WO2016050509A1 - Methods and means for increasing stress tolerance and biomass in plants - Google Patents

Methods and means for increasing stress tolerance and biomass in plants Download PDF

Info

Publication number
WO2016050509A1
WO2016050509A1 PCT/EP2015/071210 EP2015071210W WO2016050509A1 WO 2016050509 A1 WO2016050509 A1 WO 2016050509A1 EP 2015071210 W EP2015071210 W EP 2015071210W WO 2016050509 A1 WO2016050509 A1 WO 2016050509A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
protein
activity
gene
expression
Prior art date
Application number
PCT/EP2015/071210
Other languages
French (fr)
Inventor
Katrien Van Der Kelen
Frank Van Breusegem
Matthew Hannah
Younousse SAIDI
Henning REDESTIG
Steven MAERE
Jens HOLLUNDER
Original Assignee
Bayer Cropscience Nv
Vib Vzw
Universiteit Gent
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Nv, Vib Vzw, Universiteit Gent filed Critical Bayer Cropscience Nv
Publication of WO2016050509A1 publication Critical patent/WO2016050509A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Definitions

  • the present invention relates generally to the field of plant molecular biology and concerns a method for improving plant tolerance to stress conditions or for increasing plant growth rate or biomass. More specifically, the present invention concerns a method for increasing stress tolerance and/or growth rate and/or biomass comprising modulating the expression of the genes identified herein, as well as chimeric genes, nucleic acids and polypeptides or mutant alleles leading to reduced protein expression of said genes. Also provided are plants or part thereof modulated according to the invention having an increased stress tolerance and/or growth rate and/or biomass.
  • the invention describes a method for increasing the tolerance to stress conditions of a plant, plant part, plant cell or seed or for increasing growth rate and/or biomass of a plant, plant part, plant cell or seed, comprising the step of modulating the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
  • said modulating the expression and/or activity of said protein comprises expressing in said plant, plant part, plant cell or seed a chimeric gene comprising the following operably linked elements:
  • c. Optionally, a 3' end region functional in plants.
  • said modulating the expression and/or activity of a protein comprises decreasing the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
  • said RNA molecule decreases the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
  • said RNA molecule comprises at least 21 nucleotides having at least 76% sequence identity to the nucleotide sequence of a gene present in said plant, plant part, plant cell or seed, said gene encoding a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
  • said RNA molecule comprises at least 21 nucleotides having at least 76% sequence identity to the complement of the nucleotide sequence of a gene present in said plant, plant part, plant cell or seed, said gene encoding a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
  • said RNA molecule comprises a sense region comprising a nucleotide sequence of at least 21 nucleotides having at least 76% sequence identity to the nucleotide sequence of a gene present in said plant, plant part, plant cell or seed, said gene encoding a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 , and an antisense region comprising a nucleotide sequence of at least 21 nucleotides having at least 76% sequence identity to the complement of the nucleotide sequence of said gene, wherein said sense and antisense region are capable of forming a double stranded RNA region comprising said at least 21 nucleotides.
  • said RNA region comprises at least 21 nucleotides having at least 76% sequence identity to a nucleotide sequence encoding a protein having at least 70% sequence identity to a protein as encoded by any one of SEQ ID NO. 2 to 182 and/or at least 21 nucleotides having at least 76% sequence identity to the complement of said nucleotide sequence encoding a protein having at least 70% sequence identity to a protein as encoded by any one of SEQ ID NO. 2 to 182.
  • said RNA region comprises at least 21 nucleotides having at least 76% sequence identity to 21 nucleotides having at least 76% sequence identity to any one of SEQ ID NO. 2 to 182, and/or at least 21 nucleotides having at least 76% sequence identity to the complement of any one of SEQ ID NO. 2 to 182.
  • said decreasing the expression and/or activity comprises introducing into said plant, plant part, plant cell or seed a knock-out allele of a gene encoding (in its wild-type form) a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
  • said stress condition is selected from salt stress, osmotic stress, oxidative stress, drought stress.
  • the invention also describes chimeric gene as described in any of the above methods.
  • the invention also describes a mutant allele or knock-out allele of a gene encoding (in its wild-type form) a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
  • the invention also describes a plant, plant part or plant cell comprising the chimeric gene or the mutant/knockout allele as described above.
  • the invention also describes the use of the chimeric gene or the mutant allele as described above to produce a plant, plant part, plant cell or seed with increased stress tolerance and/or increased biomass.
  • the present invention has thus identified novel polypeptides and polynucleotides which can be used to modulate stress tolerance and/or biomass of a plant, plant part, plant cell or seed.
  • novel polypeptides and polynucleotides which can be used to modulate stress tolerance and/or biomass of a plant, plant part, plant cell or seed.
  • stress tolerance and/or biomass of a plant, plant part, plant cell or seed can be increased by decreasing the transcript and/or protein expression of the genes or functional homologues thereof of which the corresponding T-DNA insertion mutants were found to displays increased stress tolerance and/or growth rate and/or biomass in at least one of the below described assays (see e.g. Example 2 and 3) when compared to control plants.
  • the invention describes a method for increasing the tolerance to stress conditions of a plant, plant part, plant cell or seed or for increasing biomass of a plant, plant part, plant cell or seed, comprising the step of modulating the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 (i.e. the protein as encoded by AT5G08330, the coding sequence of which is represented by SEQ ID NO. 2).
  • this step is followed by the selection of a plant, plant part, plant cell or seed that has increased stress tolerance and/or increased biomass and/or increased growth rate as compared to control plants.
  • a protein having the activity of the protein with the amino acid sequence of SEQ ID NO. 1 relates to any functional TCP21 (TCP DOMAIN PROTEIN 21 ) protein, also known as CHE (CCA1 H IKING EXPEDITION).
  • TCP21 TCP DOMAIN PROTEIN 21
  • CHE CCA1 H IKING EXPEDITION
  • These include for example the plant TCP21/CHE proteins as encoded by any one of SEQ ID NO. 2 to 182. This also includes functional variants thereof, e.g.
  • TCP1 is classified into the class I of the TCP transcription factor family (Yao et al. 2007, J Integr Plant Biol. 49- 885-597). ). Together with AtTCP7, AtTCP8, AtTCP14, AtTCPI 5, AtTCP22, and AtTCP23, it forms a distinct clade when compared to the rest of the factors in this subfamily. TCP21 is expressed in all analysed tissues, i.e. root, inflorescence, silique young and mature leaf, and shoot apex. Phenotypically, T-DNA insertion mutant tcp21 -1 plants were indistinguishable from wildtype. In yeast two-hybrid assays it was found that TCP21 interacts with TCP7 and TCP8 (Aquilar-Martinez and Singa, 2014).
  • TCP1/CHE specifically binds to the CCA1 promoter fragment encompassing nucleotides (nt) -363 to -192, consistent with this result, a motif present in the promoter fragment bound matches the consensus class I TCP-binding site (TBS) (GGNCCCAC) and was confirmed by EMSA and yeast one-hybrid analysis.
  • TBS consensus class I TCP-binding site
  • the CHE protein was found to interacted with TOC1 in a yeast two-hybrid assay, wherein a direct protein-protein interaction between TOC1 and the N- terminal domain of CHE was observed. This interaction was confirmed by ⁇ -immonoprecipitation.
  • CHE localized to the nucleus and is broadly expressed in Arabidopsis seedlings. It was further shown that TCP21 acts as a repressor of CCA1 , and TCP21 expression is regulated by CCA1 , thus comprising a feedback loop in the circadian clock.
  • a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 can be encoded by the nucleic acid sequence of any one of SEQ ID NO. 2 to 182.
  • sequence identity of two related nucleotide or amino acid sequences, expressed as a percentage, refers to the number of positions in the two optimally aligned sequences which have identical residues (x100) divided by the number of positions compared.
  • a gap i.e., a position in an alignment where a residue is present in one sequence but not in the other, is regarded as a position with non-identical residues.
  • the "optimal alignment” of two sequences is found by aligning the two sequences over the entire length according to the Needleman and Wunsch global alignment algorithm (Needleman and Wunsch, 1970, J Mol Biol 48(3):443-53) in The European Molecular Biology Open Software Suite (EMBOSS, Rice et al.
  • BLAST Altschul et al. (1990), Journal of Molecular Biology, 215, 403410), which stands for Basic Local Alignment Search Tool or ClustalW (Thompson et al. (1994), Nucleic Acid Res., 22, 4673-4680) or any other suitable program which is suitable to generate sequence alignments.
  • Homologous sequences as described above can comprise orthologous or paralogous sequences.
  • Several different methods are known by those of skill in the art for identifying and defining these functionally homologous sequences. Three general methods for defining orthologous and paralogous genes are described; an ortholog, paralog or homolog may be identified by one or more of the methods described below.
  • Orthologs and paralogs are evolutionarily related genes that have similar sequence and similar functions. Orthologs are structurally related genes in different species that are derived by a speciation event. Paralogs are structurally related genes within a single species that are derived by a duplication event.
  • gene duplication may result in two copies of a particular gene, giving rise to two or more genes with similar sequence and often similar function known as paralogs.
  • a paralog is therefore a similar gene formed by duplication within the same species.
  • Paralogs typically cluster together or in the same clade (a group of similar genes) when a gene family phylogeny is analyzed using programs such as CLUSTAL (Thompson, et ah, (1994) Nucleic Acids Res. 22:4673-4680; Higgins, et al, (1996) Methods Enzymol. 266:383402). Groups of similar genes can also be identified with pair- wise BLAST analysis (Feng and Doolittle, (1987) J. Mol. Evol.
  • Orthologous sequences can also be identified by a reciprocal BLAST strategy. Once an orthologous sequence has been identified, the function of the ortholog can be deduced from the identified function of the reference sequence.
  • Orthologous genes from different organisms have highly conserved functions, and very often essentially identical functions (Lee, et al, (2002) Genome Res. 12:493-502; Remm, et al, (2001 ) J. Mol. Biol. 314:1041 -1052). Paralogous genes, which have diverged through gene duplication, may retain similar functions of the encoded proteins. In such cases, paralogs can be used interchangeably with respect to certain embodiments of the instant invention (for example, transgenic expression of a coding sequence).
  • Functional variants or homologues of the sequences disclosed herein may also be identified and isolated by hybridization under stringent conditions using as probes identified nucleotide sequences or fragments thereof.
  • homologous sequences from other monocot species than the specific sequences disclosed herein are said to be substantially identical or essentially similar if they can be detected by hybridization under stringent, preferably highly stringent conditions.
  • Stringent conditions are sequence dependent and will be different in different circumstances.
  • stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequences at a defined ionic strength and pH.
  • Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.
  • Stringent conditions will be chosen in which the salt concentration is about 0.02 molar at pH 7 and the temperature is at least 60°C. Lowering the salt concentration and/or increasing the temperature increases stringency.
  • Stringent conditions for RNA-DNA hybridizations are for example those which include at least one wash in 0.2X SSC at 63°C for 20min, or equivalent conditions.
  • High stringency conditions can be provided, for example, by hybridization at 65°C in an aqueous solution containing 6x SSC (20x SSC contains 3.0 M NaCI, 0.3 M Na-citrate, pH 7.0), 5x Denhardt's (100X Denhardt's contains 2% Ficoll, 2% Polyvinyl pyrollidone, 2% Bovine Serum Albumin), 0.5% sodium dodecyl sulphate (SDS), and 20 ⁇ g/ml denaturated carrier DNA (single-stranded fish sperm DNA, with an average length of 120 - 3000 nucleotides) as non- specific competitor. Following hybridization, high stringency washing may be done in several steps, with a final wash (about 30 min) at the hybridization temperature in 0.2-0.1 ⁇ SSC, 0.1 % SDS.
  • Moderate stringency conditions refers to conditions equivalent to hybridization in the above described solution but at about 60-62°C. Moderate stringency washing may be done at the hybridization temperature in 1 x SSC, 0.1 % SDS.
  • Low stringency refers to conditions equivalent to hybridization in the above described solution at about 50- 52°C. Low stringency washing may be done at the hybridization temperature in 2x SSC, 0.1 % SDS. See also Sambrook et al. (1989) and Sambrook and Russell (2001 ).
  • sequences corresponding to variants or homologues of the sequences disclosed herein may also be obtained by DNA amplification (PCR) using oligonucleotides specific for said sequences as primers, such as but not limited to oligonucleotides comprising or consisting of about 20 to about 50 consecutive nucleotides from the presently disclosed sequences and their complement.
  • PCR DNA amplification
  • the modulating the expression and/or activity of a protein as described above comprises expressing in said plant, plant part, plant cell or seed a chimeric gene comprising the following operably linked elements:
  • a A plant-expressible promoter.
  • b A nucleic acid which when transcribed yields an RNA molecule that modulates the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
  • a chimeric gene refers to a gene that is made up of heterologous elements that are operably linked to enable expression of the gene, whereby that combination is not normally found in nature.
  • heterologous refers to the relationship between two or more nucleic acid or protein sequences that are derived from different sources.
  • a promoter is heterologous with respect to an operably linked nucleic acid sequence, such as a coding sequence, if such a combination is not normally found in nature.
  • a particular sequence may be "heterologous” with respect to a cell or organism into which it is inserted (i.e. does not naturally occur in that particular cell or organism).
  • operably linked means that said elements of the chimeric gene are linked to one another in such a way that their function is coordinated and allows expression of the coding sequence, i.e. they are functionally linked.
  • a promoter is functionally linked to another nucleotide sequence when it is capable of ensuring transcription and ultimately expression of said other nucleotide sequence.
  • Two proteins encoding nucleotide sequences e.g. a transit peptide encoding nucleic acid sequence and a nucleic acid sequence encoding a protein according to the invention, are functionally or operably linked to each other if they are connected in such a way that a fusion protein of first and second protein or polypeptide can be formed.
  • a gene e.g. the chimeric gene of the invention, is said to be expressed when it leads to the formation of an expression product.
  • An expression product denotes an intermediate or end product arising from the transcription and optionally translation of the nucleic acid, DNA or RNA, coding for such product, e. g. the second nucleic acid described herein.
  • a DNA sequence under control of regulatory regions, particularly the promoter is transcribed into an RNA molecule.
  • An RNA molecule may either itself form an expression product or be an intermediate product when it is capable of being translated into a peptide or protein.
  • a gene is said to encode an RNA molecule as expression product when the RNA as the end product of the expression of the gene is, e.
  • RNA expression products include inhibitory RNA such as e. g. sense RNA (co-suppression), antisense RNA, ribozymes, miRNA or siRNA, mRNA, rRNA and tRNA.
  • a gene is said to encode a protein as expression product when the end product of the expression of the gene is a protein or peptide.
  • promoters may be used to promote the transcription of the nucleic acid of the invention, i.e. the nucleic acid which when transcribed yields an RNA molecule that modulates the expression and /or activity of a protein having the activity of a protein having any of the above amino acid sequences
  • promoters include for example constitutive promoters, inducible promoters (e.g. stress-inducible promoters, drought-inducible promoters, hormone-inducible promoters, chemical-inducible promoters, etc.), tissue-specific promoters, developmentally regulated promoters and the like.
  • a plant expressible promoter can be a constitutive promoter, i.e. a promoter capable of directing high levels of expression in most cell types (in a spatio-temporal independent manner).
  • plant expressible constitutive promoters include promoters of bacterial origin, such as the octopine synthase (OCS) and nopaline synthase (NOS) promoters from Agrobacterium, but also promoters of viral origin, such as that of the cauliflower mosaic virus (CaMV) 35S transcript (Hapster et al., 1988, Mol. Gen. Genet. 212: 182-190) or 19S RNAs genes (Odell et al., 1985, Nature.
  • CCS octopine synthase
  • NOS nopaline synthase
  • promoters of plant origin mention will be made of the promoters of the plant ribulose-biscarboxylase/oxygenase (Rubisco) small subunit promoter (US 4,962,028; W099/25842) from zea mays and sunflower, the promoter of the Arabidopsis thaliana histone H4 gene (Chaboute et al., 1987), the ubiquitin promoters (Holtorf et al., 1995, Plant Mol. Biol.
  • Rubisco ribulose-biscarboxylase/oxygenase
  • a variety of plant gene promoters that regulate gene expression in response to environmental, hormonal, chemical, developmental signals, and in a tissue-active manner can be used for expression of a sequence in plants.
  • Choice of a promoter is based largely on the phenotype of interest and is determined by such factors as tissue (e.g., seed, fruit, root, pollen, vascular tissue, flower, carpel, etc.), inducibility (e.g., in response to wounding, heat, cold, drought, light, pathogens, etc.), timing, developmental stage, and the like.
  • Additional promoters that can be used to practice this invention are those that elicit expression in response to stresses, such as the RD29 promoters that are activated in response to drought, low temperature, salt stress, or exposure to ABA (Yamaguchi-Shinozaki et al., 2004, Plant Cell, Vol. 6, 251 -264; WO12/101 1 18), but also promoters that are induced in response to heat (e.g., see Ainley et al. (1993) Plant Mol. Biol. 22: 13-23), light (e.g., the pea rbcS-3A promoter, Kuhlemeier et al.
  • stresses such as the RD29 promoters that are activated in response to drought, low temperature, salt stress, or exposure to ABA (Yamaguchi-Shinozaki et al., 2004, Plant Cell, Vol. 6, 251 -264; WO12/101 1 18), but also promoters that are induced in response to heat (e.g., see
  • timing of the expression can be controlled by using promoters such as those acting at senescence (e.g., see Gan and Amasino (1995) Science 270: 1986-1988); or late seed development (e.g., see Odell et al. (1994) Plant Physiol. 106: 447458).
  • promoters such as those acting at senescence (e.g., see Gan and Amasino (1995) Science 270: 1986-1988); or late seed development (e.g., see Odell et al. (1994) Plant Physiol. 106: 447458).
  • salt-inducible promoters such as the salt-inducible NHX1 promoter of rice landrace Pokkali (PKN) (Jahan et al., 6 th International Rice Genetics symposium, 2009, poster abstract P4-37), the salt inducible promoter of the vacuolar ⁇ -pyrophosphatase from Thellungiella halophila (TsVP1 ) (Sun et al., BMC Plant Biology 2010, 10:90), the salt-inducible promoter of the Citrus sinensis gene encoding phospholipid hydroperoxide isoform gpxl (Avsian-Kretchmer et al., Plant Physiology July 2004 vol. 135, p1685-1696).
  • PPN salt-inducible NHX1 promoter of rice landrace Pokkali
  • TsVP1 Thellungiella halophila
  • TsVP1 Thellungiella halophila
  • tissue-specific and/or developmental stage-specific promoters are used, e.g., promoter that can promote transcription only within a certain time frame of developmental stage within that tissue. See, e.g., Blazquez (1998) Plant Cell 10:791 -800, characterizing the Arabidopsis LEAFY gene promoter. See also Cardon (1997) Plant J 12:367-77 , describing the transcription factor SPL3, which recognizes a conserved sequence motif in the promoter region of the A. thaliana floral meristem identity gene API; and Mandel (1995) Plant Molecular Biology, Vol. 29, pp 995-1004, describing the meristem promoter elF4.
  • Tissue specific promoters which are active throughout the life cycle of a particular tissue can be used.
  • the nucleic acids of the invention are operably linked to a promoter active primarily only in cotton fiber cells
  • the nucleic acids of the invention are operably linked to a promoter active primarily during the stages of cotton fiber cell elongation, e.g., as described by Rinehart (1996) supra.
  • the nucleic acids can be operably linked to the Fbl2A gene promoter to be preferentially expressed in cotton fiber cells (Ibid) . See also, John (1997) Proc. Natl. Acad. Sci. USA 89:5769-5773; John, et al., U.S. Patent Nos.
  • Root- specific promoters may also be used to express the nucleic acids of the invention.
  • Examples of root-specific promoters include the promoter from the alcohol dehydrogenase gene (DeLisle (1990) Int. Rev. Cytol. 123:39-60) and promoters such as those disclosed in U.S. Pat. Nos. 5,618,988, 5,837,848 and 5,905,186.
  • a leaf-specific promoter see, e.g., Busk (1997) Plant J. 1 1 :1285 1295, describing a leaf-specific promoter in maize
  • the ORF 13 promoter from Agrobacterium rhizogenes which exhibits high activity in roots,
  • a tomato promoter active during fruit ripening, senescence and abscission of leaves a guard-cell preferential promoter e.g. as described in PCT/EP12/065608, and, to a lesser extent, of flowers can be used (see, e.g., Blume (1997) Plant J. 12:731 746); a pistil-specific promoter from the potato SK2 gene (see, e.g., Ficker (1997) Plant Mol. Biol.
  • the Blec4 gene from pea which is active in epidermal tissue of vegetative and floral shoot apices of transgenic alfalfa making it a useful tool to target the expression of foreign genes to the epidermal layer of actively growing shoots or fibers
  • the ovule-specific BELI gene see, e.g., Reiser (1995) Cell 83:735-742, GenBank No. U39944)
  • the promoter in Klee, U.S. Patent No. 5,589,583, describing a plant promoter region is capable of conferring high levels of transcription in meristematic tissue and/or rapidly dividing cells.
  • tissue specific promoters that may be used according to the invention include: seed-specific promoters (such as the napin, phaseolin or DC3 promoter described in U .S. Pat. No. 5,773,697), fruit-specific promoters that are active during fruit ripening (such as the dru 1 promoter (U.S. Pat. No. 5,783,393), or the 2AI 1 promoter (e.g., see U.S. Pat. No. 4,943,674) and the tomato polygalacturonase promoter (e.g., see Bird et al. (1988) Plant Mol. Biol. 1 1 : 651 -662), flower- specific promoters (e.g., see Kaiser et al. (1995) Plant Mol. Biol.
  • seed-specific promoters such as the napin, phaseolin or DC3 promoter described in U .S. Pat. No. 5,773,697
  • fruit-specific promoters that are active during fruit ripening such as the dru 1 promoter (
  • pollen-active promoters such as PTA29, PTA26 and PTAI 3 (e.g., see U.S. Pat. No. 5,792,929) and as described in e.g. Baerson et al. (1994 Plant Mol. Biol. 26: 1947-1959), promoters active in vascular tissue (e.g., see Ringli and Keller (1998) Plant Mol. Biol. 37: 977-988), carpels (e.g., see Ohl et al. (1990) Plant Cell 2:), pollen and ovules (e.g., see Baerson et al. (1993) Plant Mol. Biol. 22: 255- 267).
  • PTA29 e.g., see U.S. Pat. No. 5,792,929
  • promoters active in vascular tissue e.g., see Ringli and Keller (1998) Plant Mol. Biol. 37: 977-988
  • carpels e.g., see Ohl et al. (1990) Plant
  • plant promoters which are inducible upon exposure to plant hormones, such as auxins, are used to express the nucleic acids used to practice the invention.
  • the invention can use the auxin- response elements El promoter fragment (AuxREs) in the soybean ⁇ Glycine max L.) (Liu (1997) Plant Physiol. 1 15:397- 407); the auxin-responsive Arabidopsis GST6 promoter (also responsive to salicylic acid and hydrogen peroxide) (Chen (1996) Plant J. 10: 955-966); the auxin-inducible parC promoter from tobacco (Sakai (1996) 37:906-913); a plant biotin response element (Streit (1997) Mol. Plant Microbe Interact.
