WO2016049935A1 - 无线局域网的帧传输方法和装置 - Google Patents

无线局域网的帧传输方法和装置 Download PDF

Info

Publication number
WO2016049935A1
WO2016049935A1 PCT/CN2014/088067 CN2014088067W WO2016049935A1 WO 2016049935 A1 WO2016049935 A1 WO 2016049935A1 CN 2014088067 W CN2014088067 W CN 2014088067W WO 2016049935 A1 WO2016049935 A1 WO 2016049935A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
cyclic prefix
length
frame
field
Prior art date
Application number
PCT/CN2014/088067
Other languages
English (en)
French (fr)
Inventor
刘乐
罗毅
蒙托里西⋅基多
贝勒迪多⋅塞吉奥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/088067 priority Critical patent/WO2016049935A1/zh
Priority to CN201480081174.3A priority patent/CN106664600B/zh
Priority to EP14903151.0A priority patent/EP3182753B1/en
Publication of WO2016049935A1 publication Critical patent/WO2016049935A1/zh
Priority to US15/472,887 priority patent/US10390260B2/en
Priority to US16/516,676 priority patent/US10952097B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a frame transmission method and apparatus for a wireless local area network.
  • the 802.11 protocol family developed by the Institute of Electrical and Electronics Engineers is a standard for Wireless Local Access Network (WLAN). It is based on Orthogonal Frequency Division Multiplexing (OFDM).
  • the WLAN standard of the technology consists of gradual evolution of 802.11a, 802.11n, 802.11ac, etc., and is still evolving. With the development and gradual popularization of WLAN, the coexistence of WLAN devices supporting different standards will exist for a long time. In order to achieve backward compatibility, a new generation of standard access points (APs) and terminals (Stations, STAs) need to be able to support the previous system.
  • APs access points
  • STAs terminals
  • a WLAN device adopting a new generation system needs to have the ability to identify a specific WLAN system frame, and the specific WLAN system has Frames do not affect the reception of frames of other standards.
  • Embodiments of the present invention provide a frame transmission method and apparatus for a wireless local area network, which are used to identify different WLAN systems.
  • the present invention provides a frame transmission method for a wireless local area network, where the method includes:
  • the frame includes a user common signaling field and a traditional signaling field, where the user common signaling field includes a first symbol and a subsequent N second symbols, where N is a positive integer, and the first symbol further includes a first symbol cyclic prefix, the first symbol further comprising a first symbol cyclic suffix, each of the N second symbols further including a second symbol cyclic prefix, wherein the first symbol
  • the length of the cyclic prefix is the same as the length of the cyclic prefix of the conventional signaling field
  • the length of the first symbol cyclic suffix is the difference between the long guard time minus the length of the cyclic prefix of the traditional signaling field, and the length of the second symbol cyclic prefix is the long guard time;
  • the frame is sent to a wireless local area network WLAN device.
  • the long guard time is twice the cyclic prefix length of the traditional signaling field, and the length of the first symbol cyclic suffix is cyclically prefixed with the traditional signaling field.
  • the length is the same.
  • the long guard time is three times the cyclic prefix length of the traditional signaling field
  • the length of the first symbol cyclic suffix is a cyclic prefix length of the traditional signaling field. 2 times.
  • the first symbol cyclic prefix and the last one of the first symbols is the same.
  • the first symbol cyclic suffix and the first one of the first symbols is the same.
  • the second symbol cyclic prefix and the last one of the second symbols are the same.
  • the frame further includes a repeated traditional signaling field, the repeated tradition
  • the signaling field is located before the user common signaling field
  • the legacy signaling field includes a legacy signaling symbol and a cyclic prefix of the legacy signaling symbol.
  • the frame further includes a traditional long training field and a repeated traditional long training field
  • the repeated conventional long training field is located before the user common signaling field
  • the repeated conventional long training field includes a second symbol of the traditional long training field and a second symbol of the traditional long training field The cyclic prefix.
  • the frame further includes a repeated first symbol and a repeated first symbol A ring prefix, the repeated first symbol and the repeated first symbol cyclic prefix are located before the user common signaling field.
  • the present invention provides a frame transmission method for a wireless local area network, where the method includes:
  • the first symbol further includes a first symbol cyclic prefix, the first symbol further including a first symbol cyclic suffix, and each of the N second symbols further includes a second symbol cyclic prefix, where
  • the length of the first symbol cyclic prefix is the same as the length of the traditional signaling field cyclic prefix, and the length of the first symbol cyclic suffix is a difference between the long guard time minus the cyclic length of the traditional signaling field.
  • the length of the second symbol cyclic prefix is the long guard time;
  • the method further includes:
  • the frame is a standard frame.
  • the method further includes:
  • the frame is a standard frame.
  • the method further includes:
  • the conventional long training field includes two conventional long training symbols and a conventional long training symbol cyclic prefix.
  • the method further includes:
  • the frame is a standard frame.
  • the method further includes:
  • the present invention provides a wireless local area network device, the device comprising:
  • a processor configured to generate a frame, where the frame includes a user common signaling field and a traditional signaling field, where the user common signaling field includes a first symbol and a subsequent N second symbols, where N is a positive integer, where The first symbol further includes a first symbol cyclic prefix, and the first symbol further includes a first symbol cyclic suffix, and each of the N second symbols further includes a second symbol cyclic prefix, where The length of the first symbol cyclic prefix is the same as the length of the traditional signaling field cyclic prefix, and the length of the first symbol cyclic suffix is a difference between a long guard time minus a length of a cyclic prefix of the traditional signaling field, The length of the second symbol cyclic prefix is the long guard time;
  • a transmitter for transmitting the frame to a wireless local area network WLAN device a transmitter for transmitting the frame to a wireless local area network WLAN device.
  • the long guard time is twice the cyclic prefix length of the traditional signaling field, and the length of the first symbol cyclic suffix is cyclically prefixed with the traditional signaling field.
  • the length is the same.
  • the long guard time is three times the cyclic prefix length of the traditional signaling field
  • the length of the first symbol cyclic suffix is a cyclic prefix length of the traditional signaling field. 2 times.
  • the first symbol cyclic prefix and the last one of the first symbols is the same.
  • the first symbol cyclic suffix and the first one of the first symbols is the same.
  • the second symbol cyclic prefix and the last one of the second symbols are the same.
  • the frame further includes a repeated traditional signaling field, the repeated tradition
  • the signaling field is located before the user common signaling field
  • the legacy signaling field includes a legacy signaling symbol and a cyclic prefix of the legacy signaling symbol.
  • the frame further includes a traditional long training field and a repeated traditional long training field,
  • the repeated conventional long training field is located before the user common signaling field, and the repeated conventional long training field includes a second symbol of the traditional long training field and a second symbol of the traditional long training field The cyclic prefix.
  • the frame further includes a repeated first symbol and a repeated first symbol cycle
  • the prefix, the repeated first symbol and the repeated first symbol cyclic prefix are located before the user common signaling field.
  • the present invention provides a wireless local area network device, the device comprising:
  • a receiver configured to receive a frame sent by a WLAN device of a wireless local area network, where the frame includes a user common signaling field and a traditional signaling field, where the user common signaling field includes a first symbol and a subsequent N second symbols, where N is a positive integer, the first symbol further includes a first symbol cyclic prefix, the first symbol further includes a first symbol cyclic suffix, and each of the N second symbols further includes a second a symbol cyclic prefix, wherein a length of the first symbol cyclic prefix is the same as a length of a cyclic prefix of the traditional signaling field, and a length of the first symbol cyclic suffix is a long guard time minus the traditional signaling field loop a difference between the prefix lengths, where the length of the second symbol cyclic prefix is the long guard time;
  • a processor configured to intercept a prefix of twice the cyclic prefix length of the traditional signaling field in the first received symbol, and perform a quarter-cycle cyclic shift on the remaining portion to obtain a first valid received symbol, where the first receiving The symbol includes the first symbol cyclic prefix, the first symbol, and the first symbol a cyclic suffix, the period being a length of the first symbol;
  • the processor is further configured to:
  • the frame is a standard frame.
  • the processor is further configured to:
  • the frame is a standard frame.
  • the processor is further configured to:
  • Channel information is obtained according to a conventional long training field and a second symbol of the repeated conventional long training field, the traditional long training field including two conventional long training symbols and a conventional long training symbol cyclic prefix.
  • the processor is further configured to:
  • the frame is a standard frame.
  • the processor is further configured to:
  • the identification of the frame of the specific standard is completed by detecting the common signal field of the user of the received frame, so as to implement backward compatibility of the WLAN device, and thus can support different standards.
  • Hybrid networking between WLAN devices improves network deployment flexibility and reduces network complexity.
  • 1 is a schematic diagram of a frame structure of 802.11a, 802.11n, and 802.11ac;
  • FIG. 2 is a schematic diagram of a frame structure of 802.11ax
  • Figure 3 is a schematic diagram of a WLAN deployment scenario
  • FIG. 4 is a flowchart of a method for transmitting a frame of a wireless local area network according to an embodiment of the present invention
  • FIG. 5A is a schematic structural diagram of an 802.11ax frame according to an embodiment of the present disclosure.
  • FIG. 5B is a schematic structural diagram of an 802.11ax frame according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another 802.11ax frame according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another 802.11ax frame according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another 802.11ax frame according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of another method for transmitting a frame of a wireless local area network according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another 802.11ax frame according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another 802.11ax frame according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another 802.11ax frame according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another 802.11ax frame according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a wireless local area network device according to an embodiment of the present invention.
  • FIG. 15 is another wireless local area network device according to an embodiment of the present invention.
  • FIG. 1 is only used for exemplifying the frame structure, and does not represent the actual field length and the like.
  • the frame structures of the three standards all have the same Legacy Preamble, including Legacy Short Training Field (L-STF) and Legacy Long Training Field (L-LTF). ) and the traditional signaling field (Legacy Signal field, L-SIG).
  • 802.11a After the Legacy Preamble field, 802.11a includes a data field (Data).
  • 802.11n includes High Throughput Signal Field (HT-SIG), High Throughput Short Training Field (HT-STF), and High Throughput Long Training Field (High Throughput Long Training).
  • 802.11ac includes Very High Throughput Signal-A field (VHT-SIG-A), Very High Throughput Short Training Field (VHT-STF), and extremely high Very High Throughput Long Training Field (VHT-LTF),
  • VHT-SIG-B Very High Throughput Signal-B field
  • Data data field
  • VHT-SIG-A field includes two symbols, and the first symbol adopts a binary phase shift Binary Phase Shift Keying (BPSK) modulation, the second symbol uses QBPSK modulation.
  • BPSK Binary Phase Shift Keying
  • a possible future WLAN system such as 802.11ax or other possible WLAN systems
  • 802.11ax is taken as an example, and its possible frame structure is as shown in FIG. 2.
  • the beginning part of the 802.11ax frame is also a Legacy Preamble field, that is, includes L-STF, L-LTF and L-SIG fields.
  • the L-SIG field is followed by a High Efficiency Signal-1 field (HE-SIG1), which transmits the user common signaling, followed by the remaining High Efficiency Prefix (Other HE Preamble), where Other HE Preamble refers to a field or a combination of multiple fields, and is not limited to a specific field.
  • HE-SIG1 High Efficiency Signal-1 field
  • OFDMA High Efficiency Prefix
  • Other HE Preamble refers to a field or a combination of multiple fields, and is not limited to a specific field.
  • the Other HE Preamble field is followed by a data field (Data).
  • Data data field
  • a typical WLAN deployment scenario is shown in FIG. 3, including an access point (AP) and at least one station (Station, STA).
  • the AP communicates with STA1 and STA2 respectively.
  • the AP may be a device supporting the 802.11ax system, and is backward compatible with 802.11ac, 802.11n, and 802.11a.
  • STA1 and STA2 are WLAN devices that can only support previous standards.
  • STA1 supports 802.11n and 802.11a
  • STA2 only supports 802.11a.
  • the AP and STA1 can communicate with the 802.11n system or the 802.11a system, and the AP and STA2 communicate with the 802.11a system.
  • the AP receives a frame sent by a certain STA, it needs to identify the format of the received frame for subsequent further processing.
  • Embodiment 1 of the present invention provides a frame transmission method of a wireless local area network.
  • the process of this embodiment is shown in Figure 4. The specific steps are as follows:
  • the frame includes a user common signaling field and a traditional signaling field, where the user common signaling field includes a first symbol and a subsequent N second symbols, where N is a positive integer, and the first symbol further includes a first symbol cycle.
  • the first symbol further includes a first symbol cyclic suffix
  • each of the N second symbols further includes a second symbol cyclic prefix, where the length of the first symbol cyclic prefix is cycled with the traditional signaling field
  • the length of the prefix is the same.
  • the length of the first symbol cyclic suffix is the difference between the long guard time minus the length of the traditional signaling field cyclic prefix, and the length of the second symbol cyclic prefix is the long guard time.
  • the user common signaling field may be, but not limited to, HE-SIG1, optionally, similar to VTH-SIG-A in IEEE 802.11ac, and each symbol in HE-SIG1 is generated at 64 MHz.
  • -IFFT turns the frequency domain sequence into a signal that is 3.2us long in the time domain.
  • the long guard time may be set according to system parameters, such as twice or three times the length of the GI set to the L-SIG, and correspondingly, when the long guard time is twice the length of the GI of the L-SIG, Add the suffix of the same length of the GI of the L-SIG after the first symbol of HE-SIG1 CP.
  • the prefix CP is added before the 3.2us symbol, and the length is twice the length of the L-SIG GI, that is, the length is the length of the long guard time, as shown in FIG. 5A.
  • the STA or AP node when the transmitting end generates each symbol of HE-SIG1, converts the frequency domain sequence into a time domain signal by using 64-IFFT at 20 MHz.
  • the HE-SIG1 field includes two symbols as an example for description.
  • the method provided in this embodiment may further include:
  • the generated frame further includes a repeated traditional signaling field, where the repeated traditional signaling field is located before the user common signaling field, and the traditional signaling field includes a cyclic prefix of the traditional signaling symbol and the traditional signaling symbol.
  • a repeated L-SIG field may be included, where the repeated L-SIG field includes a 3.2us long time sequence of the L-SIG and a prefix CP of 0.8us, as shown in FIG. 6. .
  • the method provided in this embodiment may further include:
  • the generated frame further includes a traditional long training field and a repeated traditional long training field, where the repeated traditional long training field is located before the user common signaling field, and the repeated traditional long training field includes the second of the traditional long training field.
  • a repeated L-LTF field may be included, where the repeated L-LTF field includes a 3.2 us long time sequence of the second symbol of the L-LTF field and a prefix CP of 0.8 us. , as shown in Figure 7.
  • the method provided in this embodiment may further include:
  • the generated frame further includes a repeated first symbol and a repeated first symbol cyclic prefix, where the repeated first symbol and the repeated first symbol cyclic prefix are located before the user common signaling field.
  • a repeated HE-SIG1 field may also be included before the HE-SIG1 field.
  • the repeated HE-SIG1 field includes a 3.2 us long time sequence of the first symbol of the HE-SIG1 field and a prefix CP of 0.8 us, as shown in FIG.
  • steps 101-1, 101-2 and 101-3 are mutually replaceable steps, and in the specific implementation process, flexible settings can be made according to system design requirements.
  • Embodiment 2 of the present invention provides a frame transmission method for a wireless local area network, which is used for receiving a frame by a receiving node, as shown in FIG. 9, and the specific steps are as follows:
  • a frame sent by a WLAN device of a wireless local area network where the frame includes a user common signaling field and a traditional signaling field, where the user common signaling field includes a first symbol and N second symbols, where N is a positive integer, and the first symbol is further
  • the first symbol cyclic prefix is further included, the first symbol further includes a first symbol cyclic suffix, and each of the N second symbols further includes a second symbol cyclic prefix, where the length of the first symbol cyclic prefix is The length of the cyclic prefix of the traditional signaling field is the same, the length of the first symbol cyclic suffix is the same as the length of the traditional signaling field cyclic prefix, and the length of the second symbol cyclic prefix is twice the length of the conventional signaling field cyclic prefix;
  • the prefix of the cyclic prefix length of the traditional signaling field in the first received symbol is truncated, and the remaining portion is cyclically shifted by a quarter cycle to obtain the first valid received symbol, where the first received symbol includes the first symbol.
  • a cyclic prefix, a first symbol, and a first symbol cyclic suffix the period being the length of the first symbol;
  • the prefixes of twice the cyclic prefix length of the traditional signaling field in the N second received symbols are respectively truncated to obtain N second valid received symbols, where the second received symbol includes a second symbol and a corresponding second symbol cyclic prefix.
  • the parameters in the embodiment are used in the setting of the embodiment 1.
  • other setting manners may be adopted according to system design requirements, which is not limited in this embodiment. .
  • the 802.11ax device receives the frame including the user common signaling field, and removes the 2 times longer CP when detecting the HE-SIG1 first symbol (HE-SIG1-1st), that is, the first received symbol ( 1.6us), intercept 2, 3, 4, 1 sequence, then perform T/4 cyclic shift, restore and send
  • the 802.11ax device removes the 2nd-length CP (1.6us) from the second symbol (HE-SIG1-2nd) of the HE-SIG1, that is, the second received symbol, and intercepts 1', 2',
  • the 3', 4' sequence is identical to the sequence of the sender, that is, the second valid received symbol.
  • the first valid received symbol and the second valid received symbol are demodulated.
  • the demodulation order is not limited in this embodiment.
  • the 802.11ax device may perform demodulation after obtaining the first valid received symbol, and perform demodulation after obtaining the second valid received symbol, or, alternatively, the 802.11ax device may also obtain the first After the effective reception symbol and the second valid reception symbol are simultaneously demodulated.
  • the user of the conventional 802.11a/n/ac detects the HE-SIG1 first symbol (HE-SIG1-1st) in time, as shown in FIG. 10, the CP of 1 time length (0.8us) is removed, and 1 is intercepted.
  • the 2, 3, and 4 sequences are in the same order as the transmitted sequence, and the conversion to the frequency domain or BPSK modulation does not affect the 11n user.
  • the 1-times long suffix CP (0.8us) is removed, and the 3', 4', 1', 2' sequence is intercepted, which is done on the sequence of the sender.
  • the T/2 cyclic shift, or BPSK modulation in the frequency domain does not affect the 11ac user. Users of 11a do not self-test and will not be affected.
  • the method provided in this embodiment may further include:
  • the frame is determined to be a standard frame.
  • the standard is the 802.11ax system.
  • the system can also be other systems, which is not limited in this embodiment.
  • the 802.11ax device can detect the 802.11ax frame by using the repeated L-SIG field.
  • the 802.11ax device can combine to receive according to the traditional signaling field and the repeated traditional signaling field, and obtain corresponding diversity gain.
  • the repeated L-SIG symbol is detected in time, and the BPSK symbol in the frequency domain does not affect the user of 11n.
  • the CP that is 1 time longer is removed, and the sequence of 1, 2, 3, 4 is intercepted, and the sequence of the transmitted sequence is the same, and the frequency is changed to the frequency domain or BPSK. Modulation, or BPSK modulation in the frequency domain, will not affect the 11ac users. Users of 11a do not self-test and will not be affected.
  • the method provided in this embodiment may further include:
  • the frame is determined to be a standard frame.
  • the 802.11ax device can detect the 802.11ax frame by using the repeated L-LTF field. For details, refer to the description in step 201-1, and details are not described here.
  • the 802.11ax device can obtain channel information according to the second symbol of the traditional long training field and the repeated traditional long training field, and obtain corresponding diversity gain.
  • the processing method for detecting the frame of the 802.11ax can be referred to the description in step 201-1, and is shown in FIG. 12, and details are not described herein again.
  • the method provided in this embodiment may further include:
  • the 802.11ax device can detect the frame of the 802.11ax system by using the first symbol of the repeated HE-SIG1 field. For details, refer to the description in step 201-1, and details are not described here.
  • the processing method for detecting the frame of the 802.11ax can refer to the description in step 201-1, and refer to FIG. 13 , and details are not described herein again.
  • the 802.11ax device may acquire the data information according to the first symbol included in the common signaling field of the user and the repeated first symbol, and obtain a corresponding diversity gain.
  • Embodiment 3 of the present invention provides a wireless local area network device 30, as shown in FIG. 14, specifically including the following:
  • the processor is configured to generate a frame, where the frame includes a user common signaling field and a traditional signaling field, where the user common signaling field includes a first symbol and a subsequent N second symbols, where N is a positive integer, and the first symbol is further
  • the first symbol cyclic prefix is further included, the first symbol further includes a first symbol cyclic suffix, and each of the N second symbols further includes a second symbol cyclic prefix, where the length of the first symbol cyclic prefix is The length of the cyclic prefix of the traditional signaling field is the same.
  • the length of the first symbol cyclic suffix is the difference between the long guard time minus the length of the traditional signaling field cyclic prefix, and the length of the second symbol cyclic prefix is the long guard time.
  • a transmitter configured to send a frame to a WLAN device of a wireless local area network.
  • the frame generated by the processor 301 further includes a repeated traditional signaling field, where the repeated traditional signaling field is located before the user common signaling field, and the traditional signaling field includes a cyclic prefix of the traditional signaling symbol and the traditional signaling symbol. .
  • the frame generated by the processor 301 further includes a traditional long training field and a repeated traditional long training field, where the repeated traditional long training field is located before the user common signaling field, and the repeated traditional long training field includes the traditional long training field.
  • the second symbol and the cyclic prefix of the second symbol of the traditional long training field is located before the user common signaling field.
  • the frame generated by the processor 301 further includes a repeated first symbol and a repeated first symbol cyclic prefix, where the repeated first symbol and the repeated first symbol cyclic prefix are located before the user common signaling field.
  • the WLAN device provided in Embodiment 3 can be used to perform the frame transmission method of the WLAN provided by Embodiment 1.
  • the specific steps refer to the description of Embodiment 1, and details are not described herein again.
  • Embodiment 4 of the present invention provides a wireless local area network device 40, as shown in FIG. 15, specifically including the following:
  • a receiver configured to receive a frame sent by a WLAN device of a wireless local area network, where the frame includes a user common signaling field and a traditional signaling field, where the user common signaling field includes a first symbol and N second symbols, where N is a positive integer.
  • the first symbol further includes a first symbol cyclic prefix, and the first symbol further includes a first symbol cyclic suffix, and each of the N second symbols further includes a second symbol cyclic prefix, where the first symbol
  • the length of the cyclic prefix and the traditional signaling field cyclic prefix The length of the first symbol cyclic suffix is the same as the length of the traditional signaling field cyclic prefix, and the length of the second symbol cyclic prefix is twice the length of the conventional signaling field cyclic prefix;
  • the processor is configured to: cut a prefix twice the length of a cyclic prefix of the traditional signaling field in the first received symbol, and perform a quarter-cycle cyclic shift on the remaining portion to obtain a first valid received symbol, and receive the first
  • the symbol includes a first symbol cyclic prefix, a first symbol, and a first symbol cyclic suffix, and the period is a length of the first symbol;
  • the processor 401 is further configured to:
  • the frame is determined to be a standard frame.
  • the frame is determined to be a standard frame.
  • determining that the frame is a standard frame if a repeated first symbol is detected, determining that the frame is a standard frame.
  • the WLAN device provided in Embodiment 4 can be used to perform the frame transmission method of the WLAN provided by Embodiment 2.
  • the specific steps refer to the description of Embodiment 2, and details are not described herein again.
  • the wireless local area network device provided in Embodiment 3 and Embodiment 4 of the present invention may be applied to an AP or an STA, and may specifically include a fixed terminal such as a WLAN router, a WLAN switch, a computer, a server, or the like, and may also include, for example, a mobile phone, a tablet, and a wearable device. Mobile devices such as devices and notebook computers. Further, the receiver or the transmitter may be a dedicated receiving device or transmitting device, or may be a receiving device that integrates the receiving and transmitting functions.
  • the processor may be an integrated circuit (IC), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or the like, or may be integrated in a baseband processor or a general-purpose In the processor.
  • the present invention can be implemented by means of software plus necessary general hardware. Based on such understanding, all or part of the steps in the technical solution of the present invention can be completed by a program to instruct related hardware.
  • the program may be stored in a computer readable storage medium, and when executed, the program includes the steps of the method embodiment as described above, such as a ROM/RAM, a magnetic disk, an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种无线局域网的帧传输方法和装置,涉及通信技术领域。本发明在WLAN的帧传输过程中,接收到无线局域网WLAN装置发送的帧,根据对帧包括的用户公共信令字段的检测,完成对特定制式的帧的识别,以实现WLAN装置的后向兼容,进而能够支持不同制式的WLAN装置间混合组网,提高网络部署的灵活性,降低组网的复杂度。

Description

无线局域网的帧传输方法和装置 技术领域
本发明涉及通信技术领域,尤其涉及一种无线局域网的帧传输方法和装置。
背景技术
电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)制定的802.11协议族是无线局域网(Wireless local Access Network,WLAN)的标准,现有基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术的WLAN标准由逐步演进的802.11a、802.11n、802.11ac等制式组成,并还在进行持续演进。随着WLAN的发展和逐渐普及,支持不同制式的WLAN装置共存的情况将长期存在。为了实现后向兼容,采用新一代标准的无线接入点(Access Point,AP)和终端(Station,STA),都需要能够支持采用以前的制式。
由于现有的多种WLAN制式以及未来的WLAN制式所采用的帧格式并不相同,因此,采用新一代制式的WLAN装置需要具有识别特定的WLAN制式的帧的能力,且该特定的WLAN制式的帧并不会对其他制式的帧的接收造成影响。
发明内容
本发明实施例提供一种无线局域网的帧传输方法和装置,用于对不同WLAN制式的进行识别。
第一方面,本发明提供了一种无线局域网的帧传输方法,所述方法包括:
生成帧,所述帧包括用户公共信令字段和传统信令字段,所述用户公共信令字段包括第一符号和后续N个第二符号,N为正整数,所述第一符号之前还包括第一符号循环前缀,所述第一符号之后还包括第一符号循环后缀,所述N个第二符号中的每一个第二符号之前还包括第二符号循环前缀,其中,所述第一符号循环前缀的长度与所述传统信令字段循环前缀的长度相同,所 述第一符号循环后缀的长度是长保护时间减去所述传统信令字段循环前缀长度的差值,所述第二符号循环前缀的长度为所述长保护时间;
向无线局域网WLAN装置发送所述帧。
在第一方面的第一种实现方式中,所述长保护时间为所述传统信令字段循环前缀长度的2倍,所述第一符号循环后缀的长度与所述传统信令字段循环前缀的长度相同。
在第一方面的第二种实现方式中,所述长保护时间为所述传统信令字段循环前缀长度的3倍,所述第一符号循环后缀的长度为所述传统信令字段循环前缀长度的2倍。
结合第一方面或第一方面的第一种或第二种可能的实现方式,在第三种可能的实现方式中,所述第一符号循环前缀与所述第一符号中最后的所述传统信令字段循环前缀长度的部分相同。
结合第一方面或第一方面的第一种至第三种任一可能的实现方式,在第四种可能的实现方式中,所述第一符号循环后缀与所述第一符号中最前的所述长保护时间减去所述传统信令字段循环前缀长度的差值的部分相同。
结合第一方面或第一方面的第一种至第四种任一可能的实现方式,在第五种可能的实现方式中,所述第二符号循环前缀与所述第二符号中最后的所述长保护时间的部分相同。
结合第一方面或第一方面的第一种至第五种任一可能的实现方式,在第六种可能的实现方式中,所述帧还包括重复的传统信令字段,所述重复的传统信令字段位于所述用户公共信令字段之前,所述传统信令字段包括传统信令符号和所述传统信令符号的循环前缀。
结合第一方面或第一方面的第一种至第五种任一可能的实现方式,在第七种可能的实现方式中,所述帧还包括传统长训练字段和重复的传统长训练字段,所述重复的传统长训练字段位于所述用户公共信令字段之前,所述重复的传统长训练字段包括所述传统长训练字段的第二个符号和所述传统长训练字段的第二个符号的循环前缀。
结合第一方面或第一方面的第一种至第五种任一可能的实现方式,在第八种可能的实现方式中,所述帧还包括重复的第一符号和重复的第一符号循 环前缀,所述重复的第一符号和所述重复的第一符号循环前缀位于所述用户公共信令字段之前。
第二方面,本发明提供了一种无线局域网的帧传输方法,所述方法包括:
接收无线局域网WLAN装置发送的帧,所述帧包括用户公共信令字段和传统信令字段,所述用户公共信令字段包括第一符号和后续N个第二符号,N为正整数,所述第一符号之前还包括第一符号循环前缀,所述第一符号之后还包括第一符号循环后缀,所述N个第二符号中的每一个第二符号之前还包括第二符号循环前缀,其中,所述第一符号循环前缀的长度与所述传统信令字段循环前缀的长度相同,所述第一符号循环后缀的长度是长保护时间减去所述传统信令字段循环前缀长度的差值,所述第二符号循环前缀的长度为所述长保护时间;
截去第一接收符号中传统信令字段循环前缀长度两倍的前缀,并对剩余部分进行四分之一周期循环移位,获取第一有效接收符号,所述第一接收符号包括所述第一符号循环前缀、所述第一符号和所述第一符号循环后缀,所述周期为所述第一符号的长度;
分别截去N个第二接收符号中传统信令字段循环前缀长度两倍的前缀,获取N个第二有效接收符号,所述第二接收符号包括所述第二符号和对应的第二符号循环前缀;
对所述第一有效接收符号和所述N个第二有效接收符号进行解调,获取数据信息。
在第二方面的第一种实现方式中,所述方法还包括:
若检测到所述帧存在重复的传统信令字段时,确定所述帧为制式的帧。
在第二方面的第二种实现方式中,所述方法还包括:
若检测到所述帧存在重复的传统长训练字段的第二个符号,确定所述帧为制式的帧。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述方法还包括:
根据传统长训练字段和所述重复的传统长训练字段的第二个符号,获取 信道信息,所述传统长训练字段包括两个传统长训练符号和传统长训练符号循环前缀。
在第二方面的第四种实现方式中,所述方法还包括:
若检测到重复的所述第一符号,确定所述帧为制式的帧。
结合第二方面的第四种可能的实现方式,在第五种可能的实现方式中,所述方法还包括:
根据所述用户公共信令字段中包括的所述第一符号和重复的所述第一符号,获取数据信息。
第三方面,本发明提供了一种无线局域网装置,所述装置包括:
处理器,用于生成帧,所述帧包括用户公共信令字段和传统信令字段,所述用户公共信令字段包括第一符号和后续N个第二符号,N为正整数,所述第一符号之前还包括第一符号循环前缀,所述第一符号之后还包括第一符号循环后缀,所述N个第二符号中的每一个第二符号之前还包括第二符号循环前缀,其中,所述第一符号循环前缀的长度与所述传统信令字段循环前缀的长度相同,所述第一符号循环后缀的长度是长保护时间减去所述传统信令字段循环前缀长度的差值,所述第二符号循环前缀的长度为所述长保护时间;
发射机,用于向无线局域网WLAN装置发送所述帧。
在第三方面的第一种实现方式中,所述长保护时间为所述传统信令字段循环前缀长度的2倍,所述第一符号循环后缀的长度与所述传统信令字段循环前缀的长度相同。
在第三方面的第二种实现方式中,所述长保护时间为所述传统信令字段循环前缀长度的3倍,所述第一符号循环后缀的长度为所述传统信令字段循环前缀长度的2倍。
结合第三方面或第三方面的第一种或第二种可能的实现方式,在第三种可能的实现方式中,所述第一符号循环前缀与所述第一符号中最后的所述传统信令字段循环前缀长度的部分相同。
结合第三方面或第三方面的第一种至第三种任一可能的实现方式,在第四种可能的实现方式中,所述第一符号循环后缀与所述第一符号中最前的所 述长保护时间减去所述传统信令字段循环前缀长度的差值的部分相同。
结合第三方面或第三方面的第一种至第四种任一可能的实现方式,在第五种可能的实现方式中,所述第二符号循环前缀与所述第二符号中最后的所述长保护时间的部分相同。
结合第三方面或第三方面的第一种至第五种任一可能的实现方式,在第六种可能的实现方式中,所述帧还包括重复的传统信令字段,所述重复的传统信令字段位于所述用户公共信令字段之前,所述传统信令字段包括传统信令符号和所述传统信令符号的循环前缀。
结合第三方面或第三方面的第一种至第五种任一可能的实现方式,在第七种可能的实现方式中,所述帧还包括传统长训练字段和重复的传统长训练字段,所述重复的传统长训练字段位于所述用户公共信令字段之前,所述重复的传统长训练字段包括所述传统长训练字段的第二个符号和所述传统长训练字段的第二个符号的循环前缀。
结合第三方面或第三方面的第一种至第五种任一可能的实现方式,在第八种可能的实现方式中,所述帧还包括重复的第一符号和重复的第一符号循环前缀,所述重复的第一符号和所述重复的第一符号循环前缀位于所述用户公共信令字段之前。
第四方面,本发明提供了一种无线局域网装置,所述装置包括:
接收机,用于接收无线局域网WLAN装置发送的帧,所述帧包括用户公共信令字段和传统信令字段,所述用户公共信令字段包括第一符号和后续N个第二符号,N为正整数,所述第一符号之前还包括第一符号循环前缀,所述第一符号之后还包括第一符号循环后缀,所述N个第二符号中的每一个第二符号之前还包括第二符号循环前缀,其中,所述第一符号循环前缀的长度与所述传统信令字段循环前缀的长度相同,所述第一符号循环后缀的长度是长保护时间减去所述传统信令字段循环前缀长度的差值,所述第二符号循环前缀的长度为所述长保护时间;
处理器,用于截去第一接收符号中传统信令字段循环前缀长度两倍的前缀,并对剩余部分进行四分之一周期循环移位,获取第一有效接收符号,所述第一接收符号包括所述第一符号循环前缀、所述第一符号和所述第一符号 循环后缀,所述周期为所述第一符号的长度;
分别截去N个第二接收符号中传统信令字段循环前缀长度两倍的前缀,获取N个第二有效接收符号,所述第二接收符号包括所述第二符号和对应的第二符号循环前缀;
对所述第一有效接收符号和所述N个第二有效接收符号进行解调,获取数据信息。
在第四方面的第一种实现方式中,所述处理器还用于:
若检测到所述帧存在重复的传统信令字段时,确定所述帧为制式的帧。
在第四方面的第二种实现方式中,所述处理器还用于:
若检测到所述帧存在重复的传统长训练字段的第二个符号,确定所述帧为制式的帧。
结合第四方面的第二种可能的实现方式,在第三种可能的实现方式中,所述处理器还用于:
根据传统长训练字段和所述重复的传统长训练字段的第二个符号,获取信道信息,所述传统长训练字段包括两个传统长训练符号和传统长训练符号循环前缀。
在第四方面的第四种实现方式中,所述处理器还用于:
若检测到重复的所述第一符号,确定所述帧为制式的帧。
结合第四方面的第四种可能的实现方式,在第五种可能的实现方式中,所述处理器还用于:
根据所述用户公共信令字段中包括的所述第一符号和重复的所述第一符号,获取数据信息。
本实施例在WLAN的帧传输过程中,通过对接收到的帧的用户公共信令字段的检测,完成对特定制式的帧的识别,以实现WLAN装置的后向兼容,进而能够支持不同制式的WLAN装置间混合组网,提高网络部署的灵活性,降低组网的复杂度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为802.11a、802.11n、802.11ac的帧结构示意图;
图2为802.11ax的帧结构示意图;
图3为WLAN部署场景示意图;
图4为本发明实施例提供的一种无线局域网的帧传输方法的流程图;
图5A为本发明实施例提供的一种802.11ax帧结构示意图;
图5B为本发明实施例提供的一种802.11ax帧结构示意图;
图6为本发明实施例提供的另一种802.11ax帧结构示意图;
图7为本发明实施例提供的另一种802.11ax帧结构示意图;
图8为本发明实施例提供的另一种802.11ax帧结构示意图;
图9为本发明实施例提供的另一种无线局域网的帧传输方法的流程图;
图10为本发明实施例提供的另一种802.11ax帧结构示意图;
图11为本发明实施例提供的另一种802.11ax帧结构示意图;
图12为本发明实施例提供的另一种802.11ax帧结构示意图;
图13为本发明实施例提供的另一种802.11ax帧结构示意图;
图14为本发明实施例提供的一种无线局域网装置;
图15为本发明实施例提供的另一种无线局域网装置。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在现有的WLAN制式中,各个制式的帧结构之间有较大的差异,其中 802.11a、802.11n、802.11ac的帧结构如图1所示,图1仅用于示例性的对帧结构进行说明,并不表征实际的字段长度等。这3种制式的帧结构,均具有相同的传统前缀字段(Legacy Preamble),具体包括传统短训练字段(Legacy Short Training field,L-STF)、传统长训练字段(Legacy Long Training field,L-LTF)和传统信令字段(Legacy Signal field,L-SIG)。
在Legacy Preamble字段之后,802.11a包括数据字段(Data)。802.11n分别包括高吞吐量信令字段(High Throughput Signal field,HT-SIG)、高吞吐量短训练字段(High Throughput Short Training field,HT-STF)、高吞吐量长训练字段(High Throughput Long Training field,HT-LTF)和数据字段(Data),其中HT-SIG字段包括两个采用正交二进制相移键控(Quadrature Binary Phase Shift Keying,QBPSK)调制方式的符号。802.11ac分别包括极高吞吐量信令A字段(Very High Throughput Signal-A field,VHT-SIG-A)、极高吞吐量短训练字段(Very High Throughput Short Training field,VHT-STF)、极高吞吐量长训练字段(Very High Throughput Long Training field,VHT-LTF)、
极高吞吐量信令B字段(Very High Throughput Signal-B field,VHT-SIG-B)和数据字段(Data),其中VHT-SIG-A字段包括两个符号,第一个符号采用二进制相移键控(Binary Phase Shift Keying,BPSK)调制方式,第二个符号采用QBPSK调制方式。
在WLAN的后续演进过程中,可选的,提供了一种未来可能的WLAN制式,如802.11ax或其他可能的WLAN制式。进一步可选的,以802.11ax为例,其可能的帧结构如图2所示,为了与采用现有制式的WLAN装置后向兼容,802.11ax的帧的开始部分同样是Legacy Preamble字段,即包括L-STF、L-LTF和L-SIG字段。L-SIG字段之后是高效率无线局域网信令A字段(High Efficiency Signal-1 field,HE-SIG1),传输用户公共信令,其后是剩余的高效率前缀字段(Other HE Preamble),其中,Other HE Preamble是指一个字段或多个字段的组合,并不限定为特指一个具体的字段,Other HE Preamble字段之后是数据字段(Data)。需要特别说明的是,在未来可能的WLAN制式中,其制式的名称或字段的名称等均可以采用任意其他名称进行替换,并不应被认为会对本发明的保护范围构成限制。
下一代WLAN系统中,对于HE-SIG1字段,即使利用最鲁棒的二进制 相移键控(Binary Phase Shift Keying,BPSK)调制方式以及最低的1/2码率,利用现有802.11a/n/ac标准中的CP长度,在一些场景中,会产生较长的延迟扩展(Delay Spread),造成符号间干扰(Inter-symbol Interference,ISI)无法满足信令字段对于误包率(Packet Error Ratio,PER)的要求。
一种典型的WLAN部署场景如图3所示,包括一个接入点(Access Point,AP)和至少一个站点(Station,STA)。示例性的,在图3所示的场景中,AP分别与STA1和STA2进行通信,可选的,AP可以为支持802.11ax制式的装置,并能够后向兼容802.11ac、802.11n及802.11a等多种WLAN制式,STA1和STA2为仅能支持先前制式的WLAN装置,其中STA1支持802.11n及802.11a制式,STA2仅支持802.11a制式。在这种情况下,AP与STA1之间可以采用802.11n制式或802.11a制式进行通信,AP与STA2之间则采用802.11a制式进行通信。此时,当AP接收到某一个STA发送的帧时,需要对接收的帧的制式进行识别,以便进行后续的进一步处理。
本发明实施例1提供了一种无线局域网的帧传输方法。本实施例的方法流程如图4所示,具体步骤如下:
101、生成帧,帧包括用户公共信令字段和传统信令字段,用户公共信令字段包括第一符号和后续N个第二符号,N为正整数,第一符号之前还包括第一符号循环前缀,第一符号之后还包括第一符号循环后缀,N个第二符号中的每一个第二符号之前还包括第二符号循环前缀,其中,第一符号循环前缀的长度与传统信令字段循环前缀的长度相同,第一符号循环后缀的长度是长保护时间减去传统信令字段循环前缀长度的差值,第二符号循环前缀的长度为长保护时间;
102、向无线局域网WLAN装置发送帧。
在步骤101中,用户公共信令字段可以但不限定为HE-SIG1,可选的,类似IEEE 802.11ac中的VTH-SIG-A,HE-SIG1中每个符号的产生是在20MHz上用64-IFFT把频域序列变成时域3.2us长的信号。HE-SIG1的第一符号(HE-SIG1-1st)中的前缀CP保持与L-SIG的GI一样长,示例性的,GI=0.8 us。可选的,长保护时间可以根据系统参数进行设置,如设置为L-SIG的GI的两倍长度或三倍长度等,相应的,当长保护时间为L-SIG的GI的两倍长度时,在HE-SIG1的第一个符号后增加L-SIG的GI相同长度的后缀 CP。HE-SIG1后续的符号中,在3.2us符号前增加前缀CP,长度是L-SIG的GI的两倍,即长度为长保护时间的长度,如图5A所示。
STA或AP节点,发送端产生HE-SIG1的每个符号时,在20MHz上用64-IFFT把频域序列变成时域信号。为便于论述,本实施例中以HE-SIG1字段包括两个符号为例进行说明。在发送端,HE-SIG1的符号都是采用BPSK调制,转换到时域发送的是序列是{x(n),n=1…N,N=64},时间上占3.2us,可以分成1,2,3,4段,对于第一个符号,把第4段重复放在前缀CP中,而把第1段重复放在后缀CP中,对于第二个符号,把第3段和第4段重复放在前缀CP中,如图5B所示。
可选的,本实施例提供的方法还可以包括:
101-1、生成的帧还包括重复的传统信令字段,重复的传统信令字段位于用户公共信令字段之前,传统信令字段包括传统信令符号和传统信令符号的循环前缀。
具体的,在HE-SIG1字段之前,还可以包括一个重复的L-SIG字段,该重复的L-SIG字段包括L-SIG的3.2us长时间序列和0.8us的前缀CP,如图6所示。
可选的,本实施例提供的方法还可以包括:
101-2、生成的帧还包括传统长训练字段和重复的传统长训练字段,重复的传统长训练字段位于用户公共信令字段之前,重复的传统长训练字段包括传统长训练字段的第二个符号和传统长训练字段的第二个符号的循环前缀。
具体的,在HE-SIG1字段之前,还可以包括一个重复的L-LTF字段,该重复的L-LTF字段包括L-LTF字段的第二个符号的3.2us长时间序列和0.8us的前缀CP,如图7所示。
可选的,本实施例提供的方法还可以包括:
101-3、生成的帧还包括重复的第一符号和重复的第一符号循环前缀,重复的第一符号和重复的第一符号循环前缀位于用户公共信令字段之前。
具体的,在HE-SIG1字段之前,还可以包括一个重复的HE-SIG1字段, 该重复的HE-SIG1字段包括HE-SIG1字段的第一个符号的3.2us长时间序列和0.8us的前缀CP,如图8所示。
上述101-1、101-2和101-3步骤,为相互之间可替换的步骤,在具体实施过程中,可以根据系统设计需要进行灵活设置。
与本发明实施例1提供的方法相对应,本发明实施例2提供了一种无线局域网的帧传输方法,用于接收节点对帧进行接收,如图9所示,具体步骤如下:
201、接收无线局域网WLAN装置发送的帧,帧包括用户公共信令字段和传统信令字段,用户公共信令字段包括第一符号和N个第二符号,N为正整数,第一符号之前还包括第一符号循环前缀,第一符号之后还包括第一符号循环后缀,N个第二符号中的每一个第二符号之前还包括第二符号循环前缀,其中,第一符号循环前缀的长度与传统信令字段循环前缀的长度相同,第一符号循环后缀的长度与传统信令字段循环前缀的长度相同,第二符号循环前缀的长度为传统信令字段循环前缀长度的两倍;
202、截去第一接收符号中传统信令字段循环前缀长度两倍的前缀,并对剩余部分进行四分之一周期循环移位,获取第一有效接收符号,第一接收符号包括第一符号循环前缀、第一符号和第一符号循环后缀,周期为第一符号的长度;
203、分别截去N个第二接收符号中传统信令字段循环前缀长度两倍的前缀,获取N个第二有效接收符号,第二接收符号包括第二符号和对应的第二符号循环前缀;
204、对第一有效接收符号和N个第二有效接收符号进行解调,获取数据信息。
可选的,为了进一步具体说明,本实施例中的各项参数沿用实施例1中的设置,在具体实施过程中,还可以根据系统设计需求采用其他设置方式,本实施例对此并不限定。
在步骤202中,802.11ax装置接收到包括用户公共信令字段的帧,在检测HE-SIG1第一个符号(HE-SIG1-1st),即第一接收符号时,去掉2倍长的CP(1.6us),截取2,3,4,1序列,再进行T/4的循环移位,恢复成和发送 的1,2,3,4序列一致的顺序,即第一有效接收符号,其中周期为第一符号的长度,即T=3.2us。
在步骤203中,802.11ax装置对HE-SIG1的第二个符号(HE-SIG1-2nd),,即第二接收符号,去掉2倍长的CP(1.6us),截取1’,2’,3’,4’序列,和发送端的序列顺序一致,即第二有效接收符号。
在步骤204中,对第一有效接收符号和第二有效接收符号进行解调,需要说明的是,本实施例对解调顺序并无限定。可选的,802.11ax装置可以在获得第一有效接收符号后即进行解调,并在获得第二有效接收符号后即进行解调,或者,可选的,802.11ax装置还可以在获得第一有效接收符号和第二有效接收符号后,一并进行解调。
对于传统802.11a/n/ac的用户在时间上检测HE-SIG1第一个符号(HE-SIG1-1st)时,如图10所示,去掉1倍长的CP(0.8us),截取1,2,3,4序列,和发送的序列顺序一致,变换到频域还是BPSK调制,不会影响11n的用户。而检测HE-SIG1第二个符号(HE-SIG1-2nd)时,去掉1倍长的后缀CP(0.8us),截取3’,4’,1’,2’序列,是对发送端的序列做了T/2循环移位,在频域上还是BPSK调制,也不会影响11ac的用户。而11a的用户不做自检测,不会受影响。
可选的,若接收的帧中包括如步骤101-1的重复的传统信令字段时,在步骤201之后,本实施例提供的方法还可以包括:
201-1、若检测到帧存在重复的传统信令字段时,确定帧为制式的帧。
其中,在本实施例中,制式为802.11ax制式,在WLAN的后续演进过程中,制式也可以为其他制式,本实施例对此并不限定。
802.11ax装置可以利用重复的L-SIG字段,对802.11ax制式的帧进行检测。具体方式可以通过时间上一个符号的采样点(例如:N=64)的自相关检测,或者时间上对比N=64采样点实部虚部的能量和。若检测结果出现峰值,则确定接收的帧中存在重复的符号。进一步可选的,可以使用门限值来判断时候有重复的L-SIG符号。当检测结果发现存在重复的L-SIG符号,则判定接收的帧为802.11ax的帧,进而继续进行后续处理,后续处理包括但不限为步骤202至步骤204。
进一步的,802.11ax装置可以根据传统信令字段和重复的传统信令字段,合并进行接收,并获得相应的分集增益。
对于802.11a/n/ac装置,检测802.11ax的帧时,如图11所示,在时间上检测到重复的L-SIG符号,在频域上是BPSK符号,不会影响11n的用户。而在检测到HE-SIG1第一个符号(HE-SIG1-1st)时,去掉1倍长的CP,截取1,2,3,4序列,和发送的序列顺序一致,变换到频域还是BPSK调制,在频域上还是BPSK调制,也不会影响11ac的用户。而11a的用户不做自检测,不会受影响。
可选的,若接收的帧中包括如步骤101-2的重复的传统长训练字段时,在步骤201之后,本实施例提供的方法还可以包括:
201-2、若检测到帧存在重复的传统长训练字段的第二个符号,确定帧为制式的帧。
802.11ax装置可以利用重复的L-LTF字段,对802.11ax制式的帧进行检测。具体处理方式可以参考步骤201-1中的说明,此处不再赘述。
进一步的,802.11ax装置可以根据传统长训练字段和重复的传统长训练字段的第二个符号,获取信道信息,并获得相应的分集增益。
对于802.11a/n/ac装置,检测802.11ax的帧时的处理方式可以参考步骤201-1中的说明,并参考图12所示,此处不再赘述。
可选的,若接收的帧中包括如步骤101-3的重复的第一符号和重复的第一符号循环前缀时,在步骤201之后,本实施例提供的方法还可以包括:
201-3、若检测到重复的第一符号,确定帧为制式的帧。
802.11ax装置可以利用重复的HE-SIG1字段的第一个符号,对802.11ax制式的帧进行检测。具体处理方式可以参考步骤201-1中的说明,此处不再赘述。
对于802.11a/n/ac装置,检测802.11ax的帧时的处理方式可以参考步骤201-1中的说明,并参考图13所示,此处不再赘述。
进一步的,802.11ax装置可以根据用户公共信令字段中包括的第一符号和重复的第一符号,获取数据信息,并获得相应的分集增益。
本发明实施例3提供了一种无线局域网装置30,如图14所示,具体包括如下:
301、处理器,用于生成帧,帧包括用户公共信令字段和传统信令字段,用户公共信令字段包括第一符号和后续N个第二符号,N为正整数,第一符号之前还包括第一符号循环前缀,第一符号之后还包括第一符号循环后缀,N个第二符号中的每一个第二符号之前还包括第二符号循环前缀,其中,第一符号循环前缀的长度与传统信令字段循环前缀的长度相同,第一符号循环后缀的长度是长保护时间减去传统信令字段循环前缀长度的差值,第二符号循环前缀的长度为长保护时间;
302、发射机,用于向无线局域网WLAN装置发送帧。
可选的,处理器301生成的帧还包括重复的传统信令字段,重复的传统信令字段位于用户公共信令字段之前,传统信令字段包括传统信令符号和传统信令符号的循环前缀。
可选的,处理器301生成的帧还包括传统长训练字段和重复的传统长训练字段,重复的传统长训练字段位于用户公共信令字段之前,重复的传统长训练字段包括传统长训练字段的第二个符号和传统长训练字段的第二个符号的循环前缀。
可选的,处理器301生成的帧还包括重复的第一符号和重复的第一符号循环前缀,重复的第一符号和重复的第一符号循环前缀位于用户公共信令字段之前。
实施例3提供的无线局域网装置,可以用于执行实施例1提供的无线局域网的帧传输方法,具体步骤参考实施例1的说明,此处不再赘述。
本发明实施例4提供了一种无线局域网装置40,如图15所示,具体包括如下:
401、接收机,用于接收无线局域网WLAN装置发送的帧,帧包括用户公共信令字段和传统信令字段,用户公共信令字段包括第一符号和N个第二符号,N为正整数,第一符号之前还包括第一符号循环前缀,第一符号之后还包括第一符号循环后缀,N个第二符号中的每一个第二符号之前还包括第二符号循环前缀,其中,第一符号循环前缀的长度与传统信令字段循环前缀 的长度相同,第一符号循环后缀的长度与传统信令字段循环前缀的长度相同,第二符号循环前缀的长度为传统信令字段循环前缀长度的两倍;
402、处理器,用于截去第一接收符号中传统信令字段循环前缀长度两倍的前缀,并对剩余部分进行四分之一周期循环移位,获取第一有效接收符号,第一接收符号包括第一符号循环前缀、第一符号和第一符号循环后缀,周期为第一符号的长度;
分别截去N个第二接收符号中传统信令字段循环前缀长度两倍的前缀,获取N个第二有效接收符号,第二接收符号包括第二符号和对应的第二符号循环前缀;
对第一有效接收符号和N个第二有效接收符号进行解调,获取数据信息。
具体的,处理器401还用于:
可选的,若检测到帧存在重复的传统信令字段时,确定帧为制式的帧。
可选的,若检测到帧存在重复的传统长训练字段的第二个符号,确定帧为制式的帧。
可选的,若检测到重复的第一符号,确定帧为制式的帧。
实施例4提供的无线局域网装置,可以用于执行实施例2提供的无线局域网的帧传输方法,具体步骤参考实施例2的说明,此处不再赘述。
本发明实施例3和实施例4提供的无线局域网装置,可以应用于AP或STA,具体可以包括如WLAN路由器、WLAN交换机、计算机、服务器等固定终端,也可以包括如手机、平板电脑、可穿戴式装置、笔记本电脑等移动终端。进一步的,其中接收机或发射机可以为专用的接收装置或发射装置,也可以为集成了接收与发送功能的收发装置等。处理器可以为集成电路(Integrated Circuit,IC)、专用集成电路(Application Specific Integrated Circuit、ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)等,也可以集成在基带处理器或通用处理器中。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件的方式来实现。基于这样的理解,本发明的技术方案中的全部或部分步骤是可以通过程序来指令相关的硬件来完成, 所述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,包括如上述方法实施例的步骤,所述的存储介质,如:ROM/RAM、磁碟、光盘等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可以轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种无线局域网的帧传输方法,其特征在于,所述方法包括:
    生成帧,所述帧包括用户公共信令字段和传统信令字段,所述用户公共信令字段包括第一符号和后续N个第二符号,N为正整数,所述第一符号之前还包括第一符号循环前缀,所述第一符号之后还包括第一符号循环后缀,所述N个第二符号中的每一个第二符号之前还包括第二符号循环前缀,其中,所述第一符号循环前缀的长度与所述传统信令字段循环前缀的长度相同,所述第一符号循环后缀的长度是长保护时间减去所述传统信令字段循环前缀长度的差值,所述第二符号循环前缀的长度为所述长保护时间;
    向无线局域网WLAN装置发送所述帧。
  2. 根据权利要求1所述的方法,其特征在于,所述长保护时间为所述传统信令字段循环前缀长度的2倍,所述第一符号循环后缀的长度与所述传统信令字段循环前缀的长度相同。
  3. 根据权利要求1所述的方法,其特征在于,所述长保护时间为所述传统信令字段循环前缀长度的3倍,所述第一符号循环后缀的长度为所述传统信令字段循环前缀长度的2倍。
  4. 根据权利要求1至3所述的任一种方法,其特征在于,所述第一符号循环前缀与所述第一符号中最后的所述传统信令字段循环前缀长度的部分相同。
  5. 根据权利要求1至4所述的任一种方法,其特征在于,所述第一符号循环后缀与所述第一符号中最前的所述长保护时间减去所述传统信令字段循环前缀长度的差值的部分相同。
  6. 根据权利要求1至5所述的任一种方法,其特征在于,所述第二符号循环前缀与所述第二符号中最后的所述长保护时间的部分相同。
  7. 根据权利要求1至6所述的任一种方法,其特征在于,所述帧还包括重复的传统信令字段,所述重复的传统信令字段位于所述用户公共信令字段之前,所述传统信令字段包括传统信令符号和所述传统信令符号的循环前缀。
  8. 根据权利要求1至6所述的任一种方法,其特征在于,所述帧还包括传统长训练字段和重复的传统长训练字段,所述重复的传统长训练字段位于所述用户公共信令字段之前,所述重复的传统长训练字段包括所述传统长训练字段的第二个符号和所述传统长训练字段的第二个符号的循环前缀。
  9. 根据权利要求1至6所述的任一种方法,其特征在于,所述帧还包括重复的第一符号和重复的第一符号循环前缀,所述重复的第一符号和所述重复的第一符号循环前缀位于所述用户公共信令字段之前。
  10. 一种无线局域网的帧传输方法,其特征在于,所述方法包括:
    接收无线局域网WLAN装置发送的帧,所述帧包括用户公共信令字段和传统信令字段,所述用户公共信令字段包括第一符号和后续N个第二符号,N为正整数,所述第一符号之前还包括第一符号循环前缀,所述第一符号之后还包括第一符号循环后缀,所述N个第二符号中的每一个第二符号之前还包括第二符号循环前缀,其中,所述第一符号循环前缀的长度与所述传统信令字段循环前缀的长度相同,所述第一符号循环后缀的长度是长保护时间减去所述传统信令字段循环前缀长度的差值,所述第二符号循环前缀的长度为所述长保护时间;
    截去第一接收符号中传统信令字段循环前缀长度两倍的前缀,并对剩余部分进行四分之一周期循环移位,获取第一有效接收符号,所述第一接收符号包括所述第一符号循环前缀、所述第一符号和所述第一符号循环后缀,所述周期为所述第一符号的长度;
    分别截去N个第二接收符号中传统信令字段循环前缀长度两倍的前缀,获取N个第二有效接收符号,所述第二接收符号包括所述第二符号和对应的第二符号循环前缀;
    对所述第一有效接收符号和所述N个第二有效接收符号进行解调,获取数据信息。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    若检测到所述帧存在重复的传统信令字段时,确定所述帧为制式的帧。
  12. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    若检测到所述帧存在重复的传统长训练字段的第二个符号,确定所述帧为制式的帧。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    根据传统长训练字段和所述重复的传统长训练字段的第二个符号,获取信道信息,所述传统长训练字段包括两个传统长训练符号和传统长训练符号循环前缀。
  14. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    若检测到重复的所述第一符号,确定所述帧为制式的帧。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    根据所述用户公共信令字段中包括的所述第一符号和重复的所述第一符号,获取数据信息。
  16. 一种无线局域网装置,其特征在于,所述装置包括:
    处理器,用于生成帧,所述帧包括用户公共信令字段和传统信令字段,所述用户公共信令字段包括第一符号和后续N个第二符号,N为正整数,所述第一符号之前还包括第一符号循环前缀,所述第一符号之后还包括第一符号循环后缀,所述N个第二符号中的每一个第二符号之前还包括第二符号循环前缀,其中,所述第一符号循环前缀的长度与所述传统信令字段循环前缀的长度相同,所述第一符号循环后缀的长度是长保护时间减去所述传统信令字段循环前缀长度的差值,所述第二符号循环前缀的长度为所述长保护时间;
    发射机,用于向无线局域网WLAN装置发送所述帧。
  17. 根据权利要求16所述的装置,其特征在于,所述长保护时间为所述传统信令字段循环前缀长度的2倍,所述第一符号循环后缀的长度与所述传统信令字段循环前缀的长度相同。
  18. 根据权利要求16所述的装置,其特征在于,所述长保护时间为所述传统信令字段循环前缀长度的3倍,所述第一符号循环后缀的长度为所述传统信令字段循环前缀长度的2倍。
  19. 根据权利要求16至18所述的任一种装置,其特征在于,所述第一符号循环前缀与所述第一符号中最后的所述传统信令字段循环前缀长度的 部分相同。
  20. 根据权利要求16至19所述的任一种装置,其特征在于,所述第一符号循环后缀与所述第一符号中最前的所述长保护时间减去所述传统信令字段循环前缀长度的差值的部分相同。
  21. 根据权利要求16至20所述的任一种装置,其特征在于,所述第二符号循环前缀与所述第二符号中最后的所述长保护时间的部分相同。
  22. 根据权利要求16至21所述的任一种装置,其特征在于,所述帧还包括重复的传统信令字段,所述重复的传统信令字段位于所述用户公共信令字段之前,所述传统信令字段包括传统信令符号和所述传统信令符号的循环前缀。
  23. 根据权利要求16至21所述的任一种装置,其特征在于,所述帧还包括传统长训练字段和重复的传统长训练字段,所述重复的传统长训练字段位于所述用户公共信令字段之前,所述重复的传统长训练字段包括所述传统长训练字段的第二个符号和所述传统长训练字段的第二个符号的循环前缀。
  24. 根据权利要求16至21所述的任一种装置,其特征在于,所述帧还包括重复的第一符号和重复的第一符号循环前缀,所述重复的第一符号和所述重复的第一符号循环前缀位于所述用户公共信令字段之前。
  25. 一种无线局域网装置,其特征在于,所述装置包括:
    接收机,用于接收无线局域网WLAN装置发送的帧,所述帧包括用户公共信令字段和传统信令字段,所述用户公共信令字段包括第一符号和后续N个第二符号,N为正整数,所述第一符号之前还包括第一符号循环前缀,所述第一符号之后还包括第一符号循环后缀,所述N个第二符号中的每一个第二符号之前还包括第二符号循环前缀,其中,所述第一符号循环前缀的长度与所述传统信令字段循环前缀的长度相同,所述第一符号循环后缀的长度是长保护时间减去所述传统信令字段循环前缀长度的差值,所述第二符号循环前缀的长度为所述长保护时间;
    处理器,用于截去第一接收符号中传统信令字段循环前缀长度两倍的前缀,并对剩余部分进行四分之一周期循环移位,获取第一有效接收符号,所述第一接收符号包括所述第一符号循环前缀、所述第一符号和所述第一符号 循环后缀,所述周期为所述第一符号的长度;
    分别截去N个第二接收符号中传统信令字段循环前缀长度两倍的前缀,获取N个第二有效接收符号,所述第二接收符号包括所述第二符号和对应的第二符号循环前缀;
    对所述第一有效接收符号和所述N个第二有效接收符号进行解调,获取数据信息。
  26. 根据权利要求25所述的装置,其特征在于,所述处理器还用于:
    若检测到所述帧存在重复的传统信令字段时,确定所述帧为制式的帧。
  27. 根据权利要求25所述的装置,其特征在于,所述处理器还用于:
    若检测到所述帧存在重复的传统长训练字段的第二个符号,确定所述帧为制式的帧。
  28. 根据权利要求27所述的装置,其特征在于,所述处理器还用于:
    根据传统长训练字段和所述重复的传统长训练字段的第二个符号,获取信道信息,所述传统长训练字段包括两个传统长训练符号和传统长训练符号循环前缀。
  29. 根据权利要求25所述的装置,其特征在于,所述处理器还用于:
    若检测到重复的所述第一符号,确定所述帧为制式的帧。
  30. 根据权利要求29所述的装置,其特征在于,所述处理器还用于:
    根据所述用户公共信令字段中包括的所述第一符号和重复的所述第一符号,获取数据信息。
PCT/CN2014/088067 2014-09-30 2014-09-30 无线局域网的帧传输方法和装置 WO2016049935A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2014/088067 WO2016049935A1 (zh) 2014-09-30 2014-09-30 无线局域网的帧传输方法和装置
CN201480081174.3A CN106664600B (zh) 2014-09-30 2014-09-30 无线局域网的帧传输方法和装置
EP14903151.0A EP3182753B1 (en) 2014-09-30 2014-09-30 Frame transmission method and device for wireless local area network
US15/472,887 US10390260B2 (en) 2014-09-30 2017-03-29 Frame transmission method for wireless local area network and wireless local area network apparatus
US16/516,676 US10952097B2 (en) 2014-09-30 2019-07-19 Frame transmission method for wireless local area network and wireless local area network apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088067 WO2016049935A1 (zh) 2014-09-30 2014-09-30 无线局域网的帧传输方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/472,887 Continuation US10390260B2 (en) 2014-09-30 2017-03-29 Frame transmission method for wireless local area network and wireless local area network apparatus

Publications (1)

Publication Number Publication Date
WO2016049935A1 true WO2016049935A1 (zh) 2016-04-07

Family

ID=55629358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088067 WO2016049935A1 (zh) 2014-09-30 2014-09-30 无线局域网的帧传输方法和装置

Country Status (4)

Country Link
US (2) US10390260B2 (zh)
EP (1) EP3182753B1 (zh)
CN (1) CN106664600B (zh)
WO (1) WO2016049935A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109660266A (zh) * 2017-10-11 2019-04-19 大唐移动通信设备有限公司 一种信号处理方法和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016011619A1 (zh) * 2014-07-23 2016-01-28 华为技术有限公司 无线局域网的传输方法及传输设备
US10057924B2 (en) * 2015-05-27 2018-08-21 Intel IP Corporation High efficiency signal field in high efficiency wireless local area network
US11190396B1 (en) * 2015-10-23 2021-11-30 Nxp Usa, Inc. Structure for low-power-low-rate data transmission in a wireless network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7444134B2 (en) * 2004-02-13 2008-10-28 Broadcom Corporation Device and method for transmitting long training sequence for wireless communications
CN102474492A (zh) * 2009-08-12 2012-05-23 高通股份有限公司 增强mu-mimo vht 前导码以实现传输模式检测
CN102714643A (zh) * 2009-08-25 2012-10-03 高通股份有限公司 支持旧式设备的ieee802.11ac前置码

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780919B2 (en) * 2013-07-05 2017-10-03 Quallcomm, Incorporated High efficiency WLAN preamble structure
US10194006B2 (en) * 2013-10-25 2019-01-29 Marvell World Trade Ltd. Physical layer frame format for WLAN
US10218822B2 (en) * 2013-10-25 2019-02-26 Marvell World Trade Ltd. Physical layer frame format for WLAN
US9893784B2 (en) * 2014-10-28 2018-02-13 Newracom, Inc. LTF design for WLAN system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7444134B2 (en) * 2004-02-13 2008-10-28 Broadcom Corporation Device and method for transmitting long training sequence for wireless communications
CN102474492A (zh) * 2009-08-12 2012-05-23 高通股份有限公司 增强mu-mimo vht 前导码以实现传输模式检测
CN102714643A (zh) * 2009-08-25 2012-10-03 高通股份有限公司 支持旧式设备的ieee802.11ac前置码

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3182753A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109660266A (zh) * 2017-10-11 2019-04-19 大唐移动通信设备有限公司 一种信号处理方法和装置
CN109660266B (zh) * 2017-10-11 2020-11-13 大唐移动通信设备有限公司 一种信号处理方法和装置

Also Published As

Publication number Publication date
US20170201906A1 (en) 2017-07-13
US10952097B2 (en) 2021-03-16
EP3182753A1 (en) 2017-06-21
US10390260B2 (en) 2019-08-20
EP3182753B1 (en) 2018-08-15
CN106664600B (zh) 2020-01-31
EP3182753A4 (en) 2017-08-09
US20200022024A1 (en) 2020-01-16
CN106664600A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
US20190173637A1 (en) Systems and methods for backwards-compatible preamble formats for multiple access wireless communication
JP6657236B2 (ja) 混合レートのワイヤレス通信における信号反復によるロバスト早期検出
US10952097B2 (en) Frame transmission method for wireless local area network and wireless local area network apparatus
JP2016521051A5 (zh)
US20170272976A1 (en) Long-range low-power frame structure
JP6750024B2 (ja) ワイヤレス通信における高効率ワイヤレスパケットの早期検出のための方法および装置
JP2020014218A (ja) 混合レートワイヤレス通信ネットワークのためのフレーム構造
WO2015192308A1 (zh) 无线局域网的帧传输方法和装置
WO2016049928A1 (zh) 用于无线局域网的数据传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903151

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014903151

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014903151

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE