기(fresh air)를 흡기 매니폴드(20)에 공급함과 동시에 배기가스를 배기 파이프(70)를 통해 외부로 배출시킬 수 있다.The turbocharger 30 may be connected to the exhaust manifold 24 of the engine 10 through the exhaust pipe 50 and to the intake manifold 20 of the engine 10 through the intake pipes 40 and 42. . The turbocharger 30 may supply fresh air to the intake manifold 20 and discharge the exhaust gas to the outside through the exhaust pipe 70.
EGR 장치(60)는 EGR 라인(62), EGR 밸브(64) 및 EGR 쿨러(66)를 포함할 수 있다. 엔진(10)의 배기 매니폴드(24)로부터 배출된 배기가스는 EGR 라인(62)을 통해 엔진(10)의 흡기 매니폴드(20)로 재순환될 수 있다. EGR 밸브(62)는 EGR 라인(60)에 설치되며 상기 재순환 배기가스의 양(EGR율)을 조절할 수 있다. EGR 쿨러(66)는 EGR 라인(62)에 설치되며 상기 재순환 배기가스를 냉각시킬 수 있다. EGR device 60 may include an EGR line 62, an EGR valve 64, and an EGR cooler 66. The exhaust gas discharged from the exhaust manifold 24 of the engine 10 may be recycled to the intake manifold 20 of the engine 10 via the EGR line 62. The EGR valve 62 is installed in the EGR line 60 and can adjust the amount (EGR rate) of the recycle exhaust gas. An EGR cooler 66 may be installed in the EGR line 62 to cool the recycle exhaust gas.
도 3에 도시된 바와 같이, 배기가스 처리 시스템은 엔진(10)으로부터 배출되는 배기가스 내의 질소산화물을 환원시키기 위한 환원제를 분사하는 환원제 분사 모듈(82)을 구비하는 선택적 촉매 환원(selective catalyst reduction, SCR) 장치(80) 및 SCR 장치(80)의 전방의 배기 파이프(70)에 설치되는 디젤 산화 촉매(diesel oxidation catalyst, DOC)(72)를 포함할 수 있다.As shown in FIG. 3, the exhaust gas treatment system includes a selective catalyst reduction comprising a reducing agent injection module 82 for injecting a reducing agent for reducing nitrogen oxides in the exhaust gas discharged from the engine 10. SCR) device 80 and diesel oxidation catalyst (DOC) 72 installed in exhaust pipe 70 in front of SCR device 80.
예시적인 실시예들에 있어서, SCR 장치(80)는 배기 파이프(70) 내에 설치되는 선택적 환원 촉매(도시되지 않음) 및 상기 선택적 환원 촉매의 전방에서 배기 파이프(70) 내에 환원제를 분사하기 위한 환원제 분사 모듈(82)을 포함할 수 있다. 환원제 분사 모듈(82)은 엔진으로부터 배출되는 배기가스 내의 질소산화물을 환원시키기 위하여 요소수와 같은 환원제를 분사할 수 있다. 엔진으로부터 배출된 배기가스의 온도는 수백 ??에 이르는 고온이므로, 배기 파이프(70) 내에 분사된 상기 환원제는 곧바로 기화될 수 있다. 기화된 환원제는 배기가스와 혼합되고, 상기 환원제와 상기 질소산화물을 상기 선택적 환원 촉매를 이용하여 촉매 반응시켜 상기 질소산화물을 질소 가스와 물로 환원시킬 수 있다.In exemplary embodiments, the SCR apparatus 80 includes a selective reduction catalyst (not shown) installed in the exhaust pipe 70 and a reducing agent for injecting a reducing agent into the exhaust pipe 70 in front of the selective reduction catalyst. May include an injection module 82. The reducing agent injection module 82 may inject a reducing agent such as urea water to reduce nitrogen oxides in the exhaust gas discharged from the engine. Since the temperature of the exhaust gas discharged from the engine is a high temperature of several hundred degrees ??, the reducing agent injected in the exhaust pipe 70 can be vaporized immediately. The vaporized reducing agent may be mixed with the exhaust gas, and the reducing agent and the nitrogen oxide may be catalytically reacted using the selective reduction catalyst to reduce the nitrogen oxide to nitrogen gas and water.
환원제 분사 모듈(82)은 파이프(84)를 통해 요소수 공급 모듈(92)과 연결되어 요소수를 배기 파이프(70) 내에 분사할 수 있다. 또한, 요소수 공급 모듈(92)은 공급 라인(94a) 및 회수 라인(94b)를 통해 요소수 저장 탱크(90)에 연결될 수 있다. 요소수 저장 탱크(90)는 암모니아 생성용으로 AdBlue라는 요소수 수용액 또는 DEF(Diesel Exhaust Fluid)를 저장할 수 있다. 요소수 저장 탱크(90)에는 요소수 농도 센서(96)가 설치되어 요소수 공급 모듈(92)로 공급되는 요소수의 농도를 실시간으로 검출할 수 있다. 이와 다르게, 요소수 농도 센서(96)는 환원제 분사 모듈(82)에 연결된 파이프(84) 또는 공급 라인(94a)에 설치될 수 있다.The reducing agent injection module 82 may be connected to the urea water supply module 92 through a pipe 84 to inject urea water into the exhaust pipe 70. In addition, the urea water supply module 92 may be connected to the urea water storage tank 90 through a supply line 94a and a recovery line 94b. The urea water storage tank 90 may store an aqueous solution of urea water called AdBlue or Diesel Exhaust Fluid (DEF) for ammonia generation. The urea water concentration tank 96 is installed in the urea water storage tank 90 to detect the concentration of urea water supplied to the urea water supply module 92 in real time. Alternatively, the urea water concentration sensor 96 may be installed in the pipe 84 or the supply line 94a connected to the reducing agent injection module 82.
예시적인 실시예들에 있어서, 상기 엔진 시스템은 환원제로서의 요소수의 검출 농도에 따라 배기가스 처리 성능을 향상시키도록 연소 조건으로서의 엔진 제어 파라미터를 모델링하고 최적의 파라미터값을 산출하고, 산출된 제어 파라미터에 따라 엔진을 제어하기 위한 엔진 제어 장치를 포함할 수 있다.In exemplary embodiments, the engine system models an engine control parameter as a combustion condition and calculates an optimal parameter value to improve exhaust gas treatment performance according to the detected concentration of urea water as a reducing agent, and calculates the calculated control parameter. It may include an engine control device for controlling the engine according to.
도 4에 도시된 바와 같이, 상기 엔진 제어 장치는, 측정된 환원제 농도에 따라 정상 엔진 제어모드 및 환원제 농도기반 제어모드 중에서 어느 하나의 제어모드를 선택하고 상기 선택된 제어 모드를 위한 엔진 제어 파라미터를 산출하는 제1 제어부(100)를 포함할 수 있다. 또한, 상기 엔진 제어 장치는, 상기 산출된 제어 파라미터에 따라 엔진을 제어하는 제2 제어부(200)를 더 포함할 수 있다.As shown in FIG. 4, the engine control apparatus selects any one of a normal engine control mode and a reducing agent concentration based control mode according to the measured reducing agent concentration and calculates an engine control parameter for the selected control mode. It may include a first control unit 100. In addition, the engine control device may further include a second control unit 200 for controlling the engine according to the calculated control parameter.
구체적으로, 제1 제어부(100)는 상기 측정된 환원제 농도가 기준 농도 이하인지 여부를 판단하여 정상 제어모드 및 환원제 농도기반 제어모드 중 어느 하나를 선택하는 엔진 제어모드 판단부(110) 및 상기 환원제 농도기반 제어모드가 선택된 경우, 상기 측정된 환원제 농도에서 배기가스 규제를 만족하도록 엔진에서 배출되는 오염물질을 감소시킬 수 있는 엔진 제어 파라미터를 산출하는 파라미터 연산부(120)를 포함할 수 있다.Specifically, the first control unit 100 determines whether the measured reducing agent concentration is less than or equal to the reference concentration, the engine control mode determination unit 110 and the reducing agent to select any one of the normal control mode and the reducing agent concentration-based control mode When the concentration-based control mode is selected, it may include a parameter calculation unit 120 for calculating the engine control parameters that can reduce the pollutants emitted from the engine to satisfy the exhaust gas regulation at the measured reducing agent concentration.
요소수 농도 센서(96)는 요소수 저장 탱크(90) 내의 요소수의 농도를 초음파 방식을 이용하여 실시간으로 측정할 수 있다. 예를 들면, 배기가스 처리 시스템의 성능, 배기가스 규제 등을 고려하여, 요소수의 기준 농도(예를 들면, 32.5%) 및 요소수의 한계 농도(예를 들면, 26%)가 설정될 수 있다. 그러나, 사용자가 요소수 저장 탱크(90)에 물과 같은 희석액을 첨가하거나 요소수의 농도가 원활하게 유지되지 않을 경우, 요소수 저장 탱크(90) 내의 요소수의 농도가 기준 농도보다 낮게 떨어질 수 있다.The urea water concentration sensor 96 may measure the concentration of urea water in the urea water storage tank 90 in real time using an ultrasonic method. For example, in consideration of the performance of the exhaust gas treatment system, exhaust gas regulation, and the like, a reference concentration of urea water (eg, 32.5%) and a limit concentration of urea (eg, 26%) may be set. have. However, if the user adds a diluent such as water to the urea water storage tank 90 or the concentration of urea water is not maintained smoothly, the concentration of urea water in the urea water storage tank 90 may drop below the reference concentration. have.
엔진 제어모드 판단부(110)는 상기 검출된 요소수의 농도가 기준 농도 이하인 지 여부를 판단하여 기준 농도를 만족할 경우 정상 엔진 제어모드를 선택하고 기준 농도 이하인 경우 요소수 농도기반 제어모드를 선택할 수 있다. 예를 들면, 상기 검출된 요소수의 농도가 기준 농도(32.5%) 이하이고 한계 농도(26%)보다 큰 경우, 곧바로 규제(inducement)로 진입하지 않고, 검출된 요소수 농도에서 배기가스 규제를 만족시킬 수 있는 제어 파라미터를 산출하기 위한 제어모드를 수행할 것을 선택할 수 있다.The engine control mode determiner 110 determines whether the detected concentration of urea is less than or equal to the reference concentration, and selects a normal engine control mode when the reference concentration is satisfied. have. For example, when the concentration of the detected urea water is less than the reference concentration (32.5%) and greater than the threshold concentration (26%), the exhaust gas regulation is performed at the detected urea concentration without immediately entering into regulation. It is possible to select to perform a control mode for calculating a control parameter that can be satisfied.
예시적인 실시예들에 있어서, 엔진 제어모드 판단부(110)는, 상기 검출된 요소수의 농도가 기준 농도 이하인 경우 사용자에게 경고 신호를 출력할 수 있다. 상기 엔진 제어 장치는 사용자에게 경고 신호를 보여주기 위한 경고 표시 장치를 더 포함할 수 있다. 예를 들면, 상기 경고 표시 장치는 운전실 내부에 설치되는 경고등, 버저(buzzer) 또는 디스플레이 장치 등을 포함할 수 있다. 상기 경고 표시 장치가 작동하는 경우, 사용자는 요소수의 농도를 점검하고 요소수의 농도를 기준 농도로 유지하는 조치를 취할 수 있다.In example embodiments, the engine control mode determination unit 110 may output a warning signal to the user when the detected concentration of the urea water is equal to or less than a reference concentration. The engine control device may further include a warning display device for displaying a warning signal to a user. For example, the warning display device may include a warning light, a buzzer or a display device installed in the cab. When the warning display device is activated, the user may take measures to check the concentration of urea water and maintain the concentration of urea water at a reference concentration.
파라미터 연산부(120)는 상기 요소수 농도기반 제어모드가 선택된 경우, 상기 측정된 요소수 농도에서 배기가스 규제를 만족하는 엔진 제어 파라미터를 산출할 수 있다. 파라미터 연산부(120)는 상기 측정된 요소수 농도에서 엔진에서 배출되는 오염물질, 예를 들면, 질소산화물을 감소시킬 수 있는 최적의 엔진의 EGR율, 연료 분사시기 및 연료 분사압력 중에서 적어도 하나의 제어 파라미터를 산출할 수 있다. 파라미터 연산부(120)는 상기 요소수 농도기반 제어모드가 선택된 경우 현재의 엔진 출력을 유지하거나 최소한의 출력 제한(Torque Reduction)과 함께 배기가스 내의 질소산화물(NOx)을 저감시킬 수 있는 엔진 제어 파라미터를 모델링하고 산출할 수 있다. 파라미터 연산부(120)는 환원제의 농도, 연료의 분사시기 및 분사압력에 따른 배기가스 처리 성능, 엔진의 흡기 및 배기 동역학 등에 기초하여 상기 요소수 농도기반 제어모드를 위한 제어 모델을 구축하고 저장할 수 있다.When the urea concentration concentration based control mode is selected, the parameter calculator 120 may calculate an engine control parameter that satisfies the exhaust gas regulation from the measured urea concentration. The parameter calculating unit 120 controls at least one of the optimal engine EGR rate, fuel injection timing and fuel injection pressure to reduce pollutants, for example, nitrogen oxides, emitted from the engine at the measured urea water concentration. Parameters can be calculated. When the urea concentration concentration-based control mode is selected, the parameter calculating unit 120 maintains a current engine output or reduces an engine control parameter that can reduce NOx in exhaust gas with a minimum torque reduction. Can be modeled and calculated The parameter calculator 120 may construct and store a control model for the urea water concentration based control mode based on the reducing agent concentration, the fuel injection timing and the exhaust gas treatment performance according to the injection pressure, the intake and exhaust dynamics of the engine, and the like. .
도 5a 내지 도 5c에 도시된 바와 같이, 파라미터 연산부(120)는 상기 측정된 환원제 농도에서 배기가스 내의 질소산화물(NOx)을 저감시킬 수 있는 EGR율을 산출하는 제1 산출부(122), 상기 측정된 환원제 농도에서 배기가스 내의 질소산화물을 저감시킬 수 있는 연료 분사시기를 산출하는 제2 산출부(124) 및 상기 측정된 환원제 농도에서 배기가스 내의 질소산화물을 저감시킬 수 있는 연료 분사압력을 산출하는 제3 산출부(126)를 포함할 수 있다.As shown in FIGS. 5A to 5C, the parameter calculating unit 120 calculates an EGR rate capable of reducing nitrogen oxides (NOx) in exhaust gas at the measured reducing agent concentration. A second calculation unit 124 for calculating a fuel injection timing capable of reducing nitrogen oxides in exhaust gas at the measured reducing agent concentration and a fuel injection pressure for reducing nitrogen oxides in exhaust gas at the measured reducing agent concentration; The third calculator 126 may be included.
제1 산출부(122)는 상기 요소수 농도기반 제어모드가 선택된 경우 현재 측정된 요소수 농도에서 배기가스 내의 질소산화물을 저감시킬 수 있는 최적의 EGR율을 산출할 수 있다. 제1 산출부(122)는 현재 측정된 요소수 농도의 농도 팩터(Q)에 따라 요소수 기준 농도에서의 정상 EGR율(A)과 요소수 한계 농도에서의 한계 EGR율(B)을 고려하여 최종 제어 파라미터로서 최적의 EGR율을 산출할 수 있다.When the urea solution concentration-based control mode is selected, the first calculator 122 may calculate an optimal EGR rate for reducing nitrogen oxides in the exhaust gas at the currently measured urea solution concentration. The first calculation unit 122 considers the normal EGR rate (A) at the urea water reference concentration and the limit EGR rate (B) at the urea water limit concentration according to the concentration factor (Q) of the urea water concentration currently measured. As the final control parameter, the optimal EGR rate can be calculated.
예를 들면, 요소수 기준 농도가 30%이고 요소수 한계 농도가 25%인 경우, 현재 측정된 요소수 농도(X(%))가 28.75%이면 요소수 농도 팩터(Q)는 0.75이고, 현재 측정된 요소수 농도(X(%))가 27.5%이면 요소수 농도 팩터(Q)는 0.5이고, 현재 측정된 요소수 농도(X(%))가 26.25%이면 요소수 농도 팩터(Q)는 0.25이다.For example, if the urea water reference concentration is 30% and the urea water limit concentration is 25%, if the currently measured urea water concentration (X (%)) is 28.75%, the urea water concentration factor (Q) is 0.75, and If the measured urea water concentration (X (%)) is 27.5%, the urea water concentration factor (Q) is 0.5. If the currently measured urea water concentration (X (%)) is 26.25%, the urea water concentration factor (Q) is 0.25.
요소수 기준 농도에서(정상 제어모드에서) 엔진 rpm에 따른 정상 EGR율(A)이 결정되어 있고, 요소수 한계 농도에서 엔진의 동특성, PM(particulate matters) 등이 배기가스 규제를 만족시키는 엔진 rpm에 따른 한계 EGR율(B)이 결정될 수 있다. 따라서, 현재 측정된 요소수 농도 팩터(Q)에서의 최적의 EGR율은 아래와 같은 식(1)에 의해 계산될 수 있다.At normal urea water concentration (in normal control mode), the normal EGR rate (A) is determined according to engine rpm, and the engine rpm at which the dynamic characteristics of the engine, particulate matter (PM), etc. satisfy the exhaust gas regulation at the urea water limit concentration. The marginal EGR rate B can be determined accordingly. Therefore, the optimal EGR rate in the currently measured urea water concentration factor Q can be calculated by the following equation (1).
Figure PCTKR2015009335-appb-I000004
Figure PCTKR2015009335-appb-I000004
예를 들면, 요소수 농도 팩터(Q)가 0.5에서, 정상 EGR율이 20%이고, 한계 EGR율이 30%이면, 최적 EGR율(%)은 아래와 같은 식(2)에 의해 산출될 수 있다.For example, if the urea water concentration factor Q is 0.5, the normal EGR rate is 20%, and the limit EGR rate is 30%, the optimal EGR rate (%) can be calculated by the following equation (2). .
Figure PCTKR2015009335-appb-I000005
Figure PCTKR2015009335-appb-I000005
이에 따라, 제1 산출부(122)는 현재 측정된 요소수 농도에서 PM과 같은 오염물질이 배기가스 규제를 초과하지 않는 범위 이내에서 최적의 EGR율을 산출할 수 있다. 제1 산출부(122)에 의해 EGR율이 결정되면 EGR율 제어 신호가 출력되고, 상기 EGR율 제어 신호는 제2 제어부(200)의 EGR 제어기(210)로 입력될 수 있다.Accordingly, the first calculator 122 may calculate an optimal EGR rate within a range in which pollutants such as PM do not exceed the exhaust gas regulation at the currently measured urea water concentration. When the EGR rate is determined by the first calculator 122, an EGR rate control signal may be output, and the EGR rate control signal may be input to the EGR controller 210 of the second controller 200.
제2 산출부(124)는 상기 요소수 농도기반 제어모드가 선택된 경우 현재 측정된 요소수 농도에서 배기가스 내의 질소산화물을 저감시킬 수 있는 최적의 연료 분사시기를 산출할 수 있다. 제2 산출부(124)는 현재 측정된 요소수 농도의 농도 팩터(Q)에 따라 요소수 기준 농도에서의 정상 연료 분사시기(C)와 요소수 한계 농도에서의 한계 연료 분사시기(D)를 고려하여 최종 제어 파라미터로서 최적의 연료 분사시기를 산출할 수 있다.When the urea solution concentration-based control mode is selected, the second calculator 124 may calculate an optimal fuel injection timing for reducing nitrogen oxide in the exhaust gas at the currently measured urea solution concentration. The second calculation unit 124 determines the normal fuel injection timing (C) at the urea water reference concentration and the limit fuel injection timing (D) at the urea water limit concentration according to the concentration factor (Q) of the urea water concentration currently measured. In consideration, the optimum fuel injection timing can be calculated as the final control parameter.
요소수 기준 농도에서(정상 제어모드에서) 엔진 rpm에 따른 정상 연료 분사시기(C)가 결정되어 있고, 요소수 한계 농도에서 엔진의 동특성, PM(particulate matters) 등이 배기가스 규제를 만족시키는 엔진 rpm에 따른 한계 연료 분사시기(D)가 결정될 수 있다. 따라서, 현재 측정된 요소수 농도 팩터(Q)에서의 최적의 연료 분사시기는 아래와 같은 식(3)에 의해 계산될 수 있다.The normal fuel injection timing (C) is determined according to the engine rpm at the urea water level concentration (in normal control mode), and the engine's dynamic characteristics, PM (particulate matters), etc. at the urea water limit concentration satisfy the emission regulations. The limit fuel injection timing D according to the rpm can be determined. Therefore, the optimum fuel injection timing in the currently measured urea water concentration factor Q can be calculated by the following equation (3).
Figure PCTKR2015009335-appb-I000006
Figure PCTKR2015009335-appb-I000006
예를 들면, 요소수 농도 팩터(Q)가 0.5에서, 정상 연료 분사시기가 BTDC(Before Top Dead Center) 3이고, 한계 연료 분사시기가 ATDC(After Top Dead Center) 1이면, 최적 연료 분사시기는 아래와 같은 식(4)에 의해 산출될 수 있다.For example, when the urea water concentration factor Q is 0.5, the normal fuel injection timing is BTDC (Before Top Dead Center) 3 and the limit fuel injection timing is ATDC (After Top Dead Center) 1, the optimum fuel injection timing is It can be calculated by the following equation (4).
Figure PCTKR2015009335-appb-I000007
Figure PCTKR2015009335-appb-I000007
이에 따라, 제2 산출부(124)는 현재 측정된 요소수 농도에서 PM과 같은 오염물질이 배기가스 규제를 초과하지 않는 범위 이내에서 최적의 연료 분사시기를 산출할 수 있다. 제2 산출부(124)에 의해 연료 분사시기가 결정되면 연료 분사시기 제어 신호가 출력되고, 상기 연료 분사시기 제어 신호는 제2 제어부(200)의 연료 분사시기 제어기(220)로 입력될 수 있다.Accordingly, the second calculator 124 may calculate the optimal fuel injection timing within a range in which pollutants such as PM do not exceed the exhaust gas regulation at the currently measured urea water concentration. When the fuel injection timing is determined by the second calculator 124, a fuel injection timing control signal may be output, and the fuel injection timing control signal may be input to the fuel injection timing controller 220 of the second controller 200. .
제3 산출부(126)는 상기 요소수 농도기반 제어모드가 선택된 경우 현재 측정된 요소수 농도에서 배기가스 내의 질소산화물을 저감시킬 수 있는 최적의 연료 분사압력을 산출할 수 있다. 제3 산출부(126)는 현재 측정된 요소수 농도의 농도 팩터(Q)에 따라 요소수 기준 농도에서의 정상 연료 분사압력(E)과 요소수 한계 농도에서의 한계 연료 분사압력(F)을 고려하여 최종 제어 파라미터로서 최적의 연료 분사압력을 산출할 수 있다.When the urea solution concentration-based control mode is selected, the third calculator 126 may calculate an optimal fuel injection pressure for reducing nitrogen oxides in the exhaust gas at the currently measured urea solution concentration. The third calculation unit 126 calculates the normal fuel injection pressure E at the urea water reference concentration and the limit fuel injection pressure F at the urea water limit concentration according to the concentration factor Q of the currently measured urea water concentration. In consideration, the optimum fuel injection pressure can be calculated as the final control parameter.
요소수 기준 농도에서(정상 제어모드에서) 엔진 rpm에 따른 정상 연료 분사압력(E)이 결정되어 있고, 요소수 한계 농도에서 엔진의 동특성, PM(particulate matters) 등이 배기가스 규제를 만족시키는 엔진 rpm에 따른 한계 연료 분사압력(F)이 결정될 수 있다. 따라서, 현재 측정된 요소수 농도 팩터(Q)에서의 최적의 연료 분사압력은 아래와 같은 식(5)에 의해 계산될 수 있다.In the urea water standard concentration (in the normal control mode), the normal fuel injection pressure (E) is determined according to the engine rpm, and at the urea water limit concentration, the dynamic characteristics of the engine, the PM (particulate matters), etc. satisfy the emission regulations. The limit fuel injection pressure F depending on the rpm can be determined. Therefore, the optimum fuel injection pressure in the currently measured urea water concentration factor Q can be calculated by the following equation (5).
Figure PCTKR2015009335-appb-I000008
Figure PCTKR2015009335-appb-I000008
예를 들면, 요소수 농도 팩터(Q)가 0.5에서, 정상 연료 분사압력이 1400bar이고, 한계 연료 분사압력이 1500bar이면, 최적 연료 분사압력(bar)은 아래와 같은 식(6)에 의해 산출될 수 있다.For example, if the urea water concentration factor Q is 0.5, the normal fuel injection pressure is 1400 bar, and the limit fuel injection pressure is 1500 bar, the optimum fuel injection pressure bar can be calculated by the following equation (6). have.
Figure PCTKR2015009335-appb-I000009
Figure PCTKR2015009335-appb-I000009
이에 따라, 제3 산출부(126)는 현재 측정된 요소수 농도에서 PM과 같은 오염물질이 배기가스 규제를 초과하지 않는 범위 이내에서 최적의 연료 분사압력을 산출할 수 있다. 제3 산출부(126)에 의해 연료 분사압력이 결정되면 연료 분사압력 제어 신호가 출력되고, 상기 연료 분사압력 제어 신호는 제2 제어부(200)의 연료 분사압력 제어기(230)로 입력될 수 있다.Accordingly, the third calculator 126 may calculate an optimum fuel injection pressure within a range in which pollutants such as PM do not exceed the exhaust gas regulation at the currently measured urea water concentration. When the fuel injection pressure is determined by the third calculator 126, a fuel injection pressure control signal may be output, and the fuel injection pressure control signal may be input to the fuel injection pressure controller 230 of the second controller 200. .
예시적인 실시예들에 있어서, 제1 제어부(100)는 파라미터 연산부(120)에 의해 상기 산출된 제어 파라미터에 따라 엔진 제어를 수행할 경우 상기 엔진으로부터 배출되는 배기가스가 허용 한계값을 초과하는 지 여부를 판단하는 허용 한계값 판단부(130)를 더 포함할 수 있다.In example embodiments, when performing engine control according to the control parameter calculated by the parameter calculating unit 120, the first controller 100 may determine whether the exhaust gas discharged from the engine exceeds an allowable limit value. It may further include a tolerance threshold determination unit 130 for determining whether or not.
허용 한계값 판단부(130)는 파라미터 연산부(120)에 의해 산출된 제어 파라미터들(엔진의 EGR율, 연료 분사시기, 연료 분사압력)에 따라 엔진 제어를 수행할 경우, 배기가스 규제를 만족하는 NOx/PM이 배출되는 지 여부를 판단할 수 있다.The allowable threshold value determination unit 130 satisfies the exhaust gas regulation when the engine control is performed according to the control parameters calculated by the parameter calculating unit 120 (engine EGR rate, fuel injection timing, fuel injection pressure). It is possible to determine whether NOx / PM is released.
허용 한계값 판단부(130)는 파라미터 연산부(120)로부터 출력된 제어 신호들을 수신하고 이를 분석하여, 상기 요소수 농도기반 제어모드에 따라 엔진 제어가 수행될 경우 엔진으로부터 배출되는 배기가스(NOx/PM)가 허용 한계값을 초과하는 지 여부를 예측할 수 있다. 이와 다르게, 허용 한계값 판단부(130)는 엔진 배기관(70)의 후단에서 대기로 배출되는 배기가스 내의 오염 물질의 농도를 측정하고, 측정된 농도가 허용 한계값을 초과하는 지 여부를 판단할 수 있다.The allowable threshold value determination unit 130 receives and analyzes the control signals output from the parameter calculating unit 120 and analyzes the control signals. When the engine control is performed according to the urea concentration concentration-based control mode, the exhaust gas (NOx / It is possible to predict whether the PM) exceeds the tolerance limit. Alternatively, the allowable threshold determination unit 130 measures the concentration of the pollutant in the exhaust gas discharged to the atmosphere from the rear end of the engine exhaust pipe 70, and determines whether the measured concentration exceeds the allowable threshold value. Can be.
만일, 허용 한계값을 초과하는 경우, 경고등을 띄우고 상기 요소수 농도기반 제어모드로 진행하지 않고 곧바로 규제(inducement)로 진입하여 토크 제한(torque reduction)이 이루어질 수 있다. 또한, 허용 한계값 판단부(130)는 측정된 요소수 농도가 한계 농도보다 작은 경우, 경고등을 띄우고 정상 제어모드로 진행하는 제어 신호를 출력할 수 있으며, 정상 제어모드에서 토크 제한(torque reduction)이 이루어질 수 있다.If the allowable limit value is exceeded, torque reduction may be achieved by immediately entering the regulation without displaying a warning lamp and proceeding to the urea concentration concentration based control mode. In addition, when the measured urea concentration is less than the limit concentration, the allowable limit value determination unit 130 may output a control signal to raise a warning lamp and proceed to the normal control mode, and torque reduction in the normal control mode. This can be done.
제2 제어부(200)는 상기 엔진 시스템의 제어를 행하는 엔진 제어장치(ECU, electronic control unit) 내에 포함될 수 있다. 예를 들면, 상기 제2 제어부는 엔진 rpm, 엔진 토크(torque), 차속(velocity), 스로틀 밸브, 공기량 등에 관한 신호들을 수신할 수 있다. 또한, 제1 제어부(100)는 별도의 제어기로 설치되거나 상기엔진 제어장치(ECU)에 내장된 제어 로직 형태로 구현될 수 있다.The second control unit 200 may be included in an engine control unit (ECU) for controlling the engine system. For example, the second control unit may receive signals regarding engine rpm, engine torque, vehicle speed, throttle valve, air amount, and the like. In addition, the first control unit 100 may be installed as a separate controller or implemented in the form of control logic embedded in the engine control unit (ECU).
제2 제어부(200)의 EGR 제어기(210)는 상기 EGR율 제어 신호를 기초로 하여 EGR 밸브(64)를 조절하여 EGR 가스로서 엔진(10)에 재순환시키는 비율(즉, EGR율)을 제어할 수 있다. 제2 제어부(200)의 연료 분사시기 제어기(220)는 상기 연료 분사시기 제어 신호를 기초로 하여 분사장치(18)의 연료 분사시기를 제어할 수 있다. 제2 제어부(200)의 연료 분사압력 제어기(230)는 상기 연료 분사압력 제어 신호를 기초로 하여 분사장치(18)의 연료 분사압력을 제어할 수 있다.The EGR controller 210 of the second control unit 200 controls the rate (that is, the EGR rate) of recirculating the engine 10 as EGR gas by adjusting the EGR valve 64 based on the EGR rate control signal. Can be. The fuel injection timing controller 220 of the second controller 200 may control the fuel injection timing of the injector 18 based on the fuel injection timing control signal. The fuel injection pressure controller 230 of the second controller 200 may control the fuel injection pressure of the injector 18 based on the fuel injection pressure control signal.
또한, 제2 제어부(200)는 제1 제어부(100)로부터의 정상 제어모드를 위한 제어 신호를 기초로 하여 상기 엔진 시스템을 제어할 수 있다.In addition, the second controller 200 may control the engine system based on a control signal for the normal control mode from the first controller 100.
상술한 바와 같이, 상기 엔진 제어 장치에 따르면, 요소수의 농도 품질이 저하된 경우, 곧바로 규제(inducement)에 진입하지 않고, 측정된 요소수 농도에 기초하여 엔진의 배기가스 처리 성능을 향상시킬 수 있는 엔진 제어 파라미터를 산출하여 이를 기초로 엔진을 제어할 수 있다. 따라서, 요소수 농도 품질이 약간 저하되더라도 엔진 출력을 유지하거나 최소한의 출력 제한과 함께 배기가스 규제를 만족시키는 조건에서 건설기계를 계속 운행할 수 있다.As described above, according to the engine control apparatus, when the concentration quality of urea water is lowered, it is possible to improve the exhaust gas treatment performance of the engine based on the measured urea water concentration without entering into regulation immediately. The engine control parameter can be calculated and the engine can be controlled based on this. Thus, even if the urea concentration concentration quality is slightly degraded, the construction machine can continue to operate under conditions that maintain engine output or meet emission regulations with minimum power limitations.
이하에서는, 도 3의 엔진 제어 장치를 이용하여 엔진 시스템을 제어하는 방법에 대하여 설명하기로 한다.Hereinafter, a method of controlling the engine system using the engine control device of FIG. 3 will be described.
도 6은 예시적인 실시예들에 따른 엔진 제어 방법을 나타내는 순서도이다.6 is a flowchart illustrating an engine control method according to exemplary embodiments.
도 1, 도 2, 도 3, 도 4 및 도 6을 참조하면, 환원제 분사 모듈(82)로 공급되는 환원제의 농도를 실시간으로 모니터링할 수 있다(S100).1, 2, 3, 4 and 6, the concentration of the reducing agent supplied to the reducing agent injection module 82 may be monitored in real time (S100).
예시적인 실시예들에 있어서, 요소수 저장 탱크(90)에 설치된 요소수 농도 센서(96)로부터 요소수 공급 모듈(92)로 공급되는 요소수의 농도를 실시간으로 측정할 수 있다.In example embodiments, the concentration of urea water supplied to the urea water supply module 92 from the urea water concentration sensor 96 installed in the urea water storage tank 90 may be measured in real time.
이어서, 상기 측정된 환원제 농도가 기준 농도 이하인지 여부를 판단하여 정상 제어모드 및 환원제 농도기반 제어모드 중 하나의 제어모드를 선택한다(S110).Subsequently, it is determined whether the measured reducing agent concentration is less than or equal to the reference concentration, and selects one control mode among the normal control mode and the reducing agent concentration based control mode (S110).
예시적인 실시예들에 있어서, 상기 검출된 요소수의 농도가 기준 농도 이하인 지 여부를 판단하여 기준 농도를 만족할 경우 정상 엔진 제어모드를 선택하고 기준 농도 이하인 경우 요소수 농도기반 제어모드를 선택할 수 있다. 예를 들면, 배기가스 처리 시스템의 성능, 배기가스 규제 등을 고려하여, 요소수의 기준 농도(예를 들면, 32.5%) 및 요소수의 한계 농도(예를 들면, 26%)가 설정될 수 있다. 그러나, 사용자가 요소수 저장 탱크(90)에 물과 같은 희석액을 첨가하거나 요소수의 농도가 원활하게 유지되지 않을 경우, 요소수 저장 탱크(90) 내의 요소수의 농도가 기준 농도보다 낮게 떨어질 수 있다.In example embodiments, the normal engine control mode may be selected when the reference concentration is satisfied by determining whether the detected concentration of the urea water is less than or equal to the reference concentration, and if the concentration is less than or equal to the reference concentration, the urea concentration concentration based control mode may be selected. . For example, in consideration of the performance of the exhaust gas treatment system, exhaust gas regulation, and the like, a reference concentration of urea water (eg, 32.5%) and a limit concentration of urea (eg, 26%) may be set. have. However, if the user adds a diluent such as water to the urea water storage tank 90 or the concentration of urea water is not maintained smoothly, the concentration of urea water in the urea water storage tank 90 may drop below the reference concentration. have.
상기 검출된 요소수의 농도가 기준 농도(예를 들면, 32.5%) 이하이고 한계 농도(26%)보다 큰 경우, 곧바로 규제(inducement)로 진입하지 않고, 검출된 요소수 농도에서 배기가스 규제를 만족시킬 수 있는 제어 파라미터를 산출하기 위한 제어모드를 수행할 것을 선택할 수 있다.If the detected concentration of urea water is less than the reference concentration (eg, 32.5%) and greater than the threshold concentration (26%), the exhaust gas is not regulated immediately, but the exhaust gas regulation is performed at the detected urea concentration. It is possible to select to perform a control mode for calculating a control parameter that can be satisfied.
상기 환원제 농도기반 제어모드가 선택된 경우 상기 측정된 환원제 농도에서 배기가스 처리 성능을 향상시킬 수 있는 엔진 제어 파라미터를 산출하고 이에 기초하여 엔진을 제어하고(S120), 상기 정상 제어모드가 선택된 경우 정상 제어 파라미터에 따라 엔진을 제어한다(S130).When the reducing agent concentration-based control mode is selected, calculates an engine control parameter that can improve the exhaust gas treatment performance at the measured reducing agent concentration and controls the engine based on this, and when the normal control mode is selected, normal control. The engine is controlled according to the parameter (S130).
예시적인 실시예들에 있어서, 상기 요소수 농도기반 제어모드가 선택된 경우, 상기 측정된 요소수 농도에서 배기가스 처리 성능을 향상시킬 수 있는 최적의 엔진의 EGR율, 연료 분사시기 및 연료 분사압력 중에서 적어도 하나의 제어 파라미터를 산출할 수 있다. 현재의 엔진 출력을 유지하거나 최소한의 출력 제한(Torque Reduction)과 함께 배기가스 내의 질소산화물(NOx)을 저감시킬 수 있는 엔진 제어 파라미터를 모델링하고 산출할 수 있다.In exemplary embodiments, when the urea concentration concentration-based control mode is selected, an optimum engine EGR rate, fuel injection timing, and fuel injection pressure may be used to improve exhaust gas treatment performance at the measured urea concentration. At least one control parameter may be calculated. Engine control parameters can be modeled and calculated to maintain current engine power or reduce NOx in the exhaust with minimal torque reduction.
예를 들면, 상기 요소수 농도기반 제어모드가 선택된 경우 현재 측정된 요소수 농도에서 배기가스 내의 질소산화물을 저감시킬 수 있는 최적의 EGR율을 산출할 수 있다. 현재 측정된 요소수 농도에 기초하여 요소수 기준 농도에서의 정상 EGR율과 요소수 한계 농도에서의 한계 EGR율 사이에서 최종 제어 파라미터로서 최적의 EGR율을 결정할 수 있다. 이에 따라, 상기 최적의 EGR율은 현재 측정된 요소수 농도에서 PM과 같은 오염물질이 배기가스 규제를 초과하지 않는 범위 이내에서 산출될 수 있다.For example, when the urea concentration concentration-based control mode is selected, an optimal EGR rate for reducing nitrogen oxides in the exhaust gas may be calculated at the currently measured urea concentration. An optimal EGR rate can be determined as the final control parameter between the normal EGR rate at the urea water reference concentration and the limit EGR rate at the urea water limit concentration based on the currently measured urea water concentration. Accordingly, the optimum EGR rate can be calculated within a range in which pollutants such as PM do not exceed the exhaust gas regulation at the currently measured urea water concentration.
상기 요소수 농도기반 제어모드가 선택된 경우 현재 측정된 요소수 농도에서 배기가스 내의 질소산화물을 저감시킬 수 있는 최적의 연료 분사시기를 산출할 수 있다. 현재 측정된 요소수 농도에 기초하여 요소수 기준 농도에서의 정상 연료 분사시기와 요소수 한계 농도에서의 한계 연료 분사시기 사이에서 최종 제어 파라미터로서 최적의 연료 분사시기를 결정할 수 있다. 이에 따라, 상기 최적의 연료 분사시기는 현재 측정된 요소수 농도에서 PM과 같은 오염물질이 배기가스 규제를 초과하지 않는 범위 이내에서 산출될 수 있다.When the urea concentration concentration based control mode is selected, an optimal fuel injection timing for reducing nitrogen oxides in the exhaust gas at the currently measured urea concentration may be calculated. The optimal fuel injection timing can be determined as the final control parameter between the normal fuel injection timing at the urea water reference concentration and the limit fuel injection timing at the urea water limit concentration based on the currently measured urea water concentration. Accordingly, the optimum fuel injection timing may be calculated within a range in which pollutants such as PM do not exceed the exhaust gas regulation at the currently measured urea water concentration.
상기 요소수 농도기반 제어모드가 선택된 경우 현재 측정된 요소수 농도에서 배기가스 내의 질소산화물을 저감시킬 수 있는 최적의 연료 분사압력을 산출할 수 있다. 현재 측정된 요소수 농도의 농도에 기초하여 요소수 기준 농도에서의 정상 연료 분사압력과 요소수 한계 농도에서의 한계 연료 분사압력 사이에서 최종 제어 파라미터로서 최적의 연료 분사압력을 결정할 수 있다. 이에 따라, 상기 최적의 연료 분사압력은 현재 측정된 요소수 농도에서 PM과 같은 오염물질이 배기가스 규제를 초과하지 않는 범위 이내에서 산출될 수 있다.When the urea concentration concentration based control mode is selected, an optimal fuel injection pressure for reducing nitrogen oxides in the exhaust gas may be calculated at the currently measured urea concentration. The optimal fuel injection pressure can be determined as the final control parameter between the normal fuel injection pressure at the urea water reference concentration and the limit fuel injection pressure at the urea water limit concentration based on the concentration of the urea water concentration currently measured. Accordingly, the optimum fuel injection pressure may be calculated within a range in which pollutants such as PM do not exceed the exhaust gas regulation at the currently measured urea water concentration.
예시적인 실시예들에 있어서, 상기 산출된 제어 파라미터에 따라 엔진 제어를 수행할 경우 상기 엔진으로부터 배출되는 배기가스가 허용 한계값을 초과하는 지 여부를 판단할 수 있다(S122).In example embodiments, when performing engine control according to the calculated control parameter, it may be determined whether the exhaust gas discharged from the engine exceeds an allowable threshold value (S122).
산출된 제어 파라미터들(엔진의 EGR율, 연료 분사시기, 연료 분사압력)에 따라 엔진 제어를 수행할 경우, 배기가스 규제를 만족하는 배기가스(NOx/PM)가 배출되는 지 여부를 판단할 수 있다. 즉, 상기 요소수 농도기반 제어모드에 따라 엔진 제어가 수행될 경우 엔진으로부터 배출되는 배기가스(NOx/PM)가 허용 한계값을 초과하는 지 여부를 예측할 수 있다. 만일, 허용 한계값을 초과하는 경우, 경고등을 띄우고 상기 요소수 농도기반 제어모드로 진행하지 않고 곧바로 규제(inducement)로 진입하도록 할 수 있다. 예를 들면, 허용 한계값을 초과하는 경우, 엔진의 출력을 대폭으로 감소시키거나 또는 엔진 rpm을 감소(아이들(idle) 운행)하도록 엔진을 제어할 수 있다. 또한, 상기 검출된 요소수의 농도가 기준 농도 이하인 경우 사용자에게 경고 신호를 출력할 수 있다(S124). 예를 들면, 운전실 내부에 설치되는 경고등, 버저(buzzer) 또는 디스플레이 장치 등과 같은 표시 장치를 이용하여 사용자에게 알려주고, 사용자는 요소수의 농도를 점검하고 요소수의 농도를 기준 농도로 유지하는 조치를 취할 수 있다.When performing engine control according to the calculated control parameters (engine EGR rate, fuel injection timing, fuel injection pressure), it is possible to determine whether or not exhaust gas (NOx / PM) satisfying the exhaust gas regulation is discharged. have. That is, when engine control is performed according to the urea water concentration based control mode, it is possible to predict whether the exhaust gas (NOx / PM) discharged from the engine exceeds an allowable limit value. If the allowable limit value is exceeded, a warning lamp may be displayed to enter the regulation immediately without proceeding to the urea concentration concentration control mode. For example, when exceeding an allowable threshold, the engine can be controlled to drastically reduce the output of the engine or to reduce the engine rpm (idle running). In addition, if the detected concentration of urea is less than the reference concentration may output a warning signal to the user (S124). For example, the user is informed using a display device such as a warning light, buzzer or display device installed inside the cab, and the user checks the concentration of the urea water and maintains the concentration of the urea water at the reference concentration. Can be taken.
또한, 상기 검출된 요소수 농도가 한계 농도보다 작은 경우, 경고등을 띄우고 정상 제어모드로 진행할 수 있으며, 이러한 정상 제어모드에서 토크 제한(torque reduction)이 이루어질 수 있다.In addition, when the detected urea concentration is smaller than the threshold concentration, a warning lamp may be displayed to proceed to the normal control mode, and torque reduction may be achieved in the normal control mode.
이상에서는 본 발명의 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. It will be appreciated.
* 부호의 설명* Explanation of the sign
10: 엔진 11: 연소실10: engine 11: combustion chamber
12: 실린더 14: 흡기 포트12: cylinder 14: intake port
16: 배기 포트 18: 분사장치16: exhaust port 18: injector
20: 흡기 매니폴드 22: 배기 매니폴드20: intake manifold 22: exhaust manifold
30: 터보차저 32: 터빈30: turbocharger 32: turbine
33: 터빈 휠 34: 컴프레서33: turbine wheel 34: compressor
35: 컴프레서 휠 40: 흡기관35: compressor wheel 40: intake pipe
42: 흡기 공급관 50: 배기관42: intake air supply pipe 50: exhaust pipe
60: EGR 장치 62: EGR 라인60: EGR device 62: EGR line
64: EGR 밸브 66: EGR 쿨러64: EGR valve 66: EGR cooler
70: 배기 파이프 72: 디젤 산화 촉매70: exhaust pipe 72: diesel oxidation catalyst
80: SCR 장치 82: 환원제 분사 모듈80: SCR device 82: reducing agent injection module
84: 파이프 90: 요소수 저장 탱크84: pipe 90: urea water storage tank
92: 환원제 분사 모듈 96: 요소수 농도 센서92: reducing agent injection module 96: urea water concentration sensor
100: 제1 제어부 110: 엔진 제어모드 판단부100: first control unit 110: engine control mode determination unit
120: 파라미터 연산부 122: 제1 연산부120: parameter calculator 122: first calculator
124: 제2 연산부 126: 제3 연산부124: second calculator 126: third calculator
130: 허용 한계값 판단부 200: 제2 제어부130: tolerance limit determination unit 200: second control unit
210: EGR 제어기 220: 연료 분사시기 제어기210: EGR controller 220: fuel injection timing controller
230: 연료 분사압력 제어기230: fuel injection pressure controller

Claims (15)

  1. 엔진 배기관에 설치된 환원제 분사 모듈로 공급되는 환원제의 농도를 측정하기 위한 환원제 농도 센서; 및Reductant concentration sensor for measuring the concentration of the reducing agent supplied to the reducing agent injection module installed in the engine exhaust pipe; And
    상기 측정된 환원제의 농도가 기준 농도 이하인 경우 배기가스 처리 성능을 향상시킬 수 있는 엔진 제어 파라미터를 산출한 후 상기 산출된 엔진 제어 파라미터를 이용하여 환원제 농도기반 배기가스 제어를 수행하는 제어부를 포함하는 엔진 제어 장치.An engine including a controller configured to calculate an engine control parameter for improving exhaust gas treatment performance when the measured concentration of the reducing agent is less than or equal to a reference concentration, and then perform a reducing agent concentration-based exhaust gas control using the calculated engine control parameter; controller.
  2. 제 1 항에 있어서, 상기 엔진 제어 파라미터는 EGR율, 연료 분사시기 및 연료 분사압력 중에서 적어도 하나를 포함하는 것을 특징으로 하는 엔진 제어 장치.The engine control apparatus of claim 1, wherein the engine control parameter comprises at least one of an EGR rate, a fuel injection timing, and a fuel injection pressure.
  3. 제 2 항에 있어서, 상기 제어부는 상기 환원제의 기준 농도와 상기 환원제의 한계 농도에 대한 상기 측정된 환원제 농도의 농도 팩터를 산정하고 상기 산정된 농도 팩터를 이용하여 상기 엔진을 제어하는 엔진 제어 장치.The engine control apparatus of claim 2, wherein the controller calculates a concentration factor of the measured reducing agent concentration with respect to the reference concentration of the reducing agent and the threshold concentration of the reducing agent, and controls the engine using the calculated concentration factor.
  4. 제 3 항에 있어서, 상기 측정된 환원제 농도에서 최적의 EGR율은 하기의 수학식 1에 의해 계산되고, 상기 측정된 환원제 농도에서 최적의 분사시기는 하기의 수학식 2에 의해 계산되고, 상기 측정된 환원제 농도에서의 최적의 연료 분사압력은 하기의 수학식 3에 의해 계산되는 엔진 제어 장치.The method according to claim 3, wherein the optimum EGR rate at the measured reducing agent concentration is calculated by Equation 1 below, and the optimum injection timing at the measured reducing agent concentration is calculated by Equation 2 below. The optimum fuel injection pressure at the reduced reducing agent concentration is calculated by the following equation (3).
    [수학식 1][Equation 1]
    Figure PCTKR2015009335-appb-I000010
    Figure PCTKR2015009335-appb-I000010
    (여기서, A는 정상 EGR율, B는 한계 EGR율, Q는 측정된 환원제 농도의 농도 팩터임)(Where A is the normal EGR rate, B is the limit EGR rate, and Q is the concentration factor of the measured reducing agent concentration)
    [수학식 2][Equation 2]
    Figure PCTKR2015009335-appb-I000011
    Figure PCTKR2015009335-appb-I000011
    (여기서, C는 정상 연료 분사시기, D는 한계 연료 분사시기, Q는 측정된 환원제 농도의 농도 팩터임)(Where C is the normal fuel injection time, D is the limit fuel injection time, and Q is the concentration factor of the measured reducing agent concentration)
    [수학식 3][Equation 3]
    Figure PCTKR2015009335-appb-I000012
    Figure PCTKR2015009335-appb-I000012
    (여기서, E는 정상 연료 분사압력, F는 한계 연료 분사압력, Q는 측정된 환원제 농도의 농도 팩터임)Where E is the normal fuel injection pressure, F is the limit fuel injection pressure, and Q is the concentration factor of the measured reducing agent concentration.
  5. 제 1 항에 있어서, 상기 제어부는 상기 엔진 제어 파라미터 및 상기 측정된 환원제 농도 정보를 이용하여 상기 엔진을 제어하는 엔진 제어 장치.The engine control apparatus of claim 1, wherein the controller controls the engine using the engine control parameter and the measured reducing agent concentration information.
  6. 제 1 항에 있어서, 상기 제어부는 상기 측정된 환원제의 농도가 상기 환원제의 한계 농도보다 큰 경우 엔진의 연소 조건을 변경하는 제어를 수행하고, 상기 환원제의 한계 농도 이하인 경우에는 곧바로 규제로 진입하도록 제어하는 엔진 제어 장치.The method of claim 1, wherein the control unit controls to change the combustion condition of the engine when the measured concentration of the reducing agent is greater than the threshold concentration of the reducing agent, and controls to enter the regulation immediately when the concentration of the reducing agent is below the threshold concentration. Engine control unit.
  7. 제 1 항에 있어서, 상기 제어부는 상기 엔진의 EGR율을 증가시키거나, 연료 분사시기를 지연시키거나 연료 분사압력을 증가시키는 것 중에서 적어도 하나를 수행하는 엔진 제어 장치.The engine control apparatus of claim 1, wherein the controller performs at least one of increasing the EGR rate of the engine, delaying fuel injection timing, or increasing fuel injection pressure.
  8. 제 1 항에 있어서, 상기 엔진 배기관 후단에서 대기로 배출되는 배기가스가 허용 한계값을 초과하는 지 여부를 판단하는 허용 한계값 판단부를 더 포함하는 엔진 제어 장치.The engine control apparatus of claim 1, further comprising a tolerance limit determination unit configured to determine whether the exhaust gas discharged to the atmosphere from the rear of the engine exhaust pipe exceeds an allowable threshold.
  9. 제 8 항에 있어서, 상기 제어부는, 상기 배기가스가 상기 허용 한계값을 초과하는 경우, 경고등을 띄우고 상기 환원제 농도기반 제어모드로 진행하지 않고 곧바로 규제로 진입하는 제어를 수행하는 엔진 제어 장치.The engine control apparatus of claim 8, wherein the controller is configured to perform a control to enter a regulation immediately without raising a warning lamp and proceeding to the reducing agent concentration based control mode when the exhaust gas exceeds the allowable limit value.
  10. 제 1 항에 있어서, 상기 제어부는, 상기 검출된 환원제의 농도가 기준 농도 이하인 경우 사용자에게 경고 신호를 출력하는 엔진 제어 장치.The engine control apparatus of claim 1, wherein the controller outputs a warning signal to a user when the detected concentration of the reducing agent is equal to or less than a reference concentration.
  11. 환원제 분사 모듈로 공급되는 환원제의 농도를 측정하는 단계;Measuring the concentration of the reducing agent supplied to the reducing agent injection module;
    상기 측정된 환원제 농도가 기준 농도 이하인지 여부를 판단하는 단계;Determining whether the measured reducing agent concentration is equal to or less than a reference concentration;
    상기 환원제의 농도가 기준 농도 이하인 경우 엔진에서 배출되는 질소산화물이 현재의 배출량보다 적게 배출되도록 엔진의 연소 조건을 변경하는 단계; 및Changing combustion conditions of the engine such that nitrogen oxides emitted from the engine are discharged less than current emissions when the concentration of the reducing agent is less than the reference concentration; And
    상기 변경된 연소 조건에 따라 엔진을 제어하는 단계를 포함하는 엔진 제어 방법.And controlling the engine in accordance with the changed combustion conditions.
  12. 제 11 항에 있어서, 상기 엔진의 연소 조건을 변경하는 단계는 엔진의 EGR율을 증가시키거나, 연료 분사시기를 지연시키거나 연료 분사압력을 감소시키는 것 중에서 적어도 하나를 수행하는 단계를 포함하는 엔진 제어 방법.12. The engine of claim 11, wherein changing the combustion conditions of the engine comprises performing at least one of increasing the engine's EGR rate, delaying fuel injection timing, or reducing fuel injection pressure. Control method.
  13. 제 11 항에 있어서, 상기 연소 조건을 변경하는 단계는 엔진 배기가스 중에서 PM의 배출량이 배기가스 규제를 초과하지 않는 범위 이내에서 수행되는 엔진 제어 방법.The engine control method of claim 11, wherein the changing of the combustion condition is performed within a range in which the emission of PM in the engine exhaust gas does not exceed the exhaust gas regulation.
  14. 제 11 항에 있어서, 상기 연소 조건을 변경할 경우 대기로 배출되는 배기가스가 허용 한계값을 초과하는 지 여부를 판단하는 단계; 및12. The method of claim 11, further comprising: determining whether the exhaust gas discharged to the atmosphere when the combustion condition is changed exceeds an allowable limit value; And
    상기 대기로 배출되는 배기가스가 허용 한계값을 초과할 경우 엔진 출력을 감소하는 단계를 더 포함하는 엔진 제어 방법.Reducing the engine output when the exhaust gas discharged to the atmosphere exceeds an allowable threshold.
  15. 제 11 항에 있어서, 상기 검출된 환원제의 농도가 기준 농도 이하인 경우 사용자에게 경고 신호를 출력하는 단계를 더 포함하는 엔진 제어 방법.The engine control method of claim 11, further comprising outputting a warning signal to a user when the detected reducing agent concentration is less than or equal to a reference concentration.
PCT/KR2015/009335 2014-09-30 2015-09-04 Device for controlling engine according to concentration of aqueous urea solution and method for controlling engine WO2016052871A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140130775A KR102177356B1 (en) 2014-09-30 2014-09-30 Engine control apparatus and engine control method by urea quality
KR10-2014-0130775 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052871A1 true WO2016052871A1 (en) 2016-04-07

Family

ID=55630856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009335 WO2016052871A1 (en) 2014-09-30 2015-09-04 Device for controlling engine according to concentration of aqueous urea solution and method for controlling engine

Country Status (2)

Country Link
KR (1) KR102177356B1 (en)
WO (1) WO2016052871A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083223A (en) * 2003-09-05 2005-03-31 Nissan Diesel Motor Co Ltd Exhaust emission control device of engine
JP2006009606A (en) * 2004-06-23 2006-01-12 Hino Motors Ltd Reducing agent supply device
JP2007056741A (en) * 2005-08-24 2007-03-08 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2010043585A (en) * 2008-08-11 2010-02-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2014070566A (en) * 2012-09-28 2014-04-21 Honda Motor Co Ltd Exhaust cleaning system of internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3632483B2 (en) * 1999-02-05 2005-03-23 マツダ株式会社 Engine control device
JP2007070566A (en) 2005-09-09 2007-03-22 Fujifilm Corp Ink stock solution and inkjet ink composition using the same
KR20110052852A (en) * 2009-11-13 2011-05-19 쌍용자동차 주식회사 Urea injection optimization system
JP5585125B2 (en) 2010-02-26 2014-09-10 いすゞ自動車株式会社 Urea quality diagnostic system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083223A (en) * 2003-09-05 2005-03-31 Nissan Diesel Motor Co Ltd Exhaust emission control device of engine
JP2006009606A (en) * 2004-06-23 2006-01-12 Hino Motors Ltd Reducing agent supply device
JP2007056741A (en) * 2005-08-24 2007-03-08 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2010043585A (en) * 2008-08-11 2010-02-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2014070566A (en) * 2012-09-28 2014-04-21 Honda Motor Co Ltd Exhaust cleaning system of internal combustion engine

Also Published As

Publication number Publication date
KR20160038259A (en) 2016-04-07
KR102177356B1 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
US7971570B2 (en) Engine controller
CN107687381B (en) Apparatus and method for diagnosing failure of sensor
CN102444458A (en) System and method for detecting low quality reductant and catalyst degradation in selective catalytic reduction systems
GB2385546A (en) System for purging exhaust gases from an exhaust gas recirculation system
EP2685072B1 (en) Control device for internal combustion engine
KR20120062100A (en) Low pressure egr system and the method for determination of intake air leakage therefor
US20160084206A1 (en) Diesel engine and method of controlling same
JP2010270669A (en) Control device for internal combustion engine
JP2009236058A (en) Exhaust gas recirculation device of internal combustion engine
WO2005066479A8 (en) Apparatus and method for suppressing internal combustion ignition engine emissions
JP2010031749A (en) Control device for internal combustion engine
US20150219032A1 (en) Diesel engine control apparatus
WO2016052871A1 (en) Device for controlling engine according to concentration of aqueous urea solution and method for controlling engine
JP6108078B2 (en) Engine exhaust purification system
EP2957737B1 (en) Engine exhaust-gas purification device
US20070006575A1 (en) Exhaust gas purifying device for an internal combustion engine
JP2010138834A (en) Failure diagnostic device for intake air temperature sensor of internal combustion engine
JP2006132392A (en) Exhaust emission control device for internal combustion engine
JP6061078B2 (en) Exhaust gas purification device for internal combustion engine
JP2013036385A (en) Internal combustion engine control device
JP2010270612A (en) Burner device for internal combustion engine
JP6740744B2 (en) Engine controller
US20090056673A1 (en) Diesel combustion mode switching control based on intake carbon dioxide (co2) concentration
JP2007187029A (en) Exhaust emission control device for engine
US20080295496A1 (en) Injection anti-coking system for particulate filters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 26.07.2017.

122 Ep: pct application non-entry in european phase

Ref document number: 15847358

Country of ref document: EP

Kind code of ref document: A1