WO2016052589A1 - Electrophoresis apparatus, electrophoresis method, and concentration/separation/analysis method using electrophoresis method - Google Patents

Electrophoresis apparatus, electrophoresis method, and concentration/separation/analysis method using electrophoresis method Download PDF

Info

Publication number
WO2016052589A1
WO2016052589A1 PCT/JP2015/077677 JP2015077677W WO2016052589A1 WO 2016052589 A1 WO2016052589 A1 WO 2016052589A1 JP 2015077677 W JP2015077677 W JP 2015077677W WO 2016052589 A1 WO2016052589 A1 WO 2016052589A1
Authority
WO
WIPO (PCT)
Prior art keywords
migration
electrophoresis
ions
concentration
countercurrent
Prior art date
Application number
PCT/JP2015/077677
Other languages
French (fr)
Japanese (ja)
Inventor
岸本 忠史
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2016052589A1 publication Critical patent/WO2016052589A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D57/00Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C
    • B01D57/02Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C by electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/38Separation by electrochemical methods
    • B01D59/42Separation by electrochemical methods by electromigration; by electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis

Definitions

  • the present invention relates to an electrophoresis apparatus, an electrophoresis method, and a concentration / separation / analysis method using the electrophoresis method, in particular, an electrophoresis apparatus, electrophoresis method, and electrophoresis suitable for concentration / separation / analysis of isotope elements.
  • the present invention relates to a concentration / separation / analysis method using electrophoresis.
  • isotopes of various elements are used in various fields such as nuclear chemistry and biochemistry.
  • centrifugal separation method As a method for concentrating and separating isotope elements, a centrifugal separation method has been mainly used conventionally.
  • mass spectrometry is employed in the case of concentrating and separating isotopes from elements that do not have gaseous compounds.
  • atoms are ionized in a vacuum, accelerated as an ion beam by an electric field, and bent and bent in a magnetic field, using the difference in curvature due to the mass difference of the isotopes to concentrate and separate isotopes.
  • a large amount of electric power is consumed for the concentration, which is costly and very expensive. For example, 48 Ca concentrated to 90% or more generally has a price exceeding 10 million yen per gram.
  • Patent Documents 1 and 2 and Non-Patent Document 1 it is possible to concentrate and separate isotopes using electrophoresis methods that have been used for separation and analysis of monoatomic ions, proteins, amino acids, etc. It attracts attention from the viewpoint of being a simple method (for example, Patent Documents 1 and 2 and Non-Patent Document 1).
  • This electrophoresis method utilizes the property that particles (including polymers and proteins) that are charged in a solution move when an electric field is applied to the charged particles in the solution. Is determined by the mobility inherent in the ions (ratio of electric field and velocity), so that each ion can be separated by the product of the difference in mobility and the migration distance.
  • a capillary electrophoresis method in which ions are migrated in a capillary having a small diameter has been proposed. Since a capillary with a small diameter is used, cooling is easy and turbulence is unlikely to occur. However, as long as a capillary with a small diameter is used, it is difficult to increase the amount of isotopes that can be separated at one time, and this is not an industrially practical means.
  • Non-Patent Document 1 shows an example in which calcium isotopes are separated using an electrophoresis method in which the diameter of the migration part is increased.
  • 48 Ca is concentrated from 0.187% of natural abundance to about 30% with respect to 40 Ca by moving a voltage of about 1.2 V / cm for 23 m over about 900 hours.
  • the voltage is set as low as about 1.2 V / cm and the current density is set to 0.1 to 0.2 A / cm 2 (Joule heat).
  • the temperature is suppressed to about 80 ° C. by the range of 0.1 to 0.2 W / cm 3 .
  • the moving speed at this time is the moving speed of metal ions (a voltage of 1 kV / cm) in a general capillary electrophoresis method in which a capillary of 0.1 mm in inner diameter is applied with a voltage of about 0.1 to 1 kV / cm to move about 1 m. 1 to 1 / 1,000 compared to 5 mm / s). Further, since the cooling water is passed around, the diameter of the entire migration part is several centimeters.
  • MCCCE Multi-Channel Counter Current Electrophoresis
  • This MCCCE method uses a simple electrophoresis method to efficiently concentrate, separate, and analyze a large amount of the isotopes, even if they have small mobility differences, in a short time. This is a technique developed for the first time by the present inventor as an electrophoretic method.
  • the MCCCE method is an electrophoresis method that performs concentration, separation, or analysis by moving ions of a substance to be concentrated, separated, or analyzed along the migration path, and applies a high electric field. While improving the efficiency by shortening the migration distance and the time required for migration, the insulator with high thermal conductivity provided with the migration path efficiently removes the large Joule heat generated with high electric field A large number of ions are concentrated and separated by enabling effective heat removal by using many migration paths.
  • the solution is made to flow in the direction opposite to the direction in which ions move in the electric field (countercurrent).
  • counter-current velocity By making the counter-current velocity almost the same as the ion velocity (electrophoretic velocity), it is possible to achieve substantially long-distance migration in a short migration path and improve the efficiency of concentration, separation, and analysis. ing.
  • the present inventor can perform concentration / separation with much higher efficiency than the conventional method, but the high efficiency of concentration / separation by the MCCCE method may not be sufficiently exhibited, and the stability is improved. I found out there was a problem.
  • an object of the present invention is to provide a concentration / separation / analysis technique that can stably perform concentration / separation with high efficiency using the MCCCE method described above.
  • MCCCE Method developed by the Inventor Before describing the present invention, the MCCCE method developed by the present inventor as a technique related to the present invention will be specifically described.
  • the first technique related to the MCCCE method related to the present invention is as follows: An electrophoresis apparatus for concentrating, separating or analyzing ions of a substance to be concentrated, separated or analyzed by moving along an electrophoresis path to which an electric field is applied,
  • the electrophoresis apparatus is characterized in that a plurality of the migration paths are provided in an insulator having high thermal conductivity.
  • the movement distance of ions is determined by velocity ⁇ time, but ions move further by diffusion and turbulence. Among these, the spread of the movement distance due to the turbulent flow can be suppressed by controlling the diameter of the migration path, but the spread due to diffusion cannot be suppressed.
  • the ion movement distance is suppressed from spreading by turbulent flow. Since this cylindrical capillary has a large surface area relative to its volume, it is possible to effectively remove heat from the surroundings. However, when removing heat, it is necessary to provide a large cooling space around the capillary. For example, in the case of a capillary having a diameter of about 0.1 mm ⁇ , it is necessary to provide a cooling space with a diameter of several centimeters around the capillary, and the migration path itself (capillary) is disconnected from the cross-sectional area of the entire electrophoresis apparatus including the cooling space.
  • the area ratio is as small as 10 ⁇ 4 to 10 ⁇ 5 .
  • an insulator having a high thermal conductivity is employed as a medium (electrophoresis medium) for providing a migration path, and a plurality of migration paths for migrating an ionic aqueous solution are provided in the migration medium. Therefore, even if a large amount of ion aqueous solution is migrated, the generation of turbulent flow can be sufficiently suppressed, and a sufficiently large difference in travel distance can be created in a short time, improving the efficiency of concentration, separation, and analysis. It can be improved dramatically.
  • multi-channel a migration medium provided with a plurality of migration paths (hereinafter also referred to as “multi-channel”), a large amount of aqueous ionic solution can be migrated, so that a large amount of concentration / separation / analysis is performed. be able to.
  • the diameter of the migration path can be increased to the limit where turbulent flow is expected, and a larger amount of concentration, separation, and analysis can be performed. Can do.
  • the electrophoresis apparatus can be made compact.
  • electrophoresis apparatus should be used not only for concentration / separation / analysis of isotopes as described above, but also for concentration / separation / analysis of monoatomic ions, proteins, amino acids, etc., as in the past. You can also.
  • “high thermal conductivity” means that the ions can move in the aqueous solution without any trouble, specifically, the boiling point of water (100 ° C.). This means the thermal conductivity that can remove heat so that turbulent flow that affects the concentration, separation, and analysis of ions can be maintained at a temperature that does not generate in the aqueous solution. It is appropriately selected according to the diameter, interval, number and the like.
  • the second technique related to the MCCCE method related to the present invention is: The electrophoretic device according to the first technique, wherein the electrophoretic medium provided with the electrophoretic path has a thermal conductivity of 30 W / mK or more.
  • an electrophoretic medium made of an insulator is used, and specifically, an electrophoretic medium made of an insulator having a thermal conductivity of 30 W / mK or more, more preferably 50 W / mK or more, which is about 100 times larger than that of a normal insulator.
  • the upper limit of thermal conductivity is not particularly limited, but considering cost and the like, it is preferable to set the upper limit to about 300 W / mK practically.
  • the diameter can be increased to 0.5 mm ⁇ , and the cross-sectional area can be increased to about 25 times compared to capillary electrophoresis using an ultrafine tube having a diameter of about 0.1 mm ⁇ . The amount of electrophoresis can be dramatically increased.
  • Examples of such an insulating material having a high thermal conductivity include BN, AlN, diamond, and the like.
  • the third technique related to the MCCCE method related to the present invention is as follows: In the electrophoresis medium, a plurality of migration paths having a diameter of 0.5 mm ⁇ or less are arranged at equal intervals so that the ratio of the total cross-sectional area of the migration path to the cross-sectional area of the entire migration medium is 10 ⁇ 2 to 10 ⁇ 1.
  • the electrophoretic device according to the second technique which is characterized in that:
  • an electrophoretic path having a diameter larger than that of a conventional capillary can be provided. Furthermore, by providing a plurality of such electrophoretic paths (multi-channel) Can remove heat more effectively. Specifically, the ratio of the total cross-sectional area of the migration path to the cross-sectional area of the entire migration medium is increased by 2 to 4 digits from 10 ⁇ 5 to 10 ⁇ 4 to 10 ⁇ 2 to 10 ⁇ 1 in the capillary electrophoresis method. can do.
  • the “cross sectional area of the entire electrophoresis medium” may be considered as the “cross sectional area of the entire electrophoresis apparatus”.
  • the ratio of the cross-sectional area of the entire electrophoresis medium is the same, it is preferable to provide many narrow diameter migration paths. Considering problems such as work strength, an appropriate diameter migration path is provided. It is preferable to provide it in the ratio of the cross-sectional area of the whole suitable electrophoresis medium.
  • the diameter of the migration path provided and the area ratio can be set as appropriate according to the thermal conductivity of the migration medium and the shape of the migration path.
  • the plurality of migration paths are preferably arranged at equal intervals so as not to cause heat bias in the migration medium. Further, when a plurality of migration paths are arranged at equal intervals, it is possible to easily evaluate the power that can be input.
  • the fourth technique related to the MCCCE method related to the present invention is: Furthermore, the solution in the migration path is provided with countercurrent generating means for generating a flow in a direction opposite to the ion migration direction at a speed corresponding to the ion migration speed.
  • the electrophoresis apparatus according to any one of the techniques 3 to 3.
  • the movement distance of ions can be suppressed.
  • the electrophoretic device can be further miniaturized.
  • the fifth technique related to the MCCCE method related to the present invention is as follows: An electrophoresis method for concentrating, separating or analyzing ions of a substance to be concentrated, separated or analyzed by moving along an electrophoresis path to which an electric field is applied, In the electrophoresis method, the ions are moved, concentrated, separated, or analyzed by applying an electric field to the plurality of migration paths provided in an insulator having high thermal conductivity.
  • the electric field height is proportional to the inverse of the square root of the time required for concentration, separation, and analysis, and the migration distance is given by the product of the electric field height and time.
  • MCCCE Method According to the Present Invention The present inventor has examined the cause of the failure to perform concentration and separation stably and with high efficiency in the MCCCE method described above, and a solution to that.
  • the ion migration speed by the electric field is also almost uniform. For this reason, if the counter-current that cancels the ion migration speed and shortens the distance of ion movement does not flow at a constant speed, the ions that migrate will be dispersed in velocity, and can be concentrated and separated stably with high efficiency. I can't do it.
  • the liquid flow in the narrow path is usually a laminar flow called Hagen-Poiseuille flow.
  • the velocity distribution is a quadratic function as a function of the distance from the center, so the countercurrent velocity has a large position dependency in the migration path, and countercurrent velocity dispersion occurs. To do.
  • An electrophoresis apparatus for concentrating, separating or analyzing ions of a substance to be concentrated, separated or analyzed by moving along an electrophoresis path to which an electric field is applied, A plurality of the migration paths are provided in an insulator having high thermal conductivity, Furthermore, countercurrent generating means is provided in the solution in the migration path for generating a flow having a uniform velocity distribution at a speed corresponding to the migration speed of the ions and in a direction opposite to the ion migration direction. This is an electrophoretic device.
  • a means for adding pulsation to the countercurrent such as a tubing pump, or a part having a large diameter and a part having a small diameter are alternately formed in the electrophoresis path to wave the electrophoresis path itself. It has been found that the means for forming the shape is effective.
  • the inventions according to claims 2 to 4 are based on the above findings,
  • the invention described in claim 2 The counter-current generating means pulsates the solution in the migration path at a predetermined interval for a predetermined time, so that the counter-current generating means has a speed corresponding to the ion migration speed and in a direction opposite to the ion migration direction.
  • the counter-current generating means uses a tubing pump to pulsate the solution in the migration path at a predetermined interval for a predetermined time, so that the ion migration direction at a speed corresponding to the ion migration speed.
  • the electrophoretic device according to claim 2 wherein the electrophoretic device is a countercurrent generating means for generating a flow having a uniform velocity distribution in the opposite direction.
  • the countercurrent generation means alternately forms large diameter portions and small portions in the migration path and forms the migration path in a wavy shape, thereby at a speed corresponding to the migration speed of the ions, 2.
  • the invention described in claim 5 An electrophoresis method for concentrating, separating or analyzing ions of a substance to be concentrated, separated or analyzed by moving along an electrophoresis path to which an electric field is applied, By applying an electric field to the migration path provided in a plurality of insulators with high thermal conductivity, the ions are moved,
  • a flow having a uniform velocity distribution is generated in the solution in the migration path at a speed corresponding to the migration speed of the ions in a direction opposite to the migration direction of the ions.
  • Multiple migration paths are provided in the migration medium with high thermal conductivity (multi-channel), and there is no position dependency in the opposite direction to the ion migration direction at a speed corresponding to the ion migration speed in the migration path.
  • the above electrophoresis method uses a multi-channel electrophoretic medium, and furthermore, the ion electrophoretic velocity has a uniform velocity distribution due to a constant velocity countercurrent without position dependency in the electrophoretic path. A sufficient distance can be migrated in a shorter time, and even isotopes with small mobility differences can be migrated a sufficient distance in a shorter time and concentrated and separated stably and efficiently. It can be performed.
  • the invention described in claim 7 The isotopes is an electrophoresis method according to claim 6, characterized in that the 48 Ca.
  • the electrophoresis method described above is an isotope that has been attracting attention in recent years because it can be stably concentrated and separated with high efficiency even if it is an isotope with a small difference in mobility.
  • the invention according to claim 8 provides: A concentration / separation / analysis method comprising concentrating / separating / analyzing ions of a target substance using the electrophoresis method according to claim 5.
  • electrophoresis methods enable stable migration and concentration with a large amount of ions in a shorter time and a stable separation with high efficiency. Can be concentrated, separated and analyzed efficiently.
  • FIG. 1 is a longitudinal sectional view schematically showing an electrophoresis apparatus according to an embodiment of the present invention. It is a top view of the electrophoresis medium of the electrophoresis apparatus concerning one embodiment of the present invention. It is a longitudinal cross-sectional view which shows typically the migration path of the electrophoresis apparatus which concerns on other embodiment of this invention. It is a figure which shows typically the electrophoresis apparatus in basic embodiment of MCCCE method.
  • FIG. 4 is a diagram schematically showing the electrophoresis device in the basic embodiment of the MCCCE method, and (a) shows the electrophoresis device. Sectional drawing seen from the front, (b) is a front view of the electrophoresis medium provided in the said electrophoresis apparatus.
  • FIG. 4 is a diagram schematically showing the electrophoresis device in the basic embodiment of the MCCCE method, and (a) shows the electrophoresis device. Sectional drawing seen from the front, (b) is a front view of the electrophoresis medium provided in the said electrophoresis apparatus.
  • 101 is a container
  • 102 is a migration unit
  • 103 is an anode plate
  • 104 is a cathode plate
  • 105 is a migration medium
  • 106 is a countercurrent generation unit
  • 107 is a migration path (channel)
  • 108 is a multichannel unit
  • 109 Is an anode side stirring unit
  • 110 is a cathode side stirring unit.
  • the container 101 is a cylindrical container having a substantially circular longitudinal section and closed at both ends, and the container 101 is filled with an aqueous solution containing ions of a substance to be concentrated, separated, and analyzed.
  • An anode plate 103 serving as a + electrode and a cathode plate 104 serving as a ⁇ electrode are arranged at predetermined intervals with the electrophoresis medium 105 interposed therebetween.
  • the container 101 is preferably formed using an insulator material having high thermal conductivity from the viewpoint of more effectively removing heat from the electrophoresis medium 105, but in consideration of cost and effect. Set as appropriate. In this embodiment, acrylic resin is used.
  • An anode side stirring unit 109 is provided between the anode plate 103 and the migration medium 105, and a cathode side stirring unit 110 is provided between the cathode plate 104 and the migration medium 105.
  • a migration unit 102 is formed between the first and second computers 104.
  • the migration medium 105 is provided with a large number of migration paths 107 having a circular cross-sectional shape (multichannel), and ions move through the migration path 107.
  • the diameter of the migration path 107 can be increased to 0.5 mm ⁇ , and in this embodiment, as described above, the migration with respect to the cross-sectional area of the entire migration medium is considered in consideration of problems such as work strength. Although they are arranged at equal intervals so that the ratio of the total cross-sectional area of the path 107 is 0.03, it can be increased to about 0.1.
  • a copper tube (not shown) is wound to cool the electrophoresis medium 105, and water is cooled through it.
  • the electrophoresis medium 105 is an insulating material having a high thermal conductivity, preferably a material having a thermal conductivity of 30 W / mK or higher, more preferably 50 W / mK or higher, such as BN. Since the migration medium 105 is formed using a material having such a high thermal conductivity, the same migration path 107 as that of the plurality of migration paths 107 having a diameter larger than that of capillary electrophoresis using an ultrafine tube having a diameter of about 0.1 mm ⁇ is used. Even when a high electric field is applied, the generated Joule heat can be sufficiently removed, and the occurrence of turbulent flow in the migration path 107 is suppressed.
  • the electrophoretic device is further provided with a countercurrent generating unit 106 as shown in FIG.
  • a countercurrent generation unit 106 By providing a countercurrent generation unit 106 and causing a countercurrent (countercurrent) corresponding to the ion migration speed to act, the ion movement distance is suppressed, and a substantially long migration distance is reduced by the short-distance migration path 107. Since it can ensure, it can concentrate and isolate
  • the container 101 is filled with an aqueous solution containing ions of the target isotope, for example, an aqueous solution of Ca ions containing 48 Ca.
  • a predetermined voltage is applied between the anode plate 103 and the cathode plate 104 to form an electric field.
  • a preferable electric field is 100 V / cm or more, which is an electric field of approximately the same level as that in capillary electrophoresis.
  • Such a large electric field can be applied because, as described above, the migration path 107 is provided in the migration medium 105 having a high thermal conductivity, so that the generated Joule heat can be sufficiently removed. This is because the generation of turbulent flow in the path 107 is suppressed.
  • concentration / separation / analysis of ions by electrophoresis is performed by applying an electric field to the migration path 107 and the difference in ion mobility is sufficient for concentration / separation / analysis. It can be achieved by migrating ions until a difference in distance is created, but in order to concentrate, separate, and analyze in large quantities in a short time, it creates a difference in travel distance greater than the spread due to diffusion, It is necessary to appropriately remove Joule heat corresponding to the electric power given by the product of the voltage.
  • the present inventor pays attention to two methods: a method of increasing the efficiency of ion concentration (separation) and a method of removing generated Joule heat,
  • A) By providing the narrow migration path (channel) 107 in the migration medium 105 made of an insulator having a high thermal conductivity, the generation of turbulent flow is suppressed and the generated Joule heat is effectively removed.
  • B) A large amount of separation is possible by performing multi-channeling in which the number of migration paths (channels) 107 is increased.
  • Such an electrophoresis method is a multi-channel counter-current electrophoresis method (MCCCE: Multi-Channel Counter Current Electrophoresis), and the basic concept of the MCCCE method will be described below.
  • MCCCE Multi-Channel Counter Current Electrophoresis
  • Multi-channel countercurrent electrophoresis (a) the cross-sectional area of the basic equation loading medium 105 S A, the sum of the opening cross-sectional area of the multi-channel portion 108 and S MC. The voltage is applied at the electrode.
  • the basic equations are Poisson's equation (1.1), charge conservation law (1.2), and Ohm's law (1.3) that give the relationship between charge density and potential. It is expressed as follows. V is a potential, ⁇ is a charge density,
  • is the Laplace operator
  • is the Nabla differential operator
  • is the dielectric constant of the aqueous solution
  • is the electrical conductivity of the aqueous solution (ionic aqueous solution).
  • the current density in the multichannel unit 108 is expressed by the following equation (2.1).
  • A represents a stirring part and MC represents a multichannel part.
  • the opening cross-sectional area S MC of the multi-channel unit 108 much smaller compared to the cross-sectional area S A of the migration path, i.e.,
  • the electric field in the multichannel part 108 is sufficiently larger than that of the stirring part, that is,
  • the electric power between the electrodes is substantially given by IV of the product of the current and the voltage between the electrodes. From the above formula (2.3), in the case of the electric power in the migration path 107 of the multichannel unit 108, it is consumed by the stirring unit. Power to be used, ie
  • the migration speed of Ca ions is 0.59 mm / s / [100 V / cm]
  • the migration speed of Cl ions is 0.77 mm / s / [100 V / cm].
  • the spread of the position after a certain time (t seconds) is given by a Gaussian function, and the width ( ⁇ ) representing the spread is expressed by the following equation (3.1) using the diffusion coefficient D and the time t, Proportional to the square root of time.
  • the diffusion coefficient of Ca ions in water is 7.9 ⁇ 10 ⁇ 10 [m 2 / s] at room temperature.
  • the specific value of ⁇ is, for example, 0.039 mm for 1 second and 3.9 mm for 10000 seconds.
  • the mobility varies depending on the isotope, for example, the difference between 40 Ca and 48 Ca.
  • the electric field E is given by the reciprocal of the square root of time. That is, if the electric field is increased by n times, the time required for the separation is shortened by 1 / n 2 , and the migration distance given by the product of the electric field and time in Equation (3.2) is 1 / n.
  • Non-Patent Document 1 electrophoresis corresponding to 23 m is performed in 900 hours by capillary electrophoresis, and a concentration of 30% is achieved. At this time, it is presumed that the electric field was 1.2 V / cm from the migration speed of Ca.
  • a large number of migration paths (channels) are provided in a migration medium manufactured using a substance having high thermal conductivity in order to increase the migration amount. This makes it possible to increase the ratio of the cross-sectional area of the migration path from 10 ⁇ 1 to 10 ⁇ 2 while effectively performing the cooling, as described below.
  • the power P c generated in each channel can be obtained by multiplying the power density ⁇ c in the channel by the volume, and can be expressed by the following equations (4.2) and (4.3).
  • the amount of heat removed is proportional to ⁇ when the temperature gradient gradT is constant.
  • the ⁇ of a resin tube used in capillary electrophoresis is about 0.5.
  • the electrophoresis medium used in this embodiment for example, when BN is used, the crystal is 2000, and the sintered ceramic is also used. Since it is possible to easily obtain ⁇ of about 50, it is possible to increase J from 100 times to several thousand times.
  • the cross-sectional area increases 25 times, and the number of migration can be further increased by installing more channels (multi-channel).
  • each channel serves as a heat source.
  • the heat sources exist uniformly.
  • the multichannel region is circular.
  • the multi-channel region and an inner radius R MC the position of the radius R C is that in contact with the cooling system, the amount of heat escaping from the side can be expressed as the following equation (4.5).
  • the power density [rho P is obtained by dividing the total power generated in each channel by the volume of the multi-channel electrophoresis medium, it is the average power density.
  • T C is the temperature of the cooling system around.
  • this T is sufficiently lower than 100 ° C., the generation of turbulent flow can be suppressed.
  • the power density is 1.2 ⁇ 10 6 when trying to suppress the temperature rise to 50 ° C. 7 [W / m 3 ] (12 [W / cm 3 ]) is obtained, and 12 W can be charged per 1 cc of water. Comparing this with the power density in the case of Non-Patent Document 1, it can be seen that in Non-Patent Document 1 it is about 0.1 W per cc, and by applying the present invention, it can be seen that power can be input almost 100 times larger.
  • the electrophoresis medium multi-channel medium
  • 0.5 mm ⁇ holes are provided every 2.5 mm, and the total cross-sectional area of the channel is 3.14 of the cross-sectional area of the entire electrophoresis medium. % (3.14 ⁇ 10 ⁇ 2 ). From the viewpoint of suppressing the temperature rise, there is no problem even if the arrangement density of the migration path is increased and the total ratio of the cross-sectional areas of the channels exceeds 10 ⁇ 1. In consideration of the above, it is preferable that the ratio of the total cross-sectional area of the channel is 10 ⁇ 2 to 10 ⁇ 1 (1 to 10%).
  • Embodiment of the MCCCE method according to the present invention As described above, in order to achieve high-efficiency concentration / separation in the MCCCE method, a difference in mobility due to isotopes is generated from velocity dispersion due to thermal motion of ions. It is necessary to increase the moving distance of ions, and countercurrent is generated as a means for this.
  • countercurrent generating means for generating a flow with a uniform velocity distribution that does not become laminar flow and has no position dependency in the migration path is provided, thereby stably and highly efficiently. Concentrating and separating.
  • Electrophoresis Device The inventor newly created an electrophoretic device as shown in FIG. 1 as an electrophoretic device according to the present embodiment in conducting an experiment for carrying out the present invention.
  • 48 Ca contained in a calcium chloride solution (CaCl 2 solution) was concentrated using this electrophoresis apparatus.
  • FIG. 1 1 is an electrophoresis apparatus, 11 is a case, and 12 is an electrophoresis medium.
  • A is the inlet of the CaCl 2 solution
  • B is the outlet of the CaCl 2 solution
  • C is the inlet of the hydrochloric acid solution
  • D is the outlet of the hydrochloric acid solution
  • E is the cathode
  • F is the anode
  • G is the cation.
  • H is an exchange membrane
  • H is a flow path of cooling water provided to cool the electrophoresis medium 12.
  • the case 11 is made of acrylic resin having an outer shape of 80 mm ⁇ (diameter) ⁇ 130 mm (height), and the inside is formed to 40 mm ⁇ , and the electrophoresis medium 12 is disposed.
  • the migration medium 12 is a BN (boron nitride) plate having a thickness of 10 mm, and a total of 69 holes of 0.8 mm ⁇ are formed at intervals of 4 mm to form each channel 13 (see FIG. 2).
  • the diameter of the channel 13 is 0.8 mm ⁇ which is slightly larger than the channel diameter (about 0.5 mm ⁇ ) of the apparatus shown in FIG. Up to about 1 mm ⁇ can be enlarged without problems.
  • a CaCl 2 solution is introduced from the inlet A.
  • Ca ions in the solution flowing in from the inflow port A migrate from the top to the bottom in the figure by an electric field formed by applying a voltage to the cathode E and the anode F.
  • the speed at which Ca ions in the solution migrate and the speed of the solution flow (counterflow) from the bottom to the top are adjusted so as to be in a substantially balanced state.
  • the relative Ca ion migration speed becomes very small by generating a countercurrent that is a reverse flow at the same speed as the Ca ion migration speed to be concentrated and separated, Even with a very short migration path of 10 mm, the actual migration distance can be greatly extended.
  • the Ca ion to migrate flows downward through each channel formed in the electrophoresis medium 12, and after passing through the cation exchange membrane G freely, when it reaches the cathode E, it receives electrons and becomes neutral, Ca adheres to the cathode E.
  • the anion Cl ions generated together with Ca ions migrate toward the anode F at a very high speed due to the upward electric field and the flow of the solution.
  • the hydrochloric acid solution is circulated from the inlet C and from the outlet D to circulate the hydrochloric acid solution. This is performed for the purpose of preventing deterioration of conduction of the cathode E accompanying the adhesion of Ca by dissolving Ca adhering to the cathode E in a hydrochloric acid solution.
  • a BN (boron nitride) plate that is an insulator and has high thermal conductivity is preferably used.
  • the thermal conductivity of the BN plate used in the present embodiment is 63 [W / (mK)], which is almost 100 times higher than that of water or a general insulator.
  • the MCCCE method according to the present embodiment can perform concentration and separation with extremely high efficiency as in the basic mode of the MCCCE method described above. This point partially overlaps with the contents already described in the basic form of the MCCCE method described above, but will be described in detail below.
  • the migration speed of ions will be described.
  • the ion migration speed is given by the product of mobility and electric field.
  • the mobility and concentration of cations and anions give electrical conductivity.
  • the mobility of Ca ions is 0.59 mm / s / [100 V / cm]
  • the mobility of Cl ions is 0.77 mm / s / [100 V / cm].
  • the spread of the migration distance due to diffusion can be obtained by a Gaussian function, and the width ( ⁇ ) representing the spread of the migration distance is calculated using the diffusion coefficient D and time.
  • the diffusion coefficient of Ca ions in water obtained by this equation is 7.9 ⁇ 10 ⁇ 10 [m 2 / s] at room temperature.
  • the specific value of the migration distance spread ( ⁇ ) at this time is, for example, 0.039 mm in 1 second and 3.9 mm in 10,000 seconds.
  • concentration / separation can be performed with high efficiency by widening the difference in migration distance between isotopes in a short time. Therefore, in this embodiment, effective concentration (separation) is performed by setting a high electric field and widening the difference in migration distance between isotopes in a short time.
  • the mobility differs depending on the isotope. For example, the difference in mobility between 40 Ca and 48 Ca.
  • the electrophoresis apparatus uses an electrophoresis medium composed of a material having high thermal conductivity, as in the basic form of the MCCCE method described above, Joule heat generated with a high electric field is generated. Heat can be effectively removed.
  • BN plate having water conductivity of 63 [W / (mK)] or almost 100 times higher than that of a general insulator is migrated. Used as a medium.
  • the migration medium is adjusted so that the temperature rise in each channel is lower. It is preferable to be configured.
  • the temperature distribution in the BN plate is the heat conduction equation under the boundary condition that Joule heat is uniformly generated in the solution in the channel and the temperature around the BN plate is kept constant by cooling.
  • the temperature rise around the center of the BN plate is set to be 1.1 times the temperature rise at the center of each channel.
  • Cooling of the multi-channel region In order to operate the electrophoretic apparatus stably, it is necessary that the temperature is sufficiently lower than 100 degrees in any part of the apparatus. If the diameter of the channel is reduced and the number of channels is increased, the area of the migration path (channel area ⁇ number of channels) is the same and the upper limit temperature is the same, so there is room for increasing the efficiency of the entire apparatus. . However, the improvement in the efficiency of the entire apparatus is only a little less than twice, and on the other hand, a high level of work accuracy is required to reduce the diameter of the channel. The same size as the basic form of the MCCCE method.
  • the movement distance of ions generated by the difference in mobility due to isotopes is greater than the velocity dispersion due to thermal motion of ions. It is necessary to make it large, and countercurrent is generated as the means.
  • countercurrent uniform countercurrent
  • ions can migrate uniformly in the narrow channel, and high-efficiency concentration / separation can be stably achieved. This will be specifically described below.
  • the counterflow that has become the Hagen-Poiseuille flow has a position dependency that the flow velocity at the wall surface is 0 and the flow velocity at the center is the highest.
  • the average speed is ⁇ 0 and the center speed is 2 ⁇ 0 .
  • A is the radius of the migration path.
  • U is the countercurrent flow velocity
  • L is the radius of the cylindrical migration path
  • is the kinematic viscosity coefficient.
  • the kinematic viscosity coefficient ⁇ of water is 1 ⁇ 10 ⁇ 6 m 2 / s, so the Reynolds number is 0.5. It becomes.
  • the Reynolds number is less than 2000, a laminar flow is generated.
  • a laminar flow Hagen-Poiseuille flow
  • the dispersion ⁇ ⁇ of the velocity distribution can be obtained by the following equation, and it can be seen that a velocity dispersion of 33% occurs.
  • This value is much larger than the difference in velocity due to the difference in mobility between isotopes, that is, a few percent of the velocity distribution of migrating ions. Therefore, in order to stably achieve high-efficiency concentration / separation. Thus, it is understood that it is necessary to generate a position-independent countercurrent (uniform countercurrent) in which the counterflow velocity dispersion is sufficiently suppressed.
  • the countercurrent should not be turbulent in nature. As described above, the turbulent flow returns the ions concentrated and separated by the electric field to the mixed state again.
  • the first method is a method of forming a pulsating flow by adding pulsation to a countercurrent flow.
  • the Hagen-Poiseuille flow appears when the Reynolds number is small and constantly flows, and generates a velocity distribution in which the center is high speed and the periphery is low speed. Therefore, by adding pulsation to the countercurrent flow to form the pulsation flow, a countercurrent flow that is not the Hagen-Poiseuille flow is formed. As a result, a velocity distribution with a high speed at the center and a low velocity at the periphery does not occur, and a countercurrent (uniform countercurrent) with a uniform velocity distribution without position dependency can be generated.
  • the inventor started an experiment using a tubing pump, but changed to a plunger pump when the concentration was three times as great as the tubing pump was used.
  • the voltage stabilizes when the flow rate is stable, but the tubing pump digitally determines the flow rate because it is difficult to accurately reproduce the flow rate due to the change in the flow rate due to the deformation of the tube over time. It was changed to a plunger pump that can be determined and expected to be reproduced accurately.
  • the second method is a method in which the migration path itself is formed in a waved shape by alternately forming large diameter portions and small portions in the migration path. Specifically, as shown in FIG. 3, a migration path (channel) 15 in which large portions 15 a and small portions 15 b are alternately repeated in the longitudinal direction is formed on the migration medium 14.
  • each migration path is created with a 20 mm-thick BN plate by alternately repeating a hole of 0.8 mm and 2 mm diameter every 5 mm for a thickness of 20 mm.
  • the large part and the small part form an electrophoresis path that is alternately repeated in the longitudinal direction.
  • the average flow rate of the pulsating flow solution, the pulsation interval, the fluctuation range, and the thick part for making the migration path wavy is related to the physical properties of the solution to be concentrated / separated so that the countercurrent flow rate is balanced with the migration speed, laminar flow is maintained, and uniform countercurrent is formed. It is determined accordingly.
  • 48 Ca is concentrated and separated by generating a countercurrent using a tubing pump.
  • a countercurrent flow velocity of 0.72 mm / s is applied by applying an electric field (120 V / cm) exceeding the electric field (about 100 V / cm) in capillary electrophoresis (CE).
  • This flow rate corresponds to an inflow rate of 1.5 cc / min, and this liquid feed (inflow) was performed using a tubing pump (SMP-23AS manufactured by ASONE).
  • the countercurrent is 2.2 mm / pulse (0.72 mm / s ⁇ 3 seconds / pulse) and proceeds as a pulsating flow.
  • this flow rate has an error of about 10% because it is difficult to accurately measure with a tubing pump and there is a problem of generation of bubbles, which will be described later.
  • the voltage applied between the electrodes forms an electric field in the migration path, but approximately 80% of the voltage is BN based on the voltage of the probe in the vicinity and simple calculation. It can be estimated that it is in the migration path of the plate.
  • the countercurrent velocity is set to be constant, and the electric field is changed to see how the electric field movement speed changes the concentration with respect to the constant countercurrent velocity. It was.
  • the current varies with the concentration of the solution even in the same electric field.
  • the concentration of the CaCl 2 solution was 0.01 N (0.01 mol / liter).
  • This power density indicates that if the heat is not removed, power that increases in temperature by about 20 degrees per second can be input to the migration path.
  • the temperature rise in each migration path having a diameter of 0.8 mm is 5.3 degrees, and the temperature rise in a radius of 20 mm is 6 degrees. Therefore, the overall temperature rise is 11 degrees, and the migration path can be called a channel. It can be seen that this temperature rise is suppressed sufficiently low by the size of ⁇ and the high thermal conductivity of BN.
  • the temperature increase due to the Joule heat generated in this embodiment is calculated to be about 10 degrees, so the concentration has a margin of about 5 times, but first, confirmation of the concentration is important first, so it is safe. The experiment was conducted at a concentration at which the temperature could be controlled.
  • Bubbles are generated at the electrode. If the bubbles block the migration path of the BN plate, the countercurrent speed changes and the relationship with the voltage is broken.
  • the apparatus when the apparatus was placed horizontally to remove the gas, the gas could be extracted without blocking the migration path of the BN plate.
  • the purpose of degassing could be achieved, as long as it was placed horizontally, the effect of concentration could not be confirmed.
  • the condition that the heavy solution is on the lower side always holds, but if it is placed horizontally, convection due to a difference in concentration or temperature will occur, eliminating the effect of concentration. It is thought that it has stopped.
  • Table 1 shows the concentration / separation results obtained when the voltage was changed while the flow rate of 1.5 cc / m was fixed.
  • the evaluation of the concentration is performed by measuring the isotope ratio of the solution accumulated in about 1 hour using an apparatus having a lower space of 25 cc and an upper side of 44 cc. In principle, it is thought that the concentration starts from almost the same value at first, and the concentration increases with time.
  • the abundance ratio ⁇ (48/43) between 48 Ca and 43 Ca was measured.
  • an ICP mass spectrometer was used as a mass spectrometer.
  • 40 Ca is masked by 40 Ar because argon gas is used for the ion source, and 40 Ca cannot be measured. Therefore, in order to convert the concentration of 48 Ca and 43 Ca to the concentration of 48 Ca and 40 Ca, Reference Y. Fujii, et al. , Zeitschrift for Natureshunching AA Journal of Physical Sciences, 40, 8 (1985) 843-848. Expression showing the relationship in which the mass dependence of the degree of concentration described in is proportional to the mass difference
  • Table 1 shows the values of ⁇ (48/40) obtained using A 43 and A 48 are the abundance ratios of 43 Ca and 48 Ca, respectively.
  • the optimal voltage is determined by determining the flow rate, and the concentration is expected to be a certain value, but the actual result is not stable. This is considered to be caused by the fact that the flow rate is substantially changed by about 10% due to the bubbles blocking a part of the migration path in addition to the problem that the flow rate is not stabilized by the above-described tubing pump.
  • complete reproduction is difficult, the tendency to observe good enrichment is consistent.
  • the isotope ratio (A 43 / A 48 ) 0.201 at 170 V shown in Table 1 is the highest so far, but the next highest isotope ratio (A 43 / A 48 ) Although not shown in Table 1, it is 0.26, which is a little smaller than the previous 0.201, but a high enrichment is obtained.
  • the technology provided by the present invention is a cost-effective concentration / separation technology, not only the above-described 48 Ca concentration / separation, but also a large amount of concentration in basic research although there is no gas compound.
  • Nd nano-dide
  • it can be applied to all elements and compounds that become charged ions in solution, it can also be applied to mass concentration / separation of small amounts of elements, molecules, and polymers analyzed by electrophoresis, Furthermore, it can be applied to the concentration and separation of nuclear fuel and the selection of radioisotopes from radioactive waste.