  • ABA abscisic acid
  • Further hormone inducible promoters include auxin-inducible promoters (such as that described in van der Kop et al. (1999) Plant Mol. Biol. 39: 979-990 or Baumann et al., (1999) Plant Cell 1 1 : 323-334), cytokinin-inducible promoter (e.g., see Guevara-Garcia (1998) Plant Mol. Biol. 38: 743-753), promoters responsive to gibberellin (e.g., see Shi et al. (1998) Plant Mol. Biol. 38: 1053-1060, Willmott et al. (1998) Plant Molec. Biol. 38: 817-825) and the like.
  • gibberellin e.g., see Shi et al. (1998) Plant Mol. Biol. 38: 1053-1060, Willmott et al. (1998) Plant Molec. Biol. 38: 817-825
  • nucleic acids used to practice the invention can also be operably linked to plant promoters which are inducible upon exposure to chemicals reagents which can be applied to the plant, such as herbicides or antibiotics.
  • plant promoters which are inducible upon exposure to chemicals reagents which can be applied to the plant, such as herbicides or antibiotics.
  • the maize ln2-2 promoter activated by benzenesulfonamide herbicide safeners, can be used (De Veylder (1997) Plant Cell Physiol. 38:568-577); application of different herbicide safeners induces distinct gene expression patterns, including expression in the root, hydathodes, and the shoot apical meristem.
  • Coding sequence can be under the control of, e.g., a tetracycline-inducible promoter, e.g.
  • transgenic tobacco plants containing the Avena sativa L. (oat) arginine decarboxylase gene (Masgrau (1997) Plant J. 1 1 :465 73); or, a salicylic acid-responsive element (Stange (1997) Plant J. 1 1 :1315-1324).
  • arginine decarboxylase gene Masgrau (1997) Plant J. 1 1 :465 73); or, a salicylic acid-responsive element (Stange (1997) Plant J. 1 1 :1315-1324.
  • a polypeptide of the invention can be induced at a particular stage of development of the plant.
  • Use may also be made of the estrogen-inducible expression system as described in US patent 6,784,340 and Zuo et al. (2000, Plant J. 24: 265-273) to drive the expression of the nucleic acids used to practice the invention.
  • a promoter may be used whose host range is limited to target plant species, such as com, rice, barley, wheat, potato or other crops, inducible at any stage of development of the crop.
  • tissue-specific plant promoter may drive expression of operably linked sequences in tissues other than the target tissue.
  • a tissue-specific promoter that drives expression preferentially in the target tissue or cell type, but may also lead to some expression in other tissues as well, is used.
  • promoter use may also be made, in combination with the promoter, of other regulatory sequences, which are located between the promoter and the coding sequence, such as transcription activators ("enhancers"), for instance the translation activator of the tobacco mosaic virus (TMV) described in Application WO 87/07644, or of the tobacco etch virus (TEV) described by Carrington & Freed 1990, J. Virol. 64: 1590-1597, for example.
  • transcription activators for instance the translation activator of the tobacco mosaic virus (TMV) described in Application WO 87/07644, or of the tobacco etch virus (TEV) described by Carrington & Freed 1990, J. Virol. 64: 1590-1597, for example.
  • Introns are intervening sequences present in the pre-mRNA but absent in the mature RNA following excision by a precise splicing mechanism.
  • the ability of natural introns to enhance gene expression, a process referred to as intron-mediated enhancement (IME) has been known in various organisms, including mammals, insects, nematodes and plants (WO 07/098042, p1 1 -12). IME is generally described as a posttranscriptional mechanism leading to increased gene expression by stabilization of the transcript. The intron is required to be positioned between the promoter and the coding sequence in the normal orientation.
  • introns have also been described to affect translation, to function as promoters or as position and orientation independent transcriptional enhancers (Chaubet-Gigot et al., 2001 , Plant Mol Biol. 45(1 ):17-30, p27-28).
  • genes containing such introns include the 5' introns from the rice actin 1 gene (see US5641876), the rice actin 2 gene, the maize sucrose synthase gene (Clancy and Hannah, 2002, Plant Physiol. 130(2):918-29), the maize alcohol dehydrogenase-1 (Adh-1 ) and Bronze-1 genes (Callis et al. 1987 Genes Dev. 1 (10):1 183-200; Mascarenhas et al. 1990, Plant Mol Biol.
  • the maize heat shock protein 70 gene (see US5593874), the maize shrunken 1 gene, the light sensitive 1 gene of Solanum tuberosum, and the heat shock protein 70 gene of Petunia hybrida (see US 5659122), the replacement histone H3 gene from alfalfa (Keleman et al. 2002 Transgenic Res. 1 1 (1 ):69- 72) and either replacement histone H3 (histone H3.3-like) gene of Arabidopsis thaliana (Chaubet-Gigot et al., 2001 , Plant Mol Biol. 45(1 ):17-30).
  • Suitable regulatory sequences include 5' UTRs.
  • a 5' UTR also referred to as a leader sequence, is a particular region of a messenger RNA (mRNA) located between the transcription start site and the start codon of the coding region. It is involved in mRNA stability and translation efficiency.
  • mRNA messenger RNA
  • the 5' untranslated leader of a petunia chlorophyll a/b binding protein gene downstream of the 35S transcription start site can be utilized to augment steady-state levels of reporter gene expression (Harpster et al., 1988, Mol Gen Genet. 212(1 ):182-90).
  • WO95/006742 describes the use of 5' non-translated leader sequences derived from genes coding for heat shock proteins to increase transgene expression.
  • the chimeric gene may also comprise a 3' end region, i.e. a transcription termination or polyadenylation sequence, operable in plant cells.
  • a transcription termination or polyadenylation sequence use may be made of any corresponding sequence of bacterial origin, such as for example the nos terminator of Agrobacterium tumefaciens, of viral origin, such as for example the CaMV 35S terminator, or of plant origin, such as for example a histone terminator as described in published Patent Application EP 0 633 317 A1 .
  • the polyadenylation region can be derived from the natural gene, from a variety of other plant genes, or from T-DNA.
  • the 3' end sequence to be added may be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or less preferably from any other eukaryotic gene.
  • Another measure to increase the expression of the nucleic acid of the invention that may be applied is optimizing the coding region for expression in the target organism, which may include adapting the codon usage , CG content, and elimination of unwanted nucleotide sequences (e.g. premature polyadenylation signals, cryptic intron splice sites, ATTTA pentamers, CCAAT box sequences, sequences that effect pre-mRNA splicing by secondary RNA structure formation such as long CG or AT stretches).
  • unwanted nucleotide sequences e.g. premature polyadenylation signals, cryptic intron splice sites, ATTTA pentamers, CCAAT box sequences, sequences that effect pre-mRNA splicing by secondary RNA structure formation such as long CG or AT stretches.
  • Stress conditions refers e.g. to stress imposed by the application of chemical compounds (e.g., herbicides, fungicides, insecticides, plant growth regulators, adjuvants, fertilizers), exposure to abiotic stress (e.g., drought, waterlogging, submergence, high light conditions, high UV radiation, increased hydrogen peroxide levels, extreme (high or low) temperatures, ozone and other atmospheric pollutants, soil salinity or heavy metals, hypoxia, anoxia, osmotic stress, oxidative stress, low nutrient levels such as nitrogen or phosphorus etc.) or biotic stress (e.g., pathogen or pest infection including infection by fungi, viruses, bacteria, insects, nematodes, mycoplasms and mycoplasma like organisms, etc.). Stress may also be imposed by hormones such as ABA or compounds influencing hormone activity.
  • chemical compounds e.g., herbicides, fungicides, insecticides, plant growth regulators, adjuvants, fertilizers
  • Drought, salinity, extreme temperatures, high light stress and oxidative stress are known to be interconnected and may induce growth and cellular damage through similar mechanisms.
  • Rabbani et al. Plant Physiol (2003) 133: 1755- 1767
  • drought and/or salinisation are manifested primarily as osmotic stress, resulting in the disruption of homeostasis and ion distribution in the cell.
  • Oxidative stress which frequently accompanies high or low temperature, salinity or drought stress, may cause denaturing of functional and structural proteins.
  • a "control plant” as used herein is generally a plant of the same species which has wild-type levels of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
  • Wild-type levels of a protein as used herein refers to the typical levels of said protein in a plant as it most commonly occurs in nature. Said control plant has thus not been provided either with a chimeric gene according to the invention nor with a mutant allele according to the invention (as described further below).
  • Yield or biomass refers to seed number/weight, fruit number/weight, fresh weight, dry weight, leaf number/area, plant height, branching, boll number/size, fiber length, seed oil content, seed protein content, seed carbohydrate content.
  • An increased growth rate as used herein refers to a period of increased growth or allocation to one or more of these cells or tissues that comprise the aforementioned plant organs.
  • An increase in biomass or yield or growth can be an increase of at least 2%, or at least 5%, or at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 40% , or at least 50%. Said increase is an increase with respect to biomass or yield or growth of control plants.
  • a plant made according to the invention expressing a nucleic acid which when transcribed yields an RNA molecule that modulates the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO.
  • phenotypes when compared to control plants, especially under adverse conditions (stress conditions) as described above, but also under control conditions, including but not limited to: increased overall plant yield, increased root mass, increased root length, increased leaf size, in creased ear size, increased seed size, increased endosperm size, improved standability, alterations in the relative size of embryos and endosperms leading to changes in the relative levels of protein, oil and/or starch in the seeds, altered floral development, changes in leaf number, altered leaf surface, altered vasculature, altered internodes, alterations in leaf senescence, absence of tassels, absence of functional pollen bearing tassels, or increased plant size when compared to a non-modified plant under normal growth conditions or under adverse conditions, such as water limiting conditions.
  • adverse conditions stress conditions
  • stress tolerance and/or growth rate and/or biomass of a plant, plant part, plant cell or seed is increased by decreasing the transcript and/or protein expression of the genes or functional homologues thereof of which the corresponding T-DNA insertion mutants were found to display increased stress tolerance and/or growth rate or biomass in at least one of the below described assays when compared to control plants (i.e. decreased stress sensitivity) and/or growth rate and/or biomass in at least one of the below described assays .
  • the modulating the expression and/or activity a protein as described above comprises decreasing the expression and/or activity in said plant, plant part, plant cell or seed of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
  • RNA molecule that results in a decreased expression and/or activity of a protein having the activity of a protein having any of the above amino acid sequences can be an RNA encoding a protein which inhibits expression and/or activity of said protein. Further, said RNA molecule can also be an RNA molecule which inhibits expression of a gene which is an activator of expression and/or activity of said protein. Said RNA molecule may also be an RNA molecule that directly inhibits expression and/or activity of a gene present in said plant, plant part, plant cell or seed encoding said protein, such as an RNA which mediates silencing of said gene.
  • Decreasing the expression and/or activity of a protein having the activity of a protein having any of the above amino acid sequences can be decreasing the amount of functional protein produced.
  • Said decrease can be a decrease with at least 30%, 40%, 50%, 60% , 70%, 80%, 90%, 95% or 100% (i.e. no functional protein is produced by the cell) as compared to the amount of functional protein produced by a cell with wild type expression levels and activity of said protein.
  • Said decrease in expression and/or activity can be a constitutive decrease in the amount of functional protein produced.
  • Said decrease can also be a temporal/inducible decrease in the amount of functional protein produced.
  • silencing RNA refers to any RNA molecule, which upon introduction into a plant cell, reduces the expression of a target gene.
  • silencing RNA may e.g.
  • antisense RNA whereby the RNA molecule comprises a sequence of at least 20 consecutive nucleotides having 95% sequence identity to the complement of the sequence of the target nucleic acid, preferably the coding sequence of the target gene.
  • antisense RNA may also be directed to regulatory sequences of target genes, including the promoter sequences and transcription termination and polyadenylation signals.
  • Silencing RNA further includes so-called “sense RNA” whereby the RNA molecule comprises a sequence of at least 20 consecutive nucleotides having 95% sequence identity to the sequence of the target nucleic acid.
  • silencing RNA may be "unpolyadenylated RNA" comprising at least 20 consecutive nucleotides having 95% sequence identity to the complement of the sequence of the target nucleic acid, such as described in WO01 /12824 or US6423885 (both documents herein incorporated by reference).
  • RNA molecules as described in WO03/076619 (herein incorporated by reference) comprising at least 20 consecutive nucleotides having at least 95%, at least 96%, at least 97% at least 98%, at least 99% or 100% sequence identity to the sequence of the target nucleic acid or the complement thereof, and further comprising a largely-double stranded region as described in WO03/076619 (including largely double stranded regions comprising a nuclear localization signal from a viroid of the Potato spindle tuber viroid-type or comprising CUG trinucleotide repeats).
  • Silencing RNA may also be double stranded RNA comprising a sense and antisense strand as herein defined, wherein the sense and antisense strand are capable of base-pairing with each other to form a double stranded RNA region (preferably the said at least 20 consecutive nucleotides of the sense and antisense RNA are complementary to each other).
  • the sense and antisense region may also be present within one RNA molecule such that a hairpin RNA (hpRNA) can be formed when the sense and antisense region form a double stranded RNA region.
  • hpRNA hairpin RNA
  • the hpRNA may be classified as long hpRNA, having long, sense and antisense regions which can be largely complementary, but need not be entirely complementary (typically larger than about 200 bp, ranging between 200-1000 bp). hpRNA can also be rather small ranging in size from about 30 to about 42 bp, but not much longer than 94 bp (see WO04/073390, herein incorporated by reference).
  • An ihpRNA is an intron-containing hairpin RNA, which has the same general structure as an hpRNA, but the RNA molecule additionally comprises an intron in the loop of the hairpin that is capable of being spliced in the cell in which the ihpRNA is expressed.
  • an intron minimizes the size of the loop in the hairpin RNA molecule following splicing, and this increases the efficiency of interference. See, for example, Smith et al (2000) Nature 407:319-320. In fact, Smith et al, show 100% suppression of endogenous gene expression using ihpRNA-mediated interference.
  • the intron is the ADHI intron 1 . Methods for using ihpRNA interference to inhibit the expression of endogenous plant genes are described, for example, in Smith et al, (2000) Nature 407:319-320; Waterhouse and Helliwell, (2003) Nat. Rev. Genet.
  • the chimeric gene for hpRNA interference may also be designed such that the sense sequence and the antisense sequence do not correspond to an endogenous RNA.
  • the sense and antisense sequence flank a loop sequence that comprises a nucleotide sequence corresponding to all or part of the endogenous messenger RNA of the target gene present in the plant. Thus, it is the loop region that determines the specificity of the RNA interference. See, for example, WO0200904 herein incorporated by reference.
  • a silencing RNA may also encode an artificial micro-RNA (mi-RNA) molecule as described e.g. in Schwab et al. 2006 (Plant Cell 18: 1 121 -1 133), WO2005/052170, WO2005/047505 or US 2005/0144667, or ta-siRNAs as described in WO2006/074400 (all documents incorporated herein by reference). ).
  • MiRNAs are about 21 nucleotides in length and in plants up to 5 mismatches to their target sequence are allowed (Schwab et al. 2006, supra).
  • Amplicon chimeric genes according to the invention comprise a plant virus-derived sequence that contains all or part of the target gene but generally not all of the genes of the native virus.
  • the viral sequences present in the transcription product of the chimeric gene allow the transcription product to direct its own replication.
  • the transcripts produced by the amplicon may be either sense or antisense relative to the target sequence.
  • the nucleic acid expressed by the chimeric gene of the invention is catalytic RNA or has ribozyme activity specific for the target sequence.
  • the polynucleotide causes the degradation of the endogenous messenger RNA transcribed from the target gene/sequence, resulting in reduced expression of the protein present in the plant. This method is described, for example, in US4987071 , herein incorporated by reference.
  • the nucleic acid expressed by the chimeric gene of the invention encodes a zinc finger protein that binds to the gene encoding said protein, resulting in reduced expression of the target gene.
  • the zinc finger protein binds to a regulatory region of said gene, thereby reducing gene transcription.
  • the zinc finger protein binds to the coding region thereby preventing its transcription.
  • the nucleic acid expressed by the chimeric gene of the invention encodes a TALE protein that binds to a gene encoding said protein, resulting in reduced expression of the gene.
  • the TALE protein binds to a regulatory region of said gene, thereby reducing gene transcription.
  • the TALE protein binds to the coding region thereby preventing its transcription.
  • the nucleic acid expressed by the chimeric gene of the invention encodes a CAS9- based repressor - guide RNA complex that binds to a gene encoding said protein, resulting in reduced expression of the gene.
  • said complex binds to a regulatory region of said gene, thereby reducing gene transcription.
  • the complex binds to the coding region thereby preventing its transcription. How to modify the CRISPR/CAS system for use in targeted gene repression (“CRISPRi”) is e.g. described in Mali et al.,(2013, Science 339: 823), US61/765576 and WO2013176772.
  • the nucleic acid expressed by the chimeric gene of the invention encodes a nuclease, e.g. a meganuclease, zinc finger nuclease, TALEN, or CRISPR/CAS nuclease that specifically inactivates the endogenous target gene by recognizing and cleaving a sequence specific for said endogenous target gene.
  • a nuclease e.g. a meganuclease, zinc finger nuclease, TALEN, or CRISPR/CAS nuclease that specifically inactivates the endogenous target gene by recognizing and cleaving a sequence specific for said endogenous target gene.
  • TALEN zinc finger nuclease
  • CRISPR/CAS nuclease that specifically inactivates the endogenous target gene by recognizing and cleaving a sequence specific for said endogenous target gene.
  • Chimeric genes encoding such nuclease can be removed afterwards by segregation.
  • RNA molecule which is translated into a polypeptide
  • the polypeptide is capable of reducing the expression and/or activity of said protein directly, i.e. the RNA molecule encodes an inhibitory protein or polypeptides.
  • such an inhibitory protein or polypeptide can be an antibody (including a nanobody etc) that binds to the target protein present in the plant and reduces the activity thereof.
  • the binding of the antibody results in increased turnover of the antibody complex by cellular quality control mechanisms.
  • inhibitory protein or polypeptide may also be a dominant negative protein or protein fragment of the target protein.
  • decreasing the expression and/or activity of a protein having the activity of a protein having any of the above amino acid sequences can be achieved by contacting the plant or plant cell with molecules interfering with the function of the endogenous protein present in the plant, e. g. by triggering aggregation of the target protein (interferor peptides) as e.g. described in WO2007/071789 and WO2008/148751 .
  • decreasing the expression and/or activity the target protein according to the invention can be achieved by contacting the plant or plant cell can with so-called alphabodies specific for said protein present in the plant, i.e. non-natural proteinaceous molecules that can antagonize protein function, as e.g. described in WO2009/030780, WO2010/066740 and WO2012/092970.
  • decreasing the expression and/or activity of protein having the activity of a protein having any of the above amino acid sequences can be achieved by inhibition of the expression of said protein present in the plant. Inhibition of the expression of said protein can be induced at the desired moment using a spray (systemic application) with inhibitory nucleic acids, such as RNA or DNA molecules that function in RNA-mediated gene silencing (similar to the above described molecules), as e.g. described in WO2011/112570 (incorporated herein by reference).
  • inhibitory nucleic acids such as RNA or DNA molecules that function in RNA-mediated gene silencing (similar to the above described molecules), as e.g. described in WO2011/112570 (incorporated herein by reference).
  • said RNA is a silencing RNA molecule, said molecule comprising:
  • nucleotides having at least 76% sequence identity the nucleotide sequence of a gene present in said plant, plant part, plant cell or seed encoding a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1., present in said plant;
  • a sense region comprising a nucleotide sequence of at least 21 nucleotides having at least 76% sequence identity to the nucleotide sequence of a gene present in said plant, plant part, plant cell or seed encoding a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 and an antisense region comprising a nucleotide sequence of at least 21 nucleotides having at least 76% sequence identity to the complement of the nucleotide sequence of said gene present in said plant, wherein said sense and antisense region are capable of forming a double stranded RNA region comprising said at least 21 nucleotides.
  • At least 76% sequence identity in this respect can be at least 80% sequence identity (e.g. 4 mismatches over 21 nt), at least 85% sequence identity (e.g. 3 mismatches over 21 nt), at least 90% sequence identity (e.g. 2 mismatches over 21 nt), at least 95% sequence identity (e.g. 1 mismatch over 21 nt) or 100% sequence identity (no mismatches).
  • a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 relates to a protein having the amino acid sequence as encoded by any one of SEQ ID NO. 2 to 182, but also to functional variants of such proteins, e.g. proteins having at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity thereto and having the same function and/or activity.
  • the gene present in said plant, plant part, plant cell or seed encodes a protein having the amino acid sequence as encoded by any one of SEQ ID NO.
  • the inhibitory RNA molecule may comprise at least 21 nucleotides having at least 76% sequence identity to a nucleotide sequence encoding a protein having the amino acid sequence as encoded by any one of SEQ ID NO. 2 to 182 and/or the complement thereof.
  • the gene present in said plant, plant part, plant cell or seed encoding a protein having the activity of a protein having any of the above the amino acid sequences can have the nucleic acid sequence of any one of SEQ ID NO. 2 to 182.
  • the inhibitory RNA molecule may comprise at least 21 nucleotides having at least 76% sequence identity to the nucleic acid sequence of any one of SEQ ID NO. 2 to 182 and/or the complement thereof.
  • methods according the invention are provided wherein reducing the expression and/activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 , comprises the step of introducing a knock-out allele of an endogenous gene encoding such a protein.
  • a "knock-out allele” as used herein is an allele which is mutated as compared to the wild type allele (i.e. it is a mutant allele) and which encodes a non-functional protein (i.e. a protein having no activity) or results in a significantly reduced amount of protein (by for example a mutation in a regulatory region such as the promoter), or which encodes a protein with significantly reduced activity.
  • Said "knock-out allele” can be a mutant allele, which may encode no protein, or which may encode a non-functional protein or a protein with significantly reduced function, such as a mutant protein or a truncated protein.
  • the allele may also be referred to as an inactivated allele.
  • Said "significantly reduced amount of protein” can be a reduction in the amount (or levels) of protein produced by the cell comprising a knock-out allele by at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 100% (i.e. no protein is produced by the allele) as compared to the amount of the protein produced by the corresponding wild-type allele.
  • the amount or level of a transcript e.g. an mRNA
  • encoding a protein or the amount of level of a protein itself can be measured according to various methods known in the art such as (quantitative) RT-PCR, northern blotting, microarray analysis, western blotting, ELISA and the like.
  • a "significantly reduced activity” can be a reduction in the activity of the protein produced by the cell comprising a knock-out allele of said protein by at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 100% (i.e. no protein activity) as compared to the activity of the corresponding wild-type allele.
  • a "wild-type allele” as used herein refers to a typical form of an allele as it most commonly occurs in nature, such as the alleles as represented by the nucleic acid sequence described in this application, e.g. any one of SEQ ID NO. 2 to 182.
  • any mutation in the wild type nucleic acid sequences which results in a protein comprising at least one amino acid insertion, deletion and/or substitution relative to the wild type protein can lead to significantly reduced or no biological activity. It is, however, understood that certain mutations in the protein are more likely to result in a complete abolishment of the biological activity of the protein, such as mutations whereby significant portions of the functional domains are lacking.
  • a “mutant gene” or a “mutant allele” refers to a gene or allele comprising one or more mutations, such as a “missense mutation”, a “nonsense mutation” or “STOP codon mutation” (including a mutation resulting in no functional protein ("knock-out allele of a gene"), an "insertion mutation”, a “deletion mutation” or a “frameshift mutation” (the latter two including one or more mutations resulting in a "knock-out allele”) with respect to the corresponding wild-type gene or allele, such as such as the genes and alleles as described in this application, e.g. as represented any one of SEQ ID NO. 2 to 182 or as encoding a protein as encoded by any one of SEQ ID NO. 2 to 182.
  • a nonsense mutation in an allele is a mutation in an allele whereby one or more translation stop codons are introduced into the coding DNA and the corresponding mRNA sequence of the corresponding wild type allele.
  • Translation stop codons are TGA (UGA in the mRNA), TAA (UAA) and TAG (UAG).
  • a full knockout mutant allele may comprise a nonsense mutation wherein an in-frame stop codon is introduced in the coding sequence by a single nucleotide substitution, such as the mutation of CAG to TAG, TGG to TAG, TGG to TGA, or CAA to TAA.
  • a full knockout mutant allele may comprise a nonsense mutation wherein an in-frame stop codon is introduced in the coding sequence by double nucleotide substitutions, such as the mutation of CAG to TAA, TGG to TAA, or CGG to TAG or TGA.
  • a full knockout mutant allele may further comprise a nonsense mutation wherein an in-frame stop codon is introduced in the coding sequence by triple nucleotide substitutions, such as the mutation of CGG to TAA.
  • the truncated protein lacks the amino acids encoded by the coding DNA downstream of the mutation (i.e. the C-terminal part of the protein) and maintains the amino acids encoded by the coding DNA upstream of the mutation (i.e. the N-terminal part of the protein).
  • a missense mutation in an allele is any mutation (deletion, insertion or substitution) in an allele whereby one or more codons are changed in the coding DNA and the corresponding mRNA sequence of the corresponding wild type allele, resulting in the substitution of one or more amino acids in the wild type protein for one or more other amino acids in the mutant protein.
  • a frameshift mutation in an allele is a mutation (deletion, insertion, duplication of one or more nucleotides, and the like) in an allele that results in the nucleic acid sequence being translated in a different frame downstream of the mutation.
  • An "insertion mutation” is present if one or more codons have been added in the coding sequence of the nucleic acid resulting in the presence of one or more amino acids in the translated protein, whereas a “deletion mutation” is present if one or more codons have been deleted in the coding sequence of the nucleic acid resulting in the deletion of one or more amino acids in the translated protein.
  • Said mutant allele can be introduced into said plant e. g. through mutagenesis.
  • mutagenic agent such as a chemical substance (such as ethylmethylsulfonate (EMS), ethylnitrosourea (ENU), etc.) or ionizing radiation (neutrons (such as in fast neutron mutagenesis, etc.), alpha rays, gamma rays (such as that supplied by a Cobalt 60 source), X-rays, UV-radiation, etc.), T-DNA insertion mutagenesis (Azpiroz-Leehan et al.
  • the desired mutagenesis of one or more genes or alleles may be accomplished by one of the above methods. While mutations created by irradiation are often large deletions or other gross lesions such as translocations or complex rearrangements, mutations created by chemical mutagens are often more discrete lesions such as point mutations.
  • EMS alkylates guanine bases which results in base mispairing: an alkylated guanine will pair with a thymine base, resulting primarily in G/C to A/T transitions.
  • plants are regenerated from the treated cells using known techniques. For instance, the resulting seeds may be planted in accordance with conventional growing procedures and following pollination seed is formed on the plants. Additional seed that is formed as a result of such pollination in the present or a subsequent generation may be harvested and screened for the presence of mutant alleles.
  • DeleteageneTM Delete-a-gene; Li et al., 2001 , Plant J 27: 235-242
  • PCR polymerase chain reaction
  • Said mutant allele can also be introduced via gene targeting techniques.
  • gene targeting refers herein to directed gene modification that uses mechanisms such as double stranded DNA break repair via non-homologous end-joining, homologous recombination, mismatch repair or site-directed mutagenesis.
  • the method can be used to replace, insert and delete endogenous sequences or sequences previously introduced in plant cells. Methods for gene targeting can be found in, for example, WO 2006/105946 or WO2009/002150.
  • Double stranded DNA breaks can be induced in a targeted manner using custom designed sequence specific nucleases and nuclease systems such as meganucleases/homing endonucleases, zinc finger nucleases, TALENs or CRISPR/CAS (for a review see Gaj et al., 2013, Trends Biotechnol 31 : 397405).
  • sequence specific nucleases and nuclease systems such as meganucleases/homing endonucleases, zinc finger nucleases, TALENs or CRISPR/CAS (for a review see Gaj et al., 2013, Trends Biotechnol 31 : 397405).
  • such techniques can also be used to delete entire genes encoding proteins having the activity of a protein having any of the above amino acid sequences.
  • Said mutant allele can also be introduced through introgression of a mutant allele into said plant.
  • stress tolerance and/or biomass of a plant, plant part, plant cell or seed is increased by decreasing the expression of two or more of the genes or functional homologues thereof of which the corresponding T- DNA insertion mutants were found to display increased stress tolerance and/or biomass compared to control plants.
  • the modulating the expression and/or activity comprises decreasing the expression and/or activity of two or more (e.g. three, four, five etc) proteins having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 ., as described above.
  • the invention also provides chimeric genes comprising a nucleic acid which when transcribed yields an RNA molecule that modulates the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 ., as described in detail above.
  • Vectors comprising those chimeric genes are also included in the invention.
  • Nucleic acids used to practice the invention can be expressed by introduction into a plant cell by any means.
  • nucleic acids or expression constructs can be introduced into the genome of a desired plant host, or, the nucleic acids or chimeric genes can be episomes.
  • "Introducing” in connection with the present application relates to the placing of genetic information in a plant cell or plant by artificial means, such as transformation. This can be effected by any method known in the art for introducing RNA or DNA into plant cells, tissues, protoplasts or whole plants. In addition to artificial introduction as described above, “introducing” also comprises introgressing genes or alleles as defined further below.
  • Transformation means introducing a nucleotide sequence into a plant in a manner to cause stable or transient expression of the sequence. Transformation and regeneration of both monocotyledonous and dicotyledonous plant cells is now routine, and the selection of the most appropriate transformation technique will be determined by the practitioner. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for given plant types. Suitable methods can include, but are not limited to: electroporation of plant protoplasts; liposome-mediated transformation; polyethylene glycol (PEG) mediated transformation; transformation using viruses; micro-injection of plant cells; micro-projectile bombardment of plant cells; vacuum infiltration; and Agrobacterium- mediated transformation.
  • PEG polyethylene glycol
  • the invention uses Agrobacterium tumefaciens mediated transformation.
  • Other bacteria capable of transferring nucleic acid molecules into plant cells may be used, such as certain soil bacteria of the order of the Rhizobiales, e.g. Rhizobiaceae (e.g. Rhizobium spp., Sinorhizobium spp., Agrobacterium spp); Phyllobacteriaceae (e.g. Mesorhizobium spp., Phyllobacterium spp.); Brucellaceae (e.g. Ochrobactrum spp.); Bradyrhizobiaceae (e.g.
  • Bradyrhizobium spp. Bradyrhizobium spp.
  • Xanthobacteraceae e.g. Azorhizobium spp.
  • Agrobacterium spp. Rhizobium spp.
  • Sinorhizobium spp. Mesorhizobium spp.
  • Phyllobacterium spp. Ochrobactrum spp.
  • Bradyrhizobium spp. examples of which include Ochrobactrum sp., Rhizobium sp., Mesorhizobium loti, Sinorhizobium meliloti.
  • Rhizobia include R. leguminosarum bv, trifolii, R.
  • leguminosarum bv,phaseoli and Rhizobium leguminosarum, bv, viciae US Patent 7,888,552.
  • Other bacteria that can be employed to carry out the invention which are capable of transforming plants cells and induce the incorporation of foreign DNA into the plant genome are bacteria of the genera Azobacter (aerobic), Closterium (strictly anaerobic), Klebsiella (optionally aerobic), and Rhodospirillum (anaerobic, photosynthetically active).
  • Rhizobiaceae members such as Rhizobium trifolii, Rhizobium leguminosarum and Phyllobacterium myrsinacearum, while Rhizobium sp. NGR234, Sinorhizobium meliloti and Mesorhizobium loti could indeed be modified to mediate gene transfer to a number of diverse plants (Broothaerts et al., 2005, Nature, 433:629-633).
  • making transgenic plants or seeds comprises incorporating sequences used to practice the invention and, in one aspect (optionally), marker genes into a target expression construct (e.g., a plasmid), along with positioning of the promoter and the terminator sequences.
  • a target expression construct e.g., a plasmid
  • This can involve transferring the modified gene into the plant through a suitable method.
  • a construct may be introduced directly into the genomic DNA of the plant cell using techniques such as electroporation and microinjection of plant cell protoplasts, or the constructs can be introduced directly to plant tissue using ballistic methods, such as DNA particle bombardment. For example, see, e.g., Christou (1997) Plant Mol. Biol. 35:197-203; Pawlowski (1996) Mol. Biotechnol.
  • protoplasts can be immobilized and injected with a nucleic acid, e.g., an expression construct.
  • a nucleic acid e.g., an expression construct.
  • plant regeneration from protoplasts is not easy with cereals, plant regeneration is possible in legumes using somatic embryogenesis from protoplast derived callus.
  • Organized tissues can be transformed with naked DNA using gene gun technique, where DNA is coated on tungsten microprojectiles, shot 1 /100th the size of cells, which carry the DNA deep into cells and organelles. Transformed tissue is then induced to regenerate, usually by somatic embryogenesis. This technique has been successful in several cereal species including maize and rice.
  • a third step can involve selection and regeneration of whole plants capable of transmitting the incorporated target gene to the next generation.
  • Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium, typically relying on a biocide and/or herbicide marker that has been introduced together with the desired nucleotide sequences.
  • Plant regeneration from cultured protoplasts is described in Evans et al., Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp. 124-176, MacMillilan Publishing Company, New York, 1983; and Binding, Regeneration of Plants, Plant Protoplasts, pp. 21 -73, CRC Press, Boca Raton, 1985. Regeneration can also be obtained from plant callus, explants, organs, or parts thereof. Such regeneration techniques are described generally in Klee (1987) Ann. Rev. of Plant Phys.
  • Viral transformation may also be used for transient or stable expression of a gene, depending on the nature of the virus genome.
  • the desired genetic material is packaged into a suitable plant virus and the modified virus is allowed to infect the plant.
  • the progeny of the infected plants is virus free and also free of the inserted gene.
  • Suitable methods for viral transformation are described or further detailed e. g. in WO 90/12107, WO 03/052108 or WO 2005/098004.
  • the chimeric gene after the chimeric gene is stably incorporated in transgenic plants, it can be introduced into other plants by sexual crossing or introgression, as can a mutant allele according to the invention. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed. Since transgenic expression of the nucleic acids of the invention leads to phenotypic changes, plants comprising the recombinant nucleic acids of the invention can be sexually crossed with a second plant to obtain a final product. Thus, the seed of the invention can be derived from a cross between two transgenic plants of the invention, or a cross between a transgenic or mutant plant of the invention and another plant.
  • the desired effects can be enhanced when both parental plants express the chimeric genes or mutant alleles of the invention.
  • the desired effects can be passed to future plant generations by standard propagation means.
  • modified traits can be any of those traits described above.
  • confirmation that the modified trait is due to changes in expression levels or activity of the transgenic or mutated polypeptide or nucleic acid can be determined by analyzing mRNA expression using Northern blots, RT-PCR or microarrays, or protein expression using immunoblots or Western blots or gel shift assays.
  • “Introgressing” means the integration of a gene or allele in a plant's genome by natural means, i.e. by crossing a plant comprising the chimeric gene or mutant allele described herein with a plant not comprising said chimeric gene or mutant allele.
  • the offspring can be selected for those comprising the chimeric gene or mutant allele.
  • nucleic acids and polypeptides used to practice this invention can be expressed in or inserted in any plant cell, organ, seed or tissue, including differentiated and undifferentiated tissues or plants, including but not limited to roots, stems, shoots, cotyledons, epicotyl, hypocotyl, leaves, pollen, seeds, tumor tissue and various forms of cells in culture such as single cells, protoplast, embryos, and callus tissue.
  • the plant tissue may be in plants or in organ, tissue or cell culture.
  • the invention further provides plants, plant cells, organs, seeds or tissues that have been modified so as to have a modulated expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 ., when compared to a control plant.
  • the invention provides plants, plant cells, organs, seeds or tissues that have been modified so as to have a reduced expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 ., when compared to a control plant..
  • transgenic or mutant plants or parts thereof such as plant cells, organs, seeds or tissues, comprising and expressing the nucleic acids (chimeric genes or mutant alleles) used to practice this invention resulting in a modulated expression and/or activity of a protein having the activity of a protein having the amino acid sequence of any of the above sequences;
  • the invention provides plants, e.g., transgenic or mutant plants or parts thereof, such as, plant cells, organs, seeds or tissues that show improved tolerance to abiotic stress conditions, such as drought stress, osmotic stress, salt stress, oxidative stress; thus, the invention provides stress-tolerant plants, plant cells, organs, seeds or tissues (e.g., crops).
  • the invention also provides plants, e.g., transgenic or mutant plants or parts thereof such as plant cells, organs, seeds or tissues that show improved growth under control conditions; thus, the invention provides plants, plant cells, organs, seeds or tissues (e.g., crops) with increased biomass and/or yield and/or growth rate.
  • the invention further provides plants, e.g., transgenic or mutant plants or parts thereof such as plant cells, organs, seeds or tissues that show improved growth under limiting water conditions; thus, the invention provides drought-tolerant plants, plant cells, organs, seeds or tissues (e.g., crops).
  • a mutant plant refers to a plant comprising a mutant allele according to the invention.
  • the plant, plant part, plant organs and plant cell of the invention comprising a nucleic acid (chimeric gene or mutant allele) used to practice this invention can be dicotyledonous (a dicot) or monocotyledonous (a monocot).
  • monocots comprising a nucleic acid of this invention e.g., as monocot transgenic plants of the invention, are grasses, such as meadow grass (blue grass, Poa), forage grass such as festuca, lolium, temperate grass, such as Agrostis, and cereals, e.g., wheat, oats, rye, barley, rice, sorghum, and maize (corn).
  • dicots comprising a nucleic acid of this invention, e.g., as dicot transgenic plants of the invention, are cotton, tobacco, legumes, such as lupins, potato, sugar beet, pea, bean and soybean, and cruciferous plants (family Brassicaceae), such as cauliflower, rape seed, and the closely related model organism Arabidopsis thaliana.
  • dicot transgenic plants of the invention are cotton, tobacco, legumes, such as lupins, potato, sugar beet, pea, bean and soybean, and cruciferous plants (family Brassicaceae), such as cauliflower, rape seed, and the closely related model organism Arabidopsis thaliana.
  • plant or plant cell comprising a nucleic acid of this invention include a broad range of plants, including, but not limited to, species from the genera Anacardium, Arachis, Asparagus, Atropa, Avena, Brassica, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Cojfea, Cucumis, Cucurbita, Daucus, Elaeis, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoscyamus, Lactuca, Linum, Lolium, Lupinus, Lycopersicon, Malus, Manihot, Majorana, Medicago, Nicotiana, Olea, Oryza, Panieum, Pannisetum, Persea, Phaseolus, Pistachia, Pisum, Pyrus, Prunus, Raphanus, Ricinus, Secale, Senecio,
  • the invention furthermore provides propagating material created from the plant of plants cells of the invention.
  • the creation of propagating material relates to any means known in the art to produce further plants, plant parts or seeds and includes inter alia vegetative reproduction methods (e.g. air or ground layering, division, (bud) grafting, micropropagation, stolons or runners, storage organs such as bulbs, corms, tubers and rhizomes, striking or cutting, twin- scaling), sexual reproduction (crossing with another plant) and asexual reproduction (e.g. apomixis, somatic hybridization).
  • vegetative reproduction methods e.g. air or ground layering, division, (bud) grafting, micropropagation, stolons or runners, storage organs such as bulbs, corms, tubers and rhizomes, striking or cutting, twin- scaling
  • sexual reproduction crossing with another plant
  • asexual reproduction e.g. apomixis, somatic hybridization
  • the plant cell described herein is a non-propagating plant cell, or a plant cell that cannot be regenerated into a plant, or a plant cell that cannot maintain its life by synthesizing carbohydrate and protein from the inorganics, such as water, carbon dioxide, and inorganic salt, through photosynthesis.
  • the invention also provides the use of the chimeric gene or mutant allele according to the invention to produce a plant, plant part, plant cell or seed with increased stress tolerance or increased biomass. Also provided is the use of the plant according to the invention to produce a population of plants, such as crop plants with increased stress tolerance or increased biomass (e.g. increased yield).
  • a nucleic acid or polynucleotide, as used herein, can be DNA or RNA, single- or double-stranded. Nucleic acids can be synthesized chemically or produced by biological expression in vitro or even in vivo. Nucleic acids can be chemically synthesized using appropriately protected ribonucleoside phosphoramidites and a conventional DNA/RNA synthesizer.
  • DNA includes cDNA and genomic DNA.
  • protein or "polypeptide” as used herein describe a group of molecules consisting of more than 30 amino acids, whereas the term “peptide” describes molecules consisting of up to 30 amino acids. Proteins and peptides may further form dimers, trimers and higher oligomers, i.e. consisting of more than one (poly)peptide molecule. Protein or peptide molecules forming such dimers, trimers etc. may be identical or non-identical. The corresponding higher order structures are, consequently, termed homo- or heterodimers, homo- or heterotrimers etc.
  • protein and “peptide” also refer to naturally modified proteins or peptides wherein the modification is effected e.g. by glycosylation, acetylation, phosphorylation and the like. Such modifications are well known in the art.
  • nucleic acid or protein comprising a sequence of nucleotides or amino acids, may comprise more nucleotides or amino acids than the actually cited ones, i.e., be embedded in a larger nucleic acid or protein.
  • a chimeric gene comprising a nucleic acid which is functionally or structurally defined, may comprise additional DNA regions etc.
  • Example 1 Plan t material
  • DNA insertion mutants SALKJ 06694 was obtained from NASC (Nottingham Arabidopsis Stock Centre). SALKJ 06694 has a T-DNA insertion in the 3'UTR of AT5G08330. Homozygous lines have been selected and expression analysis (at the RNA level) was conducted. Compared to the WT, expression of the target gene showed no change in SALKJ 06694 (AT5G08330). However, due to the fact that this mutation is located in the 3'UTR, protein expression may still be negatively affected.
  • sorbitol (1 OOmM) is used to investigate the effect of osmotic stress on the growth and performance of tested mutants.
  • 14cm gridded petri dishes containing half MS medium (supplemented with 0.8% agar) are used. Seeds are sterilized using a vapor-phase method (for 1 h) and sown the day after on control and sorbitol- supplemented plates. The gridded plate is split into four to allow the sowing of four different lines. Eight seeds per lines are thus sown in each plate and this is replicated 10 times. In total 80 plants, for each line, are sown either on control or on sorbitol-supplemented medium.
  • the plates are then stored in the dark at 4°C for three days. Following the stratification, plates are transferred to the growth chamber (22°C, 16/8 light/dark) and arranged following a randomized block design. To measure growth rate and biomass parameters, pictures are taken at 11 , 14, 16 and 18 day. The average area of the plants is measured and compared (at each time point) to that of the Col8 WT. The area and growth rate results are presented as percentage difference.
  • Example 3 A biotic stress tolerance, growth ra te and biomass
  • Table 1 percentage difference of the rosette diameter manually measured at 14 and 28 days after stratification (respectively D14 and D28) under control or drought stress. The diameter was compared to that of the WT control submitted to the same regime. Values are means of 30 plants. * Significant difference as compared to wt. In vivo drought tolerance assay Phenopsis Control Drought
  • Table 2 percentage difference of the rosette diameter measured in the automated Phenopsis platform at 14 and 28 days after stratification (respectively DU and D28, D28) under control or drought stress. The diameter was compared to that of the WT control submitted to the same regime. Values are means of 14 plants. * Significant difference as compared to wt.
  • the herein identified sequences or fragments thereof are cloned into a vector for downregulation of the endogenous gene as described elsewhere in this application (e.g. sense, antisense, hairpin or miRNA suppression) and transformed into plants, also as described elsewhere in this application. Downregulation of expression in the transformed plants is confirmed on the RNA and/or protein level. Plants are subjected to abiotic stress assays as described above. Plants are selected that have increased stress tolerance and/or that show increase growth rate or biomass as compared to control plants.

Abstract

The present invention concerns a method for increasing stress tolerance and/or biomass comprising modulating the expression of any of the genes identified herein, as well as chimeric genes, nucleic acids and polypeptides encoding said genes. Also provided are plants or part thereof modulated according to the invention having an increased stress tolerance and/or biomass.

Description

Methods and means for increasing stress tolerance and biomass in plants
Field of the invention
[1 ] The present invention relates generally to the field of plant molecular biology and concerns a method for improving plant tolerance to stress conditions or for increasing plant growth rate or biomass. More specifically, the present invention concerns a method for increasing stress tolerance and/or growth rate and/or biomass comprising modulating the expression of the genes identified herein, as well as chimeric genes, nucleic acids and polypeptides or mutant alleles leading to reduced protein expression of said genes. Also provided are plants or part thereof modulated according to the invention having an increased stress tolerance and/or growth rate and/or biomass.
Background
[2] Population growth and climate change threaten to cause water scarcity and food shortage in many parts of the world (Lobell et al., 201 1 , Science 333, 616-620). There is an urgent need to increase yield, water usage efficiency and stress tolerance of food crops (Foresight, 201 1 , Final Project Report: Futures. Government Office for Science, London). A detailed understanding of the molecular entities that underpin plant responses to environmental stress is an essential prerequisite for crop improvement programs. Over the last two decades plant scientists have identified many pieces of the complex signalling network that regulates plant responses to environmental stresses (Cramer et al., 201 1 , BMC Plant Biol. 1 1 .).
[3] US20060162006 describes plant transcription factor polypeptides, polynucleotides that encode them, homologs from a variety of plant species, and methods of using the polynucleotides and polypeptides to produce transgenic plants having advantageous properties compared to a reference plant. Sequence information related to these polynucleotides and polypeptides can also be used in bioinformatic search methods and is also disclosed.
[4] There still remains a need for more methods for increasing stress tolerance and biomass in plants, as well as for nucleic acids and amino acid sequences for use therein. These are provided as described hereafter in the detailed description, the examples and the claims. Summary
[5] In one embodiment, the invention describes a method for increasing the tolerance to stress conditions of a plant, plant part, plant cell or seed or for increasing growth rate and/or biomass of a plant, plant part, plant cell or seed, comprising the step of modulating the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
[6] In another embodiment, said modulating the expression and/or activity of said protein comprises expressing in said plant, plant part, plant cell or seed a chimeric gene comprising the following operably linked elements:
a. A plant-expressible promoter.
b. A nucleic acid which when transcribed yields an RNA molecule that modulates the expression and/or activity of said protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 . c. Optionally, a 3' end region functional in plants.
[7] In another embodiment, said modulating the expression and/or activity of a protein comprises decreasing the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
[8] In another embodiment, said RNA molecule decreases the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
[9] In another embodiment, said RNA molecule comprises at least 21 nucleotides having at least 76% sequence identity to the nucleotide sequence of a gene present in said plant, plant part, plant cell or seed, said gene encoding a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
[10] In another embodiment, said RNA molecule comprises at least 21 nucleotides having at least 76% sequence identity to the complement of the nucleotide sequence of a gene present in said plant, plant part, plant cell or seed, said gene encoding a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
[1 1 ] In another embodiment, said RNA molecule comprises a sense region comprising a nucleotide sequence of at least 21 nucleotides having at least 76% sequence identity to the nucleotide sequence of a gene present in said plant, plant part, plant cell or seed, said gene encoding a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 , and an antisense region comprising a nucleotide sequence of at least 21 nucleotides having at least 76% sequence identity to the complement of the nucleotide sequence of said gene, wherein said sense and antisense region are capable of forming a double stranded RNA region comprising said at least 21 nucleotides.
[12] In another embodiment, said RNA region comprises at least 21 nucleotides having at least 76% sequence identity to a nucleotide sequence encoding a protein having at least 70% sequence identity to a protein as encoded by any one of SEQ ID NO. 2 to 182 and/or at least 21 nucleotides having at least 76% sequence identity to the complement of said nucleotide sequence encoding a protein having at least 70% sequence identity to a protein as encoded by any one of SEQ ID NO. 2 to 182.
[13] In another embodiment, said RNA region comprises at least 21 nucleotides having at least 76% sequence identity to 21 nucleotides having at least 76% sequence identity to any one of SEQ ID NO. 2 to 182, and/or at least 21 nucleotides having at least 76% sequence identity to the complement of any one of SEQ ID NO. 2 to 182.
[14] In another embodiment, said decreasing the expression and/or activity comprises introducing into said plant, plant part, plant cell or seed a knock-out allele of a gene encoding (in its wild-type form) a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
[15] In another embodiment, said stress condition is selected from salt stress, osmotic stress, oxidative stress, drought stress.
[16] The invention also describes chimeric gene as described in any of the above methods.
[17] The invention also describes a mutant allele or knock-out allele of a gene encoding (in its wild-type form) a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
[18] The invention also describes a plant, plant part or plant cell comprising the chimeric gene or the mutant/knockout allele as described above.
[19] The invention also describes the use of the chimeric gene or the mutant allele as described above to produce a plant, plant part, plant cell or seed with increased stress tolerance and/or increased biomass.
Detailed Description
[20] The present invention has thus identified novel polypeptides and polynucleotides which can be used to modulate stress tolerance and/or biomass of a plant, plant part, plant cell or seed. By modulating the expression of the genes identified herein or functional homologues thereof, the stress tolerance and/or biomass of a plant, plant part, plant cell or seed can be modulated. Particularly, starting from the principle that T-DNA insertion leads to gene inactivation, stress tolerance and/or biomass of a plant, plant part, plant cell or seed can be increased by decreasing the transcript and/or protein expression of the genes or functional homologues thereof of which the corresponding T-DNA insertion mutants were found to displays increased stress tolerance and/or growth rate and/or biomass in at least one of the below described assays (see e.g. Example 2 and 3) when compared to control plants. [21 ] Thus, in a first embodiment, the invention describes a method for increasing the tolerance to stress conditions of a plant, plant part, plant cell or seed or for increasing biomass of a plant, plant part, plant cell or seed, comprising the step of modulating the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 (i.e. the protein as encoded by AT5G08330, the coding sequence of which is represented by SEQ ID NO. 2). Optionally, this step is followed by the selection of a plant, plant part, plant cell or seed that has increased stress tolerance and/or increased biomass and/or increased growth rate as compared to control plants.
[22] As used herein "a protein having the activity of the protein with the amino acid sequence of SEQ ID NO. 1 " relates to any functional TCP21 (TCP DOMAIN PROTEIN 21 ) protein, also known as CHE (CCA1 H IKING EXPEDITION). These include for example the plant TCP21/CHE proteins as encoded by any one of SEQ ID NO. 2 to 182. This also includes functional variants thereof, e.g. proteins having at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85% , at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to any of the amino acid sequences cited above that encode a protein having the same function and/or activity.
[23] TCP1 is classified into the class I of the TCP transcription factor family (Yao et al. 2007, J Integr Plant Biol. 49- 885-597). ). Together with AtTCP7, AtTCP8, AtTCP14, AtTCPI 5, AtTCP22, and AtTCP23, it forms a distinct clade when compared to the rest of the factors in this subfamily. TCP21 is expressed in all analysed tissues, i.e. root, inflorescence, silique young and mature leaf, and shoot apex. Phenotypically, T-DNA insertion mutant tcp21 -1 plants were indistinguishable from wildtype. In yeast two-hybrid assays it was found that TCP21 interacts with TCP7 and TCP8 (Aquilar-Martinez and Singa, 2014).
[24] TCP1/CHE specifically binds to the CCA1 promoter fragment encompassing nucleotides (nt) -363 to -192, consistent with this result, a motif present in the promoter fragment bound matches the consensus class I TCP-binding site (TBS) (GGNCCCAC) and was confirmed by EMSA and yeast one-hybrid analysis. The CHE protein was found to interacted with TOC1 in a yeast two-hybrid assay, wherein a direct protein-protein interaction between TOC1 and the N- terminal domain of CHE was observed. This interaction was confirmed by ω-immonoprecipitation. CHE localized to the nucleus and is broadly expressed in Arabidopsis seedlings. It was further shown that TCP21 acts as a repressor of CCA1 , and TCP21 expression is regulated by CCA1 , thus comprising a feedback loop in the circadian clock.
[25] In one embodiment, a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 can be encoded by the nucleic acid sequence of any one of SEQ ID NO. 2 to 182.
[26] The "sequence identity" of two related nucleotide or amino acid sequences, expressed as a percentage, refers to the number of positions in the two optimally aligned sequences which have identical residues (x100) divided by the number of positions compared. A gap, i.e., a position in an alignment where a residue is present in one sequence but not in the other, is regarded as a position with non-identical residues. The "optimal alignment" of two sequences is found by aligning the two sequences over the entire length according to the Needleman and Wunsch global alignment algorithm (Needleman and Wunsch, 1970, J Mol Biol 48(3):443-53) in The European Molecular Biology Open Software Suite (EMBOSS, Rice et al. , 2000, Trends in Genetics 16(6): 276—277; see e.g. http://www.ebi.ac.uk/emboss/align/index.html) using default settings (gap opening penalty = 10 (for nucleotides) / 10 (for proteins) and gap extension penalty = 0.5 (for nucleotides) / 0.5 (for proteins)). For nucleotides the default scoring matrix used is EDNAFULL and for proteins the default scoring matrix is EBLOSUM62.
[27]
Based on the available sequences, the skilled person can isolate homologues sequences or functional variants of the sequences disclosed herein using methods well known in the art, e.g., alignments, either manually or by using computer programs such as BLAST (Altschul et al. (1990), Journal of Molecular Biology, 215, 403410), which stands for Basic Local Alignment Search Tool or ClustalW (Thompson et al. (1994), Nucleic Acid Res., 22, 4673-4680) or any other suitable program which is suitable to generate sequence alignments.
[28] Homologous sequences as described above can comprise orthologous or paralogous sequences. Several different methods are known by those of skill in the art for identifying and defining these functionally homologous sequences. Three general methods for defining orthologous and paralogous genes are described; an ortholog, paralog or homolog may be identified by one or more of the methods described below. Orthologs and paralogs are evolutionarily related genes that have similar sequence and similar functions. Orthologs are structurally related genes in different species that are derived by a speciation event. Paralogs are structurally related genes within a single species that are derived by a duplication event. Within a single plant species, gene duplication may result in two copies of a particular gene, giving rise to two or more genes with similar sequence and often similar function known as paralogs. A paralog is therefore a similar gene formed by duplication within the same species. Paralogs typically cluster together or in the same clade (a group of similar genes) when a gene family phylogeny is analyzed using programs such as CLUSTAL (Thompson, et ah, (1994) Nucleic Acids Res. 22:4673-4680; Higgins, et al, (1996) Methods Enzymol. 266:383402). Groups of similar genes can also be identified with pair- wise BLAST analysis (Feng and Doolittle, (1987) J. Mol. Evol. 25:351 -360). Orthologous sequences can also be identified by a reciprocal BLAST strategy. Once an orthologous sequence has been identified, the function of the ortholog can be deduced from the identified function of the reference sequence. Orthologous genes from different organisms have highly conserved functions, and very often essentially identical functions (Lee, et al, (2002) Genome Res. 12:493-502; Remm, et al, (2001 ) J. Mol. Biol. 314:1041 -1052). Paralogous genes, which have diverged through gene duplication, may retain similar functions of the encoded proteins. In such cases, paralogs can be used interchangeably with respect to certain embodiments of the instant invention (for example, transgenic expression of a coding sequence). [29] Functional variants or homologues of the sequences disclosed herein may also be identified and isolated by hybridization under stringent conditions using as probes identified nucleotide sequences or fragments thereof. For example, homologous sequences from other monocot species than the specific sequences disclosed herein are said to be substantially identical or essentially similar if they can be detected by hybridization under stringent, preferably highly stringent conditions. Stringent conditions are sequence dependent and will be different in different circumstances. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequences at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically stringent conditions will be chosen in which the salt concentration is about 0.02 molar at pH 7 and the temperature is at least 60°C. Lowering the salt concentration and/or increasing the temperature increases stringency. Stringent conditions for RNA-DNA hybridizations (Northern blots using a probe of e.g. 10Ont) are for example those which include at least one wash in 0.2X SSC at 63°C for 20min, or equivalent conditions.
[30] "High stringency conditions" can be provided, for example, by hybridization at 65°C in an aqueous solution containing 6x SSC (20x SSC contains 3.0 M NaCI, 0.3 M Na-citrate, pH 7.0), 5x Denhardt's (100X Denhardt's contains 2% Ficoll, 2% Polyvinyl pyrollidone, 2% Bovine Serum Albumin), 0.5% sodium dodecyl sulphate (SDS), and 20 μg/ml denaturated carrier DNA (single-stranded fish sperm DNA, with an average length of 120 - 3000 nucleotides) as non- specific competitor. Following hybridization, high stringency washing may be done in several steps, with a final wash (about 30 min) at the hybridization temperature in 0.2-0.1 χ SSC, 0.1 % SDS.
[31 ] "Moderate stringency conditions" refers to conditions equivalent to hybridization in the above described solution but at about 60-62°C. Moderate stringency washing may be done at the hybridization temperature in 1 x SSC, 0.1 % SDS.
[32] "Low stringency" refers to conditions equivalent to hybridization in the above described solution at about 50- 52°C. Low stringency washing may be done at the hybridization temperature in 2x SSC, 0.1 % SDS. See also Sambrook et al. (1989) and Sambrook and Russell (2001 ).
[33] Other sequences corresponding to variants or homologues of the sequences disclosed herein may also be obtained by DNA amplification (PCR) using oligonucleotides specific for said sequences as primers, such as but not limited to oligonucleotides comprising or consisting of about 20 to about 50 consecutive nucleotides from the presently disclosed sequences and their complement.
[34] Thus, in one embodiment, the modulating the expression and/or activity of a protein as described above comprises expressing in said plant, plant part, plant cell or seed a chimeric gene comprising the following operably linked elements:
a. A plant-expressible promoter. b. A nucleic acid which when transcribed yields an RNA molecule that modulates the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
c. Optionally, a 3' end region functional in plants
thereby increasing the tolerance to stress conditions and/or increasing biomass of a plant, plant part, plant cell or seed.
[35] A chimeric gene, as used herein, refers to a gene that is made up of heterologous elements that are operably linked to enable expression of the gene, whereby that combination is not normally found in nature. As such, the term "heterologous" refers to the relationship between two or more nucleic acid or protein sequences that are derived from different sources. For example, a promoter is heterologous with respect to an operably linked nucleic acid sequence, such as a coding sequence, if such a combination is not normally found in nature. In addition, a particular sequence may be "heterologous" with respect to a cell or organism into which it is inserted (i.e. does not naturally occur in that particular cell or organism).
[36] The expression "operably linked" means that said elements of the chimeric gene are linked to one another in such a way that their function is coordinated and allows expression of the coding sequence, i.e. they are functionally linked. By way of example, a promoter is functionally linked to another nucleotide sequence when it is capable of ensuring transcription and ultimately expression of said other nucleotide sequence. Two proteins encoding nucleotide sequences, e.g. a transit peptide encoding nucleic acid sequence and a nucleic acid sequence encoding a protein according to the invention, are functionally or operably linked to each other if they are connected in such a way that a fusion protein of first and second protein or polypeptide can be formed.
[37] A gene, e.g. the chimeric gene of the invention, is said to be expressed when it leads to the formation of an expression product. An expression product denotes an intermediate or end product arising from the transcription and optionally translation of the nucleic acid, DNA or RNA, coding for such product, e. g. the second nucleic acid described herein. During the transcription process, a DNA sequence under control of regulatory regions, particularly the promoter, is transcribed into an RNA molecule. An RNA molecule may either itself form an expression product or be an intermediate product when it is capable of being translated into a peptide or protein. A gene is said to encode an RNA molecule as expression product when the RNA as the end product of the expression of the gene is, e. g., capable of interacting with another nucleic acid or protein. Examples of RNA expression products include inhibitory RNA such as e. g. sense RNA (co-suppression), antisense RNA, ribozymes, miRNA or siRNA, mRNA, rRNA and tRNA. A gene is said to encode a protein as expression product when the end product of the expression of the gene is a protein or peptide.
[38] As the skilled person will be well aware, various promoters may be used to promote the transcription of the nucleic acid of the invention, i.e. the nucleic acid which when transcribed yields an RNA molecule that modulates the expression and /or activity of a protein having the activity of a protein having any of the above amino acid sequences Such promoters include for example constitutive promoters, inducible promoters (e.g. stress-inducible promoters, drought-inducible promoters, hormone-inducible promoters, chemical-inducible promoters, etc.), tissue-specific promoters, developmentally regulated promoters and the like.
[39] Thus, a plant expressible promoter can be a constitutive promoter, i.e. a promoter capable of directing high levels of expression in most cell types (in a spatio-temporal independent manner). Examples of plant expressible constitutive promoters include promoters of bacterial origin, such as the octopine synthase (OCS) and nopaline synthase (NOS) promoters from Agrobacterium, but also promoters of viral origin, such as that of the cauliflower mosaic virus (CaMV) 35S transcript (Hapster et al., 1988, Mol. Gen. Genet. 212: 182-190) or 19S RNAs genes (Odell et al., 1985, Nature. 6;313(6005):810-2; U.S. Pat. No. 5,352,605; WO 84/02913; Benfey et al., 1989, EMBO J. 8:2195-2202), the enhanced 2x35S promoter (Kay at al., 1987, Science 236: 1299-1302; Datla et al. (1993), Plant Sci 94:139-149) promoters of the cassava vein mosaic virus (CsVMV; WO 97/48819, US 7,053,205), 2xCsVMV (WO2004/053135) the circovirus (AU 689 31 1 ) promoter, the sugarcane bacilliform badnavirus (ScBV) promoter (Samac et al., 2004, Transgenic Res. 13(4):349-61 ), the figwort mosaic virus (FMV) promoter (Sanger et al., 1990, Plant Mol Biol. 14(3):433- 43), the subterranean clover virus promoter No 4 or No 7 (WO 96/06932) and the enhanced 35S promoter as described in US 5,164,316, US 5,196,525, US 5,322,938, US 5,359,142 and US 5,424,200. Among the promoters of plant origin, mention will be made of the promoters of the plant ribulose-biscarboxylase/oxygenase (Rubisco) small subunit promoter (US 4,962,028; W099/25842) from zea mays and sunflower, the promoter of the Arabidopsis thaliana histone H4 gene (Chaboute et al., 1987), the ubiquitin promoters (Holtorf et al., 1995, Plant Mol. Biol. 29:637-649, US 5,510,474) of Maize, Rice and sugarcane, the Rice actin 1 promoter (Act-1 , US 5,641 ,876), the histone promoters as described in EP 0 507 698 A1 , the Maize alcohol dehydrogenase 1 promoter (Adh-1 ) (from http://www.patentlens.net/daisy/promoters/242.html)). Also the small subunit promoter from Chrysanthemum may be used if that use is combined with the use of the respective terminator (Outchkourov et al., Planta, 216: 1003-1012, 2003).
[40] A variety of plant gene promoters that regulate gene expression in response to environmental, hormonal, chemical, developmental signals, and in a tissue-active manner can be used for expression of a sequence in plants. Choice of a promoter is based largely on the phenotype of interest and is determined by such factors as tissue (e.g., seed, fruit, root, pollen, vascular tissue, flower, carpel, etc.), inducibility (e.g., in response to wounding, heat, cold, drought, light, pathogens, etc.), timing, developmental stage, and the like.
[41 ] Additional promoters that can be used to practice this invention are those that elicit expression in response to stresses, such as the RD29 promoters that are activated in response to drought, low temperature, salt stress, or exposure to ABA (Yamaguchi-Shinozaki et al., 2004, Plant Cell, Vol. 6, 251 -264; WO12/101 1 18), but also promoters that are induced in response to heat (e.g., see Ainley et al. (1993) Plant Mol. Biol. 22: 13-23), light (e.g., the pea rbcS-3A promoter, Kuhlemeier et al. (1989) Plant Cell 1 : 471478, and the maize rbcS promoter, Schaffher and Sheen (1991 ) Plant Cell 3: 997-1012); wounding (e.g., wunl, Siebertz et al. (1989) Plant Cell 1 : 961 -968); pathogens (such as the PR-I promoter described in Buchel et al. (1999) Plant Mol. Biol. 40: 387-396, and the PDF 1.2 promoter described in Manners et al. (1998) Plant Mol. Biol. 38: 1071 -1080), and chemicals such as methyl jasmonate or salicylic acid (e.g., see Gatz (1997) Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 89-108). In addition, the timing of the expression can be controlled by using promoters such as those acting at senescence (e.g., see Gan and Amasino (1995) Science 270: 1986-1988); or late seed development (e.g., see Odell et al. (1994) Plant Physiol. 106: 447458).
[42] Use may also be made of salt-inducible promoters such as the salt-inducible NHX1 promoter of rice landrace Pokkali (PKN) (Jahan et al., 6th International Rice Genetics symposium, 2009, poster abstract P4-37), the salt inducible promoter of the vacuolar ^-pyrophosphatase from Thellungiella halophila (TsVP1 ) (Sun et al., BMC Plant Biology 2010, 10:90), the salt-inducible promoter of the Citrus sinensis gene encoding phospholipid hydroperoxide isoform gpxl (Avsian-Kretchmer et al., Plant Physiology July 2004 vol. 135, p1685-1696).
[43] In alternative embodiments, tissue-specific and/or developmental stage-specific promoters are used, e.g., promoter that can promote transcription only within a certain time frame of developmental stage within that tissue. See, e.g., Blazquez (1998) Plant Cell 10:791 -800, characterizing the Arabidopsis LEAFY gene promoter. See also Cardon (1997) Plant J 12:367-77 , describing the transcription factor SPL3, which recognizes a conserved sequence motif in the promoter region of the A. thaliana floral meristem identity gene API; and Mandel (1995) Plant Molecular Biology, Vol. 29, pp 995-1004, describing the meristem promoter elF4. Tissue specific promoters which are active throughout the life cycle of a particular tissue can be used. In one aspect, the nucleic acids of the invention are operably linked to a promoter active primarily only in cotton fiber cells, in one aspect, the nucleic acids of the invention are operably linked to a promoter active primarily during the stages of cotton fiber cell elongation, e.g., as described by Rinehart (1996) supra. The nucleic acids can be operably linked to the Fbl2A gene promoter to be preferentially expressed in cotton fiber cells (Ibid) . See also, John (1997) Proc. Natl. Acad. Sci. USA 89:5769-5773; John, et al., U.S. Patent Nos. 5,608,148 and 5,602,321 , describing cotton fiber-specific promoters and methods for the construction of transgenic cotton plants. Root- specific promoters may also be used to express the nucleic acids of the invention. Examples of root-specific promoters include the promoter from the alcohol dehydrogenase gene (DeLisle (1990) Int. Rev. Cytol. 123:39-60) and promoters such as those disclosed in U.S. Pat. Nos. 5,618,988, 5,837,848 and 5,905,186. Other promoters that can be used to express the nucleic acids of the invention include, e.g., ovule-specific, embryo-specific, endosperm-specific, integument- specific, seed coat-specific promoters, or some combination thereof; a leaf-specific promoter (see, e.g., Busk (1997) Plant J. 1 1 :1285 1295, describing a leaf-specific promoter in maize); the ORF 13 promoter from Agrobacterium rhizogenes (which exhibits high activity in roots, see, e.g., Hansen (1997) supra); a maize pollen specific promoter (see, e.g., Guerrero (1990) Mol. Gen. Genet. 224: 161 168); a tomato promoter active during fruit ripening, senescence and abscission of leaves, a guard-cell preferential promoter e.g. as described in PCT/EP12/065608, and, to a lesser extent, of flowers can be used (see, e.g., Blume (1997) Plant J. 12:731 746); a pistil-specific promoter from the potato SK2 gene (see, e.g., Ficker (1997) Plant Mol. Biol. 35:425 431 ); the Blec4 gene from pea, which is active in epidermal tissue of vegetative and floral shoot apices of transgenic alfalfa making it a useful tool to target the expression of foreign genes to the epidermal layer of actively growing shoots or fibers; the ovule-specific BELI gene (see, e.g., Reiser (1995) Cell 83:735-742, GenBank No. U39944); and/or, the promoter in Klee, U.S. Patent No. 5,589,583, describing a plant promoter region is capable of conferring high levels of transcription in meristematic tissue and/or rapidly dividing cells. Further tissue specific promoters that may be used according to the invention include: seed-specific promoters (such as the napin, phaseolin or DC3 promoter described in U .S. Pat. No. 5,773,697), fruit-specific promoters that are active during fruit ripening (such as the dru 1 promoter (U.S. Pat. No. 5,783,393), or the 2AI 1 promoter (e.g., see U.S. Pat. No. 4,943,674) and the tomato polygalacturonase promoter (e.g., see Bird et al. (1988) Plant Mol. Biol. 1 1 : 651 -662), flower- specific promoters (e.g., see Kaiser et al. (1995) Plant Mol. Biol. 28: 231 -243), pollen-active promoters such as PTA29, PTA26 and PTAI 3 (e.g., see U.S. Pat. No. 5,792,929) and as described in e.g. Baerson et al. (1994 Plant Mol. Biol. 26: 1947-1959), promoters active in vascular tissue (e.g., see Ringli and Keller (1998) Plant Mol. Biol. 37: 977-988), carpels (e.g., see Ohl et al. (1990) Plant Cell 2:), pollen and ovules (e.g., see Baerson et al. (1993) Plant Mol. Biol. 22: 255- 267). In alternative embodiments, plant promoters which are inducible upon exposure to plant hormones, such as auxins, are used to express the nucleic acids used to practice the invention. For example, the invention can use the auxin- response elements El promoter fragment (AuxREs) in the soybean {Glycine max L.) (Liu (1997) Plant Physiol. 1 15:397- 407); the auxin-responsive Arabidopsis GST6 promoter (also responsive to salicylic acid and hydrogen peroxide) (Chen (1996) Plant J. 10: 955-966); the auxin-inducible parC promoter from tobacco (Sakai (1996) 37:906-913); a plant biotin response element (Streit (1997) Mol. Plant Microbe Interact. 10:933-937); and, the promoter responsive to the stress hormone abscisic acid (ABA) (Sheen (1996) Science 274:1900-1902). Further hormone inducible promoters that may be used include auxin-inducible promoters (such as that described in van der Kop et al. (1999) Plant Mol. Biol. 39: 979-990 or Baumann et al., (1999) Plant Cell 1 1 : 323-334), cytokinin-inducible promoter (e.g., see Guevara-Garcia (1998) Plant Mol. Biol. 38: 743-753), promoters responsive to gibberellin (e.g., see Shi et al. (1998) Plant Mol. Biol. 38: 1053-1060, Willmott et al. (1998) Plant Molec. Biol. 38: 817-825) and the like.
[44] In alternative embodiments, nucleic acids used to practice the invention can also be operably linked to plant promoters which are inducible upon exposure to chemicals reagents which can be applied to the plant, such as herbicides or antibiotics. For example, the maize ln2-2 promoter, activated by benzenesulfonamide herbicide safeners, can be used (De Veylder (1997) Plant Cell Physiol. 38:568-577); application of different herbicide safeners induces distinct gene expression patterns, including expression in the root, hydathodes, and the shoot apical meristem. Coding sequence can be under the control of, e.g., a tetracycline-inducible promoter, e.g. , as described with transgenic tobacco plants containing the Avena sativa L. (oat) arginine decarboxylase gene (Masgrau (1997) Plant J. 1 1 :465 73); or, a salicylic acid-responsive element (Stange (1997) Plant J. 1 1 :1315-1324). Using chemically- {e.g. , hormone- or pesticide) induced promoters, i.e., promoter responsive to a chemical which can be applied to the transgenic plant in the field, expression of a polypeptide of the invention can be induced at a particular stage of development of the plant. Use may also be made of the estrogen-inducible expression system as described in US patent 6,784,340 and Zuo et al. (2000, Plant J. 24: 265-273) to drive the expression of the nucleic acids used to practice the invention.
[45] In alternative embodiments, a promoter may be used whose host range is limited to target plant species, such as com, rice, barley, wheat, potato or other crops, inducible at any stage of development of the crop.
[46] In alternative embodiments, a tissue-specific plant promoter may drive expression of operably linked sequences in tissues other than the target tissue. In alternative embodiments, a tissue-specific promoter that drives expression preferentially in the target tissue or cell type, but may also lead to some expression in other tissues as well, is used.
[47] According to the invention, use may also be made, in combination with the promoter, of other regulatory sequences, which are located between the promoter and the coding sequence, such as transcription activators ("enhancers"), for instance the translation activator of the tobacco mosaic virus (TMV) described in Application WO 87/07644, or of the tobacco etch virus (TEV) described by Carrington & Freed 1990, J. Virol. 64: 1590-1597, for example.
[48] Other regulatory sequences that enhance the expression of the nucleic acid of the invention may also be located within the chimeric gene. One example of such regulatory sequences is introns. Introns are intervening sequences present in the pre-mRNA but absent in the mature RNA following excision by a precise splicing mechanism. The ability of natural introns to enhance gene expression, a process referred to as intron-mediated enhancement (IME), has been known in various organisms, including mammals, insects, nematodes and plants (WO 07/098042, p1 1 -12). IME is generally described as a posttranscriptional mechanism leading to increased gene expression by stabilization of the transcript. The intron is required to be positioned between the promoter and the coding sequence in the normal orientation. However, some introns have also been described to affect translation, to function as promoters or as position and orientation independent transcriptional enhancers (Chaubet-Gigot et al., 2001 , Plant Mol Biol. 45(1 ):17-30, p27-28).
[49] Examples of genes containing such introns include the 5' introns from the rice actin 1 gene (see US5641876), the rice actin 2 gene, the maize sucrose synthase gene (Clancy and Hannah, 2002, Plant Physiol. 130(2):918-29), the maize alcohol dehydrogenase-1 (Adh-1 ) and Bronze-1 genes (Callis et al. 1987 Genes Dev. 1 (10):1 183-200; Mascarenhas et al. 1990, Plant Mol Biol. 15(6):913-20), the maize heat shock protein 70 gene (see US5593874), the maize shrunken 1 gene, the light sensitive 1 gene of Solanum tuberosum, and the heat shock protein 70 gene of Petunia hybrida (see US 5659122), the replacement histone H3 gene from alfalfa (Keleman et al. 2002 Transgenic Res. 1 1 (1 ):69- 72) and either replacement histone H3 (histone H3.3-like) gene of Arabidopsis thaliana (Chaubet-Gigot et al., 2001 , Plant Mol Biol. 45(1 ):17-30).
[50] Other suitable regulatory sequences include 5' UTRs. As used herein, a 5' UTR, also referred to as a leader sequence, is a particular region of a messenger RNA (mRNA) located between the transcription start site and the start codon of the coding region. It is involved in mRNA stability and translation efficiency. For example, the 5' untranslated leader of a petunia chlorophyll a/b binding protein gene downstream of the 35S transcription start site can be utilized to augment steady-state levels of reporter gene expression (Harpster et al., 1988, Mol Gen Genet. 212(1 ):182-90). WO95/006742 describes the use of 5' non-translated leader sequences derived from genes coding for heat shock proteins to increase transgene expression.
[51 ] The chimeric gene may also comprise a 3' end region, i.e. a transcription termination or polyadenylation sequence, operable in plant cells. As a transcription termination or polyadenylation sequence, use may be made of any corresponding sequence of bacterial origin, such as for example the nos terminator of Agrobacterium tumefaciens, of viral origin, such as for example the CaMV 35S terminator, or of plant origin, such as for example a histone terminator as described in published Patent Application EP 0 633 317 A1 . The polyadenylation region can be derived from the natural gene, from a variety of other plant genes, or from T-DNA. The 3' end sequence to be added may be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or less preferably from any other eukaryotic gene.
[52] Another measure to increase the expression of the nucleic acid of the invention that may be applied is optimizing the coding region for expression in the target organism, which may include adapting the codon usage , CG content, and elimination of unwanted nucleotide sequences (e.g. premature polyadenylation signals, cryptic intron splice sites, ATTTA pentamers, CCAAT box sequences, sequences that effect pre-mRNA splicing by secondary RNA structure formation such as long CG or AT stretches).
[53] Stress conditions, as used herein, refers e.g. to stress imposed by the application of chemical compounds (e.g., herbicides, fungicides, insecticides, plant growth regulators, adjuvants, fertilizers), exposure to abiotic stress (e.g., drought, waterlogging, submergence, high light conditions, high UV radiation, increased hydrogen peroxide levels, extreme (high or low) temperatures, ozone and other atmospheric pollutants, soil salinity or heavy metals, hypoxia, anoxia, osmotic stress, oxidative stress, low nutrient levels such as nitrogen or phosphorus etc.) or biotic stress (e.g., pathogen or pest infection including infection by fungi, viruses, bacteria, insects, nematodes, mycoplasms and mycoplasma like organisms, etc.). Stress may also be imposed by hormones such as ABA or compounds influencing hormone activity.
[54] Drought, salinity, extreme temperatures, high light stress and oxidative stress are known to be interconnected and may induce growth and cellular damage through similar mechanisms. Rabbani et al. (Plant Physiol (2003) 133: 1755- 1767) describes a particularly high degree of "cross talk" between drought stress and high-salinity stress. For example, drought and/or salinisation are manifested primarily as osmotic stress, resulting in the disruption of homeostasis and ion distribution in the cell. Oxidative stress, which frequently accompanies high or low temperature, salinity or drought stress, may cause denaturing of functional and structural proteins. As a consequence, these diverse environmental stresses often activate similar cell signalling pathways and cellular responses, such as the production of stress proteins, up- regulation of anti-oxidants, accumulation of compatible solutes and growth arrest. [55] A "control plant" as used herein is generally a plant of the same species which has wild-type levels of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 . "Wild-type levels" of a protein as used herein refers to the typical levels of said protein in a plant as it most commonly occurs in nature. Said control plant has thus not been provided either with a chimeric gene according to the invention nor with a mutant allele according to the invention (as described further below).
[56] Various methods are available in the art to measure the tolerance of plants, plant parts, plant cells or seeds to various stresses, some of which are described in the examples here below. Increased stress tolerance will usually be apparent from the general appearance of the plants and may be measured e.g., by increased biomass production, continued vegetative growth under adverse conditions or higher seed yield. Stress tolerant plants have a broader growth spectrum, i.e. they are able to withstand a broader range of climatological and other abiotic changes, without yield penalty, as compared to control plants. Biochemically, stress tolerance may be apparent as the higher NAD+-NADH /ATP content and lower production of reactive oxygen species of stress tolerant plants compared to control plants under stress condition. Stress tolerance may also be apparent as the higher chlorophyll content, higher germination rates, higher photosynthesis and lower chlorophyll fluorescence under stress conditions in stress tolerant plants compared to control plants under the same conditions.
[57] It will be clear that it is also not required that the plant be grown continuously under the adverse conditions for the stress tolerance to become apparent. Usually, the difference in stress tolerance between a plant or plant cell produced according to the invention and a control plant or plant cell will become apparent even when only a relatively short period of adverse conditions is encountered during growth.
[58] Yield or biomass, as used herein, refers to seed number/weight, fruit number/weight, fresh weight, dry weight, leaf number/area, plant height, branching, boll number/size, fiber length, seed oil content, seed protein content, seed carbohydrate content. An increased growth rate as used herein refers to a period of increased growth or allocation to one or more of these cells or tissues that comprise the aforementioned plant organs.
[59] An increase in biomass or yield or growth can be an increase of at least 2%, or at least 5%, or at least 10%, or at least 15%, or at least 20%, or at least 25%, or at least 30%, or at least 40% , or at least 50%. Said increase is an increase with respect to biomass or yield or growth of control plants.
[60] Thus, a plant made according to the invention expressing a nucleic acid which when transcribed yields an RNA molecule that modulates the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 , can have at least one of the following phenotypes when compared to control plants, especially under adverse conditions (stress conditions) as described above, but also under control conditions, including but not limited to: increased overall plant yield, increased root mass, increased root length, increased leaf size, in creased ear size, increased seed size, increased endosperm size, improved standability, alterations in the relative size of embryos and endosperms leading to changes in the relative levels of protein, oil and/or starch in the seeds, altered floral development, changes in leaf number, altered leaf surface, altered vasculature, altered internodes, alterations in leaf senescence, absence of tassels, absence of functional pollen bearing tassels, or increased plant size when compared to a non-modified plant under normal growth conditions or under adverse conditions, such as water limiting conditions.
[61 ] In one aspect of the invention, stress tolerance and/or growth rate and/or biomass of a plant, plant part, plant cell or seed is increased by decreasing the transcript and/or protein expression of the genes or functional homologues thereof of which the corresponding T-DNA insertion mutants were found to display increased stress tolerance and/or growth rate or biomass in at least one of the below described assays when compared to control plants (i.e. decreased stress sensitivity) and/or growth rate and/or biomass in at least one of the below described assays . Accordingly, in this aspect the modulating the expression and/or activity a protein as described above comprises decreasing the expression and/or activity in said plant, plant part, plant cell or seed of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
[62] An RNA molecule that results in a decreased expression and/or activity of a protein having the activity of a protein having any of the above amino acid sequences can be an RNA encoding a protein which inhibits expression and/or activity of said protein. Further, said RNA molecule can also be an RNA molecule which inhibits expression of a gene which is an activator of expression and/or activity of said protein. Said RNA molecule may also be an RNA molecule that directly inhibits expression and/or activity of a gene present in said plant, plant part, plant cell or seed encoding said protein, such as an RNA which mediates silencing of said gene.
[63] Decreasing the expression and/or activity of a protein having the activity of a protein having any of the above amino acid sequences can be decreasing the amount of functional protein produced. Said decrease can be a decrease with at least 30%, 40%, 50%, 60% , 70%, 80%, 90%, 95% or 100% (i.e. no functional protein is produced by the cell) as compared to the amount of functional protein produced by a cell with wild type expression levels and activity of said protein. Said decrease in expression and/or activity can be a constitutive decrease in the amount of functional protein produced. Said decrease can also be a temporal/inducible decrease in the amount of functional protein produced.
[64] The expression and/or activity of a protein having the activity of a protein having any of the above amino acid sequences can conveniently be reduced or eliminated by transcriptional or post-transcriptional silencing of the expression of the endogenous gene(s) present in said plant, plant part, plant cell or seed encoding said protein. To this end and within the chimeric gene described above, a silencing RNA molecule is introduced in the plant cells targeting the endogenous genes. As used herein, "silencing RNA" or "silencing RNA molecule" refers to any RNA molecule, which upon introduction into a plant cell, reduces the expression of a target gene. Such silencing RNA may e.g. be so-called "antisense RNA", whereby the RNA molecule comprises a sequence of at least 20 consecutive nucleotides having 95% sequence identity to the complement of the sequence of the target nucleic acid, preferably the coding sequence of the target gene. However, antisense RNA may also be directed to regulatory sequences of target genes, including the promoter sequences and transcription termination and polyadenylation signals. Silencing RNA further includes so-called "sense RNA" whereby the RNA molecule comprises a sequence of at least 20 consecutive nucleotides having 95% sequence identity to the sequence of the target nucleic acid. Other silencing RNA may be "unpolyadenylated RNA" comprising at least 20 consecutive nucleotides having 95% sequence identity to the complement of the sequence of the target nucleic acid, such as described in WO01 /12824 or US6423885 (both documents herein incorporated by reference). Yet another type of silencing RNA is an RNA molecule as described in WO03/076619 (herein incorporated by reference) comprising at least 20 consecutive nucleotides having at least 95%, at least 96%, at least 97% at least 98%, at least 99% or 100% sequence identity to the sequence of the target nucleic acid or the complement thereof, and further comprising a largely-double stranded region as described in WO03/076619 (including largely double stranded regions comprising a nuclear localization signal from a viroid of the Potato spindle tuber viroid-type or comprising CUG trinucleotide repeats). Silencing RNA may also be double stranded RNA comprising a sense and antisense strand as herein defined, wherein the sense and antisense strand are capable of base-pairing with each other to form a double stranded RNA region (preferably the said at least 20 consecutive nucleotides of the sense and antisense RNA are complementary to each other). The sense and antisense region may also be present within one RNA molecule such that a hairpin RNA (hpRNA) can be formed when the sense and antisense region form a double stranded RNA region. hpRNA is well-known within the art (see e.g WO99/53050, herein incorporated by reference). The hpRNA may be classified as long hpRNA, having long, sense and antisense regions which can be largely complementary, but need not be entirely complementary (typically larger than about 200 bp, ranging between 200-1000 bp). hpRNA can also be rather small ranging in size from about 30 to about 42 bp, but not much longer than 94 bp (see WO04/073390, herein incorporated by reference). An ihpRNA is an intron-containing hairpin RNA, which has the same general structure as an hpRNA, but the RNA molecule additionally comprises an intron in the loop of the hairpin that is capable of being spliced in the cell in which the ihpRNA is expressed. The use of an intron minimizes the size of the loop in the hairpin RNA molecule following splicing, and this increases the efficiency of interference. See, for example, Smith et al (2000) Nature 407:319-320. In fact, Smith et al, show 100% suppression of endogenous gene expression using ihpRNA-mediated interference. In some embodiments, the intron is the ADHI intron 1 . Methods for using ihpRNA interference to inhibit the expression of endogenous plant genes are described, for example, in Smith et al, (2000) Nature 407:319-320; Waterhouse and Helliwell, (2003) Nat. Rev. Genet. 4:29-38; Helliwell and Waterhouse, (2003) Methods 30:289-295 and US2003180945, each of which is herein incorporated by reference. A transient assay for the efficiency of hpRNA constructs to silence gene expression in vivo has been described by Panstruga, et al. (2003). The chimeric gene for hpRNA interference may also be designed such that the sense sequence and the antisense sequence do not correspond to an endogenous RNA. In this embodiment, the sense and antisense sequence flank a loop sequence that comprises a nucleotide sequence corresponding to all or part of the endogenous messenger RNA of the target gene present in the plant. Thus, it is the loop region that determines the specificity of the RNA interference. See, for example, WO0200904 herein incorporated by reference.
[65] A silencing RNA may also encode an artificial micro-RNA (mi-RNA) molecule as described e.g. in Schwab et al. 2006 (Plant Cell 18: 1 121 -1 133), WO2005/052170, WO2005/047505 or US 2005/0144667, or ta-siRNAs as described in WO2006/074400 (all documents incorporated herein by reference). ). MiRNAs are about 21 nucleotides in length and in plants up to 5 mismatches to their target sequence are allowed (Schwab et al. 2006, supra).
[66] Within the chimeric genes of the invention, also amplicon chimeric genes can be used. Amplicon chimeric genes according to the invention comprise a plant virus-derived sequence that contains all or part of the target gene but generally not all of the genes of the native virus. The viral sequences present in the transcription product of the chimeric gene allow the transcription product to direct its own replication. The transcripts produced by the amplicon may be either sense or antisense relative to the target sequence. Methods of using amplicons to inhibit the expression of endogenous plant genes are described, for example, in US6635805, which is herein incorporated by reference.
[67] In some embodiments, the nucleic acid expressed by the chimeric gene of the invention is catalytic RNA or has ribozyme activity specific for the target sequence. Thus, the polynucleotide causes the degradation of the endogenous messenger RNA transcribed from the target gene/sequence, resulting in reduced expression of the protein present in the plant. This method is described, for example, in US4987071 , herein incorporated by reference.
[68] In one embodiment, the nucleic acid expressed by the chimeric gene of the invention encodes a zinc finger protein that binds to the gene encoding said protein, resulting in reduced expression of the target gene. In particular embodiments, the zinc finger protein binds to a regulatory region of said gene, thereby reducing gene transcription. In other embodiments, the zinc finger protein binds to the coding region thereby preventing its transcription. Methods of selecting sites for targeting by zinc finger proteins have been described, for example, in US6453242, and methods for using zinc finger proteins to inhibit the expression of genes in plants are described, for example, in US2003/0037355, each of which is herein incorporated by reference.
[69] In another embodiment, the nucleic acid expressed by the chimeric gene of the invention encodes a TALE protein that binds to a gene encoding said protein, resulting in reduced expression of the gene. In particular embodiments, the TALE protein binds to a regulatory region of said gene, thereby reducing gene transcription. In other embodiments, the TALE protein binds to the coding region thereby preventing its transcription. Methods of selecting sites for targeting by TALE proteins have been described in e.g. Moscou et al (2009, Science 326:1501 ) and Morbitzer et al (2010, Proc Natl Acad Sci USA 107:21617-21622). [70] In another embodiment, the nucleic acid expressed by the chimeric gene of the invention encodes a CAS9- based repressor - guide RNA complex that binds to a gene encoding said protein, resulting in reduced expression of the gene. In particular embodiments, said complex binds to a regulatory region of said gene, thereby reducing gene transcription. In other embodiments, the complex binds to the coding region thereby preventing its transcription. How to modify the CRISPR/CAS system for use in targeted gene repression ("CRISPRi") is e.g. described in Mali et al.,(2013, Science 339: 823), US61/765576 and WO2013176772.
[71 ] In a further embodiments, the nucleic acid expressed by the chimeric gene of the invention encodes a nuclease, e.g. a meganuclease, zinc finger nuclease, TALEN, or CRISPR/CAS nuclease that specifically inactivates the endogenous target gene by recognizing and cleaving a sequence specific for said endogenous target gene. Using a template DNA, also specific mutations can be introduced into the gene. Chimeric genes encoding such nuclease can be removed afterwards by segregation.
[72] In some embodiments, to reduce or decrease the expression and/or activity of a protein having the activity of a protein having any of the above amino acid sequences (i.e. the target protein), a nucleic acid encoding an RNA molecule which is translated into a polypeptide can be introduced into a plant within the chimeric gene according to the invention, wherein the polypeptide is capable of reducing the expression and/or activity of said protein directly, i.e. the RNA molecule encodes an inhibitory protein or polypeptides.
[73] In one embodiment, such an inhibitory protein or polypeptide can be an antibody (including a nanobody etc) that binds to the target protein present in the plant and reduces the activity thereof. In another embodiment, the binding of the antibody results in increased turnover of the antibody complex by cellular quality control mechanisms. The expression of antibodies in plant cells and the inhibition of molecular pathways by expression and binding of antibodies to proteins in plant cells are well known in the art. See, for example, Conrad and Sonnewald, (2003) Nature Biotech. 21 :35-36, incorporated herein by reference.
[74] In another embodiment, such inhibitory protein or polypeptide may also be a dominant negative protein or protein fragment of the target protein.
[75] In an alternative embodiment, decreasing the expression and/or activity of a protein having the activity of a protein having any of the above amino acid sequences can be achieved by contacting the plant or plant cell with molecules interfering with the function of the endogenous protein present in the plant, e. g. by triggering aggregation of the target protein (interferor peptides) as e.g. described in WO2007/071789 and WO2008/148751 . [76] In an even further embodiment, decreasing the expression and/or activity the target protein according to the invention can be achieved by contacting the plant or plant cell can with so-called alphabodies specific for said protein present in the plant, i.e. non-natural proteinaceous molecules that can antagonize protein function, as e.g. described in WO2009/030780, WO2010/066740 and WO2012/092970.
[77] In alternative embodiments, decreasing the expression and/or activity of protein having the activity of a protein having any of the above amino acid sequences can be achieved by inhibition of the expression of said protein present in the plant. Inhibition of the expression of said protein can be induced at the desired moment using a spray (systemic application) with inhibitory nucleic acids, such as RNA or DNA molecules that function in RNA-mediated gene silencing (similar to the above described molecules), as e.g. described in WO2011/112570 (incorporated herein by reference).
[78] Thus, in a further embodiment, said RNA is a silencing RNA molecule, said molecule comprising:
a. at least 21 nucleotides having at least 76% sequence identity the nucleotide sequence of a gene present in said plant, plant part, plant cell or seed encoding a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1., present in said plant;
b. at least 21 nucleotides having at least 76% sequence identity the complement of the nucleotide sequence of a gene present in said plant, plant part, plant cell or seed encoding a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1., present in said plant; or
c. a sense region comprising a nucleotide sequence of at least 21 nucleotides having at least 76% sequence identity to the nucleotide sequence of a gene present in said plant, plant part, plant cell or seed encoding a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 and an antisense region comprising a nucleotide sequence of at least 21 nucleotides having at least 76% sequence identity to the complement of the nucleotide sequence of said gene present in said plant, wherein said sense and antisense region are capable of forming a double stranded RNA region comprising said at least 21 nucleotides.
[79] At least 76% sequence identity (e.g. 5 mismatches to the target sequence over a stretch of consecutive 21 nucleotides) in this respect can be at least 80% sequence identity (e.g. 4 mismatches over 21 nt), at least 85% sequence identity (e.g. 3 mismatches over 21 nt), at least 90% sequence identity (e.g. 2 mismatches over 21 nt), at least 95% sequence identity (e.g. 1 mismatch over 21 nt) or 100% sequence identity (no mismatches).
[80] As mentioned above, "a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 " relates to a protein having the amino acid sequence as encoded by any one of SEQ ID NO. 2 to 182, but also to functional variants of such proteins, e.g. proteins having at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity thereto and having the same function and/or activity. [81 ] Thus, in a further embodiment, the gene present in said plant, plant part, plant cell or seed encodes a protein having the amino acid sequence as encoded by any one of SEQ ID NO. 2 to 182. Accordingly, the inhibitory RNA molecule may comprise at least 21 nucleotides having at least 76% sequence identity to a nucleotide sequence encoding a protein having the amino acid sequence as encoded by any one of SEQ ID NO. 2 to 182 and/or the complement thereof.
[82] Accordingly, in an even further embodiment, the gene present in said plant, plant part, plant cell or seed encoding a protein having the activity of a protein having any of the above the amino acid sequences can have the nucleic acid sequence of any one of SEQ ID NO. 2 to 182. Accordingly, the inhibitory RNA molecule may comprise at least 21 nucleotides having at least 76% sequence identity to the nucleic acid sequence of any one of SEQ ID NO. 2 to 182 and/or the complement thereof.
[83] In again another embodiment, methods according the invention are provided wherein reducing the expression and/activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 , comprises the step of introducing a knock-out allele of an endogenous gene encoding such a protein.
[84] A "knock-out allele" as used herein is an allele which is mutated as compared to the wild type allele (i.e. it is a mutant allele) and which encodes a non-functional protein (i.e. a protein having no activity) or results in a significantly reduced amount of protein (by for example a mutation in a regulatory region such as the promoter), or which encodes a protein with significantly reduced activity. Said "knock-out allele" can be a mutant allele, which may encode no protein, or which may encode a non-functional protein or a protein with significantly reduced function, such as a mutant protein or a truncated protein. The allele may also be referred to as an inactivated allele.
[85] Said "significantly reduced amount of protein" can be a reduction in the amount (or levels) of protein produced by the cell comprising a knock-out allele by at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 100% (i.e. no protein is produced by the allele) as compared to the amount of the protein produced by the corresponding wild-type allele. The amount or level of a transcript (e.g. an mRNA) encoding a protein or the amount of level of a protein itself can be measured according to various methods known in the art such as (quantitative) RT-PCR, northern blotting, microarray analysis, western blotting, ELISA and the like.
[86] A "significantly reduced activity" can be a reduction in the activity of the protein produced by the cell comprising a knock-out allele of said protein by at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 100% (i.e. no protein activity) as compared to the activity of the corresponding wild-type allele. [87] A "wild-type allele" as used herein refers to a typical form of an allele as it most commonly occurs in nature, such as the alleles as represented by the nucleic acid sequence described in this application, e.g. any one of SEQ ID NO. 2 to 182.
[88] Basically, any mutation in the wild type nucleic acid sequences which results in a protein comprising at least one amino acid insertion, deletion and/or substitution relative to the wild type protein can lead to significantly reduced or no biological activity. It is, however, understood that certain mutations in the protein are more likely to result in a complete abolishment of the biological activity of the protein, such as mutations whereby significant portions of the functional domains are lacking.
[89] A "mutant gene" or a "mutant allele" refers to a gene or allele comprising one or more mutations, such as a "missense mutation", a "nonsense mutation" or "STOP codon mutation" (including a mutation resulting in no functional protein ("knock-out allele of a gene"), an "insertion mutation", a "deletion mutation" or a "frameshift mutation" (the latter two including one or more mutations resulting in a "knock-out allele") with respect to the corresponding wild-type gene or allele, such as such as the genes and alleles as described in this application, e.g. as represented any one of SEQ ID NO. 2 to 182 or as encoding a protein as encoded by any one of SEQ ID NO. 2 to 182.
[90] A nonsense mutation in an allele, as used herein, is a mutation in an allele whereby one or more translation stop codons are introduced into the coding DNA and the corresponding mRNA sequence of the corresponding wild type allele. Translation stop codons are TGA (UGA in the mRNA), TAA (UAA) and TAG (UAG). Thus, any mutation (deletion, insertion or substitution) that leads to the generation of an in-frame stop codon in the coding sequence will result in termination of translation and truncation of the amino acid chain. Thus, a full knockout mutant allele may comprise a nonsense mutation wherein an in-frame stop codon is introduced in the coding sequence by a single nucleotide substitution, such as the mutation of CAG to TAG, TGG to TAG, TGG to TGA, or CAA to TAA. Alternatively, a full knockout mutant allele may comprise a nonsense mutation wherein an in-frame stop codon is introduced in the coding sequence by double nucleotide substitutions, such as the mutation of CAG to TAA, TGG to TAA, or CGG to TAG or TGA. A full knockout mutant allele may further comprise a nonsense mutation wherein an in-frame stop codon is introduced in the coding sequence by triple nucleotide substitutions, such as the mutation of CGG to TAA. The truncated protein lacks the amino acids encoded by the coding DNA downstream of the mutation (i.e. the C-terminal part of the protein) and maintains the amino acids encoded by the coding DNA upstream of the mutation (i.e. the N-terminal part of the protein).
[91 ] A missense mutation in an allele, as used herein, is any mutation (deletion, insertion or substitution) in an allele whereby one or more codons are changed in the coding DNA and the corresponding mRNA sequence of the corresponding wild type allele, resulting in the substitution of one or more amino acids in the wild type protein for one or more other amino acids in the mutant protein. [92] A frameshift mutation in an allele, as used herein, is a mutation (deletion, insertion, duplication of one or more nucleotides, and the like) in an allele that results in the nucleic acid sequence being translated in a different frame downstream of the mutation.
[93] An "insertion mutation" is present if one or more codons have been added in the coding sequence of the nucleic acid resulting in the presence of one or more amino acids in the translated protein, whereas a "deletion mutation" is present if one or more codons have been deleted in the coding sequence of the nucleic acid resulting in the deletion of one or more amino acids in the translated protein.
[94] Said mutant allele can be introduced into said plant e. g. through mutagenesis. "Mutagenesis", as used herein, refers to the process in which plant cells are subjected to a technique which induces mutations in the DNA of the cells, such as contact with a mutagenic agent, such as a chemical substance (such as ethylmethylsulfonate (EMS), ethylnitrosourea (ENU), etc.) or ionizing radiation (neutrons (such as in fast neutron mutagenesis, etc.), alpha rays, gamma rays (such as that supplied by a Cobalt 60 source), X-rays, UV-radiation, etc.), T-DNA insertion mutagenesis (Azpiroz-Leehan et al. (1997) Trends Genet 13:152-156), transposon mutagenesis (McKenzie et al. (2002) Theor Appl Genet 105:23-33), or tissue culture mutagenesis (induction of somaclonal variations), or a combination of two or more of these. Thus, the desired mutagenesis of one or more genes or alleles may be accomplished by one of the above methods. While mutations created by irradiation are often large deletions or other gross lesions such as translocations or complex rearrangements, mutations created by chemical mutagens are often more discrete lesions such as point mutations. For example, EMS alkylates guanine bases, which results in base mispairing: an alkylated guanine will pair with a thymine base, resulting primarily in G/C to A/T transitions. Following mutagenesis, plants are regenerated from the treated cells using known techniques. For instance, the resulting seeds may be planted in accordance with conventional growing procedures and following pollination seed is formed on the plants. Additional seed that is formed as a result of such pollination in the present or a subsequent generation may be harvested and screened for the presence of mutant alleles. Several techniques are known to screen for specific mutant alleles, e.g., DeleteageneTM (Delete-a-gene; Li et al., 2001 , Plant J 27: 235-242) uses polymerase chain reaction (PCR) assays to screen for deletion mutants generated by fast neutron mutagenesis, TILLING (targeted induced local lesions in genomes; McCallum et al., 2000, Nat Biotechnol 18:455457) identifies EMS-induced point mutations, etc.
[95] Said mutant allele can also be introduced via gene targeting techniques. The term "gene targeting" refers herein to directed gene modification that uses mechanisms such as double stranded DNA break repair via non-homologous end-joining, homologous recombination, mismatch repair or site-directed mutagenesis. The method can be used to replace, insert and delete endogenous sequences or sequences previously introduced in plant cells. Methods for gene targeting can be found in, for example, WO 2006/105946 or WO2009/002150. Double stranded DNA breaks can be induced in a targeted manner using custom designed sequence specific nucleases and nuclease systems such as meganucleases/homing endonucleases, zinc finger nucleases, TALENs or CRISPR/CAS (for a review see Gaj et al., 2013, Trends Biotechnol 31 : 397405). In addition to making mutant alleles, such techniques can also be used to delete entire genes encoding proteins having the activity of a protein having any of the above amino acid sequences.
[96] Said mutant allele can also be introduced through introgression of a mutant allele into said plant.
[97] In a further embodiment, stress tolerance and/or biomass of a plant, plant part, plant cell or seed is increased by decreasing the expression of two or more of the genes or functional homologues thereof of which the corresponding T- DNA insertion mutants were found to display increased stress tolerance and/or biomass compared to control plants. Accordingly, in this embodiment the modulating the expression and/or activity comprises decreasing the expression and/or activity of two or more (e.g. three, four, five etc) proteins having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 ., as described above.
[98] The invention also provides chimeric genes comprising a nucleic acid which when transcribed yields an RNA molecule that modulates the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 ., as described in detail above. Vectors comprising those chimeric genes are also included in the invention.
[99] Nucleic acids (i.e. chimeric genes and mutant alleles) used to practice the invention can be expressed by introduction into a plant cell by any means. For example, nucleic acids or expression constructs can be introduced into the genome of a desired plant host, or, the nucleic acids or chimeric genes can be episomes.
[100] "Introducing" in connection with the present application relates to the placing of genetic information in a plant cell or plant by artificial means, such as transformation. This can be effected by any method known in the art for introducing RNA or DNA into plant cells, tissues, protoplasts or whole plants. In addition to artificial introduction as described above, "introducing" also comprises introgressing genes or alleles as defined further below.
[101 ] Transformation means introducing a nucleotide sequence into a plant in a manner to cause stable or transient expression of the sequence. Transformation and regeneration of both monocotyledonous and dicotyledonous plant cells is now routine, and the selection of the most appropriate transformation technique will be determined by the practitioner. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for given plant types. Suitable methods can include, but are not limited to: electroporation of plant protoplasts; liposome-mediated transformation; polyethylene glycol (PEG) mediated transformation; transformation using viruses; micro-injection of plant cells; micro-projectile bombardment of plant cells; vacuum infiltration; and Agrobacterium- mediated transformation. [102] In alternative embodiments, the invention uses Agrobacterium tumefaciens mediated transformation. Also other bacteria capable of transferring nucleic acid molecules into plant cells may be used, such as certain soil bacteria of the order of the Rhizobiales, e.g. Rhizobiaceae (e.g. Rhizobium spp., Sinorhizobium spp., Agrobacterium spp); Phyllobacteriaceae (e.g. Mesorhizobium spp., Phyllobacterium spp.); Brucellaceae (e.g. Ochrobactrum spp.); Bradyrhizobiaceae (e.g. Bradyrhizobium spp.), and Xanthobacteraceae (e.g. Azorhizobium spp.), Agrobacterium spp., Rhizobium spp., Sinorhizobium spp., Mesorhizobium spp., Phyllobacterium spp. Ochrobactrum spp. and Bradyrhizobium spp., examples of which include Ochrobactrum sp., Rhizobium sp., Mesorhizobium loti, Sinorhizobium meliloti. Examples of Rhizobia include R. leguminosarum bv, trifolii, R. leguminosarum bv,phaseoli and Rhizobium leguminosarum, bv, viciae (US Patent 7,888,552). Other bacteria that can be employed to carry out the invention which are capable of transforming plants cells and induce the incorporation of foreign DNA into the plant genome are bacteria of the genera Azobacter (aerobic), Closterium (strictly anaerobic), Klebsiella (optionally aerobic), and Rhodospirillum (anaerobic, photosynthetically active). Transfer of a Ti plasmid was also found to confer tumor inducing ability on several Rhizobiaceae members such as Rhizobium trifolii, Rhizobium leguminosarum and Phyllobacterium myrsinacearum, while Rhizobium sp. NGR234, Sinorhizobium meliloti and Mesorhizobium loti could indeed be modified to mediate gene transfer to a number of diverse plants (Broothaerts et al., 2005, Nature, 433:629-633).
[103] In alternative embodiments, making transgenic plants or seeds comprises incorporating sequences used to practice the invention and, in one aspect (optionally), marker genes into a target expression construct (e.g., a plasmid), along with positioning of the promoter and the terminator sequences. This can involve transferring the modified gene into the plant through a suitable method. For example, a construct may be introduced directly into the genomic DNA of the plant cell using techniques such as electroporation and microinjection of plant cell protoplasts, or the constructs can be introduced directly to plant tissue using ballistic methods, such as DNA particle bombardment. For example, see, e.g., Christou (1997) Plant Mol. Biol. 35:197-203; Pawlowski (1996) Mol. Biotechnol. 6:17-30; Klein (1987) Nature 327:70-73; Takumi (1997) Genes Genet. Syst. 72:63-69, discussing use of particle bombardment to introduce transgenes into wheat; and Adam (1997) supra, for use of particle bombardment to introduce YACs into plant cells. For example, Rinehart (1997) supra, used particle bombardment to generate transgenic cotton plants. Apparatus for accelerating particles is described U.S. Pat. No. 5,015,580; and, the commercially available BioRad (Biolistics) PDS-2000 particle acceleration instrument; see also, John, U.S. Patent No. 5,608,148; and Ellis, U.S. Patent No. 5, 681 ,730, describing particle-mediated transformation of gymnosperms.
[104] In alternative embodiments, protoplasts can be immobilized and injected with a nucleic acid, e.g., an expression construct. Although plant regeneration from protoplasts is not easy with cereals, plant regeneration is possible in legumes using somatic embryogenesis from protoplast derived callus. Organized tissues can be transformed with naked DNA using gene gun technique, where DNA is coated on tungsten microprojectiles, shot 1 /100th the size of cells, which carry the DNA deep into cells and organelles. Transformed tissue is then induced to regenerate, usually by somatic embryogenesis. This technique has been successful in several cereal species including maize and rice. [105] In alternative embodiments, a third step can involve selection and regeneration of whole plants capable of transmitting the incorporated target gene to the next generation. Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium, typically relying on a biocide and/or herbicide marker that has been introduced together with the desired nucleotide sequences. Plant regeneration from cultured protoplasts is described in Evans et al., Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp. 124-176, MacMillilan Publishing Company, New York, 1983; and Binding, Regeneration of Plants, Plant Protoplasts, pp. 21 -73, CRC Press, Boca Raton, 1985. Regeneration can also be obtained from plant callus, explants, organs, or parts thereof. Such regeneration techniques are described generally in Klee (1987) Ann. Rev. of Plant Phys. 38:467486. To obtain whole plants from transgenic tissues such as immature embryos, they can be grown under controlled environmental conditions in a series of media containing nutrients and hormones, a process known as tissue culture. Once whole plants are generated and produce seed, evaluation of the progeny begins.
[106] Viral transformation (transduction) may also be used for transient or stable expression of a gene, depending on the nature of the virus genome. The desired genetic material is packaged into a suitable plant virus and the modified virus is allowed to infect the plant. The progeny of the infected plants is virus free and also free of the inserted gene. Suitable methods for viral transformation are described or further detailed e. g. in WO 90/12107, WO 03/052108 or WO 2005/098004.
[107] In alternative embodiments, after the chimeric gene is stably incorporated in transgenic plants, it can be introduced into other plants by sexual crossing or introgression, as can a mutant allele according to the invention. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed. Since transgenic expression of the nucleic acids of the invention leads to phenotypic changes, plants comprising the recombinant nucleic acids of the invention can be sexually crossed with a second plant to obtain a final product. Thus, the seed of the invention can be derived from a cross between two transgenic plants of the invention, or a cross between a transgenic or mutant plant of the invention and another plant. The desired effects (e.g., expression of the chimeric gene or mutant allele of the invention to produce a plant in stress tolerance is altered) can be enhanced when both parental plants express the chimeric genes or mutant alleles of the invention. The desired effects can be passed to future plant generations by standard propagation means.
[108] Successful examples of the modification of plant characteristics by transformation with cloned sequences which serve to illustrate the current knowledge in this field of technology, and include for example: U.S. Pat. Nos. 5,571 ,706; 5,677,175; 5,510,471 ; 5,750,386; 5,597,945; 5,589,615; 5,750,871 ; 5,268,526; 5,780,708; 5,538,880; 5,773,269; 5,736,369 and 5,619,042. [109] In alternative embodiments, following transformation, plants are selected using a dominant selectable marker incorporated into the transformation vector. Such a marker can confer antibiotic or herbicide resistance on the transformed plants, and selection of transformants can be accomplished by exposing the plants to appropriate concentrations of the antibiotic or herbicide.
[1 10] In alternative embodiments, after transformed or mutated plants are selected and grown to maturity, those plants showing a modified trait are identified. The modified trait can be any of those traits described above. In alternative embodiments, confirmation that the modified trait is due to changes in expression levels or activity of the transgenic or mutated polypeptide or nucleic acid can be determined by analyzing mRNA expression using Northern blots, RT-PCR or microarrays, or protein expression using immunoblots or Western blots or gel shift assays.
[1 1 1 ] "Introgressing" means the integration of a gene or allele in a plant's genome by natural means, i.e. by crossing a plant comprising the chimeric gene or mutant allele described herein with a plant not comprising said chimeric gene or mutant allele. The offspring can be selected for those comprising the chimeric gene or mutant allele.
[1 12] The nucleic acids and polypeptides used to practice this invention can be expressed in or inserted in any plant cell, organ, seed or tissue, including differentiated and undifferentiated tissues or plants, including but not limited to roots, stems, shoots, cotyledons, epicotyl, hypocotyl, leaves, pollen, seeds, tumor tissue and various forms of cells in culture such as single cells, protoplast, embryos, and callus tissue. The plant tissue may be in plants or in organ, tissue or cell culture.
[1 13] The invention further provides plants, plant cells, organs, seeds or tissues that have been modified so as to have a modulated expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 ., when compared to a control plant. In particular, the invention provides plants, plant cells, organs, seeds or tissues that have been modified so as to have a reduced expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 ., when compared to a control plant.. These include for example transgenic or mutant plants or parts thereof, such as plant cells, organs, seeds or tissues, comprising and expressing the nucleic acids (chimeric genes or mutant alleles) used to practice this invention resulting in a modulated expression and/or activity of a protein having the activity of a protein having the amino acid sequence of any of the above sequences; for example, the invention provides plants, e.g., transgenic or mutant plants or parts thereof, such as, plant cells, organs, seeds or tissues that show improved tolerance to abiotic stress conditions, such as drought stress, osmotic stress, salt stress, oxidative stress; thus, the invention provides stress-tolerant plants, plant cells, organs, seeds or tissues (e.g., crops). The invention also provides plants, e.g., transgenic or mutant plants or parts thereof such as plant cells, organs, seeds or tissues that show improved growth under control conditions; thus, the invention provides plants, plant cells, organs, seeds or tissues (e.g., crops) with increased biomass and/or yield and/or growth rate. The invention further provides plants, e.g., transgenic or mutant plants or parts thereof such as plant cells, organs, seeds or tissues that show improved growth under limiting water conditions; thus, the invention provides drought-tolerant plants, plant cells, organs, seeds or tissues (e.g., crops).
[1 14] A mutant plant, as used herein, refers to a plant comprising a mutant allele according to the invention.
[1 15] The plant, plant part, plant organs and plant cell of the invention comprising a nucleic acid (chimeric gene or mutant allele) used to practice this invention can be dicotyledonous (a dicot) or monocotyledonous (a monocot). Examples of monocots comprising a nucleic acid of this invention, e.g., as monocot transgenic plants of the invention, are grasses, such as meadow grass (blue grass, Poa), forage grass such as festuca, lolium, temperate grass, such as Agrostis, and cereals, e.g., wheat, oats, rye, barley, rice, sorghum, and maize (corn). Examples of dicots comprising a nucleic acid of this invention, e.g., as dicot transgenic plants of the invention, are cotton, tobacco, legumes, such as lupins, potato, sugar beet, pea, bean and soybean, and cruciferous plants (family Brassicaceae), such as cauliflower, rape seed, and the closely related model organism Arabidopsis thaliana. Thus, plant or plant cell comprising a nucleic acid of this invention, including the transgenic plants and seeds of the invention, include a broad range of plants, including, but not limited to, species from the genera Anacardium, Arachis, Asparagus, Atropa, Avena, Brassica, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Cojfea, Cucumis, Cucurbita, Daucus, Elaeis, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoscyamus, Lactuca, Linum, Lolium, Lupinus, Lycopersicon, Malus, Manihot, Majorana, Medicago, Nicotiana, Olea, Oryza, Panieum, Pannisetum, Persea, Phaseolus, Pistachia, Pisum, Pyrus, Prunus, Raphanus, Ricinus, Secale, Senecio, Sinapis, Solarium, Sorghum, Theobromus, Trigonella, Triticum, Vicia, Vitis, Vigna, and Zea.
[1 16] The invention furthermore provides propagating material created from the plant of plants cells of the invention. The creation of propagating material relates to any means known in the art to produce further plants, plant parts or seeds and includes inter alia vegetative reproduction methods (e.g. air or ground layering, division, (bud) grafting, micropropagation, stolons or runners, storage organs such as bulbs, corms, tubers and rhizomes, striking or cutting, twin- scaling), sexual reproduction (crossing with another plant) and asexual reproduction (e.g. apomixis, somatic hybridization).
[1 17] In particular embodiments the plant cell described herein is a non-propagating plant cell, or a plant cell that cannot be regenerated into a plant, or a plant cell that cannot maintain its life by synthesizing carbohydrate and protein from the inorganics, such as water, carbon dioxide, and inorganic salt, through photosynthesis.
[1 18] The invention also provides the use of the chimeric gene or mutant allele according to the invention to produce a plant, plant part, plant cell or seed with increased stress tolerance or increased biomass. Also provided is the use of the plant according to the invention to produce a population of plants, such as crop plants with increased stress tolerance or increased biomass (e.g. increased yield). [1 19] A nucleic acid or polynucleotide, as used herein, can be DNA or RNA, single- or double-stranded. Nucleic acids can be synthesized chemically or produced by biological expression in vitro or even in vivo. Nucleic acids can be chemically synthesized using appropriately protected ribonucleoside phosphoramidites and a conventional DNA/RNA synthesizer. Suppliers of RNA synthesis reagents are Proligo (Hamburg, Germany), Dharmacon Research (Lafayette, CO, USA), Pierce Chemical (part of Perbio Science, Rockford, IL, USA), Glen Research (Sterling, VA, USA), ChemGenes (Ashland, MA, USA), and Cruachem (Glasgow, UK). In connection with the chimeric gene of the present disclosure, DNA includes cDNA and genomic DNA.
[120] The terms "protein" or "polypeptide" as used herein describe a group of molecules consisting of more than 30 amino acids, whereas the term "peptide" describes molecules consisting of up to 30 amino acids. Proteins and peptides may further form dimers, trimers and higher oligomers, i.e. consisting of more than one (poly)peptide molecule. Protein or peptide molecules forming such dimers, trimers etc. may be identical or non-identical. The corresponding higher order structures are, consequently, termed homo- or heterodimers, homo- or heterotrimers etc. The terms "protein" and "peptide" also refer to naturally modified proteins or peptides wherein the modification is effected e.g. by glycosylation, acetylation, phosphorylation and the like. Such modifications are well known in the art.
[121 ] As used herein "comprising" is to be interpreted as specifying the presence of the stated features, integers, steps or components as referred to, but does not preclude the presence or addition of one or more features, integers, steps or components, or groups thereof. Thus, e.g., a nucleic acid or protein comprising a sequence of nucleotides or amino acids, may comprise more nucleotides or amino acids than the actually cited ones, i.e., be embedded in a larger nucleic acid or protein. A chimeric gene comprising a nucleic acid which is functionally or structurally defined, may comprise additional DNA regions etc.
[122] Unless stated otherwise in the Examples, all recombinant DNA techniques are carried out according to standard protocols as described in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, NY and in Volumes 1 and 2 of Ausubel et al. (1994) Current Protocols in Molecular Biology, Current Protocols, USA. Standard materials and methods for plant molecular work are described in Plant Molecular Biology Labfax (1993) by R.D.D. Cray, jointly published by BIOS Scientific Publications Ltd (UK) and Blackwell Scientific Publications, UK. Other references for standard molecular biology techniques include Sambrook and Russell (2001 ) Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press, NY, Volumes I and II of Brown (1998) Molecular Biology LabFax, Second Edition, Academic Press (U K). Standard materials and methods for polymerase chain reactions can be found in Dieffenbach and Dveksler (1995) PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, and in McPherson at al. (2000) PCR - Basics: From Background to Bench, First Edition, Springer Verlag, Germany. [123] All patents, patent applications, and publications or public disclosures (including publications on internet) referred to or cited herein are incorporated by reference in their entirety.
[124] The sequence listing contained in the file named "BCS14-2006_ST25", which is 238 KB (size as measured in Microsoft Windows®), contains 182 sequences SEQ ID NO: 1 through SEQ ID NO: 182, is filed herewith by electronic submission and is incorporated by reference herein.
[125] The invention will be further described with reference to the examples described herein; however, it is to be understood that the invention is not limited to such examples.
Examples
Example 1 ; Plan t material
Plant material
[126] DNA insertion mutants SALKJ 06694 was obtained from NASC (Nottingham Arabidopsis Stock Centre). SALKJ 06694 has a T-DNA insertion in the 3'UTR of AT5G08330. Homozygous lines have been selected and expression analysis (at the RNA level) was conducted. Compared to the WT, expression of the target gene showed no change in SALKJ 06694 (AT5G08330). However, due to the fact that this mutation is located in the 3'UTR, protein expression may still be negatively affected.
Exa mple 2; A biotic stress assays
In vivo drought tolerance assay
[127] For each line (including WT) 60 seeds are sown in 5-6 cm pots, distributed across 20 trays and randomized. Following three days in the vernalisation room (4°C, low light), seeds are transferred to the growth chamber (22°C, 16/8 light/dark condition) and a plastic cover is maintained on the trays for one week. Before proceeding with the experiment quality control assessments are carried out including the assessment of germination percentage. At day 14 after stratification, water deficit treatment is applied. Half of the trays receive normal water regime and the other half are maintained at 7-10% relative soil water content (measured daily using a WETsensor). The rosette diameter is measured on day 14, 28 and 40. At the end of the experiment (40 days), the fresh and dry weight of individual plants are also measured. The rosette diameter of the different lines is compared to the Col8 WT and presented as percentage difference.
In vivo drought tolerance assay Phenopsis
[128] For each line 28 seeds are sown in 8 cm pots, distributed and randomized in 14 plates (2 seeds per plate). Following three days in the stratification room (4°C, low light), seeds are transferred to the growth chamber (22°C, 16/8 light/dark condition) under high humidity (95% RH) for 4 days. Quality control assessments are carried out including the assessment of germination percentage and removal of weeds. At day 5 the humidity of the growth chamber is decreased to 65% RH. At day 14, water deficit treatment is applied. Half of the plants receive normal water regime (50% soil water content (SWC)) and the other half are maintained at 20% SWC (SWC is based on the weight of the pots). Visual picture are taken every day (until the 28th day) so that the plant diameter, compactness and area can be measured and compared to the Col8 WT and presented as percentage difference. In vitro osmotic stress assay
[129] For in vitro stress assays, sorbitol (1 OOmM) is used to investigate the effect of osmotic stress on the growth and performance of tested mutants. 14cm gridded petri dishes containing half MS medium (supplemented with 0.8% agar) are used. Seeds are sterilized using a vapor-phase method (for 1 h) and sown the day after on control and sorbitol- supplemented plates. The gridded plate is split into four to allow the sowing of four different lines. Eight seeds per lines are thus sown in each plate and this is replicated 10 times. In total 80 plants, for each line, are sown either on control or on sorbitol-supplemented medium. The plates are then stored in the dark at 4°C for three days. Following the stratification, plates are transferred to the growth chamber (22°C, 16/8 light/dark) and arranged following a randomized block design. To measure growth rate and biomass parameters, pictures are taken at 11 , 14, 16 and 18 day. The average area of the plants is measured and compared (at each time point) to that of the Col8 WT. The area and growth rate results are presented as percentage difference.
Oxidative stress tolerance assay in multiwell plates
[130] To assess the oxidative stress tolerance, [please supplement if applicable], we used a high throughput 96-well setup. Both mutants and wild type controls were grown in liquid MS medium in multiwell plates for 10 days. Chlorophyll fluorescence (Fv'/Fm'), a robust stress indicator reflecting the efficiency of the photochemical reactions around photosystem II (PSII), is measured before and 0.83 days after the addition of 10 mM of H2O2. Relative values of mutant vs. wild type controls are depicted in the graph.
Example 3: A biotic stress tolerance, growth ra te and biomass
[131 ] Results of the stress tolerance assays are given in table 1 and 2 below. Rosette diameter was larger in the mutant under both control and drought conditions in at least one of the assays, indicating increased stress tolerance but also increased biomass under both control and stress conditions.
Figure imgf000031_0001
[132] Table 1: percentage difference of the rosette diameter manually measured at 14 and 28 days after stratification (respectively D14 and D28) under control or drought stress. The diameter was compared to that of the WT control submitted to the same regime. Values are means of 30 plants. * Significant difference as compared to wt. In vivo drought tolerance assay Phenopsis Control Drought
Mutant gene 14D 28D 14D 28D
SALK_106694 AT5G08330 21.94 -9.37 22.31 * -5.64
[133] Table 2: percentage difference of the rosette diameter measured in the automated Phenopsis platform at 14 and 28 days after stratification (respectively DU and D28, D28) under control or drought stress. The diameter was compared to that of the WT control submitted to the same regime. Values are means of 14 plants. * Significant difference as compared to wt.
Example 4: Downregula tion using inhibitory RNAs
[134] The herein identified sequences or fragments thereof are cloned into a vector for downregulation of the endogenous gene as described elsewhere in this application (e.g. sense, antisense, hairpin or miRNA suppression) and transformed into plants, also as described elsewhere in this application. Downregulation of expression in the transformed plants is confirmed on the RNA and/or protein level. Plants are subjected to abiotic stress assays as described above. Plants are selected that have increased stress tolerance and/or that show increase growth rate or biomass as compared to control plants.

Claims

Claims
1 . A method for increasing the tolerance to stress conditions of a plant, plant part, plant cell or seed or for increasing growth rate and/or biomass of a plant, plant part, plant cell or seed, comprising the step of modulating the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
2. The method according to claim 1 , wherein said modulating the expression and/or activity of said protein comprises expressing in said plant, plant part, plant cell or seed a chimeric gene comprising the following operably linked elements:
a. A plant-expressible promoter,
b. A nucleic acid which when transcribed yields an RNA molecule that modulates the expression and/or activity of said protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .,
c. Optionally, a 3' end region functional in plants.
3. The method according to claim 1 or 2, wherein said modulating the expression and/or activity of a protein comprises decreasing the expression and/or activity of said protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
4. The method of claim 2 or 3, wherein said RNA molecule decreases the expression and/or activity of a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
5. The method of claim 4, wherein said RNA molecule comprises at least 21 nucleotides having at least 76% sequence identity to the nucleotide sequence of a gene present in said plant, plant part, plant cell or seed, said gene encoding a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
6. The method of claim 4, wherein said RNA molecule comprises at least 21 nucleotides having at least 76% sequence identity to the complement of the nucleotide sequence of a gene present in said plant, plant part, plant cell or seed, said gene encoding a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
7. The method of claim 4, wherein said RNA molecule comprises a sense region comprising a nucleotide sequence of at least 21 nucleotides having at least 76% sequence identity to the nucleotide sequence of a gene present in said plant, plant part, plant cell or seed, said gene encoding a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 , and an antisense region comprising a nucleotide sequence of at least 21 nucleotides having at least 76% sequence identity to the complement of the nucleotide sequence of said gene, wherein said sense and antisense region are capable of forming a double stranded RNA region comprising said at least 21 nucleotides.
8. The method of any one of claims 5-7, wherein said RNA region comprises at least 21 nucleotides having at least 76% sequence identity to a nucleotide sequence encoding a protein having at least 70% sequence identity to a protein as encoded by any one of SEQ ID NO. 1 to 182, and/or at least 21 nucleotides having at least 76% sequence identity to the complement of a nucleotide sequence encoding a protein having at least 70% sequence identity to a protein as encoded by any one of SEQ ID NO. 2. to 182.
9. The method of any one of claims 5-8, wherein said RNA region comprises at least 21 nucleotides having at least 76% sequence identity to any one of SEQ ID NO. 2 to SEQ ID NO. 182, and/or at least 21 nucleotides having at least 76% sequence identity to the complement of any one of SEQ ID NO. 2 to 182.
10. The method of claim 3, wherein said decreasing the expression and/or activity comprises introducing into said plant, plant part, plant cell or seed a knock-out allele of a gene encoding a protein having the activity of a protein having the amino acid sequence of SEQ ID NO. 1 .
1 1 . The method of any one of claims 1 -10, wherein said stress condition is selected from salt stress, osmotic stress, oxidative stress, drought stress.
12. A chimeric gene as described in any one of claims 2-9.
13. A knock-out allele as described in claim 10.
14. A plant, plant part or plant cell comprising the chimeric gene of claim 12
15. A plant, plant part or plant cell comprising the knock-out allele of claim 13.
16. Use of the chimeric gene of claim 12 or the mutant allele of claim 13 to produce a plant, plant part, plant cell or seed with increased stress tolerance and/or increased growth rate and/or biomass.
PCT/EP2015/071210 2014-10-03 2015-09-16 Methods and means for increasing stress tolerance and biomass in plants WO2016050509A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14187609.4 2014-10-03
EP14187609 2014-10-03

Publications (1)

Publication Number Publication Date
WO2016050509A1 true WO2016050509A1 (en) 2016-04-07

Family

ID=51655628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/071210 WO2016050509A1 (en) 2014-10-03 2015-09-16 Methods and means for increasing stress tolerance and biomass in plants

Country Status (1)

Country Link
WO (1) WO2016050509A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014327A2 (en) * 2001-08-09 2003-02-20 Mendel Biotechnology, Inc. Stress-related polynucleotides and polypeptides in plants
WO2010045218A1 (en) * 2008-10-13 2010-04-22 Board Of Regents, The University Of Texas System Molecular clock mechanism of hybrid vigor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014327A2 (en) * 2001-08-09 2003-02-20 Mendel Biotechnology, Inc. Stress-related polynucleotides and polypeptides in plants
WO2010045218A1 (en) * 2008-10-13 2010-04-22 Board Of Regents, The University Of Texas System Molecular clock mechanism of hybrid vigor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
I. L. VIOLA ET AL: "Redox Modulation of Plant Developmental Regulators from the Class I TCP Transcription Factor Family", PLANT PHYSIOLOGY., vol. 162, no. 3, 1 July 2013 (2013-07-01), US, pages 1434 - 1447, XP055225814, ISSN: 0032-0889, DOI: 10.1104/pp.113.216416 *
J. L. PRUNEDA-PAZ ET AL: "A Functional Genomics Approach Reveals CHE as a Component of the Arabidopsis Circadian Clock", SCIENCE, vol. 323, no. 5920, 13 March 2009 (2009-03-13), US, pages 1481 - 1485, XP055225826, ISSN: 0036-8075, DOI: 10.1126/science.1167206 *
MARTIN-TRILLO M ET AL: "TCP genes: a family snapshot ten years later", TRENDS IN PLANT SCIENCE, ELSEVIER SCIENCE, OXFORD, GB, vol. 15, no. 1, 1 January 2010 (2010-01-01), pages 31 - 39, XP026835558, ISSN: 1360-1385, [retrieved on 20091204] *

Similar Documents

Publication Publication Date Title
US20190330649A1 (en) Plant Grain Trait-Related Protein, Gene, Promoter and SNPS and Haplotypes
US20080229448A1 (en) Plant Stress Tolerance from Modified Ap2 Transcription Factors
EP1668140A2 (en) Regulation of plant biomass and stress tolerance
AU2020201507B2 (en) Methods and means for modulating flowering time in monocot plants
US20180037903A1 (en) Methods and means for increasing stress tolerance and biomass in plants
CN102202493B (en) Salinity tolerance in plants
WO2009040665A2 (en) Plants having increased biomass
EP2044107A1 (en) Use of plant chromatin remodeling genes for modulating plant architecture and growth
US10689660B2 (en) Compositions and methods for mediating plant stomatal development in response to carbon dioxide and applications for engineering drought tolerance in plants
CA2826254A1 (en) Compositions and methods for controlling carbon dioxide- (co2-) regulated stomatal apertures, water transpiration and water use efficiency in plants
WO2014113605A1 (en) Proteins involved in plant stress response
WO2017009253A1 (en) Methods and means for increasing stress tolerance and biomass in plants
WO2008157157A2 (en) Drought-resistant plants and method for producing the plants
WO2016050511A1 (en) Methods and means for increasing stress tolerance and biomass in plants
US20130031669A1 (en) Plant transcriptional regulators of abiotic stress ii
WO2016050509A1 (en) Methods and means for increasing stress tolerance and biomass in plants
WO2016050510A2 (en) Methods and means for increasing stress tolerance and biomass in plants
WO2016050512A1 (en) Methods and means for increasing stress tolerance and biomass in plants
WO2008075352A1 (en) Stress response genes useful for generating stress tolerant plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15763599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15763599

Country of ref document: EP

Kind code of ref document: A1