WO2016051468A1 - Train monitoring system - Google Patents

Train monitoring system Download PDF

Info

Publication number
WO2016051468A1
WO2016051468A1 PCT/JP2014/075905 JP2014075905W WO2016051468A1 WO 2016051468 A1 WO2016051468 A1 WO 2016051468A1 JP 2014075905 W JP2014075905 W JP 2014075905W WO 2016051468 A1 WO2016051468 A1 WO 2016051468A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
led
station
train
monitoring system
Prior art date
Application number
PCT/JP2014/075905
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 哲也
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2016551356A priority Critical patent/JPWO2016051468A1/en
Priority to PCT/JP2014/075905 priority patent/WO2016051468A1/en
Publication of WO2016051468A1 publication Critical patent/WO2016051468A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/18Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire
    • B60L5/22Supporting means for the contact bow
    • B60L5/24Pantographs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/40Adaptation of control equipment on vehicle for remote actuation from a stationary place
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/04Indicating or recording train identities

Definitions

  • the present disclosure relates to a train monitoring system and can be applied to, for example, a pantograph monitoring system including a camera with an LED.
  • Japanese Patent Application Laid-Open No. 8-336204 describes that, while traveling on a train, a mark mark affixed to a pantograph is illuminated with a projector and imaged with a CCD camera to analyze the motion state of the pantograph. .
  • the illuminated cameras that have been studied include their own CCD image sensors (individual imaging devices using charge-coupled devices, hereinafter simply referred to as CCD sensors) and CMOS image sensors (individual imaging devices using CMOS, hereinafter simply referred to as CMOS sensors). If the luminance level of the image sensor is less than a certain threshold value, the illumination is turned on autonomously.
  • An object of the present disclosure is to provide a technique for controlling lighting so that a monitoring target can be normally monitored when entering a known dark area such as a tunnel.
  • the train monitoring system is mounted on a train and illuminates a camera that shoots the monitoring target area, illumination that projects light onto the monitoring target area, a travel distance acquisition unit that acquires travel distance information of the train, and lighting A position information holding unit that holds in advance position information to be performed, and a control unit that turns on the lighting based on the travel distance acquired by the travel distance acquisition unit and the information held by the position information storage unit.
  • the illumination can be reliably turned on when entering a known dark area such as a tunnel, and the monitored area can be monitored normally.
  • the train monitoring system is mounted on a train, and a camera (for example, a camera with LED 4a) that captures a monitoring target area (for example, a pantograph 2a) and illumination that projects light onto the monitoring target area (for example, LED 28), a travel distance acquisition unit (for example, operation information acquisition unit 10A) that acquires train travel distance information, and a position information holding unit (for example, a tunnel information table) that stores in advance information on the position for lighting the light. 10C), a control unit (for example, current position calculation unit 10D and LED lighting control unit 10E) that turns on the lighting based on the travel distance acquired by the travel distance acquisition unit and the information stored in the position information storage unit.
  • a camera for example, a camera with LED 4a
  • a monitoring target area for example, a pantograph 2a
  • illumination for projects light onto the monitoring target area
  • a travel distance acquisition unit for example, operation information acquisition unit 10A
  • a position information holding unit for example, a tunnel information table
  • the train monitoring system further acquires stop station specifying information for specifying a stop station of the train (for example, information for specifying which operation pattern such as a starting station, an end station, and an operation type).
  • stop station specifying information acquisition unit for example, a function that the operation information acquisition unit 10A acquires at the start of operation
  • the position information holding unit holds information on the positions of a plurality of patterns with different stopping stations.
  • the control unit selects position information used for lighting control of the lighting based on the stop station specifying information.
  • the travel distance acquisition unit, the position information holding unit, the control unit, and the stop station identification information acquisition unit are preferably configured by a server (for example, the CCTV server 10).
  • the server has tunnel position information as setting information, and performs lighting lighting control from the acquired distance information from the first station and information on the current station and the next stop station.
  • the server checks whether there is a tunnel in the travel section. If there is a tunnel in the travel section, the server calculates the distance to the tunnel from the information of the current station and the next stop station. The server turns on the light before entering the tunnel based on the distance information from the first station that is updated at any time during traveling, and turns off the light after exiting the tunnel.
  • an external interface for lighting (for example, LED) lighting control is provided in the camera, and the server performs lighting lighting control from the tunnel position information.
  • the camera can autonomously control lighting from the luminance information of the image, and it is preferable to perform lighting lighting control from the external interface with priority over autonomous LED lighting control.
  • the illumination can be reliably turned on when entering a known dark area such as a tunnel, and the monitored area can always be monitored normally.
  • a time constant it can be said that lighting is not turned on (does not react sensitively) in places where ambient light temporarily decreases, such as under a tree.
  • the train monitoring system 100 includes a head vehicle 1a, an intermediate vehicle 1b, and a tail vehicle 1c.
  • the leading vehicle 1a is equipped with pantographs 2a and 3a, and has a CCTV (Closed Circuit Television) system that monitors the behavior of the pantographs 2a and 3a by the cameras 4a and 5a with LEDs.
  • the intermediate vehicle 1b has pantographs 2b and 3b, and has a CCTV system that monitors the behavior of the pantographs 2b and 3b by the cameras with LEDs 4b and 5b.
  • the last vehicle 1c is equipped with pantographs 2c and 3c, and has a CCTV system that monitors the behavior of the pantographs 2c and 3c by the cameras with LEDs 4c and 5c.
  • These CCTV systems are systems connected via a network, and have a configuration in which switching hubs 6, 7, and 8 are cascade-connected from the leading vehicle 1a to the trailing vehicle 1c.
  • the switching hub 6 connects the upper system server 9 with the network cable 12
  • the switching hub 7a connects the CCTV server (control device) 10, the LED-equipped camera 4a, and the monitor 11a with the network cable 12, respectively.
  • the switching hub 8a connects the LED-equipped camera 5a with the network cable 12.
  • the switching hub 7b of the intermediate vehicle 1b is connected to the switching hub 8a with a network cable 12
  • the camera with LED 4b is connected with the network cable 12
  • the switching hub 8b is connected to the switching hub 7b with the network cable 12, and with an LED.
  • the camera 5b is connected with the network cable 12.
  • the switching hub 7c of the last vehicle 1c is connected to the switching hub 8b via the network cable 12, and the camera with LED 4c is connected with the network cable 12.
  • the switching hub 8c is connected to the switching hub 7c with the network cable 12, and the camera with LED is connected. 5c and the monitor 11c are connected by the network cable 12, respectively.
  • CCTV systems are controlled by the CCTV server 10, and the CCTV server 10 displays the images of the cameras with LEDs 4a, 5a, 4b, 5b, 4c, and 5c on the monitors 11a and 11c. Since the monitors 11a and 11b are respectively arranged on the leading vehicle 1a and the last vehicle 1c, both the driver and the crew such as the conductor can check the video.
  • the CCTV server 10 is connected to the host system server 9 and always receives the current station, the next stop station, the end station, the distance information from the first station, and the usage status of the pantograph.
  • the host system server 9 is, for example, a device that manages train operation, and is, for example, TMS (Train Management System).
  • the host system server 9 outputs the train operation information to the CCTV server 10 at a predetermined cycle (for example, every 100 ms).
  • the upper system server 9 outputs at least the first station, the last station, the operation type (whether each station is a stop or limited express, etc.) to the CCTV server 10 as the train operation information.
  • At least distance information and speed information from the starting station are output to the CCTV server 10 as operation information.
  • the upper system server 9 outputs at least information on the station being stopped and information on the next stop station to the CCTV server 10 as operation information.
  • the CCTV server 10 controls the entire monitoring system in the train, and performs display control and recording control as well as camera control. It is always recorded in association with the camera with LED that captured the video input by the recording control and the shooting time.
  • the train monitoring system 100 has been described as being configured with three vehicles, but is not limited thereto, and may be configured with only one vehicle or may be configured with four or more vehicles. .
  • the configuration is the same as that of the leading vehicle 1a.
  • the train monitoring system is composed of four or more vehicles, the train monitoring system is composed of a leading vehicle 1a, a trailing vehicle 1c, and a plurality of intermediate vehicles 1b. In the case of turning back at the terminal station, the last vehicle 1c becomes the leading vehicle and the leading vehicle 1a becomes the last vehicle.
  • the LED-equipped camera 4 a uses the signal processing unit 21 to image the data output from the CCD / CMOS sensor 20. This image is converted into JPEG / H. It is compressed by a method such as H.264. The compressed image is transmitted to the video display device such as the monitor 11 via the interface 24 by a network protocol such as HTML in the image transmission unit 23.
  • the CCTV server 10 determines whether the LED is turned on or off based on the distance information from the first station notified from the host server 9 and the tunnel position information held by itself, and transmits an LED lighting control command to the LED-equipped camera 4a.
  • the LED lighting control command is received by the LED lighting control command receiving unit 27 via the interface 24 of the camera with LED 4a.
  • the LED automatic lighting control unit 26 of the camera with LED 4a inputs the luminance level of the luminance level acquisition unit 25, and the camera autonomously performs control in the sequence of FIG.
  • This luminance level indicates the average luminance level of all the pixels of the image obtained from the latest image, and is set to an average luminance level at a certain time interval in order to reduce the influence of light and dark differences such as under a shade.
  • the LED lighting control unit 29 of the camera with LED 4a performs the lighting control of the LED 28 by using the LED lighting control commands of the LED automatic lighting control unit 26 and the LED lighting control command receiving unit 27 as inputs.
  • step S41 the CCTV server 10 determines whether or not the pantograph is unused, and prevents the LED from being turned on unnecessarily. If the pantograph is not used, the process proceeds to step S47. If the pantograph is not used, the process proceeds to step S42. In step S42, the CCTV server 10 determines whether or not the train is stopped at the station. If the train is not stopped at the station, the process proceeds to step 43. If the train is stopped at the station, the process proceeds to step S48. In step S43, the CCTV server 10 determines whether there is a tunnel between the previous stop station and the next station based on the tunnel information table of FIG.
  • step S44 the CCTV server 10 determines whether or not the current train position is X meters before the tunnel.
  • the X meter before the tunnel indicates the lighting position of the LED set in the CCTV server 10 and is set as the X meter from the tunnel entrance. If the current train position is X meters before the tunnel, the process proceeds to step S45. If the current train position is not X meters before the tunnel, the process proceeds to step S46.
  • step S45 the LED lighting command is transmitted from the CCTV server 10 to the camera with LED 4a.
  • step S46 the CCTV server 10 determines whether or not the current train position is Y meters after the tunnel.
  • the Y meter after the tunnel indicates the LED extinguishing position set in the CCTV server 10 and is set as Y meter from the tunnel exit. If the current train position is Y meters after the tunnel, the process proceeds to step S47. If the current train position is not Y meters after the tunnel, the process proceeds to step S48.
  • step S47 an LED turn-off command is transmitted from the CCTV server 10 to the camera with LED 4a.
  • step S48 automatic lighting control autonomously performed by the camera with LED is performed.
  • step S50 the luminance level acquisition is acquired.
  • the luminance level is acquired by the luminance level acquisition circuit 25 of the camera with LED 4a.
  • step S51 the LED automatic lighting control unit 26 of the camera with LED 4a determines whether the LED is currently lit. If the LED is currently lit, the process proceeds to step S52. If the LED is not currently lit (turned off), the process proceeds to step S54. In step S52, the LED automatic lighting control unit 26 of the camera with LED 4a determines whether or not the luminance level exceeds the threshold value A.
  • step S53 If the luminance level exceeds the threshold A, the process proceeds to step S53, and if the luminance level does not exceed the threshold A, the process proceeds to step S54.
  • step S53 LED turn-off control is performed.
  • step S54 the LED automatic lighting control unit 26 of the camera with LED 4a determines whether or not the luminance level is below the threshold value B. If the luminance level is below the threshold B, the process proceeds to step S55, and if the luminance level is not below the threshold B, the process proceeds to step S50.
  • step S55 LED lighting control is performed.
  • the relationship between the thresholds A and B is A> B, and the thresholds A and B give hysteresis to the LED lighting control.
  • the route shown in FIG. 5 is a route from station A to station E (down), station E to station A (up), station A to station I (down), and station I to station A (up). Tunnels exist between B and C stations, D and E stations, and C and H stations. There are two tunnels between the B station and the C station, which are located at positions X1 [m] and X2 [m] from the B station and Y1 [m] and Y2 [m] from the C station. The two tunnels between the B station and the C station are located at positions X5 [m] and X6 [m] from the A station.
  • the tunnel between D station and E station is located at X3 [m] from D station. Note that the tunnel between D station and E station is located at X7 [m] from C station. In addition, there is no tunnel on the upward route from E station to D station.
  • the tunnel between the C station and the H station is located at X4 [m] from the C station and Y3 [m] from the H station.
  • the CCTV server 10 holds a route tunnel information table shown in FIG.
  • the tunnel information table includes a departure station (stop) for each operation pattern (No. in FIG. 6) such as a down / up direction, a start station, an end station, a stop type of each station, an operation type such as a limited express, etc. Information on the presence or absence of a tunnel between the middle station) and the next stop station, the number of tunnels, the distance to the tunnel entrance, and the distance to the tunnel exit.
  • the operation pattern for the uplink express is omitted.
  • the operation pattern No. in FIG. As shown in FIGS.
  • the CCTV server 10 transmits an LED lighting control command to the LED-equipped camera 4a to light the LED.
  • the current position of the train is 14.1 km
  • the CCTV server 10 transmits an LED lighting control command to the camera with LED 4a. Then turn off the LED.
  • the CCTV server 10 includes an operation information acquisition unit 10A that acquires operation information from the host system server 9, a holding unit 10B for station section distance information (FIG. 7), and a tunnel information table (FIG. 6). 10C, based on the travel distance from the first station acquired from the operation information acquisition unit 10A and the station section distance information, the travel distance from the departure station in FIG. 7 (that is, the tunnel entrance and exit in FIG. 6).
  • a current position calculation unit 10D that calculates a distance
  • an LED lighting control unit 10E that performs LED lighting control based on the current position calculated by the current position calculation unit 10D and the tunnel information table.
  • the operation information acquired by the operation information acquisition unit 10A from the upper system server 9 includes train distance information and stop station specifying information for specifying a stop station of the train.
  • the train monitoring system 100 holds all the operation patterns in the predetermined section as shown in FIG. 6, and the operation information acquisition unit 10A of the CCTV server 10 determines from the upper system server 9 when the train operation starts (before). Information (stop station identification information) for determining the operation pattern (which No. information in FIG. 6) is acquired, and the operation pattern from the table in FIG. 6 is selected and used for lighting control. .
  • the speed is 55 m / s. Accordingly, if the light does not light for a few seconds when entering the tunnel, the light is not lighted for about 100 to 200 meters in the tunnel, and the monitoring target cannot be normally monitored during that time. Even if it is configured to turn on the illumination immediately when the detection result of the sensor falls below a predetermined darkness without providing the above time constant related to lighting, the processing time between them is necessary, so darkness such as in a tunnel is required. There is a possibility that normal monitoring cannot be performed because the lighting is not turned on for a predetermined distance after entering in a certain area. However, in the present embodiment, since the illumination can be turned on before entering the dark area, the above problem can be avoided.
  • the tunnel information table holds the distance between the tunnel entrance and the exit from the departure station (stopped station), and controls the LED lighting based on the total travel distance from the starting station and the like.
  • the tunnel information table may hold the distance for turning on / off the LED based on the travel distance from the starting station, and control the LED.
  • the station section distance information of FIG. 7 is not used, the total travel distance to the station (distance from the A station of the starting station) is stored when the station stops, and the total travel distance stored during the travel is stored at the station stop time. By subtracting the travel distance, the travel distance from the departure station is counted (calculated) from 0, and the LED control may be performed in comparison with the distance to the tunnel (X1 etc.) in FIG.
  • the travel distance information as operation information from the host system server 9 is calculated from information such as wheel rotation and GPS, and an error may occur with the actual travel distance. Therefore, if the travel distance from the departure station is calculated by the above method, the error before the departure station can be removed, and the travel distance can be measured more accurately. As a result, it is possible to more accurately execute LED lighting control and thus monitoring.
  • the CCTV server 10 also controls the LED turn-off control based on operation information and various tables (FIGS. 6 and 7).
  • control may be only lighting control, and the LED turning-off control may be performed by the control of the LED automatic lighting control circuit 26 based on the signal from the CCD / CMOS sensor 20. This also ensures lighting before the tunnel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

This train monitoring system includes cameras which are installed on a train, and which each take images of an area to be monitored, lights which each illuminate the area to be monitored, a running distance obtaining unit which obtains information on the running distance of the train, a positional information storing unit which stores, in advance, positional information for turning on the lights, and a control unit which turns on the lights on the basis of the running distance obtained by the running distance obtaining unit and the information stored in the positional information storing unit.

Description

列車監視システムTrain monitoring system
 本開示は列車監視システムに関し、例えばLED付カメラを備えるパンタグラフ監視システムに適用可能である。 The present disclosure relates to a train monitoring system and can be applied to, for example, a pantograph monitoring system including a camera with an LED.
 例えば、特開平8-336204号公報には、電車の走行中に、パンタグラフに貼付された標識マークを投光器により照明してCCDカメラにより撮像し、パンタグラフの運動姿態を解析することが記載されている。 For example, Japanese Patent Application Laid-Open No. 8-336204 describes that, while traveling on a train, a mark mark affixed to a pantograph is illuminated with a projector and imaged with a CCD camera to analyze the motion state of the pantograph. .
特開平8-336204号公報JP-A-8-336204
 本願発明者らはLED(発光ダイオード)等の照明付カメラを用いて車両を監視するシステム(列車監視システム)を検討した結果、以下の問題があることを見出した。
  検討した照明付カメラは、自身の持つCCDイメージセンサ(電荷結合素子を用いた個体撮像素子、以下、単にCCDセンサという。)やCMOSイメージセンサ(CMOSを用いた個体撮像素子、以下、単にCMOSセンサという。)等の撮像素子の輝度レベルがある閾値を下回ると照明を自律的に点灯させるものである。木陰の下の明暗差など一時的に環境光が暗くなる場所で敏感に反応し、照明が点灯・消灯を繰り返すことのないように、時定数を設けて、応答を鈍らせている。
  上述の照明の点灯方法は環境光が変化し、点灯までに数秒を要するため、車両が高速走行でトンネルに進入する時、進入から数秒間照明が点灯しない。この影響でトンネル進入時数秒間は暗い映像を撮像することとなる。
  本開示の課題は、例えばトンネルのような予め分かっている暗所エリアに進入する際に、監視対象物を正常に監視できるように照明点灯を制御する技術を提供することにある。
As a result of studying a system (train monitoring system) for monitoring a vehicle using a camera with illumination such as an LED (light emitting diode), the present inventors have found that there are the following problems.
The illuminated cameras that have been studied include their own CCD image sensors (individual imaging devices using charge-coupled devices, hereinafter simply referred to as CCD sensors) and CMOS image sensors (individual imaging devices using CMOS, hereinafter simply referred to as CMOS sensors). If the luminance level of the image sensor is less than a certain threshold value, the illumination is turned on autonomously. It responds sensitively in places where ambient light temporarily becomes dark, such as the difference in brightness under the shade of trees, and a response is made dull by setting a time constant so that the lighting does not repeatedly turn on and off.
In the lighting method described above, the ambient light changes and it takes several seconds to turn on. Therefore, when the vehicle enters the tunnel at a high speed, the lighting is not turned on for several seconds after entering. As a result, a dark image is captured for several seconds when entering the tunnel.
An object of the present disclosure is to provide a technique for controlling lighting so that a monitoring target can be normally monitored when entering a known dark area such as a tunnel.
 本開示のうち、代表的なものの概要を簡単に説明すれば、下記のとおりである。
  すなわち、列車監視システムは、列車に搭載され、監視対象エリアを撮影するカメラと、監視対象エリアに光を投光する照明と、列車の走行距離情報を取得する走行距離取得部と、照明を点灯するための位置の情報を予め保持する位置情報保持部と、走行距離取得部が取得した走行距離と位置情報保持部が保持する情報とに基づいて照明を点灯する制御部と、を備える。
The outline of a representative one of the present disclosure will be briefly described as follows.
In other words, the train monitoring system is mounted on a train and illuminates a camera that shoots the monitoring target area, illumination that projects light onto the monitoring target area, a travel distance acquisition unit that acquires travel distance information of the train, and lighting A position information holding unit that holds in advance position information to be performed, and a control unit that turns on the lighting based on the travel distance acquired by the travel distance acquisition unit and the information held by the position information storage unit.
 本開示によれば、トンネル等の予め分かっている暗所エリアに進入する際に照明を確実に点灯することができ、監視対象エリアを正常に監視することができる。 According to the present disclosure, the illumination can be reliably turned on when entering a known dark area such as a tunnel, and the monitored area can be monitored normally.
実施例に係る列車監視システムの構成を説明するための図である。It is a figure for demonstrating the structure of the train monitoring system which concerns on an Example. 実施例に係るLED付カメラの構成を説明するための図である。It is a figure for demonstrating the structure of the camera with LED which concerns on an Example. 実施例に係る列車監視システムのLED点灯制御シーケンスを説明するための図である。It is a figure for demonstrating the LED lighting control sequence of the train monitoring system which concerns on an Example. 実施例に係る列車監視システムのLED自動点灯制御シーケンスを説明するための図である。It is a figure for demonstrating the LED automatic lighting control sequence of the train monitoring system which concerns on an Example. 実施例に係る列車監視システムのCCTVサーバが持つトンネル位置情報の路線を説明するための図である。It is a figure for demonstrating the route of the tunnel position information which the CCTV server of the train monitoring system which concerns on an Example has. 実施例に係る列車監視システムのCCTVサーバが持つトンネル位置情報を説明するための図である。It is a figure for demonstrating the tunnel position information which the CCTV server of the train monitoring system which concerns on an Example has. 実施例に係る列車監視システムの区間距離情報テーブルである。It is a section distance information table of the train monitoring system concerning an example. 実施例に係る列車監視システムのCCTVサーバの機能ブロック図である。It is a functional block diagram of the CCTV server of the train monitoring system which concerns on an Example.
 以下、実施形態および実施例について、図面を用いて説明する。ただし、以下の説明において、同一構成要素には同一符号を付し繰り返しの説明を省略することがある。 Hereinafter, embodiments and examples will be described with reference to the drawings. However, in the following description, the same components may be denoted by the same reference numerals and repeated description may be omitted.
 実施形態に係る列車監視システムは、列車に搭載され、監視対象エリア(例えば、パンタグラフ2a)を撮影するカメラ(例えば、LED付カメラ4a)と、監視対象エリアに光を投光する照明(例えば、LED28)と、列車の走行距離情報を取得する走行距離取得部(例えば、運行情報取得部10A)と、照明を点灯するための位置の情報を予め保持する位置情報保持部(例えば、トンネル情報テーブル10C)と、走行距離取得部が取得した走行距離と、位置情報保持部が保持する情報とに基づいて、照明を点灯する制御部(例えば、現在位置算出部10DとLED点灯制御部10E)とを備える。 The train monitoring system according to the embodiment is mounted on a train, and a camera (for example, a camera with LED 4a) that captures a monitoring target area (for example, a pantograph 2a) and illumination that projects light onto the monitoring target area (for example, LED 28), a travel distance acquisition unit (for example, operation information acquisition unit 10A) that acquires train travel distance information, and a position information holding unit (for example, a tunnel information table) that stores in advance information on the position for lighting the light. 10C), a control unit (for example, current position calculation unit 10D and LED lighting control unit 10E) that turns on the lighting based on the travel distance acquired by the travel distance acquisition unit and the information stored in the position information storage unit. Is provided.
 実施形態に係る列車監視システムは、さらに、列車の停車駅を特定するための停車駅特定情報(例えば、始発駅、終着駅および運行種別など、どの運行パターンかを特定するための情報)を取得する停車駅特定情報取得部(例えば、運行情報取得部10Aが運行開始時に取得する機能)を備える。位置情報保持部が、停車駅が異なる複数パターンの位置の情報を保持している。制御部は、停止駅特定情報に基づいて照明を点灯制御するために用いる位置の情報を選択するようにされる。 The train monitoring system according to the embodiment further acquires stop station specifying information for specifying a stop station of the train (for example, information for specifying which operation pattern such as a starting station, an end station, and an operation type). A stop station specifying information acquisition unit (for example, a function that the operation information acquisition unit 10A acquires at the start of operation) is provided. The position information holding unit holds information on the positions of a plurality of patterns with different stopping stations. The control unit selects position information used for lighting control of the lighting based on the stop station specifying information.
 走行距離取得部、位置情報保持部、制御部および停車駅特定情報取得部はサーバ(例えば、CCTVサーバ10)で構成されるのが好ましい。
  例えば、サーバはトンネル位置情報を設定情報として持ち、取得した始発駅からの距離情報と現在の駅と次の停車駅の情報から照明点灯制御を行う。駅停車時に更新された現在の駅と次の停車駅の情報を取得するため、サーバは走行区間にあるトンネルの有無確認を行う。もし、走行区間にトンネルが存在する場合、サーバは現在の駅と次の停車駅の情報からトンネルまでの距離を計算する。サーバは走行中に随時更新される始発駅からの距離情報からトンネルに進入する前で照明を点灯させ、トンネルを抜けた後に照明を消灯する。
The travel distance acquisition unit, the position information holding unit, the control unit, and the stop station identification information acquisition unit are preferably configured by a server (for example, the CCTV server 10).
For example, the server has tunnel position information as setting information, and performs lighting lighting control from the acquired distance information from the first station and information on the current station and the next stop station. In order to acquire information on the current station and the next stop station updated when the station stops, the server checks whether there is a tunnel in the travel section. If there is a tunnel in the travel section, the server calculates the distance to the tunnel from the information of the current station and the next stop station. The server turns on the light before entering the tunnel based on the distance information from the first station that is updated at any time during traveling, and turns off the light after exiting the tunnel.
 また、カメラに照明(例えば、LED)点灯制御用の外部インターフェースを設け、サーバがトンネル位置情報から、照明点灯制御を行うのが好ましい。また、カメラは画像の輝度情報から自律的に照明点灯制御可能であり、外部インターフェースからの照明点灯制御を自律的なLED点灯制御よりも優先して行うのが好ましい。 It is also preferable that an external interface for lighting (for example, LED) lighting control is provided in the camera, and the server performs lighting lighting control from the tunnel position information. In addition, the camera can autonomously control lighting from the luminance information of the image, and it is preferable to perform lighting lighting control from the external interface with priority over autonomous LED lighting control.
 本実施形態によれば、トンネル等の予め分かっている暗所エリアに進入する際に照明を確実に点灯することができ、常に監視対象エリアを正常に監視することができる。また、時定数を設けることで木陰の下などの一時的に環境光が低下する場所では照明を点灯しない(過敏に反応しない)ということができる。 According to the present embodiment, the illumination can be reliably turned on when entering a known dark area such as a tunnel, and the monitored area can always be monitored normally. In addition, by providing a time constant, it can be said that lighting is not turned on (does not react sensitively) in places where ambient light temporarily decreases, such as under a tree.
 以下に、実施形態の一例(実施例)としてLED付カメラを用いてパンタグラフを監視するCCTVシステムについて説明するが、これに限定されるものではなく、照明が必要な監視エリアをカメラで撮像するシステムに適用することができる。 In the following, a CCTV system that monitors a pantograph using an LED-equipped camera as an example (example) of the embodiment will be described. However, the present invention is not limited to this, and a system that images a monitoring area that requires illumination with a camera. Can be applied to.
 実施例に係る列車監視システムの構成について図1および図2を用いて説明する。
  実施例に係る列車監視システム100は、先頭車両1aと中間車両1bと最後尾車両1cとで構成される。先頭車両1aは、パンタグラフ2a,3aを搭載し、LED付カメラ4a,5aにより、パンタグラフ2a,3aの挙動を監視するCCTV(Closed Circuit Television)システムを持つ。中間車両1bは、パンタグラフ2b,3bを搭載し、LED付カメラ4b,5bにより、パンタグラフ2b,3bの挙動を監視するCCTVシステムを持つ。最後尾車両1cは、パンタグラフ2c,3cを搭載し、LED付カメラ4c,5cにより、パンタグラフ2c,3cの挙動を監視するCCTVシステムを持つ。
A configuration of the train monitoring system according to the embodiment will be described with reference to FIGS. 1 and 2.
The train monitoring system 100 according to the embodiment includes a head vehicle 1a, an intermediate vehicle 1b, and a tail vehicle 1c. The leading vehicle 1a is equipped with pantographs 2a and 3a, and has a CCTV (Closed Circuit Television) system that monitors the behavior of the pantographs 2a and 3a by the cameras 4a and 5a with LEDs. The intermediate vehicle 1b has pantographs 2b and 3b, and has a CCTV system that monitors the behavior of the pantographs 2b and 3b by the cameras with LEDs 4b and 5b. The last vehicle 1c is equipped with pantographs 2c and 3c, and has a CCTV system that monitors the behavior of the pantographs 2c and 3c by the cameras with LEDs 4c and 5c.
 これらのCCTVシステムはネットワークで接続されたシステムであり、スイッチングハブ(Switching Hub)6,7,8で先頭車両1aから最後尾車両1cに向けてカスケード接続する構成である。先頭車両1aにおいて、スイッチングハブ6は上位系サーバ9をネットワークケーブル12で接続し、スイッチングハブ7aはCCTVサーバ(制御装置)10とLED付カメラ4aとモニタ11aとをそれぞれネットワークケーブル12で接続し、スイッチングハブ8aはLED付カメラ5aをネットワークケーブル12で接続する。また、中間車両1bのスイッチングハブ7bはスイッチングハブ8aにネットワークケーブル12で接続され、LED付カメラ4bをネットワークケーブル12で接続し、スイッチングハブ8bはスイッチングハブ7bにネットワークケーブル12で接続され、LED付カメラ5bをネットワークケーブル12で接続する。最後尾車両1cのスイッチングハブ7cはスイッチングハブ8bにネットワークケーブル12で接続され、LED付カメラ4cをネットワークケーブル12で接続し、スイッチングハブ8cはスイッチングハブ7cにネットワークケーブル12で接続され、LED付カメラ5c及びモニタ11cをそれぞれネットワークケーブル12で接続する。 These CCTV systems are systems connected via a network, and have a configuration in which switching hubs 6, 7, and 8 are cascade-connected from the leading vehicle 1a to the trailing vehicle 1c. In the leading vehicle 1a, the switching hub 6 connects the upper system server 9 with the network cable 12, and the switching hub 7a connects the CCTV server (control device) 10, the LED-equipped camera 4a, and the monitor 11a with the network cable 12, respectively. The switching hub 8a connects the LED-equipped camera 5a with the network cable 12. In addition, the switching hub 7b of the intermediate vehicle 1b is connected to the switching hub 8a with a network cable 12, the camera with LED 4b is connected with the network cable 12, and the switching hub 8b is connected to the switching hub 7b with the network cable 12, and with an LED. The camera 5b is connected with the network cable 12. The switching hub 7c of the last vehicle 1c is connected to the switching hub 8b via the network cable 12, and the camera with LED 4c is connected with the network cable 12. The switching hub 8c is connected to the switching hub 7c with the network cable 12, and the camera with LED is connected. 5c and the monitor 11c are connected by the network cable 12, respectively.
 これらのCCTVシステムはCCTVサーバ10により制御され、CCTVサーバ10はLED付カメラ4a,5a,4b,5b,4c,5cの映像をモニタ11a,11cへ表示する。先頭車両1aおよび最後尾車両1cにそれぞれモニタ11a,11bが配置されているので、運転手および車掌等の乗務員のいずれも映像を確認することができる。 These CCTV systems are controlled by the CCTV server 10, and the CCTV server 10 displays the images of the cameras with LEDs 4a, 5a, 4b, 5b, 4c, and 5c on the monitors 11a and 11c. Since the monitors 11a and 11b are respectively arranged on the leading vehicle 1a and the last vehicle 1c, both the driver and the crew such as the conductor can check the video.
 CCTVサーバ10は上位系サーバ9と接続され、常時、現在駅、次の停車駅、終着駅、始発駅からの距離情報、パンタグラフの使用状況を受信する。上位系サーバ9は、例えば、列車の運行を管理する装置であり、例えば、TMS(Train Management System)である。上位系サーバ9は、当該列車の運行情報を所定の周期(例えば100ms毎)でCCTVサーバ10に出力している。列車運行開始時には、上位系サーバ9は当該列車の運行情報として少なくとも始発駅、終着駅、運行種別(各駅停車か特急か等)などをCCTVサーバ10に出力する。また、列車運行中には、運行情報として少なくとも始発駅からの距離情報や速度情報などをCCTVサーバ10に出力する。さらに、駅停車中には上位系サーバ9は運行情報として少なくとも停車中の駅の情報や次停止駅の情報などをCCTVサーバ10に出力する。 The CCTV server 10 is connected to the host system server 9 and always receives the current station, the next stop station, the end station, the distance information from the first station, and the usage status of the pantograph. The host system server 9 is, for example, a device that manages train operation, and is, for example, TMS (Train Management System). The host system server 9 outputs the train operation information to the CCTV server 10 at a predetermined cycle (for example, every 100 ms). At the start of train operation, the upper system server 9 outputs at least the first station, the last station, the operation type (whether each station is a stop or limited express, etc.) to the CCTV server 10 as the train operation information. Further, during train operation, at least distance information and speed information from the starting station are output to the CCTV server 10 as operation information. Further, when the station is stopped, the upper system server 9 outputs at least information on the station being stopped and information on the next stop station to the CCTV server 10 as operation information.
 CCTVサーバ10は、この列車内の監視システム全体を制御するものであり、カメラ制御だけでなく表示制御や録画制御を行う。録画制御によって入力された映像を撮像したLED付カメラおよび撮影時刻と関連付けて常時記録される。 The CCTV server 10 controls the entire monitoring system in the train, and performs display control and recording control as well as camera control. It is always recorded in association with the camera with LED that captured the video input by the recording control and the shooting time.
 列車監視システム100は3両の車両で構成する場合を説明したが、これに限定されるものではなく、1両の車両のみで構成してもよく、4両以上の車両で構成してもよい。列車監視システムを1両のみで構成する場合は、先頭車両1aと同様な構成とする。列車監視システムを4両以上で構成する場合は、先頭車両1aと最後尾車両1cと複数の中間車両1bとで構成する。なお、終着駅で折り返し運転する場合は、最後尾車両1cが先頭車両になり、先頭車両1aが最後尾車両になる。 The train monitoring system 100 has been described as being configured with three vehicles, but is not limited thereto, and may be configured with only one vehicle or may be configured with four or more vehicles. . When the train monitoring system is configured by only one vehicle, the configuration is the same as that of the leading vehicle 1a. When the train monitoring system is composed of four or more vehicles, the train monitoring system is composed of a leading vehicle 1a, a trailing vehicle 1c, and a plurality of intermediate vehicles 1b. In the case of turning back at the terminal station, the last vehicle 1c becomes the leading vehicle and the leading vehicle 1a becomes the last vehicle.
 LED付カメラ4a,5a,4b,5b,4c,5cはそれぞれ同じ構成であるので、以下、LED付カメラ4aを代表として説明する。図2に示すように、LED付カメラ4aはCCD/CMOSセンサ20から出力されるデータを信号処理部21によって、画像化する。この画像は画像圧縮部22においてJPEG/H.264などの方式で圧縮される。圧縮された画像は画像送信部23においてHTMLなどのネットワークプロトコルでインターフェース24を経由して、モニタ11などの映像表示機器へ送信される。CCTVサーバ10は上位系サーバ9から通知される始発駅からの距離情報と自身の持つトンネル位置情報からLED点灯・消灯を判断し、LED付カメラ4aへLED点灯制御コマンドを送信する。LED点灯制御コマンドはLED付カメラ4aのインターフェース24を経由し、LED点灯制御コマンド受信部27で受信される。LED付カメラ4aのLED自動点灯制御部26は輝度レベル取得部25の輝度レベルを入力し、後述する図4のシーケンスでカメラが自律して制御を行う。この輝度レベルは最新の画像から得られた画像の全画素の平均輝度レベルなどを示すが、木陰の下など明暗差の影響を低減するために、ある時間間隔の平均輝度レベルとする。LED付カメラ4aのLED点灯制御部29はLED自動点灯制御部26とLED点灯制御コマンド受信部27のLED点灯制御コマンドを入力として、LED28の点灯制御を行う。 Since the cameras with LED 4a, 5a, 4b, 5b, 4c, and 5c have the same configuration, the camera with LED 4a will be described below as a representative. As shown in FIG. 2, the LED-equipped camera 4 a uses the signal processing unit 21 to image the data output from the CCD / CMOS sensor 20. This image is converted into JPEG / H. It is compressed by a method such as H.264. The compressed image is transmitted to the video display device such as the monitor 11 via the interface 24 by a network protocol such as HTML in the image transmission unit 23. The CCTV server 10 determines whether the LED is turned on or off based on the distance information from the first station notified from the host server 9 and the tunnel position information held by itself, and transmits an LED lighting control command to the LED-equipped camera 4a. The LED lighting control command is received by the LED lighting control command receiving unit 27 via the interface 24 of the camera with LED 4a. The LED automatic lighting control unit 26 of the camera with LED 4a inputs the luminance level of the luminance level acquisition unit 25, and the camera autonomously performs control in the sequence of FIG. This luminance level indicates the average luminance level of all the pixels of the image obtained from the latest image, and is set to an average luminance level at a certain time interval in order to reduce the influence of light and dark differences such as under a shade. The LED lighting control unit 29 of the camera with LED 4a performs the lighting control of the LED 28 by using the LED lighting control commands of the LED automatic lighting control unit 26 and the LED lighting control command receiving unit 27 as inputs.
 実施例に係る列車監視システムのLED点灯制御シーケンスについて図3を用いて説明する。まずステップS41ではパンタグラフ未使用か否かをCCTVサーバ10が判定し、不必要にLED点灯をすることを防止する。パンタグラフが未使用の場合はステップS47に、パンタグラフが未使用でない場合はステップS42に進む。ステップS42では列車が駅に停車している否かをCCTVサーバ10が判定する。列車が駅に停車していない場合はステップ43に進み、列車が駅に停車している場合はステップS48に進む。ステップS43では、前回停車駅から次の駅の間にトンネルが有るか否かをCCTVサーバ10が後述する図6のトンネル情報テーブルに基づいて判定する。前回停車駅から次の駅の間にトンネルが有る場合はステップS44に進み、前回停車駅から次の駅の間にトンネルがない場合はステップS48に進む。ステップS44では現在の列車位置がトンネルのXメートル手前か否かをCCTVサーバ10が判定する。トンネルのXメートル(例えば数百メートル)前とはCCTVサーバ10に設定されたLEDの点灯位置を示しており、トンネル入口からXメートルとして設定される。現在の列車位置がトンネルのXメートル手前である場合はステップS45に進み、現在の列車位置がトンネルのXメートル手前でない場合はステップS46に進む。ステップS45ではCCTVサーバ10からLED付カメラ4aにLED点灯コマンドを送信する。ステップS46では現在の列車位置がトンネルのYメートル後か否かをCCTVサーバ10が判定する。トンネルのYメートル(例えば数百メートル)後とはCCTVサーバ10に設定されたLEDの消灯位置を示しており、トンネル出口からYメートルとして設定される。現在の列車位置がトンネルのYメートル後である場合はステップS47に進み、現在の列車位置がトンネルのYメートル後でない場合はステップS48に進む。ステップS47ではCCTVサーバ10からLED付カメラ4aにLED消灯コマンドを送信する。ステップS48ではLED付カメラが自律的に行う自動点灯制御を行う。 The LED lighting control sequence of the train monitoring system according to the embodiment will be described with reference to FIG. First, in step S41, the CCTV server 10 determines whether or not the pantograph is unused, and prevents the LED from being turned on unnecessarily. If the pantograph is not used, the process proceeds to step S47. If the pantograph is not used, the process proceeds to step S42. In step S42, the CCTV server 10 determines whether or not the train is stopped at the station. If the train is not stopped at the station, the process proceeds to step 43. If the train is stopped at the station, the process proceeds to step S48. In step S43, the CCTV server 10 determines whether there is a tunnel between the previous stop station and the next station based on the tunnel information table of FIG. If there is a tunnel between the previous station and the next station, the process proceeds to step S44. If there is no tunnel between the previous station and the next station, the process proceeds to step S48. In step S44, the CCTV server 10 determines whether or not the current train position is X meters before the tunnel. The X meter before the tunnel (for example, several hundred meters) indicates the lighting position of the LED set in the CCTV server 10 and is set as the X meter from the tunnel entrance. If the current train position is X meters before the tunnel, the process proceeds to step S45. If the current train position is not X meters before the tunnel, the process proceeds to step S46. In step S45, the LED lighting command is transmitted from the CCTV server 10 to the camera with LED 4a. In step S46, the CCTV server 10 determines whether or not the current train position is Y meters after the tunnel. The Y meter after the tunnel (for example, several hundred meters) indicates the LED extinguishing position set in the CCTV server 10 and is set as Y meter from the tunnel exit. If the current train position is Y meters after the tunnel, the process proceeds to step S47. If the current train position is not Y meters after the tunnel, the process proceeds to step S48. In step S47, an LED turn-off command is transmitted from the CCTV server 10 to the camera with LED 4a. In step S48, automatic lighting control autonomously performed by the camera with LED is performed.
 このLED付カメラが自律的に行うLED自動点灯制御(ステップS48)について図4を用いて説明する。
  ステップS50では輝度レベル取得を取得する。LED付カメラ4aの輝度レベル取得回路25によって輝度レベルを取得する。ステップS51では現在LEDが点灯しているか否かをLED付カメラ4aのLED自動点灯制御部26が判定する。現在LEDが点灯している場合はステップS52に進み、現在LEDが点灯していない(消灯している)場合はステップS54に進む。ステップS52では輝度レベルが閾値Aを上回っているか否かをLED付カメラ4aのLED自動点灯制御部26が判定する。輝度レベルが閾値Aを上回っている場合はステップS53に進み、輝度レベルが閾値Aを上回っていない場合はステップS54に進む。ステップS53ではLED消灯制御を行う。ステップS54では輝度レベルが閾値Bを下回ったか否かをLED付カメラ4aのLED自動点灯制御部26が判定する。輝度レベルが閾値Bを下回っている場合はステップS55に進み、輝度レベルが閾値Bを下回っていない場合はステップS50に進む。ステップS55ではLED点灯制御を行う。閾値AとBの関係はA>Bであり、閾値AとBでLED点灯制御にヒステリシスを持たせている。
The automatic LED lighting control (step S48) autonomously performed by the camera with LED will be described with reference to FIG.
In step S50, the luminance level acquisition is acquired. The luminance level is acquired by the luminance level acquisition circuit 25 of the camera with LED 4a. In step S51, the LED automatic lighting control unit 26 of the camera with LED 4a determines whether the LED is currently lit. If the LED is currently lit, the process proceeds to step S52. If the LED is not currently lit (turned off), the process proceeds to step S54. In step S52, the LED automatic lighting control unit 26 of the camera with LED 4a determines whether or not the luminance level exceeds the threshold value A. If the luminance level exceeds the threshold A, the process proceeds to step S53, and if the luminance level does not exceed the threshold A, the process proceeds to step S54. In step S53, LED turn-off control is performed. In step S54, the LED automatic lighting control unit 26 of the camera with LED 4a determines whether or not the luminance level is below the threshold value B. If the luminance level is below the threshold B, the process proceeds to step S55, and if the luminance level is not below the threshold B, the process proceeds to step S50. In step S55, LED lighting control is performed. The relationship between the thresholds A and B is A> B, and the thresholds A and B give hysteresis to the LED lighting control.
 CCTVサーバによってLED点灯制御する場合について図5から図8を用いて説明する。
  図5に示す路線はA駅からE駅(下り)、E駅からA駅(上り)、A駅からI駅(下り)およびI駅からA駅(上り)に向かう路線である。トンネルはB駅とC駅、D駅とE駅、C駅とH駅の間に存在する。B駅とC駅との間のトンネルは2つありB駅からX1[m]とX2[m]、C駅からはY1[m]とY2[m]の位置にある。なお、B駅とC駅との間の2つのトンネルはA駅からX5[m]とX6[m]の位置にある。D駅とE駅との間のトンネルはD駅からX3[m]の位置にある。なお、D駅とE駅との間のトンネルはC駅からX7[m]の位置にある。また、E駅からD駅に向かう上り方向の路線にはトンネルは存在しない。C駅とH駅との間のトンネルはC駅からX4[m]、H駅からはY3[m]の位置にある。
The case where the LED lighting control is performed by the CCTV server will be described with reference to FIGS.
The route shown in FIG. 5 is a route from station A to station E (down), station E to station A (up), station A to station I (down), and station I to station A (up). Tunnels exist between B and C stations, D and E stations, and C and H stations. There are two tunnels between the B station and the C station, which are located at positions X1 [m] and X2 [m] from the B station and Y1 [m] and Y2 [m] from the C station. The two tunnels between the B station and the C station are located at positions X5 [m] and X6 [m] from the A station. The tunnel between D station and E station is located at X3 [m] from D station. Note that the tunnel between D station and E station is located at X7 [m] from C station. In addition, there is no tunnel on the upward route from E station to D station. The tunnel between the C station and the H station is located at X4 [m] from the C station and Y3 [m] from the H station.
 CCTVサーバ10は図5に示す路線のトンネル情報テーブルを保持している。図6に示すように、トンネル情報テーブルは、下り/上りの方向、始発駅、終着駅、各駅停車や特急等の運行種別等の運行パターン(図6のNo.)ごとに、出発駅(停車中駅)と次停車駅との間のトンネルの有無、トンネルの数、トンネル入り口までの距離、トンネル出口までの距離の情報を有している。なお、図6のトンネル情報テーブルでは上り特急の運行パターンは省略されている。図6の運行パターンNo.3、4に示すように、特急はB駅に停車しないので、B駅の前に停車するA駅からの距離をトンネル情報テーブルに保持している。図6の運行パターンNo.3に示すように、特急はD駅に停車しないので、D駅の前に停車するC駅からの距離をトンネル情報テーブルに保持している。なお、トンネルの数はCCTVサーバ10のLED点灯制御部10Eがカウンタを備え、間違いなく点灯制御できているか確認するために用いる。図6に示すように、車は様々な区間を各駅停車で運行したり、特急で運行したりする。その都度トンネル位置情報(図6)をCCTVサーバ10に登録するのではなく、CCTVサーバ10には予め想定されるすべてのパターンを登録しておくことにより、運用時の手間を大幅に削減することができる。なお、駅停車時、上位系サーバ9から提供される情報によって、CCTVサーバ10が有する現在の停車駅と次の停車駅の情報が更新される。 The CCTV server 10 holds a route tunnel information table shown in FIG. As shown in FIG. 6, the tunnel information table includes a departure station (stop) for each operation pattern (No. in FIG. 6) such as a down / up direction, a start station, an end station, a stop type of each station, an operation type such as a limited express, etc. Information on the presence or absence of a tunnel between the middle station) and the next stop station, the number of tunnels, the distance to the tunnel entrance, and the distance to the tunnel exit. In the tunnel information table of FIG. 6, the operation pattern for the uplink express is omitted. The operation pattern No. in FIG. As shown in FIGS. 3 and 4, since the limited express does not stop at the B station, the distance from the A station that stops before the B station is held in the tunnel information table. The operation pattern No. in FIG. As shown in FIG. 3, since the limited express does not stop at the D station, the distance from the C station that stops in front of the D station is held in the tunnel information table. The number of tunnels is used to confirm whether the LED lighting control unit 10E of the CCTV server 10 is equipped with a counter and can definitely control the lighting. As shown in FIG. 6, the car operates in various sections at each station stop or on a limited express. Instead of registering the tunnel location information (FIG. 6) in the CCTV server 10 each time, by registering all the patterns assumed in advance in the CCTV server 10, it is possible to greatly reduce the labor during operation. Can do. When the station stops, information on the current stop station and the next stop station of the CCTV server 10 is updated with information provided from the higher-level server 9.
 また、CCTVサーバ10は図7に示す駅区間距離情報を保持しており、各駅の区間距離や始発駅から各駅の区間距離を保持している。例えば、A駅からB駅の区間が10kmであり、列車の現在位置(始発駅A駅からの走行距離)が12.9kmになると、列車はB駅とC駅との間にあり、B駅から2.9km(=12.9km-10km)進んだ場所にいる。ここで、X1=3000m、CCTVサーバの設定値がX=100mであれば、CCTVサーバ10はLED付カメラ4aへLED点灯制御コマンドを送信してLEDを点灯する。また、列車の現在位置が14.1kmになると、列車はB駅とC駅との間にあり、B駅から4.1km(=14.1km-10km)進んだ場所にいる。ここで、X1’=40000m、CCTVサーバの設定値がY=100mであれば、LED消灯位置は4.1km(=4000m+100m)であり、CCTVサーバ10はLED付カメラ4aへLED点灯制御コマンドを送信してLEDを消灯する。 Further, the CCTV server 10 holds the station section distance information shown in FIG. 7, and holds the section distance of each station and the section distance of each station from the starting station. For example, if the section from station A to station B is 10 km and the current position of the train (travel distance from the first station A station) is 12.9 km, the train is between station B and station C. It is 2.9km (= 12.9km-10km) ahead. Here, if X1 = 3000 m and the setting value of the CCTV server is X = 100 m, the CCTV server 10 transmits an LED lighting control command to the LED-equipped camera 4a to light the LED. When the current position of the train is 14.1 km, the train is between B station and C station, and is located 4.1 km (= 14.1 km-10 km) from B station. Here, if X1 ′ = 40000 m and the setting value of the CCTV server is Y = 100 m, the LED extinguishing position is 4.1 km (= 4000 m + 100 m), and the CCTV server 10 transmits an LED lighting control command to the camera with LED 4a. Then turn off the LED.
 CCTVサーバ10のLED点灯制御に係る機能構成について図8を用いて説明する。図8に示すように、CCTVサーバ10は、上位系サーバ9から運行情報を取得する運行情報取得部10Aと、駅区間距離情報(図7)の保持部10Bと、トンネル情報テーブル(図6)の保持部10Cと、運行情報取得部10Aから取得した始発駅からの走行距離と、駅区画距離情報とに基づいて、図7の出発駅からの走行距離(つまり、図6のトンネル入口、出口に対応する距離)を算出する現在位置算出部10Dと、この現在位置算出部10Dが算出した現在位置とトンネル情報テーブルとに基づいてLED点灯制御を行うLED点灯制御部10Eとを備えている。運行情報取得部10Aが上位系サーバ9から取得する運行情報には、列車の走行距離情報や列車の停止駅を特定するための停車駅特定情報が含まれる。 A functional configuration related to LED lighting control of the CCTV server 10 will be described with reference to FIG. As shown in FIG. 8, the CCTV server 10 includes an operation information acquisition unit 10A that acquires operation information from the host system server 9, a holding unit 10B for station section distance information (FIG. 7), and a tunnel information table (FIG. 6). 10C, based on the travel distance from the first station acquired from the operation information acquisition unit 10A and the station section distance information, the travel distance from the departure station in FIG. 7 (that is, the tunnel entrance and exit in FIG. 6). A current position calculation unit 10D that calculates a distance), and an LED lighting control unit 10E that performs LED lighting control based on the current position calculated by the current position calculation unit 10D and the tunnel information table. The operation information acquired by the operation information acquisition unit 10A from the upper system server 9 includes train distance information and stop station specifying information for specifying a stop station of the train.
 列車監視システム100は、図6のように所定区間内のすべての運行パターンを保持しており、CCTVサーバ10の運行情報取得部10Aが上位系サーバ9から列車の運行開始時(前)にどの運行パターン(図6のどのNo.の情報)かを決定するための情報(停車駅特定情報)を取得し、図6のテーブルからのその運行パターンを選択して、照明の点灯制御に使用する。 The train monitoring system 100 holds all the operation patterns in the predetermined section as shown in FIG. 6, and the operation information acquisition unit 10A of the CCTV server 10 determines from the upper system server 9 when the train operation starts (before). Information (stop station identification information) for determining the operation pattern (which No. information in FIG. 6) is acquired, and the operation pattern from the table in FIG. 6 is selected and used for lighting control. .
 高速に移動する列車では、例えば時速200kmで走行しているとき、秒速55mであるため照明点灯に数秒間時間を要すると百メートル以上走行することになる。したがって、トンネル進入時に数秒間点灯しないと、トンネル内でおおよそ100~200メートル程度は照明が点灯せず、その間は監視対象物を正常に監視できなくなってしまう。なお、照明点灯に係る上記時定数を設けずにセンサの検出結果が所定の暗さ以下になると直ちに照明を点灯するように構成しても、その間の処理時間が必要なため、トンネルなどの暗所エリアでは進入して所定距離の間は照明が点灯せず、正常な監視ができないおそれがある。しかし、本実施例では、暗所エリアへの進入前に照明を点灯することができるので、上記のような問題を回避することができる。 For example, when a train moving at high speed is traveling at a speed of 200 km / h, the speed is 55 m / s. Accordingly, if the light does not light for a few seconds when entering the tunnel, the light is not lighted for about 100 to 200 meters in the tunnel, and the monitoring target cannot be normally monitored during that time. Even if it is configured to turn on the illumination immediately when the detection result of the sensor falls below a predetermined darkness without providing the above time constant related to lighting, the processing time between them is necessary, so darkness such as in a tunnel is required. There is a possibility that normal monitoring cannot be performed because the lighting is not turned on for a predetermined distance after entering in a certain area. However, in the present embodiment, since the illumination can be turned on before entering the dark area, the above problem can be avoided.
 以上、本発明者によってなされた発明を実施形態および実施例に基づき具体的に説明したが、本発明は、上記実施の形態および実施例に限定されるものではなく、種々変更可能であることはいうまでもない。 As mentioned above, although the invention made by the present inventor has been specifically described based on the embodiments and examples, the present invention is not limited to the above-described embodiments and examples, and various modifications can be made. Needless to say.
 例えば、上述した実施例では、トンネル情報テーブルが、出発駅(停止中駅)からのトンネル入口及び出口の距離を保持し、始発駅からの総走行距離などに基づいてLED点灯を制御している。しかし、トンネル情報テーブルが始発駅からの走行距離に基づく、LED点灯・消灯のための距離を保持しておき、LEDを制御するようにしてもよい。 For example, in the above-described embodiment, the tunnel information table holds the distance between the tunnel entrance and the exit from the departure station (stopped station), and controls the LED lighting based on the total travel distance from the starting station and the like. . However, the tunnel information table may hold the distance for turning on / off the LED based on the travel distance from the starting station, and control the LED.
 また、図7の駅区間距離情報を使用せず、駅停車時にそこまでの総走行距離(始発駅のA駅からの距離)をメモリし、走行中に総走行距離からメモリした駅停止時の走行距離を減算することにより、出発駅からの走行距離を0からカウント(計算)していき、図6のトンネルまでの距離(X1等)と比較してLED制御を行うようにしてもよい。上位系サーバ9からの運行情報としての走行距離情報は車輪の回転やGPSなどの情報から算出されるものであり実際の走行距離とは誤差が生じる可能性がある。したがって、上記の方法で出発駅からの走行距離を算出すれば当該出発駅以前の誤差を除くことができ、より正確な走行距離の測定が可能になる。その結果、LED点灯制御ひいては監視をより正確に実行することができる。 In addition, the station section distance information of FIG. 7 is not used, the total travel distance to the station (distance from the A station of the starting station) is stored when the station stops, and the total travel distance stored during the travel is stored at the station stop time. By subtracting the travel distance, the travel distance from the departure station is counted (calculated) from 0, and the LED control may be performed in comparison with the distance to the tunnel (X1 etc.) in FIG. The travel distance information as operation information from the host system server 9 is calculated from information such as wheel rotation and GPS, and an error may occur with the actual travel distance. Therefore, if the travel distance from the departure station is calculated by the above method, the error before the departure station can be removed, and the travel distance can be measured more accurately. As a result, it is possible to more accurately execute LED lighting control and thus monitoring.
 さらに、上述した実施例では、LEDの消灯制御もCCTVサーバ10が運行情報や各種テーブル(図6、図7)に基づいて制御している。しかし、かかる制御は点灯制御のみとし、LEDの消灯制御はCCD/CMOSセンサ20からの信号に基づくLED自動点灯制御回路26の制御で行ってもよい。これによってもトンネルの前に確実に点灯することができる。 Furthermore, in the above-described embodiment, the CCTV server 10 also controls the LED turn-off control based on operation information and various tables (FIGS. 6 and 7). However, such control may be only lighting control, and the LED turning-off control may be performed by the control of the LED automatic lighting control circuit 26 based on the signal from the CCD / CMOS sensor 20. This also ensures lighting before the tunnel.
1a,1b,1c・・・車両
2a,2b,2c,3a,3b,3c・・・パンタグラフ
4a,4b,4c,5a,5b,5c・・・LED付カメラ
6、7、8・・・スイッチングハブ(Switching HUB)
9・・・上位系サーバ
10・・・CCTVサーバ
11a,11c・・・モニタ
12・・・ネットワークケーブル
20・・・CCD/CMOセンサ(撮像素子)
21・・・信号処理部
22・・・画像圧縮部
23・・・画像送信部
24・・・インターフェース
25・・・輝度レベル取得部
26・・・LED自動点灯制御部
27・・・LED点灯制御コマンド受信部
28・・・LED
29・・・LED点灯制御部
1a, 1b, 1c ... Vehicles 2a, 2b, 2c, 3a, 3b, 3c ... Pantographs 4a, 4b, 4c, 5a, 5b, 5c ... Cameras with LEDs 6, 7, 8 ... Switching Hub (Switching HUB)
9 ... Host server 10 ... CCTV servers 11a, 11c ... Monitor 12 ... Network cable 20 ... CCD / CMO sensor (imaging device)
21 ... Signal processing unit 22 ... Image compression unit 23 ... Image transmission unit 24 ... Interface 25 ... Brightness level acquisition unit 26 ... LED automatic lighting control unit 27 ... LED lighting control Command receiver 28 ... LED
29 ... LED lighting control part

Claims (6)

  1.  列車に搭載され、監視対象エリアを撮影するカメラと、
     前記監視対象エリアに光を投光する照明と、
     列車の走行距離情報を取得する走行距離取得部と、
     前記照明を点灯するための位置の情報を予め保持する位置情報保持部と、
     前記走行距離取得部が取得した走行距離と、前記位置情報保持部が保持する情報とに基づいて、前記照明を点灯する制御部と、
    を備える列車監視システム。
    A camera that is mounted on the train and shoots the monitored area;
    Illumination for projecting light on the monitored area;
    A travel distance acquisition unit for acquiring train travel distance information;
    A position information holding unit for holding in advance information on a position for turning on the illumination;
    Based on the travel distance acquired by the travel distance acquisition unit and the information held by the position information holding unit, a control unit that turns on the illumination,
    A train monitoring system.
  2.  請求項1において、
     列車の停車駅を特定するための停車駅特定情報を取得する停車駅特定情報取得部を備え、
     前記位置情報保持部が、停車駅が異なる複数パターンの前記位置の情報を保持しており、
     前記制御部は、前記停止駅特定情報に基づいて前記照明を点灯制御するために用いる前記位置の情報を選択する列車監視システム。
    In claim 1,
    A stop station specifying information acquisition unit for acquiring stop station specifying information for specifying a stop station of a train,
    The position information holding unit holds information on the position of a plurality of patterns with different stopping stations,
    The said control part is a train monitoring system which selects the information of the said position used in order to carry out lighting control of the said illumination based on the said stop station specific information.
  3.  請求項2において、
     前記照明をオンするための位置の情報はトンネルの位置情報であり、前記停車駅特定情報は始発駅、終着駅および運行種別を含み運行パターンを特定するための情報である列車監視システム。
    In claim 2,
    The train monitoring system, wherein the position information for turning on the lighting is tunnel position information, and the stop station specifying information is information for specifying an operation pattern including a start station, an end station, and an operation type.
  4.  請求項1において、
     前記監視対称エリアは車両に搭載されたパンタグラフである列車監視システム。
    In claim 1,
    The monitoring symmetric area is a train monitoring system which is a pantograph mounted on a vehicle.
  5.  請求項1において、
     前記カメラと前記照明とをLED付カメラで構成し、
     前記走行距離取得部と前記位置情報保持部と前記制御部とをサーバで構成し、
     前記LED付カメラと前記サーバとをネットワークで接続するようにされた列車監視システム。
    In claim 1,
    The camera and the illumination are configured with a camera with LED,
    The travel distance acquisition unit, the position information holding unit, and the control unit are configured by a server,
    A train monitoring system configured to connect the camera with LED and the server via a network.
  6.  請求項5において、
     前記LED付カメラは、
      撮像素子と、
      LEDと、
      前記撮像素子からの輝度情報に基づいて自律的に前記LEDの点灯・消灯を制御する自動点灯制御部と、
      前記サーバから前記LEDの点灯・消灯を制御する情報を受信する点灯制御受信部と、
    を備え、
      前記サーバから前記LEDの点灯・消灯を制御する情報を受信するときは、前記点灯制御受信部の出力を優先して前記LEDの点灯・消灯を行うようにされる列車監視システム。
    In claim 5,
    The LED camera
    An image sensor;
    LED,
    An automatic lighting control unit that autonomously controls lighting / extinguishing of the LED based on luminance information from the imaging element;
    A lighting control receiving unit for receiving information for controlling lighting / extinguishing of the LED from the server;
    With
    When receiving information for controlling lighting / extinction of the LED from the server, the train monitoring system is configured to turn on / off the LED with priority given to the output of the lighting control receiving unit.
PCT/JP2014/075905 2014-09-29 2014-09-29 Train monitoring system WO2016051468A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016551356A JPWO2016051468A1 (en) 2014-09-29 2014-09-29 Train monitoring system
PCT/JP2014/075905 WO2016051468A1 (en) 2014-09-29 2014-09-29 Train monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075905 WO2016051468A1 (en) 2014-09-29 2014-09-29 Train monitoring system

Publications (1)

Publication Number Publication Date
WO2016051468A1 true WO2016051468A1 (en) 2016-04-07

Family

ID=55629568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075905 WO2016051468A1 (en) 2014-09-29 2014-09-29 Train monitoring system

Country Status (2)

Country Link
JP (1) JPWO2016051468A1 (en)
WO (1) WO2016051468A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224136A (en) * 2016-06-15 2017-12-21 村田機械株式会社 Mobile body and obstacle detector for mobile body
CN111762237A (en) * 2020-06-29 2020-10-13 交控科技股份有限公司 Rail transit train positioning method, device and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136649A (en) * 1996-11-08 1997-05-27 Koito Ind Ltd Display device
JP2004304989A (en) * 2003-04-01 2004-10-28 Hitachi Ltd Energy transmission/reception control system, railway vehicle, and drive system thereof
JP2004338520A (en) * 2003-05-15 2004-12-02 West Japan Railway Co Operation information system and communication system for train
JP2009234349A (en) * 2008-03-26 2009-10-15 National Traffic Safety & Environment Laboratory Train position synchronization system
JP2010197058A (en) * 2009-02-23 2010-09-09 Meidensha Corp Overhead wiring inspection apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232069A (en) * 1987-03-20 1988-09-28 小糸工業株式会社 Room-lamp lighting controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136649A (en) * 1996-11-08 1997-05-27 Koito Ind Ltd Display device
JP2004304989A (en) * 2003-04-01 2004-10-28 Hitachi Ltd Energy transmission/reception control system, railway vehicle, and drive system thereof
JP2004338520A (en) * 2003-05-15 2004-12-02 West Japan Railway Co Operation information system and communication system for train
JP2009234349A (en) * 2008-03-26 2009-10-15 National Traffic Safety & Environment Laboratory Train position synchronization system
JP2010197058A (en) * 2009-02-23 2010-09-09 Meidensha Corp Overhead wiring inspection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224136A (en) * 2016-06-15 2017-12-21 村田機械株式会社 Mobile body and obstacle detector for mobile body
CN111762237A (en) * 2020-06-29 2020-10-13 交控科技股份有限公司 Rail transit train positioning method, device and system

Also Published As

Publication number Publication date
JPWO2016051468A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
US10944912B2 (en) Systems and methods for reducing flicker artifacts in imaged light sources
CN103069465B (en) Apparatus for management of information, data analysis set-up, semaphore, server, information management system
KR101655839B1 (en) Parking management system using fisheye lens camera and method thereof
US20190196494A1 (en) Autonomous driving system and autonomous driving method
CN104284808A (en) Method for automatically adapting vehicle lighting to surrounding area of vehicle, lighting apparatus and vehicle having lighting
JP2013196040A (en) Vehicle and communication unit
JP6200673B2 (en) Traffic light discrimination device
US11138451B2 (en) Training image selection system
US20190007142A1 (en) Light identification transmission device and light identification communication system
Pang et al. LED location beacon system based on processing of digital images
CN202939800U (en) Intelligent high-definition toll-gate system
KR20210018246A (en) Information processing device, information processing method and information processing system
WO2016051468A1 (en) Train monitoring system
EP4400386A1 (en) System and method for predicting the remaining useful life of led signaling lights used in railway networks
JP2018085151A (en) Traffic light control device and traffic light
JP6091279B2 (en) Home monitoring device
JP2012054689A (en) Visible light data processing device, visible light communication system, visible light data processing method, and program thereof
JP2009165081A (en) Stereo camera system
JP2007220012A (en) Illumination control method and system
CN112565618B (en) Exposure control device
JP6807493B2 (en) Video display system and video display method
JP6311327B2 (en) Imaging system and imaging control method
KR100518298B1 (en) Apparatus and method for operating day/night mode of monitoring camera using a measuring brightness in invisible interval area
JP2017084397A (en) Traffic light control device, traffic light and program
JP5958269B2 (en) Imaging device and vehicle door monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551356

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903173

Country of ref document: EP

Kind code of ref document: A1