Abstract

Provided is a concentration/separation/analysis technique with which it is possible to perform concentration and separation stably and efficiently using the MCCCE method. The present invention is an electrophoresis apparatus for concentrating/separating or analyzing ions of a substance to be concentrated/separated or analyzed by moving the ions along a migration path on which an electric field has been applied. In the electrophoresis apparatus, multiple migration paths are provided in a high thermal conductivity insulator and the electrophoresis apparatus is provided with a countercurrent-generating means for generating a flow that has a uniform speed distribution and is in the direction opposite to the ion migration direction at a speed corresponding to the ion migration speed in the solution in the migration paths. The present invention is an electrophoresis apparatus, wherein the countercurrent-generating means generates a flow that has a uniform speed distribution and is in the direction opposite to the ion migration direction at a speed corresponding to the ion migration speed by applying pulses to the solution in the migration paths for a prescribed time and at a prescribed interval.

Description

電気泳動装置、電気泳動法および電気泳動法を用いた濃縮・分離・分析方法Electrophoresis apparatus, electrophoresis method and concentration / separation / analysis method using electrophoresis method
 本発明は、電気泳動装置、電気泳動法および電気泳動法を用いた濃縮・分離・分析方法に関し、特に、同位体元素の濃縮・分離・分析などに好適な電気泳動装置、電気泳動法および電気泳動法を用いた濃縮・分離・分析方法に関する。 The present invention relates to an electrophoresis apparatus, an electrophoresis method, and a concentration / separation / analysis method using the electrophoresis method, in particular, an electrophoresis apparatus, electrophoresis method, and electrophoresis suitable for concentration / separation / analysis of isotope elements. The present invention relates to a concentration / separation / analysis method using electrophoresis.
 近年、核化学分野や生物化学分野など様々な分野で、種々の元素の同位体が使用されている。 In recent years, isotopes of various elements are used in various fields such as nuclear chemistry and biochemistry.
 同位体元素を濃縮・分離する方法として、従来より、主に、遠心分離法が用いられている。 As a method for concentrating and separating isotope elements, a centrifugal separation method has been mainly used conventionally.
 しかし、この遠心分離法を用いた同位体元素の濃縮・分離には、濃縮・分離対象の元素が含まれた気体を必要とするため、気体の化合物が存在しないCa(カルシウム)等の同位体の濃縮・分離には採用することができない。 However, since enrichment / separation of isotope elements using this centrifugation method requires a gas containing the element to be enriched / separated, an isotope such as Ca (calcium) without a gaseous compound. It cannot be used for concentration / separation.
 そこで、このように気体の化合物が存在しない元素から同位体を濃縮・分離する場合には、質量分析法が採用されている。この方法は、真空中で原子をイオン化し、電界によりイオンビームとして加速し、磁場で曲げた場合、同位体の質量差により曲率が相違することを利用して同位体の濃縮・分離を行うものであり、殆どの元素の濃縮が可能であるが、濃縮に際して多大の電力を消費するためコストが掛かり、非常に高価とならざるを得ない。例えば、90%以上に濃縮された48Caは、一般的に、1g当たり1000万円を超える価格となっている。 Thus, mass spectrometry is employed in the case of concentrating and separating isotopes from elements that do not have gaseous compounds. In this method, atoms are ionized in a vacuum, accelerated as an ion beam by an electric field, and bent and bent in a magnetic field, using the difference in curvature due to the mass difference of the isotopes to concentrate and separate isotopes. Although most elements can be concentrated, a large amount of electric power is consumed for the concentration, which is costly and very expensive. For example, 48 Ca concentrated to 90% or more generally has a price exceeding 10 million yen per gram.
 そこで、このように気体の化合物が存在しないCa等から同位体を安価に濃縮・分離することができる方法が種々検討されている。 Therefore, various methods for concentrating and separating isotopes at low cost from Ca and the like in which no gaseous compound is present have been studied.
 一例として、同位体によって生じる化学反応率の差を利用して同位体の濃縮・分離を行うことが検討されたが、この方法には、適用し得る元素が限られるという問題がある。 As an example, it has been studied to enrich and separate isotopes using the difference in chemical reaction rate caused by isotopes, but this method has a problem that applicable elements are limited.
 しかし、質量分析法以外の方法では実験室レベルの少量の濃縮・分離に留まっており、現実的な量を大量に効率よく濃縮・分離することには未だ到達できていない。 However, methods other than mass spectrometry have been limited to a small amount of concentration / separation at the laboratory level, and it has not yet been possible to efficiently concentrate and separate large amounts of practical amounts.
 このような状況下、単原子イオンやタンパク質、アミノ酸などの分離、分析に使用されてきた電気泳動法を用いて同位体の濃縮・分離を行うことが、適用し得る元素が広範なことや、簡便な方法であるなどの観点より、注目されている(例えば、特許文献1、2および非特許文献1)。 Under such circumstances, it is possible to concentrate and separate isotopes using electrophoresis methods that have been used for separation and analysis of monoatomic ions, proteins, amino acids, etc. It attracts attention from the viewpoint of being a simple method (for example, Patent Documents 1 and 2 and Non-Patent Document 1).
 この電気泳動法は、溶液中で電荷を持つ粒子、即ちイオン(高分子やタンパク質を含む)が、電場が掛けられた際に移動する性質を利用するものであり、溶液中におけるイオンの移動速度はイオン固有の移動度(電場と速度の比)で決定されるため、移動度の差と泳動距離の積により各イオンを分別することができる。 This electrophoresis method utilizes the property that particles (including polymers and proteins) that are charged in a solution move when an electric field is applied to the charged particles in the solution. Is determined by the mobility inherent in the ions (ratio of electric field and velocity), so that each ion can be separated by the product of the difference in mobility and the migration distance.
 しかし、従来の電気泳動法を用いて、同位体の濃縮を行おうとすると、以下に示すような解決すべき点があった。 However, when attempting to enrich isotopes using the conventional electrophoresis method, there were the following problems to be solved.
 即ち、電気泳動法では、溶液に電場を掛けてイオンを移動させているが、単原子イオンにおける同位体間の移動度の差は基本的に小さいため、同位体を濃縮・分離するためには、高い電場を掛けて泳動距離を長くして、移動距離の差を大きくする必要がある。しかし、高い電場を掛けて大きな電流を通電すると、その通電に伴い大きなジュール熱が発生して、溶液に対流などの乱流を生じさせる恐れがある。この乱流は、イオンの移動に乱れを生じさせるため、泳動距離を長くしても、充分な同位体の濃縮・分離が阻害される。また、沸騰に至った場合には乱流はさらに大きくなるため、イオンが移動できなくなる。 In other words, in electrophoresis, ions are moved by applying an electric field to the solution, but the difference in mobility between isotopes in monoatomic ions is basically small, so in order to concentrate and separate isotopes. It is necessary to apply a high electric field to increase the migration distance and to increase the difference in movement distance. However, when a large electric current is applied with a high electric field applied, a large Joule heat is generated with the energization, which may cause turbulence such as convection in the solution. Since this turbulent flow disturbs the movement of ions, even if the migration distance is increased, sufficient concentration and separation of isotopes are hindered. Moreover, since turbulence becomes larger when boiling is reached, ions cannot move.
 通電せずに電場を掛けると、イオンが電場を移動することにより、電荷の分布(pH勾配)が生じるが、この電荷の分布はそれ自身が新たな電場を形成して、元々掛けていた電場を相殺する(打消す)方向に作用するため、双方の電場がちょうど釣り合った段階でイオンの移動が停止するという問題もある。 When an electric field is applied without energization, ions move through the electric field, resulting in a charge distribution (pH gradient). This charge distribution itself forms a new electric field, and the electric field originally applied. Therefore, there is also a problem that the movement of ions stops when both electric fields are just balanced.
 これらの問題を解決する手段として、径が小さなキャピラリー(毛細管)内でイオンを泳動させるキャピラリー電気泳動法が提案されている。径が小さなキャピラリーを用いるため、冷却が容易で、乱流が発生しにくい。しかし、径が小さなキャピラリーを用いる限り、一度に分離できる同位体の量を多くすることが困難であり、工業的に実用的な手段とは言えない。 As a means for solving these problems, a capillary electrophoresis method in which ions are migrated in a capillary having a small diameter (capillary tube) has been proposed. Since a capillary with a small diameter is used, cooling is easy and turbulence is unlikely to occur. However, as long as a capillary with a small diameter is used, it is difficult to increase the amount of isotopes that can be separated at one time, and this is not an industrially practical means.
 そこで、ゲルやスポンジやイオン交換樹脂などを充填して、乱流の発生を抑制することにより、より径が大きな泳動部に乱流を押さえる機能をもたせ、一度に大量の同位体を濃縮することが検討されている。 Therefore, it is possible to condense a large amount of isotopes at once by filling a gel, sponge, ion exchange resin, etc., and suppressing the generation of turbulent flow so that the migration part having a larger diameter has a function of suppressing turbulent flow. Is being considered.
 しかし、これらゲルやスポンジやイオン交換樹脂などが充填された泳動部を用いた場合であっても、ジュール熱の発生を考慮すると、掛けることができる電圧(電流)には限界があり、イオンを短時間で長距離移動させることは容易ではなく、同位体を充分に濃縮・分離するには長時間を要するため、効率的な手段とは言えない。 However, even when using an electrophoresis part filled with such gel, sponge, ion exchange resin, etc., considering the generation of Joule heat, there is a limit to the voltage (current) that can be applied. It is not easy to move a long distance in a short time, and it takes a long time to fully concentrate and separate isotopes, so it is not an efficient means.
 例えば、泳動部の径を大きくした電気泳動法を用いて、カルシウム同位体の分離を行った例が、非特許文献1に示されている。ここでは、1.2V/cm程度の電圧を約900時間掛けて23m移動させることにより、48Caを40Caに対して自然存在比の0.187%から約30%濃縮している。 For example, Non-Patent Document 1 shows an example in which calcium isotopes are separated using an electrophoresis method in which the diameter of the migration part is increased. Here, 48 Ca is concentrated from 0.187% of natural abundance to about 30% with respect to 40 Ca by moving a voltage of about 1.2 V / cm for 23 m over about 900 hours.
 上記においては、ジュール熱による温度上昇を抑えながら大量の泳動を行うために、電圧を1.2V/cm程度と低く設定すると共に、電流密度を0.1~0.2A/cm(ジュール熱で0.1~0.2W/cmに相当)程度にすることで温度を80℃程度に抑えている。しかし、乱流を抑えても、拡散による泳動距離の広がりは避けられない。このため、高い濃縮度を達成するには同位体間の泳動距離の差を、前記した拡散による泳動距離の広がりよりも充分大きくすることが必要であり、約900時間という長時間を掛けて長距離の泳動をさせている。 In the above, in order to perform a large amount of migration while suppressing the temperature rise due to Joule heat, the voltage is set as low as about 1.2 V / cm and the current density is set to 0.1 to 0.2 A / cm 2 (Joule heat). The temperature is suppressed to about 80 ° C. by the range of 0.1 to 0.2 W / cm 3 . However, even if turbulence is suppressed, the spread of the migration distance due to diffusion is inevitable. For this reason, in order to achieve high enrichment, it is necessary to make the difference in migration distance between isotopes sufficiently larger than the spread of migration distance due to the diffusion described above, which takes a long time of about 900 hours. The distance is migrated.
 このときの移動速度は、内径0.1mmのキャピラリーで0.1~1kV/cm程度の電圧をかけて1m程度泳動させる一般的なキャピラリー電気泳動法における金属イオンの移動速度(1kV/cmの電圧で5mm/s程度)に比べ、百分の1から千分の1である。また、周りに冷却水を通すため、泳動部全体としての直径は数cmになる。 The moving speed at this time is the moving speed of metal ions (a voltage of 1 kV / cm) in a general capillary electrophoresis method in which a capillary of 0.1 mm in inner diameter is applied with a voltage of about 0.1 to 1 kV / cm to move about 1 m. 1 to 1 / 1,000 compared to 5 mm / s). Further, since the cooling water is passed around, the diameter of the entire migration part is several centimeters.
 このような従来の電気泳動法に対して、本発明者は、複数の泳動路(以下、「マルチチャネル」ともいう)が設けられた泳動媒体を用いることで大量の同位体を濃縮・分離するマルチチャネル向流電気泳動法(MCCCE:Multi-Channel Counter Current Electrophoresis)を提案した(特許文献3)。 In contrast to such a conventional electrophoresis method, the present inventor concentrates and separates a large amount of isotopes by using a migration medium provided with a plurality of migration paths (hereinafter also referred to as “multi-channel”). A multi-channel counter-current electrophoresis method (MCCCE: Multi-Channel Counter Current Electrophoresis) was proposed (Patent Document 3).
 このMCCCE法は、簡便な電気泳動法を用いて、移動度の差が小さい同位体であっても、短時間で充分な距離を泳動させて、効率良く、大量に濃縮・分離・分析することができる電気泳動法として、本発明者により初めて開発された技術である。 This MCCCE method uses a simple electrophoresis method to efficiently concentrate, separate, and analyze a large amount of the isotopes, even if they have small mobility differences, in a short time. This is a technique developed for the first time by the present inventor as an electrophoretic method.
 具体的に、MCCCE法は、濃縮・分離または分析の対象である物質のイオンを、泳動路に沿って移動させることにより濃縮・分離または分析を行う電気泳動法であって、高い電場を掛けることで泳動距離と泳動に掛かる時間を短くして効率を向上させる一方で、泳動路が設けられた熱伝導率の高い絶縁体により、高い電場に伴って発生する大きなジュール熱を効率的に取り去ると共に泳動路を多数にして有効な除熱を可能にすることで、大量のイオンの濃縮・分離を実現している。 Specifically, the MCCCE method is an electrophoresis method that performs concentration, separation, or analysis by moving ions of a substance to be concentrated, separated, or analyzed along the migration path, and applies a high electric field. While improving the efficiency by shortening the migration distance and the time required for migration, the insulator with high thermal conductivity provided with the migration path efficiently removes the large Joule heat generated with high electric field A large number of ions are concentrated and separated by enabling effective heat removal by using many migration paths.
 そして、このMCCCE法においては、電場でのイオンが移動する方向と逆の方向に溶液を流している(向流)。この向流の速度をイオンの電場による移動速度(泳動速度)とほぼ同じにすることで、短い泳動路で実質的に長距離の泳動を達成させて、濃縮・分離・分析の効率を向上させている。 And in this MCCCE method, the solution is made to flow in the direction opposite to the direction in which ions move in the electric field (countercurrent). By making the counter-current velocity almost the same as the ion velocity (electrophoretic velocity), it is possible to achieve substantially long-distance migration in a short migration path and improve the efficiency of concentration, separation, and analysis. ing.
特開2002-79059号公報JP 2002-79059 A 特開2010-29797号公報JP 2010-29797 A 特開2014-97463号公報JP 2014-97463 A
 本発明者は、上記したMCCCE法によれば、従来に比べてはるかに高い効率で濃縮・分離が行えるが、MCCCE法による濃縮・分離の高い効率が充分に発揮されない場合があり、安定性に問題があることが分かった。 According to the above-described MCCCE method, the present inventor can perform concentration / separation with much higher efficiency than the conventional method, but the high efficiency of concentration / separation by the MCCCE method may not be sufficiently exhibited, and the stability is improved. I found out there was a problem.
 そこで、本発明は、上記したMCCCE法を用いて、安定的に高い効率で濃縮・分離を行うことができる濃縮・分離・分析技術を提供することを課題とする。 Therefore, an object of the present invention is to provide a concentration / separation / analysis technique that can stably perform concentration / separation with high efficiency using the MCCCE method described above.
1.本発明者が開発したMCCCE法
 本発明について説明する前に、本発明に関連する技術として本発明者が開発した上記MCCCE法について具体的に説明する。
1. MCCCE Method Developed by the Inventor Before describing the present invention, the MCCCE method developed by the present inventor as a technique related to the present invention will be specifically described.
 本発明に関連するMCCCE法に関する第1の技術は、
 濃縮・分離または分析の対象である物質のイオンを、電場が掛けられた泳動路に沿って移動させることにより濃縮・分離または分析する電気泳動装置であって、
 前記泳動路が、高熱伝導率の絶縁体中に複数設けられていることを特徴とする電気泳動装置である。
The first technique related to the MCCCE method related to the present invention is as follows:
An electrophoresis apparatus for concentrating, separating or analyzing ions of a substance to be concentrated, separated or analyzed by moving along an electrophoresis path to which an electric field is applied,
The electrophoresis apparatus is characterized in that a plurality of the migration paths are provided in an insulator having high thermal conductivity.
 イオンの移動距離は速度×時間により決定されるが、イオンは拡散や乱流によりさらに広がって移動する。この内、乱流による移動距離の広がりは、泳動路の径を制御することにより抑制することができるものの、拡散による広がりは抑制することができない。 The movement distance of ions is determined by velocity × time, but ions move further by diffusion and turbulence. Among these, the spread of the movement distance due to the turbulent flow can be suppressed by controlling the diameter of the migration path, but the spread due to diffusion cannot be suppressed.
 このため、イオンの効率的な濃縮・分離を行うためには、電気泳動において掛ける電場を高くして、対象となるイオンとそれ以外のイオンとの間における移動距離の差を、拡散による移動距離の広がりよりも大きくなるようにして、これらを明確に分離させる必要がある。 For this reason, in order to efficiently concentrate and separate ions, the electric field applied in electrophoresis is increased, and the difference in travel distance between the target ion and other ions is determined by the travel distance by diffusion. It is necessary to separate them clearly so as to be larger than the spread of.
 しかし、泳動路におけるイオンの移動は電流となるため、電場に掛けられた電圧との積で与えられる電力に対応するジュール熱が発生する。前記したように、ジュール熱の発生は水溶液を温度上昇させて、イオンに新たな乱流の発生を招くため、温度を妥当な範囲内に維持できるように除熱して、この乱流の発生を抑制する必要がある。 However, since the movement of ions in the migration path becomes a current, Joule heat corresponding to the power given by the product of the voltage applied to the electric field is generated. As described above, the generation of Joule heat raises the temperature of the aqueous solution and causes the generation of new turbulence in the ions. Therefore, heat is removed so that the temperature can be maintained within an appropriate range, and the generation of this turbulence is prevented. It is necessary to suppress it.
 MCCCE法以前の電気泳動法においては、例えば、0.1mmφ程度の極細キャピラリーを用いて泳動路とすることにより、イオンの移動距離が乱流で広がることを抑制していた。この円筒状のキャピラリーは体積に対する表面積が大きいため、周囲から有効に熱を取り去ることが可能であるが、除熱に際しては、キャピラリーの周囲に大きな冷却スペースを設ける必要がある。例えば、直径0.1mmφ程度のキャピラリーであれば、その周囲に直径数cmの冷却スペースを設ける必要があり、冷却スペースを含めた泳動装置全体の断面積に対して泳動路自体(キャピラリー)の断面積の比が10-4~10-5と小さくなる。このため、大量の濃縮・分離・分析を目的として多数のキャピラリーを配置することは、電気泳動装置の大きさが非常に大きくなることが避けられず、実用的な方法として適用することができなかった。 In the electrophoresis method before the MCCCE method, for example, by using an ultrafine capillary of about 0.1 mmφ as the migration path, the ion movement distance is suppressed from spreading by turbulent flow. Since this cylindrical capillary has a large surface area relative to its volume, it is possible to effectively remove heat from the surroundings. However, when removing heat, it is necessary to provide a large cooling space around the capillary. For example, in the case of a capillary having a diameter of about 0.1 mmφ, it is necessary to provide a cooling space with a diameter of several centimeters around the capillary, and the migration path itself (capillary) is disconnected from the cross-sectional area of the entire electrophoresis apparatus including the cooling space. The area ratio is as small as 10 −4 to 10 −5 . For this reason, it is inevitable that the arrangement of a large number of capillaries for the purpose of mass concentration, separation, and analysis cannot be applied as a practical method because the size of the electrophoresis apparatus is inevitably increased. It was.
 本技術によれば、泳動路を設ける媒体(泳動媒体)として高熱伝導率の絶縁体を採用し、この泳動媒体中にイオン水溶液を泳動させる複数の泳動路が設けられているため、高い電場を掛けて、大量のイオン水溶液を泳動させても、充分に乱流の発生を抑制して、短時間で、充分に大きな移動距離の差を生み出させることができ、濃縮・分離・分析の効率を飛躍的に向上させることができる。 According to the present technology, an insulator having a high thermal conductivity is employed as a medium (electrophoresis medium) for providing a migration path, and a plurality of migration paths for migrating an ionic aqueous solution are provided in the migration medium. Therefore, even if a large amount of ion aqueous solution is migrated, the generation of turbulent flow can be sufficiently suppressed, and a sufficiently large difference in travel distance can be created in a short time, improving the efficiency of concentration, separation, and analysis. It can be improved dramatically.
 即ち、複数の泳動路(以下、「マルチチャネル」ともいう)が設けられた泳動媒体を用いることにより、大量のイオン水溶液を泳動させることが可能となるため、大量の濃縮・分離・分析を行うことができる。 That is, by using a migration medium provided with a plurality of migration paths (hereinafter also referred to as “multi-channel”), a large amount of aqueous ionic solution can be migrated, so that a large amount of concentration / separation / analysis is performed. be able to.
 そして、泳動媒体として高熱伝導率の絶縁体を用いているため、複数の泳動路に高い電場を掛けた場合でも、発生するジュール熱を高熱伝導率の泳動媒体を介して効率的に除熱することができるため、乱流の発生を充分に抑制して、短時間で、効率的な濃縮・分離・分析を行うことができる。 And since an insulator with high thermal conductivity is used as the migration medium, even when a high electric field is applied to a plurality of migration paths, the generated Joule heat is efficiently removed through the migration medium with high thermal conductivity. Therefore, generation of turbulent flow can be sufficiently suppressed, and efficient concentration, separation, and analysis can be performed in a short time.
 また、このように効率的に除熱することができるため、泳動路の径を、乱流の発生が予測される限度まで大きくすることが可能となり、より大量の濃縮・分離・分析を行うことができる。 In addition, because heat can be efficiently removed in this way, the diameter of the migration path can be increased to the limit where turbulent flow is expected, and a larger amount of concentration, separation, and analysis can be performed. Can do.
 この結果、上記したように、濃縮・分離・分析の効率を飛躍的に向上させることができ、気体の化合物が存在しないCaなどであっても、同位体を安価に濃縮・分離・分析して提供することができる。 As a result, as described above, the efficiency of concentration / separation / analysis can be drastically improved, and isotopes can be concentrated / separated / analyzed at low cost even in the absence of gaseous compounds such as Ca. Can be provided.
 さらに、高熱伝導率の泳動媒体中に複数の泳動路を設けても効率的な除熱が行われるため、泳動媒体全体の断面積に対する泳動路の断面積の比を小さくすることができ、電気泳動装置のコンパクト化を図ることができる。 Furthermore, even if a plurality of migration paths are provided in a migration medium with high thermal conductivity, efficient heat removal is performed, so that the ratio of the cross-sectional area of the migration path to the cross-sectional area of the entire migration medium can be reduced. The electrophoresis apparatus can be made compact.
 なお、本技術に係る電気泳動装置は、上記のような同位体の濃縮・分離・分析のみならず、従来と同様に、単原子イオン、タンパク質、アミノ酸などの濃縮・分離・分析に使用することもできる。 In addition, the electrophoresis apparatus according to the present technology should be used not only for concentration / separation / analysis of isotopes as described above, but also for concentration / separation / analysis of monoatomic ions, proteins, amino acids, etc., as in the past. You can also.
 そして、本技術において「高熱伝導率」とは、水溶液中をイオンが移動するに際して、チャネル内を支障なく移動することができる温度、具体的には、水の沸点(100℃)に対して充分に低い温度、具体的には、イオンの濃縮・分離・分析に影響を与えるような乱流を水溶液に生じさせない温度に維持できるように除熱することができる熱伝導率を意味し、チャネルの径や間隔および数などに応じて適宜選択される。 In the present technology, “high thermal conductivity” means that the ions can move in the aqueous solution without any trouble, specifically, the boiling point of water (100 ° C.). This means the thermal conductivity that can remove heat so that turbulent flow that affects the concentration, separation, and analysis of ions can be maintained at a temperature that does not generate in the aqueous solution. It is appropriately selected according to the diameter, interval, number and the like.
 本発明に関連するMCCCE法に関する第2の技術は、
 前記泳動路が設けられている泳動媒体の熱伝導率が、30W/mK以上であることを特徴とする第1の技術に記載の電気泳動装置である。
The second technique related to the MCCCE method related to the present invention is:
The electrophoretic device according to the first technique, wherein the electrophoretic medium provided with the electrophoretic path has a thermal conductivity of 30 W / mK or more.
 MCCCE法における泳動媒体としては、前記したように、泳動路を複数設けても温度上昇を100℃以下に保つように有効に除熱することができ、乱流を引き起こすことがない高熱伝導率の絶縁体からなる泳動媒体が採用され、具体的には、通常の絶縁体に比べて100倍程度大きい30W/mK以上、より好ましくは50W/mK以上の熱伝導率を有する絶縁体からなる泳動媒体が好ましく使用される。なお、高熱伝導率である限り、熱伝導率の上限は特に限定されないが、コストなどを考慮すると、実用的には、300W/mK程度を上限とすることが好ましい。 As described above, as the migration medium in the MCCCE method, even if a plurality of migration paths are provided, the heat can be effectively removed so as to keep the temperature rise at 100 ° C. or less, and the high thermal conductivity does not cause turbulence. An electrophoretic medium made of an insulator is used, and specifically, an electrophoretic medium made of an insulator having a thermal conductivity of 30 W / mK or more, more preferably 50 W / mK or more, which is about 100 times larger than that of a normal insulator. Are preferably used. In addition, as long as it is high thermal conductivity, the upper limit of thermal conductivity is not particularly limited, but considering cost and the like, it is preferable to set the upper limit to about 300 W / mK practically.
 このような高熱伝導率の絶縁体からなる泳動媒体を用いることにより、従来のキャピラリーよりも大きな径の泳動路を複数設けても、温度上昇を100℃以下に保つように有効に除熱でき、乱流を引き起こすことがない。具体的には、例えば、0.5mmφまで直径を大きくすることができ、直径0.1mmφ程度の極細チューブを用いるキャピラリー電気泳動法に比べて断面積を25倍程度にまで大きくすることができるため、泳動量を飛躍的に増加させることができる。 By using a migration medium made of an insulator having such a high thermal conductivity, even if a plurality of migration paths having a diameter larger than that of a conventional capillary are provided, heat can be effectively removed so as to keep the temperature rise at 100 ° C. or less. Does not cause turbulence. Specifically, for example, the diameter can be increased to 0.5 mmφ, and the cross-sectional area can be increased to about 25 times compared to capillary electrophoresis using an ultrafine tube having a diameter of about 0.1 mmφ. The amount of electrophoresis can be dramatically increased.
 このような高熱伝導率を有する絶縁性物質、特に熱伝導率が50W/mK以上の絶縁性物質としては、例えば、BN、AlN、ダイヤモンドなどを挙げることができる。 Examples of such an insulating material having a high thermal conductivity, particularly an insulating material having a thermal conductivity of 50 W / mK or more, include BN, AlN, diamond, and the like.
 本発明に関連するMCCCE法に関する第3の技術は、
 前記泳動媒体には、直径0.5mmφ以下の泳動路が、泳動媒体全体の断面積に対する泳動路の断面積の合計の割合が10-2~10-1となるように、等間隔に複数配置されている
ことを特徴とする第2の技術に記載の電気泳動装置である。
The third technique related to the MCCCE method related to the present invention is as follows:
In the electrophoresis medium, a plurality of migration paths having a diameter of 0.5 mmφ or less are arranged at equal intervals so that the ratio of the total cross-sectional area of the migration path to the cross-sectional area of the entire migration medium is 10 −2 to 10 −1. The electrophoretic device according to the second technique, which is characterized in that:
 高熱伝導率の泳動媒体を用いることにより、前記したように、従来のキャピラリーよりも大きな径の泳動路を設けることができるが、さらに、このような泳動路を複数設ける(マルチチャネル化)ことにより、より有効に熱を取り除くことができる。具体的には、泳動媒体全体の断面積に対する泳動路の断面積の合計の割合を、キャピラリー泳動法における10-5~10-4から10-2~10-1にまで、2~4桁大きくすることができる。なお、泳動装置の断面は実質的に泳動媒体により占められていると考えることができるため、「泳動媒体全体の断面積」を「泳動装置全体の断面積」と考えてもよい。そして、泳動媒体全体の断面積の割合が同じ場合には、細い径の泳動路が多く設けられている方が好ましく、工作上の強度等の問題を考慮して、適切な径の泳動路を適切な泳動媒体全体の断面積の割合で設けることが好ましい。 By using an electrophoretic medium having a high thermal conductivity, as described above, an electrophoretic path having a diameter larger than that of a conventional capillary can be provided. Furthermore, by providing a plurality of such electrophoretic paths (multi-channel) Can remove heat more effectively. Specifically, the ratio of the total cross-sectional area of the migration path to the cross-sectional area of the entire migration medium is increased by 2 to 4 digits from 10 −5 to 10 −4 to 10 −2 to 10 −1 in the capillary electrophoresis method. can do. In addition, since it can be considered that the cross section of the electrophoresis apparatus is substantially occupied by the electrophoresis medium, the “cross sectional area of the entire electrophoresis medium” may be considered as the “cross sectional area of the entire electrophoresis apparatus”. When the ratio of the cross-sectional area of the entire electrophoresis medium is the same, it is preferable to provide many narrow diameter migration paths. Considering problems such as work strength, an appropriate diameter migration path is provided. It is preferable to provide it in the ratio of the cross-sectional area of the whole suitable electrophoresis medium.
 この結果、装置の小型化を図りながら、充分な量の泳動が可能になる。なお、設けられる泳動路の径や上記面積割合は、泳動媒体の熱伝導率や泳動路の形状に合わせて適宜設定することができる。そして、複数の泳動路は、泳動媒体に熱の偏りが生じないように、等間隔に配置されていることが好ましい。また、複数の泳動路が等間隔に配置されている場合には、投入できる電力等の評価を容易に行うことができる。 As a result, a sufficient amount of electrophoresis can be performed while downsizing the apparatus. The diameter of the migration path provided and the area ratio can be set as appropriate according to the thermal conductivity of the migration medium and the shape of the migration path. The plurality of migration paths are preferably arranged at equal intervals so as not to cause heat bias in the migration medium. Further, when a plurality of migration paths are arranged at equal intervals, it is possible to easily evaluate the power that can be input.
 本発明に関連するMCCCE法に関する第4の技術は、
 さらに、前記泳動路中の溶液に、前記イオンの泳動速度に対応した速度で、イオンの泳動方向とは逆方向の流れを生じさせる向流発生手段が設けられていることを特徴とする第1の技術ないし第3の技術のいずれかに記載の電気泳動装置である。
The fourth technique related to the MCCCE method related to the present invention is:
Furthermore, the solution in the migration path is provided with countercurrent generating means for generating a flow in a direction opposite to the ion migration direction at a speed corresponding to the ion migration speed. The electrophoresis apparatus according to any one of the techniques 3 to 3.
 泳動路中の溶液に、イオンの泳動速度に対応した逆流(向流)を作用させることにより、イオンの移動距離を抑制することができるため、短い距離の泳動路であっても、実質的には長い泳動距離を確保することができ、移動距離の差が小さい同位体であっても充分に濃縮・分離・分析することができる。また、電気泳動装置のより小型化を図ることができる。 By causing a reverse flow (countercurrent) corresponding to the ion migration speed to act on the solution in the migration path, the movement distance of ions can be suppressed. Can secure a long migration distance, and even an isotope with a small difference in migration distance can be sufficiently concentrated, separated and analyzed. In addition, the electrophoretic device can be further miniaturized.
 本発明に関連するMCCCE法に関する第5の技術は、
 濃縮・分離または分析の対象である物質のイオンを、電場が掛けられた泳動路に沿って移動させることにより濃縮・分離または分析する電気泳動法であって、
 高熱伝導率の絶縁体中に複数設けられている前記泳動路に電場を掛けることにより、前記イオンを移動させて濃縮・分離または分析することを特徴とする電気泳動法である。
The fifth technique related to the MCCCE method related to the present invention is as follows:
An electrophoresis method for concentrating, separating or analyzing ions of a substance to be concentrated, separated or analyzed by moving along an electrophoresis path to which an electric field is applied,
In the electrophoresis method, the ions are moved, concentrated, separated, or analyzed by applying an electric field to the plurality of migration paths provided in an insulator having high thermal conductivity.
 前記したように、高熱伝導率の泳動媒体に複数の泳動路を設ける(マルチチャネル化)ことにより、従来のキャピラリー電気泳動法で用いられる一般的な電場に近い電場、具体的には100V/cm以上の電場を掛けても、乱流の発生を充分に抑制しながら有効に除熱することができるため、短時間で、大量のイオン水溶液を効率的に濃縮・分離・分析することができる。 As described above, by providing a plurality of migration paths in a migration medium having high thermal conductivity (multi-channeling), an electric field close to a general electric field used in conventional capillary electrophoresis, specifically 100 V / cm. Even when the above electric field is applied, heat can be effectively removed while sufficiently suppressing the occurrence of turbulent flow, so that a large amount of aqueous ionic solution can be efficiently concentrated, separated and analyzed in a short time.
 ここで、一定の分離を得る条件では、電場の高さは濃縮・分離・分析に要する時間の平方根の逆数に比例し、泳動距離は電場の高さと時間との積で与えられるため、電場をn倍高くすることにより、濃縮・分離・分析に要する時間を1/nに短縮することができると共に、濃縮・分離・分析に要する泳動距離を1/nと短縮することができ、効率的な濃縮・分離・分析を行うことができる。 Here, under the conditions for obtaining a constant separation, the electric field height is proportional to the inverse of the square root of the time required for concentration, separation, and analysis, and the migration distance is given by the product of the electric field height and time. By making it n times higher, the time required for concentration / separation / analysis can be shortened to 1 / n 2 and the migration distance required for concentration / separation / analysis can be shortened to 1 / n. Concentration, separation, and analysis.
2.本発明に係るMCCCE法
 本発明者は、上記したMCCCE法において、安定的に高い効率で濃縮・分離を行うことができなかった原因とその解決方法について検討を行った。
2. MCCCE Method According to the Present Invention The present inventor has examined the cause of the failure to perform concentration and separation stably and with high efficiency in the MCCCE method described above, and a solution to that.
 具体的に、本発明者は、安定的に高い効率で濃縮・分離を行うことができる条件を見出すために、多くの実験パラメーターを種々組み合わせて数多くの実験を行うと共に、設備や部品についても改良や変更を加えた。 Specifically, in order to find out the conditions under which concentration and separation can be performed stably and with high efficiency, the present inventor conducted a number of experiments with various combinations of experimental parameters and improved facilities and parts. And made changes.
 その結果、安定的に高い効率で濃縮・分離を行うことができなかった原因が、向流の発生方法にあり、安定的に高い効率で濃縮・分離を行うためには、向流の速度分散を制御する必要があることが分かった。 As a result, the reason why concentration / separation could not be performed stably with high efficiency was the countercurrent generation method. It turned out that it is necessary to control.
 即ち、高い効率の濃縮・分離を達成するには、分離を妨げるイオンの速度分散を抑制することが必要である。上記した従来のMCCCE法ではイオンの熱運動による速度分散より同位体による移動度の差が生み出すイオンの移動距離が大きくなるように考案されていたが、向流による速度分散が非常に大きくなる場合があり、結果的に、安定的に高い効率で濃縮・分離を行うことができなかったことが分かった。 That is, to achieve high-efficiency concentration / separation, it is necessary to suppress the velocity dispersion of ions that hinders the separation. In the conventional MCCCE method described above, it was devised that the movement distance of ions produced by the difference in mobility due to isotopes is larger than the velocity dispersion due to thermal motion of ions, but the velocity dispersion due to countercurrent becomes very large As a result, it was found that concentration and separation could not be performed stably and with high efficiency.
 具体的には、絶縁体で囲まれた細い泳動路の中で電場はほぼ一様であるため、電場によるイオンの泳動速度もほぼ一様となる。このため、イオンの泳動速度をキャンセルしてイオンの移動距離を短くさせる向流も一定の速度で流れていないと、泳動するイオンに速度分散が発生して安定的に高い効率で濃縮・分離を行うことができない。 Specifically, since the electric field is almost uniform in the thin migration path surrounded by the insulator, the ion migration speed by the electric field is also almost uniform. For this reason, if the counter-current that cancels the ion migration speed and shortens the distance of ion movement does not flow at a constant speed, the ions that migrate will be dispersed in velocity, and can be concentrated and separated stably with high efficiency. I can't do it.
 しかし、細い泳動路の中における液体の流れは、通常、ハーゲン・ポアズイユ流と呼ばれる層流になっている。このハーゲン・ポアズイユ流において、速度分布は中心からの距離の関数として2次関数となるため、向流の速度は泳動路内において大きな位置依存性を持つことになり、向流の速度分散が発生する。その結果、泳動するイオンに速度分散が発生して、安定的に高い効率で濃縮・分離を行うことができていなかったことが分かった。 However, the liquid flow in the narrow path is usually a laminar flow called Hagen-Poiseuille flow. In this Hagen-Poiseuille flow, the velocity distribution is a quadratic function as a function of the distance from the center, so the countercurrent velocity has a large position dependency in the migration path, and countercurrent velocity dispersion occurs. To do. As a result, it was found that velocity dispersion occurred in the migrating ions, and concentration and separation could not be performed stably and with high efficiency.
 即ち、従来の実験において高い効率で濃縮・分離を行うことができた場合もあったのは、その際に使用した向流発生手段の影響で、偶然、向流の速度の位置依存性が殆どない状況にあったためであり、他の一般的な向流発生手段を使用した場合には、向流の速度の位置依存性により高い効率で濃縮・分離を行うことができていなかったことが分かった。 In other words, there was a case where concentration / separation could be performed with high efficiency in the conventional experiment because of the influence of the countercurrent generation means used at that time. It was found that the concentration and separation could not be performed with high efficiency due to the position dependence of the countercurrent velocity when other common countercurrent generation means were used. It was.
 そこで、本発明者は、細い泳動路の中における液体の流れ、即ち、向流の速度の位置依存性がないようにすることができれば、泳動するイオンに速度分散が発生せず、高い効率の濃縮・分離を安定的に達成することができると考え、実験の結果これを確認し、本発明を完成するに至った。 Therefore, if the present inventor can eliminate the position dependence of the flow of the liquid in the narrow migration path, that is, the countercurrent velocity, velocity dispersion will not occur in the migrating ions, and high efficiency will be achieved. It was considered that concentration and separation could be stably achieved, and as a result of experiments, this was confirmed and the present invention was completed.
 即ち、請求項1に記載の発明は、
 濃縮・分離または分析の対象である物質のイオンを、電場が掛けられた泳動路に沿って移動させることにより濃縮・分離または分析する電気泳動装置であって、
 前記泳動路が、高熱伝導率の絶縁体中に複数設けられており、
 さらに、前記泳動路中の溶液に、前記イオンの泳動速度に対応した速度で、イオンの泳動方向とは逆方向に、一様な速度分布の流れを生じさせる向流発生手段が設けられている
ことを特徴とする電気泳動装置である。
That is, the invention described in claim 1
An electrophoresis apparatus for concentrating, separating or analyzing ions of a substance to be concentrated, separated or analyzed by moving along an electrophoresis path to which an electric field is applied,
A plurality of the migration paths are provided in an insulator having high thermal conductivity,
Furthermore, countercurrent generating means is provided in the solution in the migration path for generating a flow having a uniform velocity distribution at a speed corresponding to the migration speed of the ions and in a direction opposite to the ion migration direction. This is an electrophoretic device.
 そして、このような向流発生手段として、チュービングポンプのような向流に脈動を追加する手段や、泳動路に径の大きい部分と小さい部分とを交互に形成させて泳動路自体を波打った形状に形成する手段が、有効であることが分かった。 And as such a countercurrent generation means, a means for adding pulsation to the countercurrent such as a tubing pump, or a part having a large diameter and a part having a small diameter are alternately formed in the electrophoresis path to wave the electrophoresis path itself. It has been found that the means for forming the shape is effective.
 即ち、これらの手段を設けることにより、泳動路内を流れる向流の進行最前面をフラットにすることができるため、向流の速度の位置依存性がないようにすることができ、より高い効率で濃縮・分離を達成することができる。なお、この際、向流が乱流とならないようにする必要がある。 In other words, by providing these means, it is possible to flatten the forefront of countercurrent flowing in the migration path, so that there is no position dependence of the countercurrent velocity, and higher efficiency. Concentration / separation can be achieved. At this time, it is necessary to prevent the countercurrent from becoming turbulent.
 請求項2ないし請求項4に記載の発明は、上記の知見に基づくものであり、
 請求項2に記載の発明は、
 前記向流発生手段が、前記泳動路中の溶液に、所定の時間、所定の間隔で脈動を与えることにより、前記イオンの泳動速度に対応した速度で、イオンの泳動方向とは逆方向に、一様な速度分布の流れを生じさせる向流発生手段であることを特徴とする請求項1に記載の電気泳動装置である。
The inventions according to claims 2 to 4 are based on the above findings,
The invention described in claim 2
The counter-current generating means pulsates the solution in the migration path at a predetermined interval for a predetermined time, so that the counter-current generating means has a speed corresponding to the ion migration speed and in a direction opposite to the ion migration direction. The electrophoretic device according to claim 1, wherein the electrophoretic device is a countercurrent generating unit that generates a flow having a uniform velocity distribution.
 また、請求項3に記載の発明は、
 前記向流発生手段が、チュービングポンプを用いて、前記泳動路中の溶液に、所定の時間、所定の間隔で脈動を与えることにより、前記イオンの泳動速度に対応した速度で、イオンの泳動方向とは逆方向に、一様な速度分布の流れを生じさせる向流発生手段であることを特徴とする請求項2に記載の電気泳動装置である。
The invention according to claim 3
The counter-current generating means uses a tubing pump to pulsate the solution in the migration path at a predetermined interval for a predetermined time, so that the ion migration direction at a speed corresponding to the ion migration speed. 3. The electrophoretic device according to claim 2, wherein the electrophoretic device is a countercurrent generating means for generating a flow having a uniform velocity distribution in the opposite direction.
 また、請求項4に記載の発明は、
 前記向流発生手段が、前記泳動路に径の大きい部分と小さい部分とを交互に形成させて前記泳動路を波打った形状に形成することにより、前記イオンの泳動速度に対応した速度で、イオンの泳動方向とは逆方向に、一様な速度分布の流れを生じさせる向流発生手段であることを特徴とする請求項1に記載の電気泳動装置である。
The invention according to claim 4
The countercurrent generation means alternately forms large diameter portions and small portions in the migration path and forms the migration path in a wavy shape, thereby at a speed corresponding to the migration speed of the ions, 2. The electrophoretic device according to claim 1, wherein the electrophoretic device is a countercurrent generating means for generating a flow having a uniform velocity distribution in a direction opposite to the ion migration direction.
 請求項5に記載の発明は、
 濃縮・分離または分析の対象である物質のイオンを、電場が掛けられた泳動路に沿って移動させることにより濃縮・分離または分析する電気泳動法であって、
 高熱伝導率の絶縁体中に複数設けられている前記泳動路に電場を掛けることにより、前記イオンを移動させ、
 前記泳動路中の溶液に、前記イオンの泳動速度に対応した速度で、イオンの泳動方向とは逆方向に、一様な速度分布の流れを生じさせる
ことを特徴とする電気泳動法である。
The invention described in claim 5
An electrophoresis method for concentrating, separating or analyzing ions of a substance to be concentrated, separated or analyzed by moving along an electrophoresis path to which an electric field is applied,
By applying an electric field to the migration path provided in a plurality of insulators with high thermal conductivity, the ions are moved,
In the electrophoresis method, a flow having a uniform velocity distribution is generated in the solution in the migration path at a speed corresponding to the migration speed of the ions in a direction opposite to the migration direction of the ions.
 高熱伝導率の泳動媒体に複数の泳動路を設け(マルチチャネル化)、さらに、泳動路内にイオンの泳動速度に対応した速度で、イオンの泳動方向とは逆方向に、位置依存性がない一様な速度分布の流れを生じさせることにより、安定的に高い効率で濃縮・分離を行うことができる。 Multiple migration paths are provided in the migration medium with high thermal conductivity (multi-channel), and there is no position dependency in the opposite direction to the ion migration direction at a speed corresponding to the ion migration speed in the migration path. By producing a flow having a uniform velocity distribution, concentration and separation can be stably performed with high efficiency.
 請求項6に記載の発明は、
 前記濃縮・分離または分析の対象である物質が同位体元素であることを特徴とする請求項5に記載の電気泳動法である。
The invention described in claim 6
6. The electrophoresis method according to claim 5, wherein the substance to be concentrated, separated or analyzed is an isotope element.
 上記の電気泳動法は、マルチチャネル化した泳動媒体を用いて、さらに、泳動路内で位置依存性を持たない一定の速度の向流によりイオンの泳動速度を一様な速度分布としているため、より短時間で充分な距離を泳動させることができ、移動度の差が小さい同位体であっても、より短時間で、より充分な距離を泳動させて、安定的に高い効率で濃縮・分離を行うことができる。 The above electrophoresis method uses a multi-channel electrophoretic medium, and furthermore, the ion electrophoretic velocity has a uniform velocity distribution due to a constant velocity countercurrent without position dependency in the electrophoretic path. A sufficient distance can be migrated in a shorter time, and even isotopes with small mobility differences can be migrated a sufficient distance in a shorter time and concentrated and separated stably and efficiently. It can be performed.
 請求項7に記載の発明は、
 前記同位体元素が、48Caであることを特徴とする請求項6に記載の電気泳動法である。
The invention described in claim 7
The isotopes is an electrophoresis method according to claim 6, characterized in that the 48 Ca.
 上記の電気泳動法は、移動度の差が小さい同位体であっても、安定的に高い効率で濃縮・分離を行うことができるため、近年注目されている同位体であって、遠心分離法の採用が不可能な気体の化合物が存在しないカルシウムの同位体の濃縮・分離・分析に好ましく適用することができ、また、質量分析法による分離に比べて、安価かつ大量に48Caを提供することができる。 The electrophoresis method described above is an isotope that has been attracting attention in recent years because it can be stably concentrated and separated with high efficiency even if it is an isotope with a small difference in mobility. Can be preferably applied to enrichment, separation, and analysis of calcium isotopes in the absence of gaseous compounds that cannot be employed, and provides 48 Ca in a large amount at a lower cost than separation by mass spectrometry. be able to.
 請求項8に記載の発明は、
 請求項5ないし請求項7のいずれか1項に記載の電気泳動法を用いて、対象となる物質のイオンを濃縮・分離または分析することを特徴とする濃縮・分離または分析方法である。
The invention according to claim 8 provides:
A concentration / separation / analysis method comprising concentrating / separating / analyzing ions of a target substance using the electrophoresis method according to claim 5.
 これらの電気泳動法は、より短時間に大量のイオンをより充分な距離泳動させて、安定的に高い効率で濃縮・分離を行うことができるため、移動度の差が小さい同位体であっても、効率よく濃縮・分離・分析することができる。 These electrophoresis methods enable stable migration and concentration with a large amount of ions in a shorter time and a stable separation with high efficiency. Can be concentrated, separated and analyzed efficiently.
 本発明によれば、MCCCE法を用いて、安定的に高い効率で濃縮・分離を行うことができる濃縮・分離・分析技術を提供することができる。 According to the present invention, it is possible to provide a concentration / separation / analysis technique that can stably perform concentration / separation with high efficiency using the MCCCE method.
本発明の一実施の形態に係る電気泳動装置を模式的に示す縦断面図である。1 is a longitudinal sectional view schematically showing an electrophoresis apparatus according to an embodiment of the present invention. 本発明の一実施の形態に係る電気泳動装置の泳動媒体の平面図である。It is a top view of the electrophoresis medium of the electrophoresis apparatus concerning one embodiment of the present invention. 本発明の他の実施の形態に係る電気泳動装置の泳動路を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the migration path of the electrophoresis apparatus which concerns on other embodiment of this invention. MCCCE法の基本的な実施の形態における電気泳動装置を模式的に示す図である。It is a figure which shows typically the electrophoresis apparatus in basic embodiment of MCCCE method.
[1]MCCCE法の基本的な実施の形態
 本発明の実施の形態について説明する前に、本発明者が開発したMCCCE法の基本的な実施の形態について具体的に説明する。
[1] Basic embodiment of the MCCCE method Before describing the embodiment of the present invention, the basic embodiment of the MCCCE method developed by the present inventor will be specifically described.
1.MCCCE法の基本的な実施の形態
(1)電気泳動装置の構成
 図4はMCCCE法の基本的な実施の形態における電気泳動装置を模式的に示す図であり、(a)は電気泳動装置を正面から見た断面図、(b)は前記電気泳動装置に設けられた泳動媒体の正面図である。図4において、101は容器、102は泳動部、103は陽極板、104は陰極板、105は泳動媒体、106は向流発生部、107は泳動路(チャネル)、108はマルチチャネル部、109は陽極側撹拌部、110は陰極側撹拌部である。
1. Basic Embodiment of MCCCE Method (1) Configuration of Electrophoresis Device FIG. 4 is a diagram schematically showing the electrophoresis device in the basic embodiment of the MCCCE method, and (a) shows the electrophoresis device. Sectional drawing seen from the front, (b) is a front view of the electrophoresis medium provided in the said electrophoresis apparatus. In FIG. 4, 101 is a container, 102 is a migration unit, 103 is an anode plate, 104 is a cathode plate, 105 is a migration medium, 106 is a countercurrent generation unit, 107 is a migration path (channel), 108 is a multichannel unit, 109 Is an anode side stirring unit, and 110 is a cathode side stirring unit.
 容器101は縦断面の形状が略円形で両端が閉じられた筒状の容器であり、容器101の内部には、濃縮・分離・分析の対象である物質のイオンを含む水溶液が満たされており、泳動媒体105を挟んで所定の間隔で+電極となる陽極板103、および-電極となる陰極板104が配置されている。なお、容器101としては、泳動媒体105における除熱をより効果的に行う観点から、熱伝導性が高い絶縁体の材質を用いて形成されていることが好ましいが、コストと効果を考慮して適宜設定される。なお、本実施の形態においては、アクリル樹脂を用いている。 The container 101 is a cylindrical container having a substantially circular longitudinal section and closed at both ends, and the container 101 is filled with an aqueous solution containing ions of a substance to be concentrated, separated, and analyzed. An anode plate 103 serving as a + electrode and a cathode plate 104 serving as a − electrode are arranged at predetermined intervals with the electrophoresis medium 105 interposed therebetween. The container 101 is preferably formed using an insulator material having high thermal conductivity from the viewpoint of more effectively removing heat from the electrophoresis medium 105, but in consideration of cost and effect. Set as appropriate. In this embodiment, acrylic resin is used.
 そして、陽極板103と泳動媒体105との間には陽極側撹拌部109が、また陰極板104と泳動媒体105との間には陰極側撹拌部110が設けられて、陽極板103と陰極板104との間に泳動部102が形成されている。 An anode side stirring unit 109 is provided between the anode plate 103 and the migration medium 105, and a cathode side stirring unit 110 is provided between the cathode plate 104 and the migration medium 105. A migration unit 102 is formed between the first and second computers 104.
 泳動媒体105には、図4(b)に示すように、断面形状が円形の泳動路107が多数設けられており(マルチチャネル化)、この泳動路107の中をイオンが移動する。泳動路107の直径としては0.5mmφまで大きくすることが可能で、本実施の形態においては、前記したように、工作上の強度等の問題を考慮して、泳動媒体全体の断面積に対する泳動路107の断面積の合計の割合が0.03となるように等間隔に配置したが、0.1程度まで高めることが可能である。また、本実施の形態においては、泳動媒体105を冷却するために銅管(図示せず)が巻かれており、中に水を通して冷却している。 As shown in FIG. 4B, the migration medium 105 is provided with a large number of migration paths 107 having a circular cross-sectional shape (multichannel), and ions move through the migration path 107. The diameter of the migration path 107 can be increased to 0.5 mmφ, and in this embodiment, as described above, the migration with respect to the cross-sectional area of the entire migration medium is considered in consideration of problems such as work strength. Although they are arranged at equal intervals so that the ratio of the total cross-sectional area of the path 107 is 0.03, it can be increased to about 0.1. In the present embodiment, a copper tube (not shown) is wound to cool the electrophoresis medium 105, and water is cooled through it.
Figure JPOXMLDOC01-appb-M000001

としては、特に条件は無いが、一般的に数cmに設定される。
Figure JPOXMLDOC01-appb-M000001

There is no particular condition, but it is generally set to several centimeters.
 泳動媒体105は、絶縁体で高い熱伝導率を有する物質、好ましくは熱伝導率が30W/mK以上、より好ましくは50W/mK以上の物質、例えば、BNなどを用いて形成されている。このように高い熱伝導率を有する物質を用いて泳動媒体105が形成されているため、直径0.1mmφ程度の極細チューブを用いるキャピラリー電気泳動法に比べて大きな直径の複数の泳動路107に同程度の高い電場を掛けた場合でも、発生するジュール熱を充分に取り除くことができ、泳動路107における乱流の発生が抑制される。 The electrophoresis medium 105 is an insulating material having a high thermal conductivity, preferably a material having a thermal conductivity of 30 W / mK or higher, more preferably 50 W / mK or higher, such as BN. Since the migration medium 105 is formed using a material having such a high thermal conductivity, the same migration path 107 as that of the plurality of migration paths 107 having a diameter larger than that of capillary electrophoresis using an ultrafine tube having a diameter of about 0.1 mmφ is used. Even when a high electric field is applied, the generated Joule heat can be sufficiently removed, and the occurrence of turbulent flow in the migration path 107 is suppressed.
 なお、この電気泳動装置には、図4(a)に示すように、さらに、向流発生部106が設けられていることが好ましい。向流発生部106を設けて、イオンの泳動速度に対応した逆流(向流)を作用させることにより、イオンの移動距離を抑制して、実質的に長い泳動距離を短い距離の泳動路107で確保することができるため、電気泳動装置を大型化することなく、濃縮・分離することができ好ましい。 In addition, it is preferable that the electrophoretic device is further provided with a countercurrent generating unit 106 as shown in FIG. By providing a countercurrent generation unit 106 and causing a countercurrent (countercurrent) corresponding to the ion migration speed to act, the ion movement distance is suppressed, and a substantially long migration distance is reduced by the short-distance migration path 107. Since it can ensure, it can concentrate and isolate | separate, without enlarging an electrophoresis apparatus, and is preferable.
(2)同位体の濃縮・分離・分析
 次に、上記の電気泳動装置を用いた同位体の濃縮・分離・分析について説明する。
(2) Isotope enrichment / separation / analysis Next, isotope enrichment / separation / analysis using the above-described electrophoresis apparatus will be described.
 最初に、容器101内に、対象となる同位体のイオンが含まれた水溶液、例えば、48Caが含まれたCaイオンの水溶液などを充填する。 First, the container 101 is filled with an aqueous solution containing ions of the target isotope, for example, an aqueous solution of Ca ions containing 48 Ca.
 次に、陽極板103と陰極板104との間に所定の電圧を印加し、電場を形成させる。好ましい電場は100V/cm以上であり、これは、キャピラリー電気泳動法における電場とほぼ同程度の電場である。 Next, a predetermined voltage is applied between the anode plate 103 and the cathode plate 104 to form an electric field. A preferable electric field is 100 V / cm or more, which is an electric field of approximately the same level as that in capillary electrophoresis.
 このように大きな電場を掛けることができるのは、前記したように、高熱伝導率の泳動媒体105中に泳動路107が設けられているため、発生するジュール熱を充分に取り除くことができ、泳動路107における乱流の発生が抑制されるからである。 Such a large electric field can be applied because, as described above, the migration path 107 is provided in the migration medium 105 having a high thermal conductivity, so that the generated Joule heat can be sufficiently removed. This is because the generation of turbulent flow in the path 107 is suppressed.
 電場が形成されることにより、泳動路107内を、カチオンは陰極板104側に、アニオンは陽極板103側にそれぞれ泳動する。 By forming an electric field, cations migrate to the cathode plate 104 side and anions migrate to the anode plate 103 side in the migration path 107.
 このとき、質量が異なる同位体は異なる移動速度を持つため、充分な距離を泳動させることにより、質量が異なる同位体の濃縮・分離を行うことができる。 At this time, since isotopes having different masses have different moving velocities, it is possible to concentrate and separate isotopes having different masses by migrating a sufficient distance.
 本実施の形態においては、前記したように、従来のキャピラリー電気泳動法に比べて大きな直径の泳動路107に高い電場を掛けても、発生するジュール熱を充分に取り除いて乱流の発生を抑制することができるため、大量の水溶液を効率的に濃縮・分離・分析することができる。 In the present embodiment, as described above, even when a high electric field is applied to the electrophoresis path 107 having a larger diameter compared to the conventional capillary electrophoresis method, the generated Joule heat is sufficiently removed to suppress the generation of turbulent flow. Therefore, a large amount of aqueous solution can be efficiently concentrated, separated and analyzed.
 なお、上記において、濃縮・分離・分析の対象となるカチオンの泳動速度と同程度で、図4(a)に矢印で示すように、カチオンとは逆方向の流れ(向流)を作用させると、カチオンの実質的な移動速度は非常に小さくなるため、泳動路107の長さ In addition, in the above, when a flow (countercurrent) opposite to the cation is applied, as indicated by an arrow in FIG. Since the substantial movement speed of the cation is very small, the length of the migration path 107 is
Figure JPOXMLDOC01-appb-M000002

