WO2016052087A1 - Three-dimensional fabrication device, and three-dimensional molding manufacturing method and molding apparatus - Google Patents

Three-dimensional fabrication device, and three-dimensional molding manufacturing method and molding apparatus Download PDF

Info

Publication number
WO2016052087A1
WO2016052087A1 PCT/JP2015/075380 JP2015075380W WO2016052087A1 WO 2016052087 A1 WO2016052087 A1 WO 2016052087A1 JP 2015075380 W JP2015075380 W JP 2015075380W WO 2016052087 A1 WO2016052087 A1 WO 2016052087A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
modeling apparatus
unit
dimensional modeling
modeling
Prior art date
Application number
PCT/JP2015/075380
Other languages
French (fr)
Japanese (ja)
Inventor
三宅 孝志
純一 増尾
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2016052087A1 publication Critical patent/WO2016052087A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present invention relates to a three-dimensional modeling apparatus that manufactures a three-dimensional modeled object by laminating materials, a method for manufacturing a three-dimensional modeled object for manufacturing the three-dimensional modeled object, and a molding apparatus that molds the stacked material. About.
  • data of a large number of substantially parallel layers (also referred to as layer data) is generated from three-dimensional shape data, and a plurality of substantially parallel layers are sequentially stacked to form a three-dimensional structure (also referred to as a three-dimensional structure).
  • Technology is known.
  • a three-dimensional modeled object can be manufactured in a short time at a low cost without using a mold. For this reason, it is considered that the present technology is applied to manufacture of a prototype when product development or the like is performed. However, the prototype often requires good dimensional accuracy and surface quality. Therefore, by reducing the thickness of each layer constituting the three-dimensional structure, the dimensional accuracy and surface quality of the three-dimensional structure tend to be improved.
  • a three-dimensional structure is manufactured by laminating a plurality of layers each having a model material and a support material that supports the projecting portion of the model material and is finally removed by an inkjet method or the like.
  • a technique has been proposed (for example, Patent Document 1). In this technology, since the surface of the three-dimensional structure is formed at the interface between the model material and the support material, the mixing of the model material and the support material at the interface between the model material and the support material is avoided. Is improved.
  • This invention is made
  • molded object which can make the improvement of the favorable dimensional accuracy and surface quality of a three-dimensional molded item, and a manufacturing speed compatible.
  • the purpose is to provide.
  • the three-dimensional modeling apparatus includes a supply unit configured to sequentially stack layers formed of the modeling material by supplying the modeling material, and the stacking unit configured by the supply unit.
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to the first aspect, wherein the molding part is a convex part formed on an upper outer peripheral part in each layer laminated by the supply part.
  • the said edge part of the said laminated body is shape
  • molding apparatus which concerns on a 3rd aspect is a three-dimensional model
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to the third aspect, in which the hardened part is formed in the upper part of each layer before the convex part of each layer is broken by the molding part. At least a portion in the vicinity of the convex portion other than the convex portion is cured.
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to any one of the second to fourth aspects, wherein the molding unit blows gas onto the convex part, so that at least the convex part is formed. It has a gas supply part that breaks down a part.
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to the fifth aspect, in which the gas supply unit gas is supplied to at least a part of the convex portion from a direction inclined with respect to the upper surface of each layer. Spray.
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to any one of the second to fourth aspects, wherein the molding unit irradiates the convex part with a sound wave, thereby forming the convex part. It has a sound wave irradiation part that breaks at least a part.
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to any one of the second to fourth aspects, in which the molding part flows by applying heat to the convex part. It has the heat provision part which destroys at least one part of the said convex part by improving property.
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to any one of the second to eighth aspects, and the one or more cured layers are formed by curing each of the layers stacked by the supply unit. Is formed, and the molding part applies heat to at least a part of the convex part formed on the outer peripheral part of the upper part of each cured layer, thereby melting and breaking at least a part of the convex part.
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to any one of the first to ninth aspects, wherein the molding unit is stacked by the supply unit by supplying a filling material.
  • a filling material supply unit configured to fill at least a part of the concave portion of the stepped portion formed in the outer peripheral portion of the two or more layers with the filling material and to mold the end portion of the laminate.
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to the tenth aspect, wherein the filling material includes a light scattering material that scatters light.
  • a three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to any one of the first to eleventh aspects, wherein the molding unit is separated from the upper surface of the laminate. It moves relative to the upper surface in a first direction along the upper surface and in a second direction that intersects the first direction.
  • a three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to any one of the first to twelfth aspects, wherein the supply unit is separated from the upper surface of the laminate. It moves relative to the upper surface in a third direction along the upper surface and in a fourth direction that intersects the third direction.
  • a three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to any one of the first to thirteenth aspects, wherein the supply unit and the molding unit are provided, and the top surface of the stacked body is provided.
  • a moving body that moves relatively along the upper surface in a state of being separated from the upper surface.
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to any one of the first to fourteenth aspects, further comprising a base material holding unit that holds the base material, wherein the supply unit includes: By supplying the modeling material on the base material, layers formed by the modeling material are sequentially laminated on the base material.
  • the three-dimensional modeling apparatus is a three-dimensional modeling apparatus according to the fifteenth aspect, further comprising a modeling area recognition unit that recognizes information for specifying a modeling target area on the base material,
  • the supply unit supplies the modeling material onto the modeling target region according to the recognition result by the modeling region recognition unit, so that the layers formed by the modeling material are sequentially formed on the modeling target region. Laminate.
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to any one of the first to sixteenth aspects, wherein the stacked unit is formed after the end of the stacked body is molded by the molding unit. A color imparting portion for coloring the surface of the body;
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to the seventeenth aspect, and includes a coloring area recognition unit that recognizes information for specifying a coloring target area on the laminate, The color imparting unit supplies a coloring material onto the coloring target region according to the recognition result by the coloring region recognizing unit, thereby forming a region constituted by the coloring material.
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to the seventeenth or eighteenth aspect, wherein the color imparting unit is at least at one timing before and after coloring by the color imparting unit.
  • a white layer is formed in a region to be colored in the laminate.
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to any one of the first to nineteenth aspects, and further includes a prevention unit that prevents clogging of the discharge port that discharges the material.
  • the three-dimensional modeling apparatus is a three-dimensional modeling apparatus according to any one of the first to nineteenth aspects, and includes a purification unit that cleans the discharge port that discharges the material.
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to any one of the first to twenty-first aspects, wherein the modeling material is a first modeling material for constituting a three-dimensional modeled object. And a second modeling material that is removed after the three-dimensional model is formed.
  • a three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to any one of the first to twenty-second aspects, wherein the supply unit is for the modeling related to the hardness after curing of the modeling material. It further has a change part which changes the ratio of the component of material.
  • the three-dimensional modeling apparatus is the three-dimensional modeling apparatus according to any one of the first to twenty-third aspects, wherein after the molding part molds the end part, the end part is processed to be uneven. Apply.
  • the manufacturing method of the three-dimensional structure according to the twenty-fifth aspect includes: (a) sequentially stacking layers formed by the modeling material by supplying the modeling material; and (b) the step (a) Forming the end portion without contacting the end portion of the laminated body constituted by the plurality of layers of the modeling material laminated in the step.
  • the method for manufacturing a three-dimensional structure according to the twenty-sixth aspect is a method for manufacturing a three-dimensional structure according to the twenty-fifth aspect, wherein in the step (b), the upper part of each layer laminated in the step (a) is formed.
  • the said edge part of the said laminated body is shape
  • the manufacturing method of the three-dimensional structure according to the twenty-seventh aspect is the manufacturing method of the three-dimensional structure according to the twenty-fifth or twenty-sixth aspect, wherein in the step (b), the (a) ) At least part of the recesses of the stepped portions formed on the outer peripheral portions of the two or more layers laminated in the step are filled with the filling material, and the end portion of the laminated body is formed.
  • the apparatus for molding a three-dimensional structure according to the twenty-eighth aspect is configured so that the layer formed by the material for modeling by supplying the material for modeling does not come into contact with the end of the laminated body sequentially laminated.
  • the end of the stacked body is formed in a non-contact manner. It is possible to achieve both good dimensional accuracy and surface quality of the three-dimensional structure and improvement of the manufacturing speed.
  • the convex portions of the respective layers before curing are destroyed, so that it is possible to easily realize good dimensional accuracy and surface quality improvement of the three-dimensional model.
  • the dimensional accuracy and surface quality of the three-dimensional model can be further improved.
  • the convex portion can be easily broken without contact, so that the dimensional accuracy and surface quality of the three-dimensional model can be further improved.
  • the convex portion is easily contactless. Can be destroyed.
  • the manufacturing speed of the three-dimensional model can be improved.
  • the surface quality of the three-dimensional model can be improved because it becomes inconspicuous by filling the concave portion of the stepped portion.
  • the stepped portion is not easily noticeable, so that the surface quality of the three-dimensional model can be easily improved.
  • the apparatus configuration of the three-dimensional modeling apparatus can be simplified and downsized.
  • the apparatus configuration of the three-dimensional modeling apparatus can be simplified and downsized.
  • the apparatus configuration of the three-dimensional modeling apparatus can be further simplified and downsized.
  • the three-dimensional modeling apparatus according to any of the fifteenth and sixteenth aspects, it is possible to achieve both good dimensional accuracy, surface quality, and improvement in manufacturing speed for a three-dimensional modeled object to be modeled on the base material.
  • a three-dimensional model having good dimensional accuracy and surface quality can be quickly modeled in a desired modeling target region on the base material.
  • a three-dimensional modeled object having good dimensional accuracy and surface quality and having a color can be quickly modeled.
  • the three-dimensional modeling apparatus it is possible to accurately color a required coloring target region on a modeled object formed by the three-dimensional modeling apparatus or a modeled object formed by another apparatus.
  • a colored layer having high color quality such as saturation, brightness, and contrast can be formed by forming a white layer before coloring.
  • stable coloring can be realized by protecting the discharge port for coloring from curing of the ink.
  • the three-dimensional modeling apparatus for example, by cleaning the discharge port for discharging the modeling material or the coloring material before discharging the material, the discharge failure of the material and the vicinity of the discharge port
  • the quality of the three-dimensional modeled object can be stabilized by reducing the fall of unnecessary materials scattered on the modeled object.
  • the three-dimensional modeling apparatus for example, in a selective region at the time of stacking the modeling material or after stacking in a semi-cured state, for example, the amount of the curing agent per unit area Since the component ratio of the material for modeling including the curing agent is changed by changing the amount of the material so as to change, even if a plurality of materials having different hardness after curing are not supplied from separate supply units, the modeling partially differs in hardness Things can be created. Thereby, even if many kinds of materials and many supply parts are not prepared, the three-dimensional molded item from which hardness differs can be implement
  • the surface quality at the end face after molding can be adjusted.
  • the same effects as those of the three-dimensional structure manufacturing apparatus according to the first aspect can be obtained.
  • the same effect as that of the three-dimensional structure forming apparatus according to the second aspect can be obtained.
  • the same effect as that of the three-dimensional object manufacturing device according to the tenth aspect can be obtained.
  • the molding apparatus of the twenty-eighth aspect for example, in the formation of a laminated body in another apparatus, even if the layers that are sequentially laminated are thickened to improve the production speed, the end of the laminated body is contactless Therefore, it is possible to achieve both good dimensional accuracy and surface quality of the three-dimensional structure and improvement of the manufacturing speed.
  • FIG. 1 is a diagram schematically illustrating a schematic configuration of a three-dimensional modeling system according to an embodiment.
  • FIG. 2 is a top view illustrating a scanning mode of the head unit.
  • FIG. 3 is a diagram schematically illustrating an example of a laminated body having convex portions.
  • FIG. 4 is a diagram schematically illustrating an example of a laminated body before the convex portion is broken by the forming portion.
  • FIG. 5 is a diagram schematically illustrating an example of a laminated body after the convex portion is broken by the forming portion.
  • FIG. 6 is a diagram illustrating an example in which a portion other than the convex portion is semi-cured and the convex portion is broken in the molded portion.
  • FIG. 1 is a diagram schematically illustrating a schematic configuration of a three-dimensional modeling system according to an embodiment.
  • FIG. 2 is a top view illustrating a scanning mode of the head unit.
  • FIG. 3 is a diagram schematically illustrating an
  • FIG. 7 is a diagram schematically illustrating a configuration example of the gas supply unit.
  • FIG. 8 is a diagram illustrating an example of the pressure distribution of the gas supplied from the gas supply unit.
  • FIG. 9 is a diagram schematically illustrating a configuration example of a gas supply unit having a gas mixing unit.
  • FIG. 10 is a cross-sectional view illustrating a configuration example of the gas mixing unit.
  • FIG. 11 is a diagram illustrating an example of the pressure distribution of the gas supplied from the gas supply unit.
  • FIG. 12 is a diagram illustrating one mode of flow rate control in the gas supply pipe.
  • FIG. 13 is a diagram illustrating another aspect of the flow rate control in the gas supply pipe.
  • FIG. 14 is a diagram schematically illustrating an example of a gas supply unit that is inclined with respect to the stacked body.
  • FIG. 15 is a diagram schematically illustrating a configuration example of a sound wave irradiation unit.
  • FIG. 16 is a diagram illustrating a mode in which the filling material is filled in the concave portion of the stepped portion.
  • FIG. 17 is a diagram for explaining a coloring method for a slope portion.
  • FIG. 18 is a diagram for explaining a coloring method for a slope portion.
  • FIG. 19 is a diagram for explaining a coloring method for a slope portion.
  • FIG. 20 is a diagram for explaining a coloring method for the slope portion.
  • FIG. 21 is a diagram for explaining a coloring method for the slope portion.
  • FIG. 21 is a diagram for explaining a coloring method for the slope portion.
  • FIG. 22 is a diagram illustrating an aspect in which a light scattering layer, a white ink layer, and a color layer are stacked.
  • FIG. 23 is a diagram schematically illustrating a schematic configuration of a three-dimensional modeling system according to a modification.
  • FIG. 24 is a diagram illustrating a method of performing alignment with respect to the modeling target region.
  • FIG. 25 is a diagram schematically illustrating a schematic configuration of a three-dimensional modeling system according to another modification.
  • FIG. 26 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material.
  • FIG. 27 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material.
  • FIG. 28 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material.
  • FIG. 29 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material.
  • FIG. 30 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material.
  • FIG. 31 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material.
  • FIG. 32 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material.
  • FIG. 33 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material.
  • FIG. 34 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material.
  • FIG. 35 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material.
  • FIG. 36 is a diagram for explaining a method of forming an end portion of a laminated body according to a modification.
  • FIG. 37 is a diagram for explaining a method of forming an end portion of a laminated body according to a modification.
  • FIG. 38 is a diagram for explaining a method of forming an end portion of a laminated body according to a modification.
  • FIG. 1 is a diagram illustrating a schematic configuration of a three-dimensional modeling system 100 according to an embodiment.
  • the three-dimensional modeling system 100 is an arbitrary one in which layers are sequentially formed by supplying and curing a modeling material (also referred to as modeling material) mainly in a liquid or fluid state, and a plurality of layers are stacked. Manufacture a model.
  • a modeling material also referred to as modeling material
  • the three-dimensional modeling system 100 includes a data creation device 1 and a three-dimensional modeling device 2.
  • the data creation device 1 acquires data (also referred to as 3D data) indicating a three-dimensional shaped object (also referred to as a three-dimensional object), and slices the three-dimensional object on the 3D data to obtain a plurality of thin cross-sections. Is generated and transmitted to the three-dimensional modeling apparatus 2.
  • the data creation device 1 may be a personal computer, for example, and the 3D data may be, for example, CAD data.
  • the color information for coloring for example, 3D data having color information or two-dimensional color data is positioned so as to match a three-dimensional shape, or one that is deformed according to the three-dimensional shape is used. .
  • the three-dimensional modeling apparatus 2 includes a control unit 10, a table unit 20, and a head unit 30.
  • the control unit 10 obtains cross-sectional data from the data creation device 1, and controls the operations of the table unit 20 and the head unit 30 according to the cross-sectional data.
  • the table unit 20 includes a holding unit 21, a rod unit 22, and a driving unit 23.
  • the holding portion 21 is, for example, a plate-like portion (also referred to as a plate portion) having a smooth upper surface.
  • the modeling material supplied from the head unit 30 is laminated on the upper surface of the holding unit 21 to form the three-dimensional modeled object 3D1.
  • the holding part 21 supports the formed three-dimensional object 3D1 while supporting the stacked body LP1 including a plurality of layers made of a modeling material or the like in the formation process of the three-dimensional object 3D1.
  • the rod portion 22 is a portion that moves the holding portion 21 in the vertical direction ( ⁇ Z direction in the present embodiment) in accordance with the driving of the driving portion 23.
  • the rod part 22 for example, a rod-like member connected to the lower surface of the holding part 21 can be adopted.
  • the drive part 23 is a part which moves the rod part 22 to an up-down direction.
  • the relative position of the head unit 30 and the holding unit 21 in the vertical direction is changed by moving the holding unit 21 in the vertical direction by the driving unit 23. For example, each time a layer of modeling material is formed on the holding unit 21, the holding unit 21 moves in a direction away from the head unit 30.
  • the head unit 30 includes a head body unit 30Bd and a drive unit 15.
  • the head main body 30 ⁇ / b> Bd is provided with a drive unit 15, and the drive unit 15 is engaged or fitted with the first guide unit 16, for example.
  • the first guide portion 16 is, for example, a rod-like member that extends in the horizontal direction (in this embodiment, the ⁇ X direction).
  • the head part 30 moves along the longitudinal direction of the 1st guide part 16 according to the driving force which the drive part 15 provided with respect to head main-body part 30Bd emits, for example. Thereby, the head unit 30 is scanned in the ⁇ X direction as the main scanning direction.
  • FIG. 2 is a top view illustrating the scanning mode of the head unit 30.
  • the first guide portion 16 includes, for example, a driving portion 16 a provided at one end portion in the longitudinal direction of the first guide portion 16 and the other end portion in the longitudinal direction of the first guide portion 16. It has the drive part 16b provided in the part. In the present embodiment, one end is an end on the ⁇ X side, and the other end is an end on the + X side.
  • the drive part 16a is engaged or fitted with the second guide part 17a
  • the drive part 16b is engaged or fitted with the third guide part 17b.
  • the second and third guide portions 17a and 17b are, for example, rod-shaped members extending in directions parallel to each other ( ⁇ Y direction in the present embodiment).
  • the head part 30 moves along the longitudinal direction of the 2nd and 3rd guide parts 17a and 17b according to the driving force which the drive parts 16a and 16b generate
  • the head unit 30 is scanned in the ⁇ Y direction as the sub-scanning direction orthogonal to the main scanning direction.
  • the drive unit 15, 16 a, 16 b causes the head unit 30 to make one reciprocal movement along the ⁇ X direction as the main scanning direction and a slight shift along the ⁇ Y direction as the sub-scanning direction.
  • the head main body 30 ⁇ / b> Bd includes a supply unit 11, a molding unit 12, a curing unit 13, and a color applying unit 14.
  • the two-dimensional scanning of the head unit 30 causes the forming unit 12 to be separated from the upper surface of the multilayer body LP1, and along the upper surface along the main scanning direction (also referred to as the first direction) and the first It moves relative to the upper surface in a sub-scanning direction (also referred to as a second direction) that intersects one direction.
  • a sub-scanning direction also referred to as a second direction
  • the supply unit 11 is separated from the upper surface of the multilayer body LP1 by two-dimensional scanning of the head unit 30, and in the main scanning direction (also referred to as a third direction) and the third along the upper surface. It moves relative to the upper surface in the sub-scanning direction (also referred to as the fourth direction) that intersects the direction.
  • the main scanning direction also referred to as a third direction
  • the fourth direction that intersects the direction.
  • the supply unit 11 and the molding unit 12 are provided in the same head main body 30Bd as a moving body that moves relatively along the upper surface in a state of being separated from the upper surface of the multilayer body LP1. Yes. Thereby, simplification of the mechanism which moves the supply part 11 and the shaping
  • the supply unit 11 sequentially stacks layers formed by the modeling material by supplying the modeling material.
  • the modeling material for example, a resin that cures in response to ultraviolet irradiation (also referred to as an ultraviolet curable resin) and a resin that cures in response to application of heat (also referred to as a thermosetting resin) are employed.
  • the supply unit 11 supplies the modeling material onto the holding unit 21 in a liquid or fluid state.
  • the modeling material is discharged to an appropriate position on the holding unit 21 by a supply method such as an inkjet method.
  • the modeling material constituting the laminated body LP1 is laminated, for example, while maintaining a liquid or fluid state.
  • the number of holes (also referred to as discharge holes) for discharging the modeling material provided in the supply unit 11 may be one or two or more.
  • the supply unit 11 has a large number of ejection holes, a configuration in which a layer of a modeling material is formed with a width of 30 to 50 mm, for example, by a single scan of the head unit 30 in the main scanning direction. Conceivable.
  • thermoplastic resin such as ABS (acrylonitrile butadiene styrene styrene copolymer) resin or polylactic acid (PLA) resin may be employed. These resins are fluids that are fluid when heated, but are hardened immediately when kept at room temperature (also referred to as room temperature curing type).
  • room temperature curing type room temperature curing type
  • the thermoplastic resin is melted by heat and injected from the ultrafine nozzle and stacked on the holding unit 21.
  • a room temperature curing type modeling material becomes fluid when heated to about 100 to 300 ° C., for example.
  • the supply unit 11 holds a unit in which a wire-shaped thermoplastic resin (also referred to as a resin wire) is wound on a reel, and a resin wire
  • a wire-shaped thermoplastic resin also referred to as a resin wire
  • a resin wire A structure comprising means for stably supplying the resin wire through the inside of a tube or the like to the head for thermally melting the resin, and means for driving the resin wire with a gear or the like to push the resin wire to the discharge head is conceivable. .
  • thermoplastic resin is laminated with a wide width. According to such a configuration, the time required for stacking the modeling materials can be shortened.
  • the two-dimensional scanning mode of the head unit 30 is not limited to the scanning mode of the head unit 30 as shown in FIG.
  • a scanning mode is conceivable in which the control unit 10 determines a region where the modeling material is stacked based on the cross-sectional data, and reduces the scanning amount of the head unit 30 corresponding to the region where the modeling material is not stacked.
  • the stacking time can be shortened by reducing the scanning amount of the head unit 30.
  • the material for modeling is not limited to resin.
  • a modeling material in which various materials are mixed in a resin may be employed.
  • the material mixed with the resin is an inorganic material such as metal powder
  • the hardness of the three-dimensional structure can be increased.
  • the material mixed with resin is a fiber-like fiber
  • the toughness of a three-dimensional molded item can rise.
  • the fiber-like fibers for example, glass fibers, resin fibers including carbon fibers, plant-derived fibers including nanocellulose fibers, and the like can be included.
  • the molding unit 12 can connect the end T1 without contacting the end T1 (FIG. 3) of the stacked body LP1 configured by a plurality of layers of the modeling material stacked by the supply unit 11. Mold.
  • the method of forming the end portion T1 by the forming portion 12 for example, the convex portion Pp1 of the stepped portion SP1 formed on the end portion T1 of the laminate LP1 when the forming material layer is formed by the forming portion 12 (see FIG.
  • the curing unit 13 cures each layer stacked by the supply unit 11.
  • the curing unit 13 is a part (also referred to as an energy imparting unit) that imparts energy for curing each layer to each layer.
  • the modeling material is an ultraviolet curable resin (UV curable resin)
  • the curing unit 13 irradiates the layer constituted by the modeling material with ultraviolet rays.
  • the modeling material is a thermosetting resin
  • the curing unit 13 applies heat to the layer formed of the modeling material.
  • the modeling material is a room temperature curing type material
  • the curing unit 13 may be omitted.
  • adopted as a modeling material for example as an energy provision part, with respect to each layer of the laminated modeling material
  • a configuration in which each layer is cured by irradiation with a microwave or an electron beam may be employed.
  • the color imparting unit 14 colors the surface of the laminate LP1 after the end T1 of the laminate LP1 is molded by the molding unit 12. Thereby, the three-dimensional model
  • the color imparting unit 14 colors the surface of the stacked body LP1 by ejecting ink as a coloring material (also referred to as a coloring material) by, for example, an inkjet method.
  • a prevention unit for preventing clogging of the discharge port for discharging the material may be provided. Thereby, for example, stable coloring can be realized by protecting the discharge port for coloring from curing of the ink during the step of forming the laminated body LP1.
  • the discharge port of the color imparting unit 14 is set in the process of stacking the modeling material.
  • the light shielding member that shields the ultraviolet light is disposed in a non-contact manner so as to cover it. At this time, the ultraviolet light irradiated from the curing unit 13 to each layer of the modeling material to be laminated is not irradiated to the discharge port of the color imparting unit 14, and the clogging of the discharge port of the color imparting unit 14 is prevented.
  • the prevention unit as shown in FIG.
  • a light shielding plate 14 s provided so as to be rotatable about the rotation shaft 14 p with respect to the head unit 30 can be considered.
  • the light shielding plate 14s With the rotation of the light shielding plate 14s, the light shielding plate 14s is disposed in front of the discharge port of the color imparting unit 14, and the light shielding plate 14s is retracted from the front surface of the discharge port of the color imparting unit 14. Be switched between. Further, the light-shielding plate 14s as the prevention unit is switched between a state in which it is disposed on the front surface of the discharge port and a state in which it is retracted from the front surface of the discharge port by a slide by parallel movement or the like instead of turning. May be adopted.
  • the coloring material is an ink in which a colorant is dissolved and dispersed in a solvent, a water-soluble ink, or the like
  • a non-blocking portion as a prevention portion is provided on the front surface of the discharge port of the color imparting portion 14.
  • a contact sealing cover may be disposed, or a cover provided with a means for supplying a solvent or water vapor may be disposed therein.
  • a mechanism may be provided in which these covers are automatically moved to a position where there is no problem in discharging the coloring material. It ’s fine.
  • a portion (also referred to as a purification unit) C100 for cleaning the discharge port that discharges various materials such as a modeling material and a coloring material from the head unit 30 may be provided.
  • a purification unit C100 for cleaning the discharge port that discharges various materials such as a modeling material and a coloring material from the head unit 30
  • the quality of the three-dimensional structure can be stabilized.
  • At least one of cleaning by discharge of material also referred to as discharge cleaning
  • cleaning with a wipe material also referred to as wipe cleaning
  • cleaning by spray also referred to as spray cleaning
  • a waste liquid tank with a funnel is arranged in front of the discharge port, and the material discharged from the discharge port is received by the funnel, and the material is stored in the waste liquid tank.
  • the wipe cleaning for example, a mode in which the discharge port is wiped with a wipe material made of cloth, paper, nonwoven fabric, or the like can be considered. Note that the wipe material may be dried or moistened with a cleaning liquid.
  • the spray cleaning a mode in which a cleaning liquid corresponding to a material discharged from the discharge port is sprayed on the discharge port in at least one state such as mist and vapor can be considered.
  • spray cleaning after spray cleaning is performed, for example, wipe cleaning is performed, and the state where the cleaning liquid adheres to the discharge port after spray cleaning can be eliminated.
  • a process in which the following steps A and B are sequentially performed is repeatedly performed.
  • the end portion T1 of the multilayer body LP1 is formed in a non-contact manner.
  • Good dimensional accuracy and surface quality of the object 3D1 can be compatible with the improvement of the manufacturing speed.
  • Step A By supplying the modeling material by the supply unit 11, layers formed by the modeling material are sequentially stacked (also referred to as a supply step).
  • Step B The end portion T1 is formed by the forming portion 12 without contacting the end portion T1 of the multilayer body LP1 constituted by a plurality of layers of the modeling material stacked in the supplying step (the forming step). Also called).
  • the forming step for example, at least a part of the convex portion Pp1 formed on the upper outer peripheral portion of each layer stacked in the supplying step is broken, so that the end portion T1 of the stacked body LP1 is formed.
  • a large number of stepped portions SP1 on the surface of the three-dimensional structure 3D1 become inconspicuous. For this reason, the surface quality of the three-dimensional structure 3D1 can be improved.
  • the modeling material is repeatedly supplied by performing two-dimensional scanning of the head unit 30 a plurality of times.
  • the coloration of the multilayer body LP1 by the color imparting unit 14 is performed on the multilayer body LP1 having a thickness of about several millimeters composed of a plurality of layers.
  • the time required for stacking the modeling materials is longer than the time required for coloring. Therefore, if the supply unit 11 and the color imparting unit 14 are not mounted on the head unit 30 that moves integrally, but mounted on a head unit that can be moved separately, the weight of the head unit on which the supply unit 11 is mounted can be reduced. Thus, the scanning speed can be improved.
  • the time required for stacking the modeling materials can be shortened.
  • at least one of the head unit on which the supply unit 11 is mounted and the head unit on which the color imparting unit 14 is mounted do not interfere with each other during movement. What is necessary is just to be comprised so that a head part may move to an up-down direction suitably.
  • region it is also called a shaping
  • step-difference part SP1 based on 3D data used as modeling, for example by any one or more methods of manual and automatic Created.
  • data also referred to as region data
  • region data indicating a region that is not selectively formed in the stepped portion SP1 is created. Also good.
  • First molding method for example, when the modeling material is a material that is cured in response to application of energy such as an ultraviolet curable resin or a thermosetting resin, any one of wind pressure, sound wave, and heat is used. This is a method of reducing or deforming the convex portion Pp1 of the stepped portion SP1 by combining the above means.
  • the convex portion Pp1 is formed on the outer peripheral portion at the top of each layer stacked by the supply portion 11.
  • the edge part T1 of the laminated body LP1 is shape
  • step-difference parts SP1 on the surface of three-dimensional molded item 3D1 become inconspicuous. For this reason, the surface quality of the three-dimensional structure 3D1 can be improved.
  • 3 to 5 are diagrams schematically showing the first molding method in the molding unit 12.
  • FIG. 3 shows a state in which the laminated body LP1 is formed by the supply unit 11.
  • the laminated body LP1 corresponds to a part of the plurality of layers constituting the three-dimensional structure 3D1, and is, for example, a laminate of several layers or several to 10 layers.
  • FIG. 3 shows an example in which the laminated body LP1 is composed of a plurality of layers L1 and L2 of modeling material.
  • a stepped portion SP1 including the recess D1 is formed in the vicinity of the boundary portion between the two layers L1 and L2 of the multilayer body LP1 on the outer peripheral portion (end portion T1) of the multilayer body LP1.
  • the convex part Pp1 is formed in the outer peripheral part of the upper part (part on the + Z side) of each layer L1, L2 of the laminated body LP1.
  • FIG. 4 schematically shows an example of the laminated body LP1 immediately before the convex portion Pp1 is broken by the molding portion 12.
  • FIG. 5 schematically shows an example of the laminated body LP1 after at least a part of the convex portion Pp1 is broken by the molding portion 12. Specifically, in FIG. 5, the end portion T1 of the laminate LP1 is formed, and thus the end portion T1 is formed by the slope portion Sf1 of the layer L1 and the slope portion Sf2 of the layer L2. A state of the slope Sf0 is shown. In FIG. 5, the outer edge of the convex portion Pp ⁇ b> 1 before being broken is drawn with a two-dot chain line.
  • each layer is cured by the curing unit 13 after the projection Pp1 of each layer formed by the supply unit 11 is broken by the molding unit 12. That is, the convex part Pp1 of each layer is destroyed before curing.
  • the laminated body LP1 is formed by an inexpensive configuration such as an ultraviolet (UV) lamp, an infrared (IR) lamp, or a heater composed of a light emitting diode (LED) or the like. It can be cured at once. As a result, good dimensional accuracy and surface quality improvement of the three-dimensional structure 3D1 can be easily realized.
  • the molding unit 12 includes, for example, a portion (also referred to as a gas supply unit) 12n that breaks at least a part of the projection Pp1 by wind pressure by blowing gas onto the projection Pp1.
  • a portion also referred to as a gas supply unit
  • an external force acts on the convex part Pp1, and at least a part of the convex part Pp1 is easily broken without contact. Thereby, the dimensional accuracy and surface quality of the three-dimensional structure 3D1 can be further improved.
  • the gas that can be used here include air and an inert gas.
  • a selective region (also referred to as a selective region) Ar1 in the upper surface portion on the + Z side of the convex portion Pp1 may be employed as the region of the convex portion Pp1 to which the gas is blown.
  • the selective region Ar1 forms, for example, a boundary portion between a portion on the upper surface side (also referred to as a layer upper portion) of each layer constituting the stacked body LP1 and a surrounding space positioned in the horizontal direction above the layer.
  • the selective region Ar1 is located at the upper end of the layer and in the vicinity thereof.
  • At least a portion in the vicinity of the convex portion Pp1 other than the convex portion Pp1 in the upper part of each layer (preliminary curing) FL ⁇ b> 1 may be cured by the curing unit 13.
  • irradiation of light such as ultraviolet rays or infrared rays or application of heat or the like is selectively performed on the preliminary curing target portion FL1.
  • the modeling material has a high viscosity such as a gel
  • the shape of is difficult to collapse.
  • a mode in which at least a part of the convex portion Pp1 is collapsed by gas blowing every time the preliminary-curing target portion FL1 is cured for each layer and several layers are laminated can be considered.
  • the curing unit 13 uses a common part for curing the entire laminate LP1 and a part for curing the precuring target part FL1.
  • a configuration in which microscopic mirrors are arranged one-dimensionally or two-dimensionally may be employed in the curing unit 13.
  • a configuration may be employed in which a minute diffraction grating arranged in a one-dimensional or two-dimensional manner (for example, GLV [registered trademark]: Grating Light Value) is disposed in the curing unit 13.
  • a minute diffraction grating arranged in a one-dimensional or two-dimensional manner for example, GLV [registered trademark]: Grating Light Value
  • a configuration in which a light beam is deflected by a galvanometer mirror or the like may be adopted, or the light beam is deflected by changing a refractive index of the optical element in accordance with voltage application to the optical element having a crystal structure.
  • a configuration may be employed.
  • the pressure applied to the selective region Ar1 by the gas supplied from the gas supply unit 12n of the molding unit 12 and the distribution of the pressure are, for example, the size, shape, viscosity, and the like of the collapsed region of the convex portion Pp1. It is adjusted according to.
  • the temperature of the gas supplied from the gas supply unit 12n is the temperature of the modeling material constituting the end T1 of the stacked body LP1. If it is higher than the surface temperature, the viscosity of the modeling material is lowered, and the convex portion Pp1 is likely to collapse. That is, the molding of the end portion T1 of the multilayer body LP1 by the molding portion 12 can be facilitated.
  • FIG. 7 is a diagram illustrating a configuration example of the gas supply unit 12n.
  • the gas supply unit 12n for example, a structure having a plurality of gas supply pipes N1 to N5 arranged one-dimensionally or two-dimensionally can be adopted.
  • the gas supply pipes N1 to N5 have a pipe-like configuration for supplying gas, for example.
  • FIG. 7 illustrates a gas supply unit 12n having five gas supply pipes N1 to N5 arranged in a line in the Y direction so that the longitudinal direction (Z direction) is substantially parallel. In the gas supply unit 12n, whether or not gas is discharged from each of the gas supply pipes N1 to N5 can be controlled.
  • gas is supplied to the gas supply pipes N1 to N5, and the presence or absence of gas discharged from the discharge holes of the gas supply pipes N1 to N5 by the flow rate control unit VL1 provided in the gas supply pipes N1 to N5, or Each of the gas discharge amounts can be controlled.
  • the type of the flow rate control unit VL1 include a type that opens and closes according to a driving force by a solenoid or a piezoelectric element, or a type that allows gas to escape to a region other than the discharge hole.
  • FIG. 8 is a diagram showing an example of the pressure distribution of the gas supplied from the gas supply unit 12n shown in FIG.
  • a curve indicating the level of gas pressure is indicated by a thick solid line.
  • the pressure is higher as the curve is in the downward direction ( ⁇ Z direction in the present specification), and the pressure is lower as the curve is in the upward direction (in the + Z direction in the present specification). Shows.
  • the pressure distribution shown in FIG. 8 directly reflects the pressure of the gas discharged from each of the gas supply pipes N1 to N5, and the pressure changes not continuously but rapidly depending on the position.
  • FIG. 9 is a diagram illustrating a mode in which one gas mixing unit SN1 is provided for the discharge holes of the plurality of gas supply pipes N1 to N5 of the gas supply unit 12n.
  • FIG. 10 is a cross-sectional view illustrating a configuration example of the gas mixing unit SN1.
  • the gas mixing unit SN1 for example, a slit-like space extending in the Y direction in which a plurality of gas supply pipes N1 to N5 is arranged extends in the ⁇ Z direction, and a slit-like opening is formed at the lower end on the ⁇ Z side.
  • the gas mixing part SN1 Due to the presence of the gas mixing part SN1, the gas discharged from the gas supply pipes N1 to N5 is mixed to some extent in the gas mixing part SN1. As a result, the pressure distribution of the gas discharged from each of the gas supply pipes N1 to N5 changes continuously.
  • FIG. 11 is a diagram showing an example of the pressure distribution of the gas supplied from the gas supply unit 12n shown in FIG.
  • a curve indicating the level of gas pressure is indicated by a thick solid line, and the lower the curve (in the ⁇ Z direction in this specification), the higher the pressure, As the curve is upward (in the + Z direction in the present specification), the pressure is smaller.
  • the pressures of the gases discharged from the gas supply pipes N1 to N5 are mixed to some extent in the gas mixing unit SN1, and the pressure continuously changes depending on the position. .
  • FIG. 12 is a diagram showing one mode of flow rate control in each of the gas supply pipes N1 to N5.
  • the gas supply pipe N1 has a flow rate control unit VL1 provided in an internal space Sc1 from the upstream portion En1 to the downstream portion Ex1.
  • the flow rate control unit VL1 includes one valve seat portion S1 and a plurality of valve body portions St1 to St3.
  • the valve seat portion S1 is provided on the inner wall of the gas supply pipe N1, and has a plurality of through holes H1 to H3 penetrating in the ⁇ Z directions.
  • the plurality of valve body portions St1 to St3 are arranged upstream of the plurality of through holes H1 to H3, and move in the ⁇ Z directions, thereby opening and closing the plurality of through holes H1 to H3, respectively.
  • the gas flow rate is controlled by opening and closing the plurality of through holes H1 to H3.
  • the pressure of the gas discharged from the gas supply pipe N1 can be adjusted.
  • pressure measuring units Pr1 and Pr2 for measuring the gas pressure are provided in the upstream portion En1 and the downstream portion Ex1, respectively, and the opening and closing times of the through holes H1 to H3 are adjusted, whereby the gas in the gas supply pipe N1 is adjusted.
  • the flow rate may be adjusted.
  • a chamber part CB1 in which the pressure of the gas discharged from the plurality of through holes H1 to H3 is made uniform is provided downstream of the valve seat part S1. Is provided.
  • FIG. 13 is a diagram showing another aspect of flow rate control in each of the gas supply pipes N1 to N5.
  • the gas supply pipe N1 will be described as an example.
  • the gas supply pipe N1 shown in FIG. 13 is based on the gas supply pipe N1 shown in FIG. 12, and the structure of the flow rate control unit VL1 is changed.
  • the flow control unit VL1 includes one valve seat portion S2 and one valve body portion St4.
  • the valve seat portion S2 is provided on the inner wall of the gas supply pipe N1, and has one through hole H4 that penetrates in the ⁇ Z direction.
  • the valve body St4 is arranged on the upstream side of the through hole H4 and adjusts the area of the opening on the upstream side of the through hole H4 by moving in the ⁇ Z direction.
  • the flow rate of the gas is controlled, and the pressure of the gas discharged from the gas supply pipe N1 is adjusted.
  • the pressure measurement parts Pr1 and Pr2 for measuring the gas pressure are provided in the upstream part En1 and the downstream part Ex1, respectively, and the gas in the gas supply pipe N1 is adjusted by adjusting the area of the opening on the upstream side of the through hole H4.
  • the flow rate may be adjusted.
  • the gas supply unit 12 n has a configuration in which gas is blown to the convex portion Pp ⁇ b> 1 from a direction (also referred to as an inclination direction) inclined with respect to the upper surface of each layer stacked by the supply unit 11. It may be adopted.
  • a mode in which the gas supply part 12n is inclined toward the outer edge side in the horizontal direction of the convex part Pp1 from the upper part to the lower part may be employed.
  • a mode in which the gas supply unit 12n is inclined so that the direction in which the gas is discharged from the gas supply unit 12n approaches a direction in which at least a part of the convex portion Pp1 is desired to be destroyed is conceivable.
  • liquidity of the modeling material in the convex part Pp1 of each layer and the part of the vicinity in the direction along the upper surface of each layer is improved.
  • at least a part of the convex portion Pp1 can be easily broken without contact.
  • the convex portion Pp1 actually protrudes in different directions. For this reason, the aspect which can change an inclination direction in 12 n of gas supply parts, or the aspect in which the several gas supply part 12n from which an inclination direction differs exists is considered.
  • the molding unit 12 includes a sound wave irradiation unit 12 s that breaks at least a part of the projection Pp ⁇ b> 1 by irradiating the projection Pp ⁇ b> 1 with sound waves may be employed. That is, a sound wave irradiation unit 12s may be employed instead of the gas supply unit 12n. In this case, a wave is generated in the selective region Ar1 of the convex portion Pp1 according to the local irradiation of the sound wave, and at least a part of the convex portion Pp1 is easily broken without contact.
  • a sound wave is irradiated to the selective region Ar1 in the upper surface portion on the + Z side of the convex portion Pp1.
  • the molding unit 12 includes both the gas supply unit 12n and the sound wave irradiation unit 12s, and the irradiation of the sound wave and the gas blowing are selectively performed depending on the position where the convex portion Pp1 as the object to be broken exists. May be done.
  • the wavelength of the sound wave to be irradiated is changed by the sound wave irradiation unit 12s in accordance with the position where the convex portion Pp1 as an object to be broken exists is conceivable.
  • the sound wave of a suitable wavelength may be employ
  • the sound wave irradiation unit 12s in order to suppress the spread of sound waves other than necessary, by radiating reverse-phase sound waves so that the sound waves are not irradiated to portions other than the selective region Ar1 in the stacked body LP1.
  • a configuration in which sound waves cancel each other may be employed.
  • a configuration may be employed in which sound waves are detected by a sensor (also referred to as a sound sensor) such as a microphone, and reverse-phase sound waves are set according to the detection result.
  • a sensor also referred to as a sound sensor
  • a configuration in which sound waves cancel each other out based on a result obtained by simulation may be employed.
  • the sound wave irradiation unit 12s may have a plurality of sound sources, and a mode in which the intensity of sound waves is strengthened at a specific portion (also referred to as a specific portion) where sound waves emitted from the plurality of sound sources overlap may be employed.
  • a configuration may be adopted in which the sound sensor detects the sound wave for each frequency and cancels the sound wave for each frequency, thereby adjusting the intensity for each frequency of the sound wave. .
  • FIG. 15 is a diagram schematically illustrating a configuration example of the sound wave irradiation unit 12s.
  • the sound wave irradiation unit 12s includes cylindrical bodies (also referred to as horns) Hr1 to Hr3 and sound sources Sp1 to Sp3.
  • the cylindrical bodies Hr1 to Hr3 have a configuration in which one end is closed, the internal space is gradually narrowed from the one end toward the other end, and openings IJ1 to IJ3 are present at the other end.
  • the sound sources Sp1 to Sp3 are provided on one end sides of the cylindrical bodies Hr1 to Hr3, respectively.
  • Sound waves emitted from the sound sources Sp1 to Sp3 can be emitted from the openings IJ1 to IJ3 at the other ends of the cylindrical bodies Hr1 to Hr3. In this case, if the openings IJ1 to IJ3 are very small, the sound wave can be easily applied to the minute selective area Ar1.
  • a material also referred to as an anti-vibration material
  • Ab1 that absorbs vibrations from the adjacent cylindrical bodies Hr1 to Hr3 and the sound sources Sp1 to Sp3 is disposed between the cylindrical bodies Hr1 to Hr3, the selection is made. Noise is unlikely to be mixed with the sound wave irradiated to the target area Ar1. As a result, the collapse of the convex portion Pp1 due to the irradiation of sound waves can be appropriately adjusted.
  • anti-vibration material Ab1 alpha gel, urethane, etc. are mentioned, for example.
  • a configuration in which attenuation of sound waves in the openings IJ1 to IJ3 is suppressed by optimizing the shapes of the cylindrical bodies Hr1 to Hr3 may be employed.
  • the intensity of the sound waves can be appropriately adjusted for each wavelength.
  • the molding part 12 increases the fluidity of the convex part Pp1 by applying heat to the convex part Pp1, thereby applying heat that breaks at least a part of the convex part Pp1.
  • a configuration having the portion 12h may be employed. That is, the heat applying unit 12h may be employed instead of the gas supply unit 12n and the sound wave irradiation unit 12s.
  • the material for modeling is not a thermosetting material
  • the viscosity of the material for modeling is locally reduced, and the function of smoothing the liquid surface (also referred to as leveling function) causes convexity.
  • the function of smoothing the liquid surface also referred to as leveling function
  • At least a part of the part Pp1 collapses.
  • the convex portion Pp1 is easily broken without contact, the dimensional accuracy and surface quality of the three-dimensional structure 3D1 can be further improved.
  • heat is applied to the selective region Ar1 in the upper surface portion on the + Z side of the convex portion Pp1 by the heat applying portion 12h.
  • heat is applied to the selective region Ar1 by irradiating the selective region Ar1 with light by an infrared laser or a light emitting diode (LED).
  • LED light emitting diode
  • GLV optical element
  • the molding unit 12 has at least one of the gas supply unit 12n, the sound wave irradiation unit 12s, and the heat application unit 12h, and the gas supply unit 12n, the sound wave irradiation unit 12s, and the heat application unit 12h.
  • An aspect in which at least a part of the convex portion Pp1 is broken by at least one of them or a combination of one or more of them can be considered.
  • the following molding mode may be employed.
  • the selective fine region of the convex portion Pp1 is irradiated with infrared light or infrared light from an LED by optical means to impart thermal energy, so that gas in the laminate LP1 is sprayed and sound waves are emitted.
  • the fine area of the wide area to which the irradiation is applied can be accurately broken.
  • a mechanism for sucking the gas may be provided in the portion where the gas expands according to the blowing of the gas to the laminate LP1.
  • the gas is blown to the multilayer body LP1 from the upper oblique direction, and the gas is sucked on the opposite side across the normal (+ Z direction) of the upper surface of the multilayer body LP1, while the selective fine region of the convex portion Pp1
  • a configuration in which thermal energy is applied by irradiation with infrared light or the like from an infrared laser or LED can be considered.
  • the laminate LP1 can be formed with high accuracy.
  • the second molding method is, for example, a method of reducing or eliminating the convex portion Pp1 of the stepped portion SP1 by thermal melting when the modeling material is a room temperature curing type material.
  • one or more cured layers are formed by curing the layers stacked by the supply unit 11. Then, by applying heat to at least a part of the convex part Pp1 formed on the outer peripheral part of the upper part of each cured layer by the molding part 12, at least a part of the convex part Pp1 is melted and broken. . Thereby, many level
  • a room temperature curing type modeling material is heated to be in a fluid state, and one or more layers are laminated by being injected from an ultrafine nozzle or the like. And one or more cured layers are formed.
  • the room temperature curing type modeling material may include, for example, a thermoplastic resin such as an ABS resin or a polylactic acid (PLA) resin.
  • At least a part of the convex portion Pp ⁇ b> 1 is broken by applying heat to the selective region Ar ⁇ b> 1 by the heat applying portion 12 h of the molding portion 12.
  • heat is applied to the selective region Ar1 by irradiating the selective region Ar1 with light by an infrared laser or a light emitting diode (LED).
  • LED light emitting diode
  • the heat applying unit 12h in order to apply heat locally to the selective region Ar1, for example, a configuration in which a DMD in which minute mirrors are arranged one-dimensionally or two-dimensionally is arranged. Can be employed.
  • a configuration in which GLVs in which minute diffraction gratings are arranged one-dimensionally or two-dimensionally may be employed.
  • a configuration in which a light beam is deflected by a galvanometer mirror or the like may be adopted, or the light beam is deflected by changing a refractive index of the optical element in accordance with voltage application to the optical element having a crystal structure.
  • a configuration may be employed.
  • the third molding method is, for example, a method of filling the concave portion D1 of the stepped portion SP1 in the stacked body LP1 with a filling material.
  • the filling material is supplied by the filling material supply part 12z of the molding part 12, and the recess D1 of the step part SP1 formed on the outer peripheral part of two or more layers stacked by the supply part 11 is formed. At least a part is filled with the filling material, and the end T1 of the multilayer body LP1 is shaped. Thereby, for example, the concave portion D1 of the stepped portion SP1 is filled, so that the concave and convex portions are reduced or eliminated and the concave portion D1 becomes inconspicuous. For this reason, the surface quality of the three-dimensional structure 3D1 can be improved.
  • the third molding method for example, after two or more layers formed by the supply unit 11 are cured by the curing unit 13, at least a part of the recess D1 is filled.
  • the filling material is cured by the same kind of function as the modeling material forming two or more layers, before the two or more layers are cured by the curing unit 13, at least a part of the recess D1 is formed. May be buried.
  • FIG. 16 is a diagram illustrating an aspect in which the filling material B1 is filled in the concave portion D1 of the stepped portion SP1.
  • the laminated body LP1 is composed of a plurality of layers L1 to L3 of modeling material, and a stepped portion SP1 including a recess D1 is formed in the vicinity of the boundary portion between the layers L1 to L3 that are vertically adjacent to each other.
  • a state in which the concave portion D1 is filled with a filling material is shown.
  • the concave portion D1 is filled with the filling material B1 supplied from the filling material supply portion 12z, and the unevenness is reduced or eliminated to form the slope portion Sf0.
  • the modeling material is discharged in a liquid or fluid state toward an appropriate position in the recess D1 by a supply method such as an inkjet method.
  • a supply method such as an inkjet method.
  • Various materials can be used as the filling material B1, but the stepped portion SP1 can be made inconspicuous as long as it is the same material as the modeling material forming the laminate LP1. Those having the main component as the main component may be employed.
  • the filling material B1 is a material that scatters light (also referred to as a light scattering material)
  • the stepped portion SP1 is not easily noticeable, so that the surface quality of the three-dimensional structure 3D1 can be easily improved.
  • the light scattering material for example, a transparent material in which small pieces for scattering light are dispersed, white ink, and the like can be used. Examples of the small piece include particles that scatter light such as titanium oxide, silicon oxide (silica), resin (polymer), and calcium, and fibers that scatter light such as glass fiber, optical fiber, and pulp.
  • the base layer is formed with the white ink on the surface of the three-dimensional structure 3D1
  • the surface of the three-dimensional structure 3D1 can be beautifully colored.
  • a mode in which a white layer is formed in a region to be colored in the stacked body LP1 at the timing before coloring by the color imparting unit 14 can be considered.
  • white ink is expensive, if a thin layer of white ink is formed after filling the concave portion D1 with a transparent material in which small pieces for scattering light are dispersed, the three-dimensional structure 3D1 Reduction of the manufacturing cost and good coloring of the surface can be realized.
  • the color imparting unit 14 imparts a color to the slope portion Sf ⁇ b> 0 formed by the molding unit 12.
  • FIG. 17 to 19 are diagrams for explaining a coloring method for the slope portion Sf0.
  • end portions T1 of the layers L1 to L3 are formed to form a slope portion Sf0 composed of the slope portion Sf1 of the layer L1, the slope portion Sf2 of the layer L2, and the slope portion Sf3 of the layer L3.
  • a white ink layer also referred to as a white ink layer
  • WL ⁇ b> 1 is formed by the color imparting unit 14 on the slope portion Sf ⁇ b> 0.
  • a layer (also referred to as a color layer) CL1 having a color by applying various inks is formed on the white ink layer WL1.
  • the slope portion Sf0 formed by molding the end portion T1 of the multilayer body LP1 by the molding unit 12 is generated by the data creation device 1 for modeling the three-dimensional model 3D1.
  • the data creation device 1 for modeling the three-dimensional model 3D1.
  • the three-dimensional object is sliced on the 3D data so as to be thinner than each layer constituting the three-dimensional object 3 ⁇ / b> D ⁇ b> 1.
  • Cross-section data is generated, and color data on the slope Sf0 is obtained.
  • a mode in which a three-dimensional model is sliced on 3D data with a thickness of 0.05 mm, which is thinner than 0.5 mm, which is the thickness of each layer, can be considered.
  • color data is obtained also about the area
  • an appropriate color can be given to the slope portion Sf0 based on the obtained color data.
  • an overlapping portion (also referred to as an overlapping portion) occurs between adjacent coloring regions, and a color that is darker than necessary is given to the overlapping portion. . Therefore, as shown in FIG. 21, regarding overlapping portions that overlap between adjacent colored regions, it is possible to realize appropriate coloration at the overlapping portions by reducing the color density in advance.
  • the white ink layer WL1 and the color layer CL1 may be sequentially stacked by the color imparting unit 14 after the concave portion D1 is filled with the filling material B1 by the molding unit 12.
  • the layers formed by the modeling material are sequentially stacked by supplying the modeling material by the supply unit 11. And this edge part T1 is shape
  • the end portion T1 of the stacked body LP1 is formed in a non-contact manner. For this reason, it is possible to achieve both good dimensional accuracy and surface quality of the three-dimensional structure 3D1 and an improvement in manufacturing speed.
  • the three-dimensional structure 3D1 is formed by directly stacking the layer of the modeling material on the holding unit 21, but the present invention is not limited thereto.
  • the base material BM1 is held on the holding portion 21A, and a plurality of layers made of a modeling material are stacked on the base body BM1, so that the three-dimensional structure formed on the base body BM1 and the base body BM1.
  • a complex with 3D1 may be formed.
  • the base material BM1 include posters, maps, and stickers. Thereby, for example, a poster or a map on which some specific symbols and the like are raised can be realized.
  • the specific symbol includes, for example, a symbol indicating a mountain or the like.
  • FIG. 23 is a diagram showing a schematic configuration of a three-dimensional modeling system 100A according to a modification.
  • the three-dimensional modeling system 100A is based on the three-dimensional modeling system 100 according to the embodiment, and the three-dimensional modeling apparatus 2 is changed to the three-dimensional modeling apparatus 2A.
  • the 3D modeling apparatus 2A is based on the 3D modeling apparatus 2, the table unit 20 is changed to a table unit 20A having a different configuration, and a sensor unit 40 is added.
  • the table section 20A includes a holding section 21A, rod sections 22a and 22b, and driving sections 23a and 23b.
  • the holding portion 21A is a portion (also referred to as a base material holding portion) that holds the base material BM1, and is, for example, a plate-like portion having a smooth upper surface.
  • a holding method of the base material BM1 in the holding part 21A for example, holding by a holding part or suction by a suction hole can be considered.
  • maintain indirectly the laminated body LP1 and three-dimensional molded item 3D1 which are formed on base material BM1 by hold
  • the rod portions 22a and 22b move the holding portion 21A in the vertical direction according to the driving of the driving portions 23a and 23b.
  • the drive parts 23a and 23b are parts that move the rod parts 22a and 22b in the vertical direction.
  • the relative position in the vertical direction between the base member BM1 held on the holding part 21A and the head part 30 is changed by moving the holding part 21A in the vertical direction by the drive parts 23a and 23b. Is done. For example, every time a layer of a modeling material is formed on the base material BM1, the holding portion 21A and the base material BM1 move in a direction away from the head portion 30A.
  • the base material BM1 is made of a material that is vulnerable to moisture such as paper, according to the molding of the end portion T1 by the molding unit 12 in the one embodiment, the base material BM1.
  • the quality of the is difficult to deteriorate.
  • the sensor unit 40 is a portion (also referred to as a modeling region recognition unit) that recognizes information for specifying a region (also referred to as a modeling target region) on which the three-dimensional modeled object on the base material BM1 is to be modeled.
  • a region also referred to as a modeling target region
  • the modeling material is supplied by the supply unit 11 onto the recognized modeling target region according to the recognition result by the sensor unit 40.
  • the layer formed of the modeling material is sequentially laminated on the modeling target region.
  • the three-dimensional model 3D1 having good dimensional accuracy and surface quality can be quickly modeled in a desired modeling target region on the base material BM1.
  • the sensor unit 40 is equipped with, for example, a digital camera or the like, and as shown in FIG. 24, for example, the surface of the base material BM1 provided with a plurality of marks MK1 to MK4 in advance is photographed, and the photographed image is targeted.
  • the positions of the plurality of marks MK1 to MK4 are recognized.
  • the positions of the plurality of marks MK1 to MK4 are also defined on the cross-sectional data related to the 3D data in the virtual space, coordinate information as information for specifying the modeling target regions LR1 and LR2 in the real space, etc. Can be recognized.
  • the present invention is not limited to this.
  • the positions of the plurality of marks MK1 to MK4 may be recognized by the cooperation of the sensor unit 40 and the control unit 10.
  • cross-shaped marks MK1 to MK4 are shown.
  • the present invention is not limited to this, and the marks MK1 to MK4 are, for example, cross marks (“ ⁇ ”), circle marks (“ ⁇ ”), double marks. It may have other forms such as a round mark (“ ⁇ ”) and a white cross mark.
  • the information for specifying the modeling target areas LR1 and LR2 can be recognized as information for specifying the two-dimensional and three-dimensional areas, for example.
  • the regions of the two-dimensional and three-dimensional modeling target regions LR1 and LR2 are obtained by a combination of at least one or more such as recognition by calculation from a two-dimensional image captured from a plurality of angles and recognition by a laser scanner. If the information for specifying is recognized, even if the base material BM1 is planar or three-dimensional, the modeling material can be laminated and colored in a desired region.
  • two-dimensional or three-dimensional data in the design stage among the already shaped areas. It may be found that there is an area that does not match (also called data). In this case, the design data is deformed so as to match the measurement data of the modeled object, thereby enabling coloring with higher positional accuracy and shape accuracy with respect to the modeled object.
  • the sensor unit 40 collates shooting data that captures a pattern already drawn on the base material BM1 with cross-sectional data related to the 3D data, so that the modeling target regions LR1 and LR2 on the base material BM1 are identified.
  • An aspect in which information for specifying is recognized may be employed.
  • a region also referred to as a three-dimensional region
  • a planar region where the three-dimensional object 3D1 is not formed (two-dimensional region)
  • the color imparting unit 14 can also impart both.
  • the supply unit 11, the molding unit 12, the curing unit 13, and the color imparting unit 14 are provided in the same head unit 30.
  • the supply unit 11, the molding unit 12, the curing unit 13, and the color imparting unit 14 may be provided in separate heads, but two or more of the supply unit 11, the molding unit 12, the curing unit 13, and the color imparting unit 14. If as many parts as possible are mounted on the same head unit 30, the complication of the apparatus can be suppressed.
  • the color imparting unit 14 may not be provided.
  • the curing unit 13 may not be provided.
  • the supply unit 11, the molding unit 12, the curing unit 13, and the color imparting unit 14 are mounted on the one three-dimensional modeling apparatus 2, but the present invention is not limited thereto.
  • the molding unit 12 that molds the end T1 without contacting the end T1 of the stacked body LP1 in which layers formed by the modeling material are sequentially stacked
  • a molding apparatus for three-dimensional modeling provided may be employed.
  • the end portion T1 of the laminated body LP1 is formed in a non-contact manner even if the layers that are sequentially laminated are thickened to improve the manufacturing speed.
  • the supply unit 11, the molding unit 12, the curing unit 13, and the color imparting unit 14 may be separately mounted on two or more apparatuses. That is, the three-dimensional modeling system 100 may be configured with two or more apparatuses for forming a three-dimensional model.
  • a three-dimensional modeled object and color the three-dimensional modeled object on a base material on which a plane and a three-dimensional modeled object are colored by another apparatus For example, a portion for recognizing information for specifying a region to be colored (also referred to as a coloring target region) on the stacked body LP1 may be provided. At this time, a region formed of the coloring material can be formed by providing the coloring material on the coloring target region according to the recognition result by the coloring region recognition unit by the color imparting unit 14. Thereby, both the modeling object formed with the three-dimensional modeling apparatus 2 and the modeling object formed with the other apparatus can be accurately colored in a necessary coloring target region.
  • physical means for performing alignment between the base material BM1, the cross-sectional data, and the 3D data may be provided.
  • a physical means a pin etc. are mentioned, for example, The aspect by which the area
  • the process of laminating modeling materials that require a long time is performed in a separate device, so that the productivity for manufacturing a three-dimensional modeled product that has been subjected to modeling and coloring is improved. obtain.
  • a three-dimensional object such as a cover (also referred to as a terminal cover) of a mobile communication terminal device is shaped and colored differently according to an order
  • information such as an FR tag for identifying information so that the information for managing the order (also referred to as order management information) and the 3D data, the cross-sectional data, and the color data of the three-dimensional object are matched.
  • An element for identification also referred to as an information identification element
  • three-dimensional modeling and coloring are performed based on information recognized from the information identification element by the reader of FRID can be considered.
  • management of information using the information identification element makes it possible to reduce work mistakes, and facilitates identification and management of products after formation of a three-dimensional model and coloring.
  • Step a An information identification element corresponding to three-dimensional modeling and coloring is attached to each terminal cover.
  • Step b A plurality of portable covers are fixed in a three-dimensional modeling apparatus that performs three-dimensional modeling and coloring.
  • a method of fixing the mobile cover for example, mechanical fixing using a jig and vacuum suction or the like can be considered.
  • Step c 3D data, cross-sectional data, and color data of the three-dimensional structure are acquired by the information recognized from the information identification element affixed to each terminal cover by the control unit 10 via the reader.
  • a two-dimensional area and a three-dimensional area to be modeled and colored are recognized by a laser scanner or the like.
  • Step d From the information obtained in step c, information on the region where the modeling material is laminated, the region where the end of the laminate is molded, and the region where coloring is performed in the laminate are calculated, and the modeling is performed. And data on coloring are prepared.
  • Step e Based on the data prepared in Step d, a plurality of portable covers are shaped and colored as an object for integrated modeling and coloring, so that the head for modeling and coloring is wasted Therefore, the amount of movement can be reduced and the working time can be shortened.
  • the edge part T1 was shape
  • molding part 12 about the laminated body LP1 corresponding to all the layers which comprise the three-dimensional molded item 3D1 may be employ
  • a room-temperature-curing type modeling material is employed, an aspect in which the end portion T1 is molded by the molding unit 12 after the laminate LP1 corresponding to the three-dimensional model 3D1 is formed is employed. obtain.
  • the unevenness in the height direction of the layered body LP1 is adopted.
  • the control of the corresponding molding part 12 can be facilitated.
  • the distance between the table units 20 and 20A and the head unit 30 is adjusted by moving the holding units 21 and 21A of the table units 20 and 20A in the vertical direction.
  • the table units 20 and 20A may be fixed, and the head unit 30 may move in the vertical direction, or both the table units 20 and 20A and the head unit 30 may move in the vertical direction.
  • the head unit 30 is two-dimensionally scanned above the holding unit 21.
  • the present invention is not limited to this.
  • the width of the three-dimensional model 3D1 is small or the supply unit 11, the molding unit 12, the curing unit 13, and the color imparting unit 14 are provided widely in the head unit 30, the head unit 30 is unidirectional.
  • a mode in which only scanning is performed (also referred to as one-dimensional scanning) may be employed.
  • a shape for example, an upward convex shape
  • a three-dimensionally shaped object having a taper shape was formed.
  • the modeling material is a first modeling material (also referred to as a model material) for constituting a three-dimensional modeled object, and a second modeling material (also referred to as a support material) that can be removed after the three-dimensional modeled object is formed. May be included.
  • a portion of the stacked body formed by stacking the model materials that narrows downward can be formed by support from below with the support material.
  • the support material may be removed after coloring after the formation of the three-dimensional structure, for example.
  • the support material laminate is formed by laminating the support material, and after the end of the laminate is formed, the model material is supplied to the gap between the support materials.
  • a mode in which a three-dimensional modeled object is formed can be considered. Even if such an aspect is adopted, it is possible to achieve both good dimensional accuracy and surface quality of the three-dimensional modeled object having an inversely tapered portion and an improvement in manufacturing speed.
  • a removable material such as a water swelling gel, a wax, a thermoplastic resin, a water-soluble material, or a soluble material
  • a technique for removing the support material for example, a technique such as water washing, heating, chemical reaction, power washing such as hydraulic washing, dissolution by electromagnetic wave irradiation, or separation using a difference in thermal expansion may be employed.
  • FIG. 25 is a diagram schematically illustrating a schematic configuration of a three-dimensional modeling system 100B according to another modification.
  • the three-dimensional modeling system 100B is based on the three-dimensional modeling system 100A according to the above-described modification, and the three-dimensional modeling apparatus 2 is changed to the three-dimensional modeling apparatus 2B.
  • the head unit 30 according to the modification is changed to the head unit 30B, and the head unit 30B is configured such that the supply unit 11 of the head unit 30 is the first supply unit. 11a and the supply part 11B which has the 2nd supply part 11b.
  • the first supply unit 11a supplies a model material.
  • the second supply unit 11b supplies a support material.
  • FIG. 26 to FIG. 35 are diagrams schematically illustrating a process in which a three-dimensional object including an inversely tapered portion is formed by the three-dimensional object forming system 100B.
  • the step portion SPs1 at the end portion Ts1 of the stacked body LPs1 configured by the plurality of layers of the support material stacked by the second supply unit 11b is formed by the molding unit 12 at the end portion. Molded without being in contact with Ts1.
  • the above first to third molding methods may be employed.
  • the convex portion Pa1 of the stepped portion SPs1 is collapsed, and the end portion Ts1 becomes a sloped portion Ss0 after molding composed of the sloped portions Ss1 to Ss3 of the layers Ls1 to Ls3. The situation is illustrated.
  • the region of the multilayer body LPs ⁇ b> 1 composed of the support material on the surface facing the gap Rs ⁇ b> 0 of the multilayer body LPs ⁇ b> 1 and where the surface of the three-dimensional structure is formed.
  • the coloring layer CL1 is formed by applying the coloring material to the selective region that needs to be colored by the color applying unit 14.
  • white ink is applied on the colored layer CL1 so that the colored layer CL1 has a good color on the surface of the three-dimensional structure, and the white layer WL1 is formed.
  • the white ink can be formed by, for example, the color applying unit 14. That is, the white layer WL1 is formed in the region to be colored on the stacked body LPs1 at the timing after the color imparting unit 14 is colored by the imparting unit 14.
  • the model material layers L03, L02, and L01 are sequentially stacked by supplying the model material by the first supply unit 11a so as to fill the gap Rs0 of the stacked body LPs1.
  • the laminated body LP0 thus formed is formed.
  • the model material is supplied onto the model material layer L01 by the first supply unit 11a, so that the model material layers L1, L2 are formed on the model material layer L01. , L3 are stacked to form a stacked body LP1.
  • the end portion T1 of the laminate LP1 is formed by the forming portion 12.
  • the above first to third molding methods can be employed.
  • white ink is applied on the surface of the laminate LP1 to form a white layer WL1.
  • the white ink can be formed by, for example, the color applying unit 14. That is, the white layer WL1 is formed in the region to be colored on the stacked body LP1 at a timing before the color imparting unit 14 is colored by the imparting unit 14.
  • a coloring material CL is formed on the white layer WL1 formed on the multilayer body LP1 by applying a coloring material by the color applying unit 14.
  • the formation of the colored three-dimensional structure 3D1s is completed by removing the laminated body LPs1 made of the support material.
  • a smooth surface is formed up to the inversely tapered portion, and even better coloring can be realized.
  • the white layer WL1 is formed in the region to be colored on the stacked bodies LPs1 and LP1 by the color imparting unit 14 at both the timing before and after the coloring by the color imparting unit 14.
  • the white layer WL1 may be formed at the timing before coloring, or when the white layer WL1 is formed only in the reverse tapered portion, at the timing after coloring.
  • a white layer WL1 may be formed. That is, even when the color imparting unit 14 forms the white layer WL1 in the region to be colored on the stacked bodies LPs1 and LP1 at least at one timing before and after the coloring by the color imparting unit 14. good. Thereby, a colored region having high color quality such as saturation, brightness, and contrast can be formed.
  • a method for forming the end portion T1 of the laminate LP1 a forming method for reducing or eliminating the convex portion Pp1 of the step portion SP1 formed on the end portion T1, and the step
  • adopted it is not restricted to this.
  • the end portion T1 for example, after the end portion T1 is formed by the forming portion 12, the end portion T1 may be subjected to uneven processing. Thereby, the edge part T1 is deform
  • the concavo-convex process is a process in which at least one of a concave portion and a convex portion is further formed in a region formed by reduction or disappearance of the convex portion Pp1 or burying of the concave portion D1.
  • the process which provides a recessed surface regularly or irregularly on a smooth surface, or the process which provides a pattern like a leather surface on a smooth surface, etc. can be employ
  • FIG. 36 and FIG. 37 are diagrams for explaining a method of forming the end portion T1 of the multilayer body LP1 according to one modification.
  • the laser beam emitted from the laser Lz0 is applied to the desired region of the end T1 of the multilayer body LP1 by the element Mr0.
  • examples of the laser Lz0 include those that emit infrared laser light.
  • examples of the element Mr0 include DMD, GLV, crystal optical element, galvanometer mirror, and polygon mirror.
  • the gas discharged from the slit-shaped opening of the gas supply unit Ai0 is blown onto the desired region.
  • the convex portion Pp1 of the end portion T1 is once broken, and as shown in FIG.
  • the slope portion Sf1 of the layer L1, the slope portion Sf2 of the layer L2, and the slope portion Sf3 of the layer L3 are formed.
  • a slope Sf0 after forming is formed.
  • the gas to be blown has an air knife-like form.
  • the time during which the desired region of the end portion T1 is irradiated with the laser beam or the intensity of the laser beam the amount by which the convex portion Pp1 is broken can be adjusted.
  • a gas is blown while irradiating a desired region of the slope portion Sf0 with a device having the same configuration as in FIG. 36, for example, regular or irregular.
  • a plurality of holes arranged in a regular manner are formed.
  • FIG. 38 is a diagram for explaining a method of forming the end portion T1 of the multilayer body LP1 according to another modification.
  • a description will be given of a form in which the forming of the convex portion Pp1 of the end portion T1 and the further deformation of the end portion T1 are performed substantially simultaneously.
  • the laser light emitted from the laser Lz0 is converted by the integrator Ig0 into laser light (also referred to as surface laser light) that is parallel light having a certain area in a cross section perpendicular to the traveling direction.
  • a desired region of the end portion T1 of the multilayer body LP1 is irradiated by the element portion Dm0.
  • the gas discharged from the slit-shaped opening of gas supply part Ai0 is sprayed on this desired area
  • the second region of the element portion Dm0 is immediately after the projection Pp1 of the end portion T1 is collapsed by irradiating the desired region of the end portion T1 with the laser beam by the first region Dm1 of the element portion Dm0.
  • Dm2 By irradiating the desired region of the end portion T1 with the laser beam by Dm2, for example, a plurality of holes arranged regularly or irregularly are formed.
  • the element portion Dm0 a two-dimensional array of elements such as a DMD, or a structure composed of two or more galvanometer mirrors may be employed.
  • the modeling material is simply laminated, but the present invention is not limited to this.
  • an appropriate pattern of a material that affects electromagnetic waves or the like that appropriately includes metals such as gold, silver, copper, aluminum, nickel, and iron is formed on the cover of the mobile communication terminal device. It may be formed in an optimized region of the surface. Thereby, it is possible to realize a function of easily receiving radio waves or a function of suppressing the influence of electromagnetic waves due to the presence of a portion having a decorative function of the mobile communication terminal device.
  • various performances such as the stability of communication or the admissibility of use in facilities of medical institutions can be imparted, so that the value of the cover of the mobile communication terminal device can be improved.
  • an ultraviolet curable resin, a thermosetting resin, a thermoplastic resin, or the like is simply used as the modeling material.
  • the present invention is not limited to this.
  • a plurality of types of modeling materials having different ratios of components related to the hardness after curing may be employed.
  • the supply unit 11 further includes a portion (also referred to as a change unit) that changes the ratio of the component of the modeling material related to the hardness after curing of the modeling material
  • the supply unit A plurality of types of modeling materials can be supplied from 11.
  • the ratio of the components of the modeling material can be changed by supplying and mixing materials of a plurality of types of compositions.
  • the amount of the curing agent per unit area is changed like a halftone dot in a selective region when the modeling material is laminated or after lamination in a semi-cured state.
  • curing agent may be changed. For this reason, even if a plurality of materials having different hardnesses after curing are not supplied from separate supply units, a modeled object having partially different hardness can be created. Thereby, even if many kinds of materials and many supply parts are not prepared, the three-dimensional molded item from which hardness differs can be implement
  • an ultraviolet curable resin, a thermosetting resin, or a thermoplastic resin is used as the modeling material, but the present invention is not limited thereto.
  • an aspect in which a rough portion of the three-dimensional model is formed of a thermoplastic resin and a fine portion is formed of an ultraviolet curable resin, a thermosetting resin, or the like is also conceivable.
  • a mode in which a rough step portion formed of a thermoplastic resin is filled with ultraviolet curable white ink or the like may be employed.
  • a thermoplastic resin having a low material cost the manufacturing cost of the three-dimensional structure can be reduced.
  • the head units 30 and 30A may be driven by wires or belts or the like by another drive unit separated from the head units 30 and 30A.

Abstract

The purpose of the present invention is to provide: a three-dimensional fabrication device with which good dimensional precision of the three-dimensional molding and improvement of both surface quality and production speed are possible; and a three-dimensional molding manufacturing method. To achieve said purpose, layers formed from fabrication material by supplying said fabrication material using a feeder unit are sequentially laminated. Using a molding unit, the edge of the laminate configured from multiple layers of fabrication material laminated by the feeder unit is molded without contacting said edge.

Description

立体造形装置、立体造形物の製造方法および成形装置3D modeling apparatus, 3D manufacturing method and molding apparatus
 本発明は、材料を積層させることで立体的な造形物を製造する立体造形装置、該立体的な造形物を製造するための立体造形物の製造方法、および積層された材料を成形する成形装置に関する。 The present invention relates to a three-dimensional modeling apparatus that manufactures a three-dimensional modeled object by laminating materials, a method for manufacturing a three-dimensional modeled object for manufacturing the three-dimensional modeled object, and a molding apparatus that molds the stacked material. About.
 従来、3次元形状のデータから略平行な多数の層のデータ(層データとも言う)が生成され、略平行な多数の層が順次に積層されることで立体的な造形物(立体造形物とも言う)が製造される技術が知られている。 Conventionally, data of a large number of substantially parallel layers (also referred to as layer data) is generated from three-dimensional shape data, and a plurality of substantially parallel layers are sequentially stacked to form a three-dimensional structure (also referred to as a three-dimensional structure). Technology) is known.
 このような立体造形物を製造する技術によれば、例えば、金型が用いられることなく、低コストで短時間のうちに立体造形物が製造され得る。このため、本技術は、製品開発等を行う際における試作品の製造等に適用されることが考えられる。但し、該試作品には、良好な寸法精度および表面品質が要求されることが多い。そこで、立体造形物を構成する各層の厚さを薄くすることで、立体造形物における寸法精度および表面品質の向上が図られる傾向にある。 According to the technology for manufacturing such a three-dimensional modeled object, for example, a three-dimensional modeled object can be manufactured in a short time at a low cost without using a mold. For this reason, it is considered that the present technology is applied to manufacture of a prototype when product development or the like is performed. However, the prototype often requires good dimensional accuracy and surface quality. Therefore, by reducing the thickness of each layer constituting the three-dimensional structure, the dimensional accuracy and surface quality of the three-dimensional structure tend to be improved.
 そして、例えば、インクジェット法等によって、モデル材と、該モデル材の張り出し部分を支え且つ最終的に除去されるサポート材とをそれぞれ有する多数の層が積層されることで、立体造形物が製造される技術が提案されている(例えば、特許文献1)。該技術では、モデル材とサポート材との界面に立体造形物の表面が形成されるため、モデル材とサポート材との界面におけるモデル材とサポート材との混合が回避されることで、造形品質の改善が図られる。 Then, for example, a three-dimensional structure is manufactured by laminating a plurality of layers each having a model material and a support material that supports the projecting portion of the model material and is finally removed by an inkjet method or the like. A technique has been proposed (for example, Patent Document 1). In this technology, since the surface of the three-dimensional structure is formed at the interface between the model material and the support material, the mixing of the model material and the support material at the interface between the model material and the support material is avoided. Is improved.
特開2012-96429号公報JP 2012-96429 A
 しかしながら、上記特許文献1の技術では、各層を成すモデル材を薄くしても立体造形物の表面上の曲面部分において視認され得る多数の段差をなくすことは容易でない。また、立体造形物を構成する各層の厚さを低減すれば低減する程、立体造形物の製造に要する時間が長くなってしまう。つまり、立体造形物の良好な寸法精度および表面品質と製造速度の向上とを両立させることは容易でない。また、上記の製造技術によって作成される立体造形物は、従来の設計段階において試作品を確認する用途以外にも広まり、新しい価値を持つようになってきた。そのため、近年は高品質のフルカラーの着色が施された立体造形物が求められ、立体造形物には、高品質のフルカラーの着色に適した表面品質も求められるようになってきた。 However, with the technique of Patent Document 1, it is not easy to eliminate many steps that can be visually recognized in the curved surface portion on the surface of the three-dimensional structure even if the model material forming each layer is thinned. Moreover, if the thickness of each layer which comprises a three-dimensional molded item is reduced, the time required for manufacture of a three-dimensional molded item will become long. That is, it is not easy to achieve both good dimensional accuracy and surface quality of the three-dimensional structure and the improvement of the manufacturing speed. In addition, the three-dimensional model created by the above manufacturing technique has become widespread in addition to the purpose of confirming a prototype in the conventional design stage, and has come to have new value. Therefore, in recent years, high-quality full-colored three-dimensional objects have been demanded, and three-dimensional objects have also been required to have surface quality suitable for high-quality full-color coloring.
 本発明は、上記課題に鑑みてなされたものであり、立体造形物の良好な寸法精度および表面品質と製造速度の向上とを両立させることが可能な立体造形装置および立体造形物の製造方法を提供することを目的とする。 This invention is made | formed in view of the said subject, The manufacturing method of the three-dimensional model | molding apparatus and three-dimensional model | molded object which can make the improvement of the favorable dimensional accuracy and surface quality of a three-dimensional molded item, and a manufacturing speed compatible. The purpose is to provide.
 上記課題を解決するために、第1の態様に係る立体造形装置は、造形用材料を供給することで該造形用材料によって形成される層を順次に積層させる供給部と、前記供給部によって積層された前記造形用材料の複数の層によって構成される積層体の端部に接触することなく、該端部を成形する成形部と、を備える。 In order to solve the above-described problem, the three-dimensional modeling apparatus according to the first aspect includes a supply unit configured to sequentially stack layers formed of the modeling material by supplying the modeling material, and the stacking unit configured by the supply unit. A molding part that molds the end part without contacting the end part of the laminated body constituted by the plurality of layers of the modeling material.
 第2の態様に係る立体造形装置は、第1の態様に係る立体造形装置であって、前記成形部が、前記供給部によって積層された各層における上部の外周部に形成されている凸部の少なくとも一部を崩すことで前記積層体の前記端部を成形する。 The three-dimensional modeling apparatus according to the second aspect is the three-dimensional modeling apparatus according to the first aspect, wherein the molding part is a convex part formed on an upper outer peripheral part in each layer laminated by the supply part. The said edge part of the said laminated body is shape | molded by breaking at least one part.
 第3の態様に係る立体造形装置は、第2の態様に係る立体造形装置であって、前記供給部によって積層された各層を硬化させる硬化部、をさらに備え、前記硬化部が、前記各層の前記凸部の少なくとも一部が前記成形部によって崩された後に、該各層を硬化させる。 The three-dimensional model | molding apparatus which concerns on a 3rd aspect is a three-dimensional model | molding apparatus which concerns on a 2nd aspect, Comprising: The hardening part which hardens each layer laminated | stacked by the said supply part, It further has the said hardening part, The said hardening part of each said layer Each layer is hardened after at least a part of the convex part is broken by the molding part.
 第4の態様に係る立体造形装置は、第3の態様に係る立体造形装置であって、前記硬化部が、前記各層の前記凸部が前記成形部によって崩される前に、該各層の前記上部における前記凸部以外の少なくとも前記凸部の近傍の部分を硬化させる。 The three-dimensional modeling apparatus according to the fourth aspect is the three-dimensional modeling apparatus according to the third aspect, in which the hardened part is formed in the upper part of each layer before the convex part of each layer is broken by the molding part. At least a portion in the vicinity of the convex portion other than the convex portion is cured.
 第5の態様に係る立体造形装置は、第2から第4の何れか1つの態様に係る立体造形装置であって、前記成形部が、前記凸部に気体を吹き付けることで前記凸部の少なくとも一部を崩す気体供給部を有する。 The three-dimensional modeling apparatus according to the fifth aspect is the three-dimensional modeling apparatus according to any one of the second to fourth aspects, wherein the molding unit blows gas onto the convex part, so that at least the convex part is formed. It has a gas supply part that breaks down a part.
 第6の態様に係る立体造形装置は、第5の態様に係る立体造形装置であって、前記気体供給部が、前記各層の上面に対して傾斜する方向から前記凸部の少なくとも一部に気体を吹き付ける。 The three-dimensional modeling apparatus according to the sixth aspect is the three-dimensional modeling apparatus according to the fifth aspect, in which the gas supply unit gas is supplied to at least a part of the convex portion from a direction inclined with respect to the upper surface of each layer. Spray.
 第7の態様に係る立体造形装置は、第2から第4の何れか1つの態様に係る立体造形装置であって、前記成形部が、前記凸部に音波を照射することで前記凸部の少なくとも一部を崩す音波照射部を有する。 The three-dimensional modeling apparatus according to the seventh aspect is the three-dimensional modeling apparatus according to any one of the second to fourth aspects, wherein the molding unit irradiates the convex part with a sound wave, thereby forming the convex part. It has a sound wave irradiation part that breaks at least a part.
 第8の態様に係る立体造形装置は、第2から第4の何れか1つの態様に係る立体造形装置であって、前記成形部が、前記凸部への熱の付与によって前記凸部の流動性を高めることで前記凸部の少なくとも一部を崩す熱付与部を有する。 The three-dimensional modeling apparatus according to the eighth aspect is the three-dimensional modeling apparatus according to any one of the second to fourth aspects, in which the molding part flows by applying heat to the convex part. It has the heat provision part which destroys at least one part of the said convex part by improving property.
 第9の態様に係る立体造形装置は、第2から第8の何れか1つの態様に係る立体造形装置であって、前記供給部によって積層された前記各層が硬化することで1以上の硬化層が形成され、前記成形部が、前記各硬化層の上部の外周部に形成されている凸部の少なくとも一部に熱を付与することで、該凸部の少なくとも一部を溶融させて崩す。 The three-dimensional modeling apparatus according to the ninth aspect is the three-dimensional modeling apparatus according to any one of the second to eighth aspects, and the one or more cured layers are formed by curing each of the layers stacked by the supply unit. Is formed, and the molding part applies heat to at least a part of the convex part formed on the outer peripheral part of the upper part of each cured layer, thereby melting and breaking at least a part of the convex part.
 第10の態様に係る立体造形装置は、第1から第9の何れか1つの態様に係る立体造形装置であって、前記成形部が、充填用材料の供給によって、前記供給部によって積層された2以上の層の外周部に形成されている段差部の凹部の少なくとも一部を前記充填用材料で埋めて前記積層体の前記端部を成形する充填用材料供給部、を有する。 The three-dimensional modeling apparatus according to a tenth aspect is the three-dimensional modeling apparatus according to any one of the first to ninth aspects, wherein the molding unit is stacked by the supply unit by supplying a filling material. A filling material supply unit configured to fill at least a part of the concave portion of the stepped portion formed in the outer peripheral portion of the two or more layers with the filling material and to mold the end portion of the laminate.
 第11の態様に係る立体造形装置は、第10の態様に係る立体造形装置であって、前記充填用材料が、光を散乱させる光散乱材料を含む。 The three-dimensional modeling apparatus according to the eleventh aspect is the three-dimensional modeling apparatus according to the tenth aspect, wherein the filling material includes a light scattering material that scatters light.
 第12の態様に係る立体造形装置は、第1から第11の何れか1つの態様に係る立体造形装置であって、前記成形部が、前記積層体の上面に対して離間した状態で、該上面に沿って第1方向および該第1方向と交差する第2方向に、該上面に対して相対的に移動する。 A three-dimensional modeling apparatus according to a twelfth aspect is the three-dimensional modeling apparatus according to any one of the first to eleventh aspects, wherein the molding unit is separated from the upper surface of the laminate. It moves relative to the upper surface in a first direction along the upper surface and in a second direction that intersects the first direction.
 第13の態様に係る立体造形装置は、第1から第12の何れか1つの態様に係る立体造形装置であって、前記供給部が、前記積層体の上面に対して離間した状態で、該上面に沿って第3方向および該第3方向と交差する第4方向に、該上面に対して相対的に移動する。 A three-dimensional modeling apparatus according to a thirteenth aspect is the three-dimensional modeling apparatus according to any one of the first to twelfth aspects, wherein the supply unit is separated from the upper surface of the laminate. It moves relative to the upper surface in a third direction along the upper surface and in a fourth direction that intersects the third direction.
 第14の態様に係る立体造形装置は、第1から第13の何れか1つの態様に係る立体造形装置であって、前記供給部および前記成形部が設けられており、前記積層体の上面に対して離間した状態で該上面に沿って相対的に移動する移動体、を備える。 A three-dimensional modeling apparatus according to a fourteenth aspect is the three-dimensional modeling apparatus according to any one of the first to thirteenth aspects, wherein the supply unit and the molding unit are provided, and the top surface of the stacked body is provided. A moving body that moves relatively along the upper surface in a state of being separated from the upper surface.
 第15の態様に係る立体造形装置は、第1から第14の何れか1つの態様に係る立体造形装置であって、基材を保持する基材保持部、を更に備え、前記供給部が、前記基材上に前記造形用材料を供給することで、該造形用材料によって形成される層を前記基材上に順次に積層させる。 The three-dimensional modeling apparatus according to the fifteenth aspect is the three-dimensional modeling apparatus according to any one of the first to fourteenth aspects, further comprising a base material holding unit that holds the base material, wherein the supply unit includes: By supplying the modeling material on the base material, layers formed by the modeling material are sequentially laminated on the base material.
 第16の態様に係る立体造形装置は、第15の態様に係る立体造形装置であって、前記基材上における造形対象領域を特定するための情報を認識する造形領域認識部、を更に備え、前記供給部が、前記造形領域認識部による認識結果に応じて、前記造形対象領域上に前記造形用材料を供給することで、前記造形用材料によって形成される層を前記造形対象領域上に順次に積層させる。 The three-dimensional modeling apparatus according to a sixteenth aspect is a three-dimensional modeling apparatus according to the fifteenth aspect, further comprising a modeling area recognition unit that recognizes information for specifying a modeling target area on the base material, The supply unit supplies the modeling material onto the modeling target region according to the recognition result by the modeling region recognition unit, so that the layers formed by the modeling material are sequentially formed on the modeling target region. Laminate.
 第17の態様に係る立体造形装置は、第1から第16の何れか1つの態様に係る立体造形装置であって、前記成形部によって前記積層体の前記端部が成形された後に、前記積層体の表面に着色する色付与部、を更に備える。 The three-dimensional modeling apparatus according to a seventeenth aspect is the three-dimensional modeling apparatus according to any one of the first to sixteenth aspects, wherein the stacked unit is formed after the end of the stacked body is molded by the molding unit. A color imparting portion for coloring the surface of the body;
 第18の態様に係る立体造形装置は、第17の態様に係る立体造形装置であって、前記積層体上における着色対象領域を特定するための情報を認識する着色領域認識部、を備え、前記色付与部が、前記着色領域認識部による認識結果に応じて、前記着色対象領域上に着色用の材料を供給することで、該着色用の材料によって構成される領域を形成する。 The three-dimensional modeling apparatus according to an eighteenth aspect is the three-dimensional modeling apparatus according to the seventeenth aspect, and includes a coloring area recognition unit that recognizes information for specifying a coloring target area on the laminate, The color imparting unit supplies a coloring material onto the coloring target region according to the recognition result by the coloring region recognizing unit, thereby forming a region constituted by the coloring material.
 第19の態様に係る立体造形装置は、第17または第18の態様に係る立体造形装置であって、前記色付与部が、該色付与部による着色の前および後の少なくとも一方のタイミングにおいて、前記積層体のうちの着色の対象となる領域に白色層を形成する。 The three-dimensional modeling apparatus according to a nineteenth aspect is the three-dimensional modeling apparatus according to the seventeenth or eighteenth aspect, wherein the color imparting unit is at least at one timing before and after coloring by the color imparting unit. A white layer is formed in a region to be colored in the laminate.
 第20の態様に係る立体造形装置は、第1から第19の何れか1つの態様に係る立体造形装置であって、材料を吐出する吐出口の目詰まりを防止する防止部、をさらに備える。 The three-dimensional modeling apparatus according to the twentieth aspect is the three-dimensional modeling apparatus according to any one of the first to nineteenth aspects, and further includes a prevention unit that prevents clogging of the discharge port that discharges the material.
 第21の態様に係る立体造形装置は、第1から第19の何れか1つの態様に係る立体造形装置であって、材料を吐出する吐出口のクリーニングを行う浄化部、を備える。 The three-dimensional modeling apparatus according to the twenty-first aspect is a three-dimensional modeling apparatus according to any one of the first to nineteenth aspects, and includes a purification unit that cleans the discharge port that discharges the material.
 第22の態様に係る立体造形装置は、第1から第21の何れか1つの態様に係る立体造形装置であって、前記造形用材料が、立体造形物を構成するための第1造形用材料、および前記立体造形物の形成後に除去される第2造形用材料を含む。 The three-dimensional modeling apparatus according to the twenty-second aspect is the three-dimensional modeling apparatus according to any one of the first to twenty-first aspects, wherein the modeling material is a first modeling material for constituting a three-dimensional modeled object. And a second modeling material that is removed after the three-dimensional model is formed.
 第23の態様に係る立体造形装置は、第1から第22の何れか1つの態様に係る立体造形装置であって、前記供給部が、前記造形用材料の硬化後の硬度に係る該造形用材料の成分の比率を変更する変更部をさらに有する。 A three-dimensional modeling apparatus according to a twenty-third aspect is the three-dimensional modeling apparatus according to any one of the first to twenty-second aspects, wherein the supply unit is for the modeling related to the hardness after curing of the modeling material. It further has a change part which changes the ratio of the component of material.
 第24の態様に係る立体造形装置は、第1から第23の何れか1つの態様に係る立体造形装置であって、前記成形部が、前記端部を成形した後に、該端部に凹凸加工を施す。 The three-dimensional modeling apparatus according to a twenty-fourth aspect is the three-dimensional modeling apparatus according to any one of the first to twenty-third aspects, wherein after the molding part molds the end part, the end part is processed to be uneven. Apply.
 第25の態様に係る立体造形物の製造方法は、(a)造形用材料を供給することで該造形用材料によって形成される層を順次に積層させるステップと、(b)前記(a)ステップにおいて積層された前記造形用材料の複数の層によって構成される積層体の端部に接触することなく、該端部を成形するステップと、を有する。 The manufacturing method of the three-dimensional structure according to the twenty-fifth aspect includes: (a) sequentially stacking layers formed by the modeling material by supplying the modeling material; and (b) the step (a) Forming the end portion without contacting the end portion of the laminated body constituted by the plurality of layers of the modeling material laminated in the step.
 第26の態様に係る立体造形物の製造方法は、第25の態様に係る立体造形物の製造方法であって、前記(b)ステップにおいて、前記(a)ステップにおいて積層された各層における上部の外周部に形成されている凸部の少なくとも一部を崩すことで前記積層体の前記端部を成形する。 The method for manufacturing a three-dimensional structure according to the twenty-sixth aspect is a method for manufacturing a three-dimensional structure according to the twenty-fifth aspect, wherein in the step (b), the upper part of each layer laminated in the step (a) is formed. The said edge part of the said laminated body is shape | molded by breaking at least one part of the convex part currently formed in the outer peripheral part.
 第27の態様に係る立体造形物の製造方法は、第25または第26の態様に係る立体造形物の製造方法であって、前記(b)ステップにおいて、充填用材料の供給によって、前記(a)ステップにおいて積層される2以上の層の外周部に形成されている段差部の凹部の少なくとも一部を、前記充填用材料で埋めて前記積層体の前記端部を成形する。 The manufacturing method of the three-dimensional structure according to the twenty-seventh aspect is the manufacturing method of the three-dimensional structure according to the twenty-fifth or twenty-sixth aspect, wherein in the step (b), the (a) ) At least part of the recesses of the stepped portions formed on the outer peripheral portions of the two or more layers laminated in the step are filled with the filling material, and the end portion of the laminated body is formed.
 第28の態様に係る立体造形物の成形装置は、造形用材料を供給することで該造形用材料によって形成される層が順次に積層された積層体の端部に接触することなく、該端部を成形する成形部を有する。 The apparatus for molding a three-dimensional structure according to the twenty-eighth aspect is configured so that the layer formed by the material for modeling by supplying the material for modeling does not come into contact with the end of the laminated body sequentially laminated. A molding part for molding the part;
 第1から第24の何れの態様に係る立体造形装置によっても、例えば、順次に積層される各層を厚くして製造速度を向上させても、非接触で積層体の端部が成形されるため、立体造形物の良好な寸法精度および表面品質と製造速度の向上とが両立し得る。 Even with the three-dimensional modeling apparatus according to any one of the first to twenty-fourth aspects, for example, even if the layers that are sequentially stacked are thickened to increase the manufacturing speed, the end of the stacked body is formed in a non-contact manner. It is possible to achieve both good dimensional accuracy and surface quality of the three-dimensional structure and improvement of the manufacturing speed.
 第2から第9の何れの態様に係る立体造形装置によっても、各層の上部の外周部に形成されている凸部が崩されることで、立体造形物の表面上における多数の段差部が目立たなくなるため、立体造形物の表面品質の向上が図られ得る。 Even in the three-dimensional modeling apparatus according to any of the second to ninth aspects, a large number of stepped portions on the surface of the three-dimensional model become inconspicuous because the convex portions formed on the outer peripheral portion at the top of each layer are destroyed. Therefore, the surface quality of the three-dimensional model can be improved.
 第3から第8の何れの態様に係る立体造形装置によっても、硬化前の各層の凸部が崩されるため、立体造形物の良好な寸法精度および表面品質の向上が容易に実現され得る。 Even with the three-dimensional modeling apparatus according to any of the third to eighth aspects, the convex portions of the respective layers before curing are destroyed, so that it is possible to easily realize good dimensional accuracy and surface quality improvement of the three-dimensional model.
 第4の態様に係る立体造形装置によれば、積層体の端部における必要以上の成形が抑制されるため、立体造形物の寸法精度および表面品質が更に向上し得る。 According to the three-dimensional modeling apparatus according to the fourth aspect, since unnecessary molding at the end of the laminate is suppressed, the dimensional accuracy and surface quality of the three-dimensional model can be further improved.
 第5から第8の何れの態様に係る立体造形装置によっても、非接触で凸部が容易に崩されるため、立体造形物の寸法精度および表面品質が更に向上し得る。 Even in the three-dimensional modeling apparatus according to any of the fifth to eighth aspects, the convex portion can be easily broken without contact, so that the dimensional accuracy and surface quality of the three-dimensional model can be further improved.
 第6の態様に係る立体造形装置によれば、各層の上面に沿った方向において各層の凸部およびその近傍の部分における造形用材料の流動性が高められるため、非接触で凸部が容易に崩され得る。 According to the three-dimensional modeling apparatus according to the sixth aspect, since the fluidity of the modeling material in the convex portion of each layer and the portion in the vicinity thereof in the direction along the upper surface of each layer is improved, the convex portion is easily contactless. Can be destroyed.
 第9の態様に係る立体造形装置によれば、例えば、供給後に直ぐに硬化する造形用材料が用いられることで、立体造形物の製造速度が向上し得る。 According to the three-dimensional modeling apparatus according to the ninth aspect, for example, by using a modeling material that hardens immediately after supply, the manufacturing speed of the three-dimensional model can be improved.
 第10および第11の何れの態様に係る立体造形装置によっても、例えば、段差部の凹部が埋められることで目立たなくなるため、立体造形物の表面品質の向上が図られ得る。 Also with the three-dimensional modeling apparatus according to any of the tenth and eleventh aspects, for example, the surface quality of the three-dimensional model can be improved because it becomes inconspicuous by filling the concave portion of the stepped portion.
 第11の態様に係る立体造形装置によれば、段差部が容易に目立たなくなるため、立体造形物の表面品質の向上が容易に図られ得る。 According to the three-dimensional modeling apparatus according to the eleventh aspect, the stepped portion is not easily noticeable, so that the surface quality of the three-dimensional model can be easily improved.
 第12の態様に係る立体造形装置によれば、成形部の数が低減され得るため、立体造形装置の装置構成の簡略化ならびに小型化が図られ得る。 According to the three-dimensional modeling apparatus according to the twelfth aspect, since the number of molding parts can be reduced, the apparatus configuration of the three-dimensional modeling apparatus can be simplified and downsized.
 第13の態様に係る立体造形装置によれば、供給部の数が低減され得るため、立体造形装置の装置構成の簡略化ならびに小型化が図られ得る。 According to the three-dimensional modeling apparatus according to the thirteenth aspect, since the number of supply units can be reduced, the apparatus configuration of the three-dimensional modeling apparatus can be simplified and downsized.
 第14の態様に係る立体造形装置によれば、供給部および成形部を移動させる機構の簡略化が図られることで、立体造形装置の装置構成の更なる簡略化ならびに小型化が図られ得る。 According to the three-dimensional modeling apparatus according to the fourteenth aspect, by simplifying the mechanism for moving the supply unit and the molding unit, the apparatus configuration of the three-dimensional modeling apparatus can be further simplified and downsized.
 第15および第16の何れの態様に係る立体造形装置によっても、基材上に造形される立体造形物について良好な寸法精度および表面品質と製造速度の向上とが両立し得る。 Also with the three-dimensional modeling apparatus according to any of the fifteenth and sixteenth aspects, it is possible to achieve both good dimensional accuracy, surface quality, and improvement in manufacturing speed for a three-dimensional modeled object to be modeled on the base material.
 第16の態様に係る立体造形装置によれば、基材上の所望の造形対象領域に良好な寸法精度と表面品質とを有する立体造形物が迅速に造形され得る。 According to the three-dimensional modeling apparatus according to the sixteenth aspect, a three-dimensional model having good dimensional accuracy and surface quality can be quickly modeled in a desired modeling target region on the base material.
 第17の態様に係る立体造形装置によれば、良好な寸法精度と表面品質とを有し且つ色彩を有する立体造形物が迅速に造形され得る。 According to the three-dimensional modeling apparatus according to the seventeenth aspect, a three-dimensional modeled object having good dimensional accuracy and surface quality and having a color can be quickly modeled.
 第18の態様に係る立体造形装置によれば、該立体造形装置で形成された造形物にも、他の装置で形成された造形物にも、必要な着色対象領域に精度良く着色され得る。 According to the three-dimensional modeling apparatus according to the eighteenth aspect, it is possible to accurately color a required coloring target region on a modeled object formed by the three-dimensional modeling apparatus or a modeled object formed by another apparatus.
 第19の態様に係る立体造形装置によれば、着色前に白色層が形成されることで、彩度、明度、コントラスト等と言った色品質の高い着色領域が形成され得る。 According to the three-dimensional modeling apparatus according to the nineteenth aspect, a colored layer having high color quality such as saturation, brightness, and contrast can be formed by forming a white layer before coloring.
 第20の態様に係る立体造形装置によれば、例えば、積層体を形成する工程の間、着色のための吐出口をインクの硬化から保護することで、安定した着色が実現され得る。 According to the three-dimensional modeling apparatus according to the twentieth aspect, for example, during the step of forming the laminate, stable coloring can be realized by protecting the discharge port for coloring from curing of the ink.
 第21の態様に係る立体造形装置によれば、例えば、造形用材料あるいは着色用の材料を吐出する吐出口を、材料の吐出前にクリーニングしておくことで、材料の吐出不良および吐出口付近に飛散した不要な材料の造形物への落下を減らすことにより、立体造形物の品質が安定され得る。 According to the three-dimensional modeling apparatus according to the twenty-first aspect, for example, by cleaning the discharge port for discharging the modeling material or the coloring material before discharging the material, the discharge failure of the material and the vicinity of the discharge port The quality of the three-dimensional modeled object can be stabilized by reducing the fall of unnecessary materials scattered on the modeled object.
 第22の態様に係る立体造形装置によれば、造形用材料に、立体造形物を構成するための材料だけでなく、立体造形物の形成後に除去される材料が含まれることで、逆テーパー状の立体造形物の良好な寸法精度および表面品質と製造速度の向上とが両立し得る。 According to the three-dimensional modeling apparatus according to the twenty-second aspect, the modeling material includes not only a material for forming the three-dimensional modeled object but also a material that is removed after the three-dimensional modeled object is formed, so that a reverse taper shape is obtained. It is possible to achieve both good dimensional accuracy and surface quality of the three-dimensional modeled object and improvement of the manufacturing speed.
 第23の態様に係る立体造形装置によれば、例えば、造形用材料の積層時または半硬化状態での積層後における選択的な領域において、例えば、単位面積あたりの硬化剤の量を網点のように変化させることで硬化剤を含む造形用材料の成分比率が変更されるため、硬化後の硬度が異なる複数の材料が別々の供給部から供給されずとも、部分的に固さが異なる造形物が作成され得る。これにより、多数種類の材料および多数の供給部が準備されなくとも、硬度が異なる立体造形物が実現され得る。 According to the three-dimensional modeling apparatus according to the twenty-third aspect, for example, in a selective region at the time of stacking the modeling material or after stacking in a semi-cured state, for example, the amount of the curing agent per unit area Since the component ratio of the material for modeling including the curing agent is changed by changing the amount of the material so as to change, even if a plurality of materials having different hardness after curing are not supplied from separate supply units, the modeling partially differs in hardness Things can be created. Thereby, even if many kinds of materials and many supply parts are not prepared, the three-dimensional molded item from which hardness differs can be implement | achieved.
 第24の態様に係る立体造形装置によれば、成形後の端面における表面品質が調整され得る。 According to the three-dimensional modeling apparatus according to the twenty-fourth aspect, the surface quality at the end face after molding can be adjusted.
 第25の態様に係る立体造形物の製造方法によれば、第1の態様に係る立体造形装置と同様な効果が得られる。 According to the method for manufacturing a three-dimensional structure according to the twenty-fifth aspect, the same effects as those of the three-dimensional structure manufacturing apparatus according to the first aspect can be obtained.
 第26の態様に係る立体造形物の製造方法によれば、第2の態様に係る立体造形装置と同様な効果が得られる。 According to the method for manufacturing a three-dimensional structure according to the twenty-sixth aspect, the same effect as that of the three-dimensional structure forming apparatus according to the second aspect can be obtained.
 第27の態様に係る立体造形物の製造方法によれば、第10の態様に係る立体造形装置と同様な効果が得られる。 According to the method for manufacturing a three-dimensional object according to the twenty-seventh aspect, the same effect as that of the three-dimensional object manufacturing device according to the tenth aspect can be obtained.
 第28の態様に係る成形装置によれば、例えば、他の装置における積層体の形成において、順次に積層される各層を厚くして製造速度を向上させても、非接触で積層体の端部が成形されるため、立体造形物の良好な寸法精度および表面品質と製造速度の向上とが両立し得る。 According to the molding apparatus of the twenty-eighth aspect, for example, in the formation of a laminated body in another apparatus, even if the layers that are sequentially laminated are thickened to improve the production speed, the end of the laminated body is contactless Therefore, it is possible to achieve both good dimensional accuracy and surface quality of the three-dimensional structure and improvement of the manufacturing speed.
図1は、一実施形態に係る立体造形システムの概略的な構成を模式的に示す図である。FIG. 1 is a diagram schematically illustrating a schematic configuration of a three-dimensional modeling system according to an embodiment. 図2は、ヘッド部の走査態様を例示する上面図である。FIG. 2 is a top view illustrating a scanning mode of the head unit. 図3は、凸部を有する積層体の一例を模式的に示す図である。FIG. 3 is a diagram schematically illustrating an example of a laminated body having convex portions. 図4は、成形部によって凸部が崩される前の積層体の一例を模式的に示す図である。FIG. 4 is a diagram schematically illustrating an example of a laminated body before the convex portion is broken by the forming portion. 図5は、成形部によって凸部が崩された後の積層体の一例を模式的に示す図である。FIG. 5 is a diagram schematically illustrating an example of a laminated body after the convex portion is broken by the forming portion. 図6は、凸部以外の部分を半硬化させて成形部で凸部を崩す一例を示す図である。FIG. 6 is a diagram illustrating an example in which a portion other than the convex portion is semi-cured and the convex portion is broken in the molded portion. 図7は、気体供給部の一構成例を模式的に示す図である。FIG. 7 is a diagram schematically illustrating a configuration example of the gas supply unit. 図8は、気体供給部から供給される気体の圧力分布の一例を示す図である。FIG. 8 is a diagram illustrating an example of the pressure distribution of the gas supplied from the gas supply unit. 図9は、気体混合部を有する気体供給部の一構成例を模式的に示す図である。FIG. 9 is a diagram schematically illustrating a configuration example of a gas supply unit having a gas mixing unit. 図10は、気体混合部の一構成例を示す断面図である。FIG. 10 is a cross-sectional view illustrating a configuration example of the gas mixing unit. 図11は、気体供給部から供給される気体の圧力分布の一例を示す図である。FIG. 11 is a diagram illustrating an example of the pressure distribution of the gas supplied from the gas supply unit. 図12は、気体供給管における流量制御の一態様を示す図である。FIG. 12 is a diagram illustrating one mode of flow rate control in the gas supply pipe. 図13は、気体供給管における流量制御の他の一態様を示す図である。FIG. 13 is a diagram illustrating another aspect of the flow rate control in the gas supply pipe. 図14は、積層体に対して傾斜している気体供給部の一例を模式的に示す図である。FIG. 14 is a diagram schematically illustrating an example of a gas supply unit that is inclined with respect to the stacked body. 図15は、音波照射部の一構成例を模式的に示す図である。FIG. 15 is a diagram schematically illustrating a configuration example of a sound wave irradiation unit. 図16は、段差部の凹部に充填材料を充填させる態様を示す図である。FIG. 16 is a diagram illustrating a mode in which the filling material is filled in the concave portion of the stepped portion. 図17は、斜面部に対する着色方法を説明するための図である。FIG. 17 is a diagram for explaining a coloring method for a slope portion. 図18は、斜面部に対する着色方法を説明するための図である。FIG. 18 is a diagram for explaining a coloring method for a slope portion. 図19は、斜面部に対する着色方法を説明するための図である。FIG. 19 is a diagram for explaining a coloring method for a slope portion. 図20は、斜面部に対する着色方法を説明するための図である。FIG. 20 is a diagram for explaining a coloring method for the slope portion. 図21は、斜面部に対する着色方法を説明するための図である。FIG. 21 is a diagram for explaining a coloring method for the slope portion. 図22は、光散乱層と白インク層とカラー層とを積層させる態様を示す図である。FIG. 22 is a diagram illustrating an aspect in which a light scattering layer, a white ink layer, and a color layer are stacked. 図23は、一変形例に係る立体造形システムの概略的な構成を模式的に示す図である。FIG. 23 is a diagram schematically illustrating a schematic configuration of a three-dimensional modeling system according to a modification. 図24は、造形対象領域に対する位置合わせを行う方法を示す図である。FIG. 24 is a diagram illustrating a method of performing alignment with respect to the modeling target region. 図25は、他の一変形例に係る立体造形システムの概略的な構成を模式的に示す図である。FIG. 25 is a diagram schematically illustrating a schematic configuration of a three-dimensional modeling system according to another modification. 図26は、サポート材を用いた立体造形物の製造方法を説明するための図である。FIG. 26 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material. 図27は、サポート材を用いた立体造形物の製造方法を説明するための図である。FIG. 27 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material. 図28は、サポート材を用いた立体造形物の製造方法を説明するための図である。FIG. 28 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material. 図29は、サポート材を用いた立体造形物の製造方法を説明するための図である。FIG. 29 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material. 図30は、サポート材を用いた立体造形物の製造方法を説明するための図である。FIG. 30 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material. 図31は、サポート材を用いた立体造形物の製造方法を説明するための図である。FIG. 31 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material. 図32は、サポート材を用いた立体造形物の製造方法を説明するための図である。FIG. 32 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material. 図33は、サポート材を用いた立体造形物の製造方法を説明するための図である。FIG. 33 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material. 図34は、サポート材を用いた立体造形物の製造方法を説明するための図である。FIG. 34 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material. 図35は、サポート材を用いた立体造形物の製造方法を説明するための図である。FIG. 35 is a diagram for explaining a method of manufacturing a three-dimensional structure using a support material. 図36は、一変形例に係る積層体の端部の成形方法を説明するための図である。FIG. 36 is a diagram for explaining a method of forming an end portion of a laminated body according to a modification. 図37は、一変形例に係る積層体の端部の成形方法を説明するための図である。FIG. 37 is a diagram for explaining a method of forming an end portion of a laminated body according to a modification. 図38は、一変形例に係る積層体の端部の成形方法を説明するための図である。FIG. 38 is a diagram for explaining a method of forming an end portion of a laminated body according to a modification.
 以下、本発明の一実施形態および各種変形例を図面に基づいて説明する。なお、図面においては同様な構成および機能を有する部分については同じ符号が付されており、下記説明では重複説明が省略される。また、図面は模式的に示されたものであり、各図における各種構造のサイズおよび位置関係等は適宜変更され得る。なお、図1から図14、図16から図20および図22から図38には、ヘッド部30のヘッド本体部30Bdがガイド部16に沿って移動する移動方向(図1の右方向)を+X方向とする右手系のXYZ座標系が付されている。 Hereinafter, an embodiment and various modifications of the present invention will be described with reference to the drawings. In the drawings, parts having the same configuration and function are denoted by the same reference numerals, and redundant description is omitted in the following description. Further, the drawings are schematically shown, and the sizes and positional relationships of various structures in each drawing can be appropriately changed. 1 to 14, FIG. 16 to FIG. 20, and FIG. 22 to FIG. 38, the movement direction (right direction in FIG. 1) in which the head main body 30Bd of the head 30 moves along the guide 16 is + X. A right-handed XYZ coordinate system is attached as a direction.
 <(1)立体造形装置の概略構成>
 図1は、一実施形態に係る立体造形システム100の概略構成を示す図である。立体造形システム100は、造形用の材料(造形用材料とも言う)を主に液体または流体の状態で供給して硬化させることで層を順次に形成して、複数の層が積層された任意の造形物を製造する。
<(1) Schematic configuration of 3D modeling apparatus>
FIG. 1 is a diagram illustrating a schematic configuration of a three-dimensional modeling system 100 according to an embodiment. The three-dimensional modeling system 100 is an arbitrary one in which layers are sequentially formed by supplying and curing a modeling material (also referred to as modeling material) mainly in a liquid or fluid state, and a plurality of layers are stacked. Manufacture a model.
 図1で示されるように、立体造形システム100は、データ作成装置1および立体造形装置2を備えている。 As illustrated in FIG. 1, the three-dimensional modeling system 100 includes a data creation device 1 and a three-dimensional modeling device 2.
 データ作成装置1は、3次元形状の造形物(立体造形物とも言う)を示すデータ(3Dデータとも言う)を取得して、該3Dデータ上で立体造形物を薄切りにして複数の薄い断面体に係る断面データを生成し、立体造形装置2に対して送信する。データ作成装置1は、例えば、パーソナルコンピュータ等であれば良く、3Dデータは、例えば、CADデータ等であれば良い。着色のためのカラー情報としては、例えば、色情報を持つ3Dデータや2次元のカラーデータが立体形状に合うように位置決めされたり、立体形状に合わせた変形が施されたりしたものが使用される。 The data creation device 1 acquires data (also referred to as 3D data) indicating a three-dimensional shaped object (also referred to as a three-dimensional object), and slices the three-dimensional object on the 3D data to obtain a plurality of thin cross-sections. Is generated and transmitted to the three-dimensional modeling apparatus 2. The data creation device 1 may be a personal computer, for example, and the 3D data may be, for example, CAD data. As the color information for coloring, for example, 3D data having color information or two-dimensional color data is positioned so as to match a three-dimensional shape, or one that is deformed according to the three-dimensional shape is used. .
 立体造形装置2は、制御部10、テーブル部20およびヘッド部30を備えている。 The three-dimensional modeling apparatus 2 includes a control unit 10, a table unit 20, and a head unit 30.
 制御部10は、データ作成装置1から断面データを得て、該断面データに応じて、テーブル部20およびヘッド部30の動作を制御する。 The control unit 10 obtains cross-sectional data from the data creation device 1, and controls the operations of the table unit 20 and the head unit 30 according to the cross-sectional data.
 テーブル部20は、保持部21、ロッド部22および駆動部23を備えている。 The table unit 20 includes a holding unit 21, a rod unit 22, and a driving unit 23.
 保持部21は、例えば、上面が平滑な板状の部分(プレート部とも言う)である。本実施形態では、保持部21の上面上にヘッド部30から供給される造形用材料が積層されることで、立体造形物3D1が形成される。このため、保持部21は、立体造形物3D1の形成過程において、造形用材料等によって構成される複数の層からなる積層体LP1を支持するとともに、形成された立体造形物3D1を支持する。 The holding portion 21 is, for example, a plate-like portion (also referred to as a plate portion) having a smooth upper surface. In the present embodiment, the modeling material supplied from the head unit 30 is laminated on the upper surface of the holding unit 21 to form the three-dimensional modeled object 3D1. For this reason, the holding part 21 supports the formed three-dimensional object 3D1 while supporting the stacked body LP1 including a plurality of layers made of a modeling material or the like in the formation process of the three-dimensional object 3D1.
 ロッド部22は、駆動部23の駆動に応じて、保持部21を上下方向(本実施形態では、±Z方向)に移動させる部分である。ロッド部22としては、例えば、保持部21の下面に連結される棒状の部材等が採用され得る。 The rod portion 22 is a portion that moves the holding portion 21 in the vertical direction (± Z direction in the present embodiment) in accordance with the driving of the driving portion 23. As the rod part 22, for example, a rod-like member connected to the lower surface of the holding part 21 can be adopted.
 駆動部23は、ロッド部22を上下方向に移動させる部分である。本実施形態では、駆動部23によって保持部21が上下方向に移動されることで、ヘッド部30と保持部21との上下方向における相対的な位置が変更される。例えば、保持部21上に造形用材料の層が形成される毎に、保持部21がヘッド部30から離れる方向に移動する。 The drive part 23 is a part which moves the rod part 22 to an up-down direction. In the present embodiment, the relative position of the head unit 30 and the holding unit 21 in the vertical direction is changed by moving the holding unit 21 in the vertical direction by the driving unit 23. For example, each time a layer of modeling material is formed on the holding unit 21, the holding unit 21 moves in a direction away from the head unit 30.
 ヘッド部30は、ヘッド本体部30Bdおよび駆動部15を有している。ヘッド本体部30Bdには、駆動部15が設けられており、駆動部15は、例えば、第1ガイド部16に係合あるいは嵌合している。第1ガイド部16は、例えば、水平方向(本実施形態では、±X方向)に延びる棒状の部材である。そして、ヘッド部30は、例えば、ヘッド本体部30Bdに対して設けられた駆動部15が発する駆動力に応じて、第1ガイド部16の長手方向に沿って移動する。これにより、ヘッド部30が、主走査方向としての±X方向に走査される。 The head unit 30 includes a head body unit 30Bd and a drive unit 15. The head main body 30 </ b> Bd is provided with a drive unit 15, and the drive unit 15 is engaged or fitted with the first guide unit 16, for example. The first guide portion 16 is, for example, a rod-like member that extends in the horizontal direction (in this embodiment, the ± X direction). And the head part 30 moves along the longitudinal direction of the 1st guide part 16 according to the driving force which the drive part 15 provided with respect to head main-body part 30Bd emits, for example. Thereby, the head unit 30 is scanned in the ± X direction as the main scanning direction.
 図2は、ヘッド部30の走査態様を例示する上面図である。図2で示されるように、第1ガイド部16は、例えば、該第1ガイド部16の長手方向の一端部に設けられた駆動部16aと、該第1ガイド部16の長手方向の他端部に設けられた駆動部16bを有している。なお、本実施形態では、一端部は、-X側の端部であり、他端部は、+X側の端部である。例えば、駆動部16aは、第2ガイド部17aに係合あるいは嵌合しており、駆動部16bは、第3ガイド部17bに係合あるいは嵌合している。第2および第3ガイド部17a,17bは、例えば、相互に平行な方向(本実施形態では、±Y方向)に延びる棒状の部材である。そして、ヘッド部30は、例えば、駆動部16a,16bが発する駆動力に応じて、第2および第3ガイド部17a,17bの長手方向に沿って移動する。これにより、ヘッド部30が、主走査方向に直交する副走査方向としての±Y方向に走査される。 FIG. 2 is a top view illustrating the scanning mode of the head unit 30. As shown in FIG. 2, the first guide portion 16 includes, for example, a driving portion 16 a provided at one end portion in the longitudinal direction of the first guide portion 16 and the other end portion in the longitudinal direction of the first guide portion 16. It has the drive part 16b provided in the part. In the present embodiment, one end is an end on the −X side, and the other end is an end on the + X side. For example, the drive part 16a is engaged or fitted with the second guide part 17a, and the drive part 16b is engaged or fitted with the third guide part 17b. The second and third guide portions 17a and 17b are, for example, rod-shaped members extending in directions parallel to each other (± Y direction in the present embodiment). And the head part 30 moves along the longitudinal direction of the 2nd and 3rd guide parts 17a and 17b according to the driving force which the drive parts 16a and 16b generate | occur | produce, for example. Thereby, the head unit 30 is scanned in the ± Y direction as the sub-scanning direction orthogonal to the main scanning direction.
 すなわち、例えば、駆動部15,16a,16bによって、ヘッド部30が、主走査方向としての±X方向に沿った一往復の移動と、副走査方向としての±Y方向に沿った若干のシフトとを繰り返すことで、保持部21の上方において2次元的に走査され得る。 That is, for example, the drive unit 15, 16 a, 16 b causes the head unit 30 to make one reciprocal movement along the ± X direction as the main scanning direction and a slight shift along the ± Y direction as the sub-scanning direction. By repeating the above, it is possible to scan two-dimensionally above the holding unit 21.
 図1に示すようにヘッド本体部30Bdは、供給部11、成形部12、硬化部13および色付与部14を備えている。 As shown in FIG. 1, the head main body 30 </ b> Bd includes a supply unit 11, a molding unit 12, a curing unit 13, and a color applying unit 14.
 ここで、ヘッド部30の2次元的な走査によって、成形部12は、積層体LP1の上面に対して離間した状態で、該上面に沿って主走査方向(第1方向とも言う)および該第1方向と交差する副走査方向(第2方向とも言う)に、該上面に対して相対的に移動する。これにより、成形部12を多数設ける必要性がなくなり、成形部12の数が低減され得る。このため、立体造形装置2の装置構成の簡略化ならびに小型化が図られ得る。 Here, the two-dimensional scanning of the head unit 30 causes the forming unit 12 to be separated from the upper surface of the multilayer body LP1, and along the upper surface along the main scanning direction (also referred to as the first direction) and the first It moves relative to the upper surface in a sub-scanning direction (also referred to as a second direction) that intersects one direction. Thereby, it is not necessary to provide a large number of molding parts 12, and the number of molding parts 12 can be reduced. For this reason, simplification and downsizing of the apparatus configuration of the three-dimensional modeling apparatus 2 can be achieved.
 また、ヘッド部30の2次元的な走査によって、供給部11は、積層体LP1の上面に対して離間した状態で、該上面に沿って主走査方向(第3方向とも言う)および該第3方向と交差する副走査方向(第4方向とも言う)に、該上面に対して相対的に移動する。これにより、供給部11を多数設ける必要性がなくなり、供給部11の数が低減され得る。このため、立体造形装置2の装置構成の簡略化ならびに小型化が図られ得る。 In addition, the supply unit 11 is separated from the upper surface of the multilayer body LP1 by two-dimensional scanning of the head unit 30, and in the main scanning direction (also referred to as a third direction) and the third along the upper surface. It moves relative to the upper surface in the sub-scanning direction (also referred to as the fourth direction) that intersects the direction. Thereby, it is not necessary to provide a large number of supply units 11, and the number of supply units 11 can be reduced. For this reason, simplification and downsizing of the apparatus configuration of the three-dimensional modeling apparatus 2 can be achieved.
 そして、ここでは、積層体LP1の上面に対して離間した状態で該上面に沿って相対的に移動する移動体としての同一のヘッド本体部30Bdに、供給部11および成形部12が設けられている。これにより、供給部11および成形部12を移動させる機構の簡略化が図られ、立体造形装置2の装置構成の更なる簡略化ならびに小型化が図られ得る。 Here, the supply unit 11 and the molding unit 12 are provided in the same head main body 30Bd as a moving body that moves relatively along the upper surface in a state of being separated from the upper surface of the multilayer body LP1. Yes. Thereby, simplification of the mechanism which moves the supply part 11 and the shaping | molding part 12 is achieved, and the further simplification and size reduction of the apparatus structure of the three-dimensional modeling apparatus 2 can be achieved.
 供給部11は、造形用材料を供給することで該造形用材料によって形成される層を順次に積層させる。ここで、造形用材料としては、例えば、紫外線の照射に応じて硬化する樹脂(紫外線硬化性樹脂とも言う)および熱の付与に応じて硬化する樹脂(熱硬化性樹脂とも言う)等が採用され得る。供給部11は、例えば、造形用材料を液体または流体の状態で、保持部21上に供給する。供給部11では、例えば、インクジェット方式等の供給方式によって、造形用材料が、保持部21上の適切な位置に吐出される。 The supply unit 11 sequentially stacks layers formed by the modeling material by supplying the modeling material. Here, as the modeling material, for example, a resin that cures in response to ultraviolet irradiation (also referred to as an ultraviolet curable resin) and a resin that cures in response to application of heat (also referred to as a thermosetting resin) are employed. obtain. For example, the supply unit 11 supplies the modeling material onto the holding unit 21 in a liquid or fluid state. In the supply unit 11, for example, the modeling material is discharged to an appropriate position on the holding unit 21 by a supply method such as an inkjet method.
 ここで、積層体LP1を構成している造形用材料は、例えば、液体あるいは流体の状態を維持した状態で積層される。インクジェット方式の供給方式が採用される場合、例えば、供給部11に設けられる造形用材料を吐出する孔(吐出孔とも言う)は、1つであっても良いし、2以上であっても良い。なお、供給部11が多数の吐出孔を有する場合には、ヘッド部30の主走査方向における一回の走査によって、例えば、30~50mmの幅で造形用材料の層が形成される構成等が考えられる。 Here, the modeling material constituting the laminated body LP1 is laminated, for example, while maintaining a liquid or fluid state. In the case where an ink jet method is employed, for example, the number of holes (also referred to as discharge holes) for discharging the modeling material provided in the supply unit 11 may be one or two or more. . In the case where the supply unit 11 has a large number of ejection holes, a configuration in which a layer of a modeling material is formed with a width of 30 to 50 mm, for example, by a single scan of the head unit 30 in the main scanning direction. Conceivable.
 また、造形用材料として、例えば、ABS(acrylonitrile butadiene styrene copolymer)樹脂あるいはポリ乳酸(PLA)樹脂等といった熱可塑性樹脂が採用されても良い。これらの樹脂は、熱せられた状態では流動性を有するが、常温に保持されると直ぐに硬化するタイプ(常温硬化タイプとも言う)の材料である。このような造形用材料が採用される場合、供給部11において、熱可塑性樹脂は、熱で溶融され、極細のノズルから射出されることで保持部21上に積層される。なお、常温硬化タイプの造形用材料は、例えば、100~300℃程度まで加熱されることで、流動性を有する状態となる。 Further, as the material for modeling, for example, a thermoplastic resin such as ABS (acrylonitrile butadiene styrene styrene copolymer) resin or polylactic acid (PLA) resin may be employed. These resins are fluids that are fluid when heated, but are hardened immediately when kept at room temperature (also referred to as room temperature curing type). When such a modeling material is employed, in the supply unit 11, the thermoplastic resin is melted by heat and injected from the ultrafine nozzle and stacked on the holding unit 21. Note that a room temperature curing type modeling material becomes fluid when heated to about 100 to 300 ° C., for example.
 ここで、例えば、造形用材料として熱可塑性樹脂が採用される場合、供給部11が、ワイヤー状の熱可塑性樹脂(樹脂ワイヤーとも言う)がリールに巻かれたユニットを保持する手段と、樹脂ワイヤーを熱溶融させるためのヘッドにチューブ等の内側を通して該樹脂ワイヤーを安定的に供給する手段と、樹脂ワイヤーを吐出ヘッドに押し出すために樹脂ワイヤーをギア等で駆動させる手段とを備える構成が考えられる。そして、熱可塑性樹脂をそれぞれ吐出する複数のヘッドを備えたユニットを備え、立体造形物の断面データに基づく該ユニットの1回の移動において、複数本の樹脂ワイヤーの駆動が個別に制御されつつ、熱可塑性樹脂が広い幅で積層される構成が考えられる。このような構成によれば、造形用材料の積層に要する時間の短縮が図られ得る。 Here, for example, when a thermoplastic resin is employed as the modeling material, the supply unit 11 holds a unit in which a wire-shaped thermoplastic resin (also referred to as a resin wire) is wound on a reel, and a resin wire A structure comprising means for stably supplying the resin wire through the inside of a tube or the like to the head for thermally melting the resin, and means for driving the resin wire with a gear or the like to push the resin wire to the discharge head is conceivable. . And it is provided with a unit provided with a plurality of heads which respectively discharge thermoplastic resin, and in the single movement of the unit based on the cross-sectional data of the three-dimensional structure, while driving of the plurality of resin wires is individually controlled, A configuration in which the thermoplastic resin is laminated with a wide width is conceivable. According to such a configuration, the time required for stacking the modeling materials can be shortened.
 なお、ヘッド部30の2次元的な走査態様は、図2で示されるようなヘッド部30の走査態様に限られない。例えば、制御部10が断面データに基づいて造形用材料が積層される領域を判断し、造形用材料が積層されない領域に対応するヘッド部30の走査量を減少させる走査態様が考えられる。この場合、ヘッド部30の走査量の減少によって、積層時間の短縮が図られ得る。 The two-dimensional scanning mode of the head unit 30 is not limited to the scanning mode of the head unit 30 as shown in FIG. For example, a scanning mode is conceivable in which the control unit 10 determines a region where the modeling material is stacked based on the cross-sectional data, and reduces the scanning amount of the head unit 30 corresponding to the region where the modeling material is not stacked. In this case, the stacking time can be shortened by reducing the scanning amount of the head unit 30.
 また、造形用材料は、樹脂だけに限られない。例えば、立体造形物の強度を上昇させたい場合には、樹脂に各種材料が混合された造形用材料が採用されても良い。例えば、樹脂に混合される材料が、金属粉等の無機材料であれば、立体造形物の硬さが上昇し得る。また、例えば、樹脂に混合される材料が、ファイバー状の繊維であれば、立体造形物の靱性が上昇し得る。ここで、ファイバー状の繊維としては、例えば、ガラス繊維、炭素繊維を含む樹脂繊維、ナノセルロースファイバー等を含む植物由来の繊維等が含まれ得る。 Also, the material for modeling is not limited to resin. For example, when it is desired to increase the strength of the three-dimensional model, a modeling material in which various materials are mixed in a resin may be employed. For example, if the material mixed with the resin is an inorganic material such as metal powder, the hardness of the three-dimensional structure can be increased. For example, if the material mixed with resin is a fiber-like fiber, the toughness of a three-dimensional molded item can rise. Here, as the fiber-like fibers, for example, glass fibers, resin fibers including carbon fibers, plant-derived fibers including nanocellulose fibers, and the like can be included.
 成形部12は、3Dデータに基づき、供給部11によって積層された造形用材料の複数の層によって構成される積層体LP1の端部T1(図3)に接触することなく、該端部T1を成形する。成形部12による端部T1の成形方法には、例えば、成形部12によって造形用材料の層が形成された際に積層体LP1の端部T1に形成される段差部SP1の凸部Pp1(図3)を減少あるいは消滅させる成形方法、および該段差部SP1の凹部D1(図3)を埋める成形方法がある。そして、凸部Pp1を減少あるいは消滅させる成形方法には、主に2タイプの成形方法(第1,2成形方法)があり、凹部D1を埋める成型方法には、主に1タイプの成形方法(第3成形方法)がある。 Based on the 3D data, the molding unit 12 can connect the end T1 without contacting the end T1 (FIG. 3) of the stacked body LP1 configured by a plurality of layers of the modeling material stacked by the supply unit 11. Mold. In the method of forming the end portion T1 by the forming portion 12, for example, the convex portion Pp1 of the stepped portion SP1 formed on the end portion T1 of the laminate LP1 when the forming material layer is formed by the forming portion 12 (see FIG. There are a molding method for reducing or eliminating 3) and a molding method for filling the concave portion D1 (FIG. 3) of the stepped portion SP1. There are mainly two types of molding methods (first and second molding methods) for reducing or eliminating the convex portion Pp1, and mainly one type of molding method (filling the concave portion D1). There is a third molding method.
 硬化部13は、供給部11によって積層される各層を硬化させる。ここで、硬化部13は、各層を硬化させるためのエネルギーを各層に付与する部分(エネルギー付与部とも言う)である。例えば、造形用材料が紫外線硬化性樹脂(UV硬化樹脂)である場合には、硬化部13は、造形用材料によって構成される層に紫外線を照射する。また、例えば、造形用材料が熱硬化性樹脂である場合には、硬化部13は、造形用材料によって構成される層に熱を付与する。なお、例えば、造形用材料が、常温硬化タイプの材料である場合には、硬化部13は省略されても良い。また、造形用材料として、マイクロ波または電子ビーム等を吸収し易い成分を含んだ材料を混合させたものが採用されれば、例えば、エネルギー付与部として、積層された造形用材料の各層に対してマイクロ波または電子ビーム等を照射して、各層を硬化させる構成が採用されても良い。 The curing unit 13 cures each layer stacked by the supply unit 11. Here, the curing unit 13 is a part (also referred to as an energy imparting unit) that imparts energy for curing each layer to each layer. For example, when the modeling material is an ultraviolet curable resin (UV curable resin), the curing unit 13 irradiates the layer constituted by the modeling material with ultraviolet rays. In addition, for example, when the modeling material is a thermosetting resin, the curing unit 13 applies heat to the layer formed of the modeling material. For example, when the modeling material is a room temperature curing type material, the curing unit 13 may be omitted. Moreover, if what mixed the material containing the component which is easy to absorb a microwave or an electron beam etc. is employ | adopted as a modeling material, for example as an energy provision part, with respect to each layer of the laminated modeling material Alternatively, a configuration in which each layer is cured by irradiation with a microwave or an electron beam may be employed.
 色付与部14は、成形部12によって積層体LP1の端部T1が成形された後に、積層体LP1の表面に着色する。これにより、良好な寸法精度と表面品質とを有する色彩を有する立体造形物3D1が迅速に造形され得る。色付与部14は、例えば、インクジェット方式等によって、着色用の材料(着色用材料とも言う)としてのインクを吐出することで、積層体LP1の表面を着色する。 The color imparting unit 14 colors the surface of the laminate LP1 after the end T1 of the laminate LP1 is molded by the molding unit 12. Thereby, the three-dimensional model | molding thing 3D1 which has the color which has favorable dimensional accuracy and surface quality can be modeled rapidly. The color imparting unit 14 colors the surface of the stacked body LP1 by ejecting ink as a coloring material (also referred to as a coloring material) by, for example, an inkjet method.
 ところで、供給部11において造形用材料を吐出する吐出口、および色付与部14において着色用材料を吐出する吐出口等と言った材料を吐出する吐出口では、材料の凝固等によって目詰まりを起こす虞がある。そこで、材料を吐出する吐出口の目詰まりを防止する防止部が設けられても良い。これにより、例えば、積層体LP1を形成する工程の間、着色のための吐出口をインクの硬化から保護することで、安定した着色が実現され得る。 By the way, in the discharge port which discharges materials, such as the discharge port which discharges the modeling material in the supply part 11, and the discharge port which discharges the coloring material in the color provision part 14, clogging is caused by the coagulation | solidification etc. of material. There is a fear. Therefore, a prevention unit for preventing clogging of the discharge port for discharging the material may be provided. Thereby, for example, stable coloring can be realized by protecting the discharge port for coloring from curing of the ink during the step of forming the laminated body LP1.
 例えば、造形用材料がUV硬化樹脂であり、着色用材料が紫外光の照射に応じて硬化するUVインキである場合は、造形用材料が積層される工程において、色付与部14の吐出口を覆うように、紫外光を遮光する遮光部材が非接触で配置される態様が考えられる。このとき、積層される造形用材料の各層に硬化部13から照射される紫外光が、色付与部14の吐出口に照射されず、色付与部14の吐出口の目詰まりが防止される。ここで、防止部の具体例としては、図1で示されるように、ヘッド部30に対して、回転軸14pを中心として回動自在に設けられた遮光板14s等が考えられる。この場合、遮光板14sの回動によって、色付与部14の吐出口の前面に遮光板14sが配置された状態と、色付与部14の吐出口の前面から遮光板14sが退避された状態との間で切り換えられる。また、防止部としての遮光板14sが、回動ではなく平行移動等によるスライドによって、吐出口の前面に配置された状態と、該吐出口の前面から退避された状態との間で切り換えられる態様が採用されても良い。 For example, when the modeling material is a UV curable resin and the coloring material is UV ink that is cured in response to irradiation with ultraviolet light, the discharge port of the color imparting unit 14 is set in the process of stacking the modeling material. It is conceivable that the light shielding member that shields the ultraviolet light is disposed in a non-contact manner so as to cover it. At this time, the ultraviolet light irradiated from the curing unit 13 to each layer of the modeling material to be laminated is not irradiated to the discharge port of the color imparting unit 14, and the clogging of the discharge port of the color imparting unit 14 is prevented. Here, as a specific example of the prevention unit, as shown in FIG. 1, a light shielding plate 14 s provided so as to be rotatable about the rotation shaft 14 p with respect to the head unit 30 can be considered. In this case, with the rotation of the light shielding plate 14s, the light shielding plate 14s is disposed in front of the discharge port of the color imparting unit 14, and the light shielding plate 14s is retracted from the front surface of the discharge port of the color imparting unit 14. Be switched between. Further, the light-shielding plate 14s as the prevention unit is switched between a state in which it is disposed on the front surface of the discharge port and a state in which it is retracted from the front surface of the discharge port by a slide by parallel movement or the like instead of turning. May be adopted.
 また、例えば、着色用材料が、色料が溶剤中に溶解および分散したインク、ならびに水溶性のインク等である場合は、例えば、色付与部14の吐出口の前面に、防止部としての非接触の密閉カバーが配置されたり、内部に溶剤や水蒸気を供給する手段が設けられたカバーが配置されたりしても良い。なお、色付与部14の吐出口から着色用材料が吐出される際には、例えば、これらのカバーが着色用材料の吐出に支障がない位置まで自動的に移動される機構を有していれば良い。 Further, for example, when the coloring material is an ink in which a colorant is dissolved and dispersed in a solvent, a water-soluble ink, or the like, for example, a non-blocking portion as a prevention portion is provided on the front surface of the discharge port of the color imparting portion 14. A contact sealing cover may be disposed, or a cover provided with a means for supplying a solvent or water vapor may be disposed therein. In addition, when the coloring material is discharged from the discharge port of the color imparting unit 14, for example, a mechanism may be provided in which these covers are automatically moved to a position where there is no problem in discharging the coloring material. It ’s fine.
 また、ヘッド部30から造形用材料および着色用材料等の各種材料をそれぞれ吐出する吐出口のクリーニングを行う部分(浄化部とも言う)C100が設けられても良い。これにより、例えば、造形用材料あるいは着色用材料を吐出する吐出口を、材料の吐出前にクリーニングしておくことで、目詰まりによる材料の吐出不良および吐出口付近に飛散した不要な材料の造形物への落下を減らすことにより、立体造形物の品質が安定され得る。 In addition, a portion (also referred to as a purification unit) C100 for cleaning the discharge port that discharges various materials such as a modeling material and a coloring material from the head unit 30 may be provided. Thus, for example, by cleaning the discharge port for discharging the modeling material or coloring material before discharging the material, it is possible to form a defective discharge of the material due to clogging and the formation of unnecessary material scattered near the discharge port. By reducing the fall to the object, the quality of the three-dimensional structure can be stabilized.
 例えば、浄化部C100において、吐出口に対し、材料の吐出によるクリーニング(吐出クリーニングとも言う)、ワイプ材によるクリーニング(ワイプクリーニングとも言う)、およびスプレーによるクリーニング(スプレークリーニングとも言う)のうちの少なくとも1つのクリーニングを行う態様が考えられる。 For example, in the purification unit C100, at least one of cleaning by discharge of material (also referred to as discharge cleaning), cleaning with a wipe material (also referred to as wipe cleaning), and cleaning by spray (also referred to as spray cleaning) with respect to the discharge port. A mode of performing two cleanings is conceivable.
 吐出クリーニングについては、例えば、吐出口の前面に漏斗付きの廃液タンクを配置し、吐出口からの吐出される材料を漏斗で受けて、該材料を廃液タンクに貯留する態様が考えられる。ワイプクリーニングについては、例えば、布、紙および不織布等で構成されるワイプ材によって吐出口が拭われる態様が考えられる。なお、ワイプ材は、乾燥していても良いし、洗浄液で湿らされていても良い。スプレークリーニングについては、吐出口から吐出される材料に応じた洗浄液がミストおよびベーパー等の少なくとも1つの状態で吐出口に吹き付けられる態様が考えられる。なお、スプレークリーニングについては、スプレークリーニングが施された後に、例えば、ワイプクリーニングが施されることで、スプレークリーニング後に洗浄液が吐出口に付着している状態が解消され得る。 For the discharge cleaning, for example, a waste liquid tank with a funnel is arranged in front of the discharge port, and the material discharged from the discharge port is received by the funnel, and the material is stored in the waste liquid tank. As for the wipe cleaning, for example, a mode in which the discharge port is wiped with a wipe material made of cloth, paper, nonwoven fabric, or the like can be considered. Note that the wipe material may be dried or moistened with a cleaning liquid. As for the spray cleaning, a mode in which a cleaning liquid corresponding to a material discharged from the discharge port is sprayed on the discharge port in at least one state such as mist and vapor can be considered. In addition, about spray cleaning, after spray cleaning is performed, for example, wipe cleaning is performed, and the state where the cleaning liquid adheres to the discharge port after spray cleaning can be eliminated.
 上記構成を有する立体造形装置2では、次のステップA,Bが順次に行われる工程が繰り返し行われる。これにより、例えば、順次に積層される各層の厚さが増しても、立体造形物3D1の製造速度を向上させても、非接触で積層体LP1の端部T1が成形されるため、立体造形物3D1の良好な寸法精度および表面品質と製造速度の向上とが両立し得る。 In the three-dimensional modeling apparatus 2 having the above-described configuration, a process in which the following steps A and B are sequentially performed is repeatedly performed. Thereby, for example, even if the thickness of each layer laminated sequentially increases, or even if the manufacturing speed of the three-dimensional structure 3D1 is improved, the end portion T1 of the multilayer body LP1 is formed in a non-contact manner. Good dimensional accuracy and surface quality of the object 3D1 can be compatible with the improvement of the manufacturing speed.
 [ステップA]供給部11によって、造形用材料が供給されることで、造形用材料によって形成される層が順次に積層される(供給ステップとも言う)。 [Step A] By supplying the modeling material by the supply unit 11, layers formed by the modeling material are sequentially stacked (also referred to as a supply step).
 [ステップB]成形部12によって、供給ステップにおいて積層された造形用材料の複数の層によって構成される積層体LP1の端部T1に接触することなく、該端部T1が成形される(成形ステップとも言う)。該成形ステップでは、例えば、供給ステップにおいて積層される各層における上部の外周部に形成されている凸部Pp1の少なくとも一部が崩されることで積層体LP1の端部T1が成形される。この場合、立体造形物3D1の表面上における多数の段差部SP1が目立たなくなる。このため、立体造形物3D1の表面品質の向上が図られ得る。 [Step B] The end portion T1 is formed by the forming portion 12 without contacting the end portion T1 of the multilayer body LP1 constituted by a plurality of layers of the modeling material stacked in the supplying step (the forming step). Also called). In the forming step, for example, at least a part of the convex portion Pp1 formed on the upper outer peripheral portion of each layer stacked in the supplying step is broken, so that the end portion T1 of the stacked body LP1 is formed. In this case, a large number of stepped portions SP1 on the surface of the three-dimensional structure 3D1 become inconspicuous. For this reason, the surface quality of the three-dimensional structure 3D1 can be improved.
 ところで、通常の供給ステップでは、ヘッド部30の二次元的な走査が複数回行われることで、造形用材料が繰り返し供給される。これに対し、色付与部14による積層体LP1の着色は、例えば、複数の層からなる数ミリ程度の厚さの積層体LP1に対して行われる。このため、造形用材料の積層に要する時間は、着色に要する時間より長くなってしまう。そこで、供給部11と色付与部14とが、一体的に移動するヘッド部30に搭載されずに、別々に移動可能なヘッド部に搭載されれば、供給部11を搭載したヘッド部の軽量化による走査速度の向上が図られ得る。そして、その結果、造形用材料の積層に要する時間が短縮され得る。なお、このような構成が採用される場合には、供給部11が搭載されたヘッド部と、色付与部14が搭載されたヘッド部とが、移動時に相互に干渉しないように、少なくとも一方のヘッド部が適宜上下方向に移動するように構成されれば良い。 By the way, in the normal supply step, the modeling material is repeatedly supplied by performing two-dimensional scanning of the head unit 30 a plurality of times. On the other hand, the coloration of the multilayer body LP1 by the color imparting unit 14 is performed on the multilayer body LP1 having a thickness of about several millimeters composed of a plurality of layers. For this reason, the time required for stacking the modeling materials is longer than the time required for coloring. Therefore, if the supply unit 11 and the color imparting unit 14 are not mounted on the head unit 30 that moves integrally, but mounted on a head unit that can be moved separately, the weight of the head unit on which the supply unit 11 is mounted can be reduced. Thus, the scanning speed can be improved. As a result, the time required for stacking the modeling materials can be shortened. When such a configuration is adopted, at least one of the head unit on which the supply unit 11 is mounted and the head unit on which the color imparting unit 14 is mounted do not interfere with each other during movement. What is necessary is just to be comprised so that a head part may move to an up-down direction suitably.
 また、段差部SP1のうちの成形部12によって成形される領域(成形領域とも言う)については、例えば、造形のもととなる3Dデータに基づき、手動および自動の何れか1つ以上の方法で作成される。このとき、立体造形物の目的に応じて、段差部SP1を部分的に残したい場合は、該段差部SP1のうちの選択的に成形しない領域を示すデータ(領域データとも言う)が作成されても良い。 Moreover, about the area | region (it is also called a shaping | molding area | region) shape | molded by the shaping | molding part 12 in level | step-difference part SP1, based on 3D data used as modeling, for example by any one or more methods of manual and automatic Created. At this time, when it is desired to partially leave the stepped portion SP1 according to the purpose of the three-dimensional modeled object, data (also referred to as region data) indicating a region that is not selectively formed in the stepped portion SP1 is created. Also good.
 <(2)成形部による成形方法>
  <(2-1)第1成形方法>
 第1成形方法は、例えば、造形用材料が、紫外線硬化性樹脂あるいは熱硬化性樹脂等と言ったエネルギーの付与に応じて硬化する材料である場合に、風圧、音波および熱の何れか1つ以上の手段の組み合わせによって、段差部SP1の凸部Pp1を減少または変形させる方法である。
<(2) Molding method by molding part>
<(2-1) First molding method>
In the first molding method, for example, when the modeling material is a material that is cured in response to application of energy such as an ultraviolet curable resin or a thermosetting resin, any one of wind pressure, sound wave, and heat is used. This is a method of reducing or deforming the convex portion Pp1 of the stepped portion SP1 by combining the above means.
 ここで、凸部Pp1は、供給部11によって積層される各層の上部の外周部に形成される。そして、成形部12によって凸部Pp1の少なくとも一部が崩されることで、積層体LP1の端部T1が成形される。これにより、立体造形物3D1の表面上における多数の段差部SP1が目立たなくなる。このため、立体造形物3D1の表面品質の向上が図られ得る。 Here, the convex portion Pp1 is formed on the outer peripheral portion at the top of each layer stacked by the supply portion 11. And the edge part T1 of the laminated body LP1 is shape | molded because the shaping | molding part 12 collapse | crumbles at least one part of convex part Pp1. Thereby, many level | step-difference parts SP1 on the surface of three-dimensional molded item 3D1 become inconspicuous. For this reason, the surface quality of the three-dimensional structure 3D1 can be improved.
 図3から図5は、成形部12における第1成形方法について模式的に示す図である。 3 to 5 are diagrams schematically showing the first molding method in the molding unit 12.
 図3には、積層体LP1が供給部11によって形成された状態が示されている。積層体LP1は、立体造形物3D1を成す複数の層のうちの一部の層に対応するものであり、例えば、数層あるいは数層~10層程度が積層されたものである。図3では、積層体LP1が造形用材料の複数の層L1,L2によって構成されている例が示されている。そして、この状態では、例えば、積層体LP1の外周部(端部T1)に、積層体LP1の2つの層L1,L2の境界部分の近傍に凹部D1を含む段差部SP1が形成されている。そして、積層体LP1の各層L1,L2の上部(+Z側の部分)の外周部に、凸部Pp1が形成されている。 FIG. 3 shows a state in which the laminated body LP1 is formed by the supply unit 11. The laminated body LP1 corresponds to a part of the plurality of layers constituting the three-dimensional structure 3D1, and is, for example, a laminate of several layers or several to 10 layers. FIG. 3 shows an example in which the laminated body LP1 is composed of a plurality of layers L1 and L2 of modeling material. In this state, for example, a stepped portion SP1 including the recess D1 is formed in the vicinity of the boundary portion between the two layers L1 and L2 of the multilayer body LP1 on the outer peripheral portion (end portion T1) of the multilayer body LP1. And the convex part Pp1 is formed in the outer peripheral part of the upper part (part on the + Z side) of each layer L1, L2 of the laminated body LP1.
 図4には、成形部12によって凸部Pp1が崩される直前の積層体LP1の一例が模式的に示されている。図5には、成形部12によって凸部Pp1の少なくとも一部が崩された後の積層体LP1の一例が模式的に示されている。具体的には、図5には、積層体LP1の端部T1が成形されることで、該端部T1が、層L1の斜面部Sf1および層L2の斜面部Sf2で構成される成形後の斜面部Sf0となる様子が示されている。なお、図5には、崩される前の凸部Pp1の外縁が二点鎖線で描かれている。 FIG. 4 schematically shows an example of the laminated body LP1 immediately before the convex portion Pp1 is broken by the molding portion 12. FIG. 5 schematically shows an example of the laminated body LP1 after at least a part of the convex portion Pp1 is broken by the molding portion 12. Specifically, in FIG. 5, the end portion T1 of the laminate LP1 is formed, and thus the end portion T1 is formed by the slope portion Sf1 of the layer L1 and the slope portion Sf2 of the layer L2. A state of the slope Sf0 is shown. In FIG. 5, the outer edge of the convex portion Pp <b> 1 before being broken is drawn with a two-dot chain line.
 第1成形方法が採用される場合、供給部11によって形成される各層の凸部Pp1が成形部12によって崩された後に、該各層が硬化部13によって硬化される。つまり、硬化前に、各層の凸部Pp1が崩される。このため、段差部SP1を減少あるいは消滅させた後に、例えば、発光ダイオード(LED)等で構成される紫外線(UV)ランプまたは赤外線(IR)ランプあるいはヒーター等の安価な構成によって、積層体LP1を一括して硬化させることができる。その結果、立体造形物3D1の良好な寸法精度および表面品質の向上が容易に実現され得る。 When the first molding method is adopted, each layer is cured by the curing unit 13 after the projection Pp1 of each layer formed by the supply unit 11 is broken by the molding unit 12. That is, the convex part Pp1 of each layer is destroyed before curing. For this reason, after reducing or eliminating the stepped portion SP1, for example, the laminated body LP1 is formed by an inexpensive configuration such as an ultraviolet (UV) lamp, an infrared (IR) lamp, or a heater composed of a light emitting diode (LED) or the like. It can be cured at once. As a result, good dimensional accuracy and surface quality improvement of the three-dimensional structure 3D1 can be easily realized.
   <(2-1-1)風圧(気体の吹き付け)による成形>
 図4および図5で示されるように、成形部12が、例えば、凸部Pp1に気体を吹き付けることで風圧によって凸部Pp1の少なくとも一部を崩す部分(気体供給部とも言う)12nを有する構成が採用され得る。この場合、気体の局所的な吹きつけに応じて、凸部Pp1に外力が作用し、非接触で凸部Pp1の少なくとも一部が容易に崩される。これにより、立体造形物3D1の寸法精度および表面品質が更に向上し得る。ここで使用され得る気体としては、例えば、空気および不活性ガス等が挙げられる。凸部Pp1のうちの気体が吹き付けられる領域としては、例えば、凸部Pp1の+Z側の上面部分における選択的な領域(選択的領域とも言う)Ar1が採用され得る。選択的領域Ar1は、例えば、積層体LP1を構成する各層の上面側の部分(層上部とも言う)と、該層上部の水平方向に位置する周囲の空間との境界部分を成す。換言すれば、選択的領域Ar1は、層上部の端部およびその近傍の部分に位置する。
<(2-1-1) Molding by wind pressure (gas blowing)>
As shown in FIGS. 4 and 5, the molding unit 12 includes, for example, a portion (also referred to as a gas supply unit) 12n that breaks at least a part of the projection Pp1 by wind pressure by blowing gas onto the projection Pp1. Can be employed. In this case, according to the local blowing of gas, an external force acts on the convex part Pp1, and at least a part of the convex part Pp1 is easily broken without contact. Thereby, the dimensional accuracy and surface quality of the three-dimensional structure 3D1 can be further improved. Examples of the gas that can be used here include air and an inert gas. For example, a selective region (also referred to as a selective region) Ar1 in the upper surface portion on the + Z side of the convex portion Pp1 may be employed as the region of the convex portion Pp1 to which the gas is blown. The selective region Ar1 forms, for example, a boundary portion between a portion on the upper surface side (also referred to as a layer upper portion) of each layer constituting the stacked body LP1 and a surrounding space positioned in the horizontal direction above the layer. In other words, the selective region Ar1 is located at the upper end of the layer and in the vicinity thereof.
 また、供給部11によって形成された各層の凸部Pp1の少なくとも一部が成形部12によって崩される前に、該各層の上部における凸部Pp1以外の少なくとも該凸部Pp1の近傍の部分(予備硬化対象部とも言う)FL1(図6)が硬化部13によって硬化されても良い。ここでは、例えば、予備硬化対象部FL1に対して、紫外線または赤外線等の光の照射あるいは熱等の付与が選択的に行われる。 In addition, before at least a part of the convex portion Pp1 of each layer formed by the supply unit 11 is destroyed by the molding unit 12, at least a portion in the vicinity of the convex portion Pp1 other than the convex portion Pp1 in the upper part of each layer (preliminary curing) FL <b> 1 (FIG. 6) may be cured by the curing unit 13. Here, for example, irradiation of light such as ultraviolet rays or infrared rays or application of heat or the like is selectively performed on the preliminary curing target portion FL1.
 このような構成が採用される場合、図6で示されるように、凸部Pp1の上面部分における選択的領域Ar1に気体が吹き付けられる際に、各層における選択的領域Ar1以外の領域の形状が崩れ難い。つまり、各層において、気体の吹きつけによって崩される部分と、崩されない部分との境界部分の形状が安定する。このため、積層体LP1の端部T1における必要以上の成形が抑制され、立体造形物3D1の寸法精度および表面品質が更に向上し得る。 When such a configuration is employed, as shown in FIG. 6, when gas is blown to the selective region Ar1 in the upper surface portion of the convex portion Pp1, the shape of the regions other than the selective region Ar1 in each layer collapses. hard. That is, in each layer, the shape of the boundary portion between the portion collapsed by the gas blowing and the portion not collapsed is stabilized. For this reason, molding more than necessary at the end T1 of the laminated body LP1 is suppressed, and the dimensional accuracy and surface quality of the three-dimensional structure 3D1 can be further improved.
 なお、例えば、造形用材料がゲル状等の高粘度のものであれば、予備硬化対象部FL1の選択的な硬化が施されなくても、気体が吹き付けによって各層における選択的領域Ar1以外の領域の形状が崩され難い。ここでは、例えば、1層毎に予備硬化対象部FL1が硬化され、数層が積層される毎に、気体の吹き付けによって、凸部Pp1の少なくとも一部が崩される態様が考えられる。 Note that, for example, if the modeling material has a high viscosity such as a gel, a region other than the selective region Ar1 in each layer by blowing gas even if the precuring target portion FL1 is not selectively cured. The shape of is difficult to collapse. Here, for example, a mode in which at least a part of the convex portion Pp1 is collapsed by gas blowing every time the preliminary-curing target portion FL1 is cured for each layer and several layers are laminated can be considered.
 ここで、予備硬化対象部FL1に光または熱を選択的に照射するために、硬化部13が、積層体LP1の全体を硬化させる部分と予備硬化対象部FL1を硬化させる部分とを、共通の構成で実現する態様、あるいは別の構成で実現する態様の何れが採用されても良い。そして、硬化部13に、例えば、微小なミラーが1次元的あるいは2次元的に配列されたもの(例えば、DMD:Digital Micromirror Device等)が配置された構成が採用され得る。また、硬化部13に、微小な回折格子が1次元的または2次元的に配列されたもの(例えば、GLV[登録商標]:Grating Light Value)が配置される構成が採用されても良い。また、例えば、ガルバノミラー等で光線を偏向させる構成が採用されても良いし、結晶構造を有する光学素子に対する電圧の印加に応じて該光学素子の屈折率が変化することで光線が偏向される構成が採用されても良い。 Here, in order to selectively irradiate the precuring target part FL1 with light or heat, the curing unit 13 uses a common part for curing the entire laminate LP1 and a part for curing the precuring target part FL1. Either an aspect realized by a configuration or an aspect realized by another configuration may be adopted. In addition, for example, a configuration in which microscopic mirrors are arranged one-dimensionally or two-dimensionally (for example, DMD: Digital-Micromirror-Device, etc.) may be employed in the curing unit 13. In addition, a configuration may be employed in which a minute diffraction grating arranged in a one-dimensional or two-dimensional manner (for example, GLV [registered trademark]: Grating Light Value) is disposed in the curing unit 13. In addition, for example, a configuration in which a light beam is deflected by a galvanometer mirror or the like may be adopted, or the light beam is deflected by changing a refractive index of the optical element in accordance with voltage application to the optical element having a crystal structure. A configuration may be employed.
 ところで、成形部12の気体供給部12nから供給される気体が選択的領域Ar1に付与する圧力および該圧力の分布は、例えば、凸部Pp1のうちの崩される領域の大きさ、形状および粘度等に合わせて調整される。なお、ここで、例えば、造形用材料が熱硬化性の材料でない場合には、気体供給部12nから供給される気体の温度が、積層体LP1の端部T1を構成している造形用材料の表面温度よりも高ければ、造形用材料の粘度が低下して、凸部Pp1が崩れ易くなる。つまり、成形部12による積層体LP1の端部T1の成形が容易となり得る。 By the way, the pressure applied to the selective region Ar1 by the gas supplied from the gas supply unit 12n of the molding unit 12 and the distribution of the pressure are, for example, the size, shape, viscosity, and the like of the collapsed region of the convex portion Pp1. It is adjusted according to. Here, for example, when the modeling material is not a thermosetting material, the temperature of the gas supplied from the gas supply unit 12n is the temperature of the modeling material constituting the end T1 of the stacked body LP1. If it is higher than the surface temperature, the viscosity of the modeling material is lowered, and the convex portion Pp1 is likely to collapse. That is, the molding of the end portion T1 of the multilayer body LP1 by the molding portion 12 can be facilitated.
 図7は、気体供給部12nの一構成例を示す図である。気体供給部12nとしては、例えば、1次元的あるいは2次元的に配列された複数の気体供給管N1~N5を有する構造が採用され得る。気体供給管N1~N5は、例えば、気体を供給するパイプ状の構成を有する。図7には、長手方向(Z方向)が略平行となるようにY方向に一列に配列された5本の気体供給管N1~N5を有する気体供給部12nが例示されている。該気体供給部12nでは、各気体供給管N1~N5からの気体の吐出の有無あるいは気体の吐出量が制御され得る。例えば、各気体供給管N1~N5に気体が供給され、各気体供給管N1~N5に設けられた流量制御部VL1によって、各気体供給管N1~N5の吐出孔から吐出される気体の有無あるいは気体の吐出量がそれぞれ制御され得る。ここで、流量制御部VL1のタイプとしては、例えば、ソレノイドまたはピエゾ素子による駆動力に応じて開閉するタイプ、あるいは吐出孔以外の領域に気体を逃がすタイプが挙げられる。 FIG. 7 is a diagram illustrating a configuration example of the gas supply unit 12n. As the gas supply unit 12n, for example, a structure having a plurality of gas supply pipes N1 to N5 arranged one-dimensionally or two-dimensionally can be adopted. The gas supply pipes N1 to N5 have a pipe-like configuration for supplying gas, for example. FIG. 7 illustrates a gas supply unit 12n having five gas supply pipes N1 to N5 arranged in a line in the Y direction so that the longitudinal direction (Z direction) is substantially parallel. In the gas supply unit 12n, whether or not gas is discharged from each of the gas supply pipes N1 to N5 can be controlled. For example, gas is supplied to the gas supply pipes N1 to N5, and the presence or absence of gas discharged from the discharge holes of the gas supply pipes N1 to N5 by the flow rate control unit VL1 provided in the gas supply pipes N1 to N5, or Each of the gas discharge amounts can be controlled. Here, examples of the type of the flow rate control unit VL1 include a type that opens and closes according to a driving force by a solenoid or a piezoelectric element, or a type that allows gas to escape to a region other than the discharge hole.
 図8は、図7で示された気体供給部12nから供給される気体の圧力分布の一例を示す図である。図8では、気体の圧力の高低を示す曲線が、太い実線で示されている。また、図8では、曲線が下方向(本願明細書では-Z方向)にある程、圧力が高く、逆に曲線が上方向(本願明細書では+Z方向に)にある程、圧力が小さい状態が示す。図8で示される圧力分布は、気体供給管N1~N5からそれぞれ吐出される気体の圧力が直接的に反映されたものとなっており、位置によって圧力が連続的ではなく急激変化している。 FIG. 8 is a diagram showing an example of the pressure distribution of the gas supplied from the gas supply unit 12n shown in FIG. In FIG. 8, a curve indicating the level of gas pressure is indicated by a thick solid line. Further, in FIG. 8, the pressure is higher as the curve is in the downward direction (−Z direction in the present specification), and the pressure is lower as the curve is in the upward direction (in the + Z direction in the present specification). Shows. The pressure distribution shown in FIG. 8 directly reflects the pressure of the gas discharged from each of the gas supply pipes N1 to N5, and the pressure changes not continuously but rapidly depending on the position.
 また、図9は、気体供給部12nの複数の気体供給管N1~N5の吐出孔に対して1つの気体混合部SN1が設けられている態様を例示する図である。図10は、気体混合部SN1の一構成例を示す断面図である。気体混合部SN1は、例えば、複数の気体供給管N1~N5が配列されるY方向に延びるスリット状の空間が-Z方向に延在し、-Z側の下端部にスリット状の開口部を有する。このような気体混合部SN1の存在により、各気体供給管N1~N5から吐出される気体が、気体混合部SN1内である程度混合される。これにより、各気体供給管N1~N5から吐出される気体の圧力分布が連続的に変化するようになる。 FIG. 9 is a diagram illustrating a mode in which one gas mixing unit SN1 is provided for the discharge holes of the plurality of gas supply pipes N1 to N5 of the gas supply unit 12n. FIG. 10 is a cross-sectional view illustrating a configuration example of the gas mixing unit SN1. In the gas mixing unit SN1, for example, a slit-like space extending in the Y direction in which a plurality of gas supply pipes N1 to N5 is arranged extends in the −Z direction, and a slit-like opening is formed at the lower end on the −Z side. Have. Due to the presence of the gas mixing part SN1, the gas discharged from the gas supply pipes N1 to N5 is mixed to some extent in the gas mixing part SN1. As a result, the pressure distribution of the gas discharged from each of the gas supply pipes N1 to N5 changes continuously.
 図11は、図9で示された気体供給部12nから供給される気体の圧力分布の一例を示す図である。図11では、図8と同様に、気体の圧力の高低を示す曲線が、太い実線で示されており、曲線が下方向(本願明細書では-Z方向)にある程、圧力が高く、逆に曲線が上方向(本願明細書では+Z方向に)にある程、圧力が小さい状態を示す。図11で示される圧力分布は、気体供給管N1~N5からそれぞれ吐出される気体の圧力が気体混合部SN1である程度混合されたものとなっており、位置によって圧力が連続的に変化している。 FIG. 11 is a diagram showing an example of the pressure distribution of the gas supplied from the gas supply unit 12n shown in FIG. In FIG. 11, similarly to FIG. 8, a curve indicating the level of gas pressure is indicated by a thick solid line, and the lower the curve (in the −Z direction in this specification), the higher the pressure, As the curve is upward (in the + Z direction in the present specification), the pressure is smaller. In the pressure distribution shown in FIG. 11, the pressures of the gases discharged from the gas supply pipes N1 to N5 are mixed to some extent in the gas mixing unit SN1, and the pressure continuously changes depending on the position. .
 図12は、各気体供給管N1~N5における流量制御の一態様を示す図である。ここでは、気体供給管N1を例にとって説明する。気体供給管N1は、上流部En1から下流部Ex1に至る内部空間Sc1に設けられた流量制御部VL1を有している。流量制御部VL1は、1つの弁座部S1と複数の弁体部St1~St3とを備えている。弁座部S1は、気体供給管N1の内壁に設けられ、±Z方向に貫通する複数の貫通孔H1~H3を有している。複数の弁体部St1~St3は、複数の貫通孔H1~H3の上流側に配置され、±Z方向に移動することで、複数の貫通孔H1~H3をそれぞれ開閉する。 FIG. 12 is a diagram showing one mode of flow rate control in each of the gas supply pipes N1 to N5. Here, the gas supply pipe N1 will be described as an example. The gas supply pipe N1 has a flow rate control unit VL1 provided in an internal space Sc1 from the upstream portion En1 to the downstream portion Ex1. The flow rate control unit VL1 includes one valve seat portion S1 and a plurality of valve body portions St1 to St3. The valve seat portion S1 is provided on the inner wall of the gas supply pipe N1, and has a plurality of through holes H1 to H3 penetrating in the ± Z directions. The plurality of valve body portions St1 to St3 are arranged upstream of the plurality of through holes H1 to H3, and move in the ± Z directions, thereby opening and closing the plurality of through holes H1 to H3, respectively.
 このような構成を有する気体供給管N1では、複数の貫通孔H1~H3の開閉によって、気体の流量が制御される。これにより、気体供給管N1から吐出される気体の圧力が調整され得る。また、上流部En1および下流部Ex1に気体の圧力を計測する圧力計測部Pr1,Pr2がそれぞれ設けられ、各貫通孔H1~H3の開閉時間が調整されることで、気体供給管N1における気体の流量が調整されても良い。なお、図12で示される気体供給管N1の内部空間Sc1には、弁座部S1の下流側に、複数の貫通孔H1~H3から吐出される気体の圧力が均一化されるチャンバー部CB1が設けられている。 In the gas supply pipe N1 having such a configuration, the gas flow rate is controlled by opening and closing the plurality of through holes H1 to H3. Thereby, the pressure of the gas discharged from the gas supply pipe N1 can be adjusted. In addition, pressure measuring units Pr1 and Pr2 for measuring the gas pressure are provided in the upstream portion En1 and the downstream portion Ex1, respectively, and the opening and closing times of the through holes H1 to H3 are adjusted, whereby the gas in the gas supply pipe N1 is adjusted. The flow rate may be adjusted. In the internal space Sc1 of the gas supply pipe N1 shown in FIG. 12, a chamber part CB1 in which the pressure of the gas discharged from the plurality of through holes H1 to H3 is made uniform is provided downstream of the valve seat part S1. Is provided.
 図13は、各気体供給管N1~N5における流量制御の他の一態様を示す図である。ここでも、気体供給管N1を例にとって説明する。図13で示される気体供給管N1は、図12で示された気体供給管N1がベースとされて、流量制御部VL1の構造が変更されたものである。ここでは、流量制御部VL1は、1つの弁座部S2と1つの弁体部St4とを備えている。弁座部S2は、気体供給管N1の内壁に設けられ、±Z方向に貫通する1つの貫通孔H4を有している。弁体部St4は、貫通孔H4の上流側に配置され、±Z方向に移動することで、貫通孔H4の上流側における開口の面積を調整する。 FIG. 13 is a diagram showing another aspect of flow rate control in each of the gas supply pipes N1 to N5. Here, the gas supply pipe N1 will be described as an example. The gas supply pipe N1 shown in FIG. 13 is based on the gas supply pipe N1 shown in FIG. 12, and the structure of the flow rate control unit VL1 is changed. Here, the flow control unit VL1 includes one valve seat portion S2 and one valve body portion St4. The valve seat portion S2 is provided on the inner wall of the gas supply pipe N1, and has one through hole H4 that penetrates in the ± Z direction. The valve body St4 is arranged on the upstream side of the through hole H4 and adjusts the area of the opening on the upstream side of the through hole H4 by moving in the ± Z direction.
 このような構成を有する気体供給管N1では、貫通孔H4の上流側における開口の面積が調整されることで、気体の流量が制御され、気体供給管N1から吐出される気体の圧力が調整され得る。また、上流部En1および下流部Ex1に気体の圧力を計測する圧力計測部Pr1,Pr2がそれぞれ設けられ、貫通孔H4の上流側における開口の面積が調整されることで、気体供給管N1における気体の流量が調整されても良い。 In the gas supply pipe N1 having such a configuration, by adjusting the area of the opening on the upstream side of the through hole H4, the flow rate of the gas is controlled, and the pressure of the gas discharged from the gas supply pipe N1 is adjusted. obtain. Moreover, the pressure measurement parts Pr1 and Pr2 for measuring the gas pressure are provided in the upstream part En1 and the downstream part Ex1, respectively, and the gas in the gas supply pipe N1 is adjusted by adjusting the area of the opening on the upstream side of the through hole H4. The flow rate may be adjusted.
 ところで、図14で示されるように、例えば、気体供給部12nが、供給部11によって積層される各層の上面に対して傾斜する方向(傾斜方向とも言う)から凸部Pp1に気体を吹き付ける構成が採用されても良い。ここでは、気体供給部12nが上部から下部にかけて凸部Pp1の水平方向の外縁側に傾斜される態様が採用され得る。換言すれば、気体供給部12nから気体が吐出される方向が凸部Pp1の少なくとも一部を崩したい方向に近づくように、気体供給部12nが傾斜される態様が考えられる。これにより、各層の上面に沿った方向において各層の凸部Pp1およびその近傍の部分における造形用材料の流動性が高められる。このため、非接触で凸部Pp1の少なくとも一部が容易に崩され得る。なお、積層体LP1においては、実際は種々異なる方向に凸部Pp1が突出している。このため、気体供給部12nにおいて傾斜方向が変更可能である態様、あるいは傾斜方向が異なる複数の気体供給部12nが存在する態様が考えられる。 By the way, as shown in FIG. 14, for example, the gas supply unit 12 n has a configuration in which gas is blown to the convex portion Pp <b> 1 from a direction (also referred to as an inclination direction) inclined with respect to the upper surface of each layer stacked by the supply unit 11. It may be adopted. Here, a mode in which the gas supply part 12n is inclined toward the outer edge side in the horizontal direction of the convex part Pp1 from the upper part to the lower part may be employed. In other words, a mode in which the gas supply unit 12n is inclined so that the direction in which the gas is discharged from the gas supply unit 12n approaches a direction in which at least a part of the convex portion Pp1 is desired to be destroyed is conceivable. Thereby, the fluidity | liquidity of the modeling material in the convex part Pp1 of each layer and the part of the vicinity in the direction along the upper surface of each layer is improved. For this reason, at least a part of the convex portion Pp1 can be easily broken without contact. Note that, in the laminated body LP1, the convex portion Pp1 actually protrudes in different directions. For this reason, the aspect which can change an inclination direction in 12 n of gas supply parts, or the aspect in which the several gas supply part 12n from which an inclination direction differs exists is considered.
 なお、気体供給部12nからの気体の吐出の有無は、瞬間的に切り替えることが難しい場合が多いと考えられる。この場合、例えば、崩す対象としての凸部Pp1の選択的領域Ar1以外の部分には、気体供給部12nから吐出される気体の圧力が極力小さくなるように制御される態様が採用される。 It should be noted that it is often difficult to instantaneously switch the presence or absence of gas discharge from the gas supply unit 12n. In this case, for example, a mode in which the pressure of the gas discharged from the gas supply unit 12n is controlled to be as small as possible is adopted in a portion other than the selective region Ar1 of the convex portion Pp1 as an object to be destroyed.
   <(2-1-2)音波の照射による成形>
 図4および図5で示されるように、成形部12が、例えば、凸部Pp1に音波を照射することで凸部Pp1の少なくとも一部を崩す音波照射部12sを有する構成が採用され得る。つまり、気体供給部12nの代わりに音波照射部12sが採用されても良い。この場合、音波の局所的な照射に応じて、凸部Pp1の選択的領域Ar1に波が生じ、非接触で凸部Pp1の少なくとも一部が容易に崩される。このため、立体造形物3D1の寸法精度および表面品質が更に向上し得る。ここでは、例えば、凸部Pp1の+Z側の上面部分における選択的領域Ar1に音波が照射される。
<(2-1-2) Molding by irradiation with sound waves>
As shown in FIGS. 4 and 5, for example, a configuration in which the molding unit 12 includes a sound wave irradiation unit 12 s that breaks at least a part of the projection Pp <b> 1 by irradiating the projection Pp <b> 1 with sound waves may be employed. That is, a sound wave irradiation unit 12s may be employed instead of the gas supply unit 12n. In this case, a wave is generated in the selective region Ar1 of the convex portion Pp1 according to the local irradiation of the sound wave, and at least a part of the convex portion Pp1 is easily broken without contact. For this reason, the dimensional accuracy and surface quality of the three-dimensional structure 3D1 can be further improved. Here, for example, a sound wave is irradiated to the selective region Ar1 in the upper surface portion on the + Z side of the convex portion Pp1.
 上述した選択的領域Ar1に気体を吹き付ける構成では、積層体LP1の窪んだ部分の選択的領域Ar1に気体が吹き付けられると、気体の流れが淀んでしまい、凸部Pp1を適切に崩すことが容易でないケースが考えられる。これに対して、選択的領域Ar1に音波が照射される構成では、積層体LP1の窪んだ部分に存在する凸部Pp1も適切に崩すことが容易に可能である。なお、例えば、成形部12が、気体供給部12nおよび音波照射部12sの両方を有し、崩す対象としての凸部Pp1が存在する位置に応じて、音波の照射と気体の吹き付けとが選択的に行われても良い。 In the configuration in which the gas is blown to the selective region Ar1 described above, when the gas is blown to the selective region Ar1 in the depressed portion of the multilayer body LP1, the gas flow is stagnated, and the convex portion Pp1 can be easily collapsed appropriately. There are cases that are not. On the other hand, in the configuration in which the selective region Ar1 is irradiated with sound waves, the convex portion Pp1 present in the recessed portion of the stacked body LP1 can be easily broken down appropriately. In addition, for example, the molding unit 12 includes both the gas supply unit 12n and the sound wave irradiation unit 12s, and the irradiation of the sound wave and the gas blowing are selectively performed depending on the position where the convex portion Pp1 as the object to be broken exists. May be done.
 また、音波照射部12sによって、崩す対象としての凸部Pp1が存在する位置に応じて、照射される音波の波長が変更される態様が考えられる。これにより、凸部Pp1を崩したい程度に応じて、適切な波長の音波が採用され得る。また、積層体LP1のうちの選択的領域Ar1以外の部分に音波が照射されないように、例えば、音波照射部12sにおいて、必要以外の音波の広がりを抑制するために、逆相の音波の放射によって音波を打ち消し合う構成が採用されても良い。これにより、音波を選択的領域Ar1に対して局所的に照射することが可能となる。このとき、マイク等の音を感知するセンサー(音感センサーとも言う)によって音波を検知して、その検知結果に応じて、逆相の音波が設定される構成が採用されても良い。このようなフィードバック制御の代わりに、シミュレーションで得られた結果に基づいて、音波の打ち消し合い等が行われる構成が採用されても良い。 Also, a mode in which the wavelength of the sound wave to be irradiated is changed by the sound wave irradiation unit 12s in accordance with the position where the convex portion Pp1 as an object to be broken exists is conceivable. Thereby, the sound wave of a suitable wavelength may be employ | adopted according to the grade which wants to collapse convex part Pp1. Also, for example, in the sound wave irradiation unit 12s, in order to suppress the spread of sound waves other than necessary, by radiating reverse-phase sound waves so that the sound waves are not irradiated to portions other than the selective region Ar1 in the stacked body LP1. A configuration in which sound waves cancel each other may be employed. Thereby, it becomes possible to irradiate the selective region Ar1 locally with the sound wave. At this time, a configuration may be employed in which sound waves are detected by a sensor (also referred to as a sound sensor) such as a microphone, and reverse-phase sound waves are set according to the detection result. Instead of such feedback control, a configuration in which sound waves cancel each other out based on a result obtained by simulation may be employed.
 また、音波照射部12sが複数の音源を有しており、複数の音源から発せられる音波が重なり合う特定の部分(特定部分とも言う)で、音波の強度が強められる態様が採用されても良い。また、広い波長領域の音波が存在する場合、音感センサーによって周波数毎に音波を検出し、周波数毎に音波を相殺することで、音波の周波数毎の強度が調整される構成が採用されても良い。 Also, the sound wave irradiation unit 12s may have a plurality of sound sources, and a mode in which the intensity of sound waves is strengthened at a specific portion (also referred to as a specific portion) where sound waves emitted from the plurality of sound sources overlap may be employed. In addition, when there is a sound wave in a wide wavelength region, a configuration may be adopted in which the sound sensor detects the sound wave for each frequency and cancels the sound wave for each frequency, thereby adjusting the intensity for each frequency of the sound wave. .
 図15は、音波照射部12sの一構成例を模式的に示す図である。図15で示されるように、例えば、音波照射部12sが、筒状体(ホーンとも言う)Hr1~Hr3および音源Sp1~Sp3を有している。筒状体Hr1~Hr3は、一端が閉じており、該一端から他端に向けて内部空間が徐々に狭くなり、他端に開口部IJ1~IJ3が存在している構成を有している。音源Sp1~Sp3は、筒状体Hr1~Hr3の一端側にそれぞれ設けられている。そして、音源Sp1~Sp3から発せられる音波が、筒状体Hr1~Hr3における他端の開口部IJ1~IJ3から射出され得る。この場合、開口部IJ1~IJ3が微小であれば、音波が微小な選択的領域Ar1に容易に照射され得る。 FIG. 15 is a diagram schematically illustrating a configuration example of the sound wave irradiation unit 12s. As shown in FIG. 15, for example, the sound wave irradiation unit 12s includes cylindrical bodies (also referred to as horns) Hr1 to Hr3 and sound sources Sp1 to Sp3. The cylindrical bodies Hr1 to Hr3 have a configuration in which one end is closed, the internal space is gradually narrowed from the one end toward the other end, and openings IJ1 to IJ3 are present at the other end. The sound sources Sp1 to Sp3 are provided on one end sides of the cylindrical bodies Hr1 to Hr3, respectively. Sound waves emitted from the sound sources Sp1 to Sp3 can be emitted from the openings IJ1 to IJ3 at the other ends of the cylindrical bodies Hr1 to Hr3. In this case, if the openings IJ1 to IJ3 are very small, the sound wave can be easily applied to the minute selective area Ar1.
 なお、上記筒状体Hr1~Hr3のそれぞれの間に、隣の筒状体Hr1~Hr3および音源Sp1~Sp3による振動を吸収する素材(防振材とも言う)Ab1が配されていれば、選択的領域Ar1に照射される音波にノイズが混じり難い。その結果、音波の照射による凸部Pp1の崩れが適切に調整され得る。ここで、防振材Ab1としては、例えば、αゲルおよびウレタン等が挙げられる。また、ここで、筒状体Hr1~Hr3の形状が適正化されることで、開口部IJ1~IJ3における音波の減衰が抑制される構成が採用されても良い。なお、例えば、音波照射部12sに、種々の波長の音波をそれぞれ発生させるマルチチャンネル型の小型スピーカーユニットが採用されれば、波長毎に音波の強度が適切に調整され得る。 If a material (also referred to as an anti-vibration material) Ab1 that absorbs vibrations from the adjacent cylindrical bodies Hr1 to Hr3 and the sound sources Sp1 to Sp3 is disposed between the cylindrical bodies Hr1 to Hr3, the selection is made. Noise is unlikely to be mixed with the sound wave irradiated to the target area Ar1. As a result, the collapse of the convex portion Pp1 due to the irradiation of sound waves can be appropriately adjusted. Here, as anti-vibration material Ab1, alpha gel, urethane, etc. are mentioned, for example. Here, a configuration in which attenuation of sound waves in the openings IJ1 to IJ3 is suppressed by optimizing the shapes of the cylindrical bodies Hr1 to Hr3 may be employed. For example, if a multi-channel type small speaker unit that generates sound waves of various wavelengths is employed in the sound wave irradiation unit 12s, the intensity of the sound waves can be appropriately adjusted for each wavelength.
   <(2-1-3)熱の付与による成形>
 図4および図5で示されるように、成形部12が、例えば、凸部Pp1への熱の付与によって凸部Pp1の流動性を高めることで、該凸部Pp1の少なくとも一部を崩す熱付与部12hを有する構成が採用され得る。つまり、気体供給部12nおよび音波照射部12sの代わりに熱付与部12hが採用されても良い。
<(2-1-3) Molding by applying heat>
As shown in FIG. 4 and FIG. 5, for example, the molding part 12 increases the fluidity of the convex part Pp1 by applying heat to the convex part Pp1, thereby applying heat that breaks at least a part of the convex part Pp1. A configuration having the portion 12h may be employed. That is, the heat applying unit 12h may be employed instead of the gas supply unit 12n and the sound wave irradiation unit 12s.
 このような構成では、造形用材料が熱硬化性の材料でなければ、造形用材料の粘度が局所的に低減され、液体の表面が平滑になろうとする機能(レベリング機能とも言う)によって、凸部Pp1の少なくとも一部が崩れる。その結果、非接触で凸部Pp1の少なくとも一部が容易に崩されるため、立体造形物3D1の寸法精度および表面品質が更に向上し得る。 In such a configuration, if the material for modeling is not a thermosetting material, the viscosity of the material for modeling is locally reduced, and the function of smoothing the liquid surface (also referred to as leveling function) causes convexity. At least a part of the part Pp1 collapses. As a result, since at least a part of the convex portion Pp1 is easily broken without contact, the dimensional accuracy and surface quality of the three-dimensional structure 3D1 can be further improved.
 ここでは、例えば、凸部Pp1の+Z側の上面部分における選択的領域Ar1に熱付与部12hによって熱が付与される。具体的には、例えば、赤外線レーザーあるいは発光ダイオード(LED)等によって選択的領域Ar1に光が照射されることで、選択的領域Ar1に熱が付与される。ここでは、例えば、GLV等の光学素子が用いられることで、選択的領域Ar1上に光が局所的に照射され得る。 Here, for example, heat is applied to the selective region Ar1 in the upper surface portion on the + Z side of the convex portion Pp1 by the heat applying portion 12h. Specifically, for example, heat is applied to the selective region Ar1 by irradiating the selective region Ar1 with light by an infrared laser or a light emitting diode (LED). Here, for example, by using an optical element such as GLV, light can be locally irradiated on the selective region Ar1.
 なお、例えば、成形部12が、気体供給部12n、音波照射部12sおよび熱付与部12hの何れか1つ以上の部分を有し、気体供給部12n、音波照射部12sおよび熱付与部12hのうちの少なくとも1つあるいは1つ以上の組み合わせによって、凸部Pp1の少なくとも一部が崩される態様が考えられる。 For example, the molding unit 12 has at least one of the gas supply unit 12n, the sound wave irradiation unit 12s, and the heat application unit 12h, and the gas supply unit 12n, the sound wave irradiation unit 12s, and the heat application unit 12h. An aspect in which at least a part of the convex portion Pp1 is broken by at least one of them or a combination of one or more of them can be considered.
 ここで、予備硬化対象部FL1の硬化によって、積層体LP1の端部T1における必要以上の成形が抑制される態様の代わりに、例えば、次のような成形の態様が採用されても良い。凸部Pp1の選択的な細かい領域に、赤外線レーザーまたはLEDからの赤外光等が光学的な手段によって照射されて熱エネルギーが付与されることで、積層体LP1のうちの気体の吹き付けおよび音波の照射が施される広い領域のうちの細かい領域が精度良く崩され得る。この場合、例えば、ある程度の幅を持ったスリット状の開口部から気体を射出することで、積層体LP1に気体が吹き付けられつつ、積層体LP1の表面のうちの吹き付けられる気体の圧力が高い領域に、選択的に熱エネルギーが付与される態様が考えられる。これにより、端部T1のうち、所望のパターンで、凸部Pp1が残された部分と、凸部の少なくとも一部が崩された部分とが形成され得る。 Here, instead of the mode in which the molding of the end portion T1 of the multilayer body LP1 is suppressed by the curing of the preliminary curing target portion FL1, for example, the following molding mode may be employed. The selective fine region of the convex portion Pp1 is irradiated with infrared light or infrared light from an LED by optical means to impart thermal energy, so that gas in the laminate LP1 is sprayed and sound waves are emitted. The fine area of the wide area to which the irradiation is applied can be accurately broken. In this case, for example, by injecting gas from a slit-like opening having a certain width, a gas is blown to the laminated body LP1, and the pressure of the blown gas on the surface of the laminated body LP1 is high. In addition, a mode in which thermal energy is selectively applied is conceivable. Thereby, the part in which the convex part Pp1 is left in a desired pattern and the part in which at least a part of the convex part is broken can be formed in the end part T1.
 さらに、気体が吹き付けられた部分の周囲における気流の乱れを低減するために、積層体LP1に対する気体の吹き付けに応じて気体が拡がる部分に、気体が吸引される機構が設けられても良い。例えば、上方の斜め方向から積層体LP1に対して気体が吹き付けられ、積層体LP1の上面の法線(+Z方向)を挟む反対側で気体が吸引されつつ、凸部Pp1の選択的な細かい領域に、赤外線レーザーまたはLEDからの赤外光等の照射によって熱エネルギーが付与される構成が考えられる。また、例えば、断面データだけでなく、3Dデータに基づいて、形成したい立体造形物の形状に合わせて、気体を射出する開口部と、気体を吸引する吸引口部と、赤外光等の熱エネルギーを照射する照射ユニットとが、多関節のロボット等によって、3次元空間において自在に移動させることが可能な構成が採用されれば、積層体LP1を精度良く成形することが可能となる。 Furthermore, in order to reduce the turbulence of the airflow around the portion where the gas is blown, a mechanism for sucking the gas may be provided in the portion where the gas expands according to the blowing of the gas to the laminate LP1. For example, the gas is blown to the multilayer body LP1 from the upper oblique direction, and the gas is sucked on the opposite side across the normal (+ Z direction) of the upper surface of the multilayer body LP1, while the selective fine region of the convex portion Pp1 In addition, a configuration in which thermal energy is applied by irradiation with infrared light or the like from an infrared laser or LED can be considered. In addition, for example, based on 3D data as well as cross-sectional data, an opening for injecting gas, a suction port for inhaling gas, and heat such as infrared light in accordance with the shape of the three-dimensional object to be formed If a configuration in which the irradiation unit for irradiating energy can be freely moved in a three-dimensional space by an articulated robot or the like is employed, the laminate LP1 can be formed with high accuracy.
  <(2-2)第2成形方法>
 第2成形方法は、例えば、造形用材料が常温硬化タイプの材料である場合に、段差部SP1の凸部Pp1を熱溶融によって減少または消滅させる方法である。
<(2-2) Second molding method>
The second molding method is, for example, a method of reducing or eliminating the convex portion Pp1 of the stepped portion SP1 by thermal melting when the modeling material is a room temperature curing type material.
 この方法では、供給部11によって積層された各層が硬化することで1以上の硬化層が形成される。そして、成形部12によって、各硬化層の上部の外周部に形成されている凸部Pp1の少なくとも一部に熱が付与されることで、該凸部Pp1の少なくとも一部が溶融されて崩される。これにより、立体造形物3D1の表面上における多数の段差部SP1が目立たなくなる。このため、立体造形物3D1の表面品質の向上が図られ得る。また、例えば、造形用材料として供給後に直ぐに硬化する常温硬化タイプの材料が用いられることで、立体造形物3D1の製造速度が向上し得る。 In this method, one or more cured layers are formed by curing the layers stacked by the supply unit 11. Then, by applying heat to at least a part of the convex part Pp1 formed on the outer peripheral part of the upper part of each cured layer by the molding part 12, at least a part of the convex part Pp1 is melted and broken. . Thereby, many level | step-difference parts SP1 on the surface of three-dimensional molded item 3D1 become inconspicuous. For this reason, the surface quality of the three-dimensional structure 3D1 can be improved. Further, for example, by using a room temperature curing type material that is cured immediately after being supplied as a modeling material, the manufacturing speed of the three-dimensional model 3D1 can be improved.
 ここでは、まず、図3で示されるように、常温硬化タイプの造形用材料が熱せられることで、流動性を有する状態とされ、極細のノズル等から射出されることで1以上の層が積層および硬化された1以上の硬化層が形成される。常温硬化タイプの造形用材料には、上述したように、例えば、ABS樹脂あるいはポリ乳酸(PLA)樹脂等といった熱可塑性樹脂が含まれ得る。 Here, as shown in FIG. 3, first, a room temperature curing type modeling material is heated to be in a fluid state, and one or more layers are laminated by being injected from an ultrafine nozzle or the like. And one or more cured layers are formed. As described above, the room temperature curing type modeling material may include, for example, a thermoplastic resin such as an ABS resin or a polylactic acid (PLA) resin.
 次に、図4および図5で示されるように、成形部12の熱付与部12hによって選択的領域Ar1に熱が付与されることで凸部Pp1の少なくとも一部が崩される。例えば、赤外線レーザーあるいは発光ダイオード(LED)等によって選択的領域Ar1に光が照射されることで、選択的領域Ar1に熱が付与される。ここで、熱付与部12hでは、選択的領域Ar1に対して局所的に熱を付与するために、例えば、微小なミラーが1次元的または2次元的に配列されたDMDが配置された構成が採用され得る。また、微小な回折格子が1次元的または2次元的に配列されたGLVが配置される構成が採用されても良い。また、例えば、ガルバノミラー等で光線を偏向させる構成が採用されても良いし、結晶構造を有する光学素子に対する電圧の印加に応じて該光学素子の屈折率が変化することで光線が偏向される構成が採用されても良い。 Next, as shown in FIGS. 4 and 5, at least a part of the convex portion Pp <b> 1 is broken by applying heat to the selective region Ar <b> 1 by the heat applying portion 12 h of the molding portion 12. For example, heat is applied to the selective region Ar1 by irradiating the selective region Ar1 with light by an infrared laser or a light emitting diode (LED). Here, in the heat applying unit 12h, in order to apply heat locally to the selective region Ar1, for example, a configuration in which a DMD in which minute mirrors are arranged one-dimensionally or two-dimensionally is arranged. Can be employed. Further, a configuration in which GLVs in which minute diffraction gratings are arranged one-dimensionally or two-dimensionally may be employed. In addition, for example, a configuration in which a light beam is deflected by a galvanometer mirror or the like may be adopted, or the light beam is deflected by changing a refractive index of the optical element in accordance with voltage application to the optical element having a crystal structure. A configuration may be employed.
  <(2-3)第3成形方法>
 第3成形方法は、例えば、積層体LP1における段差部SP1の凹部D1を充填材料で埋める方法である。
<(2-3) Third molding method>
The third molding method is, for example, a method of filling the concave portion D1 of the stepped portion SP1 in the stacked body LP1 with a filling material.
 この方法では、成形部12の充填用材料供給部12zによって、充填用材料が供給されて、供給部11によって積層された2以上の層の外周部に形成されている段差部SP1の凹部D1の少なくとも一部が充填用材料で埋められて積層体LP1の端部T1が整形される。これにより、例えば、段差部SP1の凹部D1が埋められることで、凹凸が減少あるいは消滅して凹部D1が目立たなくなる。このため、立体造形物3D1の表面品質の向上が図られ得る。 In this method, the filling material is supplied by the filling material supply part 12z of the molding part 12, and the recess D1 of the step part SP1 formed on the outer peripheral part of two or more layers stacked by the supply part 11 is formed. At least a part is filled with the filling material, and the end T1 of the multilayer body LP1 is shaped. Thereby, for example, the concave portion D1 of the stepped portion SP1 is filled, so that the concave and convex portions are reduced or eliminated and the concave portion D1 becomes inconspicuous. For this reason, the surface quality of the three-dimensional structure 3D1 can be improved.
 第3成形方法が採用される場合、例えば、供給部11によって形成された2以上の層が硬化部13によって硬化された後に、凹部D1の少なくとも一部が埋められる。なお、充填用材料が、2以上の層を成す造形用材料と同種の機能によって硬化するものであれば、硬化部13によって2以上の層が硬化される前に、凹部D1の少なくとも一部が埋められても良い。 When the third molding method is adopted, for example, after two or more layers formed by the supply unit 11 are cured by the curing unit 13, at least a part of the recess D1 is filled. In addition, if the filling material is cured by the same kind of function as the modeling material forming two or more layers, before the two or more layers are cured by the curing unit 13, at least a part of the recess D1 is formed. May be buried.
 図16は、段差部SP1の凹部D1に充填用材料B1が充填される一態様を示す図である。図16には、積層体LP1が造形用材料の複数の層L1~L3によって構成され、上下に隣接する層L1~L3の境界部分の近傍に凹部D1を含む段差部SP1が形成されており、該凹部D1が充填用材料で埋められている様子が示されている。図16で示されるように、例えば、充填用材料供給部12zから供給される充填用材料B1によって凹部D1が埋められて、凹凸が減少あるいは消滅して斜面部Sf0が形成される。 FIG. 16 is a diagram illustrating an aspect in which the filling material B1 is filled in the concave portion D1 of the stepped portion SP1. In FIG. 16, the laminated body LP1 is composed of a plurality of layers L1 to L3 of modeling material, and a stepped portion SP1 including a recess D1 is formed in the vicinity of the boundary portion between the layers L1 to L3 that are vertically adjacent to each other. A state in which the concave portion D1 is filled with a filling material is shown. As shown in FIG. 16, for example, the concave portion D1 is filled with the filling material B1 supplied from the filling material supply portion 12z, and the unevenness is reduced or eliminated to form the slope portion Sf0.
 ここで、充填用材料供給部12zでは、例えば、インクジェット方式等の供給方法によって、造形用材料が液体または流体の状態で、凹部D1内の適切な位置に向けて吐出される。充填用材料B1としては、種々のものが採用可能であるが、積層体LP1を成す造形用材料と同様な材料であれば、段差部SP1をより目立たなくさせることが可能であり、例えば、樹脂等を主成分とするものが採用され得る。 Here, in the filling material supply unit 12z, for example, the modeling material is discharged in a liquid or fluid state toward an appropriate position in the recess D1 by a supply method such as an inkjet method. Various materials can be used as the filling material B1, but the stepped portion SP1 can be made inconspicuous as long as it is the same material as the modeling material forming the laminate LP1. Those having the main component as the main component may be employed.
 また、充填用材料B1が、光を散乱させる材料(光散乱材料とも言う)であれば、段差部SP1が容易に目立たなくなるため、立体造形物3D1の表面品質の向上が容易に図られ得る。光散乱材料としては、例えば、光を散乱させるための小片が分散された透明な材料、および白色のインク等が採用され得る。小片としては、例えば、酸化チタン、酸化ケイ素(シリカ)、樹脂(ポリマー)およびカルシウム等の光を散乱する粒子、ならびにガラス繊維、光ファイバーおよびパルプ等の光を散乱する繊維等が挙げられる。 Further, if the filling material B1 is a material that scatters light (also referred to as a light scattering material), the stepped portion SP1 is not easily noticeable, so that the surface quality of the three-dimensional structure 3D1 can be easily improved. As the light scattering material, for example, a transparent material in which small pieces for scattering light are dispersed, white ink, and the like can be used. Examples of the small piece include particles that scatter light such as titanium oxide, silicon oxide (silica), resin (polymer), and calcium, and fibers that scatter light such as glass fiber, optical fiber, and pulp.
 なお、立体造形物3D1の表面上に白色のインクで下地の層が形成されれば、立体造形物3D1の表面が綺麗に着色され得る。この場合、色付与部14によって、着色の前のタイミングにおいて、積層体LP1のうちの着色の対象となる領域に白色層が形成される態様が考えられる。但し、白色のインクは高価であるため、光を散乱させるための小片が分散された透明な材料を凹部D1内に充填させた後に、白インクの薄い層が形成されれば、立体造形物3D1の製造コストの低減と表面の良好な着色とが実現され得る。 In addition, if the base layer is formed with the white ink on the surface of the three-dimensional structure 3D1, the surface of the three-dimensional structure 3D1 can be beautifully colored. In this case, a mode in which a white layer is formed in a region to be colored in the stacked body LP1 at the timing before coloring by the color imparting unit 14 can be considered. However, since white ink is expensive, if a thin layer of white ink is formed after filling the concave portion D1 with a transparent material in which small pieces for scattering light are dispersed, the three-dimensional structure 3D1 Reduction of the manufacturing cost and good coloring of the surface can be realized.
 <(3)色付与部による色彩の付与>
 色付与部14によって、成形部12によって形成された斜面部Sf0に色彩が付与される。
<(3) Color imparting by the color imparting unit>
The color imparting unit 14 imparts a color to the slope portion Sf <b> 0 formed by the molding unit 12.
 図17から図19は、斜面部Sf0に対する着色方法を説明するための図である。図17には、層L1~L3の端部T1が成形されて、層L1の斜面部Sf1、層L2の斜面部Sf2および層L3の傾斜部Sf3で構成される斜面部Sf0が形成されている様子が示されている。ここで、例えば、図18で示されるように、斜面部Sf0上に、色付与部14によって白色のインクの層(白色インク層とも言う)WL1が形成される。そして、図19で示されるように、白色インク層WL1上に、種々のインクが塗布されて色彩を有する層(色彩層とも言う)CL1が形成される。 17 to 19 are diagrams for explaining a coloring method for the slope portion Sf0. In FIG. 17, end portions T1 of the layers L1 to L3 are formed to form a slope portion Sf0 composed of the slope portion Sf1 of the layer L1, the slope portion Sf2 of the layer L2, and the slope portion Sf3 of the layer L3. The situation is shown. Here, for example, as illustrated in FIG. 18, a white ink layer (also referred to as a white ink layer) WL <b> 1 is formed by the color imparting unit 14 on the slope portion Sf <b> 0. Then, as shown in FIG. 19, a layer (also referred to as a color layer) CL1 having a color by applying various inks is formed on the white ink layer WL1.
 但し、上述したように、成形部12によって積層体LP1の端部T1が成形されることで形成された斜面部Sf0には、立体造形物3D1の造形のためにデータ作成装置1で生成された断面データに対応しない領域が存在する。このため、例えば、データ作成装置1において、図20の破線で示されるように、立体造形物3D1を構成する各層よりも薄くなるように、3Dデータ上で立体造形物が薄切りにされて複数の断面データが生成され、斜面部Sf0上の色彩データが得られる。例えば、各層の厚さである0.5mmよりも薄い0.05mmの厚さで、3Dデータ上において立体造形物が薄切りにされる態様が考えられる。これにより、立体造形物3D1を構成する複数層の上面間の領域についても色彩データが得られる。その結果、制御部10の制御に応じて、得られた色彩データに基づいて斜面部Sf0に対して適切な色彩が付与され得る。 However, as described above, the slope portion Sf0 formed by molding the end portion T1 of the multilayer body LP1 by the molding unit 12 is generated by the data creation device 1 for modeling the three-dimensional model 3D1. There is an area that does not correspond to the cross-sectional data. For this reason, for example, in the data creation device 1, as shown by the broken line in FIG. 20, the three-dimensional object is sliced on the 3D data so as to be thinner than each layer constituting the three-dimensional object 3 </ b> D <b> 1. Cross-section data is generated, and color data on the slope Sf0 is obtained. For example, a mode in which a three-dimensional model is sliced on 3D data with a thickness of 0.05 mm, which is thinner than 0.5 mm, which is the thickness of each layer, can be considered. Thereby, color data is obtained also about the area | region between the upper surfaces of the multiple layers which comprise the three-dimensional molded item 3D1. As a result, according to the control of the control unit 10, an appropriate color can be given to the slope portion Sf0 based on the obtained color data.
 ところで、色彩データに応じて単純に斜面部Sf0が着色されると、隣り合う着色領域間で重複する部分(重複部分とも言う)が生じ、該重複部分において必要以上に濃い色彩が付与されてしまう。そこで、図21で示されるように、隣り合う着色領域間で重複する重複部分については、予め色彩の濃度を低減することで、重複部分における適切な色彩の付与が実現され得る。 By the way, when the slope portion Sf0 is simply colored according to the color data, an overlapping portion (also referred to as an overlapping portion) occurs between adjacent coloring regions, and a color that is darker than necessary is given to the overlapping portion. . Therefore, as shown in FIG. 21, regarding overlapping portions that overlap between adjacent colored regions, it is possible to realize appropriate coloration at the overlapping portions by reducing the color density in advance.
 なお、図17から図20では、成形部12によって凸部Pp1の少なくとも一部が崩されて形成された斜面部Sf0に色彩が付与される態様を例示して説明したが、これに限られない。例えば、図22で示されるように、成形部12によって凹部D1が充填用材料B1によって埋められた上に、色付与部14によって、白色インク層WL1および色彩層CL1が順に積層されても良い。 17 to 20 exemplify and describe a mode in which color is imparted to the slope portion Sf0 formed by breaking at least a part of the convex portion Pp1 by the molding portion 12, but the present invention is not limited to this. . For example, as shown in FIG. 22, the white ink layer WL1 and the color layer CL1 may be sequentially stacked by the color imparting unit 14 after the concave portion D1 is filled with the filling material B1 by the molding unit 12.
 <(4)まとめ>
 以上のように、本実施形態に係る立体造形装置2では、供給部11によって造形用材料が供給されることで該造形用材料によって形成される層が順次に積層される。そして、ここで積層された造形用材料の複数の層によって構成される積層体LP1の端部T1に接触することなく、該端部T1が成形される。これにより、例えば、順次に積層される各層を厚くして製造速度を向上させても、非接触で積層体LP1の端部T1が成形される。このため、立体造形物3D1の良好な寸法精度および表面品質と製造速度の向上とが両立し得る。
<(4) Summary>
As described above, in the three-dimensional modeling apparatus 2 according to the present embodiment, the layers formed by the modeling material are sequentially stacked by supplying the modeling material by the supply unit 11. And this edge part T1 is shape | molded, without contacting edge part T1 of laminated body LP1 comprised by the several layer of the modeling material laminated | stacked here. Thereby, for example, even if the layers that are sequentially stacked are thickened to improve the manufacturing speed, the end portion T1 of the stacked body LP1 is formed in a non-contact manner. For this reason, it is possible to achieve both good dimensional accuracy and surface quality of the three-dimensional structure 3D1 and an improvement in manufacturing speed.
 <(5)変形例>
 なお、本発明は上述の一実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
<(5) Modification>
Note that the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the gist of the present invention.
 例えば、上記一実施形態では、保持部21上に直接的に造形用材料の層が積層されることで立体造形物3D1が形成されたが、これに限られない。例えば、保持部21A上に基材BM1が保持され、該基体BM1上に造形用材料によって構成される複数の層が積層されることで、基体BM1と該基体BM1上に形成された立体造形物3D1との複合体が形成されても良い。基材BM1としては、例えば、ポスター、地図およびシール等が挙げられる。これにより、例えば、一部の特定の図柄等が盛り上がったポスターまたは地図等が実現され得る。特定の図柄には、例えば、山等を示す図柄が含まれる。 For example, in the above-described embodiment, the three-dimensional structure 3D1 is formed by directly stacking the layer of the modeling material on the holding unit 21, but the present invention is not limited thereto. For example, the base material BM1 is held on the holding portion 21A, and a plurality of layers made of a modeling material are stacked on the base body BM1, so that the three-dimensional structure formed on the base body BM1 and the base body BM1. A complex with 3D1 may be formed. Examples of the base material BM1 include posters, maps, and stickers. Thereby, for example, a poster or a map on which some specific symbols and the like are raised can be realized. The specific symbol includes, for example, a symbol indicating a mountain or the like.
 図23は、一変形例に係る立体造形システム100Aの概略構成を示す図である。立体造形システム100Aは、一実施形態に係る立体造形システム100がベースとされて、立体造形装置2が立体造形装置2Aに変更されたものである。具体的には、立体造形装置2Aは、立体造形装置2がベースとされて、テーブル部20が構成の異なるテーブル部20Aに変更され、センサー部40が付加されたものである。 FIG. 23 is a diagram showing a schematic configuration of a three-dimensional modeling system 100A according to a modification. The three-dimensional modeling system 100A is based on the three-dimensional modeling system 100 according to the embodiment, and the three-dimensional modeling apparatus 2 is changed to the three-dimensional modeling apparatus 2A. Specifically, the 3D modeling apparatus 2A is based on the 3D modeling apparatus 2, the table unit 20 is changed to a table unit 20A having a different configuration, and a sensor unit 40 is added.
 テーブル部20Aは、保持部21A、ロッド部22a,22bおよび駆動部23a,23bを備えている。 The table section 20A includes a holding section 21A, rod sections 22a and 22b, and driving sections 23a and 23b.
 保持部21Aは、基材BM1を保持する部分(基材保持部とも言う)であり、例えば、上面が平滑なプレート状の部分である。保持部21Aにおける基材BM1の保持方法については、例えば、挟持部による挟持あるいは吸引孔による吸引等が考えられる。保持部21Aは、基材BM1を保持することで、基材BM1上に形成される積層体LP1および立体造形物3D1を間接的に保持する。ロッド部22a,22bは、駆動部23a,23bの駆動に応じて、保持部21Aを上下方向に移動させる。駆動部23a,23bは、ロッド部22a,22bを上下方向に移動させる部分である。本実施形態では、駆動部23a,23bによって保持部21Aが上下方向に移動されることで、保持部21A上に保持された基材BM1とヘッド部30との上下方向における相対的な位置が変更される。例えば、基材BM1上に造形用材料の層が形成される毎に、保持部21Aおよび基材BM1がヘッド部30Aから離れる方向に移動する。 The holding portion 21A is a portion (also referred to as a base material holding portion) that holds the base material BM1, and is, for example, a plate-like portion having a smooth upper surface. As a holding method of the base material BM1 in the holding part 21A, for example, holding by a holding part or suction by a suction hole can be considered. 21 A of holding | maintenance parts hold | maintain indirectly the laminated body LP1 and three-dimensional molded item 3D1 which are formed on base material BM1 by hold | maintaining base material BM1. The rod portions 22a and 22b move the holding portion 21A in the vertical direction according to the driving of the driving portions 23a and 23b. The drive parts 23a and 23b are parts that move the rod parts 22a and 22b in the vertical direction. In the present embodiment, the relative position in the vertical direction between the base member BM1 held on the holding part 21A and the head part 30 is changed by moving the holding part 21A in the vertical direction by the drive parts 23a and 23b. Is done. For example, every time a layer of a modeling material is formed on the base material BM1, the holding portion 21A and the base material BM1 move in a direction away from the head portion 30A.
 そして、供給部11によって、基材BM1上に造形用材料が供給されることで、造形用材料によって形成される層が基材BM1上に順次に積層される。ここでは、上記一実施形態と同様に、成形部12によって非接触で積層体LP1の端部T1が成形されるため、基材BM1上に造形される立体造形物3D1について良好な寸法精度および表面品質と製造速度の向上とが両立し得る。また、立体造形物の形成後に湿式のエッチング等で立体造形物の表面品質を向上させる構成が考えられるが、この構成と比較して、本変形例に係る立体造形装置2Aが採用されれば、基材BM1の品質に大きな悪影響を及ぼさない。具体的には、例えば、基材BM1が紙製等の湿気に弱い材料で構成される場合であっても、上記一実施形態における成形部12による端部T1の成形によれば、基材BM1の品質が低下し難い。 Then, by supplying the modeling material on the base material BM1 by the supply unit 11, layers formed by the modeling material are sequentially stacked on the base material BM1. Here, since the end portion T1 of the laminated body LP1 is molded in a non-contact manner by the molding unit 12 as in the above-described embodiment, the dimensional accuracy and surface of the three-dimensional model 3D1 modeled on the base material BM1 are good. Quality and production speed can be improved at the same time. Moreover, although the structure which improves the surface quality of a three-dimensional molded item by wet etching etc. after formation of a three-dimensional molded item is considered, if the three-dimensional model | molding apparatus 2A which concerns on this modification is employ | adopted compared with this structure, There is no significant adverse effect on the quality of the base material BM1. Specifically, for example, even when the base material BM1 is made of a material that is vulnerable to moisture such as paper, according to the molding of the end portion T1 by the molding unit 12 in the one embodiment, the base material BM1. The quality of the is difficult to deteriorate.
 センサー部40は、基材BM1上における立体造形物が造形される対象となる領域(造形対象領域とも言う)を特定するための情報を認識する部分(造形領域認識部とも言う)である。該センサー部40において基材BM1上における造形対象領域が認識されると、該センサー部40による認識結果に応じて、認識された造形対象領域上に造形用材料が供給部11によって供給される。これにより、造形用材料によって形成される層が造形対象領域上に順次に積層される。その結果、基材BM1上の所望の造形対象領域に良好な寸法精度と表面品質とを有する立体造形物3D1が迅速に造形され得る。 The sensor unit 40 is a portion (also referred to as a modeling region recognition unit) that recognizes information for specifying a region (also referred to as a modeling target region) on which the three-dimensional modeled object on the base material BM1 is to be modeled. When the modeling target region on the base material BM1 is recognized in the sensor unit 40, the modeling material is supplied by the supply unit 11 onto the recognized modeling target region according to the recognition result by the sensor unit 40. Thereby, the layer formed of the modeling material is sequentially laminated on the modeling target region. As a result, the three-dimensional model 3D1 having good dimensional accuracy and surface quality can be quickly modeled in a desired modeling target region on the base material BM1.
 センサー部40は、例えば、デジタルカメラ等を搭載し、図24で示されるように、例えば、複数のマークMK1~MK4が予め設けられた基材BM1の表面を撮影し、その撮影画像を対象とした画像処理によって、複数のマークMK1~MK4の位置を認識する。このとき、複数のマークMK1~MK4の位置が、仮想空間における3Dデータに係る断面データ上でも規定されていれば、実空間における造形対象領域LR1,LR2を特定するための情報としての座標情報等が認識され得る。なお、ここでは、センサー部40によって複数のマークMK1~MK4の位置が認識されたが、これに限られない。例えば、センサー部40と制御部10との協働によって複数のマークMK1~MK4の位置が認識されても良い。なお、図24では、十字状のマークMK1~MK4が示されたが、これに限られず、マークMK1~MK4は、例えば、バツ印(「×」)、丸印(「○」)、二重丸印(「◎」)および白抜きの十字印等の他の形態を有するものであっても良い。 The sensor unit 40 is equipped with, for example, a digital camera or the like, and as shown in FIG. 24, for example, the surface of the base material BM1 provided with a plurality of marks MK1 to MK4 in advance is photographed, and the photographed image is targeted. By performing the image processing, the positions of the plurality of marks MK1 to MK4 are recognized. At this time, if the positions of the plurality of marks MK1 to MK4 are also defined on the cross-sectional data related to the 3D data in the virtual space, coordinate information as information for specifying the modeling target regions LR1 and LR2 in the real space, etc. Can be recognized. Although the positions of the plurality of marks MK1 to MK4 are recognized by the sensor unit 40 here, the present invention is not limited to this. For example, the positions of the plurality of marks MK1 to MK4 may be recognized by the cooperation of the sensor unit 40 and the control unit 10. In FIG. 24, cross-shaped marks MK1 to MK4 are shown. However, the present invention is not limited to this, and the marks MK1 to MK4 are, for example, cross marks (“×”), circle marks (“◯”), double marks. It may have other forms such as a round mark (“◎”) and a white cross mark.
 また、造形対象領域LR1,LR2を特定するための情報は、例えば、2次元および3次元の領域を特定するための情報として認識され得る。具体的には、複数の角度から捉えられた2次元画像からの計算による認識、およびレーザースキャナによる認識等の少なくとも1以上の組み合わせによって、2次元および3次元の造形対象領域LR1,LR2の領域を特定するための情報が認識されれば、基材BM1が平面的であっても立体的であっても、所望の領域に対する造形用材料の積層および着色が可能となる。また、ここで、測定によって取得された2次元や3次元の領域を特定する情報(測定データとも言う)に基づき、既に造形された領域のうち、設計段階における2次元や3次元のデータ(設計データとも言う)と整合しない領域が存在していることが分かる場合がある。この場合は、設計データが造形物の測定データに合うように変形加工されることで、造形物に対する位置精度および形状精度がより高い着色が可能となる。 Also, the information for specifying the modeling target areas LR1 and LR2 can be recognized as information for specifying the two-dimensional and three-dimensional areas, for example. Specifically, the regions of the two-dimensional and three-dimensional modeling target regions LR1 and LR2 are obtained by a combination of at least one or more such as recognition by calculation from a two-dimensional image captured from a plurality of angles and recognition by a laser scanner. If the information for specifying is recognized, even if the base material BM1 is planar or three-dimensional, the modeling material can be laminated and colored in a desired region. In addition, here, based on information (also referred to as measurement data) for specifying a two-dimensional or three-dimensional area acquired by measurement, two-dimensional or three-dimensional data (design) in the design stage among the already shaped areas. It may be found that there is an area that does not match (also called data). In this case, the design data is deformed so as to match the measurement data of the modeled object, thereby enabling coloring with higher positional accuracy and shape accuracy with respect to the modeled object.
 また、センサー部40によって、基材BM1上に既に描かれた図柄を捉えた撮影データと、3Dデータに係る断面データとが照合されることで、基材BM1上における造形対象領域LR1,LR2を特定するための情報が認識される態様が採用されても良い。 The sensor unit 40 collates shooting data that captures a pattern already drawn on the base material BM1 with cross-sectional data related to the 3D data, so that the modeling target regions LR1 and LR2 on the base material BM1 are identified. An aspect in which information for specifying is recognized may be employed.
 なお、本変形例では、例えば、基材BM1上において立体造形物3D1が形成されている領域(3次元領域とも言う)および該立体造形物3D1が形成されていない平面的な領域(2次元領域とも言う)の双方に色付与部14によって付与され得る。 In the present modification, for example, a region (also referred to as a three-dimensional region) where the three-dimensional object 3D1 is formed on the base material BM1 and a planar region where the three-dimensional object 3D1 is not formed (two-dimensional region) The color imparting unit 14 can also impart both.
 また、上記一実施形態では、同一のヘッド部30に供給部11、成形部12、硬化部13および色付与部14が設けられていたが、これに限られない。供給部11、成形部12、硬化部13および色付与部14は、別々のヘッドに設けられても良いが、供給部11、成形部12、硬化部13および色付与部14のうちの2以上の出来るだけ多くの部分が同一のヘッド部30に搭載されていれば、装置の複雑化が抑制され得る。また、立体造形物3D1上への着色が不要である場合には、色付与部14が設けられていなくても良い。さらに、例えば、常温硬化タイプの造形用材料が採用される場合には、硬化部13は設けられていなくても良い。 In the above-described embodiment, the supply unit 11, the molding unit 12, the curing unit 13, and the color imparting unit 14 are provided in the same head unit 30. However, the present invention is not limited to this. The supply unit 11, the molding unit 12, the curing unit 13, and the color imparting unit 14 may be provided in separate heads, but two or more of the supply unit 11, the molding unit 12, the curing unit 13, and the color imparting unit 14. If as many parts as possible are mounted on the same head unit 30, the complication of the apparatus can be suppressed. Moreover, when the coloring on the three-dimensional structure 3D1 is unnecessary, the color imparting unit 14 may not be provided. Further, for example, when a room temperature curing type modeling material is employed, the curing unit 13 may not be provided.
 また、上記一実施形態では、供給部11、成形部12、硬化部13および色付与部14が、1つの立体造形装置2に搭載されていたが、これに限られない。例えば、造形用材料を供給することで該造形用材料によって形成される層が順次に積層された積層体LP1の端部T1に接触することなく、該端部T1を成形する成形部12を少なくとも備える立体造形用の成形装置が採用されても良い。これにより、例えば、他の装置における積層体LP1の形成において、順次に積層される各層を厚くして製造速度を向上させても、非接触で積層体LP1の端部T1が成形される。このため、立体造形物の良好な寸法精度および表面品質と製造速度の向上とが両立し得る。また、例えば、供給部11、成形部12、硬化部13および色付与部14が2以上の装置に別々に搭載されていても良い。すなわち、立体造形システム100が、立体造形物を形成するための2以上の装置で構成されていても良い。 In the above-described embodiment, the supply unit 11, the molding unit 12, the curing unit 13, and the color imparting unit 14 are mounted on the one three-dimensional modeling apparatus 2, but the present invention is not limited thereto. For example, by supplying the modeling material, at least the molding unit 12 that molds the end T1 without contacting the end T1 of the stacked body LP1 in which layers formed by the modeling material are sequentially stacked A molding apparatus for three-dimensional modeling provided may be employed. Thereby, for example, in the formation of the laminated body LP1 in another apparatus, the end portion T1 of the laminated body LP1 is formed in a non-contact manner even if the layers that are sequentially laminated are thickened to improve the manufacturing speed. For this reason, it is possible to achieve both good dimensional accuracy and surface quality of the three-dimensional structure and the improvement of the manufacturing speed. In addition, for example, the supply unit 11, the molding unit 12, the curing unit 13, and the color imparting unit 14 may be separately mounted on two or more apparatuses. That is, the three-dimensional modeling system 100 may be configured with two or more apparatuses for forming a three-dimensional model.
 ところで、例えば、他の装置で着色された平面および立体造形物が形成された基材に対して、立体造形物の形成、および該立体造形物への着色が施される態様が考えられる。例えば、積層体LP1上における着色の対象となる領域(着色対象領域とも言う)を特定するための情報を認識する部分(着色領域認識部とも言う)が設けられれば良い。このとき、色付与部14によって、着色領域認識部による認識結果に応じて着色対象領域上に着色用材料が提供されることで、着色用材料によって構成される領域が形成され得る。これにより、立体造形装置2で形成された造形物にも、他の装置で形成された造形物にも、必要な着色対象領域に精度良く着色され得る。 By the way, for example, it is conceivable to form a three-dimensional modeled object and color the three-dimensional modeled object on a base material on which a plane and a three-dimensional modeled object are colored by another apparatus. For example, a portion for recognizing information for specifying a region to be colored (also referred to as a coloring target region) on the stacked body LP1 may be provided. At this time, a region formed of the coloring material can be formed by providing the coloring material on the coloring target region according to the recognition result by the coloring region recognition unit by the color imparting unit 14. Thereby, both the modeling object formed with the three-dimensional modeling apparatus 2 and the modeling object formed with the other apparatus can be accurately colored in a necessary coloring target region.
 具体的には、例えば、立体造形システム100の立体造形装置2において、基材BM1と、断面データおよび3Dデータとの位置合わせを行うための物理的な手段が設けられても良い。ここで、物理的な手段としては、例えば、ピン等が挙げられ、該物理的な手段の移動および当接によって、立体造形物の形成および着色の対象となる領域が認識される態様が考えられる。この場合、例えば、長時間を要する造形用材料が積層される工程が別装置で行われることで、造形ならびに着色までが行われた立体造形物の完成品を製造するための生産性が向上し得る。 Specifically, for example, in the three-dimensional modeling apparatus 2 of the three-dimensional modeling system 100, physical means for performing alignment between the base material BM1, the cross-sectional data, and the 3D data may be provided. Here, as a physical means, a pin etc. are mentioned, for example, The aspect by which the area | region used as the object of formation and coloring of a three-dimensional molded item is recognized by the movement and contact | abutting of this physical means can be considered. . In this case, for example, the process of laminating modeling materials that require a long time is performed in a separate device, so that the productivity for manufacturing a three-dimensional modeled product that has been subjected to modeling and coloring is improved. obtain.
 ここで、例えば、携帯通信端末機器のカバー(端末カバーとも言う)等と言った立体物に対して、注文に応じて異なる立体の造形ならびに着色を行う場合を想定する。この場合、注文を管理する情報(注文管理情報とも言う)と、立体造形物の3Dデータおよび断面データならびに色彩データとが整合するように、情報を識別するためのFRタグ等と言った情報を識別するための素子(情報識別素子ても言う)を端末カバーの非印刷面に貼り付けておき、FRIDのリーダーによって情報識別素子から認識される情報に基づいて、立体造形および着色が行われる態様が考えられる。この態様によれば、情報識別素子を用いた情報の管理によって、作業ミスの低減が可能となり、立体造形物の形成および着色後の商品の識別ならびに管理が容易となる。 Here, for example, a case where a three-dimensional object such as a cover (also referred to as a terminal cover) of a mobile communication terminal device is shaped and colored differently according to an order is assumed. In this case, information such as an FR tag for identifying information so that the information for managing the order (also referred to as order management information) and the 3D data, the cross-sectional data, and the color data of the three-dimensional object are matched. A mode in which an element for identification (also referred to as an information identification element) is pasted on the non-printing surface of the terminal cover, and three-dimensional modeling and coloring are performed based on information recognized from the information identification element by the reader of FRID Can be considered. According to this aspect, management of information using the information identification element makes it possible to reduce work mistakes, and facilitates identification and management of products after formation of a three-dimensional model and coloring.
 具体的には、例えば、一度に複数の端末カバーが並べられ、3Dデータおよび断面データに基づいて、異なった立体造形物の形成および着色が行われる場合に、以下のステップa~eが順次に行われる態様が考えられる。 Specifically, for example, when a plurality of terminal covers are arranged at a time and different three-dimensional objects are formed and colored based on 3D data and cross-sectional data, the following steps a to e are sequentially performed. The manner in which it is performed is conceivable.
 [ステップa]各端末カバーに立体の造形および着色に応じた情報識別素子が貼付される。 [Step a] An information identification element corresponding to three-dimensional modeling and coloring is attached to each terminal cover.
 [ステップb]立体の造形および着色を行う立体造形装置に複数の携帯カバーが並べられた状態で固定される。このとき、携帯カバーの固定方法としては、例えば、治具および真空吸着等を用いた機械的な固定等が考えられる。 [Step b] A plurality of portable covers are fixed in a three-dimensional modeling apparatus that performs three-dimensional modeling and coloring. At this time, as a method of fixing the mobile cover, for example, mechanical fixing using a jig and vacuum suction or the like can be considered.
 [ステップc]リーダーを介して制御部10によって、各端末カバーに貼付された情報識別素子から情報が認識されることで、立体造形物の3Dデータおよび断面データならびに色彩データが取得され、カメラやレーザースキャナ等によって、造形および着色の対象となる2次元領域および3次元領域が認識される。 [Step c] 3D data, cross-sectional data, and color data of the three-dimensional structure are acquired by the information recognized from the information identification element affixed to each terminal cover by the control unit 10 via the reader. A two-dimensional area and a three-dimensional area to be modeled and colored are recognized by a laser scanner or the like.
 [ステップd]ステップcで得られた情報から、造形用材料が積層される領域の情報、積層体の端部が成形される領域、積層体のうちの着色が行われる領域が算出され、造形および着色に係るデータが準備される。 [Step d] From the information obtained in step c, information on the region where the modeling material is laminated, the region where the end of the laminate is molded, and the region where coloring is performed in the laminate are calculated, and the modeling is performed. And data on coloring are prepared.
 [ステップe]ステップdで準備されたデータに基づいて、複数の携帯カバーが、一体の造形および着色の対象物として造形および着色が施されることで、造形および着色を行うためのヘッドの無駄な移動量が低減され、作業時間の短縮が図られ得る。 [Step e] Based on the data prepared in Step d, a plurality of portable covers are shaped and colored as an object for integrated modeling and coloring, so that the head for modeling and coloring is wasted Therefore, the amount of movement can be reduced and the working time can be shortened.
 また、上記一実施形態では、立体造形物3D1を成す複数の層のうちの一部の層に対応する積層体LP1について、成形部12によって端部T1が成形されたが、これに限られない。例えば、立体造形物3D1を成す全ての層に対応する積層体LP1について、成形部12によって端部T1が成形する態様が採用されても良い。具体的には、常温硬化タイプの造形用材料が採用される場合には、立体造形物3D1に対応する積層体LP1が形成された後に成形部12によって端部T1が成形される態様が採用され得る。但し、立体造形物3D1を成す複数の層のうちの一部の層に対応する積層体LP1毎に端部T1が成形される態様が採用されれば、積層体LP1の高さ方向の凹凸に応じた成形部12の制御が容易となり得る。 Moreover, in the said one Embodiment, although the edge part T1 was shape | molded by the shaping | molding part 12 about the laminated body LP1 corresponding to the one part layer of several layers which comprise the three-dimensional molded item 3D1, it is not restricted to this. . For example, the aspect which the edge part T1 shape | molds by the shaping | molding part 12 about the laminated body LP1 corresponding to all the layers which comprise the three-dimensional molded item 3D1 may be employ | adopted. Specifically, when a room-temperature-curing type modeling material is employed, an aspect in which the end portion T1 is molded by the molding unit 12 after the laminate LP1 corresponding to the three-dimensional model 3D1 is formed is employed. obtain. However, if an aspect in which the end T1 is formed for each layered body LP1 corresponding to a part of the plurality of layers constituting the three-dimensional structure 3D1, the unevenness in the height direction of the layered body LP1 is adopted. The control of the corresponding molding part 12 can be facilitated.
 また、上記一実施形態では、テーブル部20,20Aの保持部21,21Aが上下方向に移動することで、テーブル部20,20Aとヘッド部30との距離が調整されたが、これに限られない。例えば、テーブル部20,20Aが固定され、ヘッド部30が上下方向に移動しても良いし、テーブル部20,20Aとヘッド部30の双方が上下方向に移動しても良い。 In the above-described embodiment, the distance between the table units 20 and 20A and the head unit 30 is adjusted by moving the holding units 21 and 21A of the table units 20 and 20A in the vertical direction. Absent. For example, the table units 20 and 20A may be fixed, and the head unit 30 may move in the vertical direction, or both the table units 20 and 20A and the head unit 30 may move in the vertical direction.
 また、上記一実施形態では、ヘッド部30が、保持部21の上方において2次元的に走査されたが、これに限られない。例えば、立体造形物3D1の幅が小さいか、あるいはヘッド部30において幅広く供給部11、成形部12、硬化部13および色付与部14が設けられている場合には、ヘッド部30が一方向にのみ走査される態様(一次元走査とも言う)が採用されても良い。 In the above embodiment, the head unit 30 is two-dimensionally scanned above the holding unit 21. However, the present invention is not limited to this. For example, when the width of the three-dimensional model 3D1 is small or the supply unit 11, the molding unit 12, the curing unit 13, and the color imparting unit 14 are provided widely in the head unit 30, the head unit 30 is unidirectional. A mode in which only scanning is performed (also referred to as one-dimensional scanning) may be employed.
 また、上記一実施形態に係る立体造形システム100および上記一変形例に係る立体造形システム100Aでは、造形用材料が硬化されることで、上方に行くに従って狭まっている形状(例えば、上に凸のテーパー状)を有する立体造形物が形成された。しかしながら、これに限られない。例えば、造形用材料が、立体造形物を構成するための第1造形用材料(モデル材とも言う)と、立体造形物の形成後に除去が可能な第2造形用材料(サポート材とも言う)とを含んでいても良い。この場合、モデル材の積層によって形成された積層体のうちの下方に行くに従って狭まっている形状(例えば、下に凸の逆テーパー状)の部分が、サポート材による下方から支持によって形成され得る。なお、サポート材は、例えば、立体造形物の形成後であって着色後に除去されるものであっても良い。 Further, in the three-dimensional modeling system 100 according to the above-described embodiment and the three-dimensional modeling system 100A according to the above-described modification, a shape (for example, an upward convex shape) that narrows as it goes upward is obtained by curing the modeling material. A three-dimensionally shaped object having a taper shape was formed. However, it is not limited to this. For example, the modeling material is a first modeling material (also referred to as a model material) for constituting a three-dimensional modeled object, and a second modeling material (also referred to as a support material) that can be removed after the three-dimensional modeled object is formed. May be included. In this case, a portion of the stacked body formed by stacking the model materials that narrows downward (for example, a reversely tapered shape protruding downward) can be formed by support from below with the support material. Note that the support material may be removed after coloring after the formation of the three-dimensional structure, for example.
 このような構成では、例えば、サポート材の積層によって該サポート材の積層体が形成され、該積層体の端部が成形された後に、サポート材で構成される積層体の間隙にモデル材が供給されることで、立体造形物が形成される態様が考えられる。このような態様が採用されても、逆テーパー状の部分を有する立体造形物の良好な寸法精度および表面品質と製造速度の向上とが両立し得る。 In such a configuration, for example, the support material laminate is formed by laminating the support material, and after the end of the laminate is formed, the model material is supplied to the gap between the support materials. By doing so, a mode in which a three-dimensional modeled object is formed can be considered. Even if such an aspect is adopted, it is possible to achieve both good dimensional accuracy and surface quality of the three-dimensional modeled object having an inversely tapered portion and an improvement in manufacturing speed.
 ここで、サポート材としては、例えば、水膨潤ゲル、ワックス、熱可塑性樹脂、水溶性材料、溶解性材料等の除去可能な材料が採用され得る。サポート材を除去する手法としては、例えば、水溶、加熱、化学反応、水圧洗浄等の動力洗浄および電磁波の照射等による溶解、あるいは熱膨張の差を利用した分離等の手法が採用され得る。 Here, as the support material, for example, a removable material such as a water swelling gel, a wax, a thermoplastic resin, a water-soluble material, or a soluble material may be employed. As a technique for removing the support material, for example, a technique such as water washing, heating, chemical reaction, power washing such as hydraulic washing, dissolution by electromagnetic wave irradiation, or separation using a difference in thermal expansion may be employed.
 図25は、他の一変形例に係る立体造形システム100Bの概略的な構成を模式的に示す図である。立体造形システム100Bは、上記一変形例に係る立体造形システム100Aがベースとされて、立体造形装置2が立体造形装置2Bに変更されたものである。立体造形装置2Bは、上記一変形例に係るヘッド部30が、ヘッド部30Bに変更されたものであり、該ヘッド部30Bは、上記ヘッド部30のうちの供給部11が、第1供給部11aと第2供給部11bとを有する供給部11Bに変更されたものである。第1供給部11aは、モデル材を供給する。第2供給部11bは、サポート材を供給する。 FIG. 25 is a diagram schematically illustrating a schematic configuration of a three-dimensional modeling system 100B according to another modification. The three-dimensional modeling system 100B is based on the three-dimensional modeling system 100A according to the above-described modification, and the three-dimensional modeling apparatus 2 is changed to the three-dimensional modeling apparatus 2B. In the three-dimensional modeling apparatus 2B, the head unit 30 according to the modification is changed to the head unit 30B, and the head unit 30B is configured such that the supply unit 11 of the head unit 30 is the first supply unit. 11a and the supply part 11B which has the 2nd supply part 11b. The first supply unit 11a supplies a model material. The second supply unit 11b supplies a support material.
 図26から図35は、立体造形システム100Bによって逆テーパー状の部分を含む立体造形物が形成される工程を模式的に示す図である。 FIG. 26 to FIG. 35 are diagrams schematically illustrating a process in which a three-dimensional object including an inversely tapered portion is formed by the three-dimensional object forming system 100B.
 まず、図26で示されるように、第2供給部11bによって、サポート材が供給されることで該サポート材によって形成される層Ls1~Ls3が1層以上積層される。このとき、サポート材によって形成される層が2層以上順次に積層されても良い。 First, as shown in FIG. 26, when the support material is supplied by the second supply unit 11b, one or more layers Ls1 to Ls3 formed by the support material are laminated. At this time, two or more layers formed of the support material may be sequentially stacked.
 次に、図27で示されるように、成形部12によって、第2供給部11bによって積層されたサポート材の複数の層によって構成される積層体LPs1の端部Ts1における段差部SPs1が、端部Ts1に接触されることなく成形される。ここでは、例えば、上記第1~3成型方法が採用され得る。例えば、図26および図27には、段差部SPs1の凸部Pa1が崩されて、該端部Ts1が、層Ls1~Ls3の斜面部Ss1~Ss3で構成される成形後の斜面部Ss0となる様子が例示されている。 Next, as shown in FIG. 27, the step portion SPs1 at the end portion Ts1 of the stacked body LPs1 configured by the plurality of layers of the support material stacked by the second supply unit 11b is formed by the molding unit 12 at the end portion. Molded without being in contact with Ts1. Here, for example, the above first to third molding methods may be employed. For example, in FIGS. 26 and 27, the convex portion Pa1 of the stepped portion SPs1 is collapsed, and the end portion Ts1 becomes a sloped portion Ss0 after molding composed of the sloped portions Ss1 to Ss3 of the layers Ls1 to Ls3. The situation is illustrated.
 次に、図28で示されるように、サポート材で構成される積層体LPs1のうちの該積層体LPs1の間隙Rs0に面した表面上であって、立体造形物の表面が形成される領域のうちの着色が必要な選択的な領域に、着色用材料が色付与部14によって付与されることで、着色層CL1が形成される。 Next, as shown in FIG. 28, the region of the multilayer body LPs <b> 1 composed of the support material on the surface facing the gap Rs <b> 0 of the multilayer body LPs <b> 1 and where the surface of the three-dimensional structure is formed. The coloring layer CL1 is formed by applying the coloring material to the selective region that needs to be colored by the color applying unit 14.
 次に、図29で示されるように、立体造形物の表面において着色層CL1の発色が良好となるように、着色層CL1上に白色インクが塗布されて、白色層WL1が形成される。白色インクは、例えば、色付与部14によって形成され得る。つまり、色付与部14が、該付与部14による着色の後のタイミングにおいて、積層体LPs1上のうちの着色の対象となる領域に白色層WL1が形成される。 Next, as shown in FIG. 29, white ink is applied on the colored layer CL1 so that the colored layer CL1 has a good color on the surface of the three-dimensional structure, and the white layer WL1 is formed. The white ink can be formed by, for example, the color applying unit 14. That is, the white layer WL1 is formed in the region to be colored on the stacked body LPs1 at the timing after the color imparting unit 14 is colored by the imparting unit 14.
 次に、図30で示されるように、積層体LPs1の間隙Rs0を埋めるように、第1供給部11aによってモデル材が供給されることで、モデル材の層L03,L02,L01が順次に積層された積層体LP0が形成される。 Next, as shown in FIG. 30, the model material layers L03, L02, and L01 are sequentially stacked by supplying the model material by the first supply unit 11a so as to fill the gap Rs0 of the stacked body LPs1. The laminated body LP0 thus formed is formed.
 次に、図31で示されるように、モデル材の層L01の上に、第1供給部11aによってモデル材が供給されることで、モデル材の層L01の上にモデル材の層L1,L2,L3が積層された積層体LP1が形成される。 Next, as shown in FIG. 31, the model material is supplied onto the model material layer L01 by the first supply unit 11a, so that the model material layers L1, L2 are formed on the model material layer L01. , L3 are stacked to form a stacked body LP1.
 次に、図32で示されるように、成形部12によって、積層体LP1の端部T1が成形される。ここでは、上記第1~3成形方法が採用され得る。 Next, as shown in FIG. 32, the end portion T1 of the laminate LP1 is formed by the forming portion 12. Here, the above first to third molding methods can be employed.
 次に、図33で示されるように、積層体LP1の表面上に白インクが塗布されて、白色層WL1が形成される。白色インクは、例えば、色付与部14によって形成され得る。つまり、色付与部14が、該付与部14による着色の前のタイミングにおいて、積層体LP1上のうちの着色の対象となる領域に白色層WL1が形成される。 Next, as shown in FIG. 33, white ink is applied on the surface of the laminate LP1 to form a white layer WL1. The white ink can be formed by, for example, the color applying unit 14. That is, the white layer WL1 is formed in the region to be colored on the stacked body LP1 at a timing before the color imparting unit 14 is colored by the imparting unit 14.
 次に、図34で示されるように、積層体LP1上に形成された白色層WL1上に、着色用材料が色付与部14によって付与されることで、着色層CL1が形成される。 Next, as shown in FIG. 34, a coloring material CL is formed on the white layer WL1 formed on the multilayer body LP1 by applying a coloring material by the color applying unit 14.
 そして、図35で示されるように、サポート材からなる積層体LPs1が除去されることで、色付きの立体造形物3D1sの形成が完了される。これにより、逆テーパー状の部分まで滑らかな表面が形成され、さらに良好な着色が実現され得る。 Then, as shown in FIG. 35, the formation of the colored three-dimensional structure 3D1s is completed by removing the laminated body LPs1 made of the support material. As a result, a smooth surface is formed up to the inversely tapered portion, and even better coloring can be realized.
 なお、ここでは、色付与部14によって、該色付与部14による着色の前および後の両方のタイミングにおいて、積層体LPs1,LP1上のうちの着色の対象となる領域に白色層WL1が形成されたが、これに限られない。上記一実施形態のように、着色の前のタイミングにおいて、白色層WL1が形成されても良いし、逆テーパー状の部分のみに白色層WL1が形成される場合には、着色の後のタイミングにおいて白色層WL1が形成されても良い。すなわち、色付与部14によって、該色付与部14による着色の前および後の少なくとも一方のタイミングにおいて、積層体LPs1,LP1上のうちの着色の対象となる領域に白色層WL1が形成されても良い。これにより、彩度、明度、コントラスト等と言った色品質の高い着色領域が形成され得る。 Here, the white layer WL1 is formed in the region to be colored on the stacked bodies LPs1 and LP1 by the color imparting unit 14 at both the timing before and after the coloring by the color imparting unit 14. However, it is not limited to this. As in the above-described embodiment, the white layer WL1 may be formed at the timing before coloring, or when the white layer WL1 is formed only in the reverse tapered portion, at the timing after coloring. A white layer WL1 may be formed. That is, even when the color imparting unit 14 forms the white layer WL1 in the region to be colored on the stacked bodies LPs1 and LP1 at least at one timing before and after the coloring by the color imparting unit 14. good. Thereby, a colored region having high color quality such as saturation, brightness, and contrast can be formed.
 また、上記一実施形態および各種変形例では、積層体LP1の端部T1の成形方法として、該端部T1に形成される段差部SP1の凸部Pp1を減少または消滅させる成形方法、ならびに該段差部SP1の凹部D1を埋める成形方法が採用されたが、これに限られない。端部T1の成形方法として、例えば、成形部12によって、端部T1が成形された後に、該端部T1に凹凸加工が施されても良い。これにより、端部T1が適宜変形され、成形後の端面T1における表面品質が調整され得る。ここで、凹凸加工は、凸部Pp1の減少または消滅あるいは凹部D1の埋没等によって形成された領域に、さらに凹部および凸部の少なくとも一方が形成される加工である。そして、凹凸加工としては、例えば、平滑な面に複数の凹部を規則的または不規則的に設ける加工、あるいは平滑面に革の表面のような模様を設ける加工等が採用され得る。 Further, in the above-described embodiment and various modifications, as a method for forming the end portion T1 of the laminate LP1, a forming method for reducing or eliminating the convex portion Pp1 of the step portion SP1 formed on the end portion T1, and the step Although the shaping | molding method which fills the recessed part D1 of part SP1 was employ | adopted, it is not restricted to this. As a method for forming the end portion T1, for example, after the end portion T1 is formed by the forming portion 12, the end portion T1 may be subjected to uneven processing. Thereby, the edge part T1 is deform | transformed suitably and the surface quality in the end surface T1 after shaping | molding can be adjusted. Here, the concavo-convex process is a process in which at least one of a concave portion and a convex portion is further formed in a region formed by reduction or disappearance of the convex portion Pp1 or burying of the concave portion D1. And as an uneven | corrugated process, the process which provides a recessed surface regularly or irregularly on a smooth surface, or the process which provides a pattern like a leather surface on a smooth surface, etc. can be employ | adopted, for example.
 ここで、凹凸加工を実現するための方法について具体例を挙げて説明する。ここでは、気体の吹き付けとレーザー光の照射との組み合わせによって凹凸加工が実現される例を挙げて説明する。なお、例えば、積層体LP1を構成する造形用材料の融点が低い場合には、レーザー光の照射のみでも凹凸加工が実現され得る。 Here, a method for realizing the uneven processing will be described with a specific example. Here, an example will be described in which concavo-convex processing is realized by a combination of gas blowing and laser light irradiation. For example, when the modeling material constituting the laminate LP1 has a low melting point, uneven processing can be realized only by laser light irradiation.
 図36および図37は、一変形例に係る積層体LP1の端部T1の成形方法を説明するための図である。図36で示されるように、レーザーLz0から発せられるレーザー光が、素子Mr0によって積層体LP1の端部T1の所望の領域に対して照射される。ここで、レーザーLz0としては、例えば、赤外線のレーザー光を発するものが挙げられる。また、素子Mr0としては、例えば、DMD、GLV、結晶光学素子、ガルバノミラーおよびポリゴンミラー等が挙げられる。そして、このとき、所望の領域に、気体供給部Ai0のスリット状の開口から吐出される気体が吹き付けられる。これにより、一旦、端部T1の凸部Pp1が崩されて、図37で示されるように、層L1の斜面部Sf1、層L2の斜面部Sf2、および層L3の斜面部Sf3で構成される成形後の斜面部Sf0が形成される。ここで、吹き付けられる気体は、エアナイフ状の形態を有する。また、ここでは、端部T1の所望の領域にレーザー光が照射される時間あるいはレーザー光の強度が調整されることで、凸部Pp1が崩される量が調整され得る。その後、図37で示されるように、図36と同様な構成を有する装置によって、斜面部Sf0の所望の領域にレーザー光が照射されつつ、気体が吹き付けられることで、例えば、規則的あるいは不規則的に配された複数の穴部が形成される。 FIG. 36 and FIG. 37 are diagrams for explaining a method of forming the end portion T1 of the multilayer body LP1 according to one modification. As shown in FIG. 36, the laser beam emitted from the laser Lz0 is applied to the desired region of the end T1 of the multilayer body LP1 by the element Mr0. Here, examples of the laser Lz0 include those that emit infrared laser light. Examples of the element Mr0 include DMD, GLV, crystal optical element, galvanometer mirror, and polygon mirror. At this time, the gas discharged from the slit-shaped opening of the gas supply unit Ai0 is blown onto the desired region. As a result, the convex portion Pp1 of the end portion T1 is once broken, and as shown in FIG. 37, the slope portion Sf1 of the layer L1, the slope portion Sf2 of the layer L2, and the slope portion Sf3 of the layer L3 are formed. A slope Sf0 after forming is formed. Here, the gas to be blown has an air knife-like form. In addition, here, by adjusting the time during which the desired region of the end portion T1 is irradiated with the laser beam or the intensity of the laser beam, the amount by which the convex portion Pp1 is broken can be adjusted. Thereafter, as shown in FIG. 37, a gas is blown while irradiating a desired region of the slope portion Sf0 with a device having the same configuration as in FIG. 36, for example, regular or irregular. A plurality of holes arranged in a regular manner are formed.
 図38は、他の一変形例に係る積層体LP1の端部T1の成形方法を説明するための図である。ここでは、端部T1の凸部Pp1が崩される成形と、さらなる端部T1の変形とが略同時に行われる形態について説明する。図38で示されるように、レーザーLz0から発せられるレーザー光が、インテグレーターIg0によって、進行方向に垂直な断面がある程度の面積を有する平行光であるレーザー光(面レーザー光とも言う)に変換され、素子部Dm0によって積層体LP1の端部T1の所望の領域に対して照射される。また、該所望の領域に、気体供給部Ai0のスリット状の開口から吐出される気体が吹き付けられる。このとき、素子部Dm0の第1領域Dm1によってレーザー光が端部T1の所望の領域に照射されることで、端部T1の凸部Pp1が崩された直後に、素子部Dm0の第2領域Dm2によってレーザー光が端部T1の所望の領域に照射されることで、例えば、規則的あるいは不規則的に配された複数の穴部が形成される。なお、素子部Dm0としては、DMD等と言った2次元に複数の素子が配列されたもの、および2以上のガルバノミラーで構成されたもの等が採用され得る。 FIG. 38 is a diagram for explaining a method of forming the end portion T1 of the multilayer body LP1 according to another modification. Here, a description will be given of a form in which the forming of the convex portion Pp1 of the end portion T1 and the further deformation of the end portion T1 are performed substantially simultaneously. As shown in FIG. 38, the laser light emitted from the laser Lz0 is converted by the integrator Ig0 into laser light (also referred to as surface laser light) that is parallel light having a certain area in a cross section perpendicular to the traveling direction. A desired region of the end portion T1 of the multilayer body LP1 is irradiated by the element portion Dm0. Moreover, the gas discharged from the slit-shaped opening of gas supply part Ai0 is sprayed on this desired area | region. At this time, the second region of the element portion Dm0 is immediately after the projection Pp1 of the end portion T1 is collapsed by irradiating the desired region of the end portion T1 with the laser beam by the first region Dm1 of the element portion Dm0. By irradiating the desired region of the end portion T1 with the laser beam by Dm2, for example, a plurality of holes arranged regularly or irregularly are formed. As the element portion Dm0, a two-dimensional array of elements such as a DMD, or a structure composed of two or more galvanometer mirrors may be employed.
 また、上記一実施形態では、単に造形用材料が積層されたが、これに限られない。例えば、造形用材料が積層される際に、金、銀、銅、アルミニウム、ニッケルおよび鉄等の金属を適宜含むような電磁波等に影響する材料の適切なパターンが、携帯通信端末機器のカバーの表面の最適化された領域に形成されても良い。これにより、携帯通信端末機器の装飾的な機能を有する部分の存在によって、電波を受け易くなる機能、あるいは電磁波の影響を抑制する機能を実現することが可能である。その結果、例えば、通信の安定性、あるいは医療機関の設備内等での使用の許容性等と言った各種性能が付与され得るため、携帯通信端末機器のカバーの価値が向上し得る。 In the above-described embodiment, the modeling material is simply laminated, but the present invention is not limited to this. For example, when the modeling material is laminated, an appropriate pattern of a material that affects electromagnetic waves or the like that appropriately includes metals such as gold, silver, copper, aluminum, nickel, and iron is formed on the cover of the mobile communication terminal device. It may be formed in an optimized region of the surface. Thereby, it is possible to realize a function of easily receiving radio waves or a function of suppressing the influence of electromagnetic waves due to the presence of a portion having a decorative function of the mobile communication terminal device. As a result, for example, various performances such as the stability of communication or the admissibility of use in facilities of medical institutions can be imparted, so that the value of the cover of the mobile communication terminal device can be improved.
 また、上記一実施形態では、造形用材料として、例えば、紫外線硬化性樹脂、熱硬化性樹脂または熱可塑性樹脂等が単純に採用されたが、これに限られない。例えば、硬化後の硬度に係る成分の比率が異なる複数種類の造形用材料が採用されても良い。具体的には、例えば、供給部11に、造形用材料の硬化後の硬度に係る該造形用材料の成分の比率を変更する部分(変更部とも言う)が更に含まれていれば、供給部11から複数種類の造形用材料の供給が可能となる。変更部では、例えば、複数種類の組成の材料を供給して混合することで造形用材料の成分の比率が変更され得る。このような構成が採用されれば、例えば、造形用材料の積層時または半硬化状態での積層後における選択的な領域において、例えば、単位面積あたりの硬化剤の量を網点のように変化させることで硬化剤を含む造形用材料の成分比率が変更され得る。このため、硬化後の硬度が異なる複数の材料が別々の供給部から供給されずとも、部分的に固さが異なる造形物が作成され得る。これにより、多数種類の材料および多数の供給部が準備されなくとも、硬度が異なる立体造形物が実現され得る。 In the above-described embodiment, for example, an ultraviolet curable resin, a thermosetting resin, a thermoplastic resin, or the like is simply used as the modeling material. However, the present invention is not limited to this. For example, a plurality of types of modeling materials having different ratios of components related to the hardness after curing may be employed. Specifically, for example, if the supply unit 11 further includes a portion (also referred to as a change unit) that changes the ratio of the component of the modeling material related to the hardness after curing of the modeling material, the supply unit A plurality of types of modeling materials can be supplied from 11. In the changing unit, for example, the ratio of the components of the modeling material can be changed by supplying and mixing materials of a plurality of types of compositions. If such a configuration is adopted, for example, the amount of the curing agent per unit area is changed like a halftone dot in a selective region when the modeling material is laminated or after lamination in a semi-cured state. By making it, the component ratio of the modeling material containing a hardening | curing agent may be changed. For this reason, even if a plurality of materials having different hardnesses after curing are not supplied from separate supply units, a modeled object having partially different hardness can be created. Thereby, even if many kinds of materials and many supply parts are not prepared, the three-dimensional molded item from which hardness differs can be implement | achieved.
 また、上記一実施形態では、造形用材料として、例えば、紫外線硬化性樹脂、熱硬化性樹脂または熱可塑性樹脂等が採用されたが、これに限られない。例えば、立体造形物のうち、大まかな部分が熱可塑性樹脂によって形成され、細かい部分が紫外線硬化性樹脂や熱硬化性樹脂等で形成される態様も考えられる。なお、このとき、熱可塑性樹脂で形成される大まかな部分の段差部が紫外線硬化性の白色インク等で埋められる態様が採用され得る。この場合、例えば、材料コストが低い熱可塑性樹脂の使用により、立体造形物の製造コストが低減され得る。 In the above-described embodiment, for example, an ultraviolet curable resin, a thermosetting resin, or a thermoplastic resin is used as the modeling material, but the present invention is not limited thereto. For example, an aspect in which a rough portion of the three-dimensional model is formed of a thermoplastic resin and a fine portion is formed of an ultraviolet curable resin, a thermosetting resin, or the like is also conceivable. At this time, a mode in which a rough step portion formed of a thermoplastic resin is filled with ultraviolet curable white ink or the like may be employed. In this case, for example, by using a thermoplastic resin having a low material cost, the manufacturing cost of the three-dimensional structure can be reduced.
 また、上記一実施形態および各種変形例において、例えば、ヘッド部30,30Aが、該ヘッド部30,30Aと分離された別の駆動部によってワイヤーやベルト等を介して駆動されても良い。 In the above-described embodiment and various modifications, for example, the head units 30 and 30A may be driven by wires or belts or the like by another drive unit separated from the head units 30 and 30A.
 なお、上記一実施形態および各種変形例をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせ可能であることは、言うまでもない。 Needless to say, all or a part of each of the above-described embodiment and various modifications can be appropriately combined within a consistent range.
 1 データ作成装置
 2,2A 立体造形装置
 3D1 立体造形物
 10 制御部
 11 供給部
 12 成形部
 12h 熱付与部
 12n 気体供給部
 12s 音波照射部
 12z 充填用材料供給部
 13 硬化部
 14 色付与部
 14s 遮光板
 20,20A テーブル部
 21,21A 保持部
 30,30A ヘッド部
 30Bd ヘッド本体部
 40 センサー部
 100,100A 立体造形システム
 Ar1 選択的領域
 B1 充填用材料
 BM1 基材
 C100 浄化部
 D1 凹部
 FL1 予備硬化対象部
 H1~H4 貫通孔
 L1~L3 層
 LP1 積層体
 LR1,LR2 造形対象領域
 N1~N5 気体供給管
 Pp1 凸部
 SP1 段差部
 T1 端部
DESCRIPTION OF SYMBOLS 1 Data creation apparatus 2,2A 3D modeling apparatus 3D1 3D modeling object 10 Control part 11 Supply part 12 Molding part 12h Heat provision part 12n Gas supply part 12s Sound wave irradiation part 12z Filling material supply part 13 Curing part 14 Color provision part 14s Light-shielding Plate 20, 20A Table part 21, 21A Holding part 30, 30A Head part 30Bd Head main body part 40 Sensor part 100, 100A Stereolithography system Ar1 selective area B1 Filling material BM1 Base material C100 Purification part D1 Concave part FL1 Precuring target part H1 to H4 Through hole L1 to L3 Layer LP1 Laminate LR1, LR2 Modeling target area N1 to N5 Gas supply pipe Pp1 Convex part SP1 Step part T1 End part

Claims (28)

  1.  造形用材料を供給することで該造形用材料によって形成される層を順次に積層させる供給部と、
     前記供給部によって積層された前記造形用材料の複数の層によって構成される積層体の端部に接触することなく、該端部を成形する成形部と、
    を備える立体造形装置。
    A supply unit for sequentially stacking layers formed by the modeling material by supplying the modeling material;
    A molding part that molds the end part without contacting the end part of the laminated body constituted by a plurality of layers of the modeling material laminated by the supply part;
    3D modeling apparatus.
  2.  請求項1に記載の立体造形装置であって、
     前記成形部が、
     前記供給部によって積層された各層における上部の外周部に形成されている凸部の少なくとも一部を崩すことで前記積層体の前記端部を成形する立体造形装置。
    The three-dimensional modeling apparatus according to claim 1,
    The molded part is
    The three-dimensional modeling apparatus which shape | molds the said edge part of the said laminated body by breaking at least one part of the convex part currently formed in the upper outer peripheral part in each layer laminated | stacked by the said supply part.
  3.  請求項2に記載の立体造形装置であって、
     前記供給部によって積層された各層を硬化させる硬化部、をさらに備え、
     前記硬化部が、
     前記各層の前記凸部の少なくとも一部が前記成形部によって崩された後に、該各層を硬化させる立体造形装置。
    The three-dimensional modeling apparatus according to claim 2,
    A curing unit that cures each layer laminated by the supply unit;
    The cured portion is
    A three-dimensional modeling apparatus that cures each layer after at least a part of the convex portion of each layer is broken by the molding unit.
  4.  請求項3に記載の立体造形装置であって、
     前記硬化部が、
     前記各層の前記凸部が前記成形部によって崩される前に、該各層の前記上部における前記凸部以外の少なくとも前記凸部の近傍の部分を硬化させる立体造形装置。
    The three-dimensional modeling apparatus according to claim 3,
    The cured portion is
    A three-dimensional modeling apparatus that cures at least a portion in the vicinity of the convex portion other than the convex portion in the upper portion of each layer before the convex portion of each layer is broken by the molding portion.
  5.  請求項2から請求項4の何れか1つの請求項に記載の立体造形装置であって、
     前記成形部が、
     前記凸部に気体を吹き付けることで前記凸部の少なくとも一部を崩す気体供給部を有する立体造形装置。
    The three-dimensional modeling apparatus according to any one of claims 2 to 4,
    The molded part is
    The three-dimensional modeling apparatus which has a gas supply part which destroys at least one part of the said convex part by blowing gas on the said convex part.
  6.  請求項5に記載の立体造形装置であって、
     前記気体供給部が、
     前記各層の上面に対して傾斜する方向から前記凸部の少なくとも一部に気体を吹き付ける立体造形装置。
    The three-dimensional modeling apparatus according to claim 5,
    The gas supply unit is
    A three-dimensional modeling apparatus that blows gas onto at least a part of the convex portion from a direction inclined with respect to the upper surface of each layer.
  7.  請求項2から請求項4の何れか1つの請求項に記載の立体造形装置であって、
     前記成形部が、
     前記凸部に音波を照射することで前記凸部の少なくとも一部を崩す音波照射部を有する立体造形装置。
    The three-dimensional modeling apparatus according to any one of claims 2 to 4,
    The molded part is
    A three-dimensional modeling apparatus having a sound wave irradiation unit that breaks at least a part of the convex part by irradiating the convex part with sound waves.
  8.  請求項2から請求項4の何れか1つの請求項に記載の立体造形装置であって、
     前記成形部が、
     前記凸部への熱の付与によって前記凸部の流動性を高めることで前記凸部の少なくとも一部を崩す熱付与部を有する立体造形装置。
    The three-dimensional modeling apparatus according to any one of claims 2 to 4,
    The molded part is
    A three-dimensional modeling apparatus having a heat application part that breaks at least a part of the convex part by increasing fluidity of the convex part by applying heat to the convex part.
  9.  請求項2から請求項8の何れか1つの請求項に記載の立体造形装置であって、
     前記供給部によって積層された前記各層が硬化することで1以上の硬化層が形成され、
     前記成形部が、
     前記各硬化層の上部の外周部に形成されている凸部の少なくとも一部に熱を付与することで、該凸部の少なくとも一部を溶融させて崩す立体造形装置。
    The three-dimensional modeling apparatus according to any one of claims 2 to 8,
    One or more cured layers are formed by curing each layer laminated by the supply unit,
    The molded part is
    A three-dimensional modeling apparatus that melts and collapses at least a part of the convex part by applying heat to at least a part of the convex part formed on the outer peripheral part of the upper part of each of the hardened layers.
  10.  請求項1から請求項9の何れか1つの請求項に記載の立体造形装置であって、
     前記成形部が、
     充填用材料の供給によって、前記供給部によって積層された2以上の層の外周部に形成されている段差部の凹部の少なくとも一部を前記充填用材料で埋めて前記積層体の前記端部を成形する充填用材料供給部、を有する立体造形装置。
    The three-dimensional modeling apparatus according to any one of claims 1 to 9,
    The molded part is
    By supplying the filling material, at least part of the concave portion of the stepped portion formed on the outer peripheral portion of the two or more layers stacked by the supply unit is filled with the filling material, and the end portion of the stacked body is formed. A three-dimensional modeling apparatus having a filling material supply unit to be molded.
  11.  請求項10に記載の立体造形装置であって、
     前記充填用材料が、
     光を散乱させる光散乱材料を含む立体造形装置。
    The three-dimensional modeling apparatus according to claim 10,
    The filling material is
    A three-dimensional modeling apparatus including a light scattering material that scatters light.
  12.  請求項1から請求項11の何れか1つの請求項に記載の立体造形装置であって、
     前記成形部が、
     前記積層体の上面に対して離間した状態で、該上面に沿って第1方向および該第1方向と交差する第2方向に、該上面に対して相対的に移動する立体造形装置。
    The three-dimensional modeling apparatus according to any one of claims 1 to 11,
    The molded part is
    A three-dimensional modeling apparatus that moves relative to the upper surface in a first direction and a second direction intersecting the first direction along the upper surface in a state of being separated from the upper surface of the laminate.
  13.  請求項1から請求項12の何れか1つの請求項に記載の立体造形装置であって、
     前記供給部が、
     前記積層体の上面に対して離間した状態で、該上面に沿って第3方向および該第3方向と交差する第4方向に、該上面に対して相対的に移動する立体造形装置。
    The three-dimensional modeling apparatus according to any one of claims 1 to 12,
    The supply unit is
    A three-dimensional modeling apparatus that moves relative to the upper surface in a third direction and a fourth direction intersecting the third direction along the upper surface in a state of being separated from the upper surface of the laminated body.
  14.  請求項1から請求項13の何れか1つの請求項に記載の立体造形装置であって、
     前記供給部および前記成形部が設けられており、前記積層体の上面に対して離間した状態で該上面に沿って相対的に移動する移動体、を備える立体造形装置。
    The three-dimensional modeling apparatus according to any one of claims 1 to 13,
    A three-dimensional modeling apparatus comprising: a moving body provided with the supply unit and the forming unit and moving relatively along the upper surface in a state of being separated from the upper surface of the stacked body.
  15.  請求項1から請求項14の何れか1つの請求項に記載の立体造形装置であって、
     基材を保持する基材保持部、
    を更に備え、
     前記供給部が、
     前記基材上に前記造形用材料を供給することで、該造形用材料によって形成される層を前記基材上に順次に積層させる立体造形装置。
    The three-dimensional modeling apparatus according to any one of claims 1 to 14,
    A substrate holding part for holding the substrate,
    Further comprising
    The supply unit is
    A three-dimensional modeling apparatus for sequentially stacking layers formed of the modeling material on the base material by supplying the modeling material on the base material.
  16.  請求項15に記載の立体造形装置であって、
     前記基材上における造形対象領域を特定するための情報を認識する造形領域認識部、を更に備え、
     前記供給部が、
     前記造形領域認識部による認識結果に応じて、前記造形対象領域上に前記造形用材料を供給することで、前記造形用材料によって形成される層を前記造形対象領域上に順次に積層させる立体造形装置。
    The three-dimensional modeling apparatus according to claim 15,
    A modeling region recognition unit that recognizes information for specifying a modeling target region on the base material;
    The supply unit is
    Three-dimensional modeling in which layers formed by the modeling material are sequentially stacked on the modeling target region by supplying the modeling material onto the modeling target region according to a recognition result by the modeling region recognition unit. apparatus.
  17.  請求項1から請求項16の何れか1つの請求項に記載の立体造形装置であって、
     前記成形部によって前記積層体の前記端部が成形された後に、前記積層体の表面に着色する色付与部、
    を更に備える立体造形装置。
    The three-dimensional modeling apparatus according to any one of claims 1 to 16,
    After the end of the laminate is molded by the molding unit, a color imparting unit that colors the surface of the laminate,
    A three-dimensional modeling apparatus further comprising:
  18.  請求項17に記載の立体造形装置であって、
     前記積層体上における着色対象領域を特定するための情報を認識する着色領域認識部、
    を備え、
     前記色付与部が、
     前記着色領域認識部による認識結果に応じて、前記着色対象領域上に着色用の材料を供給することで、該着色用の材料によって構成される領域を形成する立体造形装置。
    The three-dimensional modeling apparatus according to claim 17,
    A colored region recognition unit for recognizing information for specifying a coloring target region on the laminate;
    With
    The color imparting unit is
    The three-dimensional modeling apparatus which forms the area | region comprised with this coloring material by supplying the coloring material on the said coloring object area | region according to the recognition result by the said colored area recognition part.
  19.  請求項17または請求項18に記載の立体造形装置であって、
     前記色付与部が、該色付与部による着色の前および後の少なくとも一方のタイミングにおいて、前記積層体のうちの着色の対象となる領域に白色層を形成する立体造形装置。
    The three-dimensional modeling apparatus according to claim 17 or 18,
    The three-dimensional model | molding apparatus in which the said color provision part forms a white layer in the area | region used as the object of coloring of the said laminated body in at least one timing before and after coloring by this color provision part.
  20.  請求項1から請求項19の何れか1つの請求項に記載の立体造形装置であって、
     材料を吐出する吐出口の目詰まりを防止する防止部、をさらに備える立体造形装置。
    The three-dimensional modeling apparatus according to any one of claims 1 to 19,
    A three-dimensional modeling apparatus further comprising a prevention unit that prevents clogging of a discharge port that discharges a material.
  21.  請求項1から請求項19の何れか1つの請求項に記載の立体造形装置であって、
     材料を吐出する吐出口のクリーニングを行う浄化部、
    を備える立体造形装置。
    The three-dimensional modeling apparatus according to any one of claims 1 to 19,
    A purification unit for cleaning the discharge port for discharging the material;
    3D modeling apparatus.
  22.  請求項1から請求項21の何れか1つの請求項に記載の立体造形装置であって、
     前記造形用材料が、立体造形物を構成するための第1造形用材料、および前記立体造形物の形成後に除去される第2造形用材料を含む立体造形装置。
    The three-dimensional modeling apparatus according to any one of claims 1 to 21,
    The three-dimensional modeling apparatus in which the said modeling material contains the 1st modeling material for comprising a three-dimensional molded item, and the 2nd modeling material removed after formation of the said three-dimensional molded item.
  23.  請求項1から請求項22の何れか1つの請求項に記載の立体造形装置であって、
     前記供給部が、前記造形用材料の硬化後の硬度に係る該造形用材料の成分の比率を変更する変更部をさらに有する立体造形装置。
    The three-dimensional modeling apparatus according to any one of claims 1 to 22,
    The three-dimensional model | molding apparatus in which the said supply part further has a change part which changes the ratio of the component of this modeling material which concerns on the hardness after hardening of the said modeling material.
  24.  請求項1から請求項23の何れか1つの請求項に記載の立体造形装置であって、
     前記成形部が、前記端部を成形した後に、該端部に凹凸加工を施す立体造形装置。
    24. The three-dimensional modeling apparatus according to any one of claims 1 to 23, wherein:
    The three-dimensional modeling apparatus which performs uneven | corrugated processing to this edge part, after the said shaping | molding part shape | molds the said edge part.
  25.  (a)造形用材料を供給することで該造形用材料によって形成される層を順次に積層させるステップと、
     (b)前記(a)ステップにおいて積層された前記造形用材料の複数の層によって構成される積層体の端部に接触することなく、該端部を成形するステップと、
    を有する立体造形物の製造方法。
    (a) sequentially stacking layers formed by the modeling material by supplying the modeling material;
    (b) forming the end without contacting the end of the laminate composed of a plurality of layers of the modeling material laminated in the step (a);
    The manufacturing method of the three-dimensional molded item which has.
  26.  請求項25に記載の立体造形物の製造方法であって、
     前記(b)ステップにおいて、
     前記(a)ステップにおいて積層された各層における上部の外周部に形成されている凸部の少なくとも一部を崩すことで前記積層体の前記端部を成形する立体造形物の製造方法。
    It is a manufacturing method of the three-dimensional molded item according to claim 25,
    In the step (b),
    The manufacturing method of the three-dimensional molded item which shape | molds the said edge part of the said laminated body by destroying at least one part of the convex part currently formed in the outer peripheral part of the upper part in each layer laminated | stacked in the said (a) step.
  27.  請求項25または請求項26に記載の立体造形物の製造方法であって、
     前記(b)ステップにおいて、
     充填用材料の供給によって、前記(a)ステップにおいて積層される2以上の層の外周部に形成されている段差部の凹部の少なくとも一部を、前記充填用材料で埋めて前記積層体の前記端部を成形する立体造形物の製造方法。
    It is a manufacturing method of the solid fabrication thing according to claim 25 or claim 26,
    In the step (b),
    By supplying the filling material, at least part of the concave portion of the stepped portion formed in the outer peripheral portion of the two or more layers laminated in the step (a) is filled with the filling material, and A manufacturing method of a three-dimensional modeled object which forms an end.
  28.  造形用材料を供給することで該造形用材料によって形成される層が順次に積層された積層体の端部に接触することなく、該端部を成形する成形部を有する立体造形物の成形装置。 A molding apparatus for a three-dimensional modeled object having a molding part for molding the end part without contacting the end part of the laminate in which layers formed by the modeling material are sequentially laminated by supplying the modeling material. .
PCT/JP2015/075380 2014-09-29 2015-09-08 Three-dimensional fabrication device, and three-dimensional molding manufacturing method and molding apparatus WO2016052087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014198338A JP6397293B2 (en) 2014-09-29 2014-09-29 3D modeling apparatus and manufacturing method of 3D model
JP2014-198338 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016052087A1 true WO2016052087A1 (en) 2016-04-07

Family

ID=55630130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075380 WO2016052087A1 (en) 2014-09-29 2015-09-08 Three-dimensional fabrication device, and three-dimensional molding manufacturing method and molding apparatus

Country Status (2)

Country Link
JP (1) JP6397293B2 (en)
WO (1) WO2016052087A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111922336A (en) * 2020-08-12 2020-11-13 青岛理工大学 Method for reducing texture strength of laser three-dimensional forming high-temperature alloy and application

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204094A1 (en) * 2016-05-23 2017-11-30 株式会社ミマキエンジニアリング Shaping device, shaping method, and shaped article
TW201819157A (en) * 2016-11-22 2018-06-01 三緯國際立體列印科技股份有限公司 Method for printing colored object of 3D printer
TW201900389A (en) * 2017-05-26 2019-01-01 三緯國際立體列印科技股份有限公司 Three dimensional printing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295831A (en) * 1988-10-01 1990-04-06 Matsushita Electric Works Ltd Forming method and apparatus of three dimensional shape
JP2000073108A (en) * 1998-08-26 2000-03-07 Matsushita Electric Works Ltd Method for surface-finishing metal powder sintered part
JP2000085019A (en) * 1998-09-09 2000-03-28 Sanyo Electric Co Ltd Method and apparatus for treating step of fabricated article
JP2000280356A (en) * 1999-03-29 2000-10-10 Minolta Co Ltd Apparatus and method for three-dimensional shaping
JP2001264047A (en) * 2000-03-17 2001-09-26 Hitachi Ltd Processing method for three-dimensional object modeling work
JP2003231183A (en) * 2002-02-06 2003-08-19 Minolta Co Ltd Three-dimensional molding machine
JP2004255839A (en) * 2003-02-28 2004-09-16 Hitachi Printing Solutions Ltd Ink jet three-dimensionally shaping device and shaping method
JP2008302701A (en) * 2001-05-08 2008-12-18 Z Corp Method and device for manufacturing model of three-dimensional object

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295831A (en) * 1988-10-01 1990-04-06 Matsushita Electric Works Ltd Forming method and apparatus of three dimensional shape
JP2000073108A (en) * 1998-08-26 2000-03-07 Matsushita Electric Works Ltd Method for surface-finishing metal powder sintered part
JP2000085019A (en) * 1998-09-09 2000-03-28 Sanyo Electric Co Ltd Method and apparatus for treating step of fabricated article
JP2000280356A (en) * 1999-03-29 2000-10-10 Minolta Co Ltd Apparatus and method for three-dimensional shaping
JP2001264047A (en) * 2000-03-17 2001-09-26 Hitachi Ltd Processing method for three-dimensional object modeling work
JP2008302701A (en) * 2001-05-08 2008-12-18 Z Corp Method and device for manufacturing model of three-dimensional object
JP2003231183A (en) * 2002-02-06 2003-08-19 Minolta Co Ltd Three-dimensional molding machine
JP2004255839A (en) * 2003-02-28 2004-09-16 Hitachi Printing Solutions Ltd Ink jet three-dimensionally shaping device and shaping method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111922336A (en) * 2020-08-12 2020-11-13 青岛理工大学 Method for reducing texture strength of laser three-dimensional forming high-temperature alloy and application
CN111922336B (en) * 2020-08-12 2022-05-03 青岛理工大学 Method for reducing texture strength of laser three-dimensional forming high-temperature alloy and application

Also Published As

Publication number Publication date
JP2016068320A (en) 2016-05-09
JP6397293B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
JP7435696B2 (en) Processing equipment, processing method, marking method, and modeling method
WO2016052087A1 (en) Three-dimensional fabrication device, and three-dimensional molding manufacturing method and molding apparatus
KR101962053B1 (en) Method for manufacturing three-dimensional molding
JP5724317B2 (en) 3D modeling equipment
US8696344B2 (en) Molding method and molding apparatus
JP6384826B2 (en) Three-dimensional additive manufacturing apparatus, three-dimensional additive manufacturing method, and three-dimensional additive manufacturing program
US20170274586A1 (en) Three-dimensional object forming device and three-dimensional object forming method
US10926455B2 (en) Apparatus for forming three-dimensional object and method for forming three-dimensional object
TW201226143A (en) Light guide plate mold and method for making light guide plate and light guide plate
WO2015190168A1 (en) Three-dimensional fabrication apparatus and three-dimensional fabrication method
US20230122763A1 (en) Build system, build method, computer program, recording medium and control apparatus
JP6854465B2 (en) Manufacturing method of three-dimensional shaped object
KR20180117235A (en) Apparatus for supplying powder for manufacturing three dimensional shapes
JP2018065308A (en) Molding apparatus and molding method
JP2007098822A (en) Method for shaping three dimensional formative article
JP5928631B2 (en) 3D modeling apparatus and 3D modeling method
JP2024054875A (en) Processing device, processing method, marking method, and molding method
JP2018083360A (en) Molding device and molding method
KR101725830B1 (en) System and method for manufacturing eyeglass lens
JP2013107230A (en) Image-formed object, and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847616

Country of ref document: EP

Kind code of ref document: A1