WO2016052175A1 - Endoscope system - Google Patents

Endoscope system Download PDF

Info

Publication number
WO2016052175A1
WO2016052175A1 PCT/JP2015/076153 JP2015076153W WO2016052175A1 WO 2016052175 A1 WO2016052175 A1 WO 2016052175A1 JP 2015076153 W JP2015076153 W JP 2015076153W WO 2016052175 A1 WO2016052175 A1 WO 2016052175A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
endoscope
image
scene
subject
Prior art date
Application number
PCT/JP2015/076153
Other languages
French (fr)
Japanese (ja)
Inventor
伸介 谷
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2016518791A priority Critical patent/JPWO2016052175A1/en
Publication of WO2016052175A1 publication Critical patent/WO2016052175A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Definitions

  • Embodiments of the present invention relate to an endoscope system, and more particularly, to an endoscope system having a portable electronic endoscope equipped with a battery.
  • Endoscopic devices are used in various fields, for example, in the medical field and industrial field, and among these, endoscope devices in the medical field include observation of organs in body cavities, therapeutic treatment using treatment tools, Used for surgery and the like under endoscopic observation.
  • this type of endoscope apparatus includes a processor that performs image processing on a captured image obtained by an electronic endoscope, and a medical image is displayed on a monitor and recorded on a recording medium. It is like that.
  • the battery-driven portable electronic endoscope described above is configured to include a wireless communication unit that transmits an endoscopic image obtained by the image sensor to the processor, a light source device for illuminating the subject, and the like.
  • the portable electronic endoscope and the processor can be made wireless, which makes them excellent in portability and workability.
  • the above-described battery-powered portable electronic endoscope contributes to the above-described problems, and a wireless endoscope is desired from this viewpoint.
  • the wireless battery-powered portable electronic endoscope has a limitation in the weight of the battery to be mounted in consideration of portability, and the battery capacity is also limited. Therefore, further reduction in power consumption of each circuit is required in order to realize battery operation capable of completing a procedure for a long time using only the battery mounted on the electronic endoscope.
  • one of the techniques for realizing low power consumption in this type of battery-driven portable electronic endoscope is to reduce the amount of data transmitted in wireless transmission.
  • the amount of image data is enormous, if the image data is compressed and transmitted, the reduction effect is great.
  • the present invention has been made in view of such circumstances, and an endoscope system that can achieve low power consumption in wireless transmission by reducing the total amount of data transmission in the procedure and complete the procedure for a long time.
  • the purpose is to provide.
  • An endoscope system includes an insertion unit that is inserted into a body cavity of a subject, an imaging unit that is disposed at a distal end of the insertion unit, and an image that is captured by the imaging unit.
  • An image compression unit that performs a predetermined compression process on the signal and outputs the signal as a compressed image signal; a first wireless transmission unit that wirelessly transmits the compressed image signal output from the image compression unit;
  • An endoscope with A second wireless transmission unit that receives the compressed image signal transmitted from the first wireless transmission unit, and an image that performs predetermined image processing on the compressed image signal received by the second wireless transmission unit A processing unit; a determination unit that determines a type of a procedure scene using the endoscope; and a compression rate calculation unit that calculates a compression rate to be applied to compression processing in the image compression unit based on a determination result of the determination unit
  • a processor comprising: It comprises.
  • FIG. 1 is a diagram showing an overall configuration of an endoscope system according to a first embodiment of the present invention. It is the block diagram which showed the structure of the wireless endoscope and processor in the endoscope system of 1st Embodiment. It is the block diagram which showed the structure of the image processing part by the side of the processor in the endoscope system of 1st Embodiment. It is the flowchart which showed the operation
  • FIG. 1 is a diagram showing an overall configuration of an endoscope system according to a first embodiment of the present invention.
  • an endoscope system 1 includes a wireless endoscope 2 that is a battery-driven portable endoscope, a processor 3 that is wirelessly connected to the wireless endoscope 2 and performs predetermined image processing,
  • the main part is constituted by a monitor 7 connected to the processor 3 and displaying an endoscopic image or the like.
  • the endoscope system has various medical devices such as the processor 3 on the cart 6 such as an electric scalpel device, a pneumoperitoneum device, a video recorder, and the like, and carbon dioxide.
  • the processor 3 on the cart 6 such as an electric scalpel device, a pneumoperitoneum device, a video recorder, and the like, and carbon dioxide.
  • a gas cylinder filled with is placed.
  • FIG. 2 is a block diagram showing configurations of a wireless endoscope and a processor in the endoscope system of the first embodiment
  • FIG. 3 is a processor side in the endoscope system of the first embodiment. It is the block diagram which showed the structure of the image processing part.
  • the wireless endoscope 2 is a battery-driven portable endoscope that adopts a wireless configuration and is wirelessly connected to the processor 3.
  • an endoscope-side control unit 21 that controls each circuit unit in the image processing unit 2
  • an imaging unit 22 that acquires an image of a subject
  • an endoscope-side image processing unit that performs predetermined processing on an imaging signal from the imaging unit 22.
  • an endoscope-side wireless transmission unit 24 for wirelessly transmitting a predetermined signal between the processor 3 and the processor 3
  • a battery 25 for supplying power to each part of the wireless endoscope 2, and irradiation in the body cavity
  • the light source unit 26 and the antenna 27 for wireless transmission / reception with the processor 3 constitute a main part.
  • the wireless endoscope 2 has an insertion portion 41 on the distal end side and an operation portion 42 on the proximal end side.
  • the light source unit 26 is disposed in the operation unit 42 and generates illumination light that is controlled by the endoscope side control unit 21 to illuminate the inside of the body cavity. This illumination light is guided to the distal end of the insertion portion 41 by a light guide (not shown) and is irradiated to the subject through the lens.
  • the image pickup unit 22 includes an image pickup element that is disposed at the distal end portion of the insertion portion 41 and includes a CCD or a CMOS sensor. Then, the return light from the subject by the illumination light from the light source unit 26 forms an image on the imaging surface of the imaging unit 22, and the imaging unit 22 obtains a captured image based on the subject optical image by photoelectric conversion. Thereafter, the imaging unit 22 supplies the captured image to the endoscope side image processing unit 23.
  • the battery 25 can be attached to the operation unit 42.
  • the battery 25 is mounted on the wireless endoscope 2 and then, as a power supply unit, in addition to the endoscope side control unit 21, the imaging unit 22, the endoscope side image processing unit 23, the light source unit 26, and the endoscope Power can be supplied to the side wireless transmission unit 24.
  • the endoscope-side control unit 21 controls each circuit in the wireless endoscope 2 and controls the battery 25 that is a power supply unit to supply power to each unit.
  • the endoscope side control unit 21 acquires information related to the image compression rate transmitted from the processor 3 side via the endoscope side wireless transmission unit 24, and based on the compression rate, the endoscope side image is acquired.
  • the processing unit 23 is controlled.
  • the endoscope-side image processing unit 23 is controlled by the endoscope-side control unit 21 to perform predetermined image processing on the captured image from the imaging unit 22 according to the compression rate, and then the endoscope-side image processing unit 23 To the side wireless transmission unit 24.
  • the endoscope-side wireless transmission unit 24 is controlled by the endoscope-side control unit 21 and transmits / receives image data and predetermined communication data to / from the processor 3 wirelessly via the antenna 27.
  • the endoscope-side wireless transmission unit 24 can perform wireless communication using, for example, a 60 GHz band and wireless communication using a 5 GHz band.
  • wireless communication using the 60 GHz band is performed for the image signal from the image processing unit 23, and the information such as the compression rate is related.
  • wireless communication using the 5 GHz band is performed.
  • the endoscope-side wireless transmission unit 24 is controlled by the control unit 21 to wirelessly transmit the image signal obtained by the imaging through the antenna 27 sequentially according to the compression rate, and the compression rate from the processor 3. Is received via the antenna 27 at predetermined time intervals.
  • the processor 3 wirelessly transmits information to and from the processor-side controller 31 that controls each circuit unit in the processor 3 and the wireless endoscope 2.
  • the video output unit 35 that converts the data into a format that can be displayed on the monitor 7 and outputs it, and the user IF unit 36 that is an interface for receiving a predetermined user operation constitute a main part.
  • the wireless receiver 32 includes a processor-side wireless transmission unit 34 for wirelessly transmitting a predetermined signal to and from the wireless endoscope 2 and an antenna 37 for wireless transmission / reception with the wireless endoscope 2.
  • the main part is composed.
  • the wireless receiver 32 is configured separately from the processor body, and is connected to the processor 3 body by a connector (not shown).
  • FIG. 1 shows a state in which a wireless receiver 32 configured separately from the main body of the processor 3 is placed on the processor 6 on the cart 6.
  • the processor-side wireless transmission unit 34 in the wireless receiver 32 is controlled by the processor-side control unit 31 to transmit and receive image data and predetermined communication data wirelessly via the antenna 37 with the wireless endoscope 2. Is supposed to do. Further, in the present embodiment, the processor-side wireless transmission unit 34 can perform, for example, wireless communication in the 60 GHz band and wireless communication in the 5 GHz band in the same manner as the endoscope-side wireless transmission unit 24.
  • the processor-side wireless transmission unit 34 sequentially receives the image signal from the image processing unit 23 transmitted from the wireless endoscope 2 through the antenna 37 by wireless communication using the 60 GHz band.
  • the communication related to the information such as the determined compression rate is transmitted to the wireless endoscope 2 via the antenna 37 at predetermined time intervals by wireless communication using the 5 GHz band.
  • the user IF unit 36 is an interface that accepts user operations, and includes, for example, a front panel and various buttons of a control system, and outputs operation signals based on user operations to the processor-side control unit 31.
  • the user IF unit 36 can accept various user operations such as designation of the observation mode of the wireless endoscope 2 and settings related to image display.
  • the processor-side control unit 31 can receive the user IF unit.
  • Various instructions can be given to the endoscope-side control unit 21 of the wireless endoscope 2 via the processor-side wireless transmission unit 34 based on the operation signal from 36.
  • FIG. 3 is a block diagram showing the configuration of the processor-side image processing unit (processor-side image processing unit 33) in the endoscope system of the first embodiment.
  • the processor-side image processing unit 33 includes an image acquisition unit 51 that acquires an image signal wirelessly transmitted from the wireless endoscope 2 via the processor-side wireless transmission unit 34, and this image acquisition.
  • a motion amount information acquisition unit 52 that acquires information on the amount of motion in the body cavity of the insertion unit 41 in the wireless endoscope 2 based on the image signal acquired by the unit 51, and a motion amount acquired by the motion amount information acquisition unit 52
  • the procedure scene determination unit 53 that determines the procedure scene in the procedure using the wireless endoscope 2 from the information of the procedure, the procedure scene determined by the procedure scene determination unit 53, or acquired by the motion amount information acquisition unit 52
  • a compression rate calculation unit that calculates the compression rate of an image used in the endoscope side image processing unit 23 in the wireless endoscope 2 from the information on the amount of movement. 4, in the main portion is formed.
  • the compression rate information calculated by the compression rate calculation unit 54 is output to the processor-side wireless transmission unit 34 under the control of the processor-side control unit 31.
  • the compression rate information is wirelessly transmitted from the processor-side radio transmission unit 34 to the wireless endoscope 2 under the control of the processor-side control unit 31.
  • a procedure scene classified as follows can be considered.
  • (B) A scene (screening scene) in which screening observation is performed after the insertion portion reaches the target site.
  • the presence or absence of an abnormal part is searched throughout the body cavity while moving the insertion part in the body cavity.
  • an abnormal part for example, a lesion, bleeding, inflammation, etc.
  • the field of view of the endoscope is fixed to the subject as much as possible and the observation magnification is increased, and the abnormal part is examined and diagnosed (for example, judgment of disease name, judgment of benign / malignant, Or judgment of necessity of treatment, etc.).
  • a procedure (diagnosis) using an endoscope has a plurality of procedure scenes (observation scenes), but the applicant of the present application pays attention to the fact that the image quality required for each procedure scene is different.
  • the amount of image data of the captured image transmitted wirelessly from the endoscope 2 to the processor 3 is variable.
  • the compression ratio of the endoscope image to be transmitted wirelessly is changed according to the procedure scene, thereby It is assumed that low power consumption in wireless transmission is realized by reducing the total data transmission amount.
  • the procedure scene is determined based on the information on the “movement amount” of the insertion unit 41 in the wireless endoscope 2.
  • the motion of the insertion unit 41 can be acquired as the motion of the image.
  • the procedure scene can be specified by the amount of motion, and the compression rate can be calculated according to the procedure scene.
  • image processing may be performed with a relatively high compression rate.
  • the compression process may not be performed, or the compression process may be performed at a relatively low compression rate even when the compression process is performed.
  • the “movement amount” is the “movement amount” of the insertion unit 41 in the wireless endoscope 2.
  • the “movement amount” is calculated from the displacement of the acquired image. Therefore, the movement of the insertion unit 41 can be acquired as the movement of the image (subject).
  • this “movement amount” is calculated, for example, as the speed or direction of the movement of the subject on the captured image.
  • the speed or direction may be acquired as a motion vector, and if only the speed of motion needs to be known, only the magnitude of the motion vector may be acquired as a motion amount.
  • the “motion amount” may be a motion amount or a pattern thereof at a plurality of positions of the captured image. That is, since the amount of motion is not always uniform in the captured image, by combining the amounts of motion at a plurality of positions, it is possible to express different amounts of motion or patterns depending on the positions.
  • the image acquisition unit 51 acquires the image signal captured by the imaging unit 22 of the wireless endoscope 2 received by the processor-side wireless transmission unit 34 via the wireless transmission mechanism described above, While performing predetermined image processing (for example, OB processing, gain processing, gamma processing, etc.), the processed image signal is output to an image storage unit (not shown) and output to the motion amount information acquisition unit 52.
  • predetermined image processing for example, OB processing, gain processing, gamma processing, etc.
  • the image storage unit stores the processed image signal for a plurality of frames (a plurality of temporally continuous frames).
  • the motion amount information acquisition unit 52 calculates the amount of motion of the subject in the captured image based on the images of a plurality of frames stored in the image storage unit.
  • a matching process is performed between an image of a reference frame and an image of the next frame in a plurality of frames stored in the image storage unit, and a motion vector between the two frame images is calculated. To do. Then, motion vectors are sequentially calculated over a plurality of frames while shifting the reference image frame by frame, and an average value of the plurality of motion vectors is calculated as a motion amount.
  • the amount of motion the amount of motion at a plurality of positions, such as the amount of motion at the center of the captured image and the amount of motion at the periphery (for example, near the four corners) may be acquired.
  • the endoscope insertion part is moved or during screening observation (screening scene)
  • the endoscope insertion part is generally inserted along the digestive tract. Shows the pipe wall.
  • the amount of motion at the peripheral portion of the image is larger than the amount of motion at the central portion of the image.
  • the amount of movement is reduced in the entire image because the distal end of the endoscope insertion part is directly opposed to the subject.
  • the scene may be determined by detecting such a movement amount pattern.
  • FIG. 4 is a flowchart showing the operation on the wireless endoscope side in the endoscope system of the first embodiment
  • FIG. 5 shows the operation of the processor in the endoscope system of the first embodiment. It is a flowchart.
  • the endoscope-side control unit 21 in the wireless endoscope 2 establishes a wireless communication connection with the processor 3 (step S11), and then performs image processing from the processor 3 side. Information on the compression ratio is obtained (step S12). Note that immediately after the wireless endoscope 2 is operated, the compression rate is an initial value.
  • the endoscope-side control unit 21 controls the imaging unit 22 to start imaging using the power from the battery 25 as a power source (step S13), and also controls the endoscope-side image processing unit 23 to perform a predetermined process. Image processing is performed (step S14).
  • the endoscope side control unit 21 controls the endoscope side image processing unit 23 and appropriately compresses the image signal captured by the imaging unit 22 based on the compression rate information transmitted from the processor 3 side. Processing is performed (step S15), and the compressed image data is wirelessly transmitted from the endoscope side wireless transmission unit 24 to the processor 3 (step S16).
  • the processor-side control unit 31 in the processor 3 establishes a wireless communication connection with the wireless endoscope 2 (step S ⁇ b> 21), and then the processor-side wireless transmission unit 34 performs the wireless endoscope.
  • the image data from the mirror 2 is received (step S22).
  • the processor-side image processing unit 33 appropriately performs image processing on the image signal transmitted from the wireless endoscope 2 (step S23), and sends the image signal to the video output unit 35. Output.
  • the processor side image processing unit 33 outputs the image signal processed by the image acquisition unit 51 to an image storage unit (not shown) and also outputs it to the motion amount information acquisition unit 52.
  • the motion amount information acquisition unit 52 in the processor-side image processing unit 33 calculates the motion amount of the subject in the captured image based on the images of a plurality of frames stored in the image storage unit (step S24).
  • a matching process is performed between the image of the reference frame and the image of the next frame in the images of the plurality of frames stored in the image storage unit, and a motion vector between the two frame images is obtained.
  • the motion vector is sequentially calculated over a plurality of frames while shifting the reference image frame by frame, and an average value of the plurality of motion vectors is calculated as a motion amount (step S24).
  • the motion amount information acquisition unit 52 may acquire the motion amount at a plurality of positions such as the motion amount in the center portion and the motion amount in the peripheral portion of the captured image as the motion amount.
  • the procedure scene determination unit 53 in the processor-side image processing unit 33 determines the procedure scene classified as described above according to the “motion amount” acquired by the motion amount information acquisition unit 52 (step S25).
  • the amount of movement is large or the amount of movement is a specific pattern (such as traveling in the digestive tract)
  • the movement scene or (b) the screening scene is described above. If the amount is small or the amount of motion is a specific pattern (facing the subject directly, etc.), it is determined that it is the above-described (c) scrutiny / treatment scene.
  • the compression rate calculation unit 54 in the processor-side image processing unit 33 uses the wireless endoscope 2 based on the procedure scene determined by the procedure scene determination unit 53 or the motion amount information acquired by the motion amount information acquisition unit 52.
  • the compression rate of the image used in the endoscope side image processing unit 23 is calculated (step S26).
  • the compression ratio related to image processing in the wireless endoscope 2 is set as a relatively high compression ratio.
  • the procedure scene determination unit 53 determines that the scene is (c) a scrutiny / treatment scene
  • the compression ratio relating to image processing in the wireless endoscope 2 is set as a relatively low compression ratio, or the compression is performed. Set to not process.
  • the processor-side image processing unit 33 outputs the compression rate information calculated by the compression rate calculation unit 54 to the processor-side wireless transmission unit 34 under the control of the processor-side control unit 31.
  • the compression rate information is wirelessly transmitted from the processor-side wireless transmission unit 34 to the wireless endoscope 2 under the control of the processor-side control unit 31 (step S27).
  • an endoscope image transmitted wirelessly in accordance with a procedure scene in an endoscope system having a portable electronic endoscope equipped with a battery, an endoscope image transmitted wirelessly in accordance with a procedure scene.
  • the endoscope system calculates the “motion amount” of the endoscope insertion unit (or subject) from the captured image acquired by the processor-side image processing unit 33, and calculates the “motion amount”.
  • the procedure scene is determined by the procedure scene determination unit 53 based on the information.
  • the basic configuration of the endoscope system of the second embodiment is the same as that of the first embodiment, but a part of the processor-side image processing unit is compared to the first embodiment.
  • the configuration is different.
  • FIG. 6 is a block diagram showing the configuration of the processor-side image processing unit (processor-side image processing unit 33) in the endoscope system according to the second embodiment of the present invention.
  • the processor-side image processing unit 133 in the second embodiment acquires an image signal that is wirelessly transmitted from the wireless endoscope 2 via the processor-side wireless transmission unit 34.
  • 51 a distance information acquisition unit 55 that acquires “distance information” in the body cavity of the insertion unit 41 in the wireless endoscope 2 based on the image signal acquired by the image acquisition unit 51, and the distance information acquisition unit 55
  • the procedure scene determination unit 53 that determines a procedure scene in the procedure using the wireless endoscope 2 from the “distance information” acquired in step S3, the procedure scene determined by the procedure scene determination unit 53, or the distance information acquisition unit From the “distance information” acquired in 55, the compression rate of the image used in the endoscope side image processing unit 23 in the wireless endoscope 2 is determined.
  • a compression ratio calculating unit 54 to output, as its major portion is constituted.
  • the compression rate information calculated by the compression rate calculation unit 54 is output to the processor-side wireless transmission unit 34 under the control of the processor-side control unit 31 as in the first embodiment. ing.
  • the compression rate information is wirelessly transmitted from the processor-side radio transmission unit 34 to the wireless endoscope 2 under the control of the processor-side control unit 31.
  • the procedure scene is assumed to be classified in the same manner as in the first embodiment, and the compression rate of the endoscopic image to be transmitted wirelessly is changed according to the procedure scene.
  • the first embodiment it is possible to reduce power consumption in wireless transmission by reducing the amount of data transmission.
  • the procedure scene is determined based on information related to the distance between the distal end of the insertion portion 41 in the wireless endoscope 2 and a subject such as an affected portion.
  • the procedure scene can be specified by the “distance information”, and the compression rate is calculated according to the procedure scene. Can do.
  • the image processing may be performed with a relatively high compression rate.
  • the endoscope side image processing unit 23 in the wireless endoscope 2 performs compression processing. Even if compression is not performed or compression processing is performed, the compression processing may be performed at a relatively low compression rate.
  • the “distance information” is information related to the distance between the distal end of the insertion portion 41 and the subject in the wireless endoscope 2, and each position in the captured image and the distance to the subject at each position. Is associated with the information (for example, a distance map).
  • distance information is not limited to the distance from the distal end of the insertion section to the subject itself, and various information acquired based on the distance from the distal end of the insertion section to the subject can be used.
  • the image acquisition unit 51 is received by the processor-side wireless transmission unit 34 through the wireless transmission mechanism described above, and is captured by the imaging unit 22 in the wireless endoscope 2.
  • the captured image signal is acquired and subjected to predetermined image processing (for example, OB processing, gain processing, gamma processing, etc.), while the processed image signal is output to an image storage unit (not shown) and the distance information acquisition unit 55. Output to.
  • predetermined image processing for example, OB processing, gain processing, gamma processing, etc.
  • the distance information acquisition unit 55 calculates the distance between the distal end of the insertion unit 41 and the subject in the captured image based on the images of a plurality of frames stored in the image storage unit.
  • FIG. 7 is a flowchart showing the operation of the processor in the endoscope system of the second embodiment.
  • the processor-side control unit 31 in the processor 3 establishes a wireless communication connection with the wireless endoscope 2 (step S ⁇ b> 21), similarly to the first embodiment, and then the processor-side wireless The transmission unit 34 receives the image data from the wireless endoscope 2 (step S22).
  • the processor side image processing unit 133 appropriately performs image processing on the image signal transmitted from the wireless endoscope 2 (step S23), and the image signal is sent to the video output unit 35. Output.
  • the processor side image processing unit 133 outputs the image signal processed in the image acquisition unit 51 to an image storage unit (not shown) and also outputs it to the distance information acquisition unit 55.
  • the distance information acquisition unit 55 in the processor-side image processing unit 133 calculates the “distance information” in the captured image based on the images of a plurality of frames stored in the image storage unit (step S34).
  • the procedure scene determination unit 53 in the processor-side image processing unit 133 selects the procedure scenes classified as described above according to the “distance information” acquired by the distance information acquisition unit 55, as in the first embodiment. Determination is made (step S25).
  • the compression rate calculation unit 54 in the processor-side image processing unit 133 uses the procedure scene determined by the procedure scene determination unit 53 or the information on the distance between the distal end of the insertion unit 41 and the subject acquired by the distance information acquisition unit 55. Then, the compression rate of the image used in the endoscope side image processing unit 23 in the wireless endoscope 2 is calculated (step S26).
  • the compression ratio related to image processing in the wireless endoscope 2 is set as a relatively high compression ratio.
  • the procedure scene determination unit 53 determines that the scene is (c) a scrutiny / treatment scene
  • the compression ratio relating to image processing in the wireless endoscope 2 is set as a relatively low compression ratio, or the compression is performed. Set to not process.
  • the processor-side image processing unit 133 uses the processor-side wireless transmission unit 34 to transmit the compression rate information calculated by the compression rate calculation unit 54 under the control of the processor-side control unit 31. Output for.
  • the compression rate information is wirelessly transmitted from the processor-side wireless transmission unit 34 to the wireless endoscope 2 under the control of the processor-side control unit 31 (step S27).
  • the endoscope system of the second embodiment in the endoscope system having a portable electronic endoscope equipped with a battery, depending on the procedure scene.
  • the compression rate of the endoscopic image transmitted wirelessly thereby reducing the total amount of data transmission in the procedure, and thus realizing low power consumption in wireless transmission.
  • the endoscope system calculates the “motion amount” of the endoscope insertion unit (or subject) from the captured image acquired by the processor-side image processing unit 33, and calculates the “motion amount”.
  • the procedure scene is determined by the procedure scene determination unit 53 based on the information
  • the endoscope is inserted from the captured image captured by the endoscope-side image processing unit on the wireless endoscope 2 side.
  • the endoscope side image processing unit calculates the compression rate.
  • the basic configuration of the endoscope system according to the third embodiment is the same as that of the first embodiment, but an endoscope-side image processing unit and a processor are compared with the first embodiment. A part of the configuration of the side image processing unit is different.
  • FIG. 8 is a block diagram showing the configuration of the image processing unit on the wireless endoscope side in the endoscope system according to the third embodiment of the present invention.
  • the endoscope side image processing unit 123 acquires an image signal captured by the imaging unit 22 and acquired by the image acquisition unit 151. Based on the image signal, the movement amount information acquisition unit 152 that acquires information on the amount of movement in the body cavity of the insertion unit 41 in the wireless endoscope 2, and the wireless amount from the information on the amount of movement acquired by the movement amount information acquisition unit 152.
  • the compression rate calculation unit 154 that calculates the compression rate of the image used in the endoscope side image processing unit 123 is a main part. That.
  • the compression ratio of the endoscopic image is changed according to the procedure scene, and thereby, the overall procedure in the procedure is changed.
  • the typical data transmission amount it is possible to realize low power consumption in wireless transmission.
  • the procedure scene is determined based on the information on the “movement amount” of the insertion unit 41 in the wireless endoscope 2 as in the first embodiment.
  • the image acquisition unit 151 acquires the image signal captured by the imaging unit 22 and performs predetermined image processing (for example, OB processing, gain processing, gamma processing, etc.), while processing the processed image.
  • the signal is output to an image storage unit (not shown) and output to the motion amount information acquisition unit 152.
  • the image storage unit stores the processed image signal for a plurality of frames (a plurality of temporally continuous frames).
  • the motion amount information acquisition unit 152 calculates the motion amount of the subject in the captured image based on the images of a plurality of frames stored in the image storage unit.
  • a matching process is performed between the image of the reference frame and the image of the next frame in the images of the plurality of frames stored in the image storage unit, and the two frames A motion vector between images is calculated. Then, motion vectors are sequentially calculated over a plurality of frames while shifting the reference image frame by frame, and an average value of the plurality of motion vectors is calculated as a motion amount.
  • FIG. 9 is a flowchart showing the operation on the wireless endoscope side in the endoscope system of the third embodiment.
  • the endoscope-side control unit 21 in the wireless endoscope 2 establishes a wireless communication connection with the processor 3 (step S41), and then the endoscope-side control unit 21 Then, the imaging unit 22 is controlled to start imaging using the power from the battery 25 as a power source (step S42), and the endoscope-side image processing unit 123 is controlled to perform predetermined image processing.
  • the endoscope side control unit 21 controls the endoscope side image processing unit 123 to appropriately perform image processing on the image signal picked up by the image pickup unit 22 (step S43), and in the image acquisition unit 151.
  • the processed image signal is output to an image storage unit (not shown) and output to the motion amount information acquisition unit 152.
  • the motion amount information acquisition unit 152 calculates the amount of motion of the subject in the captured image based on the images of a plurality of frames stored in the image storage unit (step S44). Specifically, a matching process is performed between the image of the reference frame and the image of the next frame in the images of the plurality of frames stored in the image storage unit, and a motion vector between the two frame images is obtained. The motion vector is sequentially calculated over a plurality of frames while shifting the reference image frame by frame, and an average value of the plurality of motion vectors is calculated as a motion amount (step S44).
  • the motion amount information acquisition unit 152 may acquire motion amounts at a plurality of positions such as a central portion and a peripheral portion of the captured image.
  • the procedure scene determination unit 153 determines the procedure scene classified as described above according to the “motion amount” acquired by the motion amount information acquisition unit 152 (step S45).
  • the amount of movement is large or the amount of movement is a specific pattern (such as traveling in the digestive tract)
  • the movement scene or (b) the screening scene is described above. If the amount is small or the amount of motion is a specific pattern (facing the subject directly, etc.), it is determined that it is the above-described (c) scrutiny / treatment scene.
  • the compression rate calculation unit 154 uses the procedure scene determined by the procedure scene determination unit 153 or the motion amount information acquired by the motion amount information acquisition unit 152 to use the image used in the endoscope side image processing unit 123. Is calculated (step S46).
  • the technique scene determination unit 153 determines that the scene is (a) a moving scene or (b) a screening scene, the compression ratio related to image processing in the wireless endoscope 2 is set as a relatively high compression ratio.
  • the procedure scene determination unit 153 determines that the scene is (c) a scrutiny / treatment scene, the compression ratio related to image processing in the wireless endoscope 2 is set as a relatively low compression ratio, or compression is performed. Set to not process.
  • the endoscope side image processing unit 123 performs an appropriate compression process based on the compression rate calculated by the compression rate calculation unit 154 (step S47), and the image data subjected to the compression process is wirelessly transmitted by the endoscope side.
  • the data is transmitted wirelessly from the unit 24 to the processor 3 (step S48).
  • the compression rate of the endoscope image is set according to the procedure scene.
  • the total amount of data transmission in the procedure can be reduced, and as a result, low power consumption in wireless transmission can be realized.
  • the endoscope system calculates the “distance” from the distal end of the endoscope insertion unit to the subject from the captured image acquired by the processor-side image processing unit 33, and uses this “distance” information as information.
  • the procedure scene is determined based on this, in the fourth embodiment, the “distance from the distal end of the endoscope insertion unit to the subject from the captured image captured by the endoscope image processing unit on the wireless endoscope 2 side” , And after determining the technique scene based on the information of the “distance”, the endoscope side image processing unit calculates the compression rate.
  • the basic configuration of the endoscope system of the fourth embodiment is the same as that of the second embodiment, but an endoscope-side image processing unit and processor as compared with the second embodiment. A part of the configuration of the side image processing unit is different.
  • FIG. 10 is a block diagram showing the configuration of the image processing unit on the wireless endoscope side in the endoscope system according to the fourth embodiment of the present invention.
  • the endoscope-side image processing unit 223 acquires an image signal acquired by the imaging unit 22 and an image acquisition unit 151 that acquires the image signal.
  • a distance information acquisition unit 155 that acquires distance information in the body cavity of the insertion unit 41 in the wireless endoscope 2 based on the image signal, and the wireless endoscope 2 is used from the distance information acquired in the distance information acquisition unit 155.
  • a procedure scene determination unit 153 that determines a procedure scene in the procedure performed, and the endoscope-side image processing unit from the procedure scene determined by the procedure scene determination unit 153 or the distance information acquired by the distance information acquisition unit 155
  • a compression rate calculation unit 154 that calculates the compression rate of an image used in 223 constitutes a main part.
  • the compression ratio of the endoscope image is changed according to the procedure scene, and thereby, the overall procedure in the procedure is changed.
  • the determination of the procedure scene is based on the “distance” information from the distal end of the insertion portion 41 to the subject in the wireless endoscope 2, as in the second embodiment. judge.
  • the image acquisition unit 151 acquires the image signal captured by the imaging unit 22 and performs predetermined image processing (for example, OB processing, gain processing, gamma processing, etc.), while processing the processed image.
  • the signal is output to an image storage unit (not shown) and output to the distance information acquisition unit 155.
  • the distance information acquisition unit 155 calculates the distance from the tip of the insertion unit 41 to the subject in the captured image based on the images of a plurality of frames stored in the image storage unit.
  • FIG. 11 is a flowchart showing the operation on the wireless endoscope side in the endoscope system of the fourth embodiment.
  • the endoscope-side control unit 21 in the wireless endoscope 2 establishes a wireless communication connection with the processor 3 (step S41), and then the endoscope-side control unit 21 Then, the imaging unit 22 is controlled to start imaging using the power from the battery 25 as a power source (step S42), and the endoscope-side image processing unit 223 is controlled to perform predetermined image processing.
  • the endoscope side control unit 21 controls the endoscope side image processing unit 223 to appropriately perform image processing on the image signal picked up by the image pickup unit 22 (step S43), and in the image acquisition unit 151.
  • the processed image signal is output to an image storage unit (not shown) and output to the distance information acquisition unit 155.
  • the distance information acquisition unit 155 calculates the distance from the distal end of the insertion unit to the subject in the captured image based on the images of a plurality of frames stored in the image storage unit (step S54).
  • the procedure scene determination unit 153 determines the procedure scene classified as described above according to the “distance information” acquired by the distance information acquisition unit 155 (step S45).
  • the compression rate calculation unit 154 calculates the endoscope-side image processing unit based on the procedure scene determined by the procedure scene determination unit 153 or the distance information from the distal end of the insertion unit acquired by the distance information acquisition unit 155 to the subject.
  • the compression rate of the image used in 223 is calculated (step S46).
  • the technique scene determination unit 153 determines that the scene is (a) a moving scene or (b) a screening scene, the compression ratio related to image processing in the wireless endoscope 2 is set as a relatively high compression ratio.
  • the procedure scene determination unit 153 determines that the scene is (c) a scrutiny / treatment scene, the compression ratio related to image processing in the wireless endoscope 2 is set as a relatively low compression ratio, or compression is performed. Set to not process.
  • the endoscope side image processing unit 223 appropriately performs compression processing based on the compression rate calculated by the compression rate calculation unit 154 (step S47), and the image data subjected to the compression processing is wirelessly transmitted by the endoscope side.
  • the data is transmitted wirelessly from the unit 24 to the processor 3 (step S48).
  • the compression rate of the endoscope image is set according to the procedure scene.
  • the total amount of data transmission in the procedure can be reduced, and as a result, low power consumption in wireless transmission can be realized.
  • the “motion amount” related to the insertion unit 41 is calculated based on the image signal captured by the imaging unit 22.
  • the acquisition of information is not limited to this.
  • the “movement amount” of the insertion unit may be directly detected by an acceleration sensor or the like provided in the insertion unit 41 or the like.
  • the “distance information” between the distal end of the insertion unit 41 and the subject is calculated based on the image signal captured by the imaging unit 22.
  • the acquisition of “information” is not limited to this.
  • the “distance” between the distal end of the insertion unit 41 and the subject may be directly detected by a distance measurement unit provided in the insertion unit 41 or the like.
  • the compression rate is set in two stages, ie, (a) a moving scene, (b) a screening scene, and (c) a scrutiny / treatment scene.
  • a moving scene ie, you may set in three steps according to each scene of (a) a moving scene, (b) a screening scene, or (c) a detailed examination / treatment scene.
  • the compression rate may be set so as to vary in a plurality of steps or continuously in accordance with the “motion amount” or “distance information” for each of the above-described procedure scenes.
  • Each “unit” in this specification is a conceptual one corresponding to each function of the embodiment, and does not necessarily correspond to a specific hardware or software routine on a one-to-one basis. Therefore, in the present specification, the embodiment has been described assuming a virtual circuit block (unit) having each function of the embodiment.
  • each step of each procedure in the present embodiment may be executed in a different order for each execution by changing the execution order and performing a plurality of steps at the same time as long as it does not violate its nature.
  • all or part of each step of each procedure in the present embodiment may be realized by hardware.

Abstract

An image processing unit (33) in a processor comprises: a movement degree information acquisition unit (52) which, with an insertion part in a wireless endoscope which wirelessly sends a captured image to the processor inserted in a subject's body cavity, detects a movement degree of the insertion part in the subject's body cavity; a procedure scene determination unit (53) which determines a classification of a procedure scene on the basis of the movement degree which is acquired in the movement degree information acquisition unit (52); a compression ratio computation unit (54) which computes a compression ratio which is applied to an image compression process on the wireless endoscope side on the basis of the determination result of the determination unit (53); and a sending unit which wirelessly sends the compression ratio information to the wireless endoscope side.

Description

内視鏡システムEndoscope system
 本発明の実施形態は、内視鏡システムに関し、特に、バッテリを搭載した携帯型電子内視鏡を有する内視鏡システムに関する。 Embodiments of the present invention relate to an endoscope system, and more particularly, to an endoscope system having a portable electronic endoscope equipped with a battery.
 従来、半導体技術の進歩によって、通信手段としての携帯型電話または多機能型の通信端末が小型化、低消費電力化され、容易に携帯可能に構成されるようになってきた。この種の携帯型機器は二次バッテリを搭載し、当該バッテリを充電することで、携帯しながら継続的に使用可能に構成されることが多い。 Conventionally, with the advancement of semiconductor technology, portable telephones or multi-function communication terminals as communication means have been reduced in size and reduced in power consumption, and have been configured to be easily portable. This type of portable device is often configured to be continuously usable while being carried by mounting a secondary battery and charging the battery.
 一方、医療分野においても、装置の小型化が促進されており、たとえば、消費電力が比較的大きい内視鏡においても、充電式のバッテリを搭載したバッテリ駆動型の携帯型内視鏡が提案されるに至っている(特開2006-280542号公報)。 On the other hand, in the medical field, downsizing of the apparatus has been promoted. For example, a battery-driven portable endoscope equipped with a rechargeable battery has been proposed even for an endoscope with relatively large power consumption. (Japanese Patent Laid-Open No. 2006-280542).
 なお、内視鏡装置は、たとえば医療分野、工業分野等、様々な分野において用いられ、このうち医療分野における内視鏡装置は、体腔内の臓器の観察、処置具を用いての治療処置、内視鏡観察下における外科手術等に用いられる。 Endoscopic devices are used in various fields, for example, in the medical field and industrial field, and among these, endoscope devices in the medical field include observation of organs in body cavities, therapeutic treatment using treatment tools, Used for surgery and the like under endoscopic observation.
 また、この種の内視鏡装置は、電子内視鏡によって得た撮像画像を画像処理するプロセッサを有しており、プロセッサによって医療画像のモニタへの表示および記録媒体への記録等が行われるようになっている。 In addition, this type of endoscope apparatus includes a processor that performs image processing on a captured image obtained by an electronic endoscope, and a medical image is displayed on a monitor and recorded on a recording medium. It is like that.
 さらに上述したバッテリ駆動型の携帯型電子内視鏡は、撮像素子によって得た内視鏡画像を上記プロセッサに伝送する無線通信部および被写体を照明するための光源装置等を内蔵して構成することで、携帯型電子内視鏡とプロセッサとの間をワイヤレス化することができ、これにより携帯性および作業性に優れたものとなっている。 Furthermore, the battery-driven portable electronic endoscope described above is configured to include a wireless communication unit that transmits an endoscopic image obtained by the image sensor to the processor, a light source device for illuminating the subject, and the like. Thus, the portable electronic endoscope and the processor can be made wireless, which makes them excellent in portability and workability.
 一方、近年、通常のスコープケーブルを備える内視鏡では、このスコープケーブルがエナジーケーブルと絡まる、または、当該スコープケーブルの断線等により医療従事者にストレスをかけていることが指摘されている。 On the other hand, in recent years, it has been pointed out that in an endoscope equipped with a normal scope cable, the scope cable is entangled with an energy cable, or stress is applied to a medical worker due to disconnection of the scope cable.
 上述したバッテリ駆動型の携帯型電子内視鏡は上述した課題にも貢献するものであり、係る観点からもワイヤレス化した内視鏡は望まれるところにある。 The above-described battery-powered portable electronic endoscope contributes to the above-described problems, and a wireless endoscope is desired from this viewpoint.
 しかしながら、上記ワイヤレス化されたバッテリ駆動型の携帯型電子内視鏡は、携帯性を考慮すると搭載するバッテリの重量には制限があり、また、バッテリ容量も制限される。したがって、当該電子内視鏡に搭載されたバッテリのみで長時間に亘る手技を完遂可能なバッテリ運用を実現するためには各回路の一層の低消費電力化が求められることとなる。 However, the wireless battery-powered portable electronic endoscope has a limitation in the weight of the battery to be mounted in consideration of portability, and the battery capacity is also limited. Therefore, further reduction in power consumption of each circuit is required in order to realize battery operation capable of completing a procedure for a long time using only the battery mounted on the electronic endoscope.
 一方、この種のバッテリ駆動型の携帯型電子内視鏡において低消費電力化を実現する手法の一つとして、無線伝送において伝送するデータ量そのものを低減することが挙げられる。特に、画像データはそのデータ量も膨大になることから画像データを圧縮して伝送するとその低減効果も大きい。 On the other hand, one of the techniques for realizing low power consumption in this type of battery-driven portable electronic endoscope is to reduce the amount of data transmitted in wireless transmission. In particular, since the amount of image data is enormous, if the image data is compressed and transmitted, the reduction effect is great.
 このように無線伝送においては、画像圧縮技術により伝送するデータ量を減らすことで低消費電力化を実現することができる。しかしながら、画像を圧縮するとこの圧縮に伴って画質も劣化することとなり、たとえば患部を精査して観察する手技シーンにおいては高画質の画像が望まれるため圧縮しての画像伝送は望ましいことではない。 Thus, in wireless transmission, low power consumption can be realized by reducing the amount of data transmitted by image compression technology. However, when the image is compressed, the image quality is also deteriorated along with the compression. For example, in a procedure scene in which the affected part is closely examined and observed, a high-quality image is desired, so that compressed image transmission is not desirable.
 一方で、手技としてはいくつかの手技シーンがあり、シーンによっては必ずしも高品質な画像が求められるとは限らない場合も存在する。 On the other hand, there are several procedure scenes as procedures, and there are cases where high quality images are not always required depending on the scene.
 本発明は係る事情に鑑みてなされたものであり、手技における総合的なデータ伝送量を減らすことで無線伝送における低消費電力化を実現し、長時間に亘る手技を完遂可能な内視鏡システムを提供することを目的とする。 The present invention has been made in view of such circumstances, and an endoscope system that can achieve low power consumption in wireless transmission by reducing the total amount of data transmission in the procedure and complete the procedure for a long time. The purpose is to provide.
 本発明の一態様の内視鏡システムは、被検体の体腔内に挿入する挿入部と、前記挿入部の先端部に配設された撮像部と、前記撮像部において撮像した被検体に係る画像信号に対して所定の圧縮処理を施し圧縮画像信号として出力する画像圧縮部と、前記画像圧縮部から出力された前記圧縮画像信号を無線により外部に伝送するための第1の無線伝送部と、を備えた内視鏡と、
 前記第1の無線伝送部から伝送された前記圧縮画像信号を受信する第2の無線伝送部と、前記第2の無線伝送部において受信した前記圧縮画像信号に対して所定の画像処理を施す画像処理部と、前記内視鏡を用いた手技シーンの種別を判定する判定部と、前記判定部の判定結果に基づいて前記画像圧縮部における圧縮処理に適用する圧縮率を算出する圧縮率算出部と、を備えたプロセッサと、
 を具備する。
An endoscope system according to an aspect of the present invention includes an insertion unit that is inserted into a body cavity of a subject, an imaging unit that is disposed at a distal end of the insertion unit, and an image that is captured by the imaging unit. An image compression unit that performs a predetermined compression process on the signal and outputs the signal as a compressed image signal; a first wireless transmission unit that wirelessly transmits the compressed image signal output from the image compression unit; An endoscope with
A second wireless transmission unit that receives the compressed image signal transmitted from the first wireless transmission unit, and an image that performs predetermined image processing on the compressed image signal received by the second wireless transmission unit A processing unit; a determination unit that determines a type of a procedure scene using the endoscope; and a compression rate calculation unit that calculates a compression rate to be applied to compression processing in the image compression unit based on a determination result of the determination unit And a processor comprising:
It comprises.
本発明の第1の実施形態の内視鏡システムの全体構成を示した図である。1 is a diagram showing an overall configuration of an endoscope system according to a first embodiment of the present invention. 第1の実施形態の内視鏡システムにおけるワイヤレス内視鏡およびプロセッサの構成を示したブロック図である。It is the block diagram which showed the structure of the wireless endoscope and processor in the endoscope system of 1st Embodiment. 第1の実施形態の内視鏡システムにおけるプロセッサ側の画像処理部の構成を示したブロック図である。It is the block diagram which showed the structure of the image processing part by the side of the processor in the endoscope system of 1st Embodiment. 第1の実施形態の内視鏡システムにおけるワイヤレス内視鏡側の動作を示したフローチャートである。It is the flowchart which showed the operation | movement by the side of the wireless endoscope in the endoscope system of 1st Embodiment. 第1の実施形態の内視鏡システムにおけるプロセッサの動作を示したフローチャートである。It is the flowchart which showed operation | movement of the processor in the endoscope system of 1st Embodiment. 本発明の第2の実施形態の内視鏡システムにおけるプロセッサ側の画像処理部の構成を示したブロック図である。It is the block diagram which showed the structure of the image processing part by the side of the processor in the endoscope system of the 2nd Embodiment of this invention. 第2の実施形態の内視鏡システムにおけるプロセッサの動作を示したフローチャートである。It is the flowchart which showed operation | movement of the processor in the endoscope system of 2nd Embodiment. 本発明の第3の実施形態の内視鏡システムにおけるワイヤレス内視鏡側の画像処理部の構成を示したブロック図である。It is the block diagram which showed the structure of the image processing part by the side of the wireless endoscope in the endoscope system of the 3rd Embodiment of this invention. 第3の実施形態の内視鏡システムにおけるワイヤレス内視鏡側の動作を示したフローチャートである。It is the flowchart which showed the operation | movement by the side of the wireless endoscope in the endoscope system of 3rd Embodiment. 本発明の第4の実施形態の内視鏡システムにおけるワイヤレス内視鏡側の画像処理部の構成を示したブロック図である。It is the block diagram which showed the structure of the image processing part by the side of the wireless endoscope in the endoscope system of the 4th Embodiment of this invention. 第4の実施形態の内視鏡システムにおけるワイヤレス内視鏡側の動作を示したフローチャートである。It is the flowchart which showed the operation | movement by the side of the wireless endoscope in the endoscope system of 4th Embodiment.
 以下、図面を参照して本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(第1の実施の形態)
 図1は、本発明の第1の実施形態の内視鏡システムの全体構成を示した図である。
(First embodiment)
FIG. 1 is a diagram showing an overall configuration of an endoscope system according to a first embodiment of the present invention.
 図1に示すように、内視鏡システム1は、バッテリ駆動型の携帯型内視鏡であるワイヤレス内視鏡2、ワイヤレス内視鏡2と無線により接続され所定の画像処理を行うプロセッサ3、および、プロセッサ3に接続され内視鏡画像等を表示するモニタ7等によって主要部が構成される。 As shown in FIG. 1, an endoscope system 1 includes a wireless endoscope 2 that is a battery-driven portable endoscope, a processor 3 that is wirelessly connected to the wireless endoscope 2 and performs predetermined image processing, The main part is constituted by a monitor 7 connected to the processor 3 and displaying an endoscopic image or the like.
 なお、本実施形態の内視鏡システムは、手術室においては、カート6上に前記プロセッサ3をはじめとする各種医療機器、たとえば電気メス装置、気腹装置、ビデオレコーダ等の装置類および二酸化炭素を充填したガスボンベ等が載置されるようになっている。 In the operating room, the endoscope system according to the present embodiment has various medical devices such as the processor 3 on the cart 6 such as an electric scalpel device, a pneumoperitoneum device, a video recorder, and the like, and carbon dioxide. A gas cylinder filled with is placed.
 図2は、当該第1の実施形態の内視鏡システムにおけるワイヤレス内視鏡およびプロセッサの構成を示したブロック図であり、図3は、当該第1の実施形態の内視鏡システムにおけるプロセッサ側の画像処理部の構成を示したブロック図である。 FIG. 2 is a block diagram showing configurations of a wireless endoscope and a processor in the endoscope system of the first embodiment, and FIG. 3 is a processor side in the endoscope system of the first embodiment. It is the block diagram which showed the structure of the image processing part.
 図2に示すように、本実施形態におけるワイヤレス内視鏡2は、プロセッサ3とは無線にて接続される、ワイヤレス構成を採るバッテリ駆動型の携帯型内視鏡であって、ワイヤレス内視鏡2内の各回路部を制御する内視鏡側制御部21と、被検体の画像を取得する撮像部22と、撮像部22からの撮像信号に所定の処理を施す内視鏡側画像処理部23と、プロセッサ3との間で所定の信号を無線により伝送するための内視鏡側無線伝送部24と、ワイヤレス内視鏡2の各部に電源を供給するバッテリ25と、体腔内を照射するための光源部26と、プロセッサ3との無線送受信のためのアンテナ27とで、主要部が構成されている。 As shown in FIG. 2, the wireless endoscope 2 according to the present embodiment is a battery-driven portable endoscope that adopts a wireless configuration and is wirelessly connected to the processor 3. 2, an endoscope-side control unit 21 that controls each circuit unit in the image processing unit 2, an imaging unit 22 that acquires an image of a subject, and an endoscope-side image processing unit that performs predetermined processing on an imaging signal from the imaging unit 22. 23, an endoscope-side wireless transmission unit 24 for wirelessly transmitting a predetermined signal between the processor 3 and the processor 3, a battery 25 for supplying power to each part of the wireless endoscope 2, and irradiation in the body cavity The light source unit 26 and the antenna 27 for wireless transmission / reception with the processor 3 constitute a main part.
 また、ワイヤレス内視鏡2は先端側に挿入部41を有し、基端側に操作部42を有する。光源部26は、前記操作部42に配設され、内視鏡側制御部21に制御されて体腔内を照明する照明光を発生する。この照明光は図示しないライトガイドによって挿入部41の先端に導かれてレンズを介して被写体に照射される。 The wireless endoscope 2 has an insertion portion 41 on the distal end side and an operation portion 42 on the proximal end side. The light source unit 26 is disposed in the operation unit 42 and generates illumination light that is controlled by the endoscope side control unit 21 to illuminate the inside of the body cavity. This illumination light is guided to the distal end of the insertion portion 41 by a light guide (not shown) and is irradiated to the subject through the lens.
 撮像部22は、前記挿入部41の先端部に配設され、CCDまたはCMOSセンサ等によって構成される撮像素子を有する。そして撮像部22の撮像面には、前記光源部26からの照明光による被写体からの戻り光が結像し、撮像部22は光電変換によって被写体光学像に基づく撮像画像を得る。この後、撮像部22は撮像画像を内視鏡側画像処理部23に供給する。 The image pickup unit 22 includes an image pickup element that is disposed at the distal end portion of the insertion portion 41 and includes a CCD or a CMOS sensor. Then, the return light from the subject by the illumination light from the light source unit 26 forms an image on the imaging surface of the imaging unit 22, and the imaging unit 22 obtains a captured image based on the subject optical image by photoelectric conversion. Thereafter, the imaging unit 22 supplies the captured image to the endoscope side image processing unit 23.
 バッテリ25は、操作部42に装着することができるようになっている。また、バッテリ25は、ワイヤレス内視鏡2に装着された後、電源部として内視鏡側制御部21の他、撮像部22、内視鏡側画像処理部23、光源部26および内視鏡側無線伝送部24に対して電力を供給することができるようになっている。 The battery 25 can be attached to the operation unit 42. In addition, the battery 25 is mounted on the wireless endoscope 2 and then, as a power supply unit, in addition to the endoscope side control unit 21, the imaging unit 22, the endoscope side image processing unit 23, the light source unit 26, and the endoscope Power can be supplied to the side wireless transmission unit 24.
 内視鏡側制御部21は、ワイヤレス内視鏡2における各部回路を制御するとともに、電源部であるバッテリ25を制御して各部に電力を供給させる。 The endoscope-side control unit 21 controls each circuit in the wireless endoscope 2 and controls the battery 25 that is a power supply unit to supply power to each unit.
 また、内視鏡側制御部21は、プロセッサ3側から内視鏡側無線伝送部24を介して伝送される画像圧縮率に係る情報を取得し、当該圧縮率に基づいて内視鏡側画像処理部23を制御する。 In addition, the endoscope side control unit 21 acquires information related to the image compression rate transmitted from the processor 3 side via the endoscope side wireless transmission unit 24, and based on the compression rate, the endoscope side image is acquired. The processing unit 23 is controlled.
 内視鏡側画像処理部23は、内視鏡側制御部21に制御されて、前記圧縮率に応じて撮像部22からの撮像画像に対して所定の画像処理を施した後、内視鏡側無線伝送部24に出力する。 The endoscope-side image processing unit 23 is controlled by the endoscope-side control unit 21 to perform predetermined image processing on the captured image from the imaging unit 22 according to the compression rate, and then the endoscope-side image processing unit 23 To the side wireless transmission unit 24.
 内視鏡側無線伝送部24は、内視鏡側制御部21に制御され、プロセッサ3との間でアンテナ27を介して無線により画像データおよび所定の通信データの送受信を行う。この内視鏡側無線伝送部24は、本実施形態においては、たとえば60GHz帯による無線通信と5GHz帯による無線通信が可能である。 The endoscope-side wireless transmission unit 24 is controlled by the endoscope-side control unit 21 and transmits / receives image data and predetermined communication data to / from the processor 3 wirelessly via the antenna 27. In the present embodiment, the endoscope-side wireless transmission unit 24 can perform wireless communication using, for example, a 60 GHz band and wireless communication using a 5 GHz band.
 ここで、本実施形態におけるワイヤレス内視鏡2とプロセッサ3との無線通信は、たとえば画像処理部23からの画像信号については60GHz帯を利用した無線通信を行い、前記圧縮率等の情報に係る通信については5GHz帯を利用した無線通信を行う。 Here, in the wireless communication between the wireless endoscope 2 and the processor 3 in the present embodiment, for example, wireless communication using the 60 GHz band is performed for the image signal from the image processing unit 23, and the information such as the compression rate is related. For communication, wireless communication using the 5 GHz band is performed.
 これにより内視鏡側無線伝送部24は、制御部21に制御されて、撮像によって得た画像信号を前記圧縮率に応じて逐次アンテナ27を介して無線送信すると共に、プロセッサ3からの圧縮率の情報を所定の時間間隔でアンテナ27を介して受信する。 Thereby, the endoscope-side wireless transmission unit 24 is controlled by the control unit 21 to wirelessly transmit the image signal obtained by the imaging through the antenna 27 sequentially according to the compression rate, and the compression rate from the processor 3. Is received via the antenna 27 at predetermined time intervals.
 一方、本実施形態においてプロセッサ3は、図2に示すように、プロセッサ3内の各回路部を制御するプロセッサ側制御部31と、ワイヤレス内視鏡2と無線により情報の伝達を行うための無線受信機32と、無線受信機32を介して取得した前記撮像部22からの撮像信号に所定の処理を施すプロセッサ側画像処理部33と、プロセッサ側画像処理部33からの出力された撮像画像をモニタ7に表示可能なフォーマットに変換して出力するビデオ出力部35と、所定のユーザー操作を受け付けるインタフェースであるユーザーIF部36と、で主要部が構成されている。 On the other hand, in the present embodiment, as shown in FIG. 2, the processor 3 wirelessly transmits information to and from the processor-side controller 31 that controls each circuit unit in the processor 3 and the wireless endoscope 2. A receiver 32, a processor-side image processing unit 33 that performs a predetermined process on an imaging signal from the imaging unit 22 acquired via the wireless receiver 32, and a captured image output from the processor-side image processing unit 33. The video output unit 35 that converts the data into a format that can be displayed on the monitor 7 and outputs it, and the user IF unit 36 that is an interface for receiving a predetermined user operation constitute a main part.
 前記無線受信機32は、ワイヤレス内視鏡2との間で所定の信号を無線により伝送するためのプロセッサ側無線伝送部34と、ワイヤレス内視鏡2との無線送受信のためのアンテナ37とで、主要部が構成されている。 The wireless receiver 32 includes a processor-side wireless transmission unit 34 for wirelessly transmitting a predetermined signal to and from the wireless endoscope 2 and an antenna 37 for wireless transmission / reception with the wireless endoscope 2. The main part is composed.
 なお、本実施形態においては、前記無線受信機32はプロセッサ本体とは別体に構成され、図示しないコネクタによってプロセッサ3本体に接続されるようになっている。なお、図1は、カート6上に、プロセッサ3の本体とは別体に構成された無線受信機32が当該プロセッサ3上に載置される様子を示している。 In the present embodiment, the wireless receiver 32 is configured separately from the processor body, and is connected to the processor 3 body by a connector (not shown). FIG. 1 shows a state in which a wireless receiver 32 configured separately from the main body of the processor 3 is placed on the processor 6 on the cart 6.
 また、無線受信機32における前記プロセッサ側無線伝送部34は、プロセッサ側制御部31に制御され、ワイヤレス内視鏡2との間でアンテナ37を介して無線により画像データおよび所定の通信データの送受信を行うようになっている。また、このプロセッサ側無線伝送部34は、前記内視鏡側無線伝送部24と同様に本実施形態においては、たとえば60GHz帯による無線通信と5GHz帯による無線通信が可能である。 In addition, the processor-side wireless transmission unit 34 in the wireless receiver 32 is controlled by the processor-side control unit 31 to transmit and receive image data and predetermined communication data wirelessly via the antenna 37 with the wireless endoscope 2. Is supposed to do. Further, in the present embodiment, the processor-side wireless transmission unit 34 can perform, for example, wireless communication in the 60 GHz band and wireless communication in the 5 GHz band in the same manner as the endoscope-side wireless transmission unit 24.
 すなわち、プロセッサ側無線伝送部34は、ワイヤレス内視鏡2から送信される画像処理部23からの画像信号については60GHz帯を利用した無線通信により逐次アンテナ37を介して受信し、プロセッサ3内において判定した圧縮率等の情報に係る通信については、5GHz帯を利用した無線通信により所定の時間間隔でアンテナ37を介してワイヤレス内視鏡2に対して送信する。 That is, the processor-side wireless transmission unit 34 sequentially receives the image signal from the image processing unit 23 transmitted from the wireless endoscope 2 through the antenna 37 by wireless communication using the 60 GHz band. The communication related to the information such as the determined compression rate is transmitted to the wireless endoscope 2 via the antenna 37 at predetermined time intervals by wireless communication using the 5 GHz band.
 ユーザーIF部36は、ユーザー操作を受け付けるインタフェースであり、たとえば、フロントパネルおよび制御系の各種ボタン等によって構成され、ユーザー操作に基づく操作信号をプロセッサ側制御部31に対して出力する。 The user IF unit 36 is an interface that accepts user operations, and includes, for example, a front panel and various buttons of a control system, and outputs operation signals based on user operations to the processor-side control unit 31.
 このユーザーIF部36によって、ワイヤレス内視鏡2の観察モードの指定、および、画像表示に関する設定等の各種ユーザー操作を受け付けることができるようになっており、プロセッサ側制御部31は当該ユーザーIF部36からの操作信号に基づいて、プロセッサ側無線伝送部34を介して、ワイヤレス内視鏡2の内視鏡側制御部21に対して各種指示を与えることが可能である。 The user IF unit 36 can accept various user operations such as designation of the observation mode of the wireless endoscope 2 and settings related to image display. The processor-side control unit 31 can receive the user IF unit. Various instructions can be given to the endoscope-side control unit 21 of the wireless endoscope 2 via the processor-side wireless transmission unit 34 based on the operation signal from 36.
 次に、前記プロセッサ3におけるプロセッサ側画像処理部33について詳述する。 Next, the processor side image processing unit 33 in the processor 3 will be described in detail.
 図3は、当該第1の実施形態の内視鏡システムにおけるプロセッサ側の画像処理部(プロセッサ側画像処理部33)の構成を示したブロック図である。 FIG. 3 is a block diagram showing the configuration of the processor-side image processing unit (processor-side image processing unit 33) in the endoscope system of the first embodiment.
 図3に示すように、プロセッサ側画像処理部33は、プロセッサ側無線伝送部34を介してワイヤレス内視鏡2から無線にて伝送された画像信号を取得する画像取得部51と、この画像取得部51において取得した画像信号に基づいてワイヤレス内視鏡2における挿入部41の体腔内における動き量の情報を取得する動き量情報取得部52と、この動き量情報取得部52において取得した動き量の情報から当該ワイヤレス内視鏡2を用いた手技における手技シーンを判定する手技シーン判定部53と、この手技シーン判定部53において判定した手技シーン、または、前記動き量情報取得部52において取得した動き量の情報から、ワイヤレス内視鏡2における内視鏡側画像処理部23において用いる画像の圧縮率を算出する圧縮率算出部54と、で主要部が構成されている。 As illustrated in FIG. 3, the processor-side image processing unit 33 includes an image acquisition unit 51 that acquires an image signal wirelessly transmitted from the wireless endoscope 2 via the processor-side wireless transmission unit 34, and this image acquisition. A motion amount information acquisition unit 52 that acquires information on the amount of motion in the body cavity of the insertion unit 41 in the wireless endoscope 2 based on the image signal acquired by the unit 51, and a motion amount acquired by the motion amount information acquisition unit 52 The procedure scene determination unit 53 that determines the procedure scene in the procedure using the wireless endoscope 2 from the information of the procedure, the procedure scene determined by the procedure scene determination unit 53, or acquired by the motion amount information acquisition unit 52 A compression rate calculation unit that calculates the compression rate of an image used in the endoscope side image processing unit 23 in the wireless endoscope 2 from the information on the amount of movement. 4, in the main portion is formed.
 また、圧縮率算出部54において算出した前記圧縮率の情報は、プロセッサ側制御部31の制御下にプロセッサ側無線伝送部34に対して出力されるようになっている。そして、当該圧縮率の情報は、プロセッサ側制御部31の制御下に、プロセッサ側無線伝送部34からワイヤレス内視鏡2に対して無線により送信されるようになっている。 Further, the compression rate information calculated by the compression rate calculation unit 54 is output to the processor-side wireless transmission unit 34 under the control of the processor-side control unit 31. The compression rate information is wirelessly transmitted from the processor-side radio transmission unit 34 to the wireless endoscope 2 under the control of the processor-side control unit 31.
<手技シーンの分類>
 ここで、上述した「手技シーン」について説明する。
<Classification of procedure scenes>
Here, the “procedure scene” described above will be described.
 本発明の如き内視鏡を用いて手技(診断)を行う場合、複数の手技シーン(観察シーン)が存在する。たとえば、以下に分類される手技シーンが考えられる。 When performing a procedure (diagnosis) using an endoscope such as the present invention, there are a plurality of procedure scenes (observation scenes). For example, a procedure scene classified as follows can be considered.
(a)まず、被検体の体腔内に内視鏡挿入部を挿入した後、消化管等の目的部位に到達するまでの間であって、挿入部を比較的早いスピードで移動するシーン(移動シーン)。 (A) First, after inserting the endoscope insertion portion into the body cavity of the subject and before reaching the target site such as the digestive tract, the scene of moving the insertion portion at a relatively high speed (movement) scene).
(b)挿入部が目的部位に到達した後にスクリーニング観察を行うシーン(スクリーニングシーン)。 (B) A scene (screening scene) in which screening observation is performed after the insertion portion reaches the target site.
 なお、このスクリーニング観察では、挿入部を体腔内において移動させながら、異常部(たとえば病変部、出血、炎症等)の有無を体腔内全体にわたって探索する。 In this screening observation, the presence or absence of an abnormal part (for example, a lesion, bleeding, inflammation, etc.) is searched throughout the body cavity while moving the insertion part in the body cavity.
(c)このスクリーニング観察において異常部を発見した後、その異常部に挿入部先端を接近させて拡大観察(精査観察)または適宜所定の処置を行うシーン(精査・処置シーン)。 (C) A scene in which an abnormal part is discovered in this screening observation and then the distal end of the insertion part is brought close to the abnormal part and magnified observation (scrutinization observation) or a predetermined treatment is appropriately performed (scrutiny / treatment scene).
 なお、この拡大観察(精査観察)では、内視鏡の視野をできるだけ被写体に対して固定すると共に観察倍率を高くして、異常部を検査・診断(たとえば病名の判断、良性・悪性の判断、または処置の要否判断等)する。 In this magnified observation (examination observation), the field of view of the endoscope is fixed to the subject as much as possible and the observation magnification is increased, and the abnormal part is examined and diagnosed (for example, judgment of disease name, judgment of benign / malignant, Or judgment of necessity of treatment, etc.).
 このように内視鏡を用いた手技(診断)には複数の手技シーン(観察シーン)が存在するが、本願出願人は、それぞれの手技シーンにおいて求められる画質も異なることに着目し、ワイヤレス内視鏡2からプロセッサ3に向けて無線により伝送される撮像画像の画像データ量を可変するものとした。 In this way, a procedure (diagnosis) using an endoscope has a plurality of procedure scenes (observation scenes), but the applicant of the present application pays attention to the fact that the image quality required for each procedure scene is different. The amount of image data of the captured image transmitted wirelessly from the endoscope 2 to the processor 3 is variable.
 すなわち、上記手技シーンのうち、(a)移動シーンまたは(b)スクリーニングシーンについては、ある程度の画質の劣化は許容されるものと考えられることから、これらシーンにおいてはワイヤレス内視鏡2において撮像した撮像画像の撮像信号に対しては比較的高い圧縮率により圧縮処理を施し、データ量を低減化するものとする。 That is, among the above-mentioned procedure scenes, it is considered that a certain degree of image quality deterioration is allowed for (a) moving scenes or (b) screening scenes, and thus these scenes were captured by the wireless endoscope 2. It is assumed that the image signal of the captured image is subjected to compression processing at a relatively high compression rate to reduce the data amount.
 一方で、上記手技シーンのうち(c)精査・処置シーンについては、高画質の画像が求められると考えられることから、圧縮処理を行わない、あるいは圧縮処理を行う場合でも比較的低い圧縮処理を施すこととする。 On the other hand, among the above-mentioned procedure scenes, (c) a close examination / treatment scene is considered to require a high-quality image. Therefore, compression processing is not performed, or relatively low compression processing is performed even when compression processing is performed. I will give it.
 このように本実施形態のバッテリを搭載した携帯型電子内視鏡を有する内視鏡システムにおいては、手技シーンに応じて無線により伝送する内視鏡画像の圧縮率を変更し、これにより手技における総合的なデータ伝送量を減らすことで無線伝送における低消費電力化を実現するものとする。 As described above, in the endoscope system having the portable electronic endoscope equipped with the battery according to the present embodiment, the compression ratio of the endoscope image to be transmitted wirelessly is changed according to the procedure scene, thereby It is assumed that low power consumption in wireless transmission is realized by reducing the total data transmission amount.
 そして、本第1の実施形態においては、この手技シーンの判定を、ワイヤレス内視鏡2における挿入部41の「動き量」の情報に基づいて判定することを特徴とする。なお、本実施形態においては、この「動き量」を取得した画像の変位から算出することから(詳しくは後述する)、挿入部41の動きは画像の動きとして取得できることとなる。 In the first embodiment, the procedure scene is determined based on the information on the “movement amount” of the insertion unit 41 in the wireless endoscope 2. In the present embodiment, since the “motion amount” is calculated from the displacement of the acquired image (details will be described later), the motion of the insertion unit 41 can be acquired as the motion of the image.
 すなわち、「動き量」に応じて手技シーンの判定、および、圧縮率の算出を行うことが可能となる。換言すれば、手技シーンにより挿入部41の「動き量」が異なるため、動き量により手技シーンを特定することが可能であり、その手技シーンに応じて前記圧縮率を算出することができる。 That is, it is possible to determine the procedure scene and calculate the compression rate according to the “motion amount”. In other words, since the “motion amount” of the insertion unit 41 differs depending on the procedure scene, the procedure scene can be specified by the amount of motion, and the compression rate can be calculated according to the procedure scene.
 たとえば、動き量が大きい、または、動き量が特定のパターン(消化管の中を進む等)である場合は上述した(a)移動シーンまたは(b)スクリーニングシーンであると考えられるので、ワイヤレス内視鏡2における内視鏡側画像処理部23においては、比較的高い圧縮率により画像処理を行ってもよいこととなる。 For example, if the amount of motion is large, or the amount of motion is a specific pattern (such as moving through the digestive tract), it is considered that it is the above-mentioned (a) moving scene or (b) screening scene. In the endoscope side image processing unit 23 in the endoscope 2, image processing may be performed with a relatively high compression rate.
 一方、動き量が小さい、または動き量が特定のパターン(被写体に正対している等)である場合は上述した(c)精査・処置シーンであると考えられるので、ワイヤレス内視鏡2における内視鏡側画像処理部23においては、圧縮処理を行わない、あるいは圧縮処理を行う場合でも比較的低い圧縮率により圧縮処理を施してもよいこととなる。 On the other hand, if the amount of motion is small or the amount of motion is a specific pattern (facing the subject directly, etc.), it is considered to be the above-mentioned (c) scrutiny / treatment scene. In the endoscope side image processing unit 23, the compression process may not be performed, or the compression process may be performed at a relatively low compression rate even when the compression process is performed.
<動き量の説明>
 ここで、上記「動き量」とは、ワイヤレス内視鏡2における挿入部41の「動き量」であるとしたが、本実施形態においては、この「動き量」を取得した画像の変位から算出することから、挿入部41の動きは画像(被写体)の動きとして取得できることとなる。
<Description of movement amount>
Here, the “movement amount” is the “movement amount” of the insertion unit 41 in the wireless endoscope 2. In the present embodiment, the “movement amount” is calculated from the displacement of the acquired image. Therefore, the movement of the insertion unit 41 can be acquired as the movement of the image (subject).
 すなわち、この「動き量」は、たとえば被写体の動きの撮像画像上での速さまたは方向として算出される。または、速さまたは方向を動きベクトルとして取得してもよく、さらには動きの速さだけ分かればよい場合には動きベクトルの大きさのみを動き量として取得してもよい。 That is, this “movement amount” is calculated, for example, as the speed or direction of the movement of the subject on the captured image. Alternatively, the speed or direction may be acquired as a motion vector, and if only the speed of motion needs to be known, only the magnitude of the motion vector may be acquired as a motion amount.
 あるいは、「動き量」は、撮像画像の複数位置における動き量またはそれらのパターンであってもよい。すなわち、撮像画像内で動き量が均一であるとは限らないので、複数位置での動き量を組み合わせることで、位置によって異なる動き量またはそのパターンを表現することができる。 Alternatively, the “motion amount” may be a motion amount or a pattern thereof at a plurality of positions of the captured image. That is, since the amount of motion is not always uniform in the captured image, by combining the amounts of motion at a plurality of positions, it is possible to express different amounts of motion or patterns depending on the positions.
 図3に戻って、画像取得部51は、上述した無線伝送機構を経て前記プロセッサ側無線伝送部34において受信した、前記ワイヤレス内視鏡2における撮像部22において撮像された画像信号を取得し、所定の画像処理(たとえばOB処理、ゲイン処理、ガンマ処理等)を施す一方で、処理後の画像信号を図示しない画像記憶部に出力するとともに動き量情報取得部52に出力する。 Returning to FIG. 3, the image acquisition unit 51 acquires the image signal captured by the imaging unit 22 of the wireless endoscope 2 received by the processor-side wireless transmission unit 34 via the wireless transmission mechanism described above, While performing predetermined image processing (for example, OB processing, gain processing, gamma processing, etc.), the processed image signal is output to an image storage unit (not shown) and output to the motion amount information acquisition unit 52.
 なお、前記画像記憶部は、前記処理後の画像信号を複数フレーム(時間的に連続した複数フレーム)分を記憶するようになっている。 The image storage unit stores the processed image signal for a plurality of frames (a plurality of temporally continuous frames).
 動き量情報取得部52は、前記画像記憶部に記憶された複数フレームの画像に基づいて、撮像画像における被写体の動き量を算出する。 The motion amount information acquisition unit 52 calculates the amount of motion of the subject in the captured image based on the images of a plurality of frames stored in the image storage unit.
 すなわち、たとえば、前記画像記憶部に記憶された複数フレームの画像における基準フレームの画像とその次のフレームの画像との間でマッチング処理を行って、その2つのフレーム画像の間の動きベクトルを算出する。そして、基準画像を1フレームずつずらしながら複数フレームにわたって順次動きベクトルを算出し、その複数の動きベクトルの平均値を動き量として算出する。 That is, for example, a matching process is performed between an image of a reference frame and an image of the next frame in a plurality of frames stored in the image storage unit, and a motion vector between the two frame images is calculated. To do. Then, motion vectors are sequentially calculated over a plurality of frames while shifting the reference image frame by frame, and an average value of the plurality of motion vectors is calculated as a motion amount.
 または、動き量として、撮像画像の中央部の動き量及び周辺部(たとえば4隅付近)の動き量等の複数位置での動き量を取得してもよい。内視鏡挿入部の移動時またはスクリーニング観察(スクリーニングシーン)では一般的に消化管に沿って内視鏡挿入部を挿入していくので、画像中央部には管の奥が写り、画像周辺部には管壁が写る。そのため、画像中央部の動き量よりも画像周辺部の動き量の方が大きくなる。 Alternatively, as the amount of motion, the amount of motion at a plurality of positions, such as the amount of motion at the center of the captured image and the amount of motion at the periphery (for example, near the four corners) may be acquired. When the endoscope insertion part is moved or during screening observation (screening scene), the endoscope insertion part is generally inserted along the digestive tract. Shows the pipe wall. For this reason, the amount of motion at the peripheral portion of the image is larger than the amount of motion at the central portion of the image.
 一方、拡大観察(精査・処置シーン)では内視鏡挿入部先端を被写体に正対させるので画像全体で動き量は小さくなる。このような動き量のパターンを検出することにより、シーンを判定してもよい。 On the other hand, in the magnified observation (scrutiny / treatment scene), the amount of movement is reduced in the entire image because the distal end of the endoscope insertion part is directly opposed to the subject. The scene may be determined by detecting such a movement amount pattern.
 次に、このように構成された第1の実施形態の内視鏡システムの動作について図4および図5を参照して説明する。 Next, the operation of the endoscope system of the first embodiment configured as described above will be described with reference to FIG. 4 and FIG.
 図4は、第1の実施形態の内視鏡システムにおけるワイヤレス内視鏡側の動作を示したフローチャートであり、図5は、第1の実施形態の内視鏡システムにおけるプロセッサの動作を示したフローチャートである。 FIG. 4 is a flowchart showing the operation on the wireless endoscope side in the endoscope system of the first embodiment, and FIG. 5 shows the operation of the processor in the endoscope system of the first embodiment. It is a flowchart.
 図4に示すように、ワイヤレス内視鏡2における内視鏡側制御部21は、プロセッサ3との間において無線通信の接続を確立し(ステップS11)、その後、プロセッサ3側から画像処理に係る圧縮率の情報を入手する(ステップS12)。なお、ワイヤレス内視鏡2が稼働した直後は、この圧縮率は初期値となっている。 As shown in FIG. 4, the endoscope-side control unit 21 in the wireless endoscope 2 establishes a wireless communication connection with the processor 3 (step S11), and then performs image processing from the processor 3 side. Information on the compression ratio is obtained (step S12). Note that immediately after the wireless endoscope 2 is operated, the compression rate is an initial value.
 この後内視鏡側制御部21は、撮像部22を制御してバッテリ25からの電力を電源として撮像を開始するとともに(ステップS13)、内視鏡側画像処理部23を制御して所定の画像処理を行う(ステップS14)。 Thereafter, the endoscope-side control unit 21 controls the imaging unit 22 to start imaging using the power from the battery 25 as a power source (step S13), and also controls the endoscope-side image processing unit 23 to perform a predetermined process. Image processing is performed (step S14).
 ここで内視鏡側制御部21は、内視鏡側画像処理部23を制御し、プロセッサ3側から伝送された圧縮率の情報に基づいて撮像部22において撮像した画像信号に対して適宜圧縮処理を施し(ステップS15)、当該圧縮処理を施した画像データを内視鏡側無線伝送部24からプロセッサ3に向けて無線にて伝送する(ステップS16)。 Here, the endoscope side control unit 21 controls the endoscope side image processing unit 23 and appropriately compresses the image signal captured by the imaging unit 22 based on the compression rate information transmitted from the processor 3 side. Processing is performed (step S15), and the compressed image data is wirelessly transmitted from the endoscope side wireless transmission unit 24 to the processor 3 (step S16).
 次に図5に示すようにプロセッサ3におけるプロセッサ側制御部31は、ワイヤレス内視鏡2との間における無線通信の接続を確立した後(ステップS21)、プロセッサ側無線伝送部34においてワイヤレス内視鏡2からの画像データを受信する(ステップS22)。 Next, as shown in FIG. 5, the processor-side control unit 31 in the processor 3 establishes a wireless communication connection with the wireless endoscope 2 (step S <b> 21), and then the processor-side wireless transmission unit 34 performs the wireless endoscope. The image data from the mirror 2 is received (step S22).
 そして、プロセッサ側制御部31の制御下にプロセッサ側画像処理部33は、ワイヤレス内視鏡2から伝送された画像信号に適宜画像処理を施し(ステップS23)、当該画像信号をビデオ出力部35に出力する。前記プロセッサ側画像処理部33は、一方で、画像取得部51において処理後の画像信号を図示しない画像記憶部に出力するとともに動き量情報取得部52に出力する。 Then, under the control of the processor-side control unit 31, the processor-side image processing unit 33 appropriately performs image processing on the image signal transmitted from the wireless endoscope 2 (step S23), and sends the image signal to the video output unit 35. Output. On the other hand, the processor side image processing unit 33 outputs the image signal processed by the image acquisition unit 51 to an image storage unit (not shown) and also outputs it to the motion amount information acquisition unit 52.
 次にプロセッサ側画像処理部33における動き量情報取得部52は、前記画像記憶部に記憶された複数フレームの画像に基づいて、撮像画像における被写体の動き量を算出する(ステップS24)。 Next, the motion amount information acquisition unit 52 in the processor-side image processing unit 33 calculates the motion amount of the subject in the captured image based on the images of a plurality of frames stored in the image storage unit (step S24).
 具体的には、前記画像記憶部に記憶された複数フレームの画像における基準フレームの画像とその次のフレームの画像との間でマッチング処理を行って、その2つのフレーム画像の間の動きベクトルを算出し、基準画像を1フレームずつずらしながら複数フレームにわたって順次動きベクトルを算出し、その複数の動きベクトルの平均値を動き量として算出する(ステップS24)。 Specifically, a matching process is performed between the image of the reference frame and the image of the next frame in the images of the plurality of frames stored in the image storage unit, and a motion vector between the two frame images is obtained. The motion vector is sequentially calculated over a plurality of frames while shifting the reference image frame by frame, and an average value of the plurality of motion vectors is calculated as a motion amount (step S24).
 または、動き量情報取得部52において、上述したように、動き量として撮像画像の中央部の動き量及び周辺部の動き量等の複数位置での動き量を取得してもよい。 Alternatively, as described above, the motion amount information acquisition unit 52 may acquire the motion amount at a plurality of positions such as the motion amount in the center portion and the motion amount in the peripheral portion of the captured image as the motion amount.
 次にプロセッサ側画像処理部33における手技シーン判定部53は、動き量情報取得部52において取得した「動き量」に応じて、上述の如き分類される手技シーンを判定する(ステップS25)。 Next, the procedure scene determination unit 53 in the processor-side image processing unit 33 determines the procedure scene classified as described above according to the “motion amount” acquired by the motion amount information acquisition unit 52 (step S25).
 たとえば、動き量が大きい、または、動き量が特定のパターン(消化管の中を進む等)である場合は上述した(a)移動シーンまたは(b)スクリーニングシーンであると判定し、一方、動き量が小さい、または動き量が特定のパターン(被写体に正対している等)である場合は上述した(c)精査・処置シーンであると判定する。 For example, when the amount of movement is large or the amount of movement is a specific pattern (such as traveling in the digestive tract), it is determined that the movement scene or (b) the screening scene is described above. If the amount is small or the amount of motion is a specific pattern (facing the subject directly, etc.), it is determined that it is the above-described (c) scrutiny / treatment scene.
 そしてプロセッサ側画像処理部33における圧縮率算出部54は、この手技シーン判定部53において判定した手技シーン、または、前記動き量情報取得部52において取得した動き量の情報から、ワイヤレス内視鏡2における内視鏡側画像処理部23において用いる画像の圧縮率を算出する(ステップS26)。 Then, the compression rate calculation unit 54 in the processor-side image processing unit 33 uses the wireless endoscope 2 based on the procedure scene determined by the procedure scene determination unit 53 or the motion amount information acquired by the motion amount information acquisition unit 52. The compression rate of the image used in the endoscope side image processing unit 23 is calculated (step S26).
 たとえば、手技シーン判定部53が、(a)移動シーンまたは(b)スクリーニングシーンであると判定した場合は、ワイヤレス内視鏡2における画像処理に係る圧縮率を比較的高い圧縮率として設定する。 For example, when the procedure scene determination unit 53 determines that the scene is (a) a moving scene or (b) a screening scene, the compression ratio related to image processing in the wireless endoscope 2 is set as a relatively high compression ratio.
 一方、手技シーン判定部53が、(c)精査・処置シーンであると判定した場合は、ワイヤレス内視鏡2における画像処理に係る圧縮率を比較的低い圧縮率として設定するか、または、圧縮処理を行わないように設定する。 On the other hand, when the procedure scene determination unit 53 determines that the scene is (c) a scrutiny / treatment scene, the compression ratio relating to image processing in the wireless endoscope 2 is set as a relatively low compression ratio, or the compression is performed. Set to not process.
 この後、プロセッサ側画像処理部33は、圧縮率算出部54において算出した前記圧縮率の情報を、プロセッサ側制御部31の制御下にプロセッサ側無線伝送部34に対して出力する。そして、当該圧縮率の情報は、プロセッサ側制御部31の制御下に、プロセッサ側無線伝送部34からワイヤレス内視鏡2に対して無線により送信される(ステップS27)。 Thereafter, the processor-side image processing unit 33 outputs the compression rate information calculated by the compression rate calculation unit 54 to the processor-side wireless transmission unit 34 under the control of the processor-side control unit 31. The compression rate information is wirelessly transmitted from the processor-side wireless transmission unit 34 to the wireless endoscope 2 under the control of the processor-side control unit 31 (step S27).
 以上説明したように本第1の実施形態の内視鏡システムによると、バッテリを搭載した携帯型電子内視鏡を有する内視鏡システムにおいて、手技シーンに応じて無線により伝送する内視鏡画像の圧縮率を変更し、これにより手技における総合的なデータ伝送量を減らすことができ、ひいては無線伝送における低消費電力化を実現することができる。 As described above, according to the endoscope system of the first embodiment, in an endoscope system having a portable electronic endoscope equipped with a battery, an endoscope image transmitted wirelessly in accordance with a procedure scene. Thus, it is possible to reduce the total data transmission amount in the procedure, thereby realizing low power consumption in wireless transmission.
 (第2の実施形態)
 次に本発明の第2の実施形態について説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described.
 上述した第1の実施形態の内視鏡システムは、プロセッサ側画像処理部33において取得した撮像画像から内視鏡挿入部(または被写体)の「動き量」を算出し、この「動き量」の情報に基づいて手技シーン判定部53において手技シーンを判定したが、本第2の実施形態においては、プロセッサ側画像処理部33において取得した撮像画像から内視鏡挿入部先端から被写体までの「距離」を算出し、この「距離」の情報に基づいて手技シーンを判定することを特徴とする。 The endoscope system according to the first embodiment described above calculates the “motion amount” of the endoscope insertion unit (or subject) from the captured image acquired by the processor-side image processing unit 33, and calculates the “motion amount”. The procedure scene is determined by the procedure scene determination unit 53 based on the information. In the second embodiment, the “distance from the distal end of the endoscope insertion unit to the subject from the captured image acquired by the processor-side image processing unit 33” ”Is calculated, and the procedure scene is determined based on the information of“ distance ”.
 すなわち、本第2の実施形態の内視鏡システムは、その基本的な構成は第1の実施形態と同様であるが、第1の実施形態に比してプロセッサ側画像処理部における一部の構成を異にするものである。 That is, the basic configuration of the endoscope system of the second embodiment is the same as that of the first embodiment, but a part of the processor-side image processing unit is compared to the first embodiment. The configuration is different.
 したがって、ここでは、第1の実施形態と異なる部分の説明にとどめ、第1の実施形態と同様の部分についての説明は省略する。 Therefore, here, only the parts different from the first embodiment will be described, and the description of the same parts as the first embodiment will be omitted.
 図6は、本発明の第2の実施形態の内視鏡システムにおけるプロセッサ側の画像処理部(プロセッサ側画像処理部33)の構成を示したブロック図である。 FIG. 6 is a block diagram showing the configuration of the processor-side image processing unit (processor-side image processing unit 33) in the endoscope system according to the second embodiment of the present invention.
 図6に示すように、本第2の実施形態におけるプロセッサ側画像処理部133は、プロセッサ側無線伝送部34を介してワイヤレス内視鏡2から無線にて伝送された画像信号を取得する画像取得部51と、この画像取得部51において取得した画像信号に基づいてワイヤレス内視鏡2における挿入部41の体腔内における「距離情報」を取得する距離情報取得部55と、この距離情報取得部55において取得した「距離情報」から当該ワイヤレス内視鏡2を用いた手技における手技シーンを判定する手技シーン判定部53と、この手技シーン判定部53において判定した手技シーン、または、前記距離情報取得部55において取得した「距離情報」から、ワイヤレス内視鏡2における内視鏡側画像処理部23において用いる画像の圧縮率を算出する圧縮率算出部54と、で主要部が構成されている。 As illustrated in FIG. 6, the processor-side image processing unit 133 in the second embodiment acquires an image signal that is wirelessly transmitted from the wireless endoscope 2 via the processor-side wireless transmission unit 34. 51, a distance information acquisition unit 55 that acquires “distance information” in the body cavity of the insertion unit 41 in the wireless endoscope 2 based on the image signal acquired by the image acquisition unit 51, and the distance information acquisition unit 55 The procedure scene determination unit 53 that determines a procedure scene in the procedure using the wireless endoscope 2 from the “distance information” acquired in step S3, the procedure scene determined by the procedure scene determination unit 53, or the distance information acquisition unit From the “distance information” acquired in 55, the compression rate of the image used in the endoscope side image processing unit 23 in the wireless endoscope 2 is determined. A compression ratio calculating unit 54 to output, as its major portion is constituted.
 また、圧縮率算出部54において算出した前記圧縮率の情報は、第1の実施形態と同様に、プロセッサ側制御部31の制御下にプロセッサ側無線伝送部34に対して出力されるようになっている。そして、当該圧縮率の情報は、プロセッサ側制御部31の制御下に、プロセッサ側無線伝送部34からワイヤレス内視鏡2に対して無線により送信されるようになっている。 In addition, the compression rate information calculated by the compression rate calculation unit 54 is output to the processor-side wireless transmission unit 34 under the control of the processor-side control unit 31 as in the first embodiment. ing. The compression rate information is wirelessly transmitted from the processor-side radio transmission unit 34 to the wireless endoscope 2 under the control of the processor-side control unit 31.
 本第2の実施形態においても手技シーンは、第1の実施形態と同様の分類を想定し、手技シーンに応じて無線により伝送する内視鏡画像の圧縮率を変更し、これにより手技における総合的なデータ伝送量を減らすことで無線伝送における低消費電力化を実現するものとすることも第1の実施形態と同様である。 Also in the second embodiment, the procedure scene is assumed to be classified in the same manner as in the first embodiment, and the compression rate of the endoscopic image to be transmitted wirelessly is changed according to the procedure scene. As in the first embodiment, it is possible to reduce power consumption in wireless transmission by reducing the amount of data transmission.
 そして、本第2の実施形態においては、この手技シーンの判定を、ワイヤレス内視鏡2における挿入部41先端と患部等の被写体との距離に係る情報に基づいて判定することを特徴とする。 In the second embodiment, the procedure scene is determined based on information related to the distance between the distal end of the insertion portion 41 in the wireless endoscope 2 and a subject such as an affected portion.
 すなわち、上記「距離情報」に応じて手技シーンの判定、および、圧縮率の算出を行うことが可能となる。換言すれば、手技シーンにより挿入部41先端と被写体との距離が異なるため、当該「距離情報」により手技シーンを特定することが可能であり、その手技シーンに応じて前記圧縮率を算出することができる。 That is, it is possible to determine a technique scene and calculate a compression rate according to the “distance information”. In other words, since the distance between the distal end of the insertion portion 41 and the subject differs depending on the procedure scene, the procedure scene can be specified by the “distance information”, and the compression rate is calculated according to the procedure scene. Can do.
 たとえば、挿入部41先端と被写体との距離が大きい場合は上述した(a)移動シーンまたは(b)スクリーニングシーンであると考えられるので、ワイヤレス内視鏡2における内視鏡側画像処理部23においては、比較的高い圧縮率により画像処理を行ってもよいこととなる。 For example, when the distance between the distal end of the insertion unit 41 and the subject is large, it is considered that the above-mentioned (a) moving scene or (b) screening scene is described. Therefore, in the endoscope side image processing unit 23 in the wireless endoscope 2. The image processing may be performed with a relatively high compression rate.
 一方、挿入部41先端と被写体との距離が短い場合は上述した(c)精査・処置シーンであると考えられるので、ワイヤレス内視鏡2における内視鏡側画像処理部23においては、圧縮処理を行わない、あるいは圧縮処理を行う場合でも比較的低い圧縮率により圧縮処理を施してもよいこととなる。 On the other hand, when the distance between the distal end of the insertion unit 41 and the subject is short, it is considered that the above-described (c) scrutiny / treatment scene is present, so the endoscope side image processing unit 23 in the wireless endoscope 2 performs compression processing. Even if compression is not performed or compression processing is performed, the compression processing may be performed at a relatively low compression rate.
<距離情報の説明>
 ここで、上記「距離情報」とは、ワイヤレス内視鏡2における挿入部41先端と被写体との距離に係る情報であるが、撮像画像での各位置と、その各位置での被写体までの距離とが対応付けられた情報(たとえば距離マップ)である。
<Explanation of distance information>
Here, the “distance information” is information related to the distance between the distal end of the insertion portion 41 and the subject in the wireless endoscope 2, and each position in the captured image and the distance to the subject at each position. Is associated with the information (for example, a distance map).
 なお、上記「距離情報」は挿入部先端から被写体までの距離そのものに限定されず、挿入部先端から被写体までの距離に基づいて取得される種々の情報を用いることが可能である。 Note that the “distance information” is not limited to the distance from the distal end of the insertion section to the subject itself, and various information acquired based on the distance from the distal end of the insertion section to the subject can be used.
 図6に戻って、画像取得部51は、第1の実施形態と同様に、上述した無線伝送機構を経て前記プロセッサ側無線伝送部34において受信した、前記ワイヤレス内視鏡2における撮像部22において撮像された画像信号を取得し、所定の画像処理(たとえばOB処理、ゲイン処理、ガンマ処理等)を施す一方で、処理後の画像信号を図示しない画像記憶部に出力するとともに距離情報取得部55に出力する。 Returning to FIG. 6, as in the first embodiment, the image acquisition unit 51 is received by the processor-side wireless transmission unit 34 through the wireless transmission mechanism described above, and is captured by the imaging unit 22 in the wireless endoscope 2. The captured image signal is acquired and subjected to predetermined image processing (for example, OB processing, gain processing, gamma processing, etc.), while the processed image signal is output to an image storage unit (not shown) and the distance information acquisition unit 55. Output to.
 距離情報取得部55は、前記画像記憶部に記憶された複数フレームの画像に基づいて、撮像画像における挿入部41先端と被写体との距離を算出する。 The distance information acquisition unit 55 calculates the distance between the distal end of the insertion unit 41 and the subject in the captured image based on the images of a plurality of frames stored in the image storage unit.
 次に、このように構成された第2の実施形態の内視鏡システムの動作について図7を参照して説明する。図7は、第2の実施形態の内視鏡システムにおけるプロセッサの動作を示したフローチャートである。 Next, the operation of the endoscope system of the second embodiment configured as described above will be described with reference to FIG. FIG. 7 is a flowchart showing the operation of the processor in the endoscope system of the second embodiment.
 なお、ワイヤレス内視鏡側の動作は第1の実施形態の内視鏡システムと同様であるので、ここで説明は省略する。 Since the operation on the wireless endoscope side is the same as that of the endoscope system of the first embodiment, the description thereof is omitted here.
 図7に示すようにプロセッサ3におけるプロセッサ側制御部31は、第1の実施形態と同様に、ワイヤレス内視鏡2との間における無線通信の接続を確立した後(ステップS21)、プロセッサ側無線伝送部34においてワイヤレス内視鏡2からの画像データを受信する(ステップS22)。 As illustrated in FIG. 7, the processor-side control unit 31 in the processor 3 establishes a wireless communication connection with the wireless endoscope 2 (step S <b> 21), similarly to the first embodiment, and then the processor-side wireless The transmission unit 34 receives the image data from the wireless endoscope 2 (step S22).
 そして、プロセッサ側制御部31の制御下にプロセッサ側画像処理部133は、ワイヤレス内視鏡2から伝送された画像信号に適宜画像処理を施し(ステップS23)、当該画像信号をビデオ出力部35に出力する。前記プロセッサ側画像処理部133は、一方で、画像取得部51において処理後の画像信号を図示しない画像記憶部に出力するとともに距離情報取得部55に出力する。 Then, under the control of the processor side control unit 31, the processor side image processing unit 133 appropriately performs image processing on the image signal transmitted from the wireless endoscope 2 (step S23), and the image signal is sent to the video output unit 35. Output. On the other hand, the processor side image processing unit 133 outputs the image signal processed in the image acquisition unit 51 to an image storage unit (not shown) and also outputs it to the distance information acquisition unit 55.
 次にプロセッサ側画像処理部133における距離情報取得部55は、前記画像記憶部に記憶された複数フレームの画像に基づいて、撮像画像における上記「距離情報」を算出する(ステップS34)。 Next, the distance information acquisition unit 55 in the processor-side image processing unit 133 calculates the “distance information” in the captured image based on the images of a plurality of frames stored in the image storage unit (step S34).
 次にプロセッサ側画像処理部133における手技シーン判定部53は、第1の実施形態と同様に、距離情報取得部55において取得した「距離情報」に応じて、上述の如き分類される手技シーンを判定する(ステップS25)。 Next, the procedure scene determination unit 53 in the processor-side image processing unit 133 selects the procedure scenes classified as described above according to the “distance information” acquired by the distance information acquisition unit 55, as in the first embodiment. Determination is made (step S25).
 たとえば、挿入部41先端と被写体との距離が大きい場合は上述した(a)移動シーンまたは(b)スクリーニングシーンであると判定し、一方、挿入部41先端と被写体との距離が短い場合は上述した(c)精査・処置シーンであると判定する。 For example, when the distance between the distal end of the insertion unit 41 and the subject is large, it is determined that the above-described (a) moving scene or (b) screening scene is described above. (C) It is determined that it is a scrutiny / treatment scene.
 そしてプロセッサ側画像処理部133における圧縮率算出部54は、この手技シーン判定部53において判定した手技シーン、または、前記距離情報取得部55において取得した挿入部41先端と被写体との距離の情報から、ワイヤレス内視鏡2における内視鏡側画像処理部23において用いる画像の圧縮率を算出する(ステップS26)。 The compression rate calculation unit 54 in the processor-side image processing unit 133 then uses the procedure scene determined by the procedure scene determination unit 53 or the information on the distance between the distal end of the insertion unit 41 and the subject acquired by the distance information acquisition unit 55. Then, the compression rate of the image used in the endoscope side image processing unit 23 in the wireless endoscope 2 is calculated (step S26).
 たとえば、手技シーン判定部53が、(a)移動シーンまたは(b)スクリーニングシーンであると判定した場合は、ワイヤレス内視鏡2における画像処理に係る圧縮率を比較的高い圧縮率として設定する。 For example, when the procedure scene determination unit 53 determines that the scene is (a) a moving scene or (b) a screening scene, the compression ratio related to image processing in the wireless endoscope 2 is set as a relatively high compression ratio.
 一方、手技シーン判定部53が、(c)精査・処置シーンであると判定した場合は、ワイヤレス内視鏡2における画像処理に係る圧縮率を比較的低い圧縮率として設定するか、または、圧縮処理を行わないように設定する。 On the other hand, when the procedure scene determination unit 53 determines that the scene is (c) a scrutiny / treatment scene, the compression ratio relating to image processing in the wireless endoscope 2 is set as a relatively low compression ratio, or the compression is performed. Set to not process.
 この後、プロセッサ側画像処理部133は、第1の実施形態と同様に、圧縮率算出部54において算出した前記圧縮率の情報を、プロセッサ側制御部31の制御下にプロセッサ側無線伝送部34に対して出力する。そして、当該圧縮率の情報は、プロセッサ側制御部31の制御下に、プロセッサ側無線伝送部34からワイヤレス内視鏡2に対して無線により送信される(ステップS27)。 Thereafter, as in the first embodiment, the processor-side image processing unit 133 uses the processor-side wireless transmission unit 34 to transmit the compression rate information calculated by the compression rate calculation unit 54 under the control of the processor-side control unit 31. Output for. The compression rate information is wirelessly transmitted from the processor-side wireless transmission unit 34 to the wireless endoscope 2 under the control of the processor-side control unit 31 (step S27).
 以上説明したように本第2の実施形態の内視鏡システムによると、第1の実施形態と同様に、バッテリを搭載した携帯型電子内視鏡を有する内視鏡システムにおいて、手技シーンに応じて無線により伝送する内視鏡画像の圧縮率を変更し、これにより手技における総合的なデータ伝送量を減らすことができ、ひいては無線伝送における低消費電力化を実現することができる。 As described above, according to the endoscope system of the second embodiment, as in the first embodiment, in the endoscope system having a portable electronic endoscope equipped with a battery, depending on the procedure scene. Thus, it is possible to change the compression rate of the endoscopic image transmitted wirelessly, thereby reducing the total amount of data transmission in the procedure, and thus realizing low power consumption in wireless transmission.
 (第3の実施形態)
 次に本発明の第3の実施形態について説明する。
(Third embodiment)
Next, a third embodiment of the present invention will be described.
 上述した第1の実施形態の内視鏡システムは、プロセッサ側画像処理部33において取得した撮像画像から内視鏡挿入部(または被写体)の「動き量」を算出し、この「動き量」の情報に基づいて手技シーン判定部53において手技シーンを判定したが、本第3の実施形態においては、ワイヤレス内視鏡2側の内視鏡側画像処理部において撮像した撮像画像から内視鏡挿入部(または被写体)の「動き量」を算出し、この「動き量」の情報に基づいて手技シーンを判定した後に、内視鏡側画像処理部において圧縮率を算出することを特徴とする。 The endoscope system according to the first embodiment described above calculates the “motion amount” of the endoscope insertion unit (or subject) from the captured image acquired by the processor-side image processing unit 33, and calculates the “motion amount”. Although the procedure scene is determined by the procedure scene determination unit 53 based on the information, in the third embodiment, the endoscope is inserted from the captured image captured by the endoscope-side image processing unit on the wireless endoscope 2 side. After calculating the “motion amount” of the part (or subject) and determining the procedure scene based on the information of this “motion amount”, the endoscope side image processing unit calculates the compression rate.
 すなわち、本第3の実施形態の内視鏡システムは、その基本的な構成は第1の実施形態と同様であるが、第1の実施形態に比して内視鏡側画像処理部およびプロセッサ側画像処理部における一部の構成を異にするものである。 That is, the basic configuration of the endoscope system according to the third embodiment is the same as that of the first embodiment, but an endoscope-side image processing unit and a processor are compared with the first embodiment. A part of the configuration of the side image processing unit is different.
 したがって、ここでは、第1の実施形態と異なる部分の説明にとどめ、第1の実施形態と同様の部分についての説明は省略する。 Therefore, here, only the parts different from the first embodiment will be described, and the description of the same parts as the first embodiment will be omitted.
 図8は、本発明の第3の実施形態の内視鏡システムにおけるワイヤレス内視鏡側の画像処理部の構成を示したブロック図である。 FIG. 8 is a block diagram showing the configuration of the image processing unit on the wireless endoscope side in the endoscope system according to the third embodiment of the present invention.
 図8に示すように、第3の実施形態においては、内視鏡側画像処理部123は、撮像部22において撮像した画像信号を取得する画像取得部151と、この画像取得部151において取得した画像信号に基づいてワイヤレス内視鏡2における挿入部41の体腔内における動き量の情報を取得する動き量情報取得部152と、この動き量情報取得部152において取得した動き量の情報から当該ワイヤレス内視鏡2を用いた手技における手技シーンを判定する手技シーン判定部153と、この手技シーン判定部153において判定した手技シーン、または、前記動き量情報取得部152において取得した動き量の情報から、当該内視鏡側画像処理部123において用いる画像の圧縮率を算出する圧縮率算出部154と、で主要部が構成されている。 As shown in FIG. 8, in the third embodiment, the endoscope side image processing unit 123 acquires an image signal captured by the imaging unit 22 and acquired by the image acquisition unit 151. Based on the image signal, the movement amount information acquisition unit 152 that acquires information on the amount of movement in the body cavity of the insertion unit 41 in the wireless endoscope 2, and the wireless amount from the information on the amount of movement acquired by the movement amount information acquisition unit 152. From a procedure scene determination unit 153 that determines a procedure scene in a procedure using the endoscope 2, the procedure scene determined by the procedure scene determination unit 153, or the motion amount information acquired by the motion amount information acquisition unit 152 The compression rate calculation unit 154 that calculates the compression rate of the image used in the endoscope side image processing unit 123 is a main part. That.
 このように本第3の実施形態のバッテリを搭載した携帯型電子内視鏡を有する内視鏡システムにおいても、手技シーンに応じて内視鏡画像の圧縮率を変更し、これにより手技における総合的なデータ伝送量を減らすことで無線伝送における低消費電力化を実現することができる。 As described above, also in the endoscope system having the portable electronic endoscope equipped with the battery of the third embodiment, the compression ratio of the endoscopic image is changed according to the procedure scene, and thereby, the overall procedure in the procedure is changed. By reducing the typical data transmission amount, it is possible to realize low power consumption in wireless transmission.
 また、本第3の実施形態においても、前記手技シーンの判定は、第1の実施形態と同様に、ワイヤレス内視鏡2における挿入部41の「動き量」の情報に基づいて判定する。 Also in the third embodiment, the procedure scene is determined based on the information on the “movement amount” of the insertion unit 41 in the wireless endoscope 2 as in the first embodiment.
 図8に戻って、画像取得部151は、撮像部22において撮像された画像信号を取得し、所定の画像処理(たとえばOB処理、ゲイン処理、ガンマ処理等)を施す一方で、処理後の画像信号を図示しない画像記憶部に出力するとともに動き量情報取得部152に出力する。 Returning to FIG. 8, the image acquisition unit 151 acquires the image signal captured by the imaging unit 22 and performs predetermined image processing (for example, OB processing, gain processing, gamma processing, etc.), while processing the processed image. The signal is output to an image storage unit (not shown) and output to the motion amount information acquisition unit 152.
 なお、前記画像記憶部は、前記処理後の画像信号を複数フレーム(時間的に連続した複数フレーム)分記憶するようになっている。動き量情報取得部152は、前記画像記憶部に記憶された複数フレームの画像に基づいて、撮像画像における被写体の動き量を算出する。 Note that the image storage unit stores the processed image signal for a plurality of frames (a plurality of temporally continuous frames). The motion amount information acquisition unit 152 calculates the motion amount of the subject in the captured image based on the images of a plurality of frames stored in the image storage unit.
 すなわち、第3の実施形態においても、たとえば、前記画像記憶部に記憶された複数フレームの画像における基準フレームの画像とその次のフレームの画像との間でマッチング処理を行って、その2つのフレーム画像の間の動きベクトルを算出する。そして、基準画像を1フレームずつずらしながら複数フレームにわたって順次動きベクトルを算出し、その複数の動きベクトルの平均値を動き量として算出する。 That is, also in the third embodiment, for example, a matching process is performed between the image of the reference frame and the image of the next frame in the images of the plurality of frames stored in the image storage unit, and the two frames A motion vector between images is calculated. Then, motion vectors are sequentially calculated over a plurality of frames while shifting the reference image frame by frame, and an average value of the plurality of motion vectors is calculated as a motion amount.
 次に、このように構成された第3の実施形態の内視鏡システムの動作について図9を参照して説明する。 Next, the operation of the endoscope system of the third embodiment configured as described above will be described with reference to FIG.
 図9は、第3の実施形態の内視鏡システムにおけるワイヤレス内視鏡側の動作を示したフローチャートである。 FIG. 9 is a flowchart showing the operation on the wireless endoscope side in the endoscope system of the third embodiment.
 図9に示すように、ワイヤレス内視鏡2における内視鏡側制御部21は、プロセッサ3との間において無線通信の接続を確立し(ステップS41)、この後内視鏡側制御部21は、撮像部22を制御してバッテリ25からの電力を電源として撮像を開始するとともに(ステップS42)、内視鏡側画像処理部123を制御して所定の画像処理を行う。 As shown in FIG. 9, the endoscope-side control unit 21 in the wireless endoscope 2 establishes a wireless communication connection with the processor 3 (step S41), and then the endoscope-side control unit 21 Then, the imaging unit 22 is controlled to start imaging using the power from the battery 25 as a power source (step S42), and the endoscope-side image processing unit 123 is controlled to perform predetermined image processing.
 ここで内視鏡側制御部21は、内視鏡側画像処理部123を制御し、撮像部22において撮像した画像信号に対して適宜画像処理を施すとともに(ステップS43)、画像取得部151において処理後の画像信号を図示しない画像記憶部に出力するとともに動き量情報取得部152に出力する。 Here, the endoscope side control unit 21 controls the endoscope side image processing unit 123 to appropriately perform image processing on the image signal picked up by the image pickup unit 22 (step S43), and in the image acquisition unit 151. The processed image signal is output to an image storage unit (not shown) and output to the motion amount information acquisition unit 152.
 次に動き量情報取得部152は、前記画像記憶部に記憶された複数フレームの画像に基づいて、撮像画像における被写体の動き量を算出する(ステップS44)。具体的には、前記画像記憶部に記憶された複数フレームの画像における基準フレームの画像とその次のフレームの画像との間でマッチング処理を行って、その2つのフレーム画像の間の動きベクトルを算出し、基準画像を1フレームずつずらしながら複数フレームにわたって順次動きベクトルを算出し、その複数の動きベクトルの平均値を動き量として算出する(ステップS44)。 Next, the motion amount information acquisition unit 152 calculates the amount of motion of the subject in the captured image based on the images of a plurality of frames stored in the image storage unit (step S44). Specifically, a matching process is performed between the image of the reference frame and the image of the next frame in the images of the plurality of frames stored in the image storage unit, and a motion vector between the two frame images is obtained. The motion vector is sequentially calculated over a plurality of frames while shifting the reference image frame by frame, and an average value of the plurality of motion vectors is calculated as a motion amount (step S44).
 または、動き量情報取得部152において、上述したように、動き量として撮像画像の中央部の動き量及び周辺部の動き量等の複数位置での動き量を取得してもよい。 Alternatively, as described above, the motion amount information acquisition unit 152 may acquire motion amounts at a plurality of positions such as a central portion and a peripheral portion of the captured image.
 次に手技シーン判定部153は、動き量情報取得部152において取得した「動き量」に応じて、上述の如き分類される手技シーンを判定する(ステップS45)。 Next, the procedure scene determination unit 153 determines the procedure scene classified as described above according to the “motion amount” acquired by the motion amount information acquisition unit 152 (step S45).
 たとえば、動き量が大きい、または、動き量が特定のパターン(消化管の中を進む等)である場合は上述した(a)移動シーンまたは(b)スクリーニングシーンであると判定し、一方、動き量が小さい、または動き量が特定のパターン(被写体に正対している等)である場合は上述した(c)精査・処置シーンであると判定する。 For example, when the amount of movement is large or the amount of movement is a specific pattern (such as traveling in the digestive tract), it is determined that the movement scene or (b) the screening scene is described above. If the amount is small or the amount of motion is a specific pattern (facing the subject directly, etc.), it is determined that it is the above-described (c) scrutiny / treatment scene.
 そして圧縮率算出部154は、この手技シーン判定部153において判定した手技シーン、または、前記動き量情報取得部152において取得した動き量の情報から、当該内視鏡側画像処理部123において用いる画像の圧縮率を算出する(ステップS46)。 The compression rate calculation unit 154 then uses the procedure scene determined by the procedure scene determination unit 153 or the motion amount information acquired by the motion amount information acquisition unit 152 to use the image used in the endoscope side image processing unit 123. Is calculated (step S46).
 たとえば、手技シーン判定部153が、(a)移動シーンまたは(b)スクリーニングシーンであると判定した場合は、ワイヤレス内視鏡2における画像処理に係る圧縮率を比較的高い圧縮率として設定する。 For example, if the technique scene determination unit 153 determines that the scene is (a) a moving scene or (b) a screening scene, the compression ratio related to image processing in the wireless endoscope 2 is set as a relatively high compression ratio.
 一方、手技シーン判定部153が、(c)精査・処置シーンであると判定した場合は、ワイヤレス内視鏡2における画像処理に係る圧縮率を比較的低い圧縮率として設定するか、または、圧縮処理を行わないように設定する。 On the other hand, if the procedure scene determination unit 153 determines that the scene is (c) a scrutiny / treatment scene, the compression ratio related to image processing in the wireless endoscope 2 is set as a relatively low compression ratio, or compression is performed. Set to not process.
 次に内視鏡側画像処理部123は、圧縮率算出部154において算出した圧縮率に基づいて適宜圧縮処理を施し(ステップS47)、当該圧縮処理を施した画像データを内視鏡側無線伝送部24からプロセッサ3に向けて無線にて伝送する(ステップS48)。 Next, the endoscope side image processing unit 123 performs an appropriate compression process based on the compression rate calculated by the compression rate calculation unit 154 (step S47), and the image data subjected to the compression process is wirelessly transmitted by the endoscope side. The data is transmitted wirelessly from the unit 24 to the processor 3 (step S48).
 以上説明したように本第3の実施形態の内視鏡システムにおいても、バッテリを搭載した携帯型電子内視鏡を有する内視鏡システムにおいて、手技シーンに応じて内視鏡画像の圧縮率を変更し、これにより手技における総合的なデータ伝送量を減らすことができ、ひいては無線伝送における低消費電力化を実現することができる。 As described above, also in the endoscope system of the third embodiment, in the endoscope system having the portable electronic endoscope equipped with the battery, the compression rate of the endoscope image is set according to the procedure scene. Thus, the total amount of data transmission in the procedure can be reduced, and as a result, low power consumption in wireless transmission can be realized.
 (第4の実施形態)
 次に本発明の第4の実施形態について説明する。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described.
 上述した第2の実施形態の内視鏡システムは、プロセッサ側画像処理部33において取得した撮像画像から内視鏡挿入部先端から被写体までの「距離」を算出し、この「距離」の情報に基づいて手技シーンを判定したが、本第4の実施形態においては、ワイヤレス内視鏡2側の内視鏡側画像処理部において撮像した撮像画像から内視鏡挿入部先端から被写体までの「距離」を算出し、この「距離」の情報に基づいて手技シーンを判定した後に、内視鏡側画像処理部において圧縮率を算出することを特徴とする。 The endoscope system according to the second embodiment described above calculates the “distance” from the distal end of the endoscope insertion unit to the subject from the captured image acquired by the processor-side image processing unit 33, and uses this “distance” information as information. Although the procedure scene is determined based on this, in the fourth embodiment, the “distance from the distal end of the endoscope insertion unit to the subject from the captured image captured by the endoscope image processing unit on the wireless endoscope 2 side” , And after determining the technique scene based on the information of the “distance”, the endoscope side image processing unit calculates the compression rate.
 すなわち、本第4の実施形態の内視鏡システムは、その基本的な構成は第2の実施形態と同様であるが、第2の実施形態に比して内視鏡側画像処理部およびプロセッサ側画像処理部における一部の構成を異にするものである。 That is, the basic configuration of the endoscope system of the fourth embodiment is the same as that of the second embodiment, but an endoscope-side image processing unit and processor as compared with the second embodiment. A part of the configuration of the side image processing unit is different.
 したがって、ここでは、第2の実施形態と異なる部分の説明にとどめ、第2の実施形態と同様の部分についての説明は省略する。 Therefore, only the parts different from the second embodiment will be described here, and the description of the same parts as those of the second embodiment will be omitted.
 図10は、本発明の第4の実施形態の内視鏡システムにおけるワイヤレス内視鏡側の画像処理部の構成を示したブロック図である。 FIG. 10 is a block diagram showing the configuration of the image processing unit on the wireless endoscope side in the endoscope system according to the fourth embodiment of the present invention.
 図10に示すように、第4の実施形態においては、内視鏡側画像処理部223は、撮像部22において撮像した画像信号を取得する画像取得部151と、この画像取得部151において取得した画像信号に基づいてワイヤレス内視鏡2における挿入部41の体腔内における距離情報を取得する距離情報取得部155と、この距離情報取得部155において取得した距離情報から当該ワイヤレス内視鏡2を用いた手技における手技シーンを判定する手技シーン判定部153と、この手技シーン判定部153において判定した手技シーン、または、前記距離情報取得部155において取得した距離情報から、当該内視鏡側画像処理部223において用いる画像の圧縮率を算出する圧縮率算出部154と、で主要部が構成されている。 As shown in FIG. 10, in the fourth embodiment, the endoscope-side image processing unit 223 acquires an image signal acquired by the imaging unit 22 and an image acquisition unit 151 that acquires the image signal. A distance information acquisition unit 155 that acquires distance information in the body cavity of the insertion unit 41 in the wireless endoscope 2 based on the image signal, and the wireless endoscope 2 is used from the distance information acquired in the distance information acquisition unit 155. A procedure scene determination unit 153 that determines a procedure scene in the procedure performed, and the endoscope-side image processing unit from the procedure scene determined by the procedure scene determination unit 153 or the distance information acquired by the distance information acquisition unit 155 A compression rate calculation unit 154 that calculates the compression rate of an image used in 223 constitutes a main part.
 このように本第4の実施形態のバッテリを搭載した携帯型電子内視鏡を有する内視鏡システムにおいても、手技シーンに応じて内視鏡画像の圧縮率を変更し、これにより手技における総合的なデータ伝送量を減らすことで無線伝送における低消費電力化を実現することができる。 As described above, also in the endoscope system having the portable electronic endoscope equipped with the battery according to the fourth embodiment, the compression ratio of the endoscope image is changed according to the procedure scene, and thereby, the overall procedure in the procedure is changed. By reducing the typical data transmission amount, it is possible to realize low power consumption in wireless transmission.
 また、本第4の実施形態においても、前記手技シーンの判定は、第2の実施形態と同様に、ワイヤレス内視鏡2における挿入部41の先端から被写体までの「距離」の情報に基づいて判定する。 Also in the fourth embodiment, the determination of the procedure scene is based on the “distance” information from the distal end of the insertion portion 41 to the subject in the wireless endoscope 2, as in the second embodiment. judge.
 図10に戻って、画像取得部151は、撮像部22において撮像された画像信号を取得し、所定の画像処理(たとえばOB処理、ゲイン処理、ガンマ処理等)を施す一方で、処理後の画像信号を図示しない画像記憶部に出力するとともに距離情報取得部155に出力する。 Returning to FIG. 10, the image acquisition unit 151 acquires the image signal captured by the imaging unit 22 and performs predetermined image processing (for example, OB processing, gain processing, gamma processing, etc.), while processing the processed image. The signal is output to an image storage unit (not shown) and output to the distance information acquisition unit 155.
 距離情報取得部155は、前記画像記憶部に記憶された複数フレームの画像に基づいて、撮像画像における挿入部41の先端から被写体までの距離を算出する。 The distance information acquisition unit 155 calculates the distance from the tip of the insertion unit 41 to the subject in the captured image based on the images of a plurality of frames stored in the image storage unit.
 次に、このように構成された第4の実施形態の内視鏡システムの動作について図11を参照して説明する。 Next, the operation of the endoscope system of the fourth embodiment configured as described above will be described with reference to FIG.
 図11は、第4の実施形態の内視鏡システムにおけるワイヤレス内視鏡側の動作を示したフローチャートである。 FIG. 11 is a flowchart showing the operation on the wireless endoscope side in the endoscope system of the fourth embodiment.
 図11に示すように、ワイヤレス内視鏡2における内視鏡側制御部21は、プロセッサ3との間において無線通信の接続を確立し(ステップS41)、この後内視鏡側制御部21は、撮像部22を制御してバッテリ25からの電力を電源として撮像を開始するとともに(ステップS42)、内視鏡側画像処理部223を制御して所定の画像処理を行う。 As shown in FIG. 11, the endoscope-side control unit 21 in the wireless endoscope 2 establishes a wireless communication connection with the processor 3 (step S41), and then the endoscope-side control unit 21 Then, the imaging unit 22 is controlled to start imaging using the power from the battery 25 as a power source (step S42), and the endoscope-side image processing unit 223 is controlled to perform predetermined image processing.
 ここで内視鏡側制御部21は、内視鏡側画像処理部223を制御し、撮像部22において撮像した画像信号に対して適宜画像処理を施すとともに(ステップS43)、画像取得部151において処理後の画像信号を図示しない画像記憶部に出力するとともに距離情報取得部155に出力する。 Here, the endoscope side control unit 21 controls the endoscope side image processing unit 223 to appropriately perform image processing on the image signal picked up by the image pickup unit 22 (step S43), and in the image acquisition unit 151. The processed image signal is output to an image storage unit (not shown) and output to the distance information acquisition unit 155.
 次に距離情報取得部155は、前記画像記憶部に記憶された複数フレームの画像に基づいて、撮像画像における挿入部先端から被写体までの距離を算出する(ステップS54)。 Next, the distance information acquisition unit 155 calculates the distance from the distal end of the insertion unit to the subject in the captured image based on the images of a plurality of frames stored in the image storage unit (step S54).
 次に手技シーン判定部153は、距離情報取得部155において取得した「距離情報」に応じて、上述の如き分類される手技シーンを判定する(ステップS45)。 Next, the procedure scene determination unit 153 determines the procedure scene classified as described above according to the “distance information” acquired by the distance information acquisition unit 155 (step S45).
 そして圧縮率算出部154は、この手技シーン判定部153において判定した手技シーン、または、前記距離情報取得部155において取得した挿入部先端から被写体までの距離情報から、当該内視鏡側画像処理部223において用いる画像の圧縮率を算出する(ステップS46)。 Then, the compression rate calculation unit 154 calculates the endoscope-side image processing unit based on the procedure scene determined by the procedure scene determination unit 153 or the distance information from the distal end of the insertion unit acquired by the distance information acquisition unit 155 to the subject. The compression rate of the image used in 223 is calculated (step S46).
 たとえば、手技シーン判定部153が、(a)移動シーンまたは(b)スクリーニングシーンであると判定した場合は、ワイヤレス内視鏡2における画像処理に係る圧縮率を比較的高い圧縮率として設定する。 For example, if the technique scene determination unit 153 determines that the scene is (a) a moving scene or (b) a screening scene, the compression ratio related to image processing in the wireless endoscope 2 is set as a relatively high compression ratio.
 一方、手技シーン判定部153が、(c)精査・処置シーンであると判定した場合は、ワイヤレス内視鏡2における画像処理に係る圧縮率を比較的低い圧縮率として設定するか、または、圧縮処理を行わないように設定する。 On the other hand, if the procedure scene determination unit 153 determines that the scene is (c) a scrutiny / treatment scene, the compression ratio related to image processing in the wireless endoscope 2 is set as a relatively low compression ratio, or compression is performed. Set to not process.
 次に内視鏡側画像処理部223は、圧縮率算出部154において算出した圧縮率に基づいて適宜圧縮処理を施し(ステップS47)、当該圧縮処理を施した画像データを内視鏡側無線伝送部24からプロセッサ3に向けて無線にて伝送する(ステップS48)。 Next, the endoscope side image processing unit 223 appropriately performs compression processing based on the compression rate calculated by the compression rate calculation unit 154 (step S47), and the image data subjected to the compression processing is wirelessly transmitted by the endoscope side. The data is transmitted wirelessly from the unit 24 to the processor 3 (step S48).
 以上説明したように本第4の実施形態の内視鏡システムにおいても、バッテリを搭載した携帯型電子内視鏡を有する内視鏡システムにおいて、手技シーンに応じて内視鏡画像の圧縮率を変更し、これにより手技における総合的なデータ伝送量を減らすことができ、ひいては無線伝送における低消費電力化を実現することができる。 As described above, also in the endoscope system according to the fourth embodiment, in the endoscope system having the portable electronic endoscope equipped with the battery, the compression rate of the endoscope image is set according to the procedure scene. Thus, the total amount of data transmission in the procedure can be reduced, and as a result, low power consumption in wireless transmission can be realized.
 なお、上述した第1および第3の実施形態においては、挿入部41に係る前記「動き量」を撮像部22において撮像した画像信号に基づいて算出するものとしたが、当該「動き量」の情報の取得はこれに限らず、たとえば、挿入部41等に設けた加速度センサ等により当該挿入部の「動き量」を直接的に検出するようにしてもよい。 In the first and third embodiments described above, the “motion amount” related to the insertion unit 41 is calculated based on the image signal captured by the imaging unit 22. The acquisition of information is not limited to this. For example, the “movement amount” of the insertion unit may be directly detected by an acceleration sensor or the like provided in the insertion unit 41 or the like.
 また、上述した第2および第4の実施形態においては、挿入部41先端と被写体との前記「距離情報」を撮像部22において撮像した画像信号に基づいて算出するものとしたが、当該「距離情報」の取得はこれに限らず、たとえば、挿入部41等に設けた距離計測手段等により当該挿入部41先端と被写体との「距離」を直接的に検出するようにしてもよい。 In the second and fourth embodiments described above, the “distance information” between the distal end of the insertion unit 41 and the subject is calculated based on the image signal captured by the imaging unit 22. The acquisition of “information” is not limited to this. For example, the “distance” between the distal end of the insertion unit 41 and the subject may be directly detected by a distance measurement unit provided in the insertion unit 41 or the like.
 また、上述した実施形態においては、圧縮率の設定を、前記(a)移動シーンおよび(b)スクリーニングシーンと、(c)精査・処置シーンとの2段階の設定としたがこれに限らず、たとえば、(a)移動シーン、(b)スクリーニングシーンまたは(c)精査・処置シーンの各シーンに応じた3段階に設定してもよい。 In the above-described embodiment, the compression rate is set in two stages, ie, (a) a moving scene, (b) a screening scene, and (c) a scrutiny / treatment scene. For example, you may set in three steps according to each scene of (a) a moving scene, (b) a screening scene, or (c) a detailed examination / treatment scene.
 さらには、前記圧縮率の設定を、上述した各手技シーン毎に「動き量」または「距離情報」に応じてさらに複数の段階的もしくは連続的に可変するように設定してもよい。 Furthermore, the compression rate may be set so as to vary in a plurality of steps or continuously in accordance with the “motion amount” or “distance information” for each of the above-described procedure scenes.
 本明細書における各「部」は、実施の形態の各機能に対応する概念的なもので、必ずしも特定のハードウェアやソフトウエア・ルーチンに1対1には対応しない。従って、本明細書では、実施の形態の各機能を有する仮想的回路ブロック(部)を想定して実施の形態を説明した。 Each “unit” in this specification is a conceptual one corresponding to each function of the embodiment, and does not necessarily correspond to a specific hardware or software routine on a one-to-one basis. Therefore, in the present specification, the embodiment has been described assuming a virtual circuit block (unit) having each function of the embodiment.
 また、本実施の形態における各手順の各ステップは、その性質に反しない限り、実行順序を変更し、複数同時に実行し、あるいは実行毎に異なった順序で実行してもよい。さらに、本実施の形態における各手順の各ステップの全てあるいは一部をハードウェアにより実現してもよい。 Further, each step of each procedure in the present embodiment may be executed in a different order for each execution by changing the execution order and performing a plurality of steps at the same time as long as it does not violate its nature. Furthermore, all or part of each step of each procedure in the present embodiment may be realized by hardware.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として例示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。 Although several embodiments of the present invention have been described, these embodiments are illustrated by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention.
 これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 本出願は、2014年10月3日に日本国に出願された特願2014-205137号公報を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。 This application is filed on the basis of the priority claim of Japanese Patent Application No. 2014-205137 filed in Japan on October 3, 2014, and the above disclosure is disclosed in the present specification and claims. It shall be cited in the drawing.

Claims (9)

  1.  被検体の体腔内に挿入する挿入部と、
     前記挿入部の先端部に配設された撮像部と、
     前記撮像部において撮像した被検体に係る画像信号に対して所定の圧縮処理を施し圧縮画像信号として出力する画像圧縮部と、
     前記画像圧縮部から出力された前記圧縮画像信号を無線により外部に伝送するための第1の無線伝送部と、
     を備えた内視鏡と、
     前記第1の無線伝送部から伝送された前記圧縮画像信号を受信する第2の無線伝送部と、
     前記第2の無線伝送部において受信した前記圧縮画像信号に対して所定の画像処理を施す画像処理部と、
     前記内視鏡を用いた手技シーンの種別を判定する判定部と、
     前記判定部の判定結果に基づいて前記画像圧縮部における圧縮処理に適用する圧縮率を算出する圧縮率算出部と、
     を備えたプロセッサと、
     を具備することを特徴とする内視鏡システム。
    An insertion part to be inserted into the body cavity of the subject;
    An imaging unit disposed at a distal end of the insertion unit;
    An image compression unit that performs a predetermined compression process on an image signal related to the subject imaged in the imaging unit and outputs the image signal as a compressed image signal;
    A first wireless transmission unit for wirelessly transmitting the compressed image signal output from the image compression unit;
    An endoscope with
    A second wireless transmission unit that receives the compressed image signal transmitted from the first wireless transmission unit;
    An image processing unit that performs predetermined image processing on the compressed image signal received by the second wireless transmission unit;
    A determination unit for determining a type of a procedure scene using the endoscope;
    A compression rate calculation unit that calculates a compression rate to be applied to compression processing in the image compression unit based on a determination result of the determination unit;
    A processor with
    An endoscope system comprising:
  2.  前記内視鏡における前記挿入部が被検体の体腔内に挿入された状態において、当該挿入部に係る所定の物理量を検出する物理量検出部をさらに備え、
     前記判定部は、前記物理量検出部において検出した物理量に基づいて前記内視鏡を用いた手技シーンの種別を判定する
     ことを特徴とする請求項1に記載の内視鏡システム。
    In a state where the insertion unit in the endoscope is inserted into the body cavity of the subject, the endoscope further includes a physical quantity detection unit that detects a predetermined physical quantity related to the insertion unit,
    The endoscope system according to claim 1, wherein the determination unit determines the type of a procedure scene using the endoscope based on the physical quantity detected by the physical quantity detection unit.
  3.  前記物理量検出部は、前記挿入部の、前記被検体の体腔内における動き量に係る情報を前記物理量として検出する
     ことを特徴とする請求項2に記載の内視鏡システム。
    The endoscope system according to claim 2, wherein the physical quantity detection unit detects, as the physical quantity, information related to a movement amount of the insertion unit in a body cavity of the subject.
  4.  前記物理量検出部は、前記内視鏡における前記撮像部において撮像した前記画像信号に基づいて、前記挿入部の、前記被検体の体腔内における動き量に係る情報を前記物理量として検出する
     ことを特徴とする請求項3に記載の内視鏡システム。
    The physical quantity detection unit detects, as the physical quantity, information related to the amount of movement of the insertion unit in the body cavity of the subject based on the image signal captured by the imaging unit of the endoscope. The endoscope system according to claim 3.
  5.  前記内視鏡における前記挿入部に設けた加速度検出部をさらに備え、
     前記物理量検出部は、前記加速度検出部において検出した、前記挿入部の、前記被検体の体腔内における動き量に係る情報を前記物理量として検出する
     ことを特徴とする請求項3に記載の内視鏡システム。
    An acceleration detection unit provided in the insertion unit of the endoscope;
    The endoscopy according to claim 3, wherein the physical quantity detection unit detects, as the physical quantity, information related to a motion amount of the insertion unit detected in the acceleration detection unit in a body cavity of the subject. Mirror system.
  6.  前記物理量検出部は、前記挿入部の先端部と前記被検体の体腔内における所定の被写体との距離に係る情報を前記物理量として検出する
     ことを特徴とする請求項2に記載の内視鏡システム。
    The endoscope system according to claim 2, wherein the physical quantity detection unit detects, as the physical quantity, information related to a distance between a distal end portion of the insertion unit and a predetermined subject in a body cavity of the subject. .
  7.  前記物理量検出部は、前記内視鏡における前記撮像部において撮像した前記画像信号に基づいて、前記挿入部の先端部と前記被検体の体腔内における所定の被写体との距離に係る情報を前記物理量として検出する
     ことを特徴とする請求項6に記載の内視鏡システム。
    The physical quantity detection unit obtains information on the distance between the distal end of the insertion unit and a predetermined subject in the body cavity of the subject based on the image signal captured by the imaging unit of the endoscope. The endoscope system according to claim 6, wherein the endoscope system is detected as:
  8.  前記内視鏡における前記挿入部に設けた距離計測部をさらに備え、
     前記物理量検出部は、前記距離計測部において検出した、前記挿入部の先端部と前記被検体の体腔内における所定の被写体との距離に係る情報を前記物理量として検出する
     ことを特徴とする請求項6に記載の内視鏡システム。
    A distance measuring unit provided in the insertion unit of the endoscope;
    The physical quantity detection unit detects, as the physical quantity, information related to a distance between a distal end portion of the insertion unit and a predetermined subject in a body cavity of the subject, which is detected by the distance measurement unit. 6. The endoscope system according to 6.
  9.  前記内視鏡を用いた手技シーンは、被検体の体腔内に前記挿入部を挿入した後、手技の目的部位に到達するまでの間において当該挿入部を移動するシーン、前記挿入部が前記目的部位に到達した後にスクリーニング観察を行うシーン、または、前記スクリーニング観察の後に、前記目的部位を精査観察するもしくは所定の処置を行うシーンのいずれかである
     ことを特徴とする請求項1に記載の内視鏡システム。
    The procedure scene using the endoscope is a scene in which the insertion unit is moved between the insertion of the insertion unit into the body cavity of the subject and the arrival of the target site of the procedure. 2. The scene according to claim 1, wherein the scene is one in which screening observation is performed after reaching the part, or the scene in which the target part is closely observed or predetermined treatment is performed after the screening observation. Endoscopic system.
PCT/JP2015/076153 2014-10-03 2015-09-15 Endoscope system WO2016052175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016518791A JPWO2016052175A1 (en) 2014-10-03 2015-09-15 Portable endoscope system and processor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014205137 2014-10-03
JP2014-205137 2014-10-03

Publications (1)

Publication Number Publication Date
WO2016052175A1 true WO2016052175A1 (en) 2016-04-07

Family

ID=55630217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076153 WO2016052175A1 (en) 2014-10-03 2015-09-15 Endoscope system

Country Status (2)

Country Link
JP (1) JPWO2016052175A1 (en)
WO (1) WO2016052175A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003216A1 (en) * 2016-06-29 2018-01-04 オリンパス株式会社 Endoscope
JP2019063342A (en) * 2017-10-03 2019-04-25 ソニー・オリンパスメディカルソリューションズ株式会社 Medical observation device and medical observation system
JPWO2018097060A1 (en) * 2016-11-24 2019-06-24 オリンパス株式会社 Endoscope apparatus and control method of endoscope apparatus
CN111989026A (en) * 2018-04-19 2020-11-24 富士胶片株式会社 Endoscope device, endoscope operation method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312810A (en) * 2006-05-23 2007-12-06 Olympus Corp Image processing device
JP2009072316A (en) * 2007-09-19 2009-04-09 Olympus Medical Systems Corp In-vivo image acquiring apparatus, in-vivo image receiving apparatus, and in-vivo image acquiring system
JP2011120790A (en) * 2009-12-11 2011-06-23 Olympus Corp Head-mounted video display device and head-mounted video display system
JP2013183948A (en) * 2012-03-08 2013-09-19 Olympus Medical Systems Corp Medical image transmission system, transmitting device, and receiving device
JP2014071257A (en) * 2012-09-28 2014-04-21 Fujifilm Corp Stereoscopic endoscope device, and image capture method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312810A (en) * 2006-05-23 2007-12-06 Olympus Corp Image processing device
JP2009072316A (en) * 2007-09-19 2009-04-09 Olympus Medical Systems Corp In-vivo image acquiring apparatus, in-vivo image receiving apparatus, and in-vivo image acquiring system
JP2011120790A (en) * 2009-12-11 2011-06-23 Olympus Corp Head-mounted video display device and head-mounted video display system
JP2013183948A (en) * 2012-03-08 2013-09-19 Olympus Medical Systems Corp Medical image transmission system, transmitting device, and receiving device
JP2014071257A (en) * 2012-09-28 2014-04-21 Fujifilm Corp Stereoscopic endoscope device, and image capture method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003216A1 (en) * 2016-06-29 2018-01-04 オリンパス株式会社 Endoscope
JP6337228B2 (en) * 2016-06-29 2018-06-06 オリンパス株式会社 Endoscope
JPWO2018003216A1 (en) * 2016-06-29 2018-06-28 オリンパス株式会社 Endoscope
JPWO2018097060A1 (en) * 2016-11-24 2019-06-24 オリンパス株式会社 Endoscope apparatus and control method of endoscope apparatus
JP2019063342A (en) * 2017-10-03 2019-04-25 ソニー・オリンパスメディカルソリューションズ株式会社 Medical observation device and medical observation system
CN111989026A (en) * 2018-04-19 2020-11-24 富士胶片株式会社 Endoscope device, endoscope operation method, and program
EP3782531A4 (en) * 2018-04-19 2021-05-26 FUJIFILM Corporation Endoscope device, endoscope operating method, and program
US11324388B2 (en) 2018-04-19 2022-05-10 Fujifilm Corporation Endoscope device, endoscope operation method, and program with motion pattern detection

Also Published As

Publication number Publication date
JPWO2016052175A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2018207537A1 (en) Wireless endoscope and wireless endoscope system
EP3166469B1 (en) System for wirelessly transmitting operational data from an endoscope to a remote device
US10441133B2 (en) Wireless endoscope
CN108135455B (en) Endoscope system
JP4823659B2 (en) In vivo image display device
WO2016052175A1 (en) Endoscope system
US11672516B2 (en) Control apparatus, control method, and control system
US20190104922A1 (en) Wireless endoscope apparatus
US11234578B2 (en) Receiving apparatus and radio wave interference determination method
WO2006030772A1 (en) Introduction-into-subject system, receiver, and introduction-into-subject device
WO2015194231A1 (en) Battery management system, endoscope system, and battery charging method
JP5096676B2 (en) In-vivo image display device and receiving system
JP2016123825A (en) Endoscope system
WO2006112116A1 (en) Image display device
JP2007167555A5 (en)
JP5340566B2 (en) Receiver
JP2016101377A (en) Endoscope apparatus and endoscopic image transmission method
AU2006288208B2 (en) Intra-lumen image viewer
JP7052022B2 (en) How to operate the endoscope device, endoscope and processor, and the endoscope device
WO2018173605A1 (en) Surgery control device, control method, surgery system, and program
US20200373955A1 (en) Receiving device and receiving method
US20200196845A1 (en) Capsule endoscope system, capsule endoscope, and receiving device
JP4700308B2 (en) Position detection apparatus and in-subject introduction system
JP6974593B2 (en) How to operate and program the endoscope device and image compression device
US11676242B2 (en) Image processing apparatus and image processing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016518791

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845541

Country of ref document: EP

Kind code of ref document: A1