に対して実際の泳動距離を大きく伸ばすことができる。
Figure JPOXMLDOC01-appb-M000002

In contrast, the actual migration distance can be greatly extended.
 前記したように、質量が異なる同位体は、異なる移動速度を持つため、向流の速度をその中間に設定すると、平均の速度が0となって、移動速度が遅い同位体は図4(a)において左側の陽極側に、移動速度が速い同位体は図4(a)において右側の陰極側に集まることになるため、質量が異なる同位体の濃縮・分離・分析をより効率的に行うことができる。 As described above, since isotopes having different masses have different moving velocities, when the countercurrent velocity is set in the middle, the average velocity becomes 0, and the isotopes having a low moving velocity are shown in FIG. ), The isotopes with a fast moving speed are collected on the anode side on the left side in FIG. 4 (a), so that isotopes with different masses can be concentrated, separated, and analyzed more efficiently. Can do.
2.理論面からの考察
 次に、本発明者が開発したMCCCE法を用いた電気泳動法の理論面からの考察について、同じく図4を参照しながら説明する。
2. Next, the theoretical consideration of the electrophoresis method using the MCCCE method developed by the present inventor will be described with reference to FIG.
(1)基本的な考え方
 前記したように、電気泳動法によるイオンの濃縮・分離・分析は、泳動路107に電場を掛けて、イオンの移動度の差が濃縮・分離・分析に充分な泳動距離の差を生み出すまで、イオンを泳動させることにより達成することができるが、短時間で、大量に濃縮・分離・分析するためには、拡散による広がりより大きな移動距離の差を生み出させると共に、電圧との積で与えられる電力に対応するジュール熱を適切に除熱する必要がある。
(1) Basic concept As described above, the concentration / separation / analysis of ions by electrophoresis is performed by applying an electric field to the migration path 107 and the difference in ion mobility is sufficient for concentration / separation / analysis. It can be achieved by migrating ions until a difference in distance is created, but in order to concentrate, separate, and analyze in large quantities in a short time, it creates a difference in travel distance greater than the spread due to diffusion, It is necessary to appropriately remove Joule heat corresponding to the electric power given by the product of the voltage.
(2)具体的な方策
 細い泳動路を用いると、イオンの移動距離が乱流によりさらに広がることを避けることができる。また体積に対する表面積が大きいので周りから熱を有効に取り去ることができる。しかし、前記したように、泳動に使える有効な断面積が小さいので、大量のイオンの濃縮(分離)に向いていない。
(2) Specific Measures When a thin migration path is used, it is possible to prevent the ion movement distance from further spreading due to turbulence. Moreover, since the surface area with respect to the volume is large, heat can be effectively removed from the surroundings. However, as described above, since the effective cross-sectional area usable for electrophoresis is small, it is not suitable for the concentration (separation) of a large amount of ions.
 そこで、本発明者は、イオンの濃縮(分離)の効率を上げる方法と、発生したジュール熱を除去する方法の2つに着目し、
イ)細い泳動路(チャネル)107を高熱伝導率の絶縁体からなる泳動媒体105中に設けることで、乱流の発生を抑制すると共に発生したジュール熱を有効に除去する、
ロ)泳動路(チャネル)107の数を多くするマルチチャネル化を行うことにより、大量の分離を可能にする、
ハ)各泳動路(チャネル)107の形状と配置を、除熱の観点から最適化すると共に、電場を高くすることにより、電力当たりの分離効率を向上する、
ことにより、濃縮・分離・分析の効率を飛躍的に向上させることができると考えた。
Therefore, the present inventor pays attention to two methods: a method of increasing the efficiency of ion concentration (separation) and a method of removing generated Joule heat,
A) By providing the narrow migration path (channel) 107 in the migration medium 105 made of an insulator having a high thermal conductivity, the generation of turbulent flow is suppressed and the generated Joule heat is effectively removed.
(B) A large amount of separation is possible by performing multi-channeling in which the number of migration paths (channels) 107 is increased.
C) Optimize the shape and arrangement of each migration path (channel) 107 from the viewpoint of heat removal, and improve the separation efficiency per electric power by increasing the electric field.
Therefore, we thought that the efficiency of concentration, separation, and analysis could be dramatically improved.
 このような電気泳動法がマルチチャネル向流電気泳動法(MCCCE:Multi-Channel Counter Current Electrophoresis)であり、以下、このMCCCE法の基本的な考え方に付き説明する。 Such an electrophoresis method is a multi-channel counter-current electrophoresis method (MCCCE: Multi-Channel Counter Current Electrophoresis), and the basic concept of the MCCCE method will be described below.
(3)マルチチャネル向流電気泳動法
(a)基本方程式
 泳動媒体105の断面積をS、マルチチャネル部108の開口断面積の合計をSMCとする。電圧は電極で与えられる。このとき、基礎となる方程式は、電荷密度と電位の関係を与えるポアッソンの方程式(1.1)、電荷の保存則(1.2)、オームの法則(1.3)であり、それぞれ以下のように表される。なお、Vは電位、ρは電荷密度、
(3) Multi-channel countercurrent electrophoresis (a) the cross-sectional area of the basic equation loading medium 105 S A, the sum of the opening cross-sectional area of the multi-channel portion 108 and S MC. The voltage is applied at the electrode. At this time, the basic equations are Poisson's equation (1.1), charge conservation law (1.2), and Ohm's law (1.3) that give the relationship between charge density and potential. It is expressed as follows. V is a potential, ρ is a charge density,
Figure JPOXMLDOC01-appb-M000003

は電流密度、Δはラプラス演算子、∇はナブラ微分演算子、εは水溶液の誘電率、κは水溶液(イオン水溶液)の電気伝導度である。
Figure JPOXMLDOC01-appb-M000003

Is the current density, Δ is the Laplace operator, ∇ is the Nabla differential operator, ε is the dielectric constant of the aqueous solution, and κ is the electrical conductivity of the aqueous solution (ionic aqueous solution).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
(b)実際の関係式
 本実施の形態においては、定常状態を考えているため、時間微分は0となる。また、泳動路107を移動する水溶液は導体であるため、電荷分布ρも0となる。この結果、上記の式(1.2)において電流密度は
(B) Actual relational expression In this embodiment, since a steady state is considered, the time differentiation is zero. Further, since the aqueous solution moving in the migration path 107 is a conductor, the charge distribution ρ is also zero. As a result, the current density in the above equation (1.2) is
Figure JPOXMLDOC01-appb-M000007

となる。これを攪拌部(陽極側撹拌部109および陰極側撹拌部110)とマルチチャネル部108との境界に適用すると、流れ込む電流と流れ出す電流は同じ
Figure JPOXMLDOC01-appb-M000007

It becomes. When this is applied to the boundary between the stirring unit (the anode side stirring unit 109 and the cathode side stirring unit 110) and the multichannel unit 108, the current flowing in and the current flowing out are the same.
Figure JPOXMLDOC01-appb-M000008

であることから、
Figure JPOXMLDOC01-appb-M000008

Because
Figure JPOXMLDOC01-appb-M000009

となり、マルチチャネル部108における電流密度は、下記の式(2.1)で表される。なお、式(2.1)において、添え字はAが攪拌部を表し、MCがマルチチャネル部を表す。
Figure JPOXMLDOC01-appb-M000009

Thus, the current density in the multichannel unit 108 is expressed by the following equation (2.1). In addition, in Formula (2.1), as for a subscript, A represents a stirring part and MC represents a multichannel part.
Figure JPOXMLDOC01-appb-M000010

となる。
Figure JPOXMLDOC01-appb-M000010

It becomes.
 電気伝導度(κ)が場所に依らず一定とすると、オームの法則(1.3)によって、電場にも電流密度と同様の Suppose that the electrical conductivity (κ) is constant regardless of the location, the electric field is similar to the current density according to Ohm's law (1.3).
Figure JPOXMLDOC01-appb-M000011

という関係がある。
Figure JPOXMLDOC01-appb-M000011

There is a relationship.
 そして、電極間の電圧Vとマルチチャネル部に掛かる電圧VMCと攪拌部の電圧Vの関係は、攪拌部の長さを陽極側と陰極側の和、即ち、 The relationship between the voltage V A of the voltage V MC and agitating portion applied with the voltage V and multi-channel section between the electrodes, the sum of the length of the agitating portion anode side and the cathode side, i.e.,
Figure JPOXMLDOC01-appb-M000012

を用いると、
Figure JPOXMLDOC01-appb-M000012

Using
Figure JPOXMLDOC01-appb-M000013

と表すことができる。ここで、マルチチャネル部108の開口断面積SMCは泳動路の断面積Sに比較して遙かに小さい、即ち、
Figure JPOXMLDOC01-appb-M000013

It can be expressed as. Here, the opening cross-sectional area S MC of the multi-channel unit 108 much smaller compared to the cross-sectional area S A of the migration path, i.e.,
Figure JPOXMLDOC01-appb-M000014

であるため、マルチチャネル部108における電場は攪拌部に比較して充分大きく、即ち、
Figure JPOXMLDOC01-appb-M000014

Therefore, the electric field in the multichannel part 108 is sufficiently larger than that of the stirring part, that is,
Figure JPOXMLDOC01-appb-M000015

となる。この結果、殆どの電圧がマルチチャネル部108に掛かるようにすると、ジュール熱は殆ど泳動路107において発生することになる。
Figure JPOXMLDOC01-appb-M000015

It becomes. As a result, when most of the voltage is applied to the multi-channel portion 108, Joule heat is almost generated in the migration path 107.
(c)泳動路における消費電力
 マルチチャネル部108の泳動路107において発生する電力、即ちジュール熱
(C) Power consumption in the migration path Power generated in the migration path 107 of the multichannel unit 108, that is, Joule heat
Figure JPOXMLDOC01-appb-M000016

は、電流と電圧の積、即ち、
Figure JPOXMLDOC01-appb-M000016

Is the product of current and voltage, ie
Figure JPOXMLDOC01-appb-M000017

を泳動路107内で体積積分することで与えられるため、
Figure JPOXMLDOC01-appb-M000017

Is obtained by volume integration in the migration path 107.
Figure JPOXMLDOC01-appb-M000018

と表すことができる。なお、上記式(2.3)の最後の式を得るに当たっては、
Figure JPOXMLDOC01-appb-M000018

It can be expressed as. In obtaining the final expression of the above expression (2.3),
Figure JPOXMLDOC01-appb-M000019

および
Figure JPOXMLDOC01-appb-M000019

and
Figure JPOXMLDOC01-appb-M000020

の近似を用いた。
Figure JPOXMLDOC01-appb-M000020

The approximation of was used.
 電極間における電力はほぼ電極間の電流と電圧の積のIVで与えられるが、上記の式(2.3)より、マルチチャネル部108の泳動路107における電力の場合には、攪拌部で消費される電力分、即ち、 The electric power between the electrodes is substantially given by IV of the product of the current and the voltage between the electrodes. From the above formula (2.3), in the case of the electric power in the migration path 107 of the multichannel unit 108, it is consumed by the stirring unit. Power to be used, ie
Figure JPOXMLDOC01-appb-M000021

だけ少なくなっていることが分かる。
Figure JPOXMLDOC01-appb-M000021

You can see that it is only decreasing.
(d)電場と分離に要する時間
(イ)泳動速度と電場と電力
 電場によるイオンの移動泳動速度は移動度と電場の積で与えられる。また、塩の溶液における電気伝導度は、カチオンとアニオンの移動度と濃度で与えられる。
(D) Time required for electric field and separation (a) Electrophoretic velocity, electric field, and electric power The ion migrating electrophoretic velocity by the electric field is given by the product of mobility and electric field. The electrical conductivity of the salt solution is given by the mobility and concentration of the cation and anion.
 例えば、CaCl溶液の場合、Caイオンの泳動速度は0.59mm/s/[100V/cm]であり、Clイオンの泳動速度は0.77mm/s/[100V/cm]である。 For example, in the case of a CaCl 2 solution, the migration speed of Ca ions is 0.59 mm / s / [100 V / cm], and the migration speed of Cl ions is 0.77 mm / s / [100 V / cm].
 また、元素が同じでも同位体によって(例えば40Caと48Ca)小さいながら移動度が違うことが知られている。この小さい差を利用して濃縮・分離・分析を行うためには、長距離の泳動を必要とする。 It is also known that even if the elements are the same, the mobility differs depending on the isotope (for example, 40 Ca and 48 Ca). In order to perform concentration, separation, and analysis using this small difference, long-distance electrophoresis is required.
(ロ)拡散
 泳動による同位体の分離効率や目的とするイオンの分離効率は、拡散との関係で与えられる。電気泳動によって泳動距離に同位体間で差が生じても、その差が拡散による移動距離の広がりに比較して大きくなければ分離の効率は上がらない。ここで、拡散は溶液中のイオンが熱運動でランダムな方向に移動することを反映している。
(B) Diffusion The isotope separation efficiency by electrophoresis and the target ion separation efficiency are given in relation to diffusion. Even if there is a difference between the isotopes in the migration distance by electrophoresis, the separation efficiency will not increase unless the difference is larger than the spread of the movement distance by diffusion. Here, the diffusion reflects that ions in the solution move in a random direction by thermal motion.
 ある時間(t秒)経過後の位置の広がりはガウス関数で与えられ、その広がりを表す幅(σ)は拡散係数Dと時間tを用いて、下記式(3.1)に示すように、時間の平方根に比例する。 The spread of the position after a certain time (t seconds) is given by a Gaussian function, and the width (σ) representing the spread is expressed by the following equation (3.1) using the diffusion coefficient D and the time t, Proportional to the square root of time.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 前記したCaCl溶液の場合、Caイオンの水中での拡散係数は常温で7.9×10-10[m/s]である。また、具体的なσの値は、例えば、1秒で0.039mm、10000秒では3.9mmである。 In the case of the aforementioned CaCl 2 solution, the diffusion coefficient of Ca ions in water is 7.9 × 10 −10 [m 2 / s] at room temperature. The specific value of σ is, for example, 0.039 mm for 1 second and 3.9 mm for 10000 seconds.
 実際には、この他に泳動路の乱流や泳動速度の場所依存性などが更なる拡散を引き起こし、その寄与が無視できない場合が多いが、装置の工夫で原理的には抑えることができる。 Actually, in addition to this, the turbulent flow in the migration path and the location dependence of the migration speed cause further diffusion, and the contribution is often not negligible, but it can be suppressed in principle by devising the device.
 そして、充分な濃縮・分離・分析を達成するためには、同位体の泳動距離の差が、上記のσより充分大きくなる条件を実現する必要がある。 In order to achieve sufficient concentration, separation, and analysis, it is necessary to realize a condition in which the difference in isotope migration distance is sufficiently larger than the above-mentioned σ.
(ハ)電場と分離効率
 電場による泳動距離は、移動度μと電場Eにより表すことができるため、時間tに移動する距離
(C) Electric field and separation efficiency Since the migration distance by the electric field can be expressed by the mobility μ and the electric field E, the distance moved at time t
Figure JPOXMLDOC01-appb-M000023

は、下記式(3.2)のように表すことができる。
Figure JPOXMLDOC01-appb-M000023

Can be expressed as in the following formula (3.2).
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 前記したように、移動度は同位体によって差があるため、例えば、40Caと48Caの場合について、その差 As described above, since the mobility varies depending on the isotope, for example, the difference between 40 Ca and 48 Ca.
Figure JPOXMLDOC01-appb-M000025

が生み出す泳動距離の差
Figure JPOXMLDOC01-appb-M000025

Of migration distance produced by
Figure JPOXMLDOC01-appb-M000026

が、拡散による距離の広がりを示す式(3.1)に比べて充分に大きく、即ち、下記式(3.3)の条件を満たすことができれば、分離が可能になる。
Figure JPOXMLDOC01-appb-M000026

Is sufficiently larger than the expression (3.1) indicating the spread of the distance due to diffusion, that is, if the condition of the following expression (3.3) can be satisfied, separation is possible.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 上記式(3.3)を、両辺が等しいときの電場と時間の関係に直すと、下記式(3.4)または(3.5)のように表すことができる。 When the above formula (3.3) is corrected to the relationship between the electric field and time when both sides are equal, it can be expressed as the following formula (3.4) or (3.5).
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 上記式において、DおよびΔμは溶液の種類と濃度で決まる定数であるため、電場Eは時間の平方根の逆数で与えられることになる。即ち、電場をn倍強くすれば分離に必要な時間が1/nで短くなり、式(3.2)の電場と時間の積で与えられる泳動距離は1/nになる。 In the above formula, since D and Δμ are constants determined by the type and concentration of the solution, the electric field E is given by the reciprocal of the square root of time. That is, if the electric field is increased by n times, the time required for the separation is shortened by 1 / n 2 , and the migration distance given by the product of the electric field and time in Equation (3.2) is 1 / n.
 前記したように、非特許文献1では、キャピラリー電気泳動法により、900時間で23mに対応する泳動を行い、30%の濃縮を達成している。このとき、Caの泳動速度から電場は1.2V/cmであったと推定される。 As described above, in Non-Patent Document 1, electrophoresis corresponding to 23 m is performed in 900 hours by capillary electrophoresis, and a concentration of 30% is achieved. At this time, it is presumed that the electric field was 1.2 V / cm from the migration speed of Ca.
 キャピラリー電気泳動法の場合、数100V/cmの電場が一般的であるため、例えば電場が100倍になると同じ分離を得るための時間は1/10000、泳動距離は1/100になって、大きく効率の向上を図ることが可能である。 In the case of capillary electrophoresis, an electric field of several hundreds V / cm is common. For example, when the electric field is increased 100 times, the time for obtaining the same separation is 1/10000, and the migration distance is 1/100, which is large. It is possible to improve efficiency.
 しかし、式(2.3)で与えられる単位体積当たりの電力は電圧の二乗に比例して、10000倍となるため、発生するジュール熱を制御することが鍵となる。キャピラリー電気泳動法では、極細チューブの周りを水で冷却することで高い電圧に伴う単位体積当たりの高いジュール熱を取り去り、少量のサンプルを分析する用途に使われている。しかし、大量の濃縮(分離)に向いていない。 However, since the electric power per unit volume given by the equation (2.3) is 10000 times proportional to the square of the voltage, it is important to control the generated Joule heat. Capillary electrophoresis removes the high Joule heat per unit volume associated with high voltage by cooling around the ultrafine tube with water, and is used for analyzing small samples. However, it is not suitable for mass concentration (separation).
(ニ)電場と分離に要する電力
 前記したように、電場(単位長さ辺りの電圧)をn倍にすると、単位体積・時間当たりの電力はn倍になるが、分離に必要な時間は1/n、泳動距離は1/nで良いため、電場の掛かる体積もほぼ1/nになる。この結果、一定量を濃縮・分離・分析するために投入される全エネルギー(電力×時間)をほぼ1/nに減らすことができるため、投入する電力が一定の条件下では、電場を高くした方が総合的に分離効率を向上させることができることが分かる。
(D) Electric power required for electric field and separation As described above, when the electric field (voltage per unit length) is increased n times, the electric power per unit volume / time is increased by n 2 times. Since 1 / n 2 and the migration distance may be 1 / n, the volume to which the electric field is applied is also approximately 1 / n. As a result, the total energy (power x time) input to concentrate, separate, and analyze a certain amount can be reduced to almost 1 / n, so that the electric field is increased under the condition that the input power is constant. It can be seen that the separation efficiency can be improved overall.
(e)放熱とマルチチャネル
(イ)電力と放熱
 電場をn倍にしたときにn倍になる電力はジュール熱となってそのまま水溶液の発熱に使われる。キャピラリー電気泳動法では周りを冷却水で冷やすことで、この熱を取り去っているが、冷却のためにキャピラリーの直径は0.1mm程度と細く、周りに数cmの冷却のスペースを必要とするため、全体の断面積の中で泳動路の断面積の比は10-4~10-5と小さい。
(E) power to become n 2 times when the radiation and multichannel (b) power and the heat radiating electric field and n times is used as it is heating the aqueous solution becomes Joule heat. In capillary electrophoresis, this heat is removed by cooling the surroundings with cooling water, but the diameter of the capillary is as thin as about 0.1 mm for cooling, and a cooling space of several centimeters is required around it. The ratio of the cross-sectional area of the migration path in the entire cross-sectional area is as small as 10 −4 to 10 −5 .
 本実施の形態においては、泳動量を増やすために熱伝導率の高い物質を用いて作製された泳動媒体中に泳動路(チャネル)を多数設けている。これにより、以下に示すように、冷却を有効に行いながら泳動路の断面積の割合を10-1~10-2まで増やすことを可能にしている。 In this embodiment mode, a large number of migration paths (channels) are provided in a migration medium manufactured using a substance having high thermal conductivity in order to increase the migration amount. This makes it possible to increase the ratio of the cross-sectional area of the migration path from 10 −1 to 10 −2 while effectively performing the cooling, as described below.
(ロ)マルチチャネルのパラメーター
 1つのチャネルを半径rで長さ
(B) Multi-channel parameters One channel length with radius r
Figure JPOXMLDOC01-appb-M000030

の円柱としたとき、熱は中の水溶液に接するチャネル側面から逃げると考えられる。そして、温度勾配があるときに単位時間および単位面積当たりに移動する熱量、即ち、除熱量J[W/m]は、以下の式(4.1)で与えられる。なお、λは熱伝導率で物質固有の値で、gradTは温度勾配である。
Figure JPOXMLDOC01-appb-M000030

It is thought that heat escapes from the side surface of the channel in contact with the aqueous solution. The amount of heat that moves per unit time and unit area when there is a temperature gradient, that is, the heat removal amount J [W / m 2 ], is given by the following equation (4.1). Note that λ is a thermal conductivity and is a value specific to a substance, and gradT is a temperature gradient.
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 前記したように、除熱はチャネルの側面から行われるため、その面積は As mentioned above, since heat removal is performed from the side of the channel, the area is
Figure JPOXMLDOC01-appb-M000032

で表すことができる。なお、添え字のcは1個のチャネルを意味するが、長さは複数のチャネルのいずれにおいても同じであるため、
Figure JPOXMLDOC01-appb-M000032

Can be expressed as The subscript c means one channel, but the length is the same in any of the plurality of channels.
Figure JPOXMLDOC01-appb-M000033

である。
Figure JPOXMLDOC01-appb-M000033

It is.
 一方、各チャネルで発生する電力Pは、チャネル内の電力密度ρに体積を掛けることにより求めることができ、下式(4.2)、(4.3)と表すことができる。 On the other hand, the power P c generated in each channel can be obtained by multiplying the power density ρ c in the channel by the volume, and can be expressed by the following equations (4.2) and (4.3).
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000035
 ここで、チャネル内の溶液で発生する電力(P)は側面の面積から側面から逃げるパワー(J×側面積)と定常状態では釣り合っているため、Jについて、下式(4.4)に示す関係を得ることができる。 Here, since the electric power (P C ) generated in the solution in the channel is balanced with the power escaping from the side surface area (J × side area) in the steady state, J is expressed by the following equation (4.4). The relationship shown can be obtained.
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000036
 前記式(4.1)より、除熱される熱量は温度勾配gradTが一定の条件ではλに比例することが分かる。キャピラリー電気泳動法で用いられる樹脂製のチューブのλは0.5前後であるが、本実施の形態において用いる泳動媒体においては、例えばBNを用いた場合では、結晶で2000、焼結のセラミックでも50程度のλを容易に得ることができるため、Jを100倍から数1000倍にまで上昇させることが可能となる。 From the equation (4.1), it can be seen that the amount of heat removed is proportional to λ when the temperature gradient gradT is constant. The λ of a resin tube used in capillary electrophoresis is about 0.5. However, in the electrophoresis medium used in this embodiment, for example, when BN is used, the crystal is 2000, and the sintered ceramic is also used. Since it is possible to easily obtain λ of about 50, it is possible to increase J from 100 times to several thousand times.
(ハ)マルチチャネル領域の冷却
 前記したように、キャピラリー電気泳動法では0.1mmφ程度の極細チューブを用いることが多い。これに対して、本実施の形態の泳動媒体のBNはλが100倍以上大きいため、式(4.4)より電力密度又は半径を(乱流を引き起こさない程度に)大きく設定することが可能となる。単純には、式(4.1)と式(4.4)より半径rはλの平方根に比例して大きくできる。
(C) Cooling of the multi-channel region As described above, in the capillary electrophoresis method, an ultrafine tube of about 0.1 mmφ is often used. On the other hand, since BN of the migration medium of the present embodiment is 100 times larger than that of BN, it is possible to set the power density or the radius larger than the formula (4.4) (so as not to cause turbulent flow). It becomes. Simply, the radius r can be increased in proportion to the square root of λ from the equations (4.1) and (4.4).
 例えば、泳動路(チャネル)の太さを0.5mmφ程度にすると断面積は25倍に増え、その上でチャネルを多く設置(マルチチャネル化)することにより、泳動量を更に増やすことができる。この場合、各チャネルは熱源となるが、泳動路媒体に多数設けられているため、熱源が一様に存在すると考えることができる。 For example, when the thickness of the migration path (channel) is about 0.5 mmφ, the cross-sectional area increases 25 times, and the number of migration can be further increased by installing more channels (multi-channel). In this case, each channel serves as a heat source. However, since many channels are provided in the migration path medium, it can be considered that the heat sources exist uniformly.
 そこで、以下においては、マルチチャネル領域が円形の場合について除熱を評価する。マルチチャネル領域を半径RMCの内側とし、半径Rの位置が冷却系に接しているとすると、側面から逃げる熱量は下式(4.5)と表すことができる。なお、電力密度ρは各チャネルで発生する全電力をマルチチャネル泳動媒体の体積で割ったものであり、平均の電力密度である。 Therefore, in the following, heat removal is evaluated when the multichannel region is circular. The multi-channel region and an inner radius R MC, the position of the radius R C is that in contact with the cooling system, the amount of heat escaping from the side can be expressed as the following equation (4.5). Incidentally, the power density [rho P is obtained by dividing the total power generated in each channel by the volume of the multi-channel electrophoresis medium, it is the average power density.
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000037
 ここで、温度勾配は半径方向だけにあるので、式(4.1)は、 Here, since the temperature gradient is only in the radial direction, equation (4.1) is
Figure JPOXMLDOC01-appb-M000038

と表すことができ、これを変形させた
Figure JPOXMLDOC01-appb-M000038

Which can be expressed as
Figure JPOXMLDOC01-appb-M000039

を、r=Rからr=0まで積分することにより、下式(4.6)に示すように、水溶液の温度Tを求めることができる。なお、Tは周りの冷却系の温度である。
Figure JPOXMLDOC01-appb-M000039

Is integrated from r = Rc to r = 0, the temperature T of the aqueous solution can be obtained as shown in the following equation (4.6). Incidentally, T C is the temperature of the cooling system around.
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000040
 このTが100℃より充分に低ければ乱流の発生を抑制することができる。 If this T is sufficiently lower than 100 ° C., the generation of turbulent flow can be suppressed.
 例えば、図4(b)において、RMC=2cm、R=4cmでλ=63の泳動媒体を用いて、温度の上昇を50℃までに押さえようとすると、電力密度は1.2×10[W/m](12[W/cm])と求まり、水1cc当たり12W投入できることになる。これを非特許文献1の場合における電力密度と比較すると、非特許文献1の場合は1cc当たり約0.1Wであり、本発明を適用することにより、ほぼ100倍大きく電力を投入できることが分かる。 For example, in FIG. 4B, using an electrophoresis medium with R MC = 2 cm, R C = 4 cm, and λ = 63, the power density is 1.2 × 10 6 when trying to suppress the temperature rise to 50 ° C. 7 [W / m 3 ] (12 [W / cm 3 ]) is obtained, and 12 W can be charged per 1 cc of water. Comparing this with the power density in the case of Non-Patent Document 1, it can be seen that in Non-Patent Document 1 it is about 0.1 W per cc, and by applying the present invention, it can be seen that power can be input almost 100 times larger.
 このとき、最大の温度勾配はr=RMCの位置で、2000℃/m(2℃/mm)となり、1cmで20℃変化することになる。 At this time, the maximum temperature gradient is 2000 ° C./m (2 ° C./mm) at the position of r = R MC and changes by 20 ° C. at 1 cm.
 ここで使用した泳動媒体(マルチチャネル媒体)では0.5mmφの穴(泳動路)が2.5mm毎に設けられており、チャネルの断面積の合計は、泳動媒体全体の断面積の3.14%(3.14×10-2)に相当する。温度上昇の抑制の観点からは、泳動路の配置密度を高くして、チャネルの断面積の合計の割合が10-1を超えても問題ないが、泳動媒体の材質の強度等工作上の問題を考慮すると、チャネルの断面積の合計の割合は10-2~10-1(1~10%)とすることが好ましい。 In the electrophoresis medium (multi-channel medium) used here, 0.5 mmφ holes (migration paths) are provided every 2.5 mm, and the total cross-sectional area of the channel is 3.14 of the cross-sectional area of the entire electrophoresis medium. % (3.14 × 10 −2 ). From the viewpoint of suppressing the temperature rise, there is no problem even if the arrangement density of the migration path is increased and the total ratio of the cross-sectional areas of the channels exceeds 10 −1. In consideration of the above, it is preferable that the ratio of the total cross-sectional area of the channel is 10 −2 to 10 −1 (1 to 10%).
[2]本発明に係るMCCCE法の実施の形態
 前記したように、MCCCE法において高い効率の濃縮・分離を達成するには、イオンの熱運動による速度分散より同位体による移動度の差が生み出すイオンの移動距離が大きくなるようにすることが必要であり、その手段として向流を発生させている。
[2] Embodiment of the MCCCE method according to the present invention As described above, in order to achieve high-efficiency concentration / separation in the MCCCE method, a difference in mobility due to isotopes is generated from velocity dispersion due to thermal motion of ions. It is necessary to increase the moving distance of ions, and countercurrent is generated as a means for this.
 しかし、これまでのMCCCE法では向流による速度分散が非常に大きくなって、安定的に高い効率で濃縮・分離を行うことができない場合があった。 However, in the conventional MCCCE method, the velocity dispersion due to counterflow becomes very large, and there are cases where concentration and separation cannot be performed stably and with high efficiency.
 そして、検討の結果、濃縮・分離の効率が充分に高く発揮されない場合、細い泳動路の中における向流がハーゲン・ポアズイユ流と呼ばれる層流になっており、泳動路内において向流の速度が大きな位置依存性を持って速度分散が発生していることが分かった。 If the efficiency of concentration / separation is not sufficiently high as a result of the investigation, the countercurrent in the narrow migration path is a laminar flow called Hagen-Poiseuille flow, and the countercurrent velocity in the migration path is It was found that velocity dispersion occurred with a large position dependency.
 そこで、本発明に係るMCCCE法においては、泳動路において層流とならず位置依存性がない一様な速度分布の流れを生じさせる向流発生手段を設け、これにより、安定的に高い効率で濃縮・分離を行っている。 Therefore, in the MCCCE method according to the present invention, countercurrent generating means for generating a flow with a uniform velocity distribution that does not become laminar flow and has no position dependency in the migration path is provided, thereby stably and highly efficiently. Concentrating and separating.
 以下、上記した本発明に係るMCCCE法における実施の形態を具体的に説明する。 Hereinafter, embodiments of the above-described MCCCE method according to the present invention will be specifically described.
1.電気泳動装置
 本発明者は、本発明を実施するための実験を行うにあたって、図1に示すような電気泳動装置を、本実施の形態に係る電気泳動装置として新たに作成した。なお、本実施の形態においては、この電気泳動装置を用いて、塩化カルシウム溶液(CaCl溶液)に含まれる48Caの濃縮を行った。
1. Electrophoresis Device The inventor newly created an electrophoretic device as shown in FIG. 1 as an electrophoretic device according to the present embodiment in conducting an experiment for carrying out the present invention. In this embodiment, 48 Ca contained in a calcium chloride solution (CaCl 2 solution) was concentrated using this electrophoresis apparatus.
 図1において、1は電気泳動装置、11はケース、12は泳動媒体である。また、図中のAはCaCl溶液の流入口、BはCaCl溶液の流出口、Cは塩酸溶液の流入口、Dは塩酸溶液の流出口、Eは陰極、Fは陽極、Gはカチオン交換膜であり、そして、Hは泳動媒体12を冷却するために設けられた冷却水の流路である。 In FIG. 1, 1 is an electrophoresis apparatus, 11 is a case, and 12 is an electrophoresis medium. In the figure, A is the inlet of the CaCl 2 solution, B is the outlet of the CaCl 2 solution, C is the inlet of the hydrochloric acid solution, D is the outlet of the hydrochloric acid solution, E is the cathode, F is the anode, and G is the cation. H is an exchange membrane, and H is a flow path of cooling water provided to cool the electrophoresis medium 12.
 ケース11は、外形が80mmφ(径)×130mm(高さ)のアクリル樹脂製であり、内部は40mmφに形成されて泳動媒体12が配置されている。泳動媒体12は、10mm厚のBN(窒化ホウ素)板であり、0.8mmφの穴が4mm間隔で合計69個空けられて各チャネル13が形成されている(図2参照)。 The case 11 is made of acrylic resin having an outer shape of 80 mmφ (diameter) × 130 mm (height), and the inside is formed to 40 mmφ, and the electrophoresis medium 12 is disposed. The migration medium 12 is a BN (boron nitride) plate having a thickness of 10 mm, and a total of 69 holes of 0.8 mmφ are formed at intervals of 4 mm to form each channel 13 (see FIG. 2).
 上記において、チャネル13の径は、現実的な工作の制限から図4に示す装置のチャネルの径(0.5mmφ程度)より少し大きい0.8mmφになっているが、本発明の有用性を示す上で1mmφ程度までは問題なく大きくすることができる。 In the above description, the diameter of the channel 13 is 0.8 mmφ which is slightly larger than the channel diameter (about 0.5 mmφ) of the apparatus shown in FIG. Up to about 1 mmφ can be enlarged without problems.
 なお、泳動媒体12の下側には、泳動媒体12のチャネルと重なる位置に直径2mmφ程度の穴が空けられた5mm厚程度のBN板が積層配置されていることが好ましい。これにより、泳動媒体12における溶液の流れを安定させて、乱流の発生を確実に防ぐことができる。 In addition, it is preferable that a BN plate having a thickness of about 5 mm in which a hole having a diameter of about 2 mmφ is formed at a position overlapping the channel of the electrophoresis medium 12 is stacked below the electrophoresis medium 12. Thereby, the flow of the solution in the electrophoresis medium 12 can be stabilized, and generation | occurrence | production of a turbulent flow can be prevented reliably.
 この電気泳動装置1を使用して、まず、CaCl溶液を流入口Aから流入させる。流入口Aから流入した溶液中のCaイオンは、陰極Eおよび陽極Fに電圧を印加して形成された電場により、図中の上から下に向かって泳動する。このとき、溶液中のCaイオンが泳動する速度と、下から上に向かう溶液の流れ(向流)の速度とが、ほぼバランスのとれた状態になるように調整する。 Using this electrophoresis apparatus 1, first, a CaCl 2 solution is introduced from the inlet A. Ca ions in the solution flowing in from the inflow port A migrate from the top to the bottom in the figure by an electric field formed by applying a voltage to the cathode E and the anode F. At this time, the speed at which Ca ions in the solution migrate and the speed of the solution flow (counterflow) from the bottom to the top are adjusted so as to be in a substantially balanced state.
 このように、濃縮・分離対象であるCaイオンの泳動速度と同程度の速度の逆向きの流れである向流を生じさせることにより、相対的なCaイオンの泳動速度が非常に小さくなるため、10mmという非常に短い長さの泳動路であっても、実際の泳動距離を大きく伸ばすことができる。 In this way, the relative Ca ion migration speed becomes very small by generating a countercurrent that is a reverse flow at the same speed as the Ca ion migration speed to be concentrated and separated, Even with a very short migration path of 10 mm, the actual migration distance can be greatly extended.
 そして、泳動するCaイオンは、泳動媒体12に形成された各チャネルを通って下方に流れ、カチオン交換膜Gを自由に通過した後、陰極Eに到達した際に電子を受け取って中性化し、Caが陰極Eに付着する。なお、Caイオンと共に生成された陰イオンのClイオンは、上向きの電場および溶液の流れによって非常に速い速度で陽極Fに向かって泳動する。 And the Ca ion to migrate flows downward through each channel formed in the electrophoresis medium 12, and after passing through the cation exchange membrane G freely, when it reaches the cathode E, it receives electrons and becomes neutral, Ca adheres to the cathode E. The anion Cl ions generated together with Ca ions migrate toward the anode F at a very high speed due to the upward electric field and the flow of the solution.
 このとき、48Caや40Caなど質量が異なる同位体を含む溶液が泳動すると、それぞれの同位体の泳動速度が異なるため、向流の速度をその中間に設定して平均の泳動速度を0にすることにより、泳動速度が遅い同位体を陽極F側に集め、速い同位体を陰極E側に集めることができる。この結果、泳動速度が遅い質量が大きな同位体、即ち、48Caを陽極F側で濃縮して流出口Bから取り出して分離することができる。 At this time, when solutions containing isotopes having different masses such as 48 Ca and 40 Ca migrate, the migration speed of each isotope is different. Therefore, the countercurrent speed is set in the middle and the average migration speed is set to zero. By doing so, it is possible to collect isotopes having a low migration speed on the anode F side and to collect fast isotopes on the cathode E side. As a result, it is possible to concentrate isotope having a slow mass and a large mass, that is, 48 Ca, concentrated on the anode F side, taken out from the outlet B, and separated.
 なお、本実施の形態においては、塩酸溶液を流入口Cから流入させて流出口Dから流出させて塩酸溶液を循環させている。これは、陰極Eに付着したCaを塩酸溶液に溶かすことにより、Caの付着に伴う陰極Eの導通の悪化を防止することを目的として行われている。 In this embodiment, the hydrochloric acid solution is circulated from the inlet C and from the outlet D to circulate the hydrochloric acid solution. This is performed for the purpose of preventing deterioration of conduction of the cathode E accompanying the adhesion of Ca by dissolving Ca adhering to the cathode E in a hydrochloric acid solution.
 また、泳動媒体12(マルチチャネル電気泳動媒体)としては、上記したように、絶縁体で高い熱伝導率を有しているBN(窒化ホウ素)板が好ましく用いられる。本実施の形態において用いられるBN板の熱伝導率は63[W/(mK)]であり、水や一般の絶縁体のほぼ100倍高い熱伝導率を有している。 As the electrophoresis medium 12 (multi-channel electrophoresis medium), as described above, a BN (boron nitride) plate that is an insulator and has high thermal conductivity is preferably used. The thermal conductivity of the BN plate used in the present embodiment is 63 [W / (mK)], which is almost 100 times higher than that of water or a general insulator.
2.MCCCE法の基本形態により解決できる課題
 本実施の形態に係るMCCCE法は、上記したMCCCE法の基本形態と同様に、極めて高い効率で濃縮・分離を行うことができる。この点について、上記したMCCCE法の基本形態において既に説明した内容と一部重複するが、以下に詳しく説明する。
2. Problems that can be solved by the basic mode of the MCCCE method The MCCCE method according to the present embodiment can perform concentration and separation with extremely high efficiency as in the basic mode of the MCCCE method described above. This point partially overlaps with the contents already described in the basic form of the MCCCE method described above, but will be described in detail below.
(1)濃縮・分離・分析の効率化
 上記したMCCCE法の基本形態で説明したように、MCCCE法は、泳動路に高い電場を掛けることにより、拡散によるイオンの広がりよりも大きな泳動速度を生じさせて、効率よく、イオンを大量に濃縮・分離・分析することができる。即ち、効率的な濃縮・分離は、泳動路に掛かる電場により生じる泳動速度と関係している。
(1) Efficiency of concentration / separation / analysis As explained in the basic form of the MCCCE method described above, the MCCCE method generates a migration speed larger than the spread of ions by diffusion by applying a high electric field to the migration path. Thus, it is possible to efficiently concentrate, separate and analyze a large amount of ions. That is, efficient concentration / separation is related to the migration speed caused by the electric field applied to the migration path.
(a)泳動速度と電場と電力
 ここでは、イオンの泳動速度について説明する。前記したように、イオンの泳動速度は、移動度と電場の積で与えられる。そして、塩の溶液ではカチオンとアニオンの移動度と濃度が電気伝導度を与える。例えば、CaCl溶液の場合、Caイオンの移動度は、0.59mm/s/[100V/cm]であり、Clイオンの移動度は、0.77mm/s/[100V/cm]である。
(A) Migration Speed, Electric Field, and Power Here, the migration speed of ions will be described. As described above, the ion migration speed is given by the product of mobility and electric field. In a salt solution, the mobility and concentration of cations and anions give electrical conductivity. For example, in the case of a CaCl 2 solution, the mobility of Ca ions is 0.59 mm / s / [100 V / cm], and the mobility of Cl ions is 0.77 mm / s / [100 V / cm].
 このとき、元素が同じでも例えば40Caと48Caのような同位体の場合には、それぞれのイオンの移動度が小さいながら異なる。通常、電気泳動法では、この移動度の小さな差を利用して同位体の濃縮(分離)を行うが、移動度が小さい場合には、泳動距離の広がりにより同位体を濃縮・分離するために長距離の泳動を必要とする。 At this time, even if the elements are the same, for example, in the case of isotopes such as 40 Ca and 48 Ca, the mobility of each ion is small but different. Normally, electrophoresis uses this small difference in mobility to concentrate (separate) isotopes, but if the mobility is small, the isotope is concentrated and separated by increasing the migration distance. Requires long-distance migration.
(b)拡散
 上記したように、電気泳動法による同位体の濃縮効率は、拡散によるイオンの泳動距離の広がりとの関係で決まる。このため、同位体間の泳動距離の差は、拡散による泳動距離の広がりに比較して大きくなることが求められる。
(B) Diffusion As described above, the isotope enrichment efficiency by electrophoresis is determined by the relationship with the spread of ion migration distance by diffusion. For this reason, the difference in migration distance between isotopes is required to be larger than the spread of migration distance due to diffusion.
 拡散による泳動距離の広がりはガウス関数で求めることができ、この泳動距離の広がりを表す幅(σ)は拡散係数Dと時間を用いて The spread of the migration distance due to diffusion can be obtained by a Gaussian function, and the width (σ) representing the spread of the migration distance is calculated using the diffusion coefficient D and time.
Figure JPOXMLDOC01-appb-M000041

により算出することができる。この式により求められる水中でのCaイオンの拡散係数は常温で7.9×10-10[m/s]である。このときの泳動距離の広がり(σ)の具体的な値は、例えば、1秒で0.039mmとなり、10000秒で3.9mmとなる。
Figure JPOXMLDOC01-appb-M000041

Can be calculated. The diffusion coefficient of Ca ions in water obtained by this equation is 7.9 × 10 −10 [m 2 / s] at room temperature. The specific value of the migration distance spread (σ) at this time is, for example, 0.039 mm in 1 second and 3.9 mm in 10,000 seconds.
 実際には、上記した拡散によるイオンの泳動距離の広がりの他に、泳動路に生じる乱流や泳動速度の場所依存性などがさらなる拡散を引き起こす恐れがあるため、その影響を無視できない場合が多いが、これらは、原理的には装置の構成を工夫することにより抑制することができる。このため、高い効率で濃縮・分離を行うためには同位体の泳動距離の差がこの拡散によるイオンの泳動距離の広がりの値より充分に大きくなるように、電場と電力の条件を設定する必要がある。 Actually, in addition to the spread of ion migration distance due to diffusion as described above, turbulence generated in the migration path and the location dependence of the migration speed may cause further diffusion, so the effect cannot often be ignored. However, these can be suppressed in principle by devising the configuration of the apparatus. For this reason, in order to perform concentration and separation with high efficiency, it is necessary to set the electric field and power conditions so that the difference in the isotope migration distance is sufficiently larger than the value of the ion migration distance spread due to this diffusion. There is.
(c)電場と分離効率
 上記したように、同位体間の泳動距離の差を短時間で広げることにより、高い効率で濃縮・分離を行うことができる。そこで、本実施の形態においては、電場を高く設定して短時間で同位体間の泳動距離の差を広げることにより有効な濃縮(分離)を行っている。移動度は同位体によって差があり、例えば40Caと48Caの場合の移動度の差
(C) Electric field and separation efficiency As described above, concentration / separation can be performed with high efficiency by widening the difference in migration distance between isotopes in a short time. Therefore, in this embodiment, effective concentration (separation) is performed by setting a high electric field and widening the difference in migration distance between isotopes in a short time. The mobility differs depending on the isotope. For example, the difference in mobility between 40 Ca and 48 Ca.
Figure JPOXMLDOC01-appb-M000042

が生み出す泳動距離の差
Figure JPOXMLDOC01-appb-M000042

Of migration distance produced by
Figure JPOXMLDOC01-appb-M000043

が、拡散によるイオンの泳動距離の広がりの値より充分大きければ分離が可能になる。即ち、
Figure JPOXMLDOC01-appb-M000043

However, separation is possible if it is sufficiently larger than the value of the spread of ion migration distance due to diffusion. That is,
Figure JPOXMLDOC01-appb-M000044

又は
Figure JPOXMLDOC01-appb-M000044

Or
Figure JPOXMLDOC01-appb-M000045

と表すことができる。これらの式より、電場をn倍強くすれば分離に必要な時間が1/nで短くなることが分かり、また、電場と時間の積で与えられる泳動距離が1/nになることから、装置をコンパクト化できることが分かる。
Figure JPOXMLDOC01-appb-M000045

It can be expressed as. From these equations, it can be seen that if the electric field is increased by n times, the time required for separation is shortened by 1 / n 2 , and the migration distance given by the product of the electric field and time is 1 / n, It can be seen that the device can be made compact.
(2)ジュール熱の発生
 しかし前記したように、泳動路でのイオンの移動は電流となるため、電圧との積で与えられる電力に対応するジュール熱が発生する。このジュール熱の発生により、溶液の温度が上昇するため、適切な範囲内に温度を維持できるように除熱する必要がある。
(2) Generation of Joule Heat However, as described above, since the movement of ions in the migration path becomes an electric current, Joule heat corresponding to the electric power given by the product of the voltage is generated. Since the temperature of the solution rises due to the generation of the Joule heat, it is necessary to remove the heat so that the temperature can be maintained within an appropriate range.
 本実施の形態に係る電気泳動装置は、上記したMCCCE法の基本形態と同様に、熱伝導率の高い物質で構成された泳動媒体を用いているため、高い電場に伴って発生するジュール熱を有効に除熱することができる。 Since the electrophoresis apparatus according to the present embodiment uses an electrophoresis medium composed of a material having high thermal conductivity, as in the basic form of the MCCCE method described above, Joule heat generated with a high electric field is generated. Heat can be effectively removed.
(a)電力と放熱
 本実施の形態においては、上記したように、63[W/(mK)]という水や一般の絶縁体のほぼ100倍高い熱伝導率を有しているBN板を泳動媒体として用いている。このとき、BN板に形成される泳動路(チャネル)内の温度上昇と、BN板中心の温度上昇とを比較した際に、各チャネル内の温度上昇の方が低くなるように、泳動媒体が構成されていることが好ましい。
(A) Electric power and heat dissipation In this embodiment, as described above, BN plate having water conductivity of 63 [W / (mK)] or almost 100 times higher than that of a general insulator is migrated. Used as a medium. At this time, when the temperature rise in the migration path (channel) formed on the BN plate is compared with the temperature rise at the center of the BN plate, the migration medium is adjusted so that the temperature rise in each channel is lower. It is preferable to be configured.
 ここで、BN板における温度分布は、チャネル内の溶液でジュール熱が一様に発生して、BN板の周りの温度が冷却によって一定に保たれるとの境界条件の下で、熱伝導方程式を解くことにより求めることができる。なお、本実施の形態においては、各チャネルの中心の温度上昇に対して、BN板の中心と周りの温度上昇が1.1倍となるように設定されている。 Here, the temperature distribution in the BN plate is the heat conduction equation under the boundary condition that Joule heat is uniformly generated in the solution in the channel and the temperature around the BN plate is kept constant by cooling. Can be obtained by solving In this embodiment, the temperature rise around the center of the BN plate is set to be 1.1 times the temperature rise at the center of each channel.
(b)マルチチャネル領域の冷却
 そして、電気泳動装置を安定に作動させるためには、装置内のどの部分においても100度よりも充分に低い温度になっている必要がある。なお、チャネルの直径を細くし、チャネル数を増やせば、泳動路の面積(チャネルの面積×チャネル数)が同じで上限温度も同じになるため、装置全体における効率を増すことができる余地がある。しかし、装置全体における効率の向上は最大でも2倍弱に留まり、一方ではチャネルの直径を細くするために高いレベルの工作精度が要求されるため、得策とは言えず、本実施形態においては上記したMCCCE法の基本形態と同様のサイズに設定している。
(B) Cooling of the multi-channel region In order to operate the electrophoretic apparatus stably, it is necessary that the temperature is sufficiently lower than 100 degrees in any part of the apparatus. If the diameter of the channel is reduced and the number of channels is increased, the area of the migration path (channel area × number of channels) is the same and the upper limit temperature is the same, so there is room for increasing the efficiency of the entire apparatus. . However, the improvement in the efficiency of the entire apparatus is only a little less than twice, and on the other hand, a high level of work accuracy is required to reduce the diameter of the channel. The same size as the basic form of the MCCCE method.
 以上述べた各条件について適切に制御することにより、極めて高い効率で濃縮・分離を行うことができる。 Concentration and separation can be performed with extremely high efficiency by appropriately controlling each of the conditions described above.
3.本実施の形態における向流について
 前記したように、MCCCE法において高い効率の濃縮・分離を達成するには、イオンの熱運動による速度分散より同位体による移動度の差が生み出すイオンの移動距離が大きくなるようにすることが必要であり、その手段として向流を発生させている。
3. As described above, in order to achieve high-efficiency concentration / separation in the MCCCE method as described above, the movement distance of ions generated by the difference in mobility due to isotopes is greater than the velocity dispersion due to thermal motion of ions. It is necessary to make it large, and countercurrent is generated as the means.
 しかし、これまでのMCCCE法では向流による速度分散が非常に大きくなって、安定的に高い効率で濃縮・分離を行うことができない場合があった。 However, in the conventional MCCCE method, the velocity dispersion due to counterflow becomes very large, and there are cases where concentration and separation cannot be performed stably and with high efficiency.
 そこで、本実施の形態においては、速度分散のない向流(一様向流)を用いている。これにより、細いチャネルの中を一様にイオンが泳動することができ、高い効率の濃縮・分離を安定的に達成できる。以下、具体的に説明する。 Therefore, in this embodiment, countercurrent (uniform countercurrent) without velocity dispersion is used. Thereby, ions can migrate uniformly in the narrow channel, and high-efficiency concentration / separation can be stably achieved. This will be specifically described below.
(1)ハーゲン・ポアズイユ流
 向流において速度分散が大きくなるのは、向流が細い泳動路(チャネル)内で層流を形成することに起因している。即ち、細い泳動路を向流が定常的に流れる場合、流れる向流は壁面では流速が0になるという境界条件を満たす層流となる。この層流はハーゲン・ポアズイユ流として知られており、本実施の形態のように円柱状に泳動路が設けられている場合、その中を流れる液体(向流)の速度νは、中心から半径rの2次関数として、
(1) Hagen-Poiseuille flow The velocity dispersion in the counterflow is caused by the fact that the countercurrent forms a laminar flow in the narrow channel (channel). In other words, when the countercurrent constantly flows through the thin migratory path, the countercurrent that flows is a laminar flow that satisfies the boundary condition that the flow velocity is zero on the wall surface. This laminar flow is known as the Hagen-Poiseuille flow. When a migration path is provided in a cylindrical shape as in this embodiment, the velocity (ν) of the liquid (countercurrent) flowing through it is a radius from the center. As a quadratic function of r,
Figure JPOXMLDOC01-appb-M000046

で与えられ、この式より、ハーゲン・ポアズイユ流となった向流は壁面での流速が0で、中心部での流速が最高になるという位置依存性を有していることが分かる。なお、上式において、平均の速度はνであり、中心の速度は2νとなる。また、aは泳動路の半径である。
Figure JPOXMLDOC01-appb-M000046

From this equation, it can be seen that the counterflow that has become the Hagen-Poiseuille flow has a position dependency that the flow velocity at the wall surface is 0 and the flow velocity at the center is the highest. In the above equation, the average speed is ν 0 and the center speed is 2ν 0 . A is the radius of the migration path.
 泳動路を流れる向流がこのような層流になるか否かはレイノルズ数で特徴づけられる。レイノルズ数(Re)は Whether or not the countercurrent flowing through the migration path becomes such a laminar flow is characterized by the Reynolds number. Reynolds number (Re)
Figure JPOXMLDOC01-appb-M000047

で与えられる。上記数式中のUは向流の流速、Lは円柱状の泳動路の半径、νは動粘性係数である。本実施の形態において、流速Uを0.6mm/s、半径Lを0.8mmとすると、水の動粘性係数νは1×10-6/sであるため、レイノルズ数は0.5となる。通常、レイノルズ数が2000より小さくなると層流になると言われており、Reが1より小さなMCCCE法では必ず層流(ハーゲン・ポアズイユ流)が生じる。
Figure JPOXMLDOC01-appb-M000047

Given in. In the above equation, U is the countercurrent flow velocity, L is the radius of the cylindrical migration path, and ν is the kinematic viscosity coefficient. In this embodiment, when the flow velocity U is 0.6 mm / s and the radius L is 0.8 mm, the kinematic viscosity coefficient ν of water is 1 × 10 −6 m 2 / s, so the Reynolds number is 0.5. It becomes. Usually, it is said that when the Reynolds number is less than 2000, a laminar flow is generated. In the MCCCE method in which Re is smaller than 1, a laminar flow (Hagen-Poiseuille flow) always occurs.
 そして、このようなハーゲン・ポアズイユ流において、速度分布の分散σνは下式により求めることができ、33%もの速度分散を生じることが分かる。 In such a Hagen-Poiseuille flow, the dispersion σ ν of the velocity distribution can be obtained by the following equation, and it can be seen that a velocity dispersion of 33% occurs.
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000048
 この値は、同位体間の移動度の差による速度差、即ち、泳動するイオンの速度分布の数%に比べてはるかに大きいため、高い効率の濃縮・分離を安定的に達成するためには、この向流の速度分散が充分に抑え込まれた位置依存性のない向流(一様向流)を生じさせる必要があることが分かる。 This value is much larger than the difference in velocity due to the difference in mobility between isotopes, that is, a few percent of the velocity distribution of migrating ions. Therefore, in order to stably achieve high-efficiency concentration / separation. Thus, it is understood that it is necessary to generate a position-independent countercurrent (uniform countercurrent) in which the counterflow velocity dispersion is sufficiently suppressed.
 そして、向流は、本来、乱流であってはいけない。乱流は、前記したように、電場により濃縮・分離したイオンを再び混合された状態に戻してしまう。 And the countercurrent should not be turbulent in nature. As described above, the turbulent flow returns the ions concentrated and separated by the electric field to the mixed state again.
(2)一様向流の実現
 上記した位置依存性のない向流(一様向流)を生じさせる方法につき、本発明者は、以下に示す2つの方法が好ましく採用できることを見出した。
(2) Realization of Uniform Counterflow The present inventor has found that the following two methods can be preferably employed for the above-described method for generating a countercurrent (uniform countercurrent) having no position dependency.
(a)脈動流の形成
 第1の方法は、向流の流れに脈動を追加して脈動流を形成させる方法である。前記したように、ハーゲン・ポアズイユ流は、レイノルズ数が小さく定常的に流れる場合に現れて中心は高速、周りは低速という速度分布を発生させる。そこで、向流の流れに脈動を追加して脈動流を形成させることにより、ハーゲン・ポアズイユ流ではない向流の流れを形成させる。これにより、中心は高速、周りは低速という速度分布が発生せず、位置依存性のない一様な速度分布の向流(一様向流)を生じさせることができる。
(A) Formation of pulsating flow The first method is a method of forming a pulsating flow by adding pulsation to a countercurrent flow. As described above, the Hagen-Poiseuille flow appears when the Reynolds number is small and constantly flows, and generates a velocity distribution in which the center is high speed and the periphery is low speed. Therefore, by adding pulsation to the countercurrent flow to form the pulsation flow, a countercurrent flow that is not the Hagen-Poiseuille flow is formed. As a result, a velocity distribution with a high speed at the center and a low velocity at the periphery does not occur, and a countercurrent (uniform countercurrent) with a uniform velocity distribution without position dependency can be generated.
 このような脈動の追加を最も簡単に実現する手段としては、液送用のチュービングポンプを採用することが好ましい。 It is preferable to employ a tubing pump for liquid feeding as the means for realizing the simplest addition of such pulsation.
 本発明者は、チュービングポンプを用いて実験を開始したが、チュービングポンプの使用により濃縮度が3倍と目覚ましい結果が出た段階で、プランジャーポンプに変更した。即ち、流量が安定していると電圧も安定するが、チュービングポンプは、チューブが時間的に変形することによって流量が変化して流量を精度よく再現することが難しいと考えて、流量をデジタルで決定でき精度よく再現することが期待できるプランジャーポンプに変更した。 The inventor started an experiment using a tubing pump, but changed to a plunger pump when the concentration was three times as great as the tubing pump was used. In other words, the voltage stabilizes when the flow rate is stable, but the tubing pump digitally determines the flow rate because it is difficult to accurately reproduce the flow rate due to the change in the flow rate due to the deformation of the tube over time. It was changed to a plunger pump that can be determined and expected to be reproduced accurately.
 しかし、プランジャーポンプを用いた場合には、流量と電圧の関係を同じように設定しても、濃縮度に有意差が現れず、有効な濃縮を確認することができなかった。具体的には、プランジャーポンプを使う限り、濃縮度の向上効果はせいぜい10%に留まっており、チュービングポンプの3倍といった値と比較すると効果なしと言わざるを得ない。 However, when a plunger pump was used, even if the relationship between the flow rate and the voltage was set in the same manner, no significant difference appeared in the concentration, and effective concentration could not be confirmed. Specifically, as long as the plunger pump is used, the effect of improving the concentration is at most 10%, and it must be said that there is no effect when compared with a value that is three times that of the tubing pump.
 流量と電圧の関係を同じように設定して、チュービングポンプやプランジャーポンプを用いても、このように大きな差が生じるということは、チュービングポンプに重要な意味があることを示しており、チュービングポンプにより間欠的な脈動を作ることが重要であることが分かった。 Even if a tubing pump or plunger pump is used with the same relationship between the flow rate and voltage, the fact that such a large difference is generated indicates that the tubing pump has an important meaning. It was found that it is important to create intermittent pulsations with a pump.
 チュービングポンプを用いて脈動流を形成させることにより、位置依存性のない向流(一様向流)が生じる理由としては、チュービングポンプは、中心程速度が速い層流を一挙に送った後は、一旦待つことで均一な流れに変えているためと思われる。 The reason why counter-current (uniform counter-current) is generated by forming a pulsating flow using a tubing pump is that the tubing pump is a laminar flow whose center speed is faster after sending it all at once. It seems to be because it is changed to a uniform flow by waiting.
 しかし、チュービングポンプを用いる場合であっても、パルス間隔を短くして脈動のスピードを早くして流量を大きくすると、連続的な流れに近づくため、濃縮の効果がなくなる。具体的には、脈動のスピードを2.5倍とすることにより、濃縮の効果がなくなった。 However, even when a tubing pump is used, if the pulse interval is shortened to increase the flow rate by increasing the pulsation speed, the effect of concentration is lost because it approaches a continuous flow. Specifically, the effect of concentration disappeared by increasing the speed of pulsation by 2.5 times.
 なお、前記したように、チュービングポンプでは、平均の流量と脈動間隔、変動幅を独立に制御できないため、限られた場合にのみ有効な方法として、独立な脈動システムを組み込むことが望ましい。 As described above, since the tubing pump cannot control the average flow rate, pulsation interval, and fluctuation range independently, it is desirable to incorporate an independent pulsation system as an effective method only in a limited case.
(b)波打った形状の泳動路
 第2の方法は、泳動路に径の大きい部分と小さい部分とを交互に形成させて泳動路自体を波打った形状に形成する方法である。具体的には図3に示すように、泳動媒体14に太さの大きい部分15aと小さい部分15bとが長手方向に交互に反復された泳動路(チャネル)15を形成する。
(B) Waveform-shaped migration path The second method is a method in which the migration path itself is formed in a waved shape by alternately forming large diameter portions and small portions in the migration path. Specifically, as shown in FIG. 3, a migration path (channel) 15 in which large portions 15 a and small portions 15 b are alternately repeated in the longitudinal direction is formed on the migration medium 14.
 具体的な一例として、各泳動路を0.8mmと2mmの直径の穴を厚さ2mm毎に交互に5回繰り返すことにより全体で20mm厚のBN板で泳動路を作成し、2mm毎に太さの大きい部分と小さい部分とが長手方向に交互に反復された泳動路を形成する。 As a specific example, each migration path is created with a 20 mm-thick BN plate by alternately repeating a hole of 0.8 mm and 2 mm diameter every 5 mm for a thickness of 20 mm. The large part and the small part form an electrophoresis path that is alternately repeated in the longitudinal direction.
 なお、この泳動路15の場合、スムーズな流れを作るプランジャーポンプを用いても、1.4倍の濃縮度を得ることができている。 In the case of this migration path 15, even when a plunger pump that creates a smooth flow is used, a concentration of 1.4 times can be obtained.
 なお、上記した脈動流の形成や波打った形状の泳動路の形成において、脈動流の溶液の平均の流量、脈動間隔、変動幅、および泳動路を波打たせるための太さの大きい部分と小さい部分のそれぞれの太さ、長さは、向流の流速が泳動速度とバランスし、層流が維持され、かつ一様向流が形成されるように濃縮・分離対象の溶液等の物性に応じて適宜決定される。 In the formation of the pulsating flow and the formation of the wavy shape of the migration path, the average flow rate of the pulsating flow solution, the pulsation interval, the fluctuation range, and the thick part for making the migration path wavy The thickness and length of each small part is related to the physical properties of the solution to be concentrated / separated so that the countercurrent flow rate is balanced with the migration speed, laminar flow is maintained, and uniform countercurrent is formed. It is determined accordingly.
 以下、具体的な実施例を挙げて、本発明をさらに詳しく説明する。なお、本実施例においては、チュービングポンプを用いて向流を発生させて、48Caの濃縮・分離を行っている。 Hereinafter, the present invention will be described in more detail with reference to specific examples. In this embodiment, 48 Ca is concentrated and separated by generating a countercurrent using a tubing pump.
 図1に示した電気泳動装置を用い、溶液にCaCl溶液を用いて、48Caの濃縮・分離を行った。 Using the electrophoresis apparatus shown in FIG. 1, 48 Ca was concentrated and separated using a CaCl 2 solution.
 このとき、MCCCE法の有効性を示すために、キャピラリー電気泳動法(CE)における電場(約100V/cm)を超える電場(120V/cm)を掛けて向流の流速を0.72mm/sに設定した。この流速は流入速度1.5cc/分に相当しており、この液送(流入)をチュービングポンプ(アズワン社製SMP-23AS)を用いて行った。 At this time, in order to show the effectiveness of the MCCCE method, a countercurrent flow velocity of 0.72 mm / s is applied by applying an electric field (120 V / cm) exceeding the electric field (about 100 V / cm) in capillary electrophoresis (CE). Set. This flow rate corresponds to an inflow rate of 1.5 cc / min, and this liquid feed (inflow) was performed using a tubing pump (SMP-23AS manufactured by ASONE).
 チュービングポンプによる液送は、ほぼ3秒に1回のパルスで行うため、向流は2.2mm/パルス(0.72mm/s×3秒/パルス)で、脈動流となって進行する。ただし、この流速はチュービングポンプでは正確に測ることが難しいことと、後述する泡の発生の問題があって10%程度の誤差がある。 Since the liquid feeding by the tubing pump is performed with a pulse of about once every 3 seconds, the countercurrent is 2.2 mm / pulse (0.72 mm / s × 3 seconds / pulse) and proceeds as a pulsating flow. However, this flow rate has an error of about 10% because it is difficult to accurately measure with a tubing pump and there is a problem of generation of bubbles, which will be described later.
 電極間にかけた電圧の内、10mm厚のBN板の表裏面間にかかる電圧が泳動路中の電場を形成するが、近傍にあるプローブの電圧と簡単な計算で、約80%の電圧がBN板の泳動路にかかっていると推定できる。 Of the voltage applied between the electrodes, the voltage applied between the front and back surfaces of a 10 mm thick BN plate forms an electric field in the migration path, but approximately 80% of the voltage is BN based on the voltage of the probe in the vicinity and simple calculation. It can be estimated that it is in the migration path of the plate.
 なお、本実施例においては、向流の速度は一定に設定しておいて、電場を変化させることで、一定の向流速度に対して電場による移動速度が濃縮度をどう変化させるかを見た。 In this embodiment, the countercurrent velocity is set to be constant, and the electric field is changed to see how the electric field movement speed changes the concentration with respect to the constant countercurrent velocity. It was.
 電圧をかけると電流が発生し、その積の電力がジュール熱として泳動路内に発生する。同じ電場でも溶液の濃度で電流が変化する。ここではCaCl溶液の濃度を0.01N(0.01mol/リットル)とした。例えば、170Vの条件では電流は時間的に変化しているが典型的に200mAであり、BN板中での電力は27W(=170V×80%×200mA)と計算された。これに基づき、BN板中の泳動路の体積が0.34ccであることから電力密度は80W/ccと求められた。 When a voltage is applied, a current is generated, and the product electric power is generated in the migration path as Joule heat. The current varies with the concentration of the solution even in the same electric field. Here, the concentration of the CaCl 2 solution was 0.01 N (0.01 mol / liter). For example, under the condition of 170 V, the current varies with time but is typically 200 mA, and the power in the BN plate was calculated to be 27 W (= 170 V × 80% × 200 mA). Based on this, the power density was determined to be 80 W / cc since the volume of the migration path in the BN plate was 0.34 cc.
 この電力密度は、除熱しなければ1秒で約20度温度上昇するパワーを泳動路に投入可能であることを示している。計算上、各直径0.8mmの泳動路での温度上昇は5.3度で、半径20mmでの温度上昇は6度であることから、全体の温度上昇は11度で、チャネルと呼べる泳動路のサイズとBNの高い熱伝導率で、この温度上昇が充分低く抑えられていることが分かる。 This power density indicates that if the heat is not removed, power that increases in temperature by about 20 degrees per second can be input to the migration path. In the calculation, the temperature rise in each migration path having a diameter of 0.8 mm is 5.3 degrees, and the temperature rise in a radius of 20 mm is 6 degrees. Therefore, the overall temperature rise is 11 degrees, and the migration path can be called a channel. It can be seen that this temperature rise is suppressed sufficiently low by the size of γ and the high thermal conductivity of BN.
 より細い泳動路にして数を増やせば、泳動路での全体の温度上昇がほぼBNの温度上昇で決まるようになり、同じ上限温度で投入できる最大電力を増やすことも可能となる。しかし、この改善の余地は2桁近く改善した後の1.8倍程度であり、敢えて、工作上難しい細い泳動路を多く作ることのメリットは少ない。前記したように、本実施例において発生するジュール熱による温度上昇は10度程度と計算されるので、濃度には5倍程度の余裕があるが、まずは濃縮度の確認が最初に重要なので、安全に温度が制御出来ている濃度で実験を行った。 If the number is made smaller and the number is increased, the total temperature rise in the migration path is determined by the temperature rise of BN, and the maximum power that can be input at the same upper limit temperature can be increased. However, the room for improvement is about 1.8 times that after improvement by nearly two digits, and there is little merit in making many thin migration paths that are difficult to work. As described above, the temperature increase due to the Joule heat generated in this embodiment is calculated to be about 10 degrees, so the concentration has a margin of about 5 times, but first, confirmation of the concentration is important first, so it is safe. The experiment was conducted at a concentration at which the temperature could be controlled.
 上記の電気泳動装置を運転するにあたって最大の問題点は、泡の発生にあると言える。電極では泡が発生する。この泡がBN板の泳動路をブロックしてしまうと、向流の速度が変化して、電圧との関係が壊れてしまう。 It can be said that the biggest problem in operating the above electrophoresis apparatus is the generation of bubbles. Bubbles are generated at the electrode. If the bubbles block the migration path of the BN plate, the countercurrent speed changes and the relationship with the voltage is broken.
 具体的に、上の陽極Fでは主に塩素にある程度酸素が混じったガスが発生していると考えられるが、これは流出口Bから抜けていくので問題にならない。 Specifically, in the upper anode F, it is considered that a gas mainly mixed with oxygen to some extent is generated, but this does not cause a problem because it escapes from the outlet B.
 一方、下の陰極Eでは水素が主に発生している。これはBN板の泳動路をマスクして有効な泳動路の面積を小さくしてしまうため、解決する必要がある。そこで、イオン交換膜Gを設置し、それに傾きをつけて泡を抜く工夫を施したところ、電極から発生するガス(泡)は解決できた。 On the other hand, hydrogen is mainly generated at the lower cathode E. This needs to be solved because the area of the effective migration path is reduced by masking the migration path of the BN plate. Therefore, when an ion exchange membrane G was installed and a device was added to incline it to remove bubbles, the gas (bubbles) generated from the electrodes could be solved.
 しかし、BN板の上下でもガスが発生した。これを解消するためには、溶液に溶け込んでいるガスを真空ポンプで吸引することで対処した。一応の改善が見られたが完全には泡を取ることができなかった。 However, gas was also generated above and below the BN plate. In order to solve this problem, the gas dissolved in the solution was sucked with a vacuum pump. Although there was a temporary improvement, the foam could not be completely removed.
 そこで、ガスを取り去るために装置を横置きしたところ、ガスをBN板の泳動路を塞がない形で抜き取ることができた。しかし、ガスを抜くという目的は達成できたが、横置きにする限り、濃縮の効果を確認することはできなくなった。これは、縦置きにしている限りは重い溶液が下側にあるという条件が常に成り立っているが、横置きにした場合には濃度差あるいは温度差による対流が発生し、濃縮の効果を消してしまったと考えられる。 Therefore, when the apparatus was placed horizontally to remove the gas, the gas could be extracted without blocking the migration path of the BN plate. However, although the purpose of degassing could be achieved, as long as it was placed horizontally, the effect of concentration could not be confirmed. As long as it is placed vertically, the condition that the heavy solution is on the lower side always holds, but if it is placed horizontally, convection due to a difference in concentration or temperature will occur, eliminating the effect of concentration. It is thought that it has stopped.
 他にもいろいろガスを取り去るために装置の置き方を試したが、結局うまくいったのは少し傾けるという中間の対策であった。具体的には、傾いたBN板を横から見て、対角線が水平線より傾かないようにした上で、泡がある程度以上に成長すると抜けるように工夫したところ、ある程度電圧と向流速度の関係が安定するようになった。しかし10%程度の変化は避けられなかった。 I tried to put the device in order to remove various other gases, but what worked was an intermediate measure that tilted a little. Specifically, when the tilted BN plate is viewed from the side, the diagonal line is not inclined more than the horizontal line, and when the bubbles grow out to a certain extent, the relationship between the voltage and the countercurrent velocity is somewhat. It became stable. However, a change of about 10% was inevitable.
 表1に、1.5cc/mの流量を固定して、電圧を変化させた時に得られた濃縮・分離の結果を示す。なお、濃縮度の評価は、下側のスペースが25ccで上側が44ccの装置を用いて、1時間程度で溜まった溶液の同位体比を測定している。原理的には濃縮度は最初はいずれもほぼ同じ値からスタートして、時間的に濃度が高まっていると考えられる。 Table 1 shows the concentration / separation results obtained when the voltage was changed while the flow rate of 1.5 cc / m was fixed. The evaluation of the concentration is performed by measuring the isotope ratio of the solution accumulated in about 1 hour using an apparatus having a lower space of 25 cc and an upper side of 44 cc. In principle, it is thought that the concentration starts from almost the same value at first, and the concentration increases with time.
 なお、ここでは、48Caと43Caの存在比α(48/43)を測定した。装置がどの程度濃縮を達成しているかを評価する性能としては48Caと40Caの比α(48/40)で評価するほうが好ましいが、今回の実験においては、質量分析装置としてICP質量分析器を用いており、イオン源にアルゴンガスを用いる関係で40Arにより40Caがマスクされて、40Caを測定することができない。そこで、48Caと43Caとの濃縮度を用いて48Caと40Caとの濃縮度に変換するために、
文献 Y. Fujii, et al., Zeitschrift fur Naturforschung ection A-A Journal of Physical Sciences, 40, 8 (1985) 843-848
に記載の濃縮度の質量依存性が質量差に比例する関係を示す式
Here, the abundance ratio α (48/43) between 48 Ca and 43 Ca was measured. Although it is preferable to evaluate the ratio α (48/40) between 48 Ca and 40 Ca as performance for evaluating how much concentration the apparatus has achieved, in this experiment, an ICP mass spectrometer was used as a mass spectrometer. 40 Ca is masked by 40 Ar because argon gas is used for the ion source, and 40 Ca cannot be measured. Therefore, in order to convert the concentration of 48 Ca and 43 Ca to the concentration of 48 Ca and 40 Ca,
Reference Y. Fujii, et al. , Zeitschrift for Natureshunching AA Journal of Physical Sciences, 40, 8 (1985) 843-848.
Expression showing the relationship in which the mass dependence of the degree of concentration described in is proportional to the mass difference
Figure JPOXMLDOC01-appb-M000049

を用いて、求めたα(48/40)の値を表1に示した。なお、A43とA48はそれぞれ計測された43Caと48Caの存在比である。
Figure JPOXMLDOC01-appb-M000049

Table 1 shows the values of α (48/40) obtained using A 43 and A 48 are the abundance ratios of 43 Ca and 48 Ca, respectively.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 表1より、電圧と向流の速度がほぼ釣り合った状態で、濃縮度で3倍という大きな値が得られていることが分かった。電圧の依存性も、電場による泳動速度と向流の速度が近い点に最大値が得られており、妥当な結果である。 From Table 1, it was found that a large value of 3 times the concentration was obtained in a state where the voltage and the countercurrent velocity were almost balanced. The voltage dependence is also a reasonable result because the maximum value is obtained at the point where the electrophoretic velocity by the electric field is close to the countercurrent velocity.
 濃縮度の質量依存性はほぼ比例関係であることが知られているので、40Caと48Caの比に直すと6倍となり、驚くべき大きな値である。厚さ10mmのBN板で1時間程度の時間で得られた濃縮度としては大きな将来性を示している。 Since it is known that the mass dependence of the enrichment is almost proportional, when it is converted to the ratio of 40 Ca to 48 Ca, it becomes 6 times, which is a surprisingly large value. The enrichment obtained in a time of about 1 hour with a 10 mm thick BN plate shows great potential.
 なお、ここでは1.5cc/mの結果だけを示しているが、測定は多くの場合について行っている。本来は流量を決めると最適な電圧が決まり、濃縮度もある値になると予想されるが、実際の結果は安定しているとは言えない。これは、上記したチュービングポンプで流量が安定しない問題の他に、泡が一部の泳動路を塞ぐことにより、流速が実質的に10%程度変化することが原因と考えられる。しかし、完全な再現が難しい一方で、良い濃縮度が観測される傾向は一致している。 In addition, although only the result of 1.5 cc / m is shown here, the measurement is performed in many cases. Originally, the optimal voltage is determined by determining the flow rate, and the concentration is expected to be a certain value, but the actual result is not stable. This is considered to be caused by the fact that the flow rate is substantially changed by about 10% due to the bubbles blocking a part of the migration path in addition to the problem that the flow rate is not stabilized by the above-described tubing pump. However, while complete reproduction is difficult, the tendency to observe good enrichment is consistent.
 具体的には、表1に示した170Vでの同位体比(A43/A48)0.201は今までの最高値であるが、その次に高い同位体比(A43/A48)は、表1には示していないが、0.26であり、先の0.201に比べて少し小さいながら、高い濃縮度が得られている。 Specifically, the isotope ratio (A 43 / A 48 ) 0.201 at 170 V shown in Table 1 is the highest so far, but the next highest isotope ratio (A 43 / A 48 ) Although not shown in Table 1, it is 0.26, which is a little smaller than the previous 0.201, but a high enrichment is obtained.
 そして、向流の速度を1.2cc/mに変えた場合では、電圧が150Vで同位体比(A43/A48)0.28が得られており、流速が下がると対応する泳動速度も下がるために電圧が下がり、濃縮度も少し低くなるとの傾向が見えている。なお、これを濃縮度に変換すると、α(48/43)で2.2倍、α(48/40)で3.5倍という値になる。 When the counter-current velocity is changed to 1.2 cc / m, the voltage is 150 V and an isotope ratio (A 43 / A 48 ) of 0.28 is obtained. There is a tendency for the voltage to drop and the degree of enrichment to decrease slightly. When this is converted into the degree of concentration, α (48/43) is 2.2 times and α (48/40) is 3.5 times.
 本発明者は、最近の実験において、20mm厚のBN板での測定において、実験条件の最適化は充分ではないが、210Vで同位体比(A43/A48)0.139を得ている。これはα(48/43)で4.4倍に対応し、α(48/40)では10.6倍に対応する値である。これは本発明者がCaの濃縮として第1段階で目指した値で、それが1時間程度で上記のような小さなサイズの装置を動かすことで達成できたことの意義は非常に大きい。 In a recent experiment, the present inventor has obtained an isotope ratio (A 43 / A 48 ) of 0.139 at 210 V, although the optimization of the experimental conditions is not sufficient in the measurement with a 20 mm-thick BN plate. . This corresponds to α (48/43) corresponding to 4.4 times and α (48/40) corresponding to 10.6 times. This is the value that the inventor aimed at Ca concentration in the first stage, and it is very significant that this could be achieved by moving a small-sized apparatus as described above in about an hour.
 このように、本発明が提供する技術は対費用効果の高い濃縮・分離技術であり、上記した48Caの濃縮・分離だけでなく、同様に、ガスの化合物はないが基礎研究において大量の濃縮が求められている150Nd(ネオジム)の濃縮・分離にも好ましく適用することができる。また、溶液中で荷電イオンとなるすべての元素や化合物にも適用可能であるため、電気泳動法で分析されている少量元素、分子、高分子の大量濃縮・分離にも適用することができ、さらには、核燃料の濃縮・分離や、放射性廃棄物からの放射性同位元素の選別にも適用することができる。 Thus, the technology provided by the present invention is a cost-effective concentration / separation technology, not only the above-described 48 Ca concentration / separation, but also a large amount of concentration in basic research although there is no gas compound. Can be preferably applied to the concentration and separation of 150 Nd (neodymium). In addition, since it can be applied to all elements and compounds that become charged ions in solution, it can also be applied to mass concentration / separation of small amounts of elements, molecules, and polymers analyzed by electrophoresis, Furthermore, it can be applied to the concentration and separation of nuclear fuel and the selection of radioisotopes from radioactive waste.
 以上、本発明の実施の形態について説明したが、本発明は、上記の実施の形態に限定されるものではない。本発明の原理を用いて、本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment. Using the principle of the present invention, various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.
1          電気泳動装置
11         ケース
12、14、105  泳動媒体
13、15、107  泳動路(チャネル)
15a        泳動路の太さの大きい部分
15b        泳動路の太さの小さい部分
101        容器
102        泳動部
103        陽極板
104        陰極板
106        向流発生部
108        マルチチャネル部
109        陽極側撹拌部
110        陰極側撹拌部
A          CaCl溶液の流入口
B          CaCl溶液の流出口
C          塩酸溶液の流入口
D          塩酸溶液の流出口
E          陰極
F          陽極
G          カチオン交換膜
H          冷却水の流路
1 Electrophoresis device 11 Case 12, 14, 105 Electrophoresis medium 13, 15, 107 Electrophoresis path (channel)
15a A portion having a large migration path 15b A portion having a small migration path 101 Container 102 Migration unit 103 Anode plate 104 Cathode plate 106 Counterflow generation unit 108 Multichannel unit 109 Anode side stirring unit 110 Cathode side stirring unit A CaCl 2 Solution inlet B CaCl 2 Solution outlet C Hydrochloric acid solution inlet D Hydrochloric acid solution outlet E Cathode F Anode G Cation exchange membrane H Cooling water flow path

Claims (8)

  1.  濃縮・分離または分析の対象である物質のイオンを、電場が掛けられた泳動路に沿って移動させることにより濃縮・分離または分析する電気泳動装置であって、
     前記泳動路が、高熱伝導率の絶縁体中に複数設けられており、
     さらに、前記泳動路中の溶液に、前記イオンの泳動速度に対応した速度で、イオンの泳動方向とは逆方向に、一様な速度分布の流れを生じさせる向流発生手段が設けられている
    ことを特徴とする電気泳動装置。
    An electrophoresis apparatus for concentrating, separating or analyzing ions of a substance to be concentrated, separated or analyzed by moving along an electrophoresis path to which an electric field is applied,
    A plurality of the migration paths are provided in an insulator having high thermal conductivity,
    Furthermore, countercurrent generating means is provided in the solution in the migration path for generating a flow having a uniform velocity distribution at a speed corresponding to the migration speed of the ions and in a direction opposite to the ion migration direction. An electrophoresis apparatus characterized by that.
  2.  前記向流発生手段が、前記泳動路中の溶液に、所定の時間、所定の間隔で脈動を与えることにより、前記イオンの泳動速度に対応した速度で、イオンの泳動方向とは逆方向に、一様な速度分布の流れを生じさせる向流発生手段であることを特徴とする請求項1に記載の電気泳動装置。 The counter-current generating means pulsates the solution in the migration path at a predetermined interval for a predetermined time, so that the counter-current generating means has a speed corresponding to the ion migration speed and in a direction opposite to the ion migration direction. 2. The electrophoretic device according to claim 1, wherein the electrophoretic device is a countercurrent generating means for generating a flow having a uniform velocity distribution.
  3.  前記向流発生手段が、チュービングポンプを用いて、前記泳動路中の溶液に、所定の時間、所定の間隔で脈動を与えることにより、前記イオンの泳動速度に対応した速度で、イオンの泳動方向とは逆方向に、一様な速度分布の流れを生じさせる向流発生手段であることを特徴とする請求項2に記載の電気泳動装置。 The counter-current generating means uses a tubing pump to pulsate the solution in the migration path at a predetermined interval for a predetermined time, so that the ion migration direction at a speed corresponding to the ion migration speed. The electrophoretic device according to claim 2, wherein the electrophoretic device is a countercurrent generating unit that generates a flow having a uniform velocity distribution in a direction opposite to that of the electrophoretic device.
  4.  前記向流発生手段が、前記泳動路に径の大きい部分と小さい部分とを交互に形成させて前記泳動路を波打った形状に形成することにより、前記イオンの泳動速度に対応した速度で、イオンの泳動方向とは逆方向に、一様な速度分布の流れを生じさせる向流発生手段であることを特徴とする請求項1に記載の電気泳動装置。 The countercurrent generation means alternately forms large diameter portions and small portions in the migration path and forms the migration path in a wavy shape, thereby at a speed corresponding to the migration speed of the ions, 2. The electrophoretic device according to claim 1, wherein the electrophoretic device is countercurrent generating means for generating a flow having a uniform velocity distribution in a direction opposite to the direction of ion migration.
  5.  濃縮・分離または分析の対象である物質のイオンを、電場が掛けられた泳動路に沿って移動させることにより濃縮・分離または分析する電気泳動法であって、
     高熱伝導率の絶縁体中に複数設けられている前記泳動路に電場を掛けることにより、前記イオンを移動させ、
     前記泳動路中の溶液に、前記イオンの泳動速度に対応した速度で、イオンの泳動方向とは逆方向に、一様な速度分布の流れを生じさせる
    ことを特徴とする電気泳動法。
    An electrophoresis method for concentrating, separating or analyzing ions of a substance to be concentrated, separated or analyzed by moving along an electrophoresis path to which an electric field is applied,
    By applying an electric field to the migration path provided in a plurality of insulators with high thermal conductivity, the ions are moved,
    An electrophoresis method, wherein a flow having a uniform velocity distribution is generated in a solution in the migration path at a speed corresponding to the migration speed of the ions in a direction opposite to a migration direction of the ions.
  6.  前記濃縮・分離または分析の対象である物質が同位体元素であることを特徴とする請求項5に記載の電気泳動法。 6. The electrophoresis method according to claim 5, wherein the substance to be concentrated, separated or analyzed is an isotope element.
  7.  前記同位体元素が、48Caであることを特徴とする請求項6に記載の電気泳動法。 The electrophoresis method according to claim 6, wherein the isotope element is 48 Ca.
  8.  請求項5ないし請求項7のいずれか1項に記載の電気泳動法を用いて、対象となる物質のイオンを濃縮・分離または分析することを特徴とする濃縮・分離または分析方法。 A concentration / separation / analysis method comprising concentrating / separating / analyzing ions of a target substance using the electrophoresis method according to any one of claims 5 to 7.
PCT/JP2015/077677 2014-10-03 2015-09-30 Electrophoresis apparatus, electrophoresis method, and concentration/separation/analysis method using electrophoresis method WO2016052589A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-205196 2014-10-03
JP2014205196A JP6425958B2 (en) 2014-10-03 2014-10-03 Electrophoresis apparatus, electrophoresis method and concentration / separation / analysis method using electrophoresis method

Publications (1)

Publication Number Publication Date
WO2016052589A1 true WO2016052589A1 (en) 2016-04-07

Family

ID=55630614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077677 WO2016052589A1 (en) 2014-10-03 2015-09-30 Electrophoresis apparatus, electrophoresis method, and concentration/separation/analysis method using electrophoresis method

Country Status (2)

Country Link
JP (1) JP6425958B2 (en)
WO (1) WO2016052589A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101953894B1 (en) * 2017-01-23 2019-03-04 서울대학교산학협력단 Method for determining concentrating type of analytes and method for switching concentrating type of analytes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159375A (en) * 1993-09-23 1995-06-23 Hewlett Packard Co <Hp> Device and method for capillary electrophoresis
JPH09281077A (en) * 1996-04-16 1997-10-31 Hitachi Ltd Capillary electrophoretic apparatus
JP2005278418A (en) * 2004-03-26 2005-10-13 Japan Science & Technology Agency Method for concentrating and/or extracting charged matter from sample and device therefor
JP2014097463A (en) * 2012-11-15 2014-05-29 Tadashi Kishimoto Electrophoresis apparatus, electrophoresis and concentration, separation and analytical methods using the electrophoresis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173164A (en) * 1990-09-11 1992-12-22 Bioseparations, Inc. Multi-modality electrical separator apparatus and method
US7316543B2 (en) * 2003-05-30 2008-01-08 The Board Of Trustees Of The Leland Stanford Junior University Electroosmotic micropump with planar features

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159375A (en) * 1993-09-23 1995-06-23 Hewlett Packard Co <Hp> Device and method for capillary electrophoresis
JPH09281077A (en) * 1996-04-16 1997-10-31 Hitachi Ltd Capillary electrophoretic apparatus
JP2005278418A (en) * 2004-03-26 2005-10-13 Japan Science & Technology Agency Method for concentrating and/or extracting charged matter from sample and device therefor
JP2014097463A (en) * 2012-11-15 2014-05-29 Tadashi Kishimoto Electrophoresis apparatus, electrophoresis and concentration, separation and analytical methods using the electrophoresis

Also Published As

Publication number Publication date
JP2016075537A (en) 2016-05-12
JP6425958B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
Nam et al. Experimental verification of overlimiting current by surface conduction and electro-osmotic flow in microchannels
Ko et al. Electroosmotic flow of non‐Newtonian fluids in a constriction microchannel
Kale et al. Numerical modeling of J oule heating effects in insulator‐based dielectrophoresis microdevices
Kim et al. Energy efficiency enhancement of electromembrane desalination systems by local flow redistribution optimized for the asymmetry of cation/anion diffusivity
Li et al. Continuous manipulation and separation of particles using combined obstacle‐and curvature‐induced direct current dielectrophoresis
AU2017220573A1 (en) Separation and analysis of samples bymicrofluidic free-flow electrophoresis
Xuan Review of nonlinear electrokinetic flows in insulator‐based dielectrophoresis: from induced charge to Joule heating effects
Tao et al. Enhanced particle trapping performance of induced charge electroosmosis
Rouhi Youssefi et al. Ultrafast electrokinetics
Khashei et al. Microparticles manipulation and enhancement of their separation in pinched flow fractionation by insulator‐based dielectrophoresis
Zhou et al. Dielectrophoretic choking phenomenon in a converging‐diverging microchannel for Janus particles
Yeh et al. Electroviscous effect on the streaming current in a pH-regulated nanochannel
Nguyen et al. High-current density DC magenetohydrodynamics micropump with bubble isolation and release system
WO2016052589A1 (en) Electrophoresis apparatus, electrophoresis method, and concentration/separation/analysis method using electrophoresis method
Manshadi et al. Numerical analysis of non-uniform electric field effects on induced charge electrokinetics flow with application in micromixers
Sugioka Asymmetrical reverse vortex flow due to induced-charge electro-osmosis around carbon stacking structures
Chen et al. An electrokinetic preconcentration trapping pattern in electromembrane microfluidics
Cong et al. ITP of lanthanides in microfluidic PMMA chip
Liu et al. Revisit of wall‐induced lateral migration in particle electrophoresis through a straight rectangular microchannel: Effects of particle zeta potential
Thomas et al. Charge‐based separation of particles and cells with similar sizes via the wall‐induced electrical lift
Xue et al. Separation of micro and sub‐micro diamagnetic particles in dual ferrofluid streams based on negative magnetophoresis
Affolter et al. Cyclotron mode frequencies and resonant absorption in multi-species ion plasmas
Tawfik et al. Maximizing fluid delivered by bubble‐free electroosmotic pump with optimum pulse voltage waveform
Li et al. A sheathless high precise particle separation chip integrated contraction–expansion channel and deterministic lateral displacement
JP6207148B2 (en) Electrophoresis apparatus, electrophoresis method and concentration / separation / analysis method using electrophoresis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848058

Country of ref document: EP

Kind code of ref document: A1