WO2016051990A1 - Illumination device, illumination system, illumination method, and program - Google Patents

Illumination device, illumination system, illumination method, and program Download PDF

Info

Publication number
WO2016051990A1
WO2016051990A1 PCT/JP2015/073447 JP2015073447W WO2016051990A1 WO 2016051990 A1 WO2016051990 A1 WO 2016051990A1 JP 2015073447 W JP2015073447 W JP 2015073447W WO 2016051990 A1 WO2016051990 A1 WO 2016051990A1
Authority
WO
WIPO (PCT)
Prior art keywords
ratio
light
lights
chromaticity
tissue
Prior art date
Application number
PCT/JP2015/073447
Other languages
French (fr)
Japanese (ja)
Inventor
和樹 池下
中尾 勇
悠策 中島
拓哉 岸本
岸井 典之
康二 松浦
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016051990A1 publication Critical patent/WO2016051990A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances

Definitions

  • This technology relates to a lighting device, a lighting system, a lighting method, and a program. In more detail, it is related with the illuminating device etc. which are used with respect to a biological tissue.
  • a living tissue such as a medical site
  • an illumination device suitable for observing a living tissue such as a “shadowless lamp” which is a lamp that cannot shadow under a lamp.
  • Patent Document 1 discloses that “a plurality of types of illumination units that can irradiate light on an object, and a switching unit that switches between an illumination state and a non-illumination state of each of the plurality of types of illumination units.
  • the plurality of types of illumination units are configured to irradiate light having different illuminance distributions, and are configured to change the illuminance distribution of the irradiated light by the switching means.
  • a medical lighting device is disclosed. In the medical lighting device, the illuminance distribution of illumination can be changed, so that it is possible to cope with various situations of surgery.
  • the main object of the present disclosure is to provide an illumination device that improves the discrimination between different types of biological tissues by the user.
  • the present disclosure includes a light irradiation unit that emits two or more lights of red light, green light, and blue light to a living tissue, and an intensity ratio of the two or more lights in the living tissue.
  • a ratio adjusting unit that adjusts the ratio to a predetermined ratio according to a combination of tissue types, and the ratio corresponds to the combination in the color image acquired by irradiating the biological tissue with the two or more lights.
  • an illuminating device having a value determined based on chromaticity calculated from a pixel value in each pixel in a region corresponding to each tissue included.
  • the ratio may be a value determined based on a mutual distance in each chromaticity diagram of the chromaticity.
  • the color image is a plurality of images captured by changing the intensity ratio of the two or more lights, and the ratio is obtained when the image having the maximum distance among the plurality of images is captured. It may be an intensity ratio of two or more. Furthermore, the color image is a plurality of images picked up by changing the intensity ratio of the two or more lights, and the ratio is a polygon whose vertex is the chromaticity in the chromaticity diagram among the plurality of images. The intensity ratio of the two or more lights when an image with the largest area is captured may be used.
  • the chromaticity diagram may be an xy chromaticity diagram, a u′v ′ chromaticity diagram, a uv chromaticity diagram, or a Lab chromaticity diagram.
  • the ratio adjusting unit may include a plurality of filters having different transmittances of the two or more lights.
  • the two or more lights may be combined and applied to the living tissue.
  • the illumination device includes: an imaging unit that acquires a color image of the biological tissue irradiated with the two or more lights; and a pixel in each pixel in a region corresponding to each tissue included in the combination in the color image
  • a ratio acquisition unit that acquires the ratio based on chromaticity calculated from the value.
  • the present disclosure provides the illumination device, an imaging device that acquires a color image of the living tissue irradiated with the two or more lights, and an image display device that displays the color image acquired by the imaging device.
  • a lighting system is provided.
  • the present disclosure further includes a light irradiation step of emitting two or more lights of red light, green light, and blue light to a living tissue, and an intensity ratio of the two or more lights of the types of tissues included in the living tissue.
  • a ratio adjusting step of adjusting to a predetermined ratio according to the combination, and the ratio is included in each combination in the color image acquired by irradiating the biological tissue with the two or more lights.
  • an illumination method that is a value determined based on the chromaticity calculated from the pixel value of each pixel in the region corresponding to the tissue.
  • the present disclosure relates to a light irradiation function for emitting two or more lights of red light, green light, and blue light to a living tissue, and an intensity ratio of the two or more light types of the tissues included in the living tissue.
  • a ratio adjustment function for adjusting the ratio to a predetermined ratio according to the combination is realized by a computer, and the ratio corresponds to the combination in the color image acquired by irradiating the biological tissue with the two or more lights.
  • a program is also provided, which is a value determined based on the chromaticity calculated from the pixel value of each pixel in a region corresponding to each tissue included.
  • the present disclosure provides a lighting device that improves the discrimination between different types of biological tissues by the user. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • FIG. 12 is an xy chromaticity diagram showing chromaticity coordinates of each pixel in an image captured in Experimental Example 1.
  • FIG. 6 is a drawing-substituting photograph of a living tissue imaged by irradiating light at a ratio determined in Experimental Example 1.
  • First embodiment (example using a predetermined ratio) 2.
  • Second embodiment an example having an imaging unit and a ratio acquisition unit) 3.
  • Third embodiment (example configured as a lighting system)
  • FIG. 1 is a schematic diagram illustrating a configuration example of a lighting device according to the present embodiment.
  • the illumination device indicated by reference sign D1 includes at least a light irradiation unit 11 and a ratio adjustment unit 12.
  • the illumination device D1 may employ another configuration as necessary from the configurations provided in a known illumination device.
  • the illumination device D ⁇ b> 1 may include a control unit 13 and a storage unit 14. Each structure of the illuminating device D1 is demonstrated in order.
  • the light irradiation unit 11 has a configuration for emitting two or more lights of red light, green light, and blue light to the living tissue T in the illumination device D1.
  • the “two or more lights” may be a combination of two lights such as a combination of red light and green light, a combination of red light and blue light, and a combination of green light and blue light. It may be a combination of three lights of green light and blue light.
  • red light, green light, and blue light are each light in a wavelength band that is visible to each color among visible light.
  • the wavelength band of each light can be, for example, 620 to 750 nm for red light, 495 to 570 nm for green light, and 450 to 495 nm for blue light.
  • the width of the wavelength band of each color light can be set as appropriate.
  • the biological tissue is not particularly limited as long as it is derived from a living body.
  • biological tissues include organs, blood vessels, bones, nerves, mucous membranes and the like.
  • the configuration of the light irradiation unit 11 is not particularly limited as long as it can irradiate the living tissue T with the above-described two or more lights, and can be freely designed from known configurations.
  • the light irradiation part 11 can be comprised by the light sources 11a, 11b, 11c for emitting two or more lights mentioned above.
  • the light sources 11a, 11b, and 11c are preferably laser light sources or LED light sources. With these light sources, it is easy to narrow the wavelength bands of red light, green light, and blue light. In particular, a laser light source is preferable because the wavelength band is narrow and relatively high-speed intensity modulation is possible.
  • the influence of the light receiving filter characteristics can be reduced.
  • the obtained signal is S
  • the light source characteristic is L
  • the object characteristic is B
  • the light receiving filter coefficient is F
  • the image processing coefficient is X
  • S ((L * B) * F) * X. Since the modulation at X is applied to all the previous ((L * B) * F), the filter characteristics are also multiplied.
  • the filter has a wide wavelength band and has a portion that is superimposed with RGB, so that the identification becomes difficult.
  • the illumination intensity modulation using the narrow band light when the wavelength band is light source ⁇ filter
  • only L corresponding to B is modulated. The characteristics of the object can be enhanced.
  • the illumination device D1 may be provided with a ring illumination unit 18 or the like, and the light emitted from the light irradiation unit 11 may be guided in a ring shape to form ring illumination. Speckle can be reduced by using ring illumination.
  • a plurality of light emission openings (see L1 in FIG. 1) irradiated toward the living tissue T are provided, and the above-described two or more light intensity adjustments are performed using the openings. You can also.
  • the two or more lights described above can be combined and irradiated onto the living tissue T.
  • the time resolution is higher than that of time sequential irradiation.
  • the above-described two or more light irradiations may be time sequential.
  • the ratio adjusting unit 12 is a configuration for adjusting the above-described two or more light intensity ratios to a predetermined ratio according to a combination of types of tissues included in the living tissue T. This ratio is based on the chromaticity calculated from the pixel value in each pixel in the region corresponding to each tissue included in the combination in the color image acquired by irradiating the biological tissue T with two or more lights. It can be a predetermined value. The ratio will be described later.
  • “Combination of the types of tissues included in the living tissue” means that two or more types of tissue that are different from the types included in the living tissue T described above and that are desired to enhance their distinctiveness in the living tissue to be irradiated.
  • the combination of these tissues includes bone and nerve, muscle and blood vessel, artery and vein, and the like.
  • the combination of these tissues includes bone and nerve, muscle and blood vessel, artery and vein, and the like.
  • the combination of these tissues includes bone and nerve, muscle and blood vessel, artery and vein, and the like.
  • those whose properties have changed, such as a normal site and a lesion site of the same tissue are defined as different types of tissues in the present disclosure.
  • the configuration of the ratio adjustment unit 12 is particularly limited as long as the intensity ratio of the two or more lights described above can be adjusted to a predetermined ratio according to the combination of the types of tissues included in the living tissue T. Instead, it can be designed freely from known configurations.
  • the ratio adjusting unit 12 can be configured by a plurality of filters having different transmittances of the two or more lights described above.
  • FIG. 2 is a drawing-substituting graph showing the result of using a linear learning method for reflection spectra obtained from bones and nerves.
  • FIG. 2A is a graph showing results (ROC curve) when learning is applied.
  • the vertical axis in FIG. 2A represents sensitivity
  • the horizontal axis represents false positives
  • a curve is obtained by changing the cutoff value as a parameter.
  • FIG. 2B is a graph showing a coefficient spectrum with respect to the spectrum.
  • the vertical axis in FIG. 2B indicates the coefficient value
  • the horizontal axis indicates the wavelength.
  • results shown in FIG. 2A can be evaluated by, for example, AUC (area under curve), and the higher the area, the higher the performance.
  • results of the graph shown in FIG. 2A can be obtained by using a spectrum coefficient as shown in FIG. 2B for a spectrum obtained from a biological tissue such as bone or nerve.
  • a filter having characteristics equivalent to the obtained coefficient spectrum can be created.
  • the control unit 13 is a configuration for comprehensively controlling each configuration provided in the illumination device D1, and for example, selection of light of each color by the light irradiation unit 11 or two or more by the ratio adjustment unit 12, which will be described later. A program that comprehensively controls the adjustment of the light intensity ratio is executed.
  • the control unit 13 may employ a known configuration such as a general-purpose computer including a CPU.
  • the storage unit 14 is configured to store an intensity ratio of two or more lights according to a combination of tissue types included in the living tissue T in the illumination device D1.
  • a known storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a flash memory can be used.
  • a general-purpose computer including a hard disk or the like can be adopted as the storage unit 14, and the above-described control unit 13 and storage unit 14 can be configured by a single general-purpose computer.
  • FIG. 3 is a flowchart showing each step of the illumination method according to the present disclosure.
  • the illumination method according to the present disclosure includes at least a light irradiation step S11 and a ratio adjustment step S12.
  • FIG. 4 is a flowchart showing a process for acquiring the ratio used in the ratio adjustment process S12.
  • the process for acquiring the ratio includes an area setting process S21, a chromaticity calculation process S22, a distance calculation process S23, and a ratio determination process S24.
  • the region setting step S21 is a region corresponding to each tissue of a different type from a color image obtained by imaging a biological tissue including the same type of tissue as the tissue to be observed by the illumination device D1 according to the present embodiment. (See FIGS. 1, T, T1, and T2). Specifically, if the observation target is a bone and a nerve, a region corresponding to the bone and a region corresponding to the nerve are respectively set from the color drawing obtained by imaging a biological tissue including the bone and the nerve. To do. In addition, the number of regions to be set can be set as appropriate according to the number of types of tissues for which it is desired to enhance the identification of each other in observation.
  • the color image may be an image obtained by irradiating red light, green light, and blue light individually.
  • red light, green light, and blue light are irradiated at the same time, the same color image as that obtained when each color light is irradiated alone can be obtained by performing spectroscopy.
  • the color image for setting the region is a plurality of images picked up by changing the intensity ratio of the two or more lights described above. That is, in this step S21, at least a color image picked up by irradiating light of each color of red light, green light and blue light is picked up by irradiating light of a predetermined intensity, and from a predetermined intensity. It is preferable to use what was imaged by irradiating high light. It should be noted that a proportional coefficient in each living tissue is set to be substantially equal, a region is set for one color image captured by irradiating with light of a predetermined intensity, and values obtained by simulation are used later. It is also possible to perform the chromaticity calculation step S22, the distance calculation step S23, and the ratio determination step S24.
  • this process S21 is abbreviate
  • the process may start from a chromaticity calculation step S22 described later.
  • the chromaticity calculation step S22 is a step of calculating chromaticity from the pixel value of each pixel in the region set in the region setting step S21 described above. Calculation of chromaticity from the pixel value can be performed using a known calculation formula. Further, it is possible to calculate chromaticity suitable for a chromaticity diagram used in the distance calculation step S23 described later. In this step S22, when the set area is composed of a plurality of pixels, the chromaticity calculated from each pixel in the same area is averaged, and the averaged chromaticity is used in the distance calculation step S23 described later. May be. In calculating chromaticity based on a plurality of pixels in the same region, a known method such as a probabilistic method can be appropriately used.
  • the distance calculation step S23 is a step of calculating a distance on the chromaticity diagram for each chromaticity calculated in the above-described chromaticity calculation step S22.
  • the chromaticity of the region corresponding to the tissue T1 and the chromaticity corresponding to the tissue T2 are respectively plotted at predetermined coordinates on the chromaticity diagram, and a vector between the chromaticity and the chromaticity is obtained.
  • the distance on the chromaticity diagram can be obtained as the Euclidean distance.
  • the chromaticity diagram used in this step S23 can be appropriately selected from known chromaticity diagrams according to the color of the tissue to be identified, the wavelength of light emitted from the light source, and the like.
  • the xy chromaticity diagram , U′v ′ chromaticity diagram, uv chromaticity diagram or Lab chromaticity diagram are preferred.
  • the Lab chromaticity diagram the lightness can be excluded from the evaluation, and the distance between the chromaticity and the chromaticity can be obtained only by the color tone. is there.
  • the chromaticity plot of the region set in the region setting step S21 has a shape corresponding to human color vision in two dimensions. For this reason, separating the distance on the chromaticity diagram can be made closer to the color difference felt by the user's vision.
  • the chromaticity plot of the region set in the region setting step S21 is more preferable for the same reason as described above because it has a shape corresponding to human vision (color vision) in three dimensions. .
  • the color difference ⁇ E can also be obtained using the following equation (2).
  • This color difference corresponds to human vision (color vision) as shown in Table 1 below. (Https://www.nippondenshoku.co.jp/web/japanse/colorstory/08_allowance_by_color.html) Also, by excluding L, it is possible to evaluate only by hue.
  • the Adams-Nickerson color space and the Hunter color space can also be used as chromaticity diagrams for obtaining the color difference.
  • the ratio determining step S24 is a step of determining the ratio based on the mutual distance in each chromaticity diagram of the chromaticity described above.
  • the distance between each chromaticity indicates the degree of color difference, and the longer the distance, the different the colors of the pixels from which the chromaticity is calculated. .
  • the color difference between the tissue T1 and the tissue T2 is greater as the chromaticity is more distant between the plurality of color images captured by changing the intensity of two or more lights. Indicates.
  • the intensity ratio of two or more lights when the image with the maximum distance on the chromaticity diagram is captured among the plurality of images can be determined as the ratio.
  • the ratio can be determined in consideration of not only the above-described distance but also the distribution of coordinates on the chromaticity diagram. . That is, the ratio can also be an intensity ratio of two or more light when an image having a polygonal area having the maximum chromaticity in the chromaticity diagram among a plurality of images is captured.
  • the ratio determined in step S24 is stored in, for example, the storage unit 14 described above, and the ratio can be set when using the lighting device D1 in accordance with the type of tissue selected by the user. Further, the ratio determined in this step S24 may be stored in the server. In this case, for example, in the illuminating device D1, a ratio can also be set via a network.
  • the light irradiation step S11 is a step of emitting at least two of the red light, the green light, and the blue light to the living tissue. In this step, two or more preset lights are irradiated onto the living tissue from the light irradiation unit 11 according to the combination of the types of the tissues T1 and T2 included in the living tissue T.
  • the ratio adjustment step S12 the intensity ratio of two or more of the red light, the green light, and the blue light emitted from the light irradiation unit 11 is set in advance according to the combination of the types of tissues included in the living tissue. Adjust to the specified ratio. The ratio is as described above.
  • a filter to be used is selected from the plurality of filters 12a, 12b, and 12c so as to obtain a desired ratio. Can be performed.
  • the above-described light irradiation function for emitting two or more of the red light, green light, and blue light to the living tissue, and the intensity ratio of these two or more lights are the types of tissues included in the living tissue.
  • the illumination device can irradiate light so as to further strengthen the difference in color between two or more types of different tissues to be observed by providing the above-described configuration. Therefore, the user can obtain a larger color difference in order to identify the living tissue, and can identify the living tissue with higher accuracy.
  • FIG. 5A shows a case where discrimination is enhanced by changing the ratio of the irradiation intensity of light of each color
  • FIG. 5B shows a method of enhancing the color difference by image processing.
  • image processing in the case of linear transformation, already quantized data is corrected by calculation, so that there is a possibility that a quantization error is promoted or image data is lost. there is a possibility.
  • the method of optimizing the illumination intensity data deterioration caused by image processing does not occur. For this reason, the quality of the obtained image data is high, and it is suitably used for subsequent image processing.
  • FIG. 6 schematically illustrates a configuration example of a lighting device according to the second embodiment of the present disclosure.
  • the illumination device indicated by reference sign D2 includes the light irradiation unit 11 and the ratio adjustment unit 12 described above.
  • the illumination device D2 includes an imaging unit 15 and a ratio acquisition unit 16.
  • the illuminating device D2 can be equipped with other structures, such as the control part 13 and the memory
  • an optical path switching unit 19 composed of a dichroic mirror or the like may be provided according to the arrangement of the imaging unit 15 (see arrow L2 in FIG. 6).
  • the illuminating device D2 is the same as that of the first embodiment except for the “imaging unit 15” and the “ratio acquisition unit 16”. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the imaging unit 15 is configured to acquire a color image of a living tissue irradiated with two or more lights in the illumination device D2.
  • the configuration of the imaging unit 15 is not particularly limited as long as a color image of a living tissue can be acquired, and can be freely designed from known configurations.
  • it can be configured by a PMT (photomultiplier tube), an area imaging device such as a CCD or CMOS device, or the like.
  • the ratio acquisition unit 16 is a configuration for acquiring a ratio based on the chromaticity calculated from the pixel value in each pixel in the region corresponding to each tissue included in the combination in the color image in the illumination device D2.
  • the ratio acquisition unit 16 can be configured by, for example, a general-purpose computer equipped with a CPU or the like. Further, it may be configured by a single computer together with the control unit 13 and the storage unit 14 described above.
  • FIG. 7 is a flowchart showing the operation of the lighting device D2 according to this embodiment.
  • the operation of the illumination device D2 includes an imaging step S31, a ratio acquisition step S32, a light irradiation step S33, and a ratio adjustment step S34.
  • the light irradiation step S33 and the ratio adjustment step S34 are the same as the steps having the same names in the lighting device according to the first embodiment described above, and thus the description thereof is omitted here.
  • the ratio acquisition step S32 is the same as the above-described step for acquiring the ratio, description thereof is omitted (see FIG. 4).
  • the imaging step S31 is a step for acquiring a color image of a living tissue irradiated with two or more lights.
  • the color image obtained in this step S31 is used in the ratio acquisition step S32 in order to obtain an optimum ratio in the irradiation intensity of two or more lights described above.
  • each of red light, green light, and blue light may be individually irradiated to obtain a color image, or the color image obtained by irradiating with the irradiation light of each color after the simultaneous irradiation. It can also be.
  • the ratio is determined from the image obtained by imaging the observation target itself, the intensity ratio of two or more lights irradiated on the observation target can be further optimized.
  • Other configurations and effects are the same as those of the lighting apparatus according to the first embodiment described above.
  • FIG. 8 schematically illustrates a configuration example of an illumination system according to the third embodiment of the present disclosure.
  • the illumination system indicated by reference numeral S includes an illumination device D1, an imaging device 2, and an image display device 3. Since the illuminating device D1 is the same as the illuminating device D1 which concerns on 1st Embodiment, the description is abbreviate
  • the illumination system S may be provided with, for example, an optical path switching mechanism 4 according to the arrangement of the imaging device 2 and the like.
  • the imaging device 2 has a configuration for acquiring a color image of a living tissue irradiated with two or more lights.
  • the specific mode is not particularly limited, and can be freely designed from known configurations such as a digital camera.
  • the image display device 3 is configured to display a color image acquired by the imaging device 2.
  • the specific aspect is not specifically limited, For example, a display etc. can be employ
  • this display is not limited to what is installed on a stand, For example, you may be equipped with the medical goggles etc.
  • the image display device 3 can also display a color image after performing image processing.
  • 9A and 9B are diagrams for explaining an image displayed on the image display device 3.
  • 9A and 9B, “X” and “ ⁇ ” on the chromaticity diagram indicate the chromaticity of each tissue.
  • the chromaticity of each tissue in a color image captured by irradiating a living tissue with white light or the like is obtained by optimizing the intensity of each of red light, green light, and blue light. (See FIG. 9A, arrow).
  • the image display device 3 is configured so that each tissue in the chromaticity diagram in the case where the irradiation ratio is optimized is determined from the intermediate point of the chromaticity in each tissue in the chromaticity diagram in the case where white light or the like is irradiated.
  • the vector to the midpoint of chromaticity can be subtracted from the chromaticity of each tissue. That is, a color image captured without optimizing the irradiation intensity of light of each color, such as using white light, can be displayed again after image processing is performed so as to maintain a distance on the chromaticity diagram. (See FIG. 9B, arrow).
  • the present disclosure can have the following configurations. (1) A combination of a light irradiation unit that emits two or more lights of red light, green light, and blue light to a living tissue, and an intensity ratio of the two or more lights to a combination of types of tissues included in the living tissue And a ratio adjusting unit that adjusts the ratio to a predetermined ratio, and the ratio corresponds to each tissue included in the combination in the color image acquired by irradiating the biological tissue with the two or more lights.
  • a lighting device having a value determined based on chromaticity calculated from a pixel value in each pixel of a region to be operated.
  • the lighting device according to (1) wherein the ratio is a value determined based on a mutual distance in each chromaticity diagram of the chromaticity.
  • the color image is a plurality of images picked up by changing the intensity ratio of the two or more lights, and the ratio is obtained when the image having the maximum distance among the plurality of images is picked up.
  • the illumination device according to (2) wherein the light intensity ratio is greater than or equal to two.
  • the color image is a plurality of images picked up by changing the intensity ratio of the two or more lights, and the ratio is a multiple of the plurality of images having the chromaticity in the chromaticity diagram as a vertex.
  • the illumination device according to (2) which is an intensity ratio of the two or more lights when an image having the largest square area is captured.
  • the ratio adjusting unit includes a plurality of filters having different transmittances of the two or more lights.
  • a lighting device further including a ratio acquisition unit that acquires the ratio based on the calculated chromaticity.
  • the illuminating device according to any one of (1) to (7), an imaging device that acquires a color image of the biological tissue irradiated with the two or more lights, and acquired by the imaging device
  • An illumination system comprising: an image display device that displays the color image.
  • a ratio adjusting step for adjusting the ratio to a predetermined ratio, and the ratio is applied to each tissue included in the combination in the color image acquired by irradiating the biological tissue with the two or more lights.
  • An illumination method that is a value determined based on chromaticity calculated from a pixel value in each pixel of a corresponding region.
  • the computer realizes a ratio adjustment function for adjusting to a predetermined ratio, The ratio is determined based on chromaticity calculated from pixel values in each pixel in a region corresponding to each tissue included in the combination in the color image obtained by irradiating the biological tissue with the two or more lights.
  • the program that is the value.
  • Experimental example 1 In this experimental example, chromaticity was calculated from each pixel of a color image obtained by imaging a living tissue, and optimization of irradiation intensity was examined.
  • FIG. 10 is a color image obtained by imaging the bones and nerves used in this experimental example with white light. As shown in FIG. 10, these tissues both appear white to the naked eye.
  • the chromaticity diagram is an xy chromaticity diagram of the XYZ color system.
  • each obtained pixel value changes linearly with respect to the irradiation intensity of the light source, the intensity ratio of green light (532 nm) and blue light (464 nm) and red light (638 nm) of the light irradiated to the bone and nerve. And xy chromaticity when the intensity ratio of blue light (464 nm) was changed in the range of 10 ⁇ 10 to 10 10 , respectively.
  • FIG. 11 shows the result of the simulation.
  • the Euclidean distance on the bone and nerve chromaticity diagram in each case was calculated from the simulation results. The Euclidean distance was calculated by the following formulas (3) to (6).
  • FIG. 12 is an xy chromaticity diagram.
  • the intensity ratio of each of red light, green light, and blue light was 1: 1: 1
  • the difference between the chromaticity in the bone and the chromaticity in the nerve was 0.0076.
  • the light intensity ratio of each color was 20: 1: 10
  • the difference between the chromaticity in the bone and the chromaticity in the nerve was 0.0138. That is, the intensity ratio was improved about twice.
  • FIG. 13 shows color images of bones and nerves captured with the irradiation intensity of each light being 20: 1: 10.
  • D1, D2 Illumination device S: Illumination system T: Living tissue T1, T2: Tissue 11: Light irradiation unit 11a, 11b, 11c: Light source 12: Ratio adjustment unit 12a, 12b, 12c: Filter 13: Control unit 14: Storage Unit 15: imaging unit 16: ratio acquisition unit 17: multiplexing unit 18: ring illumination unit 19: optical path switching unit 2: imaging device 3: image display device 4: optical path switching mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Endoscopes (AREA)

Abstract

The present invention provides an illumination device that improves the distinguishability of different kinds of biological tissues for a user. Provided is an illumination device including: a light radiating unit that radiates two or more kinds of light among red light, green light, and blue light toward biological tissues; and a ratio adjusting unit that adjusts the intensity ratio of the two or more kinds of light to a predetermined ratio in accordance with a combination of the kinds of tissues contained in the biological tissues, wherein the ratio is a value that is determined on the basis of chromaticities calculated from the pixel values of individual pixels in regions corresponding to the individual tissues contained in the combination in a color image obtained by radiating the two or more kinds of light to the biological tissues.

Description

照明装置、照明システム、照明方法及びプログラムLIGHTING DEVICE, LIGHTING SYSTEM, LIGHTING METHOD, AND PROGRAM
 本技術は、照明装置、照明システム、照明方法及びプログラムに関する。より詳しくは、生体組織に対して用いられる照明装置等に関する。 This technology relates to a lighting device, a lighting system, a lighting method, and a program. In more detail, it is related with the illuminating device etc. which are used with respect to a biological tissue.
 例えば、医療現場など、生体組織を観察する場においては、灯下に影ができないランプである「無影灯」など、生体組織の観察に適した照明装置が求められてきた。 For example, in a place where a living tissue is observed such as a medical site, there has been a demand for an illumination device suitable for observing a living tissue, such as a “shadowless lamp” which is a lamp that cannot shadow under a lamp.
 そこで、例えば、特許文献1には、「対象物に対して光を照射可能な複数種類の照明部と、該複数種類の照明部のそれぞれの照光状態及び非照光状態の切り替えを行なう切り替え手段とを備え、前記複数種類の照明部は、それぞれ照度分布が異なる光を照射するように構成され、前記切り替え手段により、照射される光の照度分布が変更されるように構成されていることを特徴とする医療用照明装置」が開示されている。当該医療用照明装置においては、照明の照度分布を変化させることができることにより、手術の様々な状況に対応することができるようになる。 Therefore, for example, Patent Document 1 discloses that “a plurality of types of illumination units that can irradiate light on an object, and a switching unit that switches between an illumination state and a non-illumination state of each of the plurality of types of illumination units. The plurality of types of illumination units are configured to irradiate light having different illuminance distributions, and are configured to change the illuminance distribution of the irradiated light by the switching means. A medical lighting device is disclosed. In the medical lighting device, the illuminance distribution of illumination can be changed, so that it is possible to cope with various situations of surgery.
特開2012−81057号公報JP 2012-81057 A
 しかしながら、生体組織を観察対象とする照明装置については、ユーザが生体組織の種類をより明確に識別できるように、照明装置の改良が求められている。 However, with respect to lighting devices that target living tissue, improvement of the lighting device is required so that the user can more clearly identify the type of living tissue.
 そこで、本開示は、ユーザによる、種類の異なる生体組織の識別性を向上させる照明装置の提供を主な目的とする。 Therefore, the main object of the present disclosure is to provide an illumination device that improves the discrimination between different types of biological tissues by the user.
 上記課題解決のため、本開示は赤色光、緑色光及び青色光のうち2以上の光を生体組織へ出射する光照射部と、前記2以上の光の強度比を、前記生体組織に含まれる組織の種類の組み合わせに応じて、予め定められた比率に調整する比率調整部と、を備え、前記比率は、生体組織に前記2以上の光を照射して取得したカラー画像中の前記組み合わせに含まれる各組織に対応する領域の各画素における画素値から算出された色度に基づいて定められた値である、照明装置を提供する。
 前記比率は前記色度の各々の色度図における互いの距離に基づいて定められた値であってもよい。
 また、前記カラー画像は前記2以上の光の強度比を変えて撮像された複数の画像であり、前記比率は前記複数の画像の中で前記距離が最大となった画像を撮像したときの前記2以上の光の強度比であってもよい。
 さらに、前記カラー画像は前記2以上の光の強度比を変えて撮像された複数の画像であり、前記比率は前記複数の画像の中で前記色度図における前記色度を頂点とする多角形の面積が最大となった画像を撮像したときの前記2以上の光の強度比であってもよい。
 前記色度図はxy色度図、u’v’色度図、uv色度図又はLab色度図とすることもできる。
 前記比率調整部は前記2以上の光の各々の透過率が異なる複数のフィルタを備えることもできる。 前記2以上の光は合波されて前記生体組織へ照射されてもよい。
 さらに、前記照明装置は、前記2以上の光が照射された前記生体組織のカラー画像を取得する撮像部と、前記カラー画像中の前記組み合わせに含まれる各組織に対応する領域の各画素における画素値から算出された色度に基づいて前記比率を取得する比率取得部と、を有していてもよい。
In order to solve the above-described problem, the present disclosure includes a light irradiation unit that emits two or more lights of red light, green light, and blue light to a living tissue, and an intensity ratio of the two or more lights in the living tissue. A ratio adjusting unit that adjusts the ratio to a predetermined ratio according to a combination of tissue types, and the ratio corresponds to the combination in the color image acquired by irradiating the biological tissue with the two or more lights. Provided is an illuminating device having a value determined based on chromaticity calculated from a pixel value in each pixel in a region corresponding to each tissue included.
The ratio may be a value determined based on a mutual distance in each chromaticity diagram of the chromaticity.
Further, the color image is a plurality of images captured by changing the intensity ratio of the two or more lights, and the ratio is obtained when the image having the maximum distance among the plurality of images is captured. It may be an intensity ratio of two or more.
Furthermore, the color image is a plurality of images picked up by changing the intensity ratio of the two or more lights, and the ratio is a polygon whose vertex is the chromaticity in the chromaticity diagram among the plurality of images. The intensity ratio of the two or more lights when an image with the largest area is captured may be used.
The chromaticity diagram may be an xy chromaticity diagram, a u′v ′ chromaticity diagram, a uv chromaticity diagram, or a Lab chromaticity diagram.
The ratio adjusting unit may include a plurality of filters having different transmittances of the two or more lights. The two or more lights may be combined and applied to the living tissue.
Furthermore, the illumination device includes: an imaging unit that acquires a color image of the biological tissue irradiated with the two or more lights; and a pixel in each pixel in a region corresponding to each tissue included in the combination in the color image A ratio acquisition unit that acquires the ratio based on chromaticity calculated from the value.
 また、本開示は、上記照明装置と、前記2以上の光が照射された前記生体組織のカラー画像を取得する撮像装置と、前記撮像装置によって取得された前記カラー画像を表示する画像表示装置と、を備える照明システムを提供する。 In addition, the present disclosure provides the illumination device, an imaging device that acquires a color image of the living tissue irradiated with the two or more lights, and an image display device that displays the color image acquired by the imaging device. A lighting system is provided.
 本開示はさらに、赤色光、緑色光及び青色光のうち2以上の光を生体組織へ出射する光照射工程と、前記2以上の光の強度比を、前記生体組織に含まれる組織の種類の組み合わせに応じて、予め定められた比率に調整する比率調整工程と、を有し、前記比率は、生体組織に前記2以上の光を照射して取得したカラー画像中の前記組み合わせに含まれる各組織に対応する領域の各画素における画素値から算出された色度に基づいて定められた値である、照明方法をも提供する。 The present disclosure further includes a light irradiation step of emitting two or more lights of red light, green light, and blue light to a living tissue, and an intensity ratio of the two or more lights of the types of tissues included in the living tissue. A ratio adjusting step of adjusting to a predetermined ratio according to the combination, and the ratio is included in each combination in the color image acquired by irradiating the biological tissue with the two or more lights. There is also provided an illumination method that is a value determined based on the chromaticity calculated from the pixel value of each pixel in the region corresponding to the tissue.
 また、本開示は、赤色光、緑色光及び青色光のうち2以上の光を生体組織へ出射する光照射機能と、前記2以上の光の強度比を、前記生体組織に含まれる組織の種類の組み合わせに応じて、予め定められた比率に調整する比率調整機能と、をコンピュータに実現させ、前記比率は、生体組織に前記2以上の光を照射して取得したカラー画像中の前記組み合わせに含まれる各組織に対応する領域の各画素における画素値から算出された色度に基づいて定められた値である、プログラムをも提供する。 In addition, the present disclosure relates to a light irradiation function for emitting two or more lights of red light, green light, and blue light to a living tissue, and an intensity ratio of the two or more light types of the tissues included in the living tissue. A ratio adjustment function for adjusting the ratio to a predetermined ratio according to the combination is realized by a computer, and the ratio corresponds to the combination in the color image acquired by irradiating the biological tissue with the two or more lights. A program is also provided, which is a value determined based on the chromaticity calculated from the pixel value of each pixel in a region corresponding to each tissue included.
 本開示により、ユーザによる、種類の異なる生体組織の識別性を向上させる照明装置が提供される。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載された何れかの効果であってもよい。 The present disclosure provides a lighting device that improves the discrimination between different types of biological tissues by the user. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本開示の第1実施形態に係る照明装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the illuminating device which concerns on 1st Embodiment of this indication. 骨及び神経から得られた反射スペクトルに線形学習法を用いた結果を示す図面代用グラフであり、Aは、学習結果を適用した際の成績を示し、Bは、スペクトルに対する係数スペクトルを示す。It is a drawing substitute graph which shows the result which used the linear learning method for the reflection spectrum obtained from the bone and the nerve, A shows the result at the time of applying a learning result, B shows the coefficient spectrum with respect to a spectrum. 第1実施形態に係る照明装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the illuminating device which concerns on 1st Embodiment. 比率を取得するための工程を示すフローチャートである。It is a flowchart which shows the process for acquiring a ratio. Aは、光の照射強度を変換する手法を説明するための図であり、Bは、白色光で得られた画像を変換する手法を説明するための図である。A is a figure for demonstrating the method of converting the irradiation intensity of light, and B is a figure for demonstrating the method of converting the image obtained with white light. 本開示の第2実施形態に係る照明装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the illuminating device which concerns on 2nd Embodiment of this indication. 第2実施形態に係る照明装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the illuminating device which concerns on 2nd Embodiment. 本開示の第3実施形態に係る照明システムの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the illumination system which concerns on 3rd Embodiment of this indication. A及びBは、画像表示装置で表示される画像を説明するための図である。A and B are diagrams for explaining an image displayed on the image display device. 白色光を照射して撮像された生体組織の図面代用写真である。It is the drawing substitute photograph of the biological tissue imaged by irradiating white light. 実験例1においてシミュレートされた、色度図上の距離を示す図面代用グラフである。10 is a drawing substitute graph showing distances on a chromaticity diagram simulated in Experimental Example 1. FIG. 実験例1で撮像された画像中の各画素の色度の座標を示すxy色度図である。12 is an xy chromaticity diagram showing chromaticity coordinates of each pixel in an image captured in Experimental Example 1. FIG. 実験例1で決定された比率で光を照射して撮像された生体組織の図面代用写真である。6 is a drawing-substituting photograph of a living tissue imaged by irradiating light at a ratio determined in Experimental Example 1. FIG.
 以下、本開示を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本開示の代表的な実施形態を示したものであり、これにより本開示の範囲が狭く解釈されることはない。また、説明は以下の順序で行う。
1.第1実施形態(予め定められた比率を用いる例)
2.第2実施形態(撮像部及び比率取得部を有する例)
3.第3実施形態(照明システムとして構成された例)
Hereinafter, preferred embodiments for carrying out the present disclosure will be described. In addition, embodiment described below shows typical embodiment of this indication, and, thereby, the range of this indication is not interpreted narrowly. The description will be given in the following order.
1. First embodiment (example using a predetermined ratio)
2. Second embodiment (an example having an imaging unit and a ratio acquisition unit)
3. Third embodiment (example configured as a lighting system)
1.第1実施形態(照明装置)
(1)第1実施形態に係る照明装置の構成
 本開示の第1実施形態に係る照明装置を説明する。図1は本実施形態に係る照明装置の構成例を示す模式図である。図中、符号D1で示す照明装置は、少なくとも光照射部11と比率調整部12とを備える。また、照明装置D1には、公知の照明装置に備えられる構成の中から必要に応じて他の構成を採用することもできる。照明装置D1には、例えば、図1に示すように、制御部13や記憶部14が備えられていてもよい。照明装置D1の各構成について順に説明する。
1. First embodiment (lighting device)
(1) Configuration of Lighting Device According to First Embodiment A lighting device according to the first embodiment of the present disclosure will be described. FIG. 1 is a schematic diagram illustrating a configuration example of a lighting device according to the present embodiment. In the drawing, the illumination device indicated by reference sign D1 includes at least a light irradiation unit 11 and a ratio adjustment unit 12. In addition, the illumination device D1 may employ another configuration as necessary from the configurations provided in a known illumination device. For example, as illustrated in FIG. 1, the illumination device D <b> 1 may include a control unit 13 and a storage unit 14. Each structure of the illuminating device D1 is demonstrated in order.
<光照射部>
 光照射部11は、照明装置D1において、赤色光、緑色光及び青色光のうち2以上の光を生体組織Tへ出射するための構成である。この「2以上の光」とは、赤色光と緑色光の組み合わせ、赤色光と青色光の組み合わせや、緑色光と青色光の組み合わせなど、2つの光の組み合わせであってもよく、赤色光、緑色光及び青色光の3つの光の組み合わせであってもよい。また、赤色光、緑色光及び青色光は、各々、可視光のうち、各々の色に視認される波長帯の光である。各々の光の波長帯は、例えば、赤色光については620~750nm、緑色光については495~570nm、青色光については、450~495nmとすることができる。また、各色の光の波長帯の幅については、適宜設定できる。
<Light irradiation part>
The light irradiation unit 11 has a configuration for emitting two or more lights of red light, green light, and blue light to the living tissue T in the illumination device D1. The “two or more lights” may be a combination of two lights such as a combination of red light and green light, a combination of red light and blue light, and a combination of green light and blue light. It may be a combination of three lights of green light and blue light. Moreover, red light, green light, and blue light are each light in a wavelength band that is visible to each color among visible light. The wavelength band of each light can be, for example, 620 to 750 nm for red light, 495 to 570 nm for green light, and 450 to 495 nm for blue light. The width of the wavelength band of each color light can be set as appropriate.
 本開示において、生体組織とは、生体に由来するものであれば特に限定されない。生体組織としては、例えば、臓器、血管、骨、神経、粘膜等が挙げられる。 In the present disclosure, the biological tissue is not particularly limited as long as it is derived from a living body. Examples of biological tissues include organs, blood vessels, bones, nerves, mucous membranes and the like.
 光照射部11は、上述した2以上の光を生体組織Tへ照射できる限り、その構成は特に限定されず、公知の構成の中から自由に設計することができる。例えば、光照射部11は、上述した2以上の光を出射するための光源11a,11b,11c等によって構成することができる。 The configuration of the light irradiation unit 11 is not particularly limited as long as it can irradiate the living tissue T with the above-described two or more lights, and can be freely designed from known configurations. For example, the light irradiation part 11 can be comprised by the light sources 11a, 11b, 11c for emitting two or more lights mentioned above.
 光源11a,11b,11cとしては、レーザ光源又はLED光源が好ましい。これらの光源では、赤色光、緑色光及び青色光の各光の波長帯を狭めることが容易である。特に、レーザ光源は、波長帯が狭いことや比較的高速な強度の変調が可能であるため、好ましい。 The light sources 11a, 11b, and 11c are preferably laser light sources or LED light sources. With these light sources, it is easy to narrow the wavelength bands of red light, green light, and blue light. In particular, a laser light source is preferable because the wavelength band is narrow and relatively high-speed intensity modulation is possible.
 また、狭帯域光で照明した場合、受光フィルタ特性の影響を少なくできる。得られる信号をS、光源特性をL、物体の特性をB、受光フィルタ係数をF、画像処理係数をXとすると、S=((L*B)*F)*Xとなる。Xでの変調はそれ以前の((L*B)*F)すべてにかかるため,フィルタの特性も増倍される。さらに、一般に、フィルタは広い波長帯域を持ちRGBで重畳する部分もあるため、識別は難しくなる。これに対して、狭帯域光を用いた照明強度変調(波長帯域が光源<フィルタの場合)では、Bに合わせたLのみの変調となるため、フィルタの帯域重畳で受ける影響を少なくして,対象物の特性を増強できる。 Also, when illuminated with narrow band light, the influence of the light receiving filter characteristics can be reduced. If the obtained signal is S, the light source characteristic is L, the object characteristic is B, the light receiving filter coefficient is F, and the image processing coefficient is X, S = ((L * B) * F) * X. Since the modulation at X is applied to all the previous ((L * B) * F), the filter characteristics are also multiplied. Furthermore, in general, the filter has a wide wavelength band and has a portion that is superimposed with RGB, so that the identification becomes difficult. On the other hand, in the illumination intensity modulation using the narrow band light (when the wavelength band is light source <filter), only L corresponding to B is modulated. The characteristics of the object can be enhanced.
 また、照明装置D1にリング照明ユニット18等を設け、光照射部11から出射された光を環状に導波して、リング照明とすることもできる。リング照明とすることにより、スペックルを低減できる。なお、照明装置D1においては、生体組織Tへ向けて照射される光(図1、L1参照)の出射口を複数設け、開口を利用して上述した2以上の光の強度の調整を行うこともできる。 Further, the illumination device D1 may be provided with a ring illumination unit 18 or the like, and the light emitted from the light irradiation unit 11 may be guided in a ring shape to form ring illumination. Speckle can be reduced by using ring illumination. In addition, in the illuminating device D1, a plurality of light emission openings (see L1 in FIG. 1) irradiated toward the living tissue T are provided, and the above-described two or more light intensity adjustments are performed using the openings. You can also.
 さらに、照明装置D1に合波ユニット17を設けることにより、上述した2以上の光は、合波されて生体組織Tへ照射されることもできる。合波した光を用いることで、時間分解能は、タイムシークエンシャルな照射に比べて高まる。なお、本開示においては、上述した2以上の光の照射については、タイムシークエンシャルとすることも可能である。 Furthermore, by providing the multiplexing unit 17 in the illuminating device D1, the two or more lights described above can be combined and irradiated onto the living tissue T. By using the combined light, the time resolution is higher than that of time sequential irradiation. In the present disclosure, the above-described two or more light irradiations may be time sequential.
<比率調整部>
 比率調整部12は、上述した2以上の光の強度比を、生体組織Tに含まれる組織の種類の組み合わせに応じて、予め定められた比率に調整するための構成である。また、この比率とは、生体組織Tに2以上の光を照射して取得したカラー画像中の組み合わせに含まれる各組織に対応する領域の各画素における画素値から算出された色度に基づいて定められた値とすることができる。比率については後述する。
<Ratio adjustment section>
The ratio adjusting unit 12 is a configuration for adjusting the above-described two or more light intensity ratios to a predetermined ratio according to a combination of types of tissues included in the living tissue T. This ratio is based on the chromaticity calculated from the pixel value in each pixel in the region corresponding to each tissue included in the combination in the color image acquired by irradiating the biological tissue T with two or more lights. It can be a predetermined value. The ratio will be described later.
 「生体組織に含まれる組織の種類の組み合わせ」とは、上述した生体組織Tに含まれる種類の異なる多様な組織のうち、照射対象である生体組織において、互いの識別性を高めたい2以上の組織の組み合わせを指す(図1、T1、T2参照)。例えば、これらの組織の組み合わせとしては、骨と神経、筋肉と血管、動脈と静脈などが挙げられる。また、同じ組織に由来するものであっても、例えば、同じ組織の正常部位と病変部位などのように、性質が変化したものについても、本開示においては、種類の異なる組織と定義する。 “Combination of the types of tissues included in the living tissue” means that two or more types of tissue that are different from the types included in the living tissue T described above and that are desired to enhance their distinctiveness in the living tissue to be irradiated. Refers to a combination of tissues (see FIG. 1, T1, T2). For example, the combination of these tissues includes bone and nerve, muscle and blood vessel, artery and vein, and the like. In addition, even if they are derived from the same tissue, for example, those whose properties have changed, such as a normal site and a lesion site of the same tissue, are defined as different types of tissues in the present disclosure.
 比率調整部12は、上述した2以上の光の強度比を、生体組織Tに含まれる組織の種類の組み合わせに応じて、予め定められた比率に調整することができる限り、その構成は特に限定されず、公知の構成の中から自由に設計することができる。例えば、比率調整部12は、上述した2以上の光の各々の透過率が異なる複数のフィルタによって構成することができる。 The configuration of the ratio adjustment unit 12 is particularly limited as long as the intensity ratio of the two or more lights described above can be adjusted to a predetermined ratio according to the combination of the types of tissues included in the living tissue T. Instead, it can be designed freely from known configurations. For example, the ratio adjusting unit 12 can be configured by a plurality of filters having different transmittances of the two or more lights described above.
 図2は、骨及び神経から得られた反射スペクトルに線形学習法を用いた結果を示す図面代用グラフである。図2Aは、学習の適用をした際の成績(ROC曲線)を示すグラフである。図2Aの縦軸は敏感性を示し、横軸は偽陽性度を示し、媒介変数としてカットオフ値を変化させることで、曲線となる。また、図2Bは、スペクトルに対する係数スペクトルを示すグラフである。図2Bの縦軸は係数値を示し、横軸は波長を示す。 FIG. 2 is a drawing-substituting graph showing the result of using a linear learning method for reflection spectra obtained from bones and nerves. FIG. 2A is a graph showing results (ROC curve) when learning is applied. The vertical axis in FIG. 2A represents sensitivity, the horizontal axis represents false positives, and a curve is obtained by changing the cutoff value as a parameter. FIG. 2B is a graph showing a coefficient spectrum with respect to the spectrum. The vertical axis in FIG. 2B indicates the coefficient value, and the horizontal axis indicates the wavelength.
 図2Aに示す成績は、例えばAUC(area under curve)で評価することができ、面積が広くなるほど、高性能であることを示す。骨や神経といった生体組織から得られたスペクトルに、図2Bに示すように、スペクトル係数を用いることにより、図2Aに示すグラフの成績を得ることができる。 The results shown in FIG. 2A can be evaluated by, for example, AUC (area under curve), and the higher the area, the higher the performance. As shown in FIG. 2B, the results of the graph shown in FIG. 2A can be obtained by using a spectrum coefficient as shown in FIG. 2B for a spectrum obtained from a biological tissue such as bone or nerve.
 そして、下記式(1)で表す評価関数に色度差を用いることで、得られる係数スペクトルと同等の特性を持つフィルタが作成できる。そして、このようなフィルタを用いることで、生体組織の色が色度図上で最も離れるような比率に赤色光、緑色光及び青色光の各光の強度を変調することができる。即ち、図2に示すような各波長の係数スペクトルを透過率とするフィルタを採用することにより、生体組織の色が色度図上で最も離れるような比率に各光の強度を変調できる。 And by using the chromaticity difference in the evaluation function represented by the following formula (1), a filter having characteristics equivalent to the obtained coefficient spectrum can be created. By using such a filter, it is possible to modulate the intensity of each light of red light, green light, and blue light so that the color of the living tissue is farthest on the chromaticity diagram. That is, by adopting a filter having the transmittance of the coefficient spectrum of each wavelength as shown in FIG. 2, the intensity of each light can be modulated to a ratio such that the color of the living tissue is farthest on the chromaticity diagram.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
<制御部>
 制御部13は、照明装置D1に設けられた各構成を統括的に制御するための構成であり、例えば、後述する、光照射部11による各色の光の選択や、比率調整部12による2以上の光の強度比の調整等を統括的に制御するプログラムを実行する。制御部13には、CPU等を備える汎用のコンピュータ等、公知の構成を採用することができる。
<Control unit>
The control unit 13 is a configuration for comprehensively controlling each configuration provided in the illumination device D1, and for example, selection of light of each color by the light irradiation unit 11 or two or more by the ratio adjustment unit 12, which will be described later. A program that comprehensively controls the adjustment of the light intensity ratio is executed. The control unit 13 may employ a known configuration such as a general-purpose computer including a CPU.
<記憶部>
 記憶部14は、照明装置D1において、生体組織Tに含まれる組織の種類の組み合わせに応じた、2以上の光の強度比等を記憶するための構成である。記憶部14には、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等、公知の記憶媒体を採用することができる。また、記憶部14として、ハードディスク等を備える汎用のコンピュータを採用することもでき、上述した制御部13と記憶部14とを1台の汎用コンピュータで構成することもできる。
<Storage unit>
The storage unit 14 is configured to store an intensity ratio of two or more lights according to a combination of tissue types included in the living tissue T in the illumination device D1. For the storage unit 14, for example, a known storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a flash memory can be used. In addition, a general-purpose computer including a hard disk or the like can be adopted as the storage unit 14, and the above-described control unit 13 and storage unit 14 can be configured by a single general-purpose computer.
(2)第1実施形態に係る照明装置の動作
 図3及び図4を参照しながら、本実施形態に係る照明装置D1の動作について説明する。即ち、本開示に係る照明方法について説明する。
(2) Operation of Lighting Device According to First Embodiment The operation of the lighting device D1 according to this embodiment will be described with reference to FIGS. 3 and 4. That is, an illumination method according to the present disclosure will be described.
 図3は、本開示に係る照明方法の各工程を示すフローチャートである。図3に示すように、本開示に係る照明方法は、少なくとも、光照射工程S11と、比率調整工程S12と、を有する。また、図4は、比率調整工程S12において用いられる比率を取得するための工程を示すフローチャートである。 FIG. 3 is a flowchart showing each step of the illumination method according to the present disclosure. As shown in FIG. 3, the illumination method according to the present disclosure includes at least a light irradiation step S11 and a ratio adjustment step S12. FIG. 4 is a flowchart showing a process for acquiring the ratio used in the ratio adjustment process S12.
 先ず、図4を参照しながら、2以上の光を生体組織へ照射するときの、各色の強度の比率について説明する。図4に示すように、比率を取得するための工程は、領域設定工程S21、色度算出工程S22、距離算出工程S23及び比率決定工程S24の各工程を有する。 First, the intensity ratio of each color when irradiating a living tissue with two or more lights will be described with reference to FIG. As shown in FIG. 4, the process for acquiring the ratio includes an area setting process S21, a chromaticity calculation process S22, a distance calculation process S23, and a ratio determination process S24.
 <領域設定工程>
 領域設定工程S21は、本実施形態に係る照明装置D1による観察対象の組織と同じ種類の組織を含む生体組織を撮像して得られたカラー画像から、互いに種類の異なる各々の組織に対応する領域を設定する工程である(図1、T、T1及びT2参照)。具体的には、観察対象が、骨と神経であれば、骨と神経とを含む生体組織を撮像して得たカラー図面から、骨に対応する領域と神経に対応する領域とを、各々設定する。また、設定する領域の数は、観察における互いの識別性を高めたい組織の種類の数に応じて、適宜設定できる。
<Region setting process>
The region setting step S21 is a region corresponding to each tissue of a different type from a color image obtained by imaging a biological tissue including the same type of tissue as the tissue to be observed by the illumination device D1 according to the present embodiment. (See FIGS. 1, T, T1, and T2). Specifically, if the observation target is a bone and a nerve, a region corresponding to the bone and a region corresponding to the nerve are respectively set from the color drawing obtained by imaging a biological tissue including the bone and the nerve. To do. In addition, the number of regions to be set can be set as appropriate according to the number of types of tissues for which it is desired to enhance the identification of each other in observation.
 このカラー画像は、赤色光、緑色光及び青色光を、各々、単独で照射して撮像されたものであってもよい。また、赤色光、緑色光及び青色光を同時に照射した場合には、分光することによって、各色の光を単独で照射した場合と同じカラー画像を得ることができる。 The color image may be an image obtained by irradiating red light, green light, and blue light individually. In addition, when red light, green light, and blue light are irradiated at the same time, the same color image as that obtained when each color light is irradiated alone can be obtained by performing spectroscopy.
 領域を設定するカラー画像は、上述した2以上の光の強度比を変えて撮像された複数の画像とすることが好ましい。即ち、本工程S21では、少なくとも、赤色光、緑色光及び青色光の各色の光を照射して撮像されたカラー画像について、所定の強度の光を照射して撮像したものと、所定の強度よりも高い光を照射して撮像したものを用いることが好ましい。なお、各生体組織における比例係数をほぼ等しいと設定して、所定の強度の光を照射して撮像した、一つのカラー画像に対して領域を設定し、シミュレーションにより得られる値を用いて、後述する色度算出工程S22、距離算出工程S23及び比率決定工程S24を行うこともできる。 It is preferable that the color image for setting the region is a plurality of images picked up by changing the intensity ratio of the two or more lights described above. That is, in this step S21, at least a color image picked up by irradiating light of each color of red light, green light and blue light is picked up by irradiating light of a predetermined intensity, and from a predetermined intensity. It is preferable to use what was imaged by irradiating high light. It should be noted that a proportional coefficient in each living tissue is set to be substantially equal, a region is set for one color image captured by irradiating with light of a predetermined intensity, and values obtained by simulation are used later. It is also possible to perform the chromaticity calculation step S22, the distance calculation step S23, and the ratio determination step S24.
 なお、比率の取得のために用いられるカラー画像について、予め各々の組織T1,T2を個々に撮像するなどして、各々のカラー画像が用意されている場合には、本工程S21を省略して、後述する色度算出工程S22から始めてもよい。 In addition, about the color image used for acquisition of a ratio, when each color image is prepared by imaging each tissue T1, T2 separately beforehand, this process S21 is abbreviate | omitted. The process may start from a chromaticity calculation step S22 described later.
<色度算出工程>
 色度算出工程S22は、上述した領域設定工程S21で設定された領域の、各画素の画素値から色度を算出する工程である。画素値からの色度の算出は、公知の計算式を用いて行うことができる。また、後述する距離算出工程S23で用いる色度図に適した色度を算出することができる。本工程S22において、設定された領域が複数の画素からなる場合には、同じ領域内の各画素から算出された色度を平均して、平均化した色度を後述する距離算出工程S23で用いてもよい。また、同じ領域内の複数の画素に基づく色度の算出においては、確率的手法など、公知の手法を適宜用いることができる。
<Chromaticity calculation process>
The chromaticity calculation step S22 is a step of calculating chromaticity from the pixel value of each pixel in the region set in the region setting step S21 described above. Calculation of chromaticity from the pixel value can be performed using a known calculation formula. Further, it is possible to calculate chromaticity suitable for a chromaticity diagram used in the distance calculation step S23 described later. In this step S22, when the set area is composed of a plurality of pixels, the chromaticity calculated from each pixel in the same area is averaged, and the averaged chromaticity is used in the distance calculation step S23 described later. May be. In calculating chromaticity based on a plurality of pixels in the same region, a known method such as a probabilistic method can be appropriately used.
<距離算出工程>
 距離算出工程S23は、上述した色度算出工程S22において算出された各色度について、色度図上の距離を算出する工程である。本工程S23では、組織T1に対応する領域の色度と、組織T2に対応する色度とを、各々、色度図上の所定の座標にプロットして、色度と色度の間のベクトルを求める。また、色度図上の距離は、ユークリッド距離として求めることができる。
<Distance calculation process>
The distance calculation step S23 is a step of calculating a distance on the chromaticity diagram for each chromaticity calculated in the above-described chromaticity calculation step S22. In this step S23, the chromaticity of the region corresponding to the tissue T1 and the chromaticity corresponding to the tissue T2 are respectively plotted at predetermined coordinates on the chromaticity diagram, and a vector between the chromaticity and the chromaticity is obtained. Ask for. The distance on the chromaticity diagram can be obtained as the Euclidean distance.
 本工程S23で用いられる色度図は、公知の色度図の中から、識別したい組織の色や、光源から出射される光の波長等に合わせて適宜選択できるが、例えば、xy色度図、u’v’色度図、uv色度図又はLab色度図が好適である。Lab色度図では、明度を評価から除外し、色味だけで色度と色度の間の距離を求めることもできるため、色度に基づく組織の識別性をより高めたい場合には好適である。また、u’v’色度図、及びuv色度図は、領域設定工程S21において設定した領域の色度のプロットが2次元において、よりヒトの色覚に対応した形となる。このため、色度図上で距離を離すことを、ユーザの視覚で感じる色の違いに、より近づけることができる。 The chromaticity diagram used in this step S23 can be appropriately selected from known chromaticity diagrams according to the color of the tissue to be identified, the wavelength of light emitted from the light source, and the like. For example, the xy chromaticity diagram , U′v ′ chromaticity diagram, uv chromaticity diagram or Lab chromaticity diagram are preferred. In the Lab chromaticity diagram, the lightness can be excluded from the evaluation, and the distance between the chromaticity and the chromaticity can be obtained only by the color tone. is there. Further, in the u′v ′ chromaticity diagram and the uv chromaticity diagram, the chromaticity plot of the region set in the region setting step S21 has a shape corresponding to human color vision in two dimensions. For this reason, separating the distance on the chromaticity diagram can be made closer to the color difference felt by the user's vision.
 またLab色度図を用いると、領域設定工程S21において設定した領域の色度のプロットは、3次元において、よりヒトの視覚(色覚)に対応した形となるため、上記と同様の理由により好ましい。Lab色度図を採用する場合、色差ΔEについては、下記式(2)を用いて求めることもできる。 When the Lab chromaticity diagram is used, the chromaticity plot of the region set in the region setting step S21 is more preferable for the same reason as described above because it has a shape corresponding to human vision (color vision) in three dimensions. . When the Lab chromaticity diagram is employed, the color difference ΔE can also be obtained using the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 この色差は、下記表1に示すように、ヒトの視覚(色覚)に対応している。
(https://www.nippondenshoku.co.jp/web/japanese/colorstory/08_allowance_by_color.htm)
 また、Lを除外することで色相のみで評価することも可能となる。
This color difference corresponds to human vision (color vision) as shown in Table 1 below.
(Https://www.nippondenshoku.co.jp/web/japanse/colorstory/08_allowance_by_color.html)
Also, by excluding L, it is possible to evaluate only by hue.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 また、上述した色度図の他、アダムス−ニッカーソン色空間とハンター色空間も色差を求めるための色度図として用いることができる。 In addition to the chromaticity diagram described above, the Adams-Nickerson color space and the Hunter color space can also be used as chromaticity diagrams for obtaining the color difference.
<比率決定工程>
 比率決定工程S24は、上述した色度の各々の色度図における互いの距離に基づいて比率を定める工程である。上述した色度図における、各々の色度の間の距離は、色の違いの程度を示すものであり、その距離が長い程、互いの色度を算出した画素の色が異なることを意味する。このため、2以上の光の強度を変化させて撮像した複数のカラー画像の間で、色度の距離が離れている画像ほど、組織T1と組織T2の間で、色が相違していることを示す。このため、本工程S24では、複数の画像の中で、色度図上の距離が最大となった画像を撮像したときの2以上の光の強度比を、比率として決定することができる。
<Ratio determination process>
The ratio determining step S24 is a step of determining the ratio based on the mutual distance in each chromaticity diagram of the chromaticity described above. In the chromaticity diagram described above, the distance between each chromaticity indicates the degree of color difference, and the longer the distance, the different the colors of the pixels from which the chromaticity is calculated. . For this reason, the color difference between the tissue T1 and the tissue T2 is greater as the chromaticity is more distant between the plurality of color images captured by changing the intensity of two or more lights. Indicates. For this reason, in this process S24, the intensity ratio of two or more lights when the image with the maximum distance on the chromaticity diagram is captured among the plurality of images can be determined as the ratio.
 また、例えば、骨、神経、脂肪のように、組織が3種類である場合には、上述した距離だけでなく、色度図上の座標の分布を考慮に入れて比率を決定することができる。即ち、比率は、複数の画像の中で色度図における色度を頂点とする多角形の面積が最大となった画像を撮像したときの2以上の光の強度比とするともできる。 For example, when there are three types of tissues such as bone, nerve, and fat, the ratio can be determined in consideration of not only the above-described distance but also the distribution of coordinates on the chromaticity diagram. . That is, the ratio can also be an intensity ratio of two or more light when an image having a polygonal area having the maximum chromaticity in the chromaticity diagram among a plurality of images is captured.
 本工程S24で決定した比率は、例えば、上述した記憶部14等に記憶しておき、ユーザが選択した組織の種類に合わせて、照明装置D1を用いる際に比率を設定できる。また、本工程S24で決定した比率は、サーバ内に保存されていてもよい。この場合、例えば、照明装置D1においては、ネットワークを介して比率を設定することもできる。 The ratio determined in step S24 is stored in, for example, the storage unit 14 described above, and the ratio can be set when using the lighting device D1 in accordance with the type of tissue selected by the user. Further, the ratio determined in this step S24 may be stored in the server. In this case, for example, in the illuminating device D1, a ratio can also be set via a network.
 次に、図3を参照しながら、本開示に係る照明方法の各工程について説明する。 Next, each step of the illumination method according to the present disclosure will be described with reference to FIG.
<光照射工程>
 光照射工程S11は、少なくとも、赤色光、緑色光及び青色光のうち2以上の光を生体組織へ出射する工程である。本工程では、生体組織Tに含まれる組織T1,T2の種類の組み合わせに応じて、予め設定された2以上の光を光照射部11から生体組織にTへ照射する。
<Light irradiation process>
The light irradiation step S11 is a step of emitting at least two of the red light, the green light, and the blue light to the living tissue. In this step, two or more preset lights are irradiated onto the living tissue from the light irradiation unit 11 according to the combination of the types of the tissues T1 and T2 included in the living tissue T.
<比率調整工程>
 比率調整工程S12では、光照射部11から出射された、赤色光、緑色光及び青色光のうち、2以上の光の強度比を、生体組織に含まれる組織の種類の組み合わせに応じて、予め定められた比率に調整する。比率については、上述した通りである。本工程S12では、比率調整部12が上述した複数のフィルタを備えている場合には、所望の比率となるように当該複数のフィルタ12a,12b,12cの中から、使用するフィルタを選択することにより行うことができる。
<Ratio adjustment process>
In the ratio adjustment step S12, the intensity ratio of two or more of the red light, the green light, and the blue light emitted from the light irradiation unit 11 is set in advance according to the combination of the types of tissues included in the living tissue. Adjust to the specified ratio. The ratio is as described above. In this step S12, when the ratio adjusting unit 12 includes the plurality of filters described above, a filter to be used is selected from the plurality of filters 12a, 12b, and 12c so as to obtain a desired ratio. Can be performed.
 また、上述した、赤色光、緑色光及び青色光のうち2以上の光を生体組織へ出射する光照射機能と、これらの2以上の光の強度比を、前記生体組織に含まれる組織の種類の組み合わせに応じて、予め定められた比率に調整する比率調整機能と、を実現するためのプログラムを作成し、照明装置の光照射部及び比率調整部に実装することにより、光照射部及び比率調整部に実施させることができる。 In addition, the above-described light irradiation function for emitting two or more of the red light, green light, and blue light to the living tissue, and the intensity ratio of these two or more lights are the types of tissues included in the living tissue. By creating a program for realizing a ratio adjustment function that adjusts to a predetermined ratio according to the combination of the above, and mounting the program on the light irradiation unit and the ratio adjustment unit of the lighting device, the light irradiation unit and the ratio The adjustment unit can be implemented.
 本開示の第1実施形態に係る照明装置では、上述した構成を備えることにより、観察対象とする、2以上の種類の異なる組織の色の違いをより強めるように光を照射することができる。このため、ユーザは、生体組織を識別するために、より大きい色差を得ることができ、生体組織の識別をより精度高く行うことができる。 The illumination device according to the first embodiment of the present disclosure can irradiate light so as to further strengthen the difference in color between two or more types of different tissues to be observed by providing the above-described configuration. Therefore, the user can obtain a larger color difference in order to identify the living tissue, and can identify the living tissue with higher accuracy.
 また、色度図において、各色の光の強度を、明度を除外した尺度で評価した比率で照射することで、照明強度を上げることなく、色の差を大きくすることが可能となる。 Also, in the chromaticity diagram, it is possible to increase the color difference without increasing the illumination intensity by irradiating the light intensity of each color at a ratio evaluated on a scale excluding brightness.
 また、生体組織に対する光の照射において、各色の光の照射強度の比率を変えることで識別性を高めることは、白色光を生体組織に照射して得られるカラー画像を、画像処理して色差を強調する手法と比較して利点がある。図5Aは、各色の光の照射強度の比率を変えることによって識別性を高める場合を示し、図5Bは、画像処理によって色差を強調する手法を示す。図5Bに示すように、画像処理では,線形変換の場合、既に量子化されたデータを計算により補正するため、量子化誤差が助長される可能性があったり、画像データに抜けが生じたりする可能性がある。これに対して、照明強度を最適化する方法では、画像処理によって生じるデータの劣化は生じない。このため、得られる画像データの質が高く、その後の画像処理にも好適に用いられる。 In addition, in the light irradiation to the living tissue, improving the distinguishability by changing the ratio of the irradiation intensity of the light of each color means that the color difference obtained by irradiating the living tissue with the white light is subjected to image processing. There are advantages compared to the emphasis method. FIG. 5A shows a case where discrimination is enhanced by changing the ratio of the irradiation intensity of light of each color, and FIG. 5B shows a method of enhancing the color difference by image processing. As shown in FIG. 5B, in image processing, in the case of linear transformation, already quantized data is corrected by calculation, so that there is a possibility that a quantization error is promoted or image data is lost. there is a possibility. On the other hand, in the method of optimizing the illumination intensity, data deterioration caused by image processing does not occur. For this reason, the quality of the obtained image data is high, and it is suitably used for subsequent image processing.
2.第2実施形態(照明装置)
(1)第2実施形態に係る照明装置の構成
 図6に本開示の第2実施形態に係る照明装置の構成例を模式的に示す。図中、符号D2で示す照明装置は、上述した光照射部11及び比率調整部12を有する。さらに、照明装置D2は、撮像部15と比率取得部16と、を有する。また、照明装置D2は、第1実施形態と同様に、制御部13、記憶部14等、他の構成を備えることができる。この他、撮像部15の配置などに応じて、ダイクロイックミラー等で構成される光路切替部19が設けられていてもよい(図6、矢印L2参照)。
2. Second embodiment (lighting device)
(1) Configuration of Lighting Device According to Second Embodiment FIG. 6 schematically illustrates a configuration example of a lighting device according to the second embodiment of the present disclosure. In the drawing, the illumination device indicated by reference sign D2 includes the light irradiation unit 11 and the ratio adjustment unit 12 described above. Furthermore, the illumination device D2 includes an imaging unit 15 and a ratio acquisition unit 16. Moreover, the illuminating device D2 can be equipped with other structures, such as the control part 13 and the memory | storage part 14, like 1st Embodiment. In addition, an optical path switching unit 19 composed of a dichroic mirror or the like may be provided according to the arrangement of the imaging unit 15 (see arrow L2 in FIG. 6).
 照明装置D2は、「撮像部15」及び「比率取得部16」以外の構成については、第1実施形態と同一である。そこで、第1実施形態と同一の構成については同一の符号を付し、その説明は省略する。 The illuminating device D2 is the same as that of the first embodiment except for the “imaging unit 15” and the “ratio acquisition unit 16”. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
<撮像部>
 撮像部15は、照明装置D2において、2以上の光が照射された生体組織のカラー画像を取得するための構成である。撮像部15は、生体組織のカラー画像を取得できる限り、その構成は特に限定されず、公知の構成の中から自由に設計することができる。例えば、PMT(photo multiplier tube)や、CCDやCMOS素子等のエリア撮像素子等によって構成することができる。
<Imaging unit>
The imaging unit 15 is configured to acquire a color image of a living tissue irradiated with two or more lights in the illumination device D2. The configuration of the imaging unit 15 is not particularly limited as long as a color image of a living tissue can be acquired, and can be freely designed from known configurations. For example, it can be configured by a PMT (photomultiplier tube), an area imaging device such as a CCD or CMOS device, or the like.
<比率取得部>
 比率取得部16は、照明装置D2において、カラー画像中の組み合わせに含まれる各組織に対応する領域の各画素における画素値から算出された色度に基づいて比率を取得するための構成である。比率取得部16は、例えば、CPU等を備える汎用のコンピュータ等によって構成することができる。また、上述した制御部13や記憶部14と合わせて、一台のコンピュータで構成されていてもよい。
<Ratio acquisition department>
The ratio acquisition unit 16 is a configuration for acquiring a ratio based on the chromaticity calculated from the pixel value in each pixel in the region corresponding to each tissue included in the combination in the color image in the illumination device D2. The ratio acquisition unit 16 can be configured by, for example, a general-purpose computer equipped with a CPU or the like. Further, it may be configured by a single computer together with the control unit 13 and the storage unit 14 described above.
(2)第2実施形態に係る照明装置の動作
 図7は、本実施形態に係る照明装置D2の動作を示すフローチャートである。図7に示すように、照明装置D2の動作については、撮像工程S31、比率取得工程S32、光照射工程S33及び比率調整工程S34の各工程を有する。これらの工程のうち、光照射工程S33及び比率調整工程S34は、上述した第1実施形態に係る照明装置における、同一の名称の工程と同じであるため、ここでの説明は省略する。また、比率取得工程S32についても、上述した比率を取得するための工程と同様であるため、説明は省略する(図4参照)。
(2) Operation of Lighting Device According to Second Embodiment FIG. 7 is a flowchart showing the operation of the lighting device D2 according to this embodiment. As shown in FIG. 7, the operation of the illumination device D2 includes an imaging step S31, a ratio acquisition step S32, a light irradiation step S33, and a ratio adjustment step S34. Among these steps, the light irradiation step S33 and the ratio adjustment step S34 are the same as the steps having the same names in the lighting device according to the first embodiment described above, and thus the description thereof is omitted here. Moreover, since the ratio acquisition step S32 is the same as the above-described step for acquiring the ratio, description thereof is omitted (see FIG. 4).
<撮像工程>
 撮像工程S31は、2以上の光が照射された生体組織のカラー画像を取得するための工程である。本工程S31で得られるカラー画像は、上述した2以上の光の照射強度における最適な比率を求めるために、比率取得工程S32において用いられる。
<Imaging process>
The imaging step S31 is a step for acquiring a color image of a living tissue irradiated with two or more lights. The color image obtained in this step S31 is used in the ratio acquisition step S32 in order to obtain an optimum ratio in the irradiation intensity of two or more lights described above.
 本工程では、赤色光、緑色光及び青色光の、各光の強度を変えながら、複数のカラー画像を取得することが好ましい。また、赤色光、緑色光及び青色光について、各々、単独で照射してカラー画像を取得してもよく、同時に照射した後に分光して、各々の色の照射光を照射して得たカラー画像とすることもできる。 In this step, it is preferable to acquire a plurality of color images while changing the intensity of each of red light, green light and blue light. In addition, each of red light, green light, and blue light may be individually irradiated to obtain a color image, or the color image obtained by irradiating with the irradiation light of each color after the simultaneous irradiation. It can also be.
 本実施形態に係る照明装置では、観察対象自体を撮像して得た画像から、比率を決定するため、観察対象に照射する2以上の光の強度比を、より最適化することができる。上記以外の構成及びその効果は上述した第1実施形態に係る照明装置と同様である。 In the illuminating device according to the present embodiment, since the ratio is determined from the image obtained by imaging the observation target itself, the intensity ratio of two or more lights irradiated on the observation target can be further optimized. Other configurations and effects are the same as those of the lighting apparatus according to the first embodiment described above.
3.第3実施形態(照明システム)
 図8に本開示の第3実施形態に係る照明システムの構成例を模式的に示す。図中、符号Sで示す照明システムは、照明装置D1と、撮像装置2と、画像表示装置3と、を備える。照明装置D1は第1実施形態に係る照明装置D1と同一であるため、その説明は省略し、以下、撮像装置2及び画像表示装置3について説明する。なお、照明システムSには、例えば、撮像装置2の配置等に応じて、光路切替機構4などが備えられていてもよい。
3. Third embodiment (lighting system)
FIG. 8 schematically illustrates a configuration example of an illumination system according to the third embodiment of the present disclosure. In the drawing, the illumination system indicated by reference numeral S includes an illumination device D1, an imaging device 2, and an image display device 3. Since the illuminating device D1 is the same as the illuminating device D1 which concerns on 1st Embodiment, the description is abbreviate | omitted and hereafter, the imaging device 2 and the image display apparatus 3 are demonstrated. Note that the illumination system S may be provided with, for example, an optical path switching mechanism 4 according to the arrangement of the imaging device 2 and the like.
<撮像装置>
 撮像装置2は、2以上の光が照射された生体組織のカラー画像を取得するための構成である。撮像装置2は、生体組織のカラー画像を取得できる限り、その具体的態様は特に限定されず、デジタルカメラ等の公知の構成の中から自由に設計することができる。
<Imaging device>
The imaging device 2 has a configuration for acquiring a color image of a living tissue irradiated with two or more lights. As long as the imaging device 2 can obtain a color image of a living tissue, the specific mode is not particularly limited, and can be freely designed from known configurations such as a digital camera.
<画像表示装置>
 画像表示装置3は、撮像装置2によって取得されたカラー画像を表示するための構成である。画像表示装置3は、カラー画像を表示することができる限り、その具体的態様は特に限定されず、例えば、ディスプレイ等を採用することができる。また、このディスプレイは、台の上に設置されるものには限定されず、例えば、医療用ゴーグル等に備えられているものであってもよい。
<Image display device>
The image display device 3 is configured to display a color image acquired by the imaging device 2. As long as the image display apparatus 3 can display a color image, the specific aspect is not specifically limited, For example, a display etc. can be employ | adopted. Moreover, this display is not limited to what is installed on a stand, For example, you may be equipped with the medical goggles etc.
 また、画像表示装置3は、画像処理を行った上で、カラー画像を表示することもできる。図9A及び図9Bは、画像表示装置3で表示される画像を説明するための図である。また、図9A及び図9Bにおいて、色度図上の「×」及び「○」は、各組織の色度を示す。図9Aに示すように、白色光等を生体組織に照射して撮像したカラー画像における各組織の色度は、赤色光、緑色光及び青色光の各々の強度を最適化することにより、その差が大きくなる(図9A、矢印参照)。そして、本実施形態に係る画像表示装置3は、白色光等を照射した場合の色度図における各組織の色度の中間点から、照射比率を最適化した場合の色度図における各組織の色度の中間点へのベクトル分を、各組織の色度から引くことができる。即ち、白色光を用いるなど、各色の光の照射強度を最適化せずに撮像されたカラー画像について、色度図上の距離を保つように画像処理を行った上で再表示することもできる(図9B、矢印参照)。 The image display device 3 can also display a color image after performing image processing. 9A and 9B are diagrams for explaining an image displayed on the image display device 3. 9A and 9B, “X” and “◯” on the chromaticity diagram indicate the chromaticity of each tissue. As shown in FIG. 9A, the chromaticity of each tissue in a color image captured by irradiating a living tissue with white light or the like is obtained by optimizing the intensity of each of red light, green light, and blue light. (See FIG. 9A, arrow). Then, the image display device 3 according to the present embodiment is configured so that each tissue in the chromaticity diagram in the case where the irradiation ratio is optimized is determined from the intermediate point of the chromaticity in each tissue in the chromaticity diagram in the case where white light or the like is irradiated. The vector to the midpoint of chromaticity can be subtracted from the chromaticity of each tissue. That is, a color image captured without optimizing the irradiation intensity of light of each color, such as using white light, can be displayed again after image processing is performed so as to maintain a distance on the chromaticity diagram. (See FIG. 9B, arrow).
 本実施形態に係る照明システムでは、観察対象となる生体組織が、例えば体内にある場合など、直接ユーザが目視できない位置に存在する場合であっても、組織の識別性が高いカラー画像を、ユーザは、画像表示装置を介して見ることができる。このため、組織の識別をより精度高く行うことができる。上記以外の構成及びその効果は上述した第1実施形態に係る照明装置と同様である。 In the illumination system according to the present embodiment, even when the biological tissue to be observed exists in a position where the user cannot directly see, for example, when the biological tissue is in the body, a color image with high tissue identification is displayed. Can be viewed through an image display device. For this reason, tissue identification can be performed with higher accuracy. Other configurations and effects are the same as those of the lighting apparatus according to the first embodiment described above.
 なお、上記に記載された効果はあくまで例示であって、限定されるものではなく、また他の効果があってもよい。 It should be noted that the effects described above are merely examples and are not limited, and may have other effects.
 本開示は、以下のような構成もとることができる。
 (1)赤色光、緑色光及び青色光のうち2以上の光を生体組織へ出射する光照射部と、前記2以上の光の強度比を、前記生体組織に含まれる組織の種類の組み合わせに応じて、予め定められた比率に調整する比率調整部と、を備え、前記比率は、生体組織に前記2以上の光を照射して取得したカラー画像中の前記組み合わせに含まれる各組織に対応する領域の各画素における画素値から算出された色度に基づいて定められた値である照明装置。
 (2)前記比率は前記色度の各々の色度図における互いの距離に基づいて定められた値である上記(1)に記載の照明装置。
 (3)前記カラー画像は前記2以上の光の強度比を変えて撮像された複数の画像であり、前記比率は前記複数の画像の中で前記距離が最大となった画像を撮像したときの前記2以上の光の強度比である上記(2)に記載の照明装置。
 (4)前記カラー画像は前記2以上の光の強度比を変えて撮像された複数の画像であり、前記比率は前記複数の画像の中で前記色度図における前記色度を頂点とする多角形の面積が最大となった画像を撮像したときの前記2以上の光の強度比である上記(2)に記載の照明装置。
 (5)前記色度図はxy色度図、u’v’色度図、uv色度図又はLab色度図である上記(2)~(4)のいずれかに記載の照明装置。
 (6)前記比率調整部は前記2以上の光の各々の透過率が異なる複数のフィルタを備える上記(1)~(5)のいずれかに記載の照明装置。
 (7)前記2以上の光は合波されて前記生体組織へ照射される上記(1)~(6)のいずれかに記載の照明装置。
 (8)さらに、前記2以上の光が照射された前記生体組織のカラー画像を取得する撮像部と、前記カラー画像中の前記組み合わせに含まれる各組織に対応する領域の各画素における画素値から算出された色度に基づいて前記比率を取得する比率取得部と、を有する上記(1)~(7)のいずれかに記載の照明装置。
 (9)上記(1)~(7)のいずれかに記載の照明装置と、前記2以上の光が照射された前記生体組織のカラー画像を取得する撮像装置と、前記撮像装置によって取得された前記カラー画像を表示する画像表示装置と、を備える照明システム。
 (10)赤色光、緑色光及び青色光のうち2以上の光を生体組織へ出射する光照射工程と、前記2以上の光の強度比を、前記生体組織に含まれる組織の種類の組み合わせに応じて、予め定められた比率に調整する比率調整工程と、を有し、前記比率は、生体組織に前記2以上の光を照射して取得したカラー画像中の前記組み合わせに含まれる各組織に対応する領域の各画素における画素値から算出された色度に基づいて定められた値である照明方法。
 (11)赤色光、緑色光及び青色光のうち2以上の光を生体組織へ出射する光照射機能と、前記2以上の光の強度比を、前記生体組織に含まれる組織の種類の組み合わせに応じて、予め定められた比率に調整する比率調整機能と、をコンピュータに実現させ、
 前記比率は、生体組織に前記2以上の光を照射して取得したカラー画像中の前記組み合わせに含まれる各組織に対応する領域の各画素における画素値から算出された色度に基づいて定められた値であるプログラム。
The present disclosure can have the following configurations.
(1) A combination of a light irradiation unit that emits two or more lights of red light, green light, and blue light to a living tissue, and an intensity ratio of the two or more lights to a combination of types of tissues included in the living tissue And a ratio adjusting unit that adjusts the ratio to a predetermined ratio, and the ratio corresponds to each tissue included in the combination in the color image acquired by irradiating the biological tissue with the two or more lights. A lighting device having a value determined based on chromaticity calculated from a pixel value in each pixel of a region to be operated.
(2) The lighting device according to (1), wherein the ratio is a value determined based on a mutual distance in each chromaticity diagram of the chromaticity.
(3) The color image is a plurality of images picked up by changing the intensity ratio of the two or more lights, and the ratio is obtained when the image having the maximum distance among the plurality of images is picked up. The illumination device according to (2), wherein the light intensity ratio is greater than or equal to two.
(4) The color image is a plurality of images picked up by changing the intensity ratio of the two or more lights, and the ratio is a multiple of the plurality of images having the chromaticity in the chromaticity diagram as a vertex. The illumination device according to (2), which is an intensity ratio of the two or more lights when an image having the largest square area is captured.
(5) The illumination device according to any one of (2) to (4), wherein the chromaticity diagram is an xy chromaticity diagram, a u′v ′ chromaticity diagram, a uv chromaticity diagram, or a Lab chromaticity diagram.
(6) The illumination device according to any one of (1) to (5), wherein the ratio adjusting unit includes a plurality of filters having different transmittances of the two or more lights.
(7) The illumination device according to any one of (1) to (6), wherein the two or more lights are combined and applied to the living tissue.
(8) Further, from an imaging unit that acquires a color image of the biological tissue irradiated with the two or more lights, and a pixel value in each pixel of a region corresponding to each tissue included in the combination in the color image A lighting device according to any one of (1) to (7), further including a ratio acquisition unit that acquires the ratio based on the calculated chromaticity.
(9) The illuminating device according to any one of (1) to (7), an imaging device that acquires a color image of the biological tissue irradiated with the two or more lights, and acquired by the imaging device An illumination system comprising: an image display device that displays the color image.
(10) The light irradiation step of emitting two or more lights of red light, green light, and blue light to the living tissue, and the intensity ratio of the two or more lights to a combination of the types of tissues included in the living tissue And a ratio adjusting step for adjusting the ratio to a predetermined ratio, and the ratio is applied to each tissue included in the combination in the color image acquired by irradiating the biological tissue with the two or more lights. An illumination method that is a value determined based on chromaticity calculated from a pixel value in each pixel of a corresponding region.
(11) A combination of a light irradiation function for emitting two or more lights of red light, green light, and blue light to a living tissue and an intensity ratio of the two or more lights to a combination of types of tissues included in the living tissue. In response, the computer realizes a ratio adjustment function for adjusting to a predetermined ratio,
The ratio is determined based on chromaticity calculated from pixel values in each pixel in a region corresponding to each tissue included in the combination in the color image obtained by irradiating the biological tissue with the two or more lights. The program that is the value.
1.実験例1
 本実験例では、生体組織を撮像して得られるカラー画像の各画素から色度を算出して、照射強度の最適化を検討した。
1. Experimental example 1
In this experimental example, chromaticity was calculated from each pixel of a color image obtained by imaging a living tissue, and optimization of irradiation intensity was examined.
<材料及び方法>
 本実験例では、ブタ前肢から、骨と神経を採取し、生体組織として用いた。図10は、本実験例で用いた骨と神経を白色光で撮像したカラー画像である。図10に示すように、これらの組織は、肉眼では、共に白色に見える。
<Materials and methods>
In this experimental example, bones and nerves were collected from the porcine forelimbs and used as living tissue. FIG. 10 is a color image obtained by imaging the bones and nerves used in this experimental example with white light. As shown in FIG. 10, these tissues both appear white to the naked eye.
 骨及び神経の各々について、赤色光(R=638nm)、緑色光(G=532nm)、及び青色光(B=464nm)の各々の光を単独で照射して画素値が抽出できるカラー画像データを取得した。そして、各画像の骨と神経の各々に対応する領域を設定し、画素値からそれぞれの領域の色度を算出した。また、本実験例では、色度図については、XYZ表色系のxy色度図とした。 For each bone and nerve, color image data from which pixel values can be extracted by irradiating each of red light (R = 638 nm), green light (G = 532 nm), and blue light (B = 464 nm) independently. I got it. Then, regions corresponding to the bones and nerves of each image were set, and the chromaticity of each region was calculated from the pixel values. In this experimental example, the chromaticity diagram is an xy chromaticity diagram of the XYZ color system.
 また、得られた各画素値は光源の照射強度に対し線形に変化するため、骨及び神経へ照射した光の,緑色光(532nm)と青色光(464nm)の強度比率及び赤色光(638nm)と青色光(464nm)の強度比率を、各々、10−10~1010の範囲で変化させた場合のxy色度をシミュレートした。図11にシミュレーションの結果を示す。また、シミュレーションの結果から、各々の場合の骨と神経の色度図上のユークリッド距離を計算した。ユークリッド距離は下記式(3)~(6)により算出した。 In addition, since each obtained pixel value changes linearly with respect to the irradiation intensity of the light source, the intensity ratio of green light (532 nm) and blue light (464 nm) and red light (638 nm) of the light irradiated to the bone and nerve. And xy chromaticity when the intensity ratio of blue light (464 nm) was changed in the range of 10 −10 to 10 10 , respectively. FIG. 11 shows the result of the simulation. In addition, the Euclidean distance on the bone and nerve chromaticity diagram in each case was calculated from the simulation results. The Euclidean distance was calculated by the following formulas (3) to (6).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 本実験例の結果を図12に示す。図12は、xy色度図である。図12に示すように、赤色光、緑色光及び青色光の各々の強度比が1:1:1の場合、骨における色度と神経における色度の差は、0.0076であった。これに対して、各色の光の強度比が20:1:10の場合、骨における色度と神経における色度の差は、0.0138であった。即ち、強度比が約2倍に改善されていた。また、図13に各光の照射強度を20:1:10にして撮像した骨及び神経のカラー画像を示す。 The results of this experimental example are shown in FIG. FIG. 12 is an xy chromaticity diagram. As shown in FIG. 12, when the intensity ratio of each of red light, green light, and blue light was 1: 1: 1, the difference between the chromaticity in the bone and the chromaticity in the nerve was 0.0076. On the other hand, when the light intensity ratio of each color was 20: 1: 10, the difference between the chromaticity in the bone and the chromaticity in the nerve was 0.0138. That is, the intensity ratio was improved about twice. FIG. 13 shows color images of bones and nerves captured with the irradiation intensity of each light being 20: 1: 10.
 本実験例の結果から、赤色光、緑色光及び青色光の各光の照射強度の比率を変えることにより、組織間の色度の差が変化することが示された。従って、各色の光の照射強度の比率を、色度の距離が大きくなる方向へ変化させることにより、生体組織の識別性を高めることができることが示された。 The result of this experimental example shows that the chromaticity difference between tissues changes by changing the ratio of the irradiation intensity of each light of red light, green light and blue light. Therefore, it was shown that the distinguishability of living tissue can be improved by changing the ratio of the irradiation intensity of light of each color in the direction in which the distance of chromaticity increases.
D1、D2:照明装置
S:照明システム
T:生体組織
T1,T2:組織
11:光照射部
11a,11b,11c:光源
12:比率調整部
12a,12b,12c:フィルタ
13:制御部
14:記憶部
15:撮像部
16:比率取得部
17:合波ユニット
18:リング照明ユニット
19:光路切替部
2:撮像装置
3:画像表示装置
4:光路切替機構
D1, D2: Illumination device S: Illumination system T: Living tissue T1, T2: Tissue 11: Light irradiation unit 11a, 11b, 11c: Light source 12: Ratio adjustment unit 12a, 12b, 12c: Filter 13: Control unit 14: Storage Unit 15: imaging unit 16: ratio acquisition unit 17: multiplexing unit 18: ring illumination unit 19: optical path switching unit 2: imaging device 3: image display device 4: optical path switching mechanism

Claims (11)

  1.  赤色光、緑色光及び青色光のうち2以上の光を生体組織へ出射する光照射部と、
     前記2以上の光の強度比を、前記生体組織に含まれる組織の種類の組み合わせに応じて、予め定められた比率に調整する比率調整部と、を備え、
     前記比率は、生体組織に前記2以上の光を照射して取得したカラー画像中の前記組み合わせに含まれる各組織に対応する領域の各画素における画素値から算出された色度に基づいて定められた値である
    照明装置。
    A light irradiator that emits two or more lights of red light, green light, and blue light to a living tissue;
    A ratio adjusting unit that adjusts the intensity ratio of the two or more lights to a predetermined ratio according to a combination of types of tissues included in the living tissue;
    The ratio is determined based on chromaticity calculated from pixel values in each pixel in a region corresponding to each tissue included in the combination in the color image obtained by irradiating the biological tissue with the two or more lights. The lighting device that is the value.
  2.  前記比率は前記色度の各々の色度図における互いの距離に基づいて定められた値である請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the ratio is a value determined based on a mutual distance in each chromaticity diagram of the chromaticity.
  3.  前記カラー画像は前記2以上の光の強度比を変えて撮像された複数の画像であり、
     前記比率は前記複数の画像の中で前記距離が最大となった画像を撮像したときの前記2以上の光の強度比である
    請求項2に記載の照明装置。
    The color image is a plurality of images captured by changing the intensity ratio of the two or more lights,
    The lighting device according to claim 2, wherein the ratio is an intensity ratio of the two or more lights when an image having the maximum distance among the plurality of images is captured.
  4.  前記カラー画像は前記2以上の光の強度比を変えて撮像された複数の画像であり、
     前記比率は前記複数の画像の中で前記色度図における前記色度を頂点とする多角形の面積が最大となった画像を撮像したときの前記2以上の光の強度比である
    請求項2に記載の照明装置。
    The color image is a plurality of images captured by changing the intensity ratio of the two or more lights,
    The ratio is an intensity ratio of the two or more lights when an image in which the area of a polygon having the chromaticity as a vertex in the chromaticity diagram is the maximum in the plurality of images is captured. The lighting device described in 1.
  5.  前記色度図はxy色度図、u’v’色度図、uv色度図又はLab色度図である
    請求項2に記載の照明装置。
    The lighting device according to claim 2, wherein the chromaticity diagram is an xy chromaticity diagram, a u′v ′ chromaticity diagram, a uv chromaticity diagram, or a Lab chromaticity diagram.
  6.  前記比率調整部は前記2以上の光の各々の透過率が異なる複数のフィルタを備える
    請求項1に記載の照明装置。
    The lighting device according to claim 1, wherein the ratio adjusting unit includes a plurality of filters having different transmittances of the two or more lights.
  7.  前記2以上の光は合波されて前記生体組織へ照射される
    請求項1に記載の照明装置。
    The lighting device according to claim 1, wherein the two or more lights are combined and applied to the living tissue.
  8.  さらに、前記2以上の光が照射された前記生体組織のカラー画像を取得する撮像部と、
     前記カラー画像中の前記組み合わせに含まれる各組織に対応する領域の各画素における画素値から算出された色度に基づいて前記比率を取得する比率取得部と、を有する
    請求項1に記載の照明装置。
    Furthermore, an imaging unit that acquires a color image of the biological tissue irradiated with the two or more lights;
    2. The illumination according to claim 1, further comprising: a ratio acquisition unit that acquires the ratio based on chromaticity calculated from pixel values in each pixel of a region corresponding to each tissue included in the combination in the color image. apparatus.
  9.  請求項1に記載の照明装置と、
     前記2以上の光が照射された前記生体組織のカラー画像を取得する撮像装置と、
     前記撮像装置によって取得された前記カラー画像を表示する画像表示装置と、を備える照明システム。
    A lighting device according to claim 1;
    An imaging device that acquires a color image of the biological tissue irradiated with the two or more lights;
    An illumination system comprising: an image display device that displays the color image acquired by the imaging device.
  10.  赤色光、緑色光及び青色光のうち2以上の光を生体組織へ出射する光照射工程と、
     前記2以上の光の強度比を、前記生体組織に含まれる組織の種類の組み合わせに応じて、予め定められた比率に調整する比率調整工程と、を有し、
     前記比率は、生体組織に前記2以上の光を照射して取得したカラー画像中の前記組み合わせに含まれる各組織に対応する領域の各画素における画素値から算出された色度に基づいて定められた値である
    照明方法。
    A light irradiation step of emitting two or more of the red light, green light and blue light to the living tissue;
    A ratio adjustment step of adjusting the intensity ratio of the two or more light to a predetermined ratio according to a combination of types of tissues included in the living tissue,
    The ratio is determined based on chromaticity calculated from pixel values in each pixel in a region corresponding to each tissue included in the combination in the color image obtained by irradiating the biological tissue with the two or more lights. Lighting method.
  11.  赤色光、緑色光及び青色光のうち2以上の光を生体組織へ出射する光照射機能と、
     前記2以上の光の強度比を、前記生体組織に含まれる組織の種類の組み合わせに応じて、予め定められた比率に調整する比率調整機能と、をコンピュータに実現させ、
     前記比率は、生体組織に前記2以上の光を照射して取得したカラー画像中の前記組み合わせに含まれる各組織に対応する領域の各画素における画素値から算出された色度に基づいて定められた値である
    プログラム。
    A light irradiation function for emitting two or more of the red light, green light and blue light to the living tissue;
    A ratio adjustment function for adjusting the intensity ratio of the two or more light to a predetermined ratio according to a combination of types of tissues included in the living tissue is realized by a computer.
    The ratio is determined based on chromaticity calculated from pixel values in each pixel in a region corresponding to each tissue included in the combination in the color image obtained by irradiating the biological tissue with the two or more lights. The program that is the value.
PCT/JP2015/073447 2014-10-03 2015-08-14 Illumination device, illumination system, illumination method, and program WO2016051990A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-205302 2014-10-03
JP2014205302 2014-10-03
JP2015063225 2015-03-25
JP2015-063225 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016051990A1 true WO2016051990A1 (en) 2016-04-07

Family

ID=55630036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073447 WO2016051990A1 (en) 2014-10-03 2015-08-14 Illumination device, illumination system, illumination method, and program

Country Status (1)

Country Link
WO (1) WO2016051990A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199127A (en) * 1997-09-29 1999-04-13 Olympus Optical Co Ltd Endoscope light source device
JP2005279255A (en) * 2004-03-05 2005-10-13 Junichi Shimada Illuminating apparatus, filter apparatus and image display
WO2007094338A1 (en) * 2006-02-17 2007-08-23 National University Corporation Toyohashi University Of Technology Method for forming functional spectrum filter
JP2011036361A (en) * 2009-08-10 2011-02-24 Fujifilm Corp Endoscopic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199127A (en) * 1997-09-29 1999-04-13 Olympus Optical Co Ltd Endoscope light source device
JP2005279255A (en) * 2004-03-05 2005-10-13 Junichi Shimada Illuminating apparatus, filter apparatus and image display
WO2007094338A1 (en) * 2006-02-17 2007-08-23 National University Corporation Toyohashi University Of Technology Method for forming functional spectrum filter
JP2011036361A (en) * 2009-08-10 2011-02-24 Fujifilm Corp Endoscopic device

Similar Documents

Publication Publication Date Title
US9320428B2 (en) Programmable multispectral illumination system for surgery and visualization of light-sensitive tissues
CN111345903B (en) Image processing apparatus, fluorescence observation apparatus, and method of simulating fluorescence observation apparatus
US10335014B2 (en) Endoscope system, processor device, and method for operating endoscope system
JP6525918B2 (en) Endoscope system, image processing apparatus, and operation method of image processing apparatus
US11116384B2 (en) Endoscope system capable of image alignment, processor device, and method for operating endoscope system
EP2564755B1 (en) Image processing device and fluoroscopy device
WO2017183324A1 (en) Endoscope system, processor device, and endoscope system operation method
JP6533147B2 (en) PROCESSOR, ENDOSCOPE SYSTEM, AND IMAGE PROCESSING METHOD
JP6608884B2 (en) Observation device for visual enhancement of observation object and operation method of observation device
WO2017022324A1 (en) Image signal processing method, image signal processing device and image signal processing program
JP2009131324A (en) Field sequential imaging display system
JP6927210B2 (en) Observation device
Kurabuchi et al. Optimization of surgical illuminant spectra for organ microstructure visualization
Shen et al. Surgical lighting with contrast enhancement based on spectral reflectance comparison and entropy analysis
JP2019128295A (en) Imaging device, imaging system, and imaging method
WO2012002320A1 (en) Image processing apparatus and image processing method
WO2016051990A1 (en) Illumination device, illumination system, illumination method, and program
JP7163386B2 (en) Endoscope device, method for operating endoscope device, and program for operating endoscope device
US20230000348A1 (en) Non-transitory computer-readable storage medium and ophthalmic image processing apparatus
CN111936031A (en) Medical image processing apparatus
CN111449611B (en) Endoscope system and imaging method thereof
US20200302610A1 (en) Medical image processing device, medical observation device, method of processing image, and computer readable recording medium
JPWO2019053804A1 (en) Endoscope device, method of operating endoscope device, and program
JP2013094489A (en) Endoscope apparatus
WO2021065939A1 (en) Endoscope system and method for operating same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP