WO2016051768A1 - Liquefied hydrogen transport system - Google Patents

Liquefied hydrogen transport system Download PDF

Info

Publication number
WO2016051768A1
WO2016051768A1 PCT/JP2015/004932 JP2015004932W WO2016051768A1 WO 2016051768 A1 WO2016051768 A1 WO 2016051768A1 JP 2015004932 W JP2015004932 W JP 2015004932W WO 2016051768 A1 WO2016051768 A1 WO 2016051768A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquefied hydrogen
tank
tube
transfer line
hydrogen transfer
Prior art date
Application number
PCT/JP2015/004932
Other languages
French (fr)
Japanese (ja)
Inventor
峻太郎 海野
智教 高瀬
友章 梅村
英司 川越
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2016051768A1 publication Critical patent/WO2016051768A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D9/00Apparatus or devices for transferring liquids when loading or unloading ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • the present invention relates to a liquefied hydrogen transfer system for transferring liquefied hydrogen between a land-side first tank capable of storing liquefied hydrogen and a liquefied hydrogen transport ship-side second tank capable of storing liquefied hydrogen, and more particularly a loading arm. It is related with what made it possible to accelerate
  • a liquefied gas transfer system that transfers liquefied gas between a liquefied gas transport ship that transports liquefied gas such as LNG to the sea and a liquefied gas storage tank on land has been put to practical use.
  • an underground tank and a ground tank are provided on the land side, and a loading arm that transfers the LNG from the ship side LNG tank to the land side tank in a state where the LNG transport ship is attached to the pier
  • the LNG transfer line containing the LNG is connected, the gas transfer line for transferring the LNG vapor (natural gas) is connected, and when unloading the LNG, the vaporized gas generated from the LNG by the vaporizer is removed.
  • the LNG is unloaded from the ship side LNG tank to the land side tank while being supplied to the ship side LNG tank.
  • the liquefied hydrogen transfer line for transferring liquefied hydrogen between the first tank on the land side and the second tank on the ship side via the loading arm is similar to the above liquefied gas transfer system, but transfers liquefied hydrogen.
  • Most of the liquefied hydrogen transfer line is composed of a vacuum insulated double pipe with high heat insulation, and as a joint for connecting the tip of the loading arm to the manifold on the ship side, a low temperature fluid with high heat insulation such as a bayonet joint is used. A joint is used.
  • the ship side and land side connection parts (joint part and its peripheral part) are purged first. Thereafter, in order to prevent the operator from being burned at low temperature, the loading arm is disconnected after confirming that the temperature of the joint and the surrounding piping has sufficiently increased.
  • the LNG transfer line since the heat insulation performance of the joint portion and the surrounding piping is not so high, it does not take time to raise the temperature of the portion.
  • the liquid hydrogen is in an extremely low temperature of about ⁇ 253 ° C., and the joints and the surrounding pipes are cooled to the same temperature, and the joints and the surrounding pipes are insulated. Since the performance is high, it takes a long time to raise the temperature of the part, which causes a delay in the work of disconnecting the loading arm.
  • An object of the present invention is to provide a liquefied hydrogen transfer system capable of disconnecting a loading arm in a short time after loading / unloading is completed.
  • a liquefied hydrogen transfer system is provided between a land-side first tank capable of storing liquefied hydrogen and a liquefied hydrogen transport ship-side second tank capable of storing liquefied hydrogen.
  • the liquefied hydrogen transport system for transporting liquefied hydrogen in the liquefied hydrogen transport system the liquefied hydrogen can be transported between the first tank and the second tank via a loading arm, and most of the liquefied hydrogen is composed of a vacuum insulated double tube.
  • a heat input means capable of heat input to the inner pipe of the vacuum heat insulating double pipe in this section.
  • liquefied hydrogen can be transferred via a loading arm between the 1st tank on the land side, and the 2nd tank on the liquefied hydrogen transport ship side, and most are comprised with a vacuum heat insulation double tube.
  • the heat input means includes at least an outer periphery of an inner pipe of a vacuum heat insulating double pipe at a predetermined length portion on each of a land side and a ship side from the cryogenic fluid joint in the liquefied hydrogen transfer line.
  • You may have the spiral tube wound around the surface, and the heat medium supply means which supplies the heat medium heated to the said spiral tube.
  • the heat input means includes a spiral tube wound around the outer peripheral surface of the inner tube of the vacuum heat insulating double tube at the predetermined length portion, and heat for supplying a heated heat medium to the spiral tube. Therefore, by supplying the heat medium heated to the spiral tube by the heat medium supply means, it is possible to heat the inner tube through the spiral tube and raise the temperature.
  • the heat input means includes at least the inner pipe of the vacuum heat insulating double pipe in the predetermined length portion on each of the land side and the ship side from the cryogenic fluid joint in the liquefied hydrogen transfer line.
  • You may have the helical tube wound around the outer peripheral surface, and the electric heater integrated in the said helical tube.
  • the heat input means includes a spiral tube wound around the outer peripheral surface of the inner tube of the vacuum heat insulating double tube at least in the predetermined length portion, and an electric heater incorporated in the spiral tube. Therefore, the inner tube can be heated by the electric heater incorporated in the spiral tube to raise the temperature.
  • FIG. It is sectional drawing of the vacuum heat insulation double tube
  • FIG. 1 shows a liquefied hydrogen transfer system 1 according to the first embodiment.
  • the liquefied hydrogen transfer system 1 includes a land-side first tank 2 capable of storing liquefied hydrogen and a liquefied liquid capable of storing liquefied hydrogen. This is a liquefied hydrogen transfer system for transferring liquefied hydrogen to and from the second tank 3 on the hydrogen transport ship side.
  • the liquefied hydrogen transfer system 1 includes a liquefied hydrogen transfer line 4, a hydrogen gas transfer line 5, a connection passage 6, valves, and at least a predetermined temperature from the liquefied hydrogen transfer line 4 to at least a low temperature fluid joint 4 b to the land side.
  • a length portion between the cryogenic fluid joint 4b and an air motor valve 9 described later in this embodiment
  • a predetermined length portion to the ship side in this embodiment, the joint 4b for cryogenic fluid and the automatic closing valve 14 described later.
  • the heat input means 7 that can input heat is provided in the inner tube of the vacuum heat insulating double tube.
  • the liquefied hydrogen transfer line 4 is capable of transferring liquefied hydrogen between the first tank 2 and the second tank 3 via the loading arm 4a, and most of the liquefied hydrogen transfer line 4 is constituted by a vacuum insulated double tube. .
  • the “most part” indicates, for example, 70% or more of the whole.
  • the liquefied hydrogen transfer line 4 has one end connected to the first tank 2 and the other end connected to the second tank 3.
  • a loading arm 4a is interposed in the middle of the liquefied hydrogen transfer line 4, and a boundary between the land side and the ship side of the liquefied hydrogen transfer line 4 is connected by a low temperature fluid joint 4b such as a bayonet joint.
  • a check valve 8 and an air motor valve 9 are interposed in the liquefied hydrogen transfer line 4, a bypass passage 10 for bypassing these, an on-off valve 11 interposed in the bypass passage 10, and a bypass passage A drain cock 12 branched from 10 and a drain cock 13 branched from the vicinity of the proximal end of the loading arm 4a are provided.
  • the liquefied hydrogen transfer line 4 is provided with a remote operation emergency shut-off / high liquid level automatic shut-off valve 14, a bypass passage 15 that bypasses the automatic shut-off valve 14, and an on-off valve that is interposed in the bypass passage 15. 16 is provided.
  • the hydrogen gas transfer line 5 is capable of transferring hydrogen gas between the first tank 2 and the second tank 3 via the loading arm 5a, most of which is composed of, for example, a single tube made of stainless steel, One end is connected to the first tank 2 and the other end is connected to the second tank 3.
  • a loading arm 5 a is interposed in the middle of the hydrogen gas transfer line 5.
  • a check valve 17 and an air motor valve 18 are interposed in the hydrogen gas transfer line 5, a bypass passage 19 for bypassing these, an on-off valve 20 interposed in the bypass passage 19, and a bypass passage A drain cock 21 branched from 19 and a drain cock 22 branched from the vicinity of the proximal end portion of the loading arm 5a are provided.
  • a remote operation emergency shut-off valve 23 is interposed in the hydrogen gas transfer line 5. The boundary between the land side and the ship side of the hydrogen gas transfer line 5 is connected by a flange joint 5b.
  • connection passage 6 connects the liquefied hydrogen transfer line 4 and the hydrogen gas transfer line 5 on the liquefied hydrogen transport ship side, and is provided with an open / close valve 6a.
  • One end of the connection passage 6 is connected to a portion of the liquefied hydrogen transfer line 4 between the cryogenic fluid joint 4 b and the automatic shut-off valve 14, and the other end of the connection passage 6 is a flange joint of the hydrogen gas transfer line 5. It is connected to a portion between 5b and the emergency shut-off valve 23.
  • the heat input means 7 includes a land-side spiral tube 7a wound around an inner tube 31 of a vacuum heat insulating double tube 30, and an electric heater built in the land-side spiral tube 7a.
  • the land-side spiral tube 7a is a vacuum insulated double tube 30 in a range from the air motor valve 9 to the low-temperature fluid joint 4b (that is, “a predetermined length portion from the low-temperature fluid joint to the land side” in this embodiment).
  • the ship-side spiral tube 7b is in a range from the cryogenic fluid joint 4b to the automatic shut-off valve 14 (ie, “a predetermined length portion from the cryogenic fluid joint to the ship side” in this embodiment).
  • the vacuum insulation double tube 30 is wound around the inner tube 31.
  • the land side spiral tube 7a incorporates an electric heater 31a and encloses a heat medium (not shown).
  • the ship-side spiral tube 7b incorporates an electric heater 31a and encloses a heat medium (not shown).
  • FIG. 2 is a cross-sectional view of a main part of a vacuum heat insulating double pipe 30 having an inner pipe 31 around which helical tubes 7a and 7b on the land side or ship side with a built-in electric heater are wound.
  • This vacuum heat insulation double tube 30 is an inner tube 31 made of stainless steel or aluminum alloy, and small diameter spiral tubes 7a, 7b made of, for example, aluminum alloy wound around the outer peripheral surface of the inner tube 31, and an electric heater 31a Between the spiral tubes 7a and 7b containing the heat medium, the super insulation 32 for blocking the radiant heat wound around the outer periphery of the inner tube 31 and the spiral tubes 7a and 7b, and the super insulation 32 And an outer tube 34 fitted with a cylindrical vacuum layer 33 therebetween.
  • the heat medium is for transferring heat from the electric heater 31a to the spiral tubes 7a and 7b.
  • helium gas or nitrogen gas is adopted as the heat medium, and this heat medium is the spiral tube. 7a and 7b are enclosed.
  • the heat medium is not limited to the inert gas, and hydrogen gas and other gases can also be employed.
  • an inert gas supply tank 35 is provided on the side, and this active gas supply tank 35 is connected to the drain cock 13 via a gas supply passage 35a.
  • a gas processing device 36 for processing a mixed gas (a mixed gas of air and an inert gas or a mixed gas of hydrogen gas and an inert gas) generated at the time of purging the inert gas is provided, via a gas discharge passage 36a. Connected to the drain cock 22. The gas processing device 36 removes hydrogen gas in the mixed gas by combustion or adsorption.
  • the operation and effect of the liquefied hydrogen transfer system 1 described above will be described.
  • the air in the liquefied hydrogen transfer line 4 and the hydrogen gas transfer line 5 is inert gas.
  • only the drain cock 13, the on-off valve 6a, and the drain cock 22 are held open, and the inert gas is supplied from the inert gas supply tank 35 to the liquefied hydrogen transfer line 4 via the gas supply passage 35a and the drain cock 13.
  • the inert gas flows from the connection passage 6 to the hydrogen gas transfer line 5 and is discharged to the gas processing device 36 through the drain cock 22 and the gas discharge passage 36a. In this way, the liquefied hydrogen transfer line 4 and the hydrogen gas transfer line 5 can be filled with the inert gas.
  • a hydrogen gas purge is performed in which the inert gas in the liquefied hydrogen transfer line 4 and the hydrogen gas transfer line 5 is replaced with hydrogen gas.
  • hydrogen gas is supplied from the first tank 2 to the liquefied hydrogen transfer line 4, and the hydrogen gas is flowed from the connection passage 6 to the hydrogen gas transfer line 5, and the gas processing device is passed through the drain cock 22 and the gas discharge passage 36 a. To 36. In this way, the liquefied hydrogen transfer line 4 and the hydrogen gas transfer line 5 can be filled with hydrogen gas.
  • liquefied hydrogen is loaded from the first tank 2 to the second tank 3 or liquefied hydrogen is unloaded from the second tank 3 to the first tank 2.
  • an inert gas purge is performed again to replace the hydrogen gas in the liquefied hydrogen transfer line 4 and the hydrogen gas transfer line 5 with an inert gas. At this time, it is performed in the same manner as the inert gas purge.
  • the temperature of the inner pipe 31 of the vacuum heat insulation double pipe 30 of the liquefied hydrogen transfer line 4 is a very low temperature state close to ⁇ 253 ° C., and therefore, when separating the low temperature fluid joint 4b, May cause frostbite.
  • the purge inert gas may adhere to the cryogenic piping, which may damage the valve seal structure. Therefore, before the cryogenic fluid joint 4b is separated, the electric heater in the land-side spiral tube 7a and the electric heater in the ship-side spiral tube 7b are energized from the first and second energizing means 7c and 7d. Thus, heat is input to the inner pipe 31, the temperature rise of the inner pipe 31 is promoted, and the temperature of the inner pipe 31 is raised to, for example, 0 ° C. or higher.
  • the present embodiment is different from the first embodiment only in that the heat input means 7A different from the heat input means 7 of the first embodiment is adopted, the same reference numerals are given to the same components as those of the first embodiment. A description thereof will be omitted, and different configurations will be described with reference to FIGS. 3 and 4.
  • the heat input means 7A that can input heat into the inner pipe of the vacuum insulated double pipe at least at a predetermined length portion from the low temperature fluid joint 4b to the land side and a predetermined length portion to the ship side in the liquefied hydrogen transfer line 4 will be described. To do.
  • This heat input means 7A is used for the vacuum heat insulating double pipe 30A in the range from the air motor valve 9 to the low temperature fluid joint 4b (that is, “the predetermined length portion from the low temperature fluid joint to the land side” in this embodiment).
  • the land-side double spiral tube 40a wound around the inner pipe 31 and the range from the cryogenic fluid joint 4b to the automatic shut-off valve 14 that is, “the predetermined length portion from the cryogenic fluid joint to the ship side in this embodiment”).
  • the first and second inert gas supply means 40c and 40d each have a compressor and a heat exchanger with a heating means (for example, an electric heater), and heat the inert gas via the heat exchanger.
  • the low-temperature inert gas returned from the double spiral tubes 40a and 40b is heated again and circulated.
  • the land-side double spiral tube 40a is supplied with an inert gas (heat medium) heated and pressurized from the first inert gas supply means 40c (heat medium supply means).
  • the ship side double spiral tube 40b is supplied with an inert gas (heat medium) heated and pressurized from the second inert gas supply means 40d (heat medium supply means).
  • FIG. 4 is a cross-sectional view of a main part of a vacuum heat insulating double tube 30A having an inner tube 31 around which double-side helical tubes 40a and 40b on the land side or ship side are wound.
  • the distal ends of the double spiral tubes 40 a and 40 b are connected by a U-shaped tube 43.
  • the double spiral tubes 40a and 40b have a spiral tube 41 through which an inert gas forward flow flows and a spiral tube 42 through which an inert gas backward flow flows.
  • the vacuum heat insulating double tube 30A includes an inner tube 31 made of stainless steel or an aluminum alloy, small-diameter double spiral tubes 40a and 40b made of, for example, an aluminum alloy wound around the outer peripheral surface of the inner tube 31, and an inner tube 31. And a super insulation 32 for shielding radiant heat wound around the outer periphery of the double helical tubes 40a, 40b, and an outer tube 34 fitted with a cylindrical vacuum layer 33 between the super insulation 32. And have.
  • the double helical tubes 40a and 40b are two helical tubes juxtaposed in contact or in proximity.
  • the inert gas He gas or nitrogen gas
  • the first and second inert gas supply means 40c and 40d are, for example, double spiral-shaped inert gas heated to about 50 to 100 ° C.
  • the tube is supplied to the spiral tube 41 for the forward flow of the tube, and the inert gas returned from the spiral tube 42 for the backward flow is reheated and supplied to the spiral tube 41. Since the operation and effect of promoting the temperature rise by inputting heat into the inner pipe 31 by the heat input means 7A are the same as those in the first embodiment, the description thereof is omitted.
  • the double spiral tubes 40a and 40b are employed, the spiral tube 41 for the forward flow and the spiral tube 42 for the backward flow can be compactly equipped.
  • the temperature increase of the inner pipe 31 in the vicinity of the cryogenic fluid joint 4b may be promoted, so the range in which the land-side spiral tube 7a is provided (ie, “from the cryogenic fluid joint to the land side”).
  • the predetermined length portion ") is shortened, and the land-side spiral tube is connected to the inner pipe 31 of the vacuum insulated double pipe 30 within a range of, for example, 1 m from the cryogenic fluid joint 4b of the vacuum insulated double pipe 30 of the loading arm 4a. 7a may be provided. That is, the length of the predetermined length portion from the low temperature fluid joint 4b to the land side can be arbitrarily set.
  • the land side spiral tube 7a may be provided other than the predetermined length part from the low temperature fluid joint 4b to the land side, for example, the low temperature fluid joint 4b in the liquefied hydrogen transfer line 4 from the land side. It may be provided for all.
  • the range in which the ship-side spiral tube 7b is provided (that is, “a predetermined length portion from the cryogenic fluid joint to the ship side”) is shortened, and the vacuum insulation between the cryogenic fluid joint 4b and the automatic shut-off valve 14 is reduced.
  • the ship side spiral tube 7b may be provided in the inner pipe 31 of the vacuum heat insulating double pipe 30 within a range of, for example, 1 m from the cryogenic fluid joint 4b in the heavy pipe 30.
  • the ship side spiral tube 7b may be provided in a portion other than a predetermined length portion from the cryogenic fluid joint to the ship side.
  • the ship side spiral tube 7b is provided all over the ship side from the cryogenic fluid joint 4b in the liquefied hydrogen transfer line 4. It may be.
  • the second energizing means 7d may be omitted, and the electric heater in the ship side spiral tube 7b may be energized via the connector from the first energizing means 7c.
  • the above is the same for the first and second inert gas supply means 40c and 40d of the second embodiment.
  • the second inert gas supply means 40d is omitted, and the first inert gas supply means 40c is replaced with the second inert gas supply means 40c.
  • You may comprise so that an inert gas may be supplied to the heavy spiral tube 40b via a coupler.
  • the present invention is a liquefied hydrogen transfer system in which liquefied hydrogen can be transferred between a first tank on land and a second tank on the side of a liquefied hydrogen transport ship, and a vacuum insulation in the vicinity of the cryogenic fluid joint is divided before it is divided.
  • a liquefied hydrogen transfer system in which heat is input to an inner pipe of a double pipe and the temperature can be raised.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Abstract

A liquefied hydrogen transport system (1) for transporting liquefied hydrogen between a land-side first tank (2) capable of storing liquefied hydrogen and a second tank (3) on the liquefied hydrogen transport ship side and also capable of storing liquefied hydrogen is equipped with: a liquefied hydrogen transport line (4) principally configured from a vacuum-insulated double-walled pipe (30) and capable of transporting liquefied hydrogen between the first tank (2) and the second tank (3) through a loading arm (4a); a low-temperature fluid joint (4b) installed in the liquefied hydrogen transport line (4); and a heat input means (7) capable of inputting heat into an inner pipe (31) of the vacuum-insulated double-walled pipe (30) in at least a section of the liquefied hydrogen transport line (4) comprising a prescribed length toward the land side from the low-temperature fluid joint (4b) therein and a section thereof comprising a prescribed length toward the ship side from the low-temperature fluid joint (4b) therein. Furthermore, the heat input means (7) has helical tubes (7a, 7b) wrapped around the outer-circumferential surface of the inner pipe (31), an electrical heater (31a) incorporated into the helical tubes (7a, 7b), a heat medium sealed inside the helical tubes (7a, 7b), and first and second conduction means (7c, 7d) for conducting power to the helical tubes (7a, 7b).

Description

液化水素移送システムLiquid hydrogen transfer system
 本発明は、液化水素を貯留可能な陸側の第1タンクと、液化水素を貯留可能な液化水素輸送船側の第2タンクとの間で液化水素を移送する液化水素移送システムに関し、特にローディングアームの低温流体用継手の分離前に低温流体用継手の昇温を促進可能にしたものに関する。 The present invention relates to a liquefied hydrogen transfer system for transferring liquefied hydrogen between a land-side first tank capable of storing liquefied hydrogen and a liquefied hydrogen transport ship-side second tank capable of storing liquefied hydrogen, and more particularly a loading arm. It is related with what made it possible to accelerate | stimulate the temperature rising of the joint for cryogenic fluids before separation of the joint for cryogenic fluids of this.
 LNG等の液化ガスを海上輸送する液化ガス輸送船と、陸上の液化ガス貯蔵タンクとの間で、液化ガスを移送する液化ガス移送システムは実用に供されている。
 特許文献1に記載のLNG受入れ装置においては、陸側に地下タンクと地上タンクとが設けられ、LNG輸送船が桟橋に接岸した状態で、船側LNGタンクから陸側タンクにLNGを移送するローディングアームを含むLNG移送ラインが接続状態とされ、LNGの気化ガス(天然ガス)を移送するガス移送ラインが接続状態とされ、LNGをアンローディングする際には、気化器でLNGから生成した気化ガスを船側LNGタンクへ供給しながら、船側LNGタンクからLNGを陸側タンクにアンローディングする。
A liquefied gas transfer system that transfers liquefied gas between a liquefied gas transport ship that transports liquefied gas such as LNG to the sea and a liquefied gas storage tank on land has been put to practical use.
In the LNG receiving apparatus described in Patent Literature 1, an underground tank and a ground tank are provided on the land side, and a loading arm that transfers the LNG from the ship side LNG tank to the land side tank in a state where the LNG transport ship is attached to the pier The LNG transfer line containing the LNG is connected, the gas transfer line for transferring the LNG vapor (natural gas) is connected, and when unloading the LNG, the vaporized gas generated from the LNG by the vaporizer is removed. The LNG is unloaded from the ship side LNG tank to the land side tank while being supplied to the ship side LNG tank.
液化水素を陸側の第1タンクと船側の第2タンクとの間でローディングアームを介して移送する液化水素移送ラインは上記の液化ガス移送システムと類似するものになるが、液化水素を移送する液化水素移送ラインの大部分は、高い断熱性を有する真空断熱二重管で構成され、ローディングアームの先端部を船側のマニホールドに接続する継手としては、例えばバイヨネット継手など高い断熱性を有する低温流体用継手が用いられる。 The liquefied hydrogen transfer line for transferring liquefied hydrogen between the first tank on the land side and the second tank on the ship side via the loading arm is similar to the above liquefied gas transfer system, but transfers liquefied hydrogen. Most of the liquefied hydrogen transfer line is composed of a vacuum insulated double pipe with high heat insulation, and as a joint for connecting the tip of the loading arm to the manifold on the ship side, a low temperature fluid with high heat insulation such as a bayonet joint is used. A joint is used.
特開平11-210990号公報JP-A-11-210990
 ローディング/アンローディングが終了すると、まずは船側と陸側の接続部(継手部とその周辺部)をパージする。その後、作業者の低温火傷を防止するために継手部やその周辺の配管が十分に昇温したことを確認してからローディングアームを切り離す。
 LNG移送ラインでは、継手部やその周辺の配管の断熱性能はそれほど高くないため、当該部分の昇温に時間を要さない。しかし、液化水素移送ラインでは、液体水素は-253°C程度の極低温状態であり継手部やその周辺の配管も同程度の温度まで冷却されている上に継手部やその周辺の配管の断熱性能が高いため、当該部分の昇温に長時間かかり、ローディングアームの切り離し作業の遅延を招く。
When loading / unloading is completed, the ship side and land side connection parts (joint part and its peripheral part) are purged first. Thereafter, in order to prevent the operator from being burned at low temperature, the loading arm is disconnected after confirming that the temperature of the joint and the surrounding piping has sufficiently increased.
In the LNG transfer line, since the heat insulation performance of the joint portion and the surrounding piping is not so high, it does not take time to raise the temperature of the portion. However, in the liquefied hydrogen transfer line, the liquid hydrogen is in an extremely low temperature of about −253 ° C., and the joints and the surrounding pipes are cooled to the same temperature, and the joints and the surrounding pipes are insulated. Since the performance is high, it takes a long time to raise the temperature of the part, which causes a delay in the work of disconnecting the loading arm.
 本発明の目的は、ローディング/アンローディングが終了したあとに短時間でローディングアームの切り離しを行うことが可能な液化水素移送システムを提供することである。 An object of the present invention is to provide a liquefied hydrogen transfer system capable of disconnecting a loading arm in a short time after loading / unloading is completed.
 上記の課題を解決するために、本発明に係る液化水素移送システムは、液化水素を貯留可能な陸側の第1タンクと、液化水素を貯留可能な液化水素輸送船側の第2タンクとの間で液化水素を移送する液化水素移送システムにおいて、前記第1タンクと第2タンクとの間でローディングアームを介して液化水素を移送可能で、大部分が真空断熱二重管で構成される液化水素移送ラインと、前記液化水素移送ラインに装備される低温流体用低温流体用継手と、前記液化水素移送ラインのうち少なくとも前記低温流体用継手から陸側への所定長さ部分と船側への所定長さ部分における真空断熱二重管の内管に入熱可能な熱入力手段とを備えたことを特徴としている。 In order to solve the above problems, a liquefied hydrogen transfer system according to the present invention is provided between a land-side first tank capable of storing liquefied hydrogen and a liquefied hydrogen transport ship-side second tank capable of storing liquefied hydrogen. In the liquefied hydrogen transport system for transporting liquefied hydrogen in the liquefied hydrogen transport system, the liquefied hydrogen can be transported between the first tank and the second tank via a loading arm, and most of the liquefied hydrogen is composed of a vacuum insulated double tube. A transfer line, a cryogenic fluid joint for a cryogenic fluid provided in the liquefied hydrogen transfer line, a predetermined length portion from at least the cryogenic fluid joint to the land side of the liquefied hydrogen transfer line, and a predetermined length to the ship side. And a heat input means capable of heat input to the inner pipe of the vacuum heat insulating double pipe in this section.
 上記の構成によれば、陸側の第1タンクと液化水素輸送船側の第2タンクとの間でローディングアームを介して液化水素を移送可能で、大部分が真空断熱二重管で構成される液化水素移送ラインと、前記液化水素移送ラインに装備される低温流体用継手と、前記液化水素移送ラインのうち少なくとも前記低温流体用継手から陸側への所定長さ部分と船側への所定長さ部分における真空断熱二重管の内管に入熱可能な熱入力手段とを備えたため、熱入力手段から真空断熱二重管の内管に入熱することで低温流体用継手が分断可能状態になるまでの時間を著しく短縮することができる。そのため、短時間でローディングアームの切り離しを行うことが可能になる。 According to said structure, liquefied hydrogen can be transferred via a loading arm between the 1st tank on the land side, and the 2nd tank on the liquefied hydrogen transport ship side, and most are comprised with a vacuum heat insulation double tube. A liquefied hydrogen transfer line; a cryogenic fluid joint provided in the liquefied hydrogen transport line; at least a predetermined length portion from the cryogenic fluid joint to the land side and a predetermined length to the ship side of the liquefied hydrogen transfer line; Since the heat input means that can input heat to the inner pipe of the vacuum insulated double pipe in the part is provided, the joint for cryogenic fluid can be separated by heat input from the heat input means to the inner pipe of the vacuum insulated double pipe It is possible to significantly reduce the time until Therefore, the loading arm can be separated in a short time.
 上記の液化水素移送システムにおいて、前記熱入力手段は、前記液化水素移送ラインにおける前記低温流体用継手から陸側と船側のそれぞれにおいて、少なくとも所定長さ部分における真空断熱二重管の内管の外周面に巻き付けた螺旋状チューブと、前記螺旋状チューブに加熱した熱媒体を供給する熱媒体供給手段とを有してもよい。この構成によれば、前記熱入力手段は、前記所定長さ部分における真空断熱二重管の内管の外周面に巻き付けた螺旋状チューブと、前記螺旋状チューブに加熱した熱媒体を供給する熱媒体供給手段とを有するため、熱媒体供給手段により螺旋状チューブに加熱した熱媒体を供給することで、螺旋状チューブを介して内管に入熱して昇温させることができる。 In the above liquefied hydrogen transfer system, the heat input means includes at least an outer periphery of an inner pipe of a vacuum heat insulating double pipe at a predetermined length portion on each of a land side and a ship side from the cryogenic fluid joint in the liquefied hydrogen transfer line. You may have the spiral tube wound around the surface, and the heat medium supply means which supplies the heat medium heated to the said spiral tube. According to this configuration, the heat input means includes a spiral tube wound around the outer peripheral surface of the inner tube of the vacuum heat insulating double tube at the predetermined length portion, and heat for supplying a heated heat medium to the spiral tube. Therefore, by supplying the heat medium heated to the spiral tube by the heat medium supply means, it is possible to heat the inner tube through the spiral tube and raise the temperature.
 上記の液化水素移送システムにおいて、前記熱入力手段は、前記液化水素移送ラインにおける前記低温流体用継手から陸側と船側のそれぞれにおいて、少なくとも前記所定長さ部分における真空断熱二重管の内管の外周面に巻き付けた螺旋状チューブと、前記螺旋状チューブに組み込んだ電気ヒータとを有してもよい。 In the above liquefied hydrogen transfer system, the heat input means includes at least the inner pipe of the vacuum heat insulating double pipe in the predetermined length portion on each of the land side and the ship side from the cryogenic fluid joint in the liquefied hydrogen transfer line. You may have the helical tube wound around the outer peripheral surface, and the electric heater integrated in the said helical tube.
 この構成によれば、前記熱入力手段は、少なくとも前記所定長さ部分における真空断熱二重管の内管の外周面に巻き付けた螺旋状チューブと、前記螺旋状チューブに組み込んだ電気ヒータとを有するため、螺旋状チューブに組み込んだ電気ヒータで内管に入熱して昇温させることができる。 According to this configuration, the heat input means includes a spiral tube wound around the outer peripheral surface of the inner tube of the vacuum heat insulating double tube at least in the predetermined length portion, and an electric heater incorporated in the spiral tube. Therefore, the inner tube can be heated by the electric heater incorporated in the spiral tube to raise the temperature.
 本発明によれば、ローディング/アンローディングが終了したあとに短時間でローディングアームの切り離しを行うことが可能な液化水素移送システムを提供することができる。 According to the present invention, it is possible to provide a liquefied hydrogen transfer system capable of disconnecting a loading arm in a short time after loading / unloading is completed.
本発明の実施例1に係る液化水素移送システムの概略構成図である。It is a schematic block diagram of the liquefied hydrogen transfer system which concerns on Example 1 of this invention. 電気ヒータ内蔵の螺旋状チューブを巻き付けた内管を有する真空断熱二重管の断面図である。It is sectional drawing of the vacuum heat insulation double tube | pipe which has the inner tube | pipe around which the helical tube with a built-in electric heater was wound. 実施例2に係る液化水素移送システムの概略構成図である。It is a schematic block diagram of the liquefied hydrogen transfer system which concerns on Example 2. FIG. 不活性ガスを流す二重螺旋状チューブを巻き付けた内管を有する真空断熱二重管の断面図である。It is sectional drawing of the vacuum heat insulation double tube | pipe which has an inner tube | wound around which the double spiral tube which flows an inert gas was wound.
 以下、本発明について実施例に基づいて説明する。 Hereinafter, the present invention will be described based on examples.
 図1は、実施例1に係る液化水素移送システム1を示すものであり、この液化水素移送システム1は、液化水素を貯留可能な陸側の第1タンク2と、液化水素を貯留可能な液化水素輸送船側の第2タンク3との間で液化水素を移送する液化水素移送システムである。 FIG. 1 shows a liquefied hydrogen transfer system 1 according to the first embodiment. The liquefied hydrogen transfer system 1 includes a land-side first tank 2 capable of storing liquefied hydrogen and a liquefied liquid capable of storing liquefied hydrogen. This is a liquefied hydrogen transfer system for transferring liquefied hydrogen to and from the second tank 3 on the hydrogen transport ship side.
 この液化水素移送システム1は、液化水素移送ライン4と、水素ガス移送ライン5と、接続通路6と、バルブ類と、液化水素移送ライン4のうち少なくとも低温流体用継手4bから陸側への所定長さ部分(本実施形態では、低温流体用継手4bと後述のエアモータ弁9の間)と船側への所定長さ部分(本実施形態では、低温流体用継手4bと後述の自動閉鎖弁14の間)における真空断熱二重管の内管に入熱可能な熱入力手段7等を備えている。 The liquefied hydrogen transfer system 1 includes a liquefied hydrogen transfer line 4, a hydrogen gas transfer line 5, a connection passage 6, valves, and at least a predetermined temperature from the liquefied hydrogen transfer line 4 to at least a low temperature fluid joint 4 b to the land side. A length portion (between the cryogenic fluid joint 4b and an air motor valve 9 described later in this embodiment) and a predetermined length portion to the ship side (in this embodiment, the joint 4b for cryogenic fluid and the automatic closing valve 14 described later). The heat input means 7 that can input heat is provided in the inner tube of the vacuum heat insulating double tube.
 液化水素移送ライン4は、第1タンク2と第2タンク3との間でローディングアーム4aを介して液化水素を移送可能なものであり、その大部分が真空断熱二重管で構成されている。ここで、「大部分」とは、例えば全体に対して7割以上を示す。また、液化水素移送ライン4は、一端が第1タンク2に接続され、他端が第2タンク3に接続されている。液化水素移送ライン4の途中部にはローディングアーム4aが介装され、液化水素移送ライン4の陸側と船側の境界部は例えばバヨネット継手などの低温流体用継手4bで接続される。 The liquefied hydrogen transfer line 4 is capable of transferring liquefied hydrogen between the first tank 2 and the second tank 3 via the loading arm 4a, and most of the liquefied hydrogen transfer line 4 is constituted by a vacuum insulated double tube. . Here, the “most part” indicates, for example, 70% or more of the whole. The liquefied hydrogen transfer line 4 has one end connected to the first tank 2 and the other end connected to the second tank 3. A loading arm 4a is interposed in the middle of the liquefied hydrogen transfer line 4, and a boundary between the land side and the ship side of the liquefied hydrogen transfer line 4 is connected by a low temperature fluid joint 4b such as a bayonet joint.
 陸側において、液化水素移送ライン4には、逆止弁8とエアモータ弁9とが介装され、これらをバイパスするバイパス通路10と、バイパス通路10に介装された開閉弁11と、バイパス通路10から分岐したドレンコック12と、ローディングアーム4aの基端部付近から分岐したドレンコック13とが設けられている。船側において、液化水素移送ライン4には、遠隔操作緊急遮断兼高液面自動閉鎖弁14が介装され、自動閉鎖弁14をバイパスするバイパス通路15と、バイパス通路15に介装された開閉弁16が設けられている。 On the land side, a check valve 8 and an air motor valve 9 are interposed in the liquefied hydrogen transfer line 4, a bypass passage 10 for bypassing these, an on-off valve 11 interposed in the bypass passage 10, and a bypass passage A drain cock 12 branched from 10 and a drain cock 13 branched from the vicinity of the proximal end of the loading arm 4a are provided. On the ship side, the liquefied hydrogen transfer line 4 is provided with a remote operation emergency shut-off / high liquid level automatic shut-off valve 14, a bypass passage 15 that bypasses the automatic shut-off valve 14, and an on-off valve that is interposed in the bypass passage 15. 16 is provided.
 水素ガス移送ライン5は、第1タンク2と第2タンク3との間でローディングアーム5aを介して水素ガスを移送可能なものであり、その大部分が例えばステンレス製の一重管で構成され、一端が第1タンク2に接続され、他端が第2タンク3に接続されている。水素ガス移送ライン5の途中部にはローディングアーム5aが介装されている。 The hydrogen gas transfer line 5 is capable of transferring hydrogen gas between the first tank 2 and the second tank 3 via the loading arm 5a, most of which is composed of, for example, a single tube made of stainless steel, One end is connected to the first tank 2 and the other end is connected to the second tank 3. A loading arm 5 a is interposed in the middle of the hydrogen gas transfer line 5.
 陸側において、水素ガス移送ライン5には、逆止弁17とエアモータ弁18とが介装され、これらをバイパスするバイパス通路19と、バイパス通路19に介装された開閉弁20と、バイパス通路19から分岐したドレンコック21と、ローディングアーム5aの基端部付近から分岐したドレンコック22とが設けられている。船側において、水素ガス移送ライン5には、遠隔操作緊急遮断弁23が介装されている。水素ガス移送ライン5の陸側と船側の境界部はフランジ継手5bで接続される。 On the land side, a check valve 17 and an air motor valve 18 are interposed in the hydrogen gas transfer line 5, a bypass passage 19 for bypassing these, an on-off valve 20 interposed in the bypass passage 19, and a bypass passage A drain cock 21 branched from 19 and a drain cock 22 branched from the vicinity of the proximal end portion of the loading arm 5a are provided. On the ship side, a remote operation emergency shut-off valve 23 is interposed in the hydrogen gas transfer line 5. The boundary between the land side and the ship side of the hydrogen gas transfer line 5 is connected by a flange joint 5b.
 接続通路6は、液化水素輸送船側において液化水素移送ライン4と水素ガス移送ライン5を接続するもので、開閉弁6aが介装されている。接続通路6の一端は液化水素移送ライン4のうちの低温流体用継手4bと前記自動閉鎖弁14の間の部位に接続され、接続通路6の他端は水素ガス移送ライン5のうちのフランジ継手5bと緊急遮断弁23の間の部位に接続されている。 The connection passage 6 connects the liquefied hydrogen transfer line 4 and the hydrogen gas transfer line 5 on the liquefied hydrogen transport ship side, and is provided with an open / close valve 6a. One end of the connection passage 6 is connected to a portion of the liquefied hydrogen transfer line 4 between the cryogenic fluid joint 4 b and the automatic shut-off valve 14, and the other end of the connection passage 6 is a flange joint of the hydrogen gas transfer line 5. It is connected to a portion between 5b and the emergency shut-off valve 23.
 次に、前記熱入力手段7について説明する。
 図1、図2に示すように、前記熱入力手段7は、真空断熱二重管30の内管31に巻き付けた陸側螺旋状チューブ7aと、この陸側螺旋状チューブ7aに内蔵した電気ヒータ31aに通電する第1通電手段7cと、真空断熱二重管30の内管31に巻き付けた船側螺旋状チューブ7bと、この船側螺旋状チューブ7bに内蔵した電気ヒータ31aに通電する第2通電手段7dとを備えている。
Next, the heat input means 7 will be described.
As shown in FIGS. 1 and 2, the heat input means 7 includes a land-side spiral tube 7a wound around an inner tube 31 of a vacuum heat insulating double tube 30, and an electric heater built in the land-side spiral tube 7a. The first energizing means 7c for energizing 31a, the ship-side spiral tube 7b wound around the inner pipe 31 of the vacuum heat insulating double pipe 30, and the second energizing means for energizing the electric heater 31a built in the ship-side spiral tube 7b 7d.
 陸側螺旋状チューブ7aは、エアモータ弁9から低温流体用継手4bまでの範囲(即ち、本実施例における「低温流体用継手から陸側への所定長さ部分」)の真空断熱二重管30の内管31に巻き付けられ、船側螺旋状チューブ7bは低温流体用継手4bから前記自動閉鎖弁14までの範囲(即ち、本実施例における「低温流体用継手から船側への所定長さ部分」)の真空断熱二重管30の内管31に巻き付けられている。陸側螺旋状チューブ7aには、電気ヒータ31aが組み込まれると共に熱媒体(図示略)が封入されている。船側螺旋状チューブ7bには、電気ヒータ31aが組み込まれると共に熱媒体(図示略)が封入されている。 The land-side spiral tube 7a is a vacuum insulated double tube 30 in a range from the air motor valve 9 to the low-temperature fluid joint 4b (that is, “a predetermined length portion from the low-temperature fluid joint to the land side” in this embodiment). The ship-side spiral tube 7b is in a range from the cryogenic fluid joint 4b to the automatic shut-off valve 14 (ie, “a predetermined length portion from the cryogenic fluid joint to the ship side” in this embodiment). The vacuum insulation double tube 30 is wound around the inner tube 31. The land side spiral tube 7a incorporates an electric heater 31a and encloses a heat medium (not shown). The ship-side spiral tube 7b incorporates an electric heater 31a and encloses a heat medium (not shown).
 図2は、電気ヒータ内蔵の陸側又は船側の螺旋状チューブ7a,7bを巻き付けた内管31を有する真空断熱二重管30の要部断面図である。この真空断熱二重管30は、ステンレス又はアルミ合金製の内管31と、この内管31の外周面に巻き付けた例えばアルミ合金製の小径の螺旋状チューブ7a,7bであって電気ヒータ31aと熱媒体とを内蔵した螺旋状チューブ7a,7bと、この内管31と螺旋状チューブ7a,7bの外周側に巻き付けた輻射熱遮断用のスーパーインシュレーション32と、このスーパーインシュレーション32との間に筒状の真空層33を空けて外嵌された外管34とを有する。 FIG. 2 is a cross-sectional view of a main part of a vacuum heat insulating double pipe 30 having an inner pipe 31 around which helical tubes 7a and 7b on the land side or ship side with a built-in electric heater are wound. This vacuum heat insulation double tube 30 is an inner tube 31 made of stainless steel or aluminum alloy, and small diameter spiral tubes 7a, 7b made of, for example, aluminum alloy wound around the outer peripheral surface of the inner tube 31, and an electric heater 31a Between the spiral tubes 7a and 7b containing the heat medium, the super insulation 32 for blocking the radiant heat wound around the outer periphery of the inner tube 31 and the spiral tubes 7a and 7b, and the super insulation 32 And an outer tube 34 fitted with a cylindrical vacuum layer 33 therebetween.
 前記熱媒体は電気ヒータ31aから出る熱を螺旋状チューブ7a,7bに伝達するためのもので、本実施例の場合、熱媒体としてヘリウムガス又は窒素ガスが採用され、この熱媒体は螺旋状チューブ7a,7bに封入されている。尚、熱媒体は不活性ガスに限定されるものでなく、水素ガスやその他のガスも採用可能である。 The heat medium is for transferring heat from the electric heater 31a to the spiral tubes 7a and 7b. In this embodiment, helium gas or nitrogen gas is adopted as the heat medium, and this heat medium is the spiral tube. 7a and 7b are enclosed. Note that the heat medium is not limited to the inert gas, and hydrogen gas and other gases can also be employed.
 液化水素の移送前又は移送後に、液化水素移送ライン4と水素ガス移送ライン5内のガス(空気又は水素ガス)を不活性ガス(Heガス又は窒素ガス)で置換する不活性ガスパージの為、陸側には不活性ガス供給タンク35が設けられ、この活性ガス供給タンク35がガス供給通路35aを介してドレンコック13に接続されている。また、不活性ガスパージの際に発生する混合ガス(空気と不活性ガスの混合ガス、又は水素ガスと不活性ガスの混合ガス)を処理するガス処理装置36が設けられ、ガス排出通路36aを介してドレンコック22に接続されている。このガス処理装置36は上記の混合ガス中の水素ガスを燃焼や吸着により除去するものである。 Before or after the transfer of liquefied hydrogen, land for the inert gas purge to replace the gas (air or hydrogen gas) in the liquefied hydrogen transfer line 4 and hydrogen gas transfer line 5 with an inert gas (He gas or nitrogen gas). An inert gas supply tank 35 is provided on the side, and this active gas supply tank 35 is connected to the drain cock 13 via a gas supply passage 35a. Further, a gas processing device 36 for processing a mixed gas (a mixed gas of air and an inert gas or a mixed gas of hydrogen gas and an inert gas) generated at the time of purging the inert gas is provided, via a gas discharge passage 36a. Connected to the drain cock 22. The gas processing device 36 removes hydrogen gas in the mixed gas by combustion or adsorption.
 次に、以上説明した液化水素移送システム1の作用、効果について説明する。
 液化水素輸送船が積み出し基地又は受け入れ基地の桟橋に着桟した際、低温流体用継手4bとフランジ継手5bを接続後に、液化水素移送ライン4と水素ガス移送ライン5内の空気を不活性ガスで置換する不活性ガスパージを行なう。このとき、ドレンコック13と開閉弁6aとドレンコック22のみを開弁状態に保持し、不活性ガス供給タンク35からガス供給通路35aとドレンコック13を介して液化水素移送ライン4に不活性ガスを供給し、その不活性ガスを接続通路6から水素ガス移送ライン5に流し、ドレンコック22とガス排出通路36aを介してガス処理装置36に排出する。こうして、液化水素移送ライン4と水素ガス移送ライン5内に不活性ガスを充填することができる。
Next, the operation and effect of the liquefied hydrogen transfer system 1 described above will be described.
When the liquefied hydrogen transport ship arrives at the pier of the loading base or receiving base, after connecting the cryogenic fluid joint 4b and the flange joint 5b, the air in the liquefied hydrogen transfer line 4 and the hydrogen gas transfer line 5 is inert gas. Perform inert gas purge to replace. At this time, only the drain cock 13, the on-off valve 6a, and the drain cock 22 are held open, and the inert gas is supplied from the inert gas supply tank 35 to the liquefied hydrogen transfer line 4 via the gas supply passage 35a and the drain cock 13. The inert gas flows from the connection passage 6 to the hydrogen gas transfer line 5 and is discharged to the gas processing device 36 through the drain cock 22 and the gas discharge passage 36a. In this way, the liquefied hydrogen transfer line 4 and the hydrogen gas transfer line 5 can be filled with the inert gas.
 上記の不活性ガスパージ後に、液化水素移送ライン4と水素ガス移送ライン5内の不活性ガスを水素ガスで置換する水素ガスパージを行う。このとき、第1タンク2から液化水素移送ライン4へ水素ガスを供給し、その水素ガスを接続通路6から水素ガス移送ライン5に流し、ドレンコック22とガス排出通路36aを介してガス処理装置36へ排出する。こうして、液化水素移送ライン4と水素ガス移送ライン5内に水素ガスを充填することができる。 After the above inert gas purge, a hydrogen gas purge is performed in which the inert gas in the liquefied hydrogen transfer line 4 and the hydrogen gas transfer line 5 is replaced with hydrogen gas. At this time, hydrogen gas is supplied from the first tank 2 to the liquefied hydrogen transfer line 4, and the hydrogen gas is flowed from the connection passage 6 to the hydrogen gas transfer line 5, and the gas processing device is passed through the drain cock 22 and the gas discharge passage 36 a. To 36. In this way, the liquefied hydrogen transfer line 4 and the hydrogen gas transfer line 5 can be filled with hydrogen gas.
 その後、第1タンク2から第2タンク3へ液化水素をローディングするか、或いは第2タンク3から第1タンク2へ液化水素をアンローディングする。このローディングまたはアンローディングの後に、再度液化水素移送ライン4と水素ガス移送ライン5内の水素ガスを不活性ガスで置換する不活性ガスパージを行う。このとき、前記の不活性ガスパージと同様に行う。 Thereafter, liquefied hydrogen is loaded from the first tank 2 to the second tank 3 or liquefied hydrogen is unloaded from the second tank 3 to the first tank 2. After this loading or unloading, an inert gas purge is performed again to replace the hydrogen gas in the liquefied hydrogen transfer line 4 and the hydrogen gas transfer line 5 with an inert gas. At this time, it is performed in the same manner as the inert gas purge.
 この不活性ガスパージ実行後、液化水素移送ライン4の真空断熱二重管30の内管31の温度は-253℃に近い極低温状態であるため、低温流体用継手4bを分離する際に、人体に凍傷を負う可能性がある。また、極低温の配管にパージ用の不活性ガスが固着することで弁のシール構造が損傷する恐れがある。
そこで、低温流体用継手4bを分離する前に、第1,第2通電手段7c,7dから、陸側螺旋状チューブ7a内の電気ヒータと、船側螺旋状チューブ7b内の電気ヒータに通電することで、内管31に入熱し、内管31の昇温を促進し、内管31を例えば0℃以上の温度まで昇温させる。
After this inert gas purge is performed, the temperature of the inner pipe 31 of the vacuum heat insulation double pipe 30 of the liquefied hydrogen transfer line 4 is a very low temperature state close to −253 ° C., and therefore, when separating the low temperature fluid joint 4b, May cause frostbite. In addition, the purge inert gas may adhere to the cryogenic piping, which may damage the valve seal structure.
Therefore, before the cryogenic fluid joint 4b is separated, the electric heater in the land-side spiral tube 7a and the electric heater in the ship-side spiral tube 7b are energized from the first and second energizing means 7c and 7d. Thus, heat is input to the inner pipe 31, the temperature rise of the inner pipe 31 is promoted, and the temperature of the inner pipe 31 is raised to, for example, 0 ° C. or higher.
 この真空断熱二重管30では内管31と外管34との間の真空層33によりほぼ完全に断熱されているため、電気ヒータで加熱しない場合には内管31の昇温に多大の時間がかかるが、上記のように電気ヒータで内管31を加熱することで、内管31の昇温に要する時間を著しく短縮し、出航時刻を大幅に早めることができる。 In this vacuum heat insulation double tube 30, since it is almost completely insulated by the vacuum layer 33 between the inner tube 31 and the outer tube 34, it takes a lot of time to raise the temperature of the inner tube 31 when it is not heated by an electric heater. However, by heating the inner pipe 31 with the electric heater as described above, the time required for raising the temperature of the inner pipe 31 can be remarkably shortened, and the departure time can be greatly advanced.
 本実施例は、実施例1の熱入力手段7と異なる熱入力手段7Aを採用している点で、実施例1と相違するのみであるので、実施例1と同様の構成要素に同じ符号を付して説明を省略し、異なる構成について図3、図4に基づいて説明する。 Since the present embodiment is different from the first embodiment only in that the heat input means 7A different from the heat input means 7 of the first embodiment is adopted, the same reference numerals are given to the same components as those of the first embodiment. A description thereof will be omitted, and different configurations will be described with reference to FIGS. 3 and 4.
 液化水素移送ライン4のうち少なくとも低温流体用継手4bから陸側への所定長さ部分と船側への所定長さ部分における真空断熱二重管の内管に入熱可能な熱入力手段7Aについて説明する。
 この熱入力手段7Aは、エアモータ弁9から低温流体用継手4bまでの範囲(即ち、本実施例における「低温流体用継手から陸側への所定長さ部分」)の真空断熱二重管30Aの内管31に巻き付けた陸側二重螺旋状チューブ40aと、低温流体用継手4bから前記自動閉鎖弁14までの範囲(即ち、本実施例における「低温流体用継手から船側への所定長さ部分」)の真空断熱二重管30Aの内管31に巻き付けた船側二重螺旋状チューブ40bと、第1,第2不活性ガス供給手段40c,40dを有する。第1,第2不活性ガス供給手段40c,40dは、夫々、コンプレッサーと、加熱手段(例えば電気ヒータなど)付きの熱交換器とを有し、熱交換器を介して不活性ガスを加熱して二重螺旋状チューブ40a,40bへ送給し、二重螺旋状チューブ40a,40bから戻って来た低温の不活性ガスを再度加熱して循環させる。
The heat input means 7A that can input heat into the inner pipe of the vacuum insulated double pipe at least at a predetermined length portion from the low temperature fluid joint 4b to the land side and a predetermined length portion to the ship side in the liquefied hydrogen transfer line 4 will be described. To do.
This heat input means 7A is used for the vacuum heat insulating double pipe 30A in the range from the air motor valve 9 to the low temperature fluid joint 4b (that is, “the predetermined length portion from the low temperature fluid joint to the land side” in this embodiment). The land-side double spiral tube 40a wound around the inner pipe 31 and the range from the cryogenic fluid joint 4b to the automatic shut-off valve 14 (that is, “the predetermined length portion from the cryogenic fluid joint to the ship side in this embodiment”). )), A ship-side double spiral tube 40b wound around the inner tube 31 of the vacuum heat insulating double tube 30A, and first and second inert gas supply means 40c, 40d. The first and second inert gas supply means 40c and 40d each have a compressor and a heat exchanger with a heating means (for example, an electric heater), and heat the inert gas via the heat exchanger. The low-temperature inert gas returned from the double spiral tubes 40a and 40b is heated again and circulated.
 陸側二重螺旋状チューブ40aには、第1不活性ガス供給手段40c(熱媒体供給手段)から加熱加圧した不活性ガス(熱媒体)が供給される。船側二重螺旋状チューブ40bには、第2不活性ガス供給手段40d(熱媒体供給手段)から加熱加圧した不活性ガス(熱媒体)が供給される。 The land-side double spiral tube 40a is supplied with an inert gas (heat medium) heated and pressurized from the first inert gas supply means 40c (heat medium supply means). The ship side double spiral tube 40b is supplied with an inert gas (heat medium) heated and pressurized from the second inert gas supply means 40d (heat medium supply means).
 図4は、陸側又は船側の二重螺旋状チューブ40a,40bを巻き付けた内管31を有する真空断熱二重管30Aの要部断面図である。二重螺旋状チューブ40a,40bの先端部はU字管43で接続されている。二重螺旋状チューブ40a,40bは不活性ガスの往動流が流れる螺旋状チューブ41と不活性ガスの復動流が流れる螺旋状チューブ42とを有する。 FIG. 4 is a cross-sectional view of a main part of a vacuum heat insulating double tube 30A having an inner tube 31 around which double-side helical tubes 40a and 40b on the land side or ship side are wound. The distal ends of the double spiral tubes 40 a and 40 b are connected by a U-shaped tube 43. The double spiral tubes 40a and 40b have a spiral tube 41 through which an inert gas forward flow flows and a spiral tube 42 through which an inert gas backward flow flows.
 この真空断熱二重管30Aは、ステンレス又はアルミ合金製の内管31と、この内管31の外周面に巻き付けた例えばアルミ合金製の小径の二重螺旋状チューブ40a,40bと、内管31と二重螺旋状チューブ40a,40bの外周側に巻き付けた輻射熱遮断用のスーパーインシュレーション32と、このスーパーインシュレーション32との間に筒状の真空層33を空けて外嵌された外管34とを有する。尚、二重螺旋状チューブ40a,40bは、夫々、2本の螺旋状チューブを接触又は近接状に並設したものである。 The vacuum heat insulating double tube 30A includes an inner tube 31 made of stainless steel or an aluminum alloy, small-diameter double spiral tubes 40a and 40b made of, for example, an aluminum alloy wound around the outer peripheral surface of the inner tube 31, and an inner tube 31. And a super insulation 32 for shielding radiant heat wound around the outer periphery of the double helical tubes 40a, 40b, and an outer tube 34 fitted with a cylindrical vacuum layer 33 between the super insulation 32. And have. The double helical tubes 40a and 40b are two helical tubes juxtaposed in contact or in proximity.
 前記不活性ガスとしては、Heガス又は窒素ガスが採用され、第1,第2不活性ガス供給手段40c,40dは、例えば、約50~100℃程度に加熱した不活性ガスを二重螺旋状チューブの往動流用の螺旋状チューブ41に供給し、復動流用の螺旋状チューブ42から戻って来た不活性ガスを再加熱して螺旋状チューブ41に供給する。
 前記熱入力手段7Aにより内管31に入熱してその昇温を促進する作用、効果についは実施例1と同様であるので、その説明は省略する。
 特に、二重螺旋状チューブ40a,40bを採用するため、往動流用の螺旋状チューブ41と、復動流用の螺旋状チューブ42とをコンパクトに装備することができる。
As the inert gas, He gas or nitrogen gas is employed, and the first and second inert gas supply means 40c and 40d are, for example, double spiral-shaped inert gas heated to about 50 to 100 ° C. The tube is supplied to the spiral tube 41 for the forward flow of the tube, and the inert gas returned from the spiral tube 42 for the backward flow is reheated and supplied to the spiral tube 41.
Since the operation and effect of promoting the temperature rise by inputting heat into the inner pipe 31 by the heat input means 7A are the same as those in the first embodiment, the description thereof is omitted.
In particular, since the double spiral tubes 40a and 40b are employed, the spiral tube 41 for the forward flow and the spiral tube 42 for the backward flow can be compactly equipped.
 次に、前記実施例を部分的に変更する例について説明する。
 1)実施例1において、低温流体用継手4bの付近の内管31の昇温を促進すればよいので、陸側螺旋状チューブ7aを設ける範囲(即ち、「低温流体用継手から陸側への所定長さ部分」)を短縮し、ローディングアーム4aの真空断熱二重管30のうちの低温流体用継手4bから例えば1mの範囲の真空断熱二重管30の内管31に陸側螺旋状チューブ7aを設けてもよい。即ち、低温流体用継手4bから陸側への所定長さ部分の長さは任意に設定可能である。また、陸側螺旋状チューブ7aは、低温流体用継手4bから陸側への所定長さ部分以外に設けられていてもよく、例えば、液化水素移送ライン4における低温流体用継手4bから陸側の全部に設けられていてもよい。
Next, an example in which the above embodiment is partially changed will be described.
1) In the first embodiment, the temperature increase of the inner pipe 31 in the vicinity of the cryogenic fluid joint 4b may be promoted, so the range in which the land-side spiral tube 7a is provided (ie, “from the cryogenic fluid joint to the land side”). The predetermined length portion ") is shortened, and the land-side spiral tube is connected to the inner pipe 31 of the vacuum insulated double pipe 30 within a range of, for example, 1 m from the cryogenic fluid joint 4b of the vacuum insulated double pipe 30 of the loading arm 4a. 7a may be provided. That is, the length of the predetermined length portion from the low temperature fluid joint 4b to the land side can be arbitrarily set. Moreover, the land side spiral tube 7a may be provided other than the predetermined length part from the low temperature fluid joint 4b to the land side, for example, the low temperature fluid joint 4b in the liquefied hydrogen transfer line 4 from the land side. It may be provided for all.
 同様に、船側螺旋状チューブ7bを設ける範囲(即ち、「低温流体用継手から船側への所定長さ部分」)を短縮し、低温流体用継手4bと前記自動閉鎖弁14の間の真空断熱二重管30のうち低温流体用継手4bから例えば1mの範囲の真空断熱二重管30の内管31に船側螺旋状チューブ7bを設けてもよい。尚、以上のことは、実施例2の二重螺旋状チューブ40a,40bについても同様である。即ち、低温流体用継手から船側への所定長さ部分の長さは任意に設定可能である。また、船側螺旋状チューブ7bは、低温流体用継手から船側への所定長さ部分以外に設けられていてもよく、例えば、液化水素移送ライン4における低温流体用継手4bから船側の全部に設けられていてもよい。 Similarly, the range in which the ship-side spiral tube 7b is provided (that is, “a predetermined length portion from the cryogenic fluid joint to the ship side”) is shortened, and the vacuum insulation between the cryogenic fluid joint 4b and the automatic shut-off valve 14 is reduced. The ship side spiral tube 7b may be provided in the inner pipe 31 of the vacuum heat insulating double pipe 30 within a range of, for example, 1 m from the cryogenic fluid joint 4b in the heavy pipe 30. The same applies to the double spiral tubes 40a and 40b of the second embodiment. That is, the length of the predetermined length portion from the cryogenic fluid joint to the ship side can be arbitrarily set. Further, the ship side spiral tube 7b may be provided in a portion other than a predetermined length portion from the cryogenic fluid joint to the ship side. For example, the ship side spiral tube 7b is provided all over the ship side from the cryogenic fluid joint 4b in the liquefied hydrogen transfer line 4. It may be.
 2)実施例1において、第2通電手段7dを省略し、第1通電手段7cから船側螺旋状チューブ7b内の電気ヒータにコネクタを介して通電するように構成してもよい。
 以上のことは、実施例2の第1,第2不活性ガス供給手段40c,40dについても同様であり、第2不活性ガス供給手段40dを省略し、第1不活性ガス供給手段40cから二重螺旋状チューブ40bにカプラーを介して不活性ガスを供給するように構成してもよい。
2) In the first embodiment, the second energizing means 7d may be omitted, and the electric heater in the ship side spiral tube 7b may be energized via the connector from the first energizing means 7c.
The above is the same for the first and second inert gas supply means 40c and 40d of the second embodiment. The second inert gas supply means 40d is omitted, and the first inert gas supply means 40c is replaced with the second inert gas supply means 40c. You may comprise so that an inert gas may be supplied to the heavy spiral tube 40b via a coupler.
 3)実施例1,2の熱媒体として耐熱性に優れるオイル等も採用可能である。
 4)その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であることは勿論である。
3) Oil having excellent heat resistance can be used as the heat medium of Examples 1 and 2.
4) In addition, it goes without saying that those skilled in the art can implement the present invention with various modifications added without departing from the spirit of the present invention.
 本発明は、陸上の第1タンクと、液化水素輸送船側の第2タンクと間で液化水素を移送可能にした液化水素移送システムであって、低温流体用継手の分断前にその付近の真空断熱二重管の内管に入熱して昇温可能にした液化水素移送システムを提供する。 The present invention is a liquefied hydrogen transfer system in which liquefied hydrogen can be transferred between a first tank on land and a second tank on the side of a liquefied hydrogen transport ship, and a vacuum insulation in the vicinity of the cryogenic fluid joint is divided before it is divided. Provided is a liquefied hydrogen transfer system in which heat is input to an inner pipe of a double pipe and the temperature can be raised.
1      液化水素移送システム
2      第1タンク
3      第2タンク
4      液化水素移送ライン
4a     ローディングアーム
7,7A   熱入力手段
7a,7b  螺旋状チューブ
7c,7d  第1,第2通電手段
30,30A 真空断熱二重管
31     内管
40a,40b  二重螺旋状チューブ
40c,40d  第1,第2不活性ガス供給手段(熱媒体供給手段)
DESCRIPTION OF SYMBOLS 1 Liquefied hydrogen transfer system 2 1st tank 3 2nd tank 4 Liquefied hydrogen transfer line 4a Loading arm 7, 7A Heat input means 7a, 7b Spiral tube 7c, 7d 1st, 2nd electricity supply means 30, 30A Vacuum insulation double Tube 31 Inner tube 40a, 40b Double spiral tube 40c, 40d First and second inert gas supply means (heat medium supply means)

Claims (3)

  1.  液化水素を貯留可能な陸側の第1タンクと、液化水素を貯留可能な液化水素輸送船側の第2タンクとの間で液化水素を移送する液化水素移送システムにおいて、
     前記第1タンクと第2タンクとの間でローディングアームを介して液化水素を移送可能で、大部分が真空断熱二重管で構成される液化水素移送ラインと、
     前記液化水素移送ラインに装備される低温流体用継手と、
     前記液化水素移送ラインのうち少なくとも前記低温流体用継手から陸側への所定長さ部分と船側への所定長さ部分における真空断熱二重管の内管に入熱可能な熱入力手段と、
     を備えたことを特徴とする液化水素移送システム。
    In a liquefied hydrogen transfer system for transferring liquefied hydrogen between a first tank on the land side capable of storing liquefied hydrogen and a second tank on the liquefied hydrogen transport ship side capable of storing liquefied hydrogen,
    A liquefied hydrogen transfer line capable of transferring liquefied hydrogen between the first tank and the second tank via a loading arm, most of which is composed of a vacuum insulated double pipe;
    A joint for cryogenic fluid equipped in the liquefied hydrogen transfer line;
    A heat input means capable of heat input to the inner pipe of the vacuum heat insulating double pipe in at least a predetermined length portion from the low-temperature fluid joint to the land side and a predetermined length portion to the ship side of the liquefied hydrogen transfer line;
    A liquefied hydrogen transfer system comprising:
  2.  前記熱入力手段は、前記液化水素移送ラインにおける前記低温流体用継手から陸側と船側のそれぞれにおいて、少なくとも前記所定長さ部分における真空断熱二重管の内管の外周面に巻き付けた螺旋状チューブと、前記螺旋状チューブに加熱した熱媒体を供給する熱媒体供給手段とを有することを特徴とする請求項1に記載の液化水素移送システム。 The heat input means is a spiral tube wound around the outer peripheral surface of the inner tube of the vacuum heat insulating double tube at least in the predetermined length portion on each of the land side and the ship side from the cryogenic fluid joint in the liquefied hydrogen transfer line. The liquefied hydrogen transfer system according to claim 1, further comprising: a heat medium supply unit that supplies a heated heat medium to the spiral tube.
  3.  前記熱入力手段は、前記液化水素移送ラインにおける前記低温流体用継手から陸側と船側のそれぞれにおいて、少なくとも前記所定長さ部分における真空断熱二重管の内管の外周面に巻き付けた螺旋状チューブと、前記螺旋状チューブに組み込んだ電気ヒータとを有することを特徴とする請求項1に記載の液化水素移送システム。 The heat input means is a spiral tube wound around the outer peripheral surface of the inner tube of the vacuum heat insulating double tube at least in the predetermined length portion on each of the land side and the ship side from the cryogenic fluid joint in the liquefied hydrogen transfer line. The liquefied hydrogen transfer system according to claim 1, further comprising an electric heater incorporated in the spiral tube.
PCT/JP2015/004932 2014-10-01 2015-09-29 Liquefied hydrogen transport system WO2016051768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-203107 2014-10-01
JP2014203107A JP2016070457A (en) 2014-10-01 2014-10-01 Liquefaction hydrogen transfer system

Publications (1)

Publication Number Publication Date
WO2016051768A1 true WO2016051768A1 (en) 2016-04-07

Family

ID=55629836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004932 WO2016051768A1 (en) 2014-10-01 2015-09-29 Liquefied hydrogen transport system

Country Status (2)

Country Link
JP (1) JP2016070457A (en)
WO (1) WO2016051768A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220042649A1 (en) * 2020-08-05 2022-02-10 L'air Liquide, Societe Anonyme Pour L'etude Et L?Exploitation Des Procedes Georges Claude Device and method for filling with liquefied gas
WO2022138723A1 (en) * 2020-12-25 2022-06-30 川崎重工業株式会社 Portable cargo handling equipment for liquid hydrogen
WO2022138721A1 (en) * 2020-12-25 2022-06-30 川崎重工業株式会社 Portable cargo handling equipment for liquid hydrogen, and emergency disengagement method
US20230135431A1 (en) * 2020-01-17 2023-05-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and method for storing and transferring cryogenic fluid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201197A (en) * 1984-03-23 1985-10-11 株式会社日立製作所 Cryogenic fluid transport piping
JPS60156291U (en) * 1984-03-28 1985-10-17 株式会社日立製作所 Cryogenic fluid transfer piping
JPH10231970A (en) * 1997-02-21 1998-09-02 Mitsubishi Heavy Ind Ltd Vacuum insulated pipe fitting
JPH11193899A (en) * 1997-11-07 1999-07-21 Benkan Corp Heat insulating pipe for fluid conveying pipeline

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201197A (en) * 1984-03-23 1985-10-11 株式会社日立製作所 Cryogenic fluid transport piping
JPS60156291U (en) * 1984-03-28 1985-10-17 株式会社日立製作所 Cryogenic fluid transfer piping
JPH10231970A (en) * 1997-02-21 1998-09-02 Mitsubishi Heavy Ind Ltd Vacuum insulated pipe fitting
JPH11193899A (en) * 1997-11-07 1999-07-21 Benkan Corp Heat insulating pipe for fluid conveying pipeline

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230135431A1 (en) * 2020-01-17 2023-05-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and method for storing and transferring cryogenic fluid
US11879597B2 (en) * 2020-01-17 2024-01-23 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Device and method for storing and transferring cryogenic fluid
US20220042649A1 (en) * 2020-08-05 2022-02-10 L'air Liquide, Societe Anonyme Pour L'etude Et L?Exploitation Des Procedes Georges Claude Device and method for filling with liquefied gas
WO2022138723A1 (en) * 2020-12-25 2022-06-30 川崎重工業株式会社 Portable cargo handling equipment for liquid hydrogen
WO2022138721A1 (en) * 2020-12-25 2022-06-30 川崎重工業株式会社 Portable cargo handling equipment for liquid hydrogen, and emergency disengagement method

Also Published As

Publication number Publication date
JP2016070457A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
WO2016051768A1 (en) Liquefied hydrogen transport system
JP4753696B2 (en) Hydrogen filling device
JP6418680B2 (en) Liquid hydrogen transfer system
US6134893A (en) Swivel bayonet joint for cryogenic fluids
CN101072969A (en) Cryogenic piping system
US9993280B2 (en) N2O thermal pressurization system by cooling
JP2022528829A (en) Equipment and methods for storing and supplying fluid fuel
JP4634231B2 (en) Low temperature liquefied gas storage device, power generation device having the same, and moving body
JP7127069B2 (en) Equipment and method for refilling pressurized gas tanks
JP5894097B2 (en) Connection mechanism for liquefied gas supply
KR20190075657A (en) connection structure of vacuum line
WO2017010404A1 (en) Emergency release device for fluid loading/unloading apparatus
AU2015329208B2 (en) Liquefied hydrogen transferring system
US20240052977A1 (en) Portable cargo handling equipment for liquid hydrogen and emergency release method
JP3711369B2 (en) Cryogenic piping joint
JP6603039B2 (en) Ships with piping to dump liquid hydrogen
JP7445763B2 (en) Ship liquefied gas supply system and liquefied gas supply method
JP6489633B2 (en) Liquid hydrogen transfer system
JP2009103165A (en) Low temperature liquefied gas transport vehicle
JP5877842B2 (en) Refueling coupling
ES2870206T3 (en) Pressure regulation device, system and procedure for a natural gas storage tank
JP5422843B2 (en) Connection joint for piping for cryogenic fluid
JP6215985B2 (en) Connection mechanism for liquefied gas supply
JP7240112B2 (en) Filling method of filler
KR20150062566A (en) Lng regasification facility using waste heat of ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846512

Country of ref document: EP

Kind code of ref document: A1