WO2016047549A1 - Modeling particles used for manufacturing three-dimensional object, powder including same, and method for manufacturing three-dimensional object using same - Google Patents

Modeling particles used for manufacturing three-dimensional object, powder including same, and method for manufacturing three-dimensional object using same Download PDF

Info

Publication number
WO2016047549A1
WO2016047549A1 PCT/JP2015/076472 JP2015076472W WO2016047549A1 WO 2016047549 A1 WO2016047549 A1 WO 2016047549A1 JP 2015076472 W JP2015076472 W JP 2015076472W WO 2016047549 A1 WO2016047549 A1 WO 2016047549A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
particles
core
particle
shell
Prior art date
Application number
PCT/JP2015/076472
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 享
羽生 由紀夫
佐藤 尚武
祐彦 ▲高▼橋
有弘 齋藤
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015178950A external-priority patent/JP2016064649A/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2016047549A1 publication Critical patent/WO2016047549A1/en
Priority to US15/467,909 priority Critical patent/US10322573B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/221Machines other than electrographic copiers, e.g. electrophotographic cameras, electrostatic typewriters
    • G03G15/224Machines for forming tactile or three dimensional images by electrographic means, e.g. braille, 3d printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/225Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 using contact-printing

Definitions

  • This invention relates to the modeling particle
  • Patent Document 1 discloses a method in which particles (modeling particles), which are modeling materials, are arranged in accordance with cross-sectional data of a modeling target using an electrophotographic method, and then the molding particles are fused to each other by heat and stacked. It is disclosed.
  • Patent Document 2 a layer made of modeling particles is formed on a base, and a binder liquid is sprayed or irradiated with a laser beam in accordance with cross-sectional data of a modeling target to partially dissolve the modeling particles and melt them together.
  • a method of wearing and laminating is disclosed.
  • a support body that supports the structure is provided below the structure in the direction of gravity. That is, in the modeling process, a support body is formed as necessary in a region that becomes a void of the modeling target.
  • the support body Since the support body is an unnecessary member for the modeling object, it is removed after the modeling is completed. Therefore, it is desirable that the support body be formed of a material that can be easily removed from the surface of the structure body made of the structural material.
  • Patent Literature 1 particles containing a material constituting a modeling object (structure) composed of particles (support material particles) containing a material constituting the support body and a resin having a higher softening temperature after modeling than the support material particles.
  • the laminate is formed using the material particles.
  • the structure is heated to a temperature equal to or higher than the melting temperature of the support material particles and does not melt, and the support body is selectively removed by melting to obtain a structure, that is, a modeling object.
  • Patent Document 2 includes a core made of metal, ceramic, plastic or the like, a first coating film made of a material having polarity formed on the surface of the core, and a surfactant formed on the first coating film.
  • a modeling method using particles having a second coating film is disclosed.
  • a layer made of such particles is disposed on the base, and a step of spraying a binder liquid that dissolves the first and second coating films or irradiating a laser beam according to a predetermined pattern, Modeling is done by joining particles together.
  • the region of the particles that are not fused with other particles without being sprayed with the binder liquid or without being irradiated with the laser beam plays a role as a support body, and supports the lamination of the particles that become the structure.
  • the support body may remain on the surface of the structure body, and the structure body is deformed by heat applied when the support body is removed, and a desired modeling object is obtained. There may not be.
  • Patent Document 2 since the structure is fixed by fusing the first coating film on the surface layer at the contact point between the particles, the bond is weak and the load applied to the structure when the support body is removed. There is a risk that the modeling object will be broken.
  • the present invention provides a shaped particle suitable for the structure of a support body, which can be easily removed from the surface of the structure with a solvent containing water while suppressing deformation of the structure.
  • An object of the present invention is to provide a method for producing a three-dimensional object using these.
  • the shaped particle according to the present invention is a particle containing a water-soluble material, and includes a core and a shell covering at least a part of the surface of the core, and the core contains the most water-soluble material, The solubility of the material most contained in the shell in water is smaller than the solubility in water of the water-soluble material contained in the core.
  • ⁇ Modeling particles> In general, a modeling object is often made of a water-insoluble material such as ABS or nylon. Therefore, if the support material particles are water-soluble, the support body can be selectively removed using the difference in solubility in water. If water can be used for the removal of the support body, it is very preferable because water can be easily obtained because the cost can be kept low and the safety is high and the load on the environment is low.
  • water-insoluble means a property having a solubility in water of less than 0.1
  • water-soluble means a property having a solubility in water of 0.1 or more.
  • the solubility with respect to water is a numerical value representing the mass dissolved in 100 g of pure water having a water temperature of 20 ° C. at 1 atm in grams.
  • the support body is preferably made of a water-soluble material having a high solubility in water.
  • a particle made of a water-soluble material having a high solubility in water absorbs moisture in the atmosphere and increases the viscosity of the particle surface.
  • the modeling particles are accommodated in a powder state in the material container of the apparatus used for modeling. If such particles are contained in the powder, the fluidity is remarkably reduced due to aggregation due to humidity. . Powders with significantly reduced fluidity can lead to malfunctions in the modeling process and the accuracy of the resulting modeling object, so the humidity of the powder storage environment and usage environment must be strictly controlled. In addition, the convenience is inferior and the manufacturing cost increases.
  • the modeling particle according to the present invention has the shell 11 on the surface of the core 12 as in the cross-sectional structure shown in FIG.
  • the core does not need to be entirely covered with the shell as shown in FIG. 1, and the modeling particle according to the invention includes the core 12 and the shell 11 covering at least a part of the surface of the core 12. That's fine.
  • the core 12 contains the most water-soluble material, and the solubility in water of the material most contained in the shell 11 is smaller than the solubility in water of the water-soluble material contained in the core 12. The solubility of the core 12 and the shell 11 can be measured by separating each part from the particle.
  • the shaped particles having such a structure can be obtained by applying thermal energy or thermal energy and pressure under appropriate conditions according to the coverage of the shell to the core surface and the material of the core or shell. Can be exposed to.
  • the shell structure is destroyed by heating at the same time or higher than the softening temperature of the core or modeling particles, or by heating at the same time as the softening temperature of the core or modeling particles, and the core material is exposed to the surface. it can.
  • the softening temperature of the present invention refers to the temperature at which the loss elastic modulus becomes 10 8 Pa or less when dynamic viscoelasticity is measured.
  • the softening temperature of the modeling particle refers to a temperature at which the loss elastic modulus of the modeling particle including the core and the shell becomes 10 8 Pa or less.
  • a solution that selectively dissolves the shell material may be sprayed onto the shaped particles, and the shell material may be unevenly distributed on the particle surface using the surface tension of the droplets formed on the particle surface to expose the core material. Is possible.
  • grains of this invention have the material (shell 11) with the low solubility with respect to water on the surface, the aggregation by moisture absorption is suppressed also in the atmosphere with much moisture content in the state of a powder. Thus, a decrease in fluidity is suppressed. Therefore, the state of the powder suitable for the additive manufacturing method can be maintained without particularly managing the humidity.
  • the core material extruded from the inside of the plurality of modeling particles is fused to form a three-dimensional object by heating and pressurizing at a temperature higher than the softening temperature of the core or the modeling particle. it can.
  • the core material is exposed by spraying a solution that selectively dissolves the shell and then dried, and a plurality of particles are bound by the shell material, and the three-dimensional object is bonded. Can also be formed.
  • the core contains the most water-soluble material
  • the water-soluble material can be dissolved by bringing it into contact with water, and the shape of the model can be collapsed.
  • the shaped particles according to the present invention are suitable as support material particles.
  • grains concerning this invention are used as support material particle
  • the support body has a structure in which the water-insoluble material of the shell is scattered in the three-dimensional network structure made of the water-soluble material of the core.
  • the core 12 needs to include a water-soluble material that can only form a three-dimensional network structure made of the water-soluble material. Therefore, the volume ratio of the shaped particles to the entire core 12 particles is preferably 50% or more, and more preferably 70% or more.
  • the mass ratio of the water-soluble material contained in the core of the support material particles to the entire core 12 is preferably 50% or more, and 70% or more. Is more preferable.
  • the water-soluble material contained in the core 12 may be one type or a plurality of types. When multiple types of water-soluble materials are included, the total amount of these multiple types of water-soluble materials may be considered as the water-soluble material contained in the core 12. Therefore, the volume ratio or mass ratio of the water-soluble material relative to the entire core 12 may be calculated using the total amount of a plurality of types of water-soluble materials.
  • the “type” of the water-soluble material here is determined by the chemical structure, and when the chemical structure is different, it is expressed that the type is different.
  • the solubility of water contained in the shell most in the material is smaller than the solubility in water of the water-soluble material contained in the core. This means that the solubility of water-soluble material in water is smaller than the solubility in water.
  • the water-soluble material contained in the core is not particularly limited as long as it has water solubility, but is preferably a material having a solubility in water of greater than 1, more preferably a material of greater than 5, and even more preferably of 10 or more.
  • water-soluble material a simple substance, a compound, a complex of these, or the like can be used.
  • water-soluble inorganic materials water-soluble dietary fibers, water-soluble carbohydrates such as carbohydrates, polyalkylene oxide, polyvinyl alcohol (PVA), and polyethylene glycol (PEG) are preferable.
  • water-soluble dietary fiber include polydextrose and inulin, and specific examples of the carbohydrate include sucrose, lactose, maltose, trehalose, melezitose, stachyose, and maltotetraose.
  • PEG polyethylene glycol
  • the core may contain a water-insoluble material.
  • the water-insoluble material is preferably a material that adjusts the characteristics of the modeling particles according to the layered modeling method to be used, but is not limited thereto.
  • a viscoelasticity adjusting material for adjusting the viscoelasticity during heating and pressing may be added. It is preferable that the viscoelasticity adjusting material has a size smaller than the particle size of the modeling particles.
  • a fiber material is preferable in order to prevent the movement of the main component of the core during viscous flow.
  • the fiber material include water-insoluble fibers (hereinafter referred to as nanofibers) having a nano-sized diameter or length. This is because by containing nanofibers in the core main component, a matrix made of nanofibers can be formed inside the base material, and it becomes easy to increase the viscoelasticity of the base material.
  • an adjusting material for lowering viscoelasticity it is possible to use a plasticizer that improves the movement of the main component of the core during viscous flow.
  • a charge control agent may be added to control chargeability.
  • An organometallic compound or a chelate compound is effective as a charge control agent for controlling particles to be negatively charged.
  • Specific examples include a monoazo metal compound, an acetylacetone metal compound, an aromatic oxycarboxylic acid, an aromatic dicarboxylic acid, an oxycarboxylic acid, and a dicarboxylic acid-based metal compound.
  • aromatic oxycarboxylic acids, aromatic mono- and polycarboxylic acids and metal salts thereof, anhydrides, esters, and phenol derivatives such as bisphenol are also preferable.
  • urea derivatives, metal-containing salicylic acid compounds, metal-containing naphthoic acid compounds, boron compounds, quaternary ammonium salts, calixarene, resin charge control agents, and the like can also be used.
  • Examples of charge control agents for controlling particles to be positively charged include nigrosine-modified products of nigrosine and fatty acid metal salts, guanidine compounds, imidazole compounds, tributylbenzylammonium-1-hydroxy-4-naphthosulfonate, tetrabutylammonium tetra Quaternary ammonium salts such as fluoroborate and these lake pigments can be used. Also preferred are triphenylmethane dyes, metal salts of these lake pigment higher fatty acids, and resin charge control agents. As the rake agent, phosphotungstic acid, phosphomolybthenic acid, phosphotungstomolybthenic acid, tannic acid, lauric acid, gallic acid, ferricyanide, ferrocyanide can be used.
  • the modeling particles may contain these charge control agents alone or in combination of two or more.
  • the material most contained in the shell is not limited as long as the solubility in water is smaller than the solubility in water of the water-soluble material contained in the core, but a material having a solubility in water of less than 10 is preferable, and a material of less than 5 is more preferable. 1 or less is more preferable.
  • Examples of the material most contained in the shell include organic substances typified by organic compounds and polymer compounds, inorganic substances typified by metals and ceramics, and organic / inorganic composite materials containing organic substances and inorganic substances.
  • the present invention is not limited to these materials.
  • resin compounds such as acrylic resins, vinyl resins, polyester resins, epoxy resins, and urethane resins, ester compounds such as glycerin fatty acid esters, sucrose fatty acid esters, and sorbitan fatty acid esters
  • ester compounds such as glycerin fatty acid esters, sucrose fatty acid esters, and sorbitan fatty acid esters
  • cellulose derivatives such as ethyl cellulose can be preferably used.
  • inorganic oxides such as silicon oxide, titanium oxide, and alumina can be suitably used as long as they are inorganic. Further, those having a structure in which fluorine is directly bonded to these inorganic oxides are also preferably used.
  • organic / inorganic composite material a compound having a siloxane bond as a main skeleton and having at least one side chain composed of an organic group is preferably used.
  • the organic group herein is preferably an organic group having an effect of imparting hydrophobicity to the shell, and examples thereof include an alkyl group and a fluoroalkyl group.
  • silicone in which the organic group is a methyl group is preferable from the viewpoint of availability.
  • the shell may also include a material that adjusts the characteristics of the modeling particles according to the additive manufacturing method. Similar to the core, in the case of particles used for modeling by laminating by heating and pressurization, viscoelasticity adjusting material for adjusting viscoelasticity at the time of heating and pressing, used for modeling by laminating using electrophotographic process In the case of particles, a charge control agent for controlling the chargeability may be included. If the shell contains a charge control agent, charging during frictional charging can be controlled. As the viscoelasticity adjusting material and charge control agent to be added to the shell, the same material as the core can be used.
  • the volume resistivity of the shell material is preferably larger than 10 ⁇ 3 ⁇ ⁇ cm, more preferably larger than 10 9 ⁇ ⁇ cm.
  • the charge attenuation amount of the particles is small, and it can be used favorably in the electrophotographic process.
  • the main component of the core and the main component of the shell are different from each other.
  • the difference between the core and shell components facilitates the formation of a three-dimensional network structure consisting of water-soluble materials contained in the core when the particles are fused together, and the support body is easily dissolved or disintegrated by water. It becomes easy.
  • the main component in this invention has shown the component with the largest mass content ratio among the components contained in each member.
  • the volume ratio of the water-soluble substance in the shaped particles according to the present invention is preferably 70% or more.
  • the ratio of the water-soluble substance is 70% or more, removal with water tends to be easy.
  • the thickness of the shell is preferably 0.0010% or more and 15% or less of the particle diameter, and more preferably 1.0% or less.
  • the specific thickness is preferably 1 nm to 10 ⁇ m, and more preferably 10 nm to 1 ⁇ m.
  • the thickness of the shell can be measured using an existing method such as a method using an observation image such as an electron microscope or a TEM of a particle cross section, a method using element mapping, or the like.
  • the method using an observation image such as an electron microscope or a TEM of a particle cross section can measure the ratio and thickness of the shell portion relative to the particle diameter by rupturing any shaped particle and observing the particle cross section. At this time, the shell thickness is measured and averaged at at least five locations for one particle. Next, after the shell thickness measurement is performed on at least 10 particles, the average value of the shell thickness between the particles of the modeling particles is calculated to obtain the shell thickness.
  • an observation image such as an electron microscope or a TEM of a particle cross section
  • a method using element mapping may be used. Specifically, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), energy dispersive X-ray analysis (EDX), Auger electron spectroscopy (AES), etc. are used. Thus, the difference in material between the core and the shell can be visualized.
  • XPS X-ray photoelectron spectroscopy
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • EDX energy dispersive X-ray analysis
  • AES Auger electron spectroscopy
  • the core does not need to be completely covered with the shell as shown in FIG. 1, and a part of the core may not be covered with the shell.
  • the coverage of the shell with respect to the surface area of the core is preferably 30% or more, and more preferably 40% or more. If the coverage is less than 30%, the effect of maintaining the fluidity of the powder by the shell in an environment where the humidity is not controlled may not be obtained.
  • the coverage of the shell of the present invention is preferably 95% or less.
  • the coverage is 95% or less, the exposure of the core is easily promoted during modeling, and the removal rate with water tends to increase.
  • the method for obtaining the shell coverage is as follows. First, the particle cross section is divided into at least 10 regions so that the areas of the particle surface portions are substantially equal. Then, each divided area is imaged using a microscope or the like, and the ratio of the area where the shell exists, that is, the existence ratio is calculated from the obtained image, and the averaged ratio is defined as the coverage. An electron microscope or the like can be used as the microscope, and staining can be performed as necessary to determine the area between the shell and the core.
  • the core and shell components are identified after the core and shell are separated, and the coverage is calculated from their abundance ratio.
  • a technique for separating the core and the shell it is possible to use a technique for mechanically separating the shell or a technique for reprecipitation after selective dissolution with a solvent or the like. For example, a solvent in which only the shell is dissolved is selected, the shell is selectively dissolved, the core portion is removed, and then the shell component is precipitated. Thereafter, a composition analysis of the shell component and the core portion is performed.
  • composition analysis of the core portion may be performed from the cross section of the particle. A calibration curve is prepared with the component amount of the obtained shell material being 100% and the component amount of the core being 0%. The composition analysis of the particle surface is carried out, and the coverage can be calculated from the obtained component amount using the calibration curve.
  • the shaped particles can be produced by a known method.
  • a method of forming a core and a shell at the same time may be used, or a method of forming a shell on a core prepared in advance may be used.
  • a suspension polymerization method, an emulsion polymerization method, or the like can be used.
  • the phase separation method When the shell is formed on the core prepared in advance, the phase separation method, submerged drying method, melt dispersion cooling method, spray drying method, pan coating method, interfacial polymerization method, submerged effect coating method, air suspension coating Method, mechanofusion method, mechanochemical method and the like can be used.
  • the core is prepared by mechanical pulverization, a spray-drying method in which particles are obtained by dispersing and cooling in a gas (liquid) medium in a solution state or a molten state, a melt dispersion cooling method, and a method for producing polymer particles in the medium.
  • a chemical polymerization method such as a turbid polymerization method can be used.
  • a production method using a medium is preferable in that the shape of particles and the particle size distribution of powder can be controlled relatively freely, and a spray drying method is particularly preferable.
  • the obtained powder is classified as necessary.
  • Classification can be appropriately selected from classification by mesh (sieving) and air classification such as elbow jet.
  • a plurality of classifiers may be used in combination, or classification may be performed in a plurality of times.
  • ⁇ Method for producing a three-dimensional object Next, an example of manufacturing a water-insoluble three-dimensional object while modeling a support body that can be removed by water after modeling using the modeling particles according to the present invention as support material particles in the additive manufacturing method will be described. The characteristics required for modeling particles in the additive manufacturing method will also be described.
  • the modeling particles are used as a powder.
  • the powder at this time may contain other particles as long as it contains the shaped particles according to the present invention.
  • the particles other than the present invention contained in the powder are preferably 5% or less.
  • the method for manufacturing a three-dimensional object according to the present embodiment includes the following steps (I) to (III) using water-insoluble structural material particles and support material particles having the structure shown in FIG. 1 as modeling particles. .
  • the step of arranging the structural material particles and the support material particles to form a particle layer (II) The step of laminating the particle layers to form a shaped object (III)
  • the support body included in the shaped object is water Removing by contacting with a solvent containing
  • the support body By repeating the steps (I) and (II) and carrying out the step (III) on the shaped product obtained by laminating the required number of particle layers, the support body can be selectively removed, and the shaping is performed. A three-dimensional object that is an object can be obtained.
  • a step of arranging the structural material particles and the support material particles to form a particle layer In this step, the structural material particles and the support material particles are arranged based on the three-dimensional data of the object to be shaped, and the particle layer Form. Specifically, 3D data is generated by adding the support body required for the modeling process to the 3D data of the modeling object, and slice data is created by slicing the 3D data with the support body at a predetermined interval. To do. According to the obtained slice data, the structural material particles and the support material particles are arranged, and a particle layer is formed.
  • the shaped particles when laminating the particle layer in the step (II), when the thermal energy is applied and the particles are fused, it is preferable that the shaped particles contain a thermoplastic material.
  • a thermoplastic material refers to a material that has the property of hardly changing at room temperature but exhibiting plasticity by heating at a temperature corresponding to the material, allowing free deformation, and becoming hard again when cooled.
  • the thermoplastic material contained in the structural material particles any known material having the above-mentioned characteristics may be used.
  • ABS, PP (polypropylene), PE (polyethylene), PS which are thermoplastic resins, may be used.
  • thermoplastic material contained in the support material particles inorganic materials, dietary fibers, carbohydrates such as carbohydrates, polyalkylene oxide, polyvinyl alcohol (PVA), and polyethylene glycol (PEG) are suitable.
  • carbohydrates such as carbohydrates, polyalkylene oxide, polyvinyl alcohol (PVA), and polyethylene glycol (PEG) are suitable.
  • PVA polyvinyl alcohol
  • PEG polyethylene glycol
  • Specific examples of the water-soluble dietary fiber include polydextrose and inulin, and specific examples of the carbohydrate include sucrose, lactose, maltose, trehalose, melezitose, stachyose, and maltotetraose.
  • a specific example of the polyalkylene oxide is polyethylene glycol (PEG).
  • the material constituting the structural material particles may be selected in accordance with the function required for the modeling object, and may include a functional substance such as a pigment.
  • the softening temperature and melting temperature of the material constituting the structural material particles can be appropriately selected depending on the temperature at which the particle layer is fused in the subsequent laminating step (II), but is preferably 40 ° C or higher and 300 ° C or lower. . By being 40 degreeC or more, a molded article becomes difficult to deform
  • the method for forming the particle layer is not particularly limited, but a method in which the particle layer is arranged in units of lines or planes is preferable from the viewpoint of modeling speed.
  • a known method such as a method using an electrostatic action by charging can be used.
  • each particle can be arranged at a position according to slice data using the number of photoconductors corresponding to the type of particles used for modeling, and an accurate particle layer can be formed.
  • modeling particles of FIG. 1 according to the present invention are applied to an electrophotographic additive manufacturing method, charging attenuation, which is a problem of modeling particles containing a water-soluble material, is suppressed.
  • the charge amount of charged particles may be attenuated by adsorbing moisture in the atmosphere on the surface. If an electrophotographic method is performed using particles of a water-soluble material that does not have a shell as in the present invention, in the process of forming the particle layer, the charge amount is attenuated and the molding particles cannot be arranged at a predetermined position. May occur. On the other hand, in the particles having the configuration shown in FIG. 1, moisture adsorption on the surface of the water-soluble material is suppressed by the shell, so that attenuation of the charge amount is suppressed.
  • the rate of decay ⁇ of the surface potential of the shaped particles is preferably less than 0.3, more preferably 0.2 or less, and even more preferably 0.1 or less.
  • the attenuation rate ⁇ is less than 0.3, the charged particles maintain the charge, so that the particle layer can be formed using an electrophotographic method.
  • the attenuation rate ⁇ is 0.1 or less, a stable charge amount can be maintained by charging, and therefore, it is more preferable as a modeling particle used in the electrophotographic system.
  • the charge amount and the decay rate ⁇ can be adjusted to desired values by appropriately selecting the material and thickness constituting the shell.
  • the presence of the shell suppresses changes in the viscosity of the particle surface due to moisture adsorption on the core, so that the fluidity of the powder is maintained, and a sufficient initial charge can be secured by increasing the number of contact between particles. It is thought that it becomes.
  • Step of forming the modeled object by stacking the particle layers The step of repeatedly stacking the particle layer obtained in the step (I) to obtain a modeled product.
  • a particle layer formed separately may be stacked on the surface of the previously formed particle layer, or a new particle layer may be formed directly on the surface of the previously formed particle layer. However, they may be laminated.
  • the particle layer When laminating the particle layer formed as a separate body on the surface of the previously formed particle layer, the particle layer may be once formed on the substrate and then transferred to the surface of the previously formed particle layer.
  • the base material used at this time is called a transfer body.
  • a transfer method such as electrostatic transfer using electrostatic force can be used.
  • Fusion between the particles constituting the particle layer may be performed before lamination, at the same time as lamination, or after lamination, or may be performed at a plurality of timings.
  • any of the following methods (i) to (iii) can be applied.
  • (I) Method of fusing modeling particles after laminating a plurality of particle layers As shown in (1) and (2) of FIG.
  • a particle layer laminate 103 is obtained by laminating the particle layer laminate 102 composed of the formed particle layers.
  • thermal energy is applied to the particle layer laminate 103, the shaped particles 100 are melted and fused to each other, and a shaped article 104 is obtained as shown in (3) of FIG.
  • the sheet-shaped particle layer 301 is fused to the modeled object 202, and a new modeled object 104 composed of the sheeted particle layer 301 and the modeled object 202 is obtained as shown in (3) of FIG. It is done.
  • This method is also preferable because, as in (ii), voids are less likely to be generated inside the shaped article 202.
  • the water-soluble material contained in the support body dissolves.
  • the shell debris contained in the support body is not easily dissolved because of its low solubility in water, but is removed from the structure together with the water-soluble material. Since the structure is made of a water-insoluble material, there is no fear of dissolving in a solvent containing water, and there is no fear that the shape will change due to the removal of the support body.
  • the support body When the support body is removed by immersing the entire molded article in a solvent, it is preferable to add a water flow or ultrasonic vibration to the solvent because dissolution or disintegration of the support body is promoted.
  • the modeling particles according to the present invention have high moisture resistance in the particle state, and can be dissolved or disintegrated with water after the modeling.
  • the component ratio of the chemical species on the surface of the modeled object is different from the component ratio of the chemical species on the surface of the particle before modeling, and the main components are different. Is more preferable. This suggests that the material component exposed on the surface changes between the particle state and the modeled object state through the modeling process.
  • XPS X-ray photoelectron spectroscopy
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • EDX energy dispersive X-ray analysis
  • AES Auger electron spectroscopy
  • the above surface elemental analysis may be performed on the particles and the shaped object to confirm that the main components of the surface chemical species are different. Specifically, it is possible to analyze the chemical species on the surface from the difference in element type, elemental composition ratio, and the like.
  • the material component exposed to the surface in the modeled object state changes with respect to the particle state in the modeling process due to the temperature applied to the modeled particle or the deformation of the particle due to temperature and pressure.
  • the conditions for changing the material component exposed on the surface of the modeled object state with respect to the particle state vary depending on the shell coverage on the core surface in the particle state and the combination of the core and shell materials.
  • the particles may be heated to a temperature higher than the softening temperature of the core or the shaped particles and simultaneously pressurized, and deformed until the deformation rate reaches a height of 90% or less. Then, since the shell is easily broken and the material contained in the core is easily exposed on the surface, the effect of the present invention can be more suitably obtained.
  • a ratio between the value obtained by dividing the thickness of the modeled object by the number of layers and the thickness of the particle layer may be estimated as a deformation rate.
  • grains can be estimated by one lamination.
  • molding are directly observed, and it is good also as a deformation rate.
  • the volume-based average particle diameter (hereinafter simply referred to as average particle diameter) of the modeling particles constituting the powder used in the modeling method is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 20 ⁇ m or more. 80 ⁇ m or less. If the average particle diameter of the particles is 1 ⁇ m or more, it is possible to increase the thickness of a single laminated film, and thus it is possible to obtain a shaped article having a desired height with a small number of laminations. Moreover, it becomes easy to implement
  • the average particle size of the modeling particles constituting the modeling powder can be obtained using a commercially available particle size distribution measuring device.
  • a laser diffraction / scattering particle size distribution analyzer LA-950 manufactured by HORIBA
  • the measurement can be performed as follows.
  • the attached dedicated software is used for setting the measurement conditions and analyzing the measurement data.
  • the batch cell containing the measurement solvent in the measurement device adjust the optical axis, and adjust the background.
  • the solvent used at this time must be selected so that the solubility of the particles is extremely small.
  • a dispersant may be appropriately added to the solvent as necessary.
  • the powder composed of the particles to be measured is added to the batch cell until the transmittance of light emitted from the tungsten lamp is 90% to 95%, and the particle size distribution is measured. The volume-based average particle diameter can be calculated from the obtained measurement results.
  • the average circularity of the shaped particles is preferably 0.85 or more, and more preferably 0.90 or more. If the average circularity of the particles is 0.85 or more, the particles come into point contact with each other, so that the particles are easy to flow, and a close-packed arrangement is easily obtained in the particle layer, and voids are formed at the time of lamination. It tends to be difficult to do.
  • the average circularity can be obtained as follows. First, the circularity of a particle is defined as follows.
  • Circularity (perimeter of a circle with the same area as the particle projection area) / (perimeter of the particle projection image)
  • the “particle projection area” is the area of the binarized particle image, and the “peripheral length of the particle projection image” is defined as the length of the contour line of the particle image.
  • the circularity is an index indicating the degree of unevenness on the projection surface of the particle, and is 1.0 when the particle is a perfect sphere. The more complex the surface shape, the smaller the circularity.
  • the circularity of the particles can be measured using image processing of an observation image such as an electron microscope and a flow type particle image measuring device. Furthermore, the average circularity can be obtained by taking the average value of the circularity obtained by measuring 10 or more arbitrary shaped particles.
  • the modeling apparatus 500 includes a particle layer forming unit 501, a modeling unit 502, and a transfer body 24 that connects the particle layer forming unit and the modeling unit.
  • the particle layer forming unit 501 includes a material supply unit 21, a photoreceptor 22, and a light source (not shown) according to the number of types of modeling particles, and forms a particle layer on the transfer body 24.
  • FIG. 7 shows a configuration in the case where one type of each of the structural material particles and the support material particles is used, but the material supply unit 21 provided in the particle layer forming unit 501 and the photoconductor according to the number of types of modeling particles to be used. 22. What is necessary is just to increase the set of light sources.
  • the particle layer made of structural material particles and the particle layer made of support material particles are formed on different photoreceptors 22a and 22b, respectively.
  • a laser beam 23a emitted from the light source scans the photoconductor 22a and a laser beam 23b scans the photoconductor 22b, so that latent images are formed on the photoconductors 22a and 22b.
  • the latent image of the structure portion of the slice data is formed on the photoconductor 22a
  • the latent image of the support portion of the slice data is formed on the photoconductor 22b.
  • the material supply unit 21a stores powder containing structural material particles
  • the material supply unit 21b stores powder containing support material particles.
  • the structural material particles are supplied to the photoconductor 22a from the material supply unit 21a, and a layer made of the structural material particles is formed on the photoconductor 22a.
  • the support material particles are supplied from the material supply unit 21b to the photoconductor 22b, and a layer made of the support material particles is formed on the photoconductor 22b.
  • the layer formed on each of the photoreceptors 22a and 22b is electrostatically transferred to the transfer body 24 in order to form a particle layer composed of structural material particles and support material particles.
  • the order of transferring the particle layer to the transfer body 24 is not limited to this, and after transferring the particle layer made of one of the structural material particles and the support material particles, the particle layer made of the other particle. It is good to transfer and form.
  • the particle layer formed on the transfer body 24 is heated, and transferred and stacked on a modeled object on the stage 25 in the middle of modeling.
  • the opposing member 26 and the stage 25 can pressurize the modeled object in the middle of modeling and the heated particle layer.
  • the particle layer may be heated by the facing member 26 incorporating a heater, or may be heated by a heating means different from the facing member 26.
  • a modeled object is formed in which the part made of the structural material particles is the structural body 27a and the part made of the support material particles is the support body 27b.
  • a modeling apparatus suitable for the electrophotographic system is not limited to the configuration shown in FIG.
  • the cartridge includes a photoconductor, a charging unit for charging the photoconductor, an opening for irradiating the photoconductor with laser light, and a material container and a material supply unit corresponding to the material supply unit. It is good to have.
  • the modeling apparatus When the modeling particle according to the present invention is used as the support material particle, the modeling apparatus includes at least a cartridge containing a powder containing structural material particles in the material container, and a powder containing the modeling particle according to the invention in the material container.
  • the cartridge housing the body is detachable. Furthermore, it is also preferable to include an attaching / detaching part to which the spare cartridges of the structural material particles and the support material particles can be attached and detached so that the modeling particles do not run out during modeling.
  • the modeling particle of the present invention is used as the support material particle, but the use of the modeling particle of the present invention is limited to this. It is not something.
  • the modeling particle of the present invention is suitable as the structural material particle.
  • the volume ratio of the water-soluble substance in the particles is 85%, the solubility in water is 50 or more, and the softening temperature is 120 ° C.
  • the average particle size was measured using a laser diffraction / scattering particle size distribution analyzer LA-950 (manufactured by HORIBA).
  • a batch type cell containing a measurement solvent is set in a laser diffraction / scattering particle size distribution measuring apparatus LA-950 (manufactured by HORIBA) to adjust the optical axis and the background. It is necessary to select a solvent that does not dissolve particles as the solvent used at this time.
  • isopropyl alcohol special grade, manufactured by Kishida Chemical Co., Ltd. was used.
  • the prepared powder was added to a batch cell until the transmittance of light emitted from the tungsten lamp reached 95% to 90%, and the particle size distribution was measured. From the obtained measurement result, the average particle diameter based on the volume of the particle A was calculated. For the other particles, the average particle size was measured in the same manner.
  • a powder of maltotetraose (Eclipse Fuji Oligo # 450, manufactured by Nippon Shokuhin Kako Co., Ltd.) was kneaded and ground to obtain mother particles 4 having an average particle size of 85 ⁇ m.
  • the solubility of the particles in water is 50 or more, and the softening temperature is 160 ° C.
  • a powder B made of particles having the mother particle 2 as a core and a silicone resin as a shell is obtained in the same manner as the powder A, except that a powder made of the mother particle 2 is used instead of the powder made of the mother particle 1. It was.
  • Polystyrene resin (PSJ-polystyrene HF77 manufactured by PS Japan Ltd.) was dissolved in toluene to prepare a 0.5% solution.
  • Polystyrene resin is a water-insoluble material, and its solubility in water is 1 or less.
  • the process of spraying the solution and drying toluene while heating and flowing 700 g of the powder composed of the mother particles 1 was performed until the total amount of spray liquid reached 1400 g. Thereafter, the obtained powder was classified to obtain a powder E composed of particles having a base particle 1 as a core and a polystyrene resin as a shell.
  • Polystyrene resin (PSJ-polystyrene HF77 manufactured by PS Japan Ltd.) was dissolved in toluene to prepare a 7.5% solution.
  • Polystyrene resin is a water-insoluble material.
  • the step of spraying the solution and drying toluene while stirring 300 g of the powder composed of the mother particles 1 was carried out until the total amount of the spray liquid reached 40 g, and then the obtained powder was classified to obtain the mother particles 1
  • a powder F comprising particles having a core and polystyrene resin as a shell was obtained.
  • Polystyrene resin (PSJ-polystyrene HF77 manufactured by PS Japan Ltd.) was dissolved in toluene to prepare a 7.5% solution.
  • Polystyrene resin is a water-insoluble material.
  • the step of spraying the solution and drying toluene while stirring 300 g of the powder composed of the mother particles 1 was performed until the total amount of the spray liquid reached 120 g, and then the obtained powder was classified to obtain the mother particles 1
  • a powder G composed of particles having a core and polystyrene resin as a shell was obtained.
  • the obtained powder H is composed of particles having the mother particle 1 as a core and a styrene acrylic resin as a shell.
  • Styrene acrylic resin is a water-insoluble material, and its solubility in water is 1 or less.
  • the obtained powder I is composed of particles having the base particle 1 as a core and a styrene acrylic resin as a shell.
  • the obtained powder J is composed of particles having the mother particle 1 as a core and a styrene acrylic resin as a shell.
  • sucrose behenic acid ester (Ryoto Sugar Ester B370f manufactured by Mitsubishi Chemical Foods Co., Ltd.) was dispersed and stirred in 1000 g of ethanol (special grade Kishida Chemical Co., Ltd.), and the temperature was raised to 80 ° C.
  • sucrose behenic acid ester is a water-insoluble material, and its solubility in water is 1 or less.
  • the obtained powder was classified to obtain a powder K composed of particles having the mother particle 1 as a core and sucrose behenate as a shell.
  • ⁇ Preparation of powder M> A powder comprising particles having the mother particle 1 as a core and sucrose behenate as a shell in the same manner as the powder K, except that the amount of sucrose behenate added is 20 g and the amount of ethanol is 2000 g. Body M was obtained.
  • powder P The powder composed of the mother particles 1 was designated as powder P.
  • powder Q The powder composed of the mother particles 2 was designated as powder Q.
  • the average particle diameter, average circularity, and coverage were determined.
  • the results are summarized in Table 1.
  • the addition amount of the shell material in Table 1 is a value obtained by converting the addition amount of the core material into 100 g.
  • Examples 1 to 15 and Comparative Examples 1 and 2 As examples, the following evaluations were performed on the obtained powders A to O. Further, the same evaluation was performed on the powders P and Q as Comparative Examples 1 and 2.
  • Rank A Weight change is less than 5%
  • Weight change is greater than 5% and less than 20%
  • Rank C Weight change is greater than 20% and less than 90%
  • Rank D Weight change is greater than 90%
  • the powder of rank A was excellent in the fluidity of the powder after standing.
  • rank B particles were agglomerated or fused at a very small part of the powder after standing, and the fluidity of the powder was reduced.
  • rank C particles were agglomerated or fused in part of the powder after standing, and the fluidity of the powder was reduced.
  • rank D more than half of the powder particles aggregated or fused after standing, and the fluidity of the powder was significantly reduced.
  • Fig. 4 shows a micrograph of the powder determined to be Rank A after standing.
  • the fluidity of the powder decreases due to exposure to a long time in a humidity environment. There arise problems such as uniformity and defects in the particle layer. In particular, even when the aggregation is significant, even lamination may not be possible.
  • FIG. 5 shows a micrograph of the powder determined to be rank D after standing.
  • the powders P and Q agglomeration and fusion between the particles proceeded to form an aggregated aggregate.
  • the powders of rank A are particularly excellent in stability under humidity environment, and have a uniform thickness and Since a particle layer having a high density can be formed, it is possible to produce a particularly high-precision shaped article.
  • the produced powder is placed on the base so that the applied amount is 1.5 to 2.5 mg / cm 2, and a particle layer is produced.
  • a sheet was formed by heating at a temperature equal to or higher than the softening temperature of the particles.
  • the obtained sheets were stacked and the process of thermocompression bonding by applying a pressure of 0.01 kgf / cm2 or more above the softening temperature of the particles was repeated to produce a shaped article having a thickness of about 1 mm.
  • the obtained model was exposed to flowing water at 3000 ml / min for 300 minutes, and the volume change due to water was evaluated according to the following criteria.
  • volume change was measured using a known volume measurement method.
  • the modeled volume of the largest volume was measured, and the change from the initial volume was calculated.
  • Table 2 shows the results of each evaluation.
  • Rank A Volume change is 90% or more Rank B Volume change is 5% or more and less than 90% Rank C Volume change is less than 5%
  • the voids were evaluated by observing the cross section in the laminate with a scanning electron microscope (SEM) according to the following criteria for the obtained shaped article.
  • SEM scanning electron microscope
  • the produced powder is placed on the base in a circular shape with a radius of 15 mm so that the applied amount is 1.5 to 2.5 mg / cm 2 to produce a particle layer.
  • a sheet was formed by heating at a temperature equal to or higher than the softening temperature of the particles.
  • the obtained sheets were stacked, and the process of thermocompression bonding by applying a pressure of 0.01 kgf / cm2 or more above the softening temperature of the particles was repeated to produce a shaped article having a thickness of 2 to 3 mm.
  • the obtained model was exposed to flowing water of 3000 ml / min for 60 minutes, and the removal rate (mm / hr) of the circular model was calculated from the volume change of the model and evaluated according to the following criteria.
  • volume change was measured using a known volume measurement method.
  • the modeled volume of the largest volume was measured, and the change from the initial volume was calculated.
  • Table 3 shows the results of each evaluation.
  • Rank A removal rate is 0.15 mm / hr or higher Rank B removal rate is less than 0.15 mm / hr
  • a shaped object made of powder of rank A can be used more suitably as a support material used in a structure that supports a columnar structure because a column with a thickness of 0.3 mm can be removed with water in less than 1 hour. it can.
  • the powders A to O according to the present invention are powders and have excellent moisture resistance, but they can be disintegrated by contact with water, and the shape can be easily broken. It was confirmed that the molded particles were suitable for the production of On the other hand, although the powders P and Q used as comparative examples were excellent in solubility in water, they were inferior in moisture resistance, and the aggregation or fusion of particles was remarkable.
  • a micrograph showing the state of the powder P fused by the evaluation of the change in fluidity of the powder is shown in FIG.
  • a measurement method based on Japanese Industrial Standards JIS C61340-2-1 was carried out using a charge attenuation device (NS-D100 type, manufactured by Nano Seeds).
  • a charge was applied to the powder composed of particles measured by corona discharge, and the change in potential with time of the powder was measured with a surface potential meter.
  • the measurement conditions were applied voltage: ⁇ 600 V, application time: 1 second, measurement time: 600 seconds, measurement environment: 25 ° C., 45-50% RH (indoor environment).
  • V V0exp ( ⁇ t) (Formula 1)
  • V Surface potential
  • V0 Initial surface potential
  • t Decay time
  • Decay rate
  • Equation 1 a measured value of potential for each time for powder I and powder P and a graph of charge decay obtained from Equation 1 are shown in FIG. 6 together with an approximate straight line.
  • the toner in the commercially available electrophotographic CRG was removed, filled with powder, and the developed powder on the electrostatic latent image bearing member was transferred to the transfer member using electrostatic force.
  • the transfer efficiency was calculated from the ratio of the amount of powder on the electrostatic latent image carrier and the amount of powder after transfer to the transfer body.
  • the electrophotographic adaptability was evaluated according to the following criteria.
  • Rank A Transfer efficiency is 90% or more Rank B Transfer efficiency is 70% or more and less than 90% Rank C Transfer efficiency is less than 70%
  • the powder of rank A there are few missing parts in the particle layer, and when the particle layer is laminated, the problem of poor lamination due to the lamination on the missing part of the particle layer hardly occurs. Therefore, it can be suitably used for an electrophotographic system.
  • the powder of rank C there are many missing portions in the particle layer, and poor stacking frequently occurs.
  • Table 4 shows the decay rate ⁇ as a result of the evaluation of the charge retention of the powders A to J and the powder P, and the evaluation result of the electrophotographic adaptability.
  • the powders A to J have an effect on the charge amount attenuation as compared with the powder P, and can be suitably used in the electrophotographic system.
  • a three-dimensional structure was prepared by electrophotography using particles L as support material particles and powder particles obtained by pulverizing ABS (Techno ABS130 manufactured by Techno Polymer Co., Ltd.) as structural material particles.
  • a particle layer having a pattern composed of two types of particles of structural material particles and support material particles is formed and laminated to form a modeled object in which the structural material portion and the support material portion exist. Produced.
  • the modeled part (support body) formed by the particles L was easily removed by exposing the resulting modeled object to running water, and the target three-dimensional object composed of ABS could be obtained.

Abstract

 The present invention makes it possible to provide modeling particles including a water-soluble material, whereby a support body removable by a water-containing solvent in a process for manufacturing a three-dimensional object can be formed despite the high fluidity in a powder state. Modeling particles used for manufacturing a three-dimensional object, the modeling particles being provided with a core and a shell for covering at least a portion of the surface of the core, the water-soluble material being contained most abundantly in the core, and the water solubility of a material included most abundantly in the shell being less than the water solubility of the water-soluble material included in the core.

Description

立体物の製造に用いられる造形粒子、それを含む粉体、及びそれを用いた立体物の製造方法Shaped particles used for manufacturing a three-dimensional object, powder containing the same, and method for manufacturing a three-dimensional object using the same
 本発明は、積層造形法を用いた、立体物の製造に用いられる造形粒子に関する。 This invention relates to the modeling particle | grains used for manufacture of a solid thing using the additive manufacturing method.
 近年、造形目的物である立体物(造形対象物)の断面データに基づいて、造形材料を積層する積層造形法が着目されている。 In recent years, a layered modeling method in which modeling materials are laminated based on cross-sectional data of a three-dimensional object (modeling object) that is a modeling object has attracted attention.
 特許文献1には、電子写真方式を用いて、造形材料である粒子(造形粒子)を造形対象物の断面データに応じて配置した後に、造形粒子を熱によって互いに融着させて積層する方法が開示されている。 Patent Document 1 discloses a method in which particles (modeling particles), which are modeling materials, are arranged in accordance with cross-sectional data of a modeling target using an electrophotographic method, and then the molding particles are fused to each other by heat and stacked. It is disclosed.
 特許文献2には、造形粒子からなる層を基部の上に形成し、造形対象物の断面データに応じてバインダー液体を噴霧あるいはレーザビームを照射し、造形粒子を部分的に溶解させて互いに融着して積層する方法が開示されている。 In Patent Document 2, a layer made of modeling particles is formed on a base, and a binder liquid is sprayed or irradiated with a laser beam in accordance with cross-sectional data of a modeling target to partially dissolve the modeling particles and melt them together. A method of wearing and laminating is disclosed.
 積層造形法において、オーバーハング構造や可動部のある構造などを有する複雑な形状を作製する場合、造形対象物を成す構造体が存在しない領域の上に構造体を形成する必要が生じる。このような場合、構造体の重力方向の下側に、構造体を支持するサポート体が設けられる。つまり、造形の過程において、造形対象物の空隙となる領域には、必要に応じてサポート体が形成される。 In the additive manufacturing method, when a complicated shape having an overhang structure, a structure having a movable part, or the like is produced, it is necessary to form a structure on a region where the structure constituting the modeling target does not exist. In such a case, a support body that supports the structure is provided below the structure in the direction of gravity. That is, in the modeling process, a support body is formed as necessary in a region that becomes a void of the modeling target.
 サポート体は、造形対象物にとって不要な部材であるため、造形が完了した後に除去される。従って、サポート体は、構造材料で構成される構造体の表面から容易に除去することのできる材料で形成されていることが望まれる。 Since the support body is an unnecessary member for the modeling object, it is removed after the modeling is completed. Therefore, it is desirable that the support body be formed of a material that can be easily removed from the surface of the structure body made of the structural material.
 特許文献1では、サポート体を構成する材料を含有する粒子(サポート材粒子)と、サポート材粒子より造形後の軟化温度が高い樹脂からなる、造形対象物を構成する材料を含有する粒子(構造材粒子)とを用いて積層体を形成している。造形後、サポート材粒子の溶融温度以上かつ構造体が溶融しない温度に加熱し、サポート体を溶融により選択的に除去して、構造体すなわち造形対象物を得ている。 In Patent Literature 1, particles containing a material constituting a modeling object (structure) composed of particles (support material particles) containing a material constituting the support body and a resin having a higher softening temperature after modeling than the support material particles. The laminate is formed using the material particles. After the modeling, the structure is heated to a temperature equal to or higher than the melting temperature of the support material particles and does not melt, and the support body is selectively removed by melting to obtain a structure, that is, a modeling object.
 特許文献2には、金属、セラミック、プラスチックなどのコアと、コアの表面に形成された極性を有する材料からなる第1被覆膜と、第1被覆膜上に形成された界面活性剤からなる第2被覆膜とを有する粒子を用いた造形方法が開示されている。特許文献2では、このような粒子からなる層を基部上に配置し、所定のパターンに従って、第1および第2被覆膜を溶解するバインダー液体を噴霧あるいはレーザビームを照射する工程を繰り返し行い、粒子同士を結合させて造形を行う。バインダー液体が噴霧されずに、あるいはレーザビームが照射されずに、他の粒子と融着しない粒子の領域がサポート体としての役割を担い、構造体となる粒子の積層を支持している。 Patent Document 2 includes a core made of metal, ceramic, plastic or the like, a first coating film made of a material having polarity formed on the surface of the core, and a surfactant formed on the first coating film. A modeling method using particles having a second coating film is disclosed. In Patent Document 2, a layer made of such particles is disposed on the base, and a step of spraying a binder liquid that dissolves the first and second coating films or irradiating a laser beam according to a predetermined pattern, Modeling is done by joining particles together. The region of the particles that are not fused with other particles without being sprayed with the binder liquid or without being irradiated with the laser beam plays a role as a support body, and supports the lamination of the particles that become the structure.
特開2003-53849号公報JP 2003-53849 A 特表2005-533877号公報JP 2005-533877 A
 しかしながら、特許文献1に記載された方法では、構造体の表面にサポート体が残る場合があるとともに、サポート体の除去時に加える熱によって構造体が変形してしまい、所望の造形対象物が得られない場合がある。 However, in the method described in Patent Document 1, the support body may remain on the surface of the structure body, and the structure body is deformed by heat applied when the support body is removed, and a desired modeling object is obtained. There may not be.
 また、特許文献2の場合、構造体は、粒子間の接点にある表層の第1被覆膜の融着によって固定されているため、結合が弱く、サポート体の除去時に、構造体にかかる負荷によって造形対象物が壊れる恐れがある。 In the case of Patent Document 2, since the structure is fixed by fusing the first coating film on the surface layer at the contact point between the particles, the bond is weak and the load applied to the structure when the support body is removed. There is a risk that the modeling object will be broken.
 本発明は、上記課題を解決するため、構造体の変形を抑制するとともに、水を含む溶媒によって構造体の表面から容易に除去することのできる、サポート体の構成に好適な造形粒子の提供と、これらを用いた立体物の製造方法の提供とを目的とする。 In order to solve the above problems, the present invention provides a shaped particle suitable for the structure of a support body, which can be easily removed from the surface of the structure with a solvent containing water while suppressing deformation of the structure. An object of the present invention is to provide a method for producing a three-dimensional object using these.
 本発明にかかる造形粒子は、水溶性材料を含む粒子であって、コアと、前記コアの表面の少なくとも一部を覆うシェルとを備え、前記コアが水溶性材料を最も多く含有しており、前記シェルに最も多く含まれる材料の水に対する溶解度は、前記コアに含まれる水溶性材料の水に対する溶解度より小さいことを特徴とする。 The shaped particle according to the present invention is a particle containing a water-soluble material, and includes a core and a shell covering at least a part of the surface of the core, and the core contains the most water-soluble material, The solubility of the material most contained in the shell in water is smaller than the solubility in water of the water-soluble material contained in the core.
 本発明によれば、サポート体を、水を含む溶媒に接触させることによって、容易に除去することが可能な、立体物の製造に適した造形粒子を提供することができる。 According to the present invention, it is possible to provide shaped particles suitable for manufacturing a three-dimensional object that can be easily removed by bringing the support body into contact with a solvent containing water.
本発明の造形粒子を説明する図である。It is a figure explaining the modeling particle | grains of this invention. 粒子層を積層する工程の模式図である。It is a schematic diagram of the process of laminating | stacking a particle layer. 本発明の実施例で作製した粉体N中の粒子の断面の電子顕微鏡画像である。It is an electron microscope image of the cross section of the particle | grains in the powder N produced in the Example of this invention. 湿度環境下に静置後の粉体Iの状態を示す写真である。It is a photograph which shows the state of the powder I after leaving still in a humidity environment. 湿度環境下に静置後の粉体Pの状態を示す写真である。It is a photograph which shows the state of the powder P after leaving still in a humidity environment. 帯電減衰のグラフの一例である。It is an example of the graph of charging attenuation. 電子写真方式を用いた三次元造形装置の概略構成図である。It is a schematic block diagram of the three-dimensional modeling apparatus using an electrophotographic system.
 以下、図面を参照して本発明を詳細に説明する。各図面において、同一部材あるいは対応する部材を示す箇所には、同一の符号を付与している。特に図示あるいは記述をしない構成や工程には、当該技術分野の周知技術または公知技術を適用することが可能である。また、重複する説明は省略する場合がある。 Hereinafter, the present invention will be described in detail with reference to the drawings. In each drawing, the same code | symbol is provided to the location which shows the same member or a corresponding member. A well-known technique or a well-known technique in the technical field can be applied to configurations and processes that are not particularly illustrated or described. In addition, overlapping description may be omitted.
 <造形粒子>
 一般に、造形対象物はABS、ナイロンなどの非水溶性材料で作製される場合が多い。従って、サポート材粒子が水溶性を有していれば、水に対する溶解度の差を利用して、サポート体を選択的に除去することが可能となる。サポート体の除去に水を用いることができれば、水は入手が容易であるためコストを低く抑えることができる上に、安全性が高く環境への負荷が低いため、非常に好ましい。ここで、非水溶性とは、水に対する溶解度が0.1未満の性質を言い、水溶性とは、水に対する溶解度が0.1以上の性質を言う。また、水に対する溶解度とは、1気圧において、水温20℃の純水100gに溶ける質量をグラム単位で表した数値とする。
<Modeling particles>
In general, a modeling object is often made of a water-insoluble material such as ABS or nylon. Therefore, if the support material particles are water-soluble, the support body can be selectively removed using the difference in solubility in water. If water can be used for the removal of the support body, it is very preferable because water can be easily obtained because the cost can be kept low and the safety is high and the load on the environment is low. Here, water-insoluble means a property having a solubility in water of less than 0.1, and water-soluble means a property having a solubility in water of 0.1 or more. Moreover, the solubility with respect to water is a numerical value representing the mass dissolved in 100 g of pure water having a water temperature of 20 ° C. at 1 atm in grams.
 水による除去性を考慮すると、サポート体は、水に対する溶解度の大きな水溶性材料で構成されるのが好ましい。しかし、水に対する溶解度が大きい水溶性材料からなる粒子は、湿度の高い雰囲気に曝されると、雰囲気中の水分を吸湿して粒子表面の粘性が増加する。造形粒子は、造形に用いる装置の材料収容部に粉体の状態で収容されるが、粉体にこのような粒子が含まれていると、湿度により凝集して流動性が著しく低下してしまう。流動性が著しく低下した粉体は、造形プロセスにおける動作不良や、得られる造形対象物の精度の低下を招く恐れがあるため、粉体の保管環境や使用環境の湿度管理を厳密に行わなければならず、利便性に劣り、製造コストも増加してしまう。 In consideration of water removability, the support body is preferably made of a water-soluble material having a high solubility in water. However, when a particle made of a water-soluble material having a high solubility in water is exposed to an atmosphere with high humidity, it absorbs moisture in the atmosphere and increases the viscosity of the particle surface. The modeling particles are accommodated in a powder state in the material container of the apparatus used for modeling. If such particles are contained in the powder, the fluidity is remarkably reduced due to aggregation due to humidity. . Powders with significantly reduced fluidity can lead to malfunctions in the modeling process and the accuracy of the resulting modeling object, so the humidity of the powder storage environment and usage environment must be strictly controlled. In addition, the convenience is inferior and the manufacturing cost increases.
 そこで、本発明にかかる造形粒子は、図1に示す断面構造のように、コア12の表面にシェル11を有している。ここで、コアは図1のようにシェルによって全体が覆われている必要はなく、発明にかかる造形粒子は、コア12と、コア12の表面の少なくとも一部を覆うシェル11とを備えていればよい。さらに、コア12は水溶性材料を最も多く含有しており、シェル11に最も多く含まれる材料の水に対する溶解度は、コア12に含まれる前記水溶性材料の水に対する溶解度より小さい。コア12およびシェル11の溶解度は、粒子からそれぞれの部分を分離して、溶解度を測定することができる。 Therefore, the modeling particle according to the present invention has the shell 11 on the surface of the core 12 as in the cross-sectional structure shown in FIG. Here, the core does not need to be entirely covered with the shell as shown in FIG. 1, and the modeling particle according to the invention includes the core 12 and the shell 11 covering at least a part of the surface of the core 12. That's fine. Furthermore, the core 12 contains the most water-soluble material, and the solubility in water of the material most contained in the shell 11 is smaller than the solubility in water of the water-soluble material contained in the core 12. The solubility of the core 12 and the shell 11 can be measured by separating each part from the particle.
 このような構成を有する造形粒子は、コア表面に対するシェルの被覆率やコアやシェルの材料に応じて、適切な条件で熱エネルギーまたは熱エネルギーと圧力を付与することにより、コアの材料を粒子表面に露出させることができる。例えば、コアあるいは造形粒子の軟化温度以上に加熱する、あるいは、コアあるいは造形粒子の軟化温度以上に加熱すると同時に加圧することによって、シェル構造を破壊して、コアの材料を表面に露出させることができる。ここで、本発明の軟化温度とは動的粘弾性を測定した際に、損失弾性率が10Pa以下となる温度を軟化温度とする。ここで、造形粒子の軟化温度とは、コアとシェルを含めた造形粒子の損失弾性率が10Pa以下となる温度を指す。 The shaped particles having such a structure can be obtained by applying thermal energy or thermal energy and pressure under appropriate conditions according to the coverage of the shell to the core surface and the material of the core or shell. Can be exposed to. For example, the shell structure is destroyed by heating at the same time or higher than the softening temperature of the core or modeling particles, or by heating at the same time as the softening temperature of the core or modeling particles, and the core material is exposed to the surface. it can. Here, the softening temperature of the present invention refers to the temperature at which the loss elastic modulus becomes 10 8 Pa or less when dynamic viscoelasticity is measured. Here, the softening temperature of the modeling particle refers to a temperature at which the loss elastic modulus of the modeling particle including the core and the shell becomes 10 8 Pa or less.
 あるいは、選択的にシェルの材料を溶解する溶液を造形粒子に噴霧し、粒子表面にできる液滴の表面張力を利用してシェルの材料を粒子表面に偏在させ、コアの材料を露出させることも可能である。 Alternatively, a solution that selectively dissolves the shell material may be sprayed onto the shaped particles, and the shell material may be unevenly distributed on the particle surface using the surface tension of the droplets formed on the particle surface to expose the core material. Is possible.
 このように、本発明の造形粒子は、その表面に水に対する溶解度の低い材料(シェル11)が形成されているため、粉体の状態で、水分量の多い雰囲気においても、吸湿による凝集が抑制され、流動性の低下が抑制される。従って、特に湿度管理をしなくても、積層造形法に適した粉体の状態を維持することができる。 Thus, since the modeling particle | grains of this invention have the material (shell 11) with the low solubility with respect to water on the surface, the aggregation by moisture absorption is suppressed also in the atmosphere with much moisture content in the state of a powder. Thus, a decrease in fluidity is suppressed. Therefore, the state of the powder suitable for the additive manufacturing method can be maintained without particularly managing the humidity.
 そして、立体物の製造工程において、コアあるいは造形粒子の軟化温度以上に加熱し加圧することによって、複数の造形粒子の内部から押し出されたコアの材料を互いに融着させ、立体物を形づくることができる。あるいは、立体物の製造工程において、選択的にシェルを溶解する溶液を噴霧し、その後乾燥させることによって、コアの材料を露出させると共に、複数の粒子間をシェルの材料によって結着させ、立体物を形づくることもできる。 In the manufacturing process of the three-dimensional object, the core material extruded from the inside of the plurality of modeling particles is fused to form a three-dimensional object by heating and pressurizing at a temperature higher than the softening temperature of the core or the modeling particle. it can. Alternatively, in the manufacturing process of the three-dimensional object, the core material is exposed by spraying a solution that selectively dissolves the shell and then dried, and a plurality of particles are bound by the shell material, and the three-dimensional object is bonded. Can also be formed.
 コアは水溶性材料を最も多く含有しているため、水に接触させることにより水溶性材料を溶解させ、造形物の形状を崩壊させることができる。 Since the core contains the most water-soluble material, the water-soluble material can be dissolved by bringing it into contact with water, and the shape of the model can be collapsed.
 上記性質から、本発明にかかる造形粒子は、サポート材粒子として好適である。本発明にかかる造形粒子をサポート材粒子として用いた場合、造形後、サポート体を水に接触させることにより、構造体から容易に除去することができる。そのため、サポート体の除去工程によって構造体の形状が損われることがなく、精度の高い立体物を得ることができる。なお、「容易」とは、除去に必要な時間が短い、あるいは、除去するために特殊な作業や環境が不要、の少なくとも一方を満たすことをいう。 From the above properties, the shaped particles according to the present invention are suitable as support material particles. When the modeling particle | grains concerning this invention are used as support material particle | grains, it can remove from a structure easily by making a support body contact water after modeling. Therefore, the shape of the structure is not impaired by the support body removal step, and a highly accurate three-dimensional object can be obtained. “Easy” means that the time required for removal is short, or at least one of special work and environment is not required for removal.
 サポート体の除去性を確保するためには、サポート体が、コアの水溶性材料からなる三次元ネットワーク構造の中にシェルの非水溶性材料が点在するような構造を有していることが望ましい。そのためには、水溶性材料からなる三次元ネットワーク構造を形成するだけの水溶性材料が、コア12に含まれている必要がある。従って、造形粒子における、コア12の粒子全体に対する体積比率は、50%以上であることが好ましく、70%以上であることがより好ましい。あるいは、コアやシェルに含まれる材料の比重によるが、サポート材粒子のコアに含まれる水溶性材料の、コア12全体に対する質量比率は、50%以上であることが好ましく、70%以上であることがより好ましい。 In order to ensure the removability of the support body, the support body has a structure in which the water-insoluble material of the shell is scattered in the three-dimensional network structure made of the water-soluble material of the core. desirable. For this purpose, the core 12 needs to include a water-soluble material that can only form a three-dimensional network structure made of the water-soluble material. Therefore, the volume ratio of the shaped particles to the entire core 12 particles is preferably 50% or more, and more preferably 70% or more. Alternatively, depending on the specific gravity of the material contained in the core or shell, the mass ratio of the water-soluble material contained in the core of the support material particles to the entire core 12 is preferably 50% or more, and 70% or more. Is more preferable.
 コア12に含まれる水溶性材料は、1種類であってもよいし、複数種類であっても良い。複数種類の水溶性材料が含まれている場合、これら複数種類の水溶性材料の合計量を、コア12に含有される水溶性材料と考えればよい。従って、コア12全体に対する水溶性材料の体積比率または質量比率は、複数種類の水溶性材料の合計量を用いて算出すればよい。ここでいう水溶性材料の「種類」とは化学構造によって決まるものとし、化学構造が異なっている場合に種類が異なっていると表現する。 The water-soluble material contained in the core 12 may be one type or a plurality of types. When multiple types of water-soluble materials are included, the total amount of these multiple types of water-soluble materials may be considered as the water-soluble material contained in the core 12. Therefore, the volume ratio or mass ratio of the water-soluble material relative to the entire core 12 may be calculated using the total amount of a plurality of types of water-soluble materials. The “type” of the water-soluble material here is determined by the chemical structure, and when the chemical structure is different, it is expressed that the type is different.
 コア12に含まれる水溶性材料が複数種類ある場合、シェルに最も多く含まれる材料の水に対する溶解度が、「コアに含まれる水溶性材料の水に対する溶解度より小さい」とは、コアに含まれるいずれの水溶性材料の水に対する溶解度よりも小さいことを言う。 When there are a plurality of types of water-soluble materials contained in the core 12, the solubility of water contained in the shell most in the material is smaller than the solubility in water of the water-soluble material contained in the core. This means that the solubility of water-soluble material in water is smaller than the solubility in water.
 コアに含まれる水溶性材料は、水溶性を有していれば特に限定されないが、水に対する溶解度が1より大きい材料が好ましく、5より大きい材料がより好ましく、10以上であればさらに好ましい。 The water-soluble material contained in the core is not particularly limited as long as it has water solubility, but is preferably a material having a solubility in water of greater than 1, more preferably a material of greater than 5, and even more preferably of 10 or more.
 水溶性材料には、単体や化合物、これらの複合体などを用いることができる。具体的には、水溶性の無機材料、水溶性食物繊維、糖質などの水溶性の炭水化物、ポリアルキレンオキシド、ポリビニルアルコール(PVA)、ポリエチレングリコール(PEG)が好適である。水溶性食物繊維の具体例としては、ポリデキストロース、イヌリンが挙げられ、糖質の具体例としてはスクロース、ラクトース、マルトース、トレハロース、メレジトース、スタキオース、マルトテトラオースが挙げられる。また、ポリアルキレンオキシドの具体例としてはポリエチレングリコール(PEG)が挙げられる。 As the water-soluble material, a simple substance, a compound, a complex of these, or the like can be used. Specifically, water-soluble inorganic materials, water-soluble dietary fibers, water-soluble carbohydrates such as carbohydrates, polyalkylene oxide, polyvinyl alcohol (PVA), and polyethylene glycol (PEG) are preferable. Specific examples of the water-soluble dietary fiber include polydextrose and inulin, and specific examples of the carbohydrate include sucrose, lactose, maltose, trehalose, melezitose, stachyose, and maltotetraose. A specific example of the polyalkylene oxide is polyethylene glycol (PEG).
 コアは、非水溶性材料を含有してもよい。非水溶性材料としては、用いる積層造形法に応じて、造形粒子の特性を調整する材料が好ましいが、これに限定されるものではない。 The core may contain a water-insoluble material. The water-insoluble material is preferably a material that adjusts the characteristics of the modeling particles according to the layered modeling method to be used, but is not limited thereto.
 例えば、加熱と加圧により積層する造形法に用いる粒子の場合は、加熱加圧時の粘弾性を調整するための粘弾性調整材を添加してもよい。粘弾性調整材は、造形粒子の粒径よりも小さなサイズであるのが好ましい。 For example, in the case of particles used in a modeling method that is laminated by heating and pressing, a viscoelasticity adjusting material for adjusting the viscoelasticity during heating and pressing may be added. It is preferable that the viscoelasticity adjusting material has a size smaller than the particle size of the modeling particles.
 また、粘弾性を高めるための調整材としては、粘性流動時のコアの主成分の動きを妨げる為に繊維状態の材料が好ましい。繊維状態の材料としては、ナノサイズの直径または長さを有する非水溶性の繊維(以下、ナノファイバーと称する)が挙げられる。これは、コア主成分の中にナノファイバーを含有させる事で、母材内部にナノファイバーからなるマトリクスを形成させることができ、母材の粘弾性を高めるのが容易になるからである。 Also, as the adjusting material for increasing the viscoelasticity, a fiber material is preferable in order to prevent the movement of the main component of the core during viscous flow. Examples of the fiber material include water-insoluble fibers (hereinafter referred to as nanofibers) having a nano-sized diameter or length. This is because by containing nanofibers in the core main component, a matrix made of nanofibers can be formed inside the base material, and it becomes easy to increase the viscoelasticity of the base material.
 また、粘弾性を下げるための調整材としては、粘性流動時のコアの主成分の動きを向上する可塑剤を使用することが可能である。 Also, as an adjusting material for lowering viscoelasticity, it is possible to use a plasticizer that improves the movement of the main component of the core during viscous flow.
 電子写真プロセスを用いて積層する造形法に用いる粒子の場合は、帯電性を制御するために、荷電制御剤を添加してもよい。 In the case of particles used for modeling using an electrophotographic process, a charge control agent may be added to control chargeability.
 粒子を負荷電性に制御する荷電制御剤としては、有機金属化合物、キレート化合物が有効である。具体的には、モノアゾ金属化合物、アセチルアセトン金属化合物、芳香族オキシカルボン酸、芳香族ダイカルボン酸、オキシカルボン酸及びダイカルボン酸系の金属化合物が挙げられる。他にも、芳香族オキシカルボン酸、芳香族モノ及びポリカルボン酸及びその金属塩、無水物、エステル類、ビスフェノールなどのフェノール誘導体類も好ましい。さらに、尿素誘導体、含金属サリチル酸系化合物、含金属ナフトエ酸系化合物、ホウ素化合物、4級アンモニウム塩、カリックスアレーン、樹脂系帯電制御剤なども用いることができる。 An organometallic compound or a chelate compound is effective as a charge control agent for controlling particles to be negatively charged. Specific examples include a monoazo metal compound, an acetylacetone metal compound, an aromatic oxycarboxylic acid, an aromatic dicarboxylic acid, an oxycarboxylic acid, and a dicarboxylic acid-based metal compound. In addition, aromatic oxycarboxylic acids, aromatic mono- and polycarboxylic acids and metal salts thereof, anhydrides, esters, and phenol derivatives such as bisphenol are also preferable. Further, urea derivatives, metal-containing salicylic acid compounds, metal-containing naphthoic acid compounds, boron compounds, quaternary ammonium salts, calixarene, resin charge control agents, and the like can also be used.
 粒子を正荷電性に制御する荷電制御剤としては、ニグロシン及び脂肪酸金属塩等によるニグロシン変性物、グアニジン化合物、イミダゾール化合物、トリブチルベンジルアンモニウム-1-ヒドロキシ-4-ナフトスルフォン酸塩、テトラブチルアンモニウムテトラフルオロボレートなどの4級アンモニウム塩、これらのレーキ顔料を用いることができる。また、トリフェニルメタン染料及びこれらのレーキ顔料高級脂肪酸の金属塩、樹脂系荷電制御剤も好ましい。なお、レーキ化剤としては、りんタングステン酸、りんモリブテン酸、りんタングステンモリブテン酸、タンニン酸、ラウニン酸、没食子酸、フェリシアン化物、フェロシアン化物を用いることができる。 Examples of charge control agents for controlling particles to be positively charged include nigrosine-modified products of nigrosine and fatty acid metal salts, guanidine compounds, imidazole compounds, tributylbenzylammonium-1-hydroxy-4-naphthosulfonate, tetrabutylammonium tetra Quaternary ammonium salts such as fluoroborate and these lake pigments can be used. Also preferred are triphenylmethane dyes, metal salts of these lake pigment higher fatty acids, and resin charge control agents. As the rake agent, phosphotungstic acid, phosphomolybthenic acid, phosphotungstomolybthenic acid, tannic acid, lauric acid, gallic acid, ferricyanide, ferrocyanide can be used.
 造形粒子は、これらの荷電性制御剤を、単独あるいは2種以上含有していてもよい。 The modeling particles may contain these charge control agents alone or in combination of two or more.
 シェルに最も多く含まれる材料は、水に対する溶解度がコアに含まれる水溶性材料の水に対する溶解度より小さければ限定はされないが、水に対する溶解度が10より小さい材料が好ましく、5より小さい材料がより好ましく、1以下であればさらに好ましい。 The material most contained in the shell is not limited as long as the solubility in water is smaller than the solubility in water of the water-soluble material contained in the core, but a material having a solubility in water of less than 10 is preferable, and a material of less than 5 is more preferable. 1 or less is more preferable.
 シェルに最も多く含まれる材料の例として、有機化合物および高分子化合物に代表される有機物、金属、セラミックスなどに代表される無機物、及び有機物と無機物とを含む有機・無機複合材料などが挙げられるが、これらの材料に限定されるものではない。 Examples of the material most contained in the shell include organic substances typified by organic compounds and polymer compounds, inorganic substances typified by metals and ceramics, and organic / inorganic composite materials containing organic substances and inorganic substances. However, the present invention is not limited to these materials.
 具体的には、有機物であれば、アクリル系樹脂、ビニル系樹脂、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂等の樹脂物質、グリセリン脂肪酸エステル類、ショ糖脂肪酸エステル類、ソルビタン脂肪酸エステル類などのエステル化合物、エチルセルロースなどのセルロース誘導体の一部を好適に用いることができる。 Specifically, for organic substances, resin compounds such as acrylic resins, vinyl resins, polyester resins, epoxy resins, and urethane resins, ester compounds such as glycerin fatty acid esters, sucrose fatty acid esters, and sorbitan fatty acid esters A part of cellulose derivatives such as ethyl cellulose can be preferably used.
 また無機物であれば、酸化ケイ素、酸化チタン、及びアルミナなどの無機酸化物を好適に使用することができる。また、これらの無機酸化物に対して、フッ素が直接結合した構造を有するものも、好ましく用いられる。 In addition, inorganic oxides such as silicon oxide, titanium oxide, and alumina can be suitably used as long as they are inorganic. Further, those having a structure in which fluorine is directly bonded to these inorganic oxides are also preferably used.
 有機・無機複合材料としては、シロキサン結合を主骨格とし、有機基からなる側鎖を少なくとも一つ以上有する化合物が好ましく用いられる。ここでいう有機基とは、シェルに疎水性を付与する効果のあるものが望ましく、例えばアルキル基、フルオロアルキル基などが挙げられる。このような有機・無機複合材料として、前記有機基がメチル基であるシリコーンは、入手容易性の点から好ましい。 As the organic / inorganic composite material, a compound having a siloxane bond as a main skeleton and having at least one side chain composed of an organic group is preferably used. The organic group herein is preferably an organic group having an effect of imparting hydrophobicity to the shell, and examples thereof include an alkyl group and a fluoroalkyl group. As such an organic / inorganic composite material, silicone in which the organic group is a methyl group is preferable from the viewpoint of availability.
 シェルもまた、積層造形法に応じて造形粒子の特性を調整する材料を含んでいても良い。コアと同様に、加熱と加圧により積層する造形法に用いる粒子の場合は、加熱加圧時の粘弾性を調整するための粘弾性調整材、電子写真プロセスを用いて積層する造形法に用いる粒子の場合は、帯電性を制御する荷電制御剤を含んでいてもよい。シェルが荷電制御剤を含有していれば、摩擦帯電時の帯電を制御することができる。シェルに添加する粘弾性調整材、荷電制御剤としては、コアと同様の材料を使用することができる。 The shell may also include a material that adjusts the characteristics of the modeling particles according to the additive manufacturing method. Similar to the core, in the case of particles used for modeling by laminating by heating and pressurization, viscoelasticity adjusting material for adjusting viscoelasticity at the time of heating and pressing, used for modeling by laminating using electrophotographic process In the case of particles, a charge control agent for controlling the chargeability may be included. If the shell contains a charge control agent, charging during frictional charging can be controlled. As the viscoelasticity adjusting material and charge control agent to be added to the shell, the same material as the core can be used.
 電子写真プロセスを用いた造形法に用いる粒子の場合、シェル材料の体積抵抗率は10-3Ω・cmより大きく好ましくは10Ω・cmより大きいことが好ましい。10-3Ω・cmより大きいことで、粒子の帯電減衰量が少なく、電子写真プロセスで良好に使用できる。 In the case of particles used in a modeling method using an electrophotographic process, the volume resistivity of the shell material is preferably larger than 10 −3 Ω · cm, more preferably larger than 10 9 Ω · cm. When it is larger than 10 −3 Ω · cm, the charge attenuation amount of the particles is small, and it can be used favorably in the electrophotographic process.
 コアの主成分とシェルの主成分は、互いに異なっていることが好ましい。コアとシェルの主成分が異なることで、粒子同士を融着する際に、コアに含まれる水溶性材料からなる三次元ネットワーク構造の形成が促進され、水によりサポート体を容易に溶解あるいは崩壊させ易くなる。本発明における主成分とは、それぞれの部材に含まれる成分のうち、質量含有比率が最も多い成分を指している。 It is preferable that the main component of the core and the main component of the shell are different from each other. The difference between the core and shell components facilitates the formation of a three-dimensional network structure consisting of water-soluble materials contained in the core when the particles are fused together, and the support body is easily dissolved or disintegrated by water. It becomes easy. The main component in this invention has shown the component with the largest mass content ratio among the components contained in each member.
 本発明にかかる造形粒子の水溶性物質の含有体積比率は、70%以上であることが好ましい。水溶性物質の比率が70%以上であることで、水による除去が容易になる傾向にある。 The volume ratio of the water-soluble substance in the shaped particles according to the present invention is preferably 70% or more. When the ratio of the water-soluble substance is 70% or more, removal with water tends to be easy.
 シェルの厚さは、粒径の0.0010%以上15%以下であるのが好ましく、より好ましくは1.0%以下である。具体的な厚さとしては、1nm以上10μm以下が好ましく、10nm以上1μm以下がさらに好ましい。シェルの厚さが1nmよりも小さい場合、水分がコアへ侵入し易く、シェルの強度も弱くなる傾向にあるため、十分な耐湿性が得られなくなる場合がある。また、10μmよりも大きい場合、形成された造形物が、水によって溶解あるいは崩壊しづらくなる傾向にある。 The thickness of the shell is preferably 0.0010% or more and 15% or less of the particle diameter, and more preferably 1.0% or less. The specific thickness is preferably 1 nm to 10 μm, and more preferably 10 nm to 1 μm. When the thickness of the shell is smaller than 1 nm, moisture tends to enter the core and the strength of the shell tends to be weakened, so that sufficient moisture resistance may not be obtained. Moreover, when larger than 10 micrometers, it exists in the tendency for the formed molded object to become difficult to melt | dissolve or disintegrate with water.
 ここで、シェルの厚さは、粒子断面の電子顕微鏡やTEMなどの観察画像を用いる手法や、元素マッピングを用いる手法等、既存の手法を利用して測定することができる。 Here, the thickness of the shell can be measured using an existing method such as a method using an observation image such as an electron microscope or a TEM of a particle cross section, a method using element mapping, or the like.
 粒子断面の電子顕微鏡やTEMなどの観察画像を用いる手法は、任意の造形粒子を破断し粒子断面観察を実施することで、シェル部分の粒径に対する比率や厚さを測定することができる。この際、一つの粒子に関して少なくとも5か所以上でシェル厚を測定し、平均化する。次いで、少なくとも10個以上の粒子について前記シェル厚測定を実施した後に、造形粒子の粒子間のシェル厚の平均値を算出し、シェル厚とする。 The method using an observation image such as an electron microscope or a TEM of a particle cross section can measure the ratio and thickness of the shell portion relative to the particle diameter by rupturing any shaped particle and observing the particle cross section. At this time, the shell thickness is measured and averaged at at least five locations for one particle. Next, after the shell thickness measurement is performed on at least 10 particles, the average value of the shell thickness between the particles of the modeling particles is calculated to obtain the shell thickness.
 電子顕微鏡やTEMを用いて観察した際、コアとシェルとの区別がつかない場合は、元素マッピングを用いる手法を用いるとよい。具体的には、X線光電子分光(XPS)、飛行時間型二次イオン質量分析法(TOF-SIMS)、エネルギー分散型X線分析法(EDX)、オージェ電子分光法(AES)等を使用することで、コアとシェルとの材質の違いを可視化することができる。 If the core and shell cannot be distinguished when observed using an electron microscope or TEM, a method using element mapping may be used. Specifically, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), energy dispersive X-ray analysis (EDX), Auger electron spectroscopy (AES), etc. are used. Thus, the difference in material between the core and the shell can be visualized.
 本発明において、コアは図1にようにシェルによって完全に被覆されている必要はなく、コアの一部がシェルで覆われていなくても良い。ただし、コアの表面積に対するシェルの被覆率は、30%以上が好ましく、より好ましくは40%以上である。被覆率が30%よりも小さいと、湿度の管理されていない環境化における、シェルによる粉体の流動性維持の効果が得られなくなる場合がある。 In the present invention, the core does not need to be completely covered with the shell as shown in FIG. 1, and a part of the core may not be covered with the shell. However, the coverage of the shell with respect to the surface area of the core is preferably 30% or more, and more preferably 40% or more. If the coverage is less than 30%, the effect of maintaining the fluidity of the powder by the shell in an environment where the humidity is not controlled may not be obtained.
 また、本発明のシェルの被覆率は95%以下であることが好ましい。被覆率が95%以下であると、造形時にコアの露出が促進されやすくなり、水による除去速度が速くなる傾向にある。 Also, the coverage of the shell of the present invention is preferably 95% or less. When the coverage is 95% or less, the exposure of the core is easily promoted during modeling, and the removal rate with water tends to increase.
 シェルの被覆率の求め方は次のとおりである。まず、粒子断面を、粒子表面箇所の面積がほぼ等しくなるように、少なくとも10個以上の領域に分割する。そして、分割した領域ごとに、顕微鏡などを用いて撮像し、得られた像からシェルが存在する領域の割合、即ち存在比率を算出し、それら平均化したものを被覆率とする。顕微鏡としては電子顕微鏡などを使用することができ、シェルとコアとの領域を判断するために、必要に応じて染色することも可能である。 The method for obtaining the shell coverage is as follows. First, the particle cross section is divided into at least 10 regions so that the areas of the particle surface portions are substantially equal. Then, each divided area is imaged using a microscope or the like, and the ratio of the area where the shell exists, that is, the existence ratio is calculated from the obtained image, and the averaged ratio is defined as the coverage. An electron microscope or the like can be used as the microscope, and staining can be performed as necessary to determine the area between the shell and the core.
 また、顕微鏡でシェル部分が観察できない場合はコアとシェルとを分離した後に、コア成分およびシェル成分を同定し、それらの存在比率から被覆率を算出するとよい。コアとシェルとを分離する手法としては、機械的にシェルを分離する手法や、溶剤などで選択的に溶解させた後に再析出する手法を使用することが可能である。例えば、シェルだけが溶解する溶剤を選定しシェルを選択的に溶解させ、コア部分を除去した後に、シェル成分を析出させる。その後シェル成分およびコア部分の組成分析を実施する。コア部分に関しては粒子の断面からコア部分の組成分析を実施してもよい。得られたシェル材料の成分量を100%、コアでの成分量を0%として検量線を作成する。粒子表面の組成分析を実施し、得られた成分量から上記検量線を使用して被覆率を算出することができる。 If the shell portion cannot be observed with a microscope, the core and shell components are identified after the core and shell are separated, and the coverage is calculated from their abundance ratio. As a technique for separating the core and the shell, it is possible to use a technique for mechanically separating the shell or a technique for reprecipitation after selective dissolution with a solvent or the like. For example, a solvent in which only the shell is dissolved is selected, the shell is selectively dissolved, the core portion is removed, and then the shell component is precipitated. Thereafter, a composition analysis of the shell component and the core portion is performed. Regarding the core portion, composition analysis of the core portion may be performed from the cross section of the particle. A calibration curve is prepared with the component amount of the obtained shell material being 100% and the component amount of the core being 0%. The composition analysis of the particle surface is carried out, and the coverage can be calculated from the obtained component amount using the calibration curve.
 造形粒子は、公知の方法で作製することができる。コアとシェルとを同時に形成する方法を用いてもよく、また、予め作製したコアにシェルを形成する方法を用いてもよい。コアとシェルとを同時に形成する場合は、懸濁重合法、乳化重合法などを用いることができる。 The shaped particles can be produced by a known method. A method of forming a core and a shell at the same time may be used, or a method of forming a shell on a core prepared in advance may be used. When the core and the shell are formed at the same time, a suspension polymerization method, an emulsion polymerization method, or the like can be used.
 予め作製したコアにシェルを形成する場合は、相分離法、液中乾燥法、融液分散冷却法、スプレードライ法、パンコーティング法、界面重合法、液中効果被膜法、気中懸濁被覆法、メカノフュージョン法、メカノケミカル法などを用いることができる。コアの作製には、機械粉砕法、溶液状態もしくは溶融状態で気体(液体)媒体中に分散させ冷却することで粒子を得るスプレードライ法および溶融分散冷却法、媒体中で重合粒子を作製する懸濁重合法などの化学重合法などを用いることができる。中でも、粒子の形状、粉体の粒度分布を比較的自由に制御できる点で、媒体を用いた作製方法が好ましく、特にスプレードライ法が好適である。 When the shell is formed on the core prepared in advance, the phase separation method, submerged drying method, melt dispersion cooling method, spray drying method, pan coating method, interfacial polymerization method, submerged effect coating method, air suspension coating Method, mechanofusion method, mechanochemical method and the like can be used. The core is prepared by mechanical pulverization, a spray-drying method in which particles are obtained by dispersing and cooling in a gas (liquid) medium in a solution state or a molten state, a melt dispersion cooling method, and a method for producing polymer particles in the medium. A chemical polymerization method such as a turbid polymerization method can be used. Among these, a production method using a medium is preferable in that the shape of particles and the particle size distribution of powder can be controlled relatively freely, and a spray drying method is particularly preferable.
 得られた粉体は、必要に応じて分級される。分級はメッシュ(篩)による分級や、エルボージェットなどの風力分級を適宜選択することができる。所望の平均粒径や粒度分布を得るために、複数の分級機を組み合わせて使用してもよく、また、複数回に分けて分級しても良い。 The obtained powder is classified as necessary. Classification can be appropriately selected from classification by mesh (sieving) and air classification such as elbow jet. In order to obtain a desired average particle diameter and particle size distribution, a plurality of classifiers may be used in combination, or classification may be performed in a plurality of times.
 <立体物の製造方法>
 次に、積層造形法にて、本発明にかかる造形粒子をサポート材粒子として用いて造形後に水によって除去可能なサポート体を造形しながら、非水溶性の立体物を製造する例について説明する。積層造形法において造形粒子に求められる特性についても説明する。以下で説明する造形方法において、造形粒子は粉体として用いられる。このときの粉体は、本発明にかかる造形粒子を含んでいれば、それ以外の粒子を含んでいてもかまわない。ただし、本発明の効果を充分に得るためには、粉体に含まれる本発明以外の粒子は5%以下であることが好ましい。
<Method for producing a three-dimensional object>
Next, an example of manufacturing a water-insoluble three-dimensional object while modeling a support body that can be removed by water after modeling using the modeling particles according to the present invention as support material particles in the additive manufacturing method will be described. The characteristics required for modeling particles in the additive manufacturing method will also be described. In the modeling method described below, the modeling particles are used as a powder. The powder at this time may contain other particles as long as it contains the shaped particles according to the present invention. However, in order to sufficiently obtain the effects of the present invention, the particles other than the present invention contained in the powder are preferably 5% or less.
 本実施形態の立体物の製造方法は、造形粒子として、非水溶性の構造材粒子と図1の構造を有するサポート材粒子を用い、次の(I)~(III)の工程を含んでいる。 The method for manufacturing a three-dimensional object according to the present embodiment includes the following steps (I) to (III) using water-insoluble structural material particles and support material particles having the structure shown in FIG. 1 as modeling particles. .
  (I)構造材粒子とサポート材粒子とを配置して、粒子層を形成する工程
  (II)粒子層を積層して造形物を形成する工程
  (III)造形物に含まれるサポート体を、水を含む溶媒に接触させて除去する工程
(I) The step of arranging the structural material particles and the support material particles to form a particle layer (II) The step of laminating the particle layers to form a shaped object (III) The support body included in the shaped object is water Removing by contacting with a solvent containing
 (I)と(II)の工程を繰り返し、必要数の粒子層を積層して得られる造形物に対して(III)の工程を行えば、サポート体を選択的に除去することができ、造形対象物である立体物を得ることができる。 By repeating the steps (I) and (II) and carrying out the step (III) on the shaped product obtained by laminating the required number of particle layers, the support body can be selectively removed, and the shaping is performed. A three-dimensional object that is an object can be obtained.
 以下、それぞれの工程について詳しく説明する。 Hereinafter, each process will be described in detail.
 (I)構造材粒子とサポート材粒子とを配置して、粒子層を形成する工程
 本工程では、造形対象物の三次元データに基づいて、構造材粒子およびサポート材粒子を配置して粒子層を形成する。具体的には、造形対象物の三次元データに、造形過程で必要となるサポート体を加えた三次元データを生成し、サポート体を加えた三次元データを所定間隔でスライスしたスライスデータを作成する。得られたスライスデータに応じて、構造材粒子とサポート材粒子を配置し、粒子層が形成される。
(I) A step of arranging the structural material particles and the support material particles to form a particle layer In this step, the structural material particles and the support material particles are arranged based on the three-dimensional data of the object to be shaped, and the particle layer Form. Specifically, 3D data is generated by adding the support body required for the modeling process to the 3D data of the modeling object, and slice data is created by slicing the 3D data with the support body at a predetermined interval. To do. According to the obtained slice data, the structural material particles and the support material particles are arranged, and a particle layer is formed.
 あとで説明するように、(II)の工程で粒子層を積層する際に、熱エネルギーを与えて粒子間を融着させる場合、造形粒子は熱可塑性材料を含有していることが好ましい。熱可塑性材料とは、常温では変化しにくいが、材料に応じた温度で加熱により塑性を示して自由な変形が可能となり、また冷却すると再び固くなる特性を持つ材料のことを指す。構造材粒子に含まれる熱可塑性物質としては、上記の特性を有する公知のいかなる物質を使用してもよいが、例えば、熱可塑性樹脂である、ABS、PP(ポリプロピレン)、PE(ポリエチレン)、PS(ポリスチレン)、PMMA(アクリル)、PET(ポリエチレンテレフタレート)、PPE(ポリフェニレンエーテル)、PA(ナイロン/ポリアミド)、PC(ポリカーボネイト)、POM(ポリアセタール)、PBT(ポリブチレンテレフタレート)、PPS(ポリフェニレンサルファイド)、PEEK(ポリエーテルエーテルケトン)、LCP(液晶ポリマー)、フッ素樹脂、ウレタン樹脂、エラストマー、PVA(ポリビニルアルコール)、PEG(ポリエチレングリコール)が挙げられ、他にも、金属、無機物質が挙げられる。これら物質は単独もしくは混合して用いても良い。 As will be described later, when laminating the particle layer in the step (II), when the thermal energy is applied and the particles are fused, it is preferable that the shaped particles contain a thermoplastic material. A thermoplastic material refers to a material that has the property of hardly changing at room temperature but exhibiting plasticity by heating at a temperature corresponding to the material, allowing free deformation, and becoming hard again when cooled. As the thermoplastic material contained in the structural material particles, any known material having the above-mentioned characteristics may be used. For example, ABS, PP (polypropylene), PE (polyethylene), PS, which are thermoplastic resins, may be used. (Polystyrene), PMMA (acrylic), PET (polyethylene terephthalate), PPE (polyphenylene ether), PA (nylon / polyamide), PC (polycarbonate), POM (polyacetal), PBT (polybutylene terephthalate), PPS (polyphenylene sulfide) PEEK (polyether ether ketone), LCP (liquid crystal polymer), fluororesin, urethane resin, elastomer, PVA (polyvinyl alcohol), PEG (polyethylene glycol), and other metals and inorganic substances . These substances may be used alone or in combination.
 サポート材粒子に含まれる熱可塑性材料としては、無機材料、食物繊維、糖質などの炭水化物、ポリアルキレンオキシド、ポリビニルアルコール(PVA)、ポリエチレングリコール(PEG)が好適である。水溶性食物繊維の具体例としては、ポリデキストロース、イヌリンが挙げられ、糖質の具体例としてはスクロース、ラクトース、マルトース、トレハロース、メレジトース、スタキオース、マルトテトラオースが挙げられる。また、ポリアルキレンオキシドの具体例としてはポリエチレングリコール(PEG)が挙げられる。 As the thermoplastic material contained in the support material particles, inorganic materials, dietary fibers, carbohydrates such as carbohydrates, polyalkylene oxide, polyvinyl alcohol (PVA), and polyethylene glycol (PEG) are suitable. Specific examples of the water-soluble dietary fiber include polydextrose and inulin, and specific examples of the carbohydrate include sucrose, lactose, maltose, trehalose, melezitose, stachyose, and maltotetraose. A specific example of the polyalkylene oxide is polyethylene glycol (PEG).
 構造材粒子を構成する材料は、造形対象物に求められる機能に合わせて選択すればよく、顔料などの機能性物質を含んでいても良い。 The material constituting the structural material particles may be selected in accordance with the function required for the modeling object, and may include a functional substance such as a pigment.
 構造材粒子を構成する材料の軟化温度、溶融温度は、後の(II)の積層工程で粒子層を融着させる温度によって適宜選択することができるが、好ましくは40℃以上300℃以下である。40℃以上であることにより、造形物が変形しにくくなり、300℃以下であることにより、(II)の工程で行われる溶融プロセスの制御が容易となる。 The softening temperature and melting temperature of the material constituting the structural material particles can be appropriately selected depending on the temperature at which the particle layer is fused in the subsequent laminating step (II), but is preferably 40 ° C or higher and 300 ° C or lower. . By being 40 degreeC or more, a molded article becomes difficult to deform | transform, and control of the melting process performed at the process of (II) becomes easy by being 300 degrees C or less.
 粒子層の形成方法は特に限定されないが、造形速度の観点から線単位または面単位で配置する方法が好ましい。造形粒子を線単位または面単位で配置する粒子層の形成には、帯電による静電的作用を利用した方法などの公知の方法を用いることができる。 The method for forming the particle layer is not particularly limited, but a method in which the particle layer is arranged in units of lines or planes is preferable from the viewpoint of modeling speed. For the formation of the particle layer in which the shaped particles are arranged in units of lines or planes, a known method such as a method using an electrostatic action by charging can be used.
 本実施例のように、複数種類の造形用粒子を含む粒子層を形成する場合には、電子写真方式を用いる方法が特に好ましい。この方法によれば、造形に用いる粒子の種類に対応する数の感光体を用いて各粒子をスライスデータ通りの位置に配置することができ、正確な粒子層を形成することができる。 In the case of forming a particle layer containing a plurality of types of modeling particles as in this embodiment, a method using an electrophotographic method is particularly preferable. According to this method, each particle can be arranged at a position according to slice data using the number of photoconductors corresponding to the type of particles used for modeling, and an accurate particle layer can be formed.
 本発明にかかる図1の造形粒子を、電子写真方式の積層造形法に適用した場合には、水溶性材料を含有する造形粒子が有する課題である、帯電の減衰が抑制される。 When the modeling particles of FIG. 1 according to the present invention are applied to an electrophotographic additive manufacturing method, charging attenuation, which is a problem of modeling particles containing a water-soluble material, is suppressed.
 水溶性材料は一般的に親水性であるため、表面に大気中の水分を吸着することで帯電した粒子の帯電量が減衰することがある。本発明のようなシェルを持たない水溶性材料の粒子を用いて電子写真方式を行おうとすると、粒子層を形成する過程において、帯電量が減衰して所定の位置に造形粒子が配置できないという不良が発生する恐れがある。それに対して、図1の構成の粒子では、水溶性材料の表面における水分吸着がシェルによって抑制されるため、帯電量の減衰が抑制される。 Since water-soluble materials are generally hydrophilic, the charge amount of charged particles may be attenuated by adsorbing moisture in the atmosphere on the surface. If an electrophotographic method is performed using particles of a water-soluble material that does not have a shell as in the present invention, in the process of forming the particle layer, the charge amount is attenuated and the molding particles cannot be arranged at a predetermined position. May occur. On the other hand, in the particles having the configuration shown in FIG. 1, moisture adsorption on the surface of the water-soluble material is suppressed by the shell, so that attenuation of the charge amount is suppressed.
 造形粒子の表面電位の減衰速度αは、0.3未満であることが好ましく、更に好ましくは0.2以下であり、より好ましくは0.1以下である。減衰速度αが0.3未満であることで、帯電した粒子が帯電を維持するため、電子写真方式を用いて粒子層を形成することが可能である。また、減衰速度αが0.1以下であることで、帯電により安定した帯電量を維持することができるため、電子写真方式に用いる造形粒子としてはより好ましい。帯電量や減衰速度αは、シェルを構成する材料や厚さを適切に選択することにより、所望の値に調整することが可能である。 The rate of decay α of the surface potential of the shaped particles is preferably less than 0.3, more preferably 0.2 or less, and even more preferably 0.1 or less. When the attenuation rate α is less than 0.3, the charged particles maintain the charge, so that the particle layer can be formed using an electrophotographic method. Further, when the attenuation rate α is 0.1 or less, a stable charge amount can be maintained by charging, and therefore, it is more preferable as a modeling particle used in the electrophotographic system. The charge amount and the decay rate α can be adjusted to desired values by appropriately selecting the material and thickness constituting the shell.
 更には、シェルの存在により、コアの水分吸着による粒子の表面の粘性変化が抑制されるため、粉体の流動性が維持され、粒子間の接触回数の増加により十分な初期帯電量が確保可能になると考えられる。 In addition, the presence of the shell suppresses changes in the viscosity of the particle surface due to moisture adsorption on the core, so that the fluidity of the powder is maintained, and a sufficient initial charge can be secured by increasing the number of contact between particles. It is thought that it becomes.
 (II)前記粒子層を積層して造形物を形成する工程
 (I)の工程で得られた粒子層を繰り返し積層し、造形物を得る工程である。粒子層の積層は、別体として形成した粒子層を、先に形成した粒子層の表面に積層しても良いし、先に形成した粒子層の表面上に、直接新たな粒子層を形成しながら積層しても良い。別体として形成した粒子層を先に形成した粒子層の表面に積層する際は、一旦基材の上に粒子層を形成した後に、先に形成した粒子層の表面に転写しても良い。この際に用いる基材を、転写体と呼ぶ。粒子層を転写体に形成する際には、静電力を利用した静電転写など、公知の転写方法が使用可能である。
(II) Step of forming the modeled object by stacking the particle layers The step of repeatedly stacking the particle layer obtained in the step (I) to obtain a modeled product. For the layering of the particle layer, a particle layer formed separately may be stacked on the surface of the previously formed particle layer, or a new particle layer may be formed directly on the surface of the previously formed particle layer. However, they may be laminated. When laminating the particle layer formed as a separate body on the surface of the previously formed particle layer, the particle layer may be once formed on the substrate and then transferred to the surface of the previously formed particle layer. The base material used at this time is called a transfer body. When the particle layer is formed on the transfer body, a known transfer method such as electrostatic transfer using electrostatic force can be used.
 粒子層を構成する粒子間の融着は、積層の前、積層と同時、積層後のいずれで行っても良いし、それらのうちの複数のタイミングで行っても良い。例えば、以下の(i)~(iii)のいずれかの方法を適用することができる。 Fusion between the particles constituting the particle layer may be performed before lamination, at the same time as lamination, or after lamination, or may be performed at a plurality of timings. For example, any of the following methods (i) to (iii) can be applied.
 (i)複数の粒子層を積層した後に造形用粒子間を融着する方法
 図2(a)の(1)、(2)に示すように、造形粒子100からなる粒子層101を、先に形成した粒子層からなる粒子層積層体102に積層し、粒子層積層体103を得る。次に、粒子層積層体103に熱エネルギーを与えると、造形粒子100が溶融して互いに融着し、図2(a)の(3)に示すように、造形物104が得られる。
(I) Method of fusing modeling particles after laminating a plurality of particle layers As shown in (1) and (2) of FIG. A particle layer laminate 103 is obtained by laminating the particle layer laminate 102 composed of the formed particle layers. Next, when thermal energy is applied to the particle layer laminate 103, the shaped particles 100 are melted and fused to each other, and a shaped article 104 is obtained as shown in (3) of FIG.
 (ii)粒子層を一層積層する毎に造形用粒子間を融着する方法
 図2(b)の(1)、(2)に示すように、造形粒子100からなる粒子層101を、先に作成した粒子層からなる造形物202に積層すると同時に、粒子層101および造形物202の積層面に熱エネルギーを与える。すると、造形粒子100が溶融して互いに融着すると同時に、造形物202とも融着し、図2(b)の(3)に示すように、粒子層101および造形物202からなる新たな造形物104が得られる。本方法では、一度に溶融させる粒子層中の造形粒子の数が(i)よりも少ないため、造形物202の内部に空隙が生成され難くなるため、好ましい。
(Ii) Method of fusing modeling particles each time a particle layer is laminated one layer As shown in (1) and (2) of FIG. At the same time as stacking on the shaped object 202 made of the created particle layer, thermal energy is applied to the layered surface of the particle layer 101 and the shaped object 202. Then, the modeling particles 100 are melted and fused together, and at the same time, the modeling object 202 is also fused, and as shown in (3) of FIG. 2B, a new modeling object including the particle layer 101 and the modeling object 202 is obtained. 104 is obtained. This method is preferable because the number of modeling particles in the particle layer to be melted at one time is smaller than (i), and voids are hardly generated in the modeled object 202.
 (iii)積層する前に粒子層中の造形粒子同士を融着する方法
 図2(c)の(1)、(2)に示すように、粒子層101を形成する毎にコアの軟化温度以上となるように熱エネルギーを与え、造形粒子100を互いに融着させてシート化させる。シート化した粒子層301を造形物202に積層すると同時に、シート化した粒子層301および造形物202の積層面に熱エネルギーを与える。
(Iii) Method of fusing the shaped particles in the particle layer before laminating As shown in (1) and (2) of FIG. 2 (c), the core layer softening temperature or more is formed each time the particle layer 101 is formed. Thermal energy is applied so that the molding particles 100 are fused together to form a sheet. At the same time when the sheet-like particle layer 301 is laminated on the shaped article 202, thermal energy is applied to the laminated surface of the sheet-like particle layer 301 and the shaped article 202.
 すると、シート化した粒子層301が造形物202と融着し、図2(c)の(3)に示すように、シート化した粒子層301および造形物202からなる新たな造形物104が得られる。この方法も(ii)と同様に、造形物202の内部に空隙が生成され難くなるため、好ましい。 Then, the sheet-shaped particle layer 301 is fused to the modeled object 202, and a new modeled object 104 composed of the sheeted particle layer 301 and the modeled object 202 is obtained as shown in (3) of FIG. It is done. This method is also preferable because, as in (ii), voids are less likely to be generated inside the shaped article 202.
 前述の(i)~(iii)では、造形粒子間の融着に熱エネルギーを用いる場合を説明したが、薬品を用いて化学的に融着させる方法を用いることもできる。ただし、熱エネルギーを与えて造形粒子を溶融させる方法の方が、粒子層全域にエネルギーを付与し、粒子溶融を全域で進行させることで、空隙の減少効果が大きいため好ましい。 In the above (i) to (iii), the case where thermal energy is used for fusion between modeling particles has been described, but a method of chemically fusing using a chemical can also be used. However, the method in which the modeling particles are melted by applying thermal energy is preferable because energy is given to the entire particle layer and particle melting proceeds in the entire region, so that the effect of reducing voids is large.
 (III)造形物に含まれるサポート体を、水を含む溶媒に接触させて除去する工程
 (I)と(II)の工程を必要な回数だけ繰り返して作製した造形物を、水を含む溶媒に接触させる。造形物全体を溶媒に浸漬したり、溶媒をシャワー状に噴出させて造形物に浴びせたりして、水を含む溶媒に造形物を接触させる。
(III) The process of removing the support body contained in the modeled object by contacting with a solvent containing water The modeled object prepared by repeating the steps (I) and (II) as many times as necessary is used as the solvent containing water. Make contact. The entire model is immersed in a solvent, or the solvent is ejected in a shower shape and bathed on the model, and the model is brought into contact with a solvent containing water.
 造形物が水を含む溶媒に接触すると、サポート体に含まれる水溶性材料が溶け出す。サポート体に含まれるシェルの残骸は水に対する溶解度が小さいため、容易には溶けないが、水溶性材料と共に構造体から除去される。構造体は非水溶性材料で構成されているため、水を含む溶媒に溶解する心配はなく、サポート体の除去によって形状が変化する恐れもない。 When the shaped object comes into contact with a solvent containing water, the water-soluble material contained in the support body dissolves. The shell debris contained in the support body is not easily dissolved because of its low solubility in water, but is removed from the structure together with the water-soluble material. Since the structure is made of a water-insoluble material, there is no fear of dissolving in a solvent containing water, and there is no fear that the shape will change due to the removal of the support body.
 造形物全体を溶媒に浸漬してサポート体を除去する場合は、溶媒に水流を加えたり超音波振動を加えたりすると、サポート体の溶解あるいは崩壊が促進されるため好ましい。 When the support body is removed by immersing the entire molded article in a solvent, it is preferable to add a water flow or ultrasonic vibration to the solvent because dissolution or disintegration of the support body is promoted.
 本発明にかかる造形粒子は、粒子状態では耐湿性が高く、造形後は水によって溶解あるいは崩壊させることが可能である。この状態を実現するには、造形プロセスにより、造形物の表面の化学種の成分比率が、造形前の粒子表面の化学種の成分比率とは異なる状態となることが好ましく、主成分が異なることがより好ましい。このことは、造形プロセスを経ることにより、粒子状態と造形物状態とで、表面に露出する材料成分が変化することを示唆する。 The modeling particles according to the present invention have high moisture resistance in the particle state, and can be dissolved or disintegrated with water after the modeling. In order to realize this state, it is preferable that the component ratio of the chemical species on the surface of the modeled object is different from the component ratio of the chemical species on the surface of the particle before modeling, and the main components are different. Is more preferable. This suggests that the material component exposed on the surface changes between the particle state and the modeled object state through the modeling process.
 化学種の主成分を分析する手法としては、既存の表面元素分析などの手法を使用することができる。例えばX線光電子分光(XPS)、飛行時間型二次イオン質量分析法(TOF-SIMS)、エネルギー分散型X線分析法(EDX)、オージェ電子分光法(AES)等を使用することができる。 Existing techniques such as surface element analysis can be used as a technique for analyzing the main components of chemical species. For example, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), energy dispersive X-ray analysis (EDX), Auger electron spectroscopy (AES), and the like can be used.
 上記表面元素分析を粒子および造形物に実施し、表面の化学種の主成分が異なることを確認すればよい。具体的には元素の種類の違い、元素の組成比などから、表面の化学種を分析することが可能である。 The above surface elemental analysis may be performed on the particles and the shaped object to confirm that the main components of the surface chemical species are different. Specifically, it is possible to analyze the chemical species on the surface from the difference in element type, elemental composition ratio, and the like.
 このように、粒子状態に対して、造形物状態で表面に露出する材料成分が変化するのは、造形プロセスで、造形粒子に付加される温度または温度と圧力による粒子の変形が原因と推測される。 In this way, the material component exposed to the surface in the modeled object state changes with respect to the particle state in the modeling process due to the temperature applied to the modeled particle or the deformation of the particle due to temperature and pressure. The
 粒子状態に対して、造形物状態の表面に露出する材料成分が変化するための条件は、粒子状態におけるコア表面に対するシェルの被覆率や、コアとシェルの材料の組み合わせによって異なる。例えば、シェルの被覆率が100%に近い場合は、粒子をコアあるいは造形粒子の軟化温度以上に加熱すると同時に加圧し、変形率が90%以下の高さになるまで変形させるとよい。すると、シェルを破壊してコアに含まれる材料を表面に露出させやすくなるため、より好適に本発明の効果を得ることができる。 The conditions for changing the material component exposed on the surface of the modeled object state with respect to the particle state vary depending on the shell coverage on the core surface in the particle state and the combination of the core and shell materials. For example, when the covering ratio of the shell is close to 100%, the particles may be heated to a temperature higher than the softening temperature of the core or the shaped particles and simultaneously pressurized, and deformed until the deformation rate reaches a height of 90% or less. Then, since the shell is easily broken and the material contained in the core is easily exposed on the surface, the effect of the present invention can be more suitably obtained.
 造形物から、造形プロセスにおいてどの程度の変形が加えられたかを知るには、造形物の厚さを積層数で割った値と、粒子層の厚さとの比を変形率として概算するとよい。これにより、一回の積層で、粒子に加えられた変形を推測することができる。また、粒子の変形が観察できる場合は、直接粒子を観察して、造形前の粒子の平均粒径に対する加圧後の粒子の高さを変形率としてもよい。 In order to know how much deformation has been applied in the modeling process from the modeled object, a ratio between the value obtained by dividing the thickness of the modeled object by the number of layers and the thickness of the particle layer may be estimated as a deformation rate. Thereby, the deformation | transformation added to particle | grains can be estimated by one lamination. Moreover, when the deformation | transformation of particle | grains can be observed, particle | grains after pressurization with respect to the average particle diameter of the particle | grains before shaping | molding are directly observed, and it is good also as a deformation rate.
 上記の造形法にて用いられる粉体を構成する造形粒子の、体積基準の平均粒径(以下、単に平均粒径と記述する)は1μm以上100μm以下であることが好ましく、より好ましくは20μm以上80μm以下である。粒子の平均粒径が1μm以上あれば、1回の積層膜厚を厚くすることができるため、少ない積層回数で所望の高さの造形物を得ることが可能となる。また、粒子の平均粒径を100μm以下とすることにより、高い精度の造形物を実現しやすくなる。 The volume-based average particle diameter (hereinafter simply referred to as average particle diameter) of the modeling particles constituting the powder used in the modeling method is preferably 1 μm or more and 100 μm or less, more preferably 20 μm or more. 80 μm or less. If the average particle diameter of the particles is 1 μm or more, it is possible to increase the thickness of a single laminated film, and thus it is possible to obtain a shaped article having a desired height with a small number of laminations. Moreover, it becomes easy to implement | achieve a highly accurate molded article by making the average particle diameter of particle | grains into 100 micrometers or less.
 造形用の粉体を構成する造形粒子の平均粒径は、市販の粒度分布測定装置を用いて求めることができる。例えば、レーザー回折散乱式粒度分布測定装置 LA-950(HORIBA社製)を用いた場合は、以下のように測定することができる。測定条件の設定及び測定データの解析は、付属の専用ソフトを用いる。 The average particle size of the modeling particles constituting the modeling powder can be obtained using a commercially available particle size distribution measuring device. For example, when a laser diffraction / scattering particle size distribution analyzer LA-950 (manufactured by HORIBA) is used, the measurement can be performed as follows. The attached dedicated software is used for setting the measurement conditions and analyzing the measurement data.
 まず、測定溶媒が入ったバッチ式セルを測定装置にセットし光軸の調整、バックグラウンドの調整をおこなう。このとき使用する溶媒は、粒子の溶解度が極めて小さいものを選択する必要がある。また、測定する粒子の分散性向上のために、必要に応じて適宜分散剤を溶媒中に添加してもよい。測定対象の粒子からなる粉体を、タングステンランプから射出される光の透過率が90%~95%になるまでバッチ式セルに添加し、粒度分布の測定を行う。得られた測定結果から体積基準の平均粒径を算出することができる。 First, set the batch cell containing the measurement solvent in the measurement device, adjust the optical axis, and adjust the background. The solvent used at this time must be selected so that the solubility of the particles is extremely small. Moreover, in order to improve the dispersibility of the particles to be measured, a dispersant may be appropriately added to the solvent as necessary. The powder composed of the particles to be measured is added to the batch cell until the transmittance of light emitted from the tungsten lamp is 90% to 95%, and the particle size distribution is measured. The volume-based average particle diameter can be calculated from the obtained measurement results.
 また、造形粒子の平均円形度は0.85以上が好ましく、0.90以上であることがより好ましい。粒子の平均円形度が0.85以上であれば、粒子同士が点接触するようになるため、粒子が流動し易く、粒子層において最密充填の配置が得られ易く、積層時の空隙が形成しにくい傾向がある。 In addition, the average circularity of the shaped particles is preferably 0.85 or more, and more preferably 0.90 or more. If the average circularity of the particles is 0.85 or more, the particles come into point contact with each other, so that the particles are easy to flow, and a close-packed arrangement is easily obtained in the particle layer, and voids are formed at the time of lamination. It tends to be difficult to do.
 平均円形度は次のようにして求めることができる。まず、粒子の円形度は、以下のように定義される。 The average circularity can be obtained as follows. First, the circularity of a particle is defined as follows.
  円形度=(粒子投影面積と同じ面積の円の周囲長)/(粒子投影像の周囲長) Circularity = (perimeter of a circle with the same area as the particle projection area) / (perimeter of the particle projection image)
 「粒子投影面積」とは二値化された粒子像の面積であり、「粒子投影像の周囲長」とは該粒子像の輪郭線の長さと定義する。円形度は粒子の投影面における凹凸の度合いを示す指標であり、粒子が完全な球形の場合に1.0を示し、表面形状が複雑になる程、円形度は小さな値となる。 The “particle projection area” is the area of the binarized particle image, and the “peripheral length of the particle projection image” is defined as the length of the contour line of the particle image. The circularity is an index indicating the degree of unevenness on the projection surface of the particle, and is 1.0 when the particle is a perfect sphere. The more complex the surface shape, the smaller the circularity.
 粒子の円形度は、電子顕微鏡などの観察画像の画像処理および、フロー式粒子像測定装置を用いて測定することができる。さらに、任意の造形粒子10個以上について測定して得られた円形度の平均値をとることにより、平均円形度を求めることができる。 The circularity of the particles can be measured using image processing of an observation image such as an electron microscope and a flow type particle image measuring device. Furthermore, the average circularity can be obtained by taking the average value of the circularity obtained by measuring 10 or more arbitrary shaped particles.
 <造形装置>
 次に、本発明にかかる造形粒子を用いた造形に好適な装置について説明する。例えば、電子写真方式では、図7に示した造形装置500が好適に用いられる。
<Modeling equipment>
Next, an apparatus suitable for modeling using the modeling particles according to the present invention will be described. For example, in the electrophotographic system, the modeling apparatus 500 shown in FIG. 7 is preferably used.
 造形装置500は、粒子層形成部501と、造形部502と、粒子層形成部と造形部とを結ぶ転写体24と、を備えている。 The modeling apparatus 500 includes a particle layer forming unit 501, a modeling unit 502, and a transfer body 24 that connects the particle layer forming unit and the modeling unit.
 粒子層形成部501は、造形粒子の種類数に応じて、材料供給部21、感光体22、光源(不図示)と、を備えており、転写体24の上に粒子層を形成する。図7では、構造材粒子、サポート材粒子をそれぞれ1種類用いる場合の構成を示しているが、用いる造形粒子の種類の数に応じて、粒子層形成部501に設ける材料供給部21、感光体22、光源のセットを増やせばよい。 The particle layer forming unit 501 includes a material supply unit 21, a photoreceptor 22, and a light source (not shown) according to the number of types of modeling particles, and forms a particle layer on the transfer body 24. FIG. 7 shows a configuration in the case where one type of each of the structural material particles and the support material particles is used, but the material supply unit 21 provided in the particle layer forming unit 501 and the photoconductor according to the number of types of modeling particles to be used. 22. What is necessary is just to increase the set of light sources.
 構造材粒子からなる粒子層と、サポート材粒子からなる粒子層は、それぞれ別の感光体22a、22bの上に形成される。光源から射出されるレーザー光23aが感光体22aを、レーザー光23bが感光体22bを、各々走査して、感光体22aおよび22bに潜像が形成される。具体的には、スライスデータの構造体部の潜像が感光体22aに、スライスデータのサポート体部の潜像が感光体22bに形成される。 The particle layer made of structural material particles and the particle layer made of support material particles are formed on different photoreceptors 22a and 22b, respectively. A laser beam 23a emitted from the light source scans the photoconductor 22a and a laser beam 23b scans the photoconductor 22b, so that latent images are formed on the photoconductors 22a and 22b. Specifically, the latent image of the structure portion of the slice data is formed on the photoconductor 22a, and the latent image of the support portion of the slice data is formed on the photoconductor 22b.
 材料供給部21aには、構造材粒子を含む粉体が収納されており、材料供給部21bには、サポート材粒子を含む粉体が収納されている。材料供給部21aから構造材粒子が感光体22aへ補給され、感光体22a上に構造材粒子からなる層が形成される。また、材料供給部21bからはサポート材粒子が感光体22bへ補給され、感光体22bにサポート材粒子からなる層が形成される。感光体22a、22bの各々に形成された層は、転写体24に順に静電転写されて、構造材粒子およびサポート材粒子からなる粒子層が形成される。なお、粒子層を転写体24へ転写する順番はこれに限定されるものではなく、構造材粒子およびサポート材粒子のうち一方の粒子からなる粒子層を転写した後、他方の粒子からなる粒子層を転写して形成するとよい。 The material supply unit 21a stores powder containing structural material particles, and the material supply unit 21b stores powder containing support material particles. The structural material particles are supplied to the photoconductor 22a from the material supply unit 21a, and a layer made of the structural material particles is formed on the photoconductor 22a. Further, the support material particles are supplied from the material supply unit 21b to the photoconductor 22b, and a layer made of the support material particles is formed on the photoconductor 22b. The layer formed on each of the photoreceptors 22a and 22b is electrostatically transferred to the transfer body 24 in order to form a particle layer composed of structural material particles and support material particles. The order of transferring the particle layer to the transfer body 24 is not limited to this, and after transferring the particle layer made of one of the structural material particles and the support material particles, the particle layer made of the other particle. It is good to transfer and form.
 転写体24上に形成された粒子層は、加熱され、ステージ25上の造形途中の造形物の上に転写され積層される。積層の際には、対向部材26とステージ25とで造形途中の造形物と加熱された粒子層とを挟んで加圧することができる。粒子層は、ヒーターを内蔵する対向部材26によって加熱されても良いし、対向部材26とは別の加熱手段で加熱されても良い。これにより、構造材粒子からなる部分が構造体27aと、サポート材粒子からなる部分がサポート体27bとからなる造形物が形成される。電子写真方式に好適な造形装置は、図7の構成に限定されるものではない。 The particle layer formed on the transfer body 24 is heated, and transferred and stacked on a modeled object on the stage 25 in the middle of modeling. At the time of stacking, the opposing member 26 and the stage 25 can pressurize the modeled object in the middle of modeling and the heated particle layer. The particle layer may be heated by the facing member 26 incorporating a heater, or may be heated by a heating means different from the facing member 26. As a result, a modeled object is formed in which the part made of the structural material particles is the structural body 27a and the part made of the support material particles is the support body 27b. A modeling apparatus suitable for the electrophotographic system is not limited to the configuration shown in FIG.
 材料供給部21、感光体22の機能をカートリッジにまとめ、造形装置をカートリッジ交換可能な構造にすると、材料の補給や交換が容易になるため好ましい。カートリッジは、感光体と、感光体を帯電させるための帯電手段と、レーザー光を感光体に照射するための開口部と、材料供給部に相当する、材料収容部および材料供給手段と、を備えているとよい。 It is preferable to combine the functions of the material supply unit 21 and the photosensitive member 22 into a cartridge and to make the modeling apparatus have a structure in which the cartridge can be replaced because it is easy to replenish and replace materials. The cartridge includes a photoconductor, a charging unit for charging the photoconductor, an opening for irradiating the photoconductor with laser light, and a material container and a material supply unit corresponding to the material supply unit. It is good to have.
 本発明にかかる造形粒子をサポート材粒子として用いる場合、造形装置は、少なくとも、材料収容部に構造材粒子を含む粉体を収容したカートリッジと、材料収容部に本発明にかかる造形粒子を含む粉体を収容したカートリッジとが、着脱可能な構造とする。さらに、造形中に造形粒子が不足しないよう、構造材粒子およびサポート材粒子それぞれの予備カートリッジが着脱可能な着脱部を備えているのも好ましい。 When the modeling particle according to the present invention is used as the support material particle, the modeling apparatus includes at least a cartridge containing a powder containing structural material particles in the material container, and a powder containing the modeling particle according to the invention in the material container. The cartridge housing the body is detachable. Furthermore, it is also preferable to include an attaching / detaching part to which the spare cartridges of the structural material particles and the support material particles can be attached and detached so that the modeling particles do not run out during modeling.
 以上、積層造形法を用いて非水溶性の立体物を製造する場合に、本発明の造形粒子をサポート材粒子として用いる場合を説明してきたが、本発明の造形粒子の用途はこれに限定されるものではない。例えば、積層造形法にて水溶性の立体物を製造する場合、本発明の造形粒子は、構造材粒子として好適である。 As mentioned above, when manufacturing a water-insoluble solid using the layered modeling method, the case where the modeling particle of the present invention is used as the support material particle has been described, but the use of the modeling particle of the present invention is limited to this. It is not something. For example, when a water-soluble three-dimensional object is manufactured by the additive manufacturing method, the modeling particle of the present invention is suitable as the structural material particle.
 (実施例)
 本発明にかかるコアとシェルを有する造形粒子を含む粉体A~O、シェルを有さない粒子を含む粉体P、Qを作製し、造形に用いる材料として好適かどうかの評価を行った実施例について説明する。
(Example)
Implementation of powders A to O containing modeling particles having a core and a shell according to the present invention, and powders P and Q containing particles not having a shell, and evaluating whether they are suitable as materials for modeling An example will be described.
 まず、粉体A~Oを構成する造形粒子のいずれかにコアとして用いる母粒子1~4の製造方法について説明した後、各粉体の製造方法について説明する。 First, after explaining the manufacturing method of the mother particles 1 to 4 used as a core for any of the modeling particles constituting the powders A to O, the manufacturing method of each powder will be described.
 <母粒子1の調製>
 マルトテトラオースの粉体(日食フジオリゴ#450 日本食品化工株式会社製)89gとラクチトール(ラクチトールLC-0 物産フードサイエンス株式会社製)38gを水168gに溶解させセルロース(セリッシュFD200L ダイセルファインケム株式会社)113gを分散させた後に、スプレードライ装置にて粒子化した。得られた粉体を分級し平均粒径23μmの母粒子1を得た。なお、粒子中の水溶性物質体積比は85%であり、水に対する溶解度は50以上であり、軟化温度は120℃である。平均粒径の測定は、レーザー回折散乱式粒度分布測定装置LA-950(HORIBA社製)を用いて行った。
<Preparation of mother particle 1>
Cellulose (Cerish FD200L Daicel Finechem Co., Ltd.) was dissolved in 168 g of water by dissolving 89 g of maltotetraose powder (Nissan Fuji Oligo # 450, manufactured by Nippon Food & Chemicals Co., Ltd.) and 38 g of lactitol (produced by Lactitol LC-0, Food Science Co., Ltd.). After 113 g was dispersed, it was granulated with a spray dryer. The obtained powder was classified to obtain mother particles 1 having an average particle diameter of 23 μm. The volume ratio of the water-soluble substance in the particles is 85%, the solubility in water is 50 or more, and the softening temperature is 120 ° C. The average particle size was measured using a laser diffraction / scattering particle size distribution analyzer LA-950 (manufactured by HORIBA).
 まず、測定溶媒が入ったバッチ式セルをレーザー回折散乱式粒度分布測定装置LA-950(HORIBA社製)にセットして光軸の調整、バックグラウンドの調整を行なう。この時使用する溶媒は、粒子が溶解しないものを選択する必要がある。ここでは、イソプロピルアルコール(特級 キシダ化学社製)を用いた。 First, a batch type cell containing a measurement solvent is set in a laser diffraction / scattering particle size distribution measuring apparatus LA-950 (manufactured by HORIBA) to adjust the optical axis and the background. It is necessary to select a solvent that does not dissolve particles as the solvent used at this time. Here, isopropyl alcohol (special grade, manufactured by Kishida Chemical Co., Ltd.) was used.
 作製した粉体を、タングステンランプからの射出光の透過率が95%~90%になるまでバッチ式セルに添加し、粒度分布の測定を行った。得られた測定結果から、粒子A体積基準の平均粒径を算出した。他の粒子についても、平均粒径の測定は同様に行った。 The prepared powder was added to a batch cell until the transmittance of light emitted from the tungsten lamp reached 95% to 90%, and the particle size distribution was measured. From the obtained measurement result, the average particle diameter based on the volume of the particle A was calculated. For the other particles, the average particle size was measured in the same manner.
 <母粒子2の調製>
 マルトテトラオースの粉体(日食フジオリゴ#450 日本食品化工株式会社製)84gとラクチトール(ラクチトールLC-0 物産フードサイエンス株式会社製)36gを水107gに溶解させセルロース(セリッシュFD200L ダイセルファインケム株式会社)113gを分散させた後に、スプレードライ装置にて粒子化した。得られた粉体を分級し平均粒径23μmの母粒子2を得た。なお、粒子中の水溶性物質体積比は80%であり、水に対する溶解度は50以上であり、軟化温度は135℃である。
<Preparation of mother particle 2>
84 g of maltotetraose powder (Nissan Fujioligo # 450, manufactured by Nippon Food & Chemicals Co., Ltd.) and 36 g of lactitol (Lactitol LC-0, manufactured by Food Science Co., Ltd.) were dissolved in 107 g of water, and cellulose (Cerish FD200L Daicel Finechem Co., Ltd.) was used. After 113 g was dispersed, it was granulated with a spray dryer. The obtained powder was classified to obtain mother particles 2 having an average particle diameter of 23 μm. The volume ratio of the water-soluble substance in the particles is 80%, the solubility in water is 50 or more, and the softening temperature is 135 ° C.
 <母粒子3の調製>
 マルトテトラオースの粉体(日食フジオリゴ#450 日本食品化工株式会社製)に含まれる粒子を母粒子3とした。平均粒径は88μmである。マルトテトラオース粒子は水溶性の材料で、水に対する溶解度は50以上であり、軟化温度は160℃である。
<Preparation of mother particle 3>
Particles contained in the powder of maltotetraose (Eclipse Fujioligo # 450, manufactured by Nippon Shokuhin Kako Co., Ltd.) were used as mother particles 3. The average particle size is 88 μm. Maltotetraose particles are water-soluble materials, have a solubility in water of 50 or more, and a softening temperature of 160 ° C.
 <母粒子4の調整>
 マルトテトラオースの粉体(日食フジオリゴ#450 日本食品化工株式会社製)を混練粉砕、分級し、平均粒径85μmの母粒子4を得た。本粒子の水に対する溶解度は50以上であり、軟化温度は160℃である。
<Adjustment of mother particle 4>
A powder of maltotetraose (Eclipse Fuji Oligo # 450, manufactured by Nippon Shokuhin Kako Co., Ltd.) was kneaded and ground to obtain mother particles 4 having an average particle size of 85 μm. The solubility of the particles in water is 50 or more, and the softening temperature is 160 ° C.
 <粉体Aの調製>
 シリコーン樹脂(XC99-A8808、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)1.68gと、母粒子1からなる粉体335gとを、乾式粒子複合化装置(ノビルタ NOB-130、ホソカワミクロン社製)に投入し、ロータ負荷2kWで1時間、攪拌処理を行った。なお、シリコーン樹脂は非水溶性の材料であり、水に対する溶解度は1以下である。得られた粉体を分級し、母粒子1をコア、シリコーン樹脂をシェルとする粒子からなる粉体Aを得た。
<Preparation of powder A>
1.68 g of silicone resin (XC99-A8808, manufactured by Momentive Performance Materials Japan GK) and 335 g of powder consisting of mother particles 1 are combined into a dry particle compounding device (Nobilta NOB-130, manufactured by Hosokawa Micron) And stirred for 1 hour at a rotor load of 2 kW. Silicone resin is a water-insoluble material, and its solubility in water is 1 or less. The obtained powder was classified to obtain a powder A composed of particles having the base particle 1 as a core and a silicone resin as a shell.
 <粉体Bの調製>
 母粒子1からなる粉体の代わりに母粒子2からなる粉体を用いる以外は、粉体Aと同様にして、母粒子2をコア、シリコーン樹脂をシェルとする粒子からなる粉体Bを得た。
<Preparation of powder B>
A powder B made of particles having the mother particle 2 as a core and a silicone resin as a shell is obtained in the same manner as the powder A, except that a powder made of the mother particle 2 is used instead of the powder made of the mother particle 1. It was.
 <粉体Cの調製>
 シリコーン樹脂(XC99-A8808、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)3.35gと、母粒子2からなる粉体335gを、乾式粒子複合化装置(ノビルタ NOB-130、ホソカワミクロン社製)に投入し、ロータ負荷2kWで1時間、攪拌処理を行った。なお、シリコーン樹脂は非水溶性の材料である。得られた粉体を分級し、母粒子2をコア、シリコーン樹脂をシェルとする粒子からなる粉体Cを得た。
<Preparation of powder C>
3.35 g of silicone resin (XC99-A8808, manufactured by Momentive Performance Materials Japan GK) and 335 g of powder consisting of mother particles 2 in a dry particle compounding device (Nobilta NOB-130, manufactured by Hosokawa Micron) The stirring process was performed for 1 hour at a rotor load of 2 kW. Silicone resin is a water-insoluble material. The obtained powder was classified to obtain a powder C composed of particles having the mother particle 2 as a core and a silicone resin as a shell.
 <粉体Dの調製>
 シリコーン樹脂(XC99-A8808、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)10.1gと、母粒子2からなる粉体335gとを、乾式粒子複合化装置(ノビルタ NOB-130、ホソカワミクロン社製)に投入し、ロータ負荷2kWで1時間、攪拌処理を行った。なお、シリコーン樹脂は非水溶性の材料である。得られた粉体を分級し、母粒子2をコア、シリコーン樹脂をシェルとする粒子からなる粉体Dを得た。
<Preparation of powder D>
10.1 g of silicone resin (XC99-A8808, manufactured by Momentive Performance Materials Japan GK) and 335 g of powder composed of mother particles 2 are combined into a dry particle compounding device (Nobilta NOB-130, manufactured by Hosokawa Micron) And stirred for 1 hour at a rotor load of 2 kW. Silicone resin is a water-insoluble material. The obtained powder was classified to obtain a powder D composed of particles having the mother particle 2 as a core and a silicone resin as a shell.
 <粉体Eの調製>
 ポリスチレン樹脂(PSJ-ポリスチレンHF77 PSジャパン株式会社製)をトルエンに溶解させ、0.5%溶液を作製した。なお、ポリスチレン樹脂は非水溶性の材料であり、水に対する溶解度は1以下である。母粒子1からなる粉体700gを加熱、流動させながら、前記溶液を噴霧、トルエンを乾燥させる工程を噴霧液量が合計で1400gになるまで実施した。その後、得られた粉体を分級し、母粒子1をコア、ポリスチレン樹脂をシェルとする粒子からなる粉体Eを得た。
<Preparation of powder E>
Polystyrene resin (PSJ-polystyrene HF77 manufactured by PS Japan Ltd.) was dissolved in toluene to prepare a 0.5% solution. Polystyrene resin is a water-insoluble material, and its solubility in water is 1 or less. The process of spraying the solution and drying toluene while heating and flowing 700 g of the powder composed of the mother particles 1 was performed until the total amount of spray liquid reached 1400 g. Thereafter, the obtained powder was classified to obtain a powder E composed of particles having a base particle 1 as a core and a polystyrene resin as a shell.
 <粉体Fの調製>
 ポリスチレン樹脂(PSJ-ポリスチレンHF77 PSジャパン株式会社製)をトルエンに溶解させ、7.5%溶液を作製した。なお、ポリスチレン樹脂は非水溶性の材料である。母粒子1からなる粉体300gを撹拌しながら、前記溶液を噴霧、トルエンを乾燥させる工程を噴霧液量が合計で40gになるまで実施した後に、得られた粉体を分級し、母粒子1をコア、ポリスチレン樹脂をシェルとする粒子からなる粉体Fを得た。
<Preparation of powder F>
Polystyrene resin (PSJ-polystyrene HF77 manufactured by PS Japan Ltd.) was dissolved in toluene to prepare a 7.5% solution. Polystyrene resin is a water-insoluble material. The step of spraying the solution and drying toluene while stirring 300 g of the powder composed of the mother particles 1 was carried out until the total amount of the spray liquid reached 40 g, and then the obtained powder was classified to obtain the mother particles 1 A powder F comprising particles having a core and polystyrene resin as a shell was obtained.
 <粉体Gの調製>
 ポリスチレン樹脂(PSJ-ポリスチレンHF77 PSジャパン株式会社製)をトルエンに溶解させ、7.5%溶液を作製した。なお、ポリスチレン樹脂は非水溶性の材料である。母粒子1からなる粉体300gを撹拌しながら、前記溶液を噴霧、トルエンを乾燥させる工程を噴霧液量が合計で120gになるまで実施した後に、得られた粉体を分級し、母粒子1をコア、ポリスチレン樹脂をシェルとする粒子からなる粉体Gを得た。
<Preparation of powder G>
Polystyrene resin (PSJ-polystyrene HF77 manufactured by PS Japan Ltd.) was dissolved in toluene to prepare a 7.5% solution. Polystyrene resin is a water-insoluble material. The step of spraying the solution and drying toluene while stirring 300 g of the powder composed of the mother particles 1 was performed until the total amount of the spray liquid reached 120 g, and then the obtained powder was classified to obtain the mother particles 1 A powder G composed of particles having a core and polystyrene resin as a shell was obtained.
 <粉体Hの調製>
 スチレンアクリル樹脂(MP-5000、綜研化学株式会社製)3.35gと、母粒子1からなる粉体335gを、乾式粒子複合化装置(ノビルタ NOB-130、ホソカワミクロン社製)に投入し、ロータ負荷2kWで30分間攪拌処理を行った。得られた粉体Hは、母粒子1をコア、スチレンアクリル樹脂をシェルとする粒子からなる。なお、スチレンアクリル樹脂は非水溶性の材料であり、水に対する溶解度は1以下である。
<Preparation of powder H>
3.35 g of styrene acrylic resin (MP-5000, manufactured by Soken Chemical Co., Ltd.) and 335 g of powder consisting of mother particles 1 are put into a dry particle compounding device (Nobilta NOB-130, manufactured by Hosokawa Micron) and loaded with a rotor. Stirring was performed at 2 kW for 30 minutes. The obtained powder H is composed of particles having the mother particle 1 as a core and a styrene acrylic resin as a shell. Styrene acrylic resin is a water-insoluble material, and its solubility in water is 1 or less.
 <粉体Iの調製>
 スチレンアクリル樹脂(MP-5000、綜研化学株式会社製)6.70gと、母粒子1からなる粉体335gを、乾式粒子複合化装置(ノビルタ NOB-130、ホソカワミクロン社製)に投入し、ロータ負荷2kWで30分間攪拌処理を行った。得られた粉体合Iは、母粒子1をコア、チレンアクリル樹脂をシェルとする粒子からなる。
<Preparation of powder I>
6.70 g of styrene acrylic resin (MP-5000, manufactured by Soken Chemical Co., Ltd.) and 335 g of powder consisting of mother particles 1 are charged into a dry particle compounding device (Nobilta NOB-130, manufactured by Hosokawa Micron Corporation) and loaded with a rotor. Stirring was performed at 2 kW for 30 minutes. The obtained powder I is composed of particles having the base particle 1 as a core and a styrene acrylic resin as a shell.
 <粉体Jの調製>
 スチレンアクリル樹脂(MP-5000、綜研化学株式会社製)13.4gと、母粒子1からなる粉体335gを、乾式粒子複合化装置(ノビルタ NOB-130、ホソカワミクロン社製)に投入し、ロータ負荷2kWで30分間攪拌処理を行った。得られた粉体Jは、母粒子1をコア、チレンアクリル樹脂をシェルとする粒子からなる。
<Preparation of powder J>
13.4 g of styrene acrylic resin (MP-5000, manufactured by Soken Chemical Co., Ltd.) and 335 g of powder composed of mother particles 1 are charged into a dry particle compounding device (Nobilta NOB-130, manufactured by Hosokawa Micron Corporation) and loaded with a rotor. Stirring was performed at 2 kW for 30 minutes. The obtained powder J is composed of particles having the mother particle 1 as a core and a styrene acrylic resin as a shell.
 <粉体Kの調製>
 ショ糖ベヘニン酸エステル(リョートーシュガーエステルB370f 三菱化学フーズ株式会社製)20gをエタノール(特級 キシダ化学社製)1000g中に分散、撹拌し、80℃まで昇温した。なお、ショ糖ベヘニン酸エステルは非水溶性の材料であり、水に対する溶解度は1以下である。
<Preparation of powder K>
20 g of sucrose behenic acid ester (Ryoto Sugar Ester B370f manufactured by Mitsubishi Chemical Foods Co., Ltd.) was dispersed and stirred in 1000 g of ethanol (special grade Kishida Chemical Co., Ltd.), and the temperature was raised to 80 ° C. Note that sucrose behenic acid ester is a water-insoluble material, and its solubility in water is 1 or less.
 上記溶液に、母粒子1からなる粉体を200g添加して混合した。5分間経過後に、20分間かけて温度を60℃まで低下した。その後常温まで冷却した後に濾過し、解砕しながら乾燥した。 200 g of powder consisting of mother particles 1 was added to the above solution and mixed. After 5 minutes, the temperature dropped to 60 ° C. over 20 minutes. Then, after cooling to room temperature, it filtered and dried, crushing.
 得られた粉体を分級し、母粒子1をコア、ショ糖ベヘニン酸エステルをシェルとする粒子からなる粉体Kを得た。 The obtained powder was classified to obtain a powder K composed of particles having the mother particle 1 as a core and sucrose behenate as a shell.
 <粉体Lの調製>
 ショ糖ベヘニン酸エステルの添加量を70gとする以外は粉体Kの調整方法と同様にして、母粒子1をコア、ショ糖ベヘニン酸エステルをシェルとする粒子からなる粉体Lを得た。
<Preparation of powder L>
Except for the amount of sucrose behenic acid ester added being 70 g, a powder L consisting of particles having the mother particle 1 as a core and the sucrose behenic acid ester as a shell was obtained in the same manner as the powder K adjustment method.
 <粉体Mの調製>
 ショ糖ベヘニン酸エステルの添加量を20g、エタノールの量を2000gとする以外は粉体Kの調整方法と同様にして、母粒子1をコア、ショ糖ベヘニン酸エステルをシェルとする粒子からなる粉体Mを得た。
<Preparation of powder M>
A powder comprising particles having the mother particle 1 as a core and sucrose behenate as a shell in the same manner as the powder K, except that the amount of sucrose behenate added is 20 g and the amount of ethanol is 2000 g. Body M was obtained.
 <粒子Nの調製>
 母粒子1からなる粉体の代わりに母粒子3からなる粉体を用いる以外は、粉体Kの調整方法と同様にして、母粒子3をコア、ショ糖ベヘニン酸エステルをシェルとする粒子からなる粉体Nを得た。
<Preparation of particles N>
In the same manner as the preparation method of powder K, except that powder consisting of mother particles 3 is used instead of powder consisting of mother particles 1, particles having core particles 3 as a core and sucrose behenate as a shell are used. A powder N was obtained.
 <粉体Oの調製>
 母粒子1からなる粉体の代わりに母粒子4からなる粉体を用いる以外は、粉体Kの調整方法と同様にして、母粒子4をコア、ショ糖ベヘニン酸エステルをシェルとする粒子からなる粉体Oを得た。
<Preparation of powder O>
In the same manner as the preparation method for powder K, except that powder consisting of mother particles 4 is used instead of powder consisting of mother particles 1, particles having core particles 4 as a core and sucrose behenate as a shell are used. A powder O was obtained.
 <粉体Pの調製>
 母粒子1からなる粉体を粉体Pとした。
<Preparation of powder P>
The powder composed of the mother particles 1 was designated as powder P.
  <粉体Qの調製>
 母粒子2からなる粉体を粉体Qとした。
<Preparation of powder Q>
The powder composed of the mother particles 2 was designated as powder Q.
 以上の方法で得られた粉体A~Qのそれぞれについて平均粒径、平均円形度、被覆率を求めた。結果を表1に、まとめておく。なお、表1中のシェル材料の添加量は、コア材料の添加量を100gに換算した値である。 For each of the powders A to Q obtained by the above method, the average particle diameter, average circularity, and coverage were determined. The results are summarized in Table 1. In addition, the addition amount of the shell material in Table 1 is a value obtained by converting the addition amount of the core material into 100 g.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <実施例1~15および比較例1、2>
 実施例として、得られた粉体A~Oそれぞれについて下記の評価を行った。また、同様の評価を、比較例1、2として粉体P、Qに対して行った。
<Examples 1 to 15 and Comparative Examples 1 and 2>
As examples, the following evaluations were performed on the obtained powders A to O. Further, the same evaluation was performed on the powders P and Q as Comparative Examples 1 and 2.
 (粉体の流動性変化評価)
 製造直後の状態を維持している各粉体を1.00g秤量し、平均粒径の5乃至7倍のメッシュサイズの篩の上に置き、一秒間に100回の振動数で10秒間振動させた後に、メッシュ上に残った粉体の重量を測定した。平均粒径の5乃至7倍のメッシュサイズの篩を使用することで、粒子の静電凝集の影響を抑え、粒子の湿度による凝集、または融着の度合いを判断することが可能である。
(Evaluation of change in fluidity of powder)
1.00 g of each powder maintaining the state immediately after production is weighed and placed on a sieve having a mesh size 5 to 7 times the average particle size, and is vibrated for 10 seconds at a frequency of 100 times per second. After that, the weight of the powder remaining on the mesh was measured. By using a sieve having a mesh size 5 to 7 times the average particle size, it is possible to suppress the influence of electrostatic aggregation of particles and determine the degree of aggregation or fusion due to humidity of the particles.
 次いで100mlのポリカップに製造直後の状態を維持している各粉体を2.0g入れ、密閉性の袋に入れて25℃、湿度55%の環境試験機内に静置して、粉体が環境温度に馴染むまで待った。この工程により、急激な温度変化による結露の影響を除くことができる。15分後、袋を開封してポリカップを前記環境下に7時間静置した後、ポリカップごと環境試験機の外に取り出した。なお、上記温湿度条件は、一般的な3Dプリンターの推奨使用条件の最大湿度環境である。 Next, 2.0 g of each powder maintaining the state immediately after production is put in a 100 ml polycup, placed in a hermetic bag, and left in an environmental test machine at 25 ° C. and 55% humidity, so that the powder is environmental. I waited until I got used to the temperature. By this step, it is possible to eliminate the influence of condensation due to a rapid temperature change. After 15 minutes, the bag was opened and the polycup was allowed to stand in the above environment for 7 hours, and then the entire polycup was taken out of the environmental testing machine. The temperature / humidity condition is a maximum humidity environment recommended for general 3D printers.
 その後、静置後の粉体の流動性を環境試験機内に静置する前と同様に評価し、静置前後でのメッシュ上に残った粉体の重量変化を計算し、ランク付けした。各ランクの評価基準は下記のとおりである。 Thereafter, the fluidity of the powder after standing was evaluated in the same manner as before standing in an environmental test machine, and the weight change of the powder remaining on the mesh before and after standing was calculated and ranked. The evaluation criteria for each rank are as follows.
  ランクA 重量変化が5%以下である
  ランクB 重量変化が5%より大きく20%以下である
  ランクC 重量変化が20%より大きく90%以下である
  ランクD 重量変化が90%より大きい
Rank A Weight change is less than 5% Rank B Weight change is greater than 5% and less than 20% Rank C Weight change is greater than 20% and less than 90% Rank D Weight change is greater than 90%
 ランクAの粉体では静置後の粉体の流動性に優れていた。ランクBでは静置後に粉体の極一部で粒子同士が凝集、または融着し、粉体の流動性が低下していた。ランクCでは静置後に粉体の一部で粒子同士が凝集、または融着し、粉体の流動性が低下していた。ランクDでは静置後に粉体の粒子の半分以上が凝集、または融着し、粉体の流動性が著しく低下していた。 The powder of rank A was excellent in the fluidity of the powder after standing. In rank B, particles were agglomerated or fused at a very small part of the powder after standing, and the fluidity of the powder was reduced. In rank C, particles were agglomerated or fused in part of the powder after standing, and the fluidity of the powder was reduced. In rank D, more than half of the powder particles aggregated or fused after standing, and the fluidity of the powder was significantly reduced.
 ランクAと判断された粉体の静置後の顕微鏡写真を図4に示す。 Fig. 4 shows a micrograph of the powder determined to be Rank A after standing.
 ランクDと判断された粉体を用いて造形すると、湿度環境下に長時間曝されることにより粉体の流動性が低下しているため、粒子層を作製する際に粒子層厚さが不均一になる、粒子層中に欠陥が生じるなどの課題が生じる。特に凝集が著しい場合では積層すらできないことがある。 When using a powder determined to be rank D, the fluidity of the powder decreases due to exposure to a long time in a humidity environment. There arise problems such as uniformity and defects in the particle layer. In particular, even when the aggregation is significant, even lamination may not be possible.
 ランクDと判断された粉体の静置後の顕微鏡写真を図5に示す。粉体P、Qでは粒子間の凝集、融着が進行し、合一した凝集塊となっていた。
ランクA、Bと判断された粉体を用いて造形した場合は、実使用において大きな問題が発生しないが、ランクAの粉体は湿度環境下での安定性に特に優れ、均一な厚さおよび密度の粒子層を形成できるため、特に高精度の造形物を製造することができる。
FIG. 5 shows a micrograph of the powder determined to be rank D after standing. In the powders P and Q, agglomeration and fusion between the particles proceeded to form an aggregated aggregate.
In the case of modeling using powders determined to be ranks A and B, no major problems occur in actual use, but the powders of rank A are particularly excellent in stability under humidity environment, and have a uniform thickness and Since a particle layer having a high density can be formed, it is possible to produce a particularly high-precision shaped article.
 (水による体積変化の評価)
 作製した粉体を、基部の上に載り量1.5~2.5mg/cm2となるように配置し、粒子層を作製する。次いで、粒子の軟化温度以上で、加熱することでシートを形成した。得られたシートを重ね、粒子の軟化温度以上で0.01kgf/cm2以上の圧力を加え加熱圧着する工程を繰り返し、厚さが約1mmの造形物を作製した。
(Evaluation of volume change by water)
The produced powder is placed on the base so that the applied amount is 1.5 to 2.5 mg / cm 2, and a particle layer is produced. Next, a sheet was formed by heating at a temperature equal to or higher than the softening temperature of the particles. The obtained sheets were stacked and the process of thermocompression bonding by applying a pressure of 0.01 kgf / cm2 or more above the softening temperature of the particles was repeated to produce a shaped article having a thickness of about 1 mm.
 得られた造形物を300分間3000ml/minの流水にさらし、下記の基準に従って水による体積変化を評価した。 The obtained model was exposed to flowing water at 3000 ml / min for 300 minutes, and the volume change due to water was evaluated according to the following criteria.
 なお、体積変化の測定は公知の体積測定の方法を用いた。造形物が崩壊した場合は、最も大きい体積の造形物体積を測定し、初期の体積からの変化を計算した。 In addition, the volume change was measured using a known volume measurement method. When the modeled object collapsed, the modeled volume of the largest volume was measured, and the change from the initial volume was calculated.
 それぞれの評価の結果を表2に示す。 Table 2 shows the results of each evaluation.
    ランクA 体積変化が90%以上である
    ランクB 体積変化が5%以上90%未満である
    ランクC 体積変化が5%未満である
Rank A Volume change is 90% or more Rank B Volume change is 5% or more and less than 90% Rank C Volume change is less than 5%
 ランクAおよびランクBの粉体を使用して積層物を作製したところ、水による除去が可能であり、特にランクAの粉体では容易に除去が可能である。 When a laminate was prepared using the powder of rank A and rank B, it can be removed with water, and in particular, the powder of rank A can be easily removed.
 (積層物空隙評価)
 作製した粉体を、基部の上に載り量1.5~2.5mg/cm2となるように配置し、粒子層を作製する。次いで、粒子の軟化温度以上で加熱することでシートを形成した。得られたシートを重ね、粒子の軟化温度以上で0.01kgf/cm2以上の圧力を加え加熱圧着する工程を繰り返し、厚さが約5mmの造形物を作製した。
(Laminate void evaluation)
The produced powder is placed on the base so that the applied amount is 1.5 to 2.5 mg / cm 2, and a particle layer is produced. Next, a sheet was formed by heating at a temperature equal to or higher than the softening temperature of the particles. The obtained sheets were stacked and the process of thermocompression bonding by applying a pressure of 0.01 kgf / cm 2 or more above the softening temperature of the particles was repeated to produce a shaped article having a thickness of about 5 mm.
 得られた造形物に関して下記の基準に従って積層物中の断面を走査型電子顕微鏡(SEM)で観察することで空隙を評価した。 The voids were evaluated by observing the cross section in the laminate with a scanning electron microscope (SEM) according to the following criteria for the obtained shaped article.
   ランクA 積層物中に空隙が確認される
   ランクB 積層物中に空隙が著しく確認される
Rank A There are voids in the laminate Rank B There are significant voids in the laminate
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <実施例16~21>
 さらに、実施例として、粉体E~Jに対して以下の評価を行った。
<Examples 16 to 21>
Further, as examples, the following evaluations were performed on the powders E to J.
 (水による除去速度評価)
 作製した粉体を、基部の上に半径15mmの円形状で載り量1.5~2.5mg/cm2となるように配置し、粒子層を作製する。次いで、粒子の軟化温度以上で、加熱することでシートを形成した。得られたシートを重ね、粒子の軟化温度以上で0.01kgf/cm2以上の圧力を加え加熱圧着する工程を繰り返し、厚さが2~3mmの造形物を作製した。
(Evaluation of removal rate with water)
The produced powder is placed on the base in a circular shape with a radius of 15 mm so that the applied amount is 1.5 to 2.5 mg / cm 2 to produce a particle layer. Next, a sheet was formed by heating at a temperature equal to or higher than the softening temperature of the particles. The obtained sheets were stacked, and the process of thermocompression bonding by applying a pressure of 0.01 kgf / cm2 or more above the softening temperature of the particles was repeated to produce a shaped article having a thickness of 2 to 3 mm.
 得られた造形物を60分間3000ml/minの流水にさらし、造形物の体積変化から、円形状の造形物の除去速度(mm/hr)を計算し、下記基準で評価した。 The obtained model was exposed to flowing water of 3000 ml / min for 60 minutes, and the removal rate (mm / hr) of the circular model was calculated from the volume change of the model and evaluated according to the following criteria.
 なお、体積変化の測定は公知の体積測定の方法を用いた。造形物が崩壊した場合は、最も大きい体積の造形物体積を測定し、初期の体積からの変化を計算した。 In addition, the volume change was measured using a known volume measurement method. When the modeled object collapsed, the modeled volume of the largest volume was measured, and the change from the initial volume was calculated.
 それぞれの評価の結果を表3に示す。 Table 3 shows the results of each evaluation.
    ランクA 除去速度が0.15mm/hr以上である
    ランクB 除去速度が0.15mm/hr未満である
Rank A removal rate is 0.15 mm / hr or higher Rank B removal rate is less than 0.15 mm / hr
 ランクAの粉体で作製した造形物は、水によって0.3mmの厚さの柱を1時間未満の時間で除去できるため、柱状構造でサポートする構造に用いられるサポート材として、より好適に使用できる。 A shaped object made of powder of rank A can be used more suitably as a support material used in a structure that supports a columnar structure because a column with a thickness of 0.3 mm can be removed with water in less than 1 hour. it can.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の実施例から、本発明にかかる粉体A~Oは、粉体で優れた耐湿性を有しながらも、水との接触により崩壊し、容易にその形状を崩すことができ、立体物の製造に好適な造形粒子であることが確認できた。それに対して、比較例として用いた粉体P、Qは、水への溶解性に優れるものの、耐湿性に劣り、粒子同士の凝集あるいは融着が著しかった。粉体の流動性変化評価により融着した粉体Pの状態を示す顕微鏡写真を、図5に示す。 From the above examples, the powders A to O according to the present invention are powders and have excellent moisture resistance, but they can be disintegrated by contact with water, and the shape can be easily broken. It was confirmed that the molded particles were suitable for the production of On the other hand, although the powders P and Q used as comparative examples were excellent in solubility in water, they were inferior in moisture resistance, and the aggregation or fusion of particles was remarkable. A micrograph showing the state of the powder P fused by the evaluation of the change in fluidity of the powder is shown in FIG.
 <実施例22~31、比較例3>
 さらに、実施例として、粉体A乃至Jについて、以下の評価を行った。さらに、比較例として、粉体Pに対しても同様の評価をおこなった。
<Examples 22 to 31, Comparative Example 3>
Furthermore, the following evaluation was performed about powder A thru | or J as an Example. Further, as a comparative example, the same evaluation was performed on the powder P.
 (帯電保持性の評価)
 帯電保持性は次の手法にて評価を行った。
(Evaluation of charge retention)
The charge retention was evaluated by the following method.
 帯電減衰装置(NS-D100型 ナノシーズ社製)を用いて日本工業規格JIS C61340-2-1 に準拠した測定方法を実施した。 A measurement method based on Japanese Industrial Standards JIS C61340-2-1 was carried out using a charge attenuation device (NS-D100 type, manufactured by Nano Seeds).
 具体的にはコロナ放電により測定する粒子からなる粉体に電荷を付与し、表面電位計で粉体の時間による電位の変化を測定した。測定条件は印加電圧:-600V、印加時間:1秒、測定時間:600秒、測定環境:25℃ 45~50%RH(室内環境)で実施した。 Specifically, a charge was applied to the powder composed of particles measured by corona discharge, and the change in potential with time of the powder was measured with a surface potential meter. The measurement conditions were applied voltage: −600 V, application time: 1 second, measurement time: 600 seconds, measurement environment: 25 ° C., 45-50% RH (indoor environment).
 時間ごとの電位を測定し、式1の両辺の対数をとった式に代入し、グラフ化し、グラフで最も長く直線近似可能な箇所の部分の範囲を抽出し、減衰速度αを算出した。 Measure the potential every time, substitute it into the logarithm of both sides of Formula 1, graph it, extract the range of the part that can be linearly approximated the longest in the graph, and calculate the decay rate α.
  V=V0exp(-α√t)  ・・・(式1)
   V :表面電位
   V0:初期表面電位
   t :減衰時間
   α :減衰速度
V = V0exp (−α√t) (Formula 1)
V: Surface potential V0: Initial surface potential t: Decay time α: Decay rate
 例として、粉体Iおよび粉体Pについて時間ごとの電位の測定値と式1とから得られた帯電減衰のグラフを、近似直線と共に図6に記しておく。 As an example, a measured value of potential for each time for powder I and powder P and a graph of charge decay obtained from Equation 1 are shown in FIG. 6 together with an approximate straight line.
 (電子写真適応性の評価)
 電子写真適応性は次の手法にて評価を行った。
(Evaluation of adaptability to electrophotography)
The electrophotographic adaptability was evaluated by the following method.
 市販の電子写真CRG内のトナーを取り除き、粉体を充填し、静電潜像担持体に現像した粉体を転写体へ静電力を利用して転写させた。静電潜像担持体上の粉体の量と転写体への転写後の粉体の量の比率から転写効率を計算した。 The toner in the commercially available electrophotographic CRG was removed, filled with powder, and the developed powder on the electrostatic latent image bearing member was transferred to the transfer member using electrostatic force. The transfer efficiency was calculated from the ratio of the amount of powder on the electrostatic latent image carrier and the amount of powder after transfer to the transfer body.
 得られた転写効率を基に、下記の基準に従って電子写真適応性を評価した。 Based on the obtained transfer efficiency, the electrophotographic adaptability was evaluated according to the following criteria.
    ランクA 転写効率が90%以上である
    ランクB 転写効率が70%以上90%未満である
    ランクC 転写効率が70%未満である
Rank A Transfer efficiency is 90% or more Rank B Transfer efficiency is 70% or more and less than 90% Rank C Transfer efficiency is less than 70%
 ランクAの粉体では粒子層中の抜け箇所が少なく、粒子層を積層した際に、粒子層抜け箇所上への積層による積層不良の問題が発生しにくい。そのため、電子写真方式に好適に使用できる。ランクCの粉体では粒子層中の抜け箇所が多く、積層不良が頻繁に発生する。 In the powder of rank A, there are few missing parts in the particle layer, and when the particle layer is laminated, the problem of poor lamination due to the lamination on the missing part of the particle layer hardly occurs. Therefore, it can be suitably used for an electrophotographic system. In the powder of rank C, there are many missing portions in the particle layer, and poor stacking frequently occurs.
 粉体A乃至J、および、粉体Pの帯電保持性の評価の結果としての減衰速度α、および、電子写真適応性評価結果を表4に記す。 Table 4 shows the decay rate α as a result of the evaluation of the charge retention of the powders A to J and the powder P, and the evaluation result of the electrophotographic adaptability.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 このことから、粉体A乃至Jは、粉体Pと比較して帯電量減衰に対して効果があり、電子写真方式において好適に使用することができる。 Therefore, the powders A to J have an effect on the charge amount attenuation as compared with the powder P, and can be suitably used in the electrophotographic system.
 粒子Lをサポート材粒子とし、ABS(テクノABS130 テクノポリマー社製)を粉砕して得られた粉体の粒子を構造材粒子として、電子写真方式にて三次元造形物を作製した。 A three-dimensional structure was prepared by electrophotography using particles L as support material particles and powder particles obtained by pulverizing ABS (Techno ABS130 manufactured by Techno Polymer Co., Ltd.) as structural material particles.
 図7に示した装置を用い、構造材粒子とサポート材粒子の二種類の粒子からなるパターンが存在する粒子層を形成し、積層することで構造材部分とサポート材部分が存在する造形物を作製した。 By using the apparatus shown in FIG. 7, a particle layer having a pattern composed of two types of particles of structural material particles and support material particles is formed and laminated to form a modeled object in which the structural material portion and the support material portion exist. Produced.
 得られた造形物を流水にさらすことによって容易に粒子Lにより形成された造形箇所(サポート体)が除去され、ABSからなる目的の立体物を得ることができた。 The modeled part (support body) formed by the particles L was easily removed by exposing the resulting modeled object to running water, and the target three-dimensional object composed of ABS could be obtained.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2014年09月24日提出の日本国特許出願特願2014-194014 及び 2015年09月10日提出の日本国特許出願特願2015-178950を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority on the basis of Japanese patent application Japanese Patent Application No. 2014-194014 filed on September 24, 2014 and Japanese Patent Application No. 2015-178950 filed on September 10, 2015. All the descriptions are incorporated herein.
 11 シェル
 12 コア
 100 造形粒子
 101 粒子層
 102、103 粒子層積層体
 104、202 造形物
 301 シート化した粒子層
 500 造形装置
 501 粒子層形成部
 502 造形部
 21a、21b 材料供給部
 22a、22b 感光体
 23a、23b レーザー光
 24 転写体
 25 ステージ
 26 対向部材
 27a 構造体
 27b サポート体
DESCRIPTION OF SYMBOLS 11 Shell 12 Core 100 Modeling particle 101 Particle layer 102, 103 Particle layer laminated body 104, 202 Modeling object 301 Sheeted particle layer 500 Modeling apparatus 501 Particle layer formation part 502 Modeling part 21a, 21b Material supply part 22a, 22b Photoconductor 23a, 23b Laser beam 24 Transfer body 25 Stage 26 Opposing member 27a Structure 27b Support body

Claims (28)

  1.  水溶性材料を含む造形粒子であって、
     コアと、前記コアの表面の少なくとも一部を覆うシェルとを備え、
     前記コアは水溶性材料を最も多く含有しており、
     前記シェルに最も多く含まれる材料の水に対する溶解度は、前記コアに含まれる前記水溶性材料の水に対する溶解度より小さいことを特徴とする造形粒子。
    Modeling particles containing a water-soluble material,
    A core and a shell covering at least a part of the surface of the core;
    The core contains the most water-soluble material,
    The shaped particles characterized in that the water-soluble material contained most in the shell has a lower solubility in water than the water-soluble material contained in the core.
  2.  前記コアの表面に対する前記シェルの被覆率が40%以上であることを特徴とする請求項1に記載の造形粒子。 The shaped particle according to claim 1, wherein the coverage of the shell on the surface of the core is 40% or more.
  3.  前記コアの表面に対する前記シェルの被覆率が95%以下であることを特徴とする請求項1または2に記載の造形粒子。 3. The shaped particle according to claim 1, wherein the covering ratio of the shell to the surface of the core is 95% or less.
  4.  前記造形粒子は、体積比率で70%以上の水溶性物質を含有することを特徴とする請求項1乃至3のいずれか1項に記載の造形粒子。 The shaped particle according to any one of claims 1 to 3, wherein the shaped particle contains a water-soluble substance having a volume ratio of 70% or more.
  5.  前記粒子の体積に対する前記コアの体積の比率が50%以上であることを特徴とする請求項1乃至4のいずれか1項に記載の造形粒子。 The shaped particle according to any one of claims 1 to 4, wherein a ratio of a volume of the core to a volume of the particle is 50% or more.
  6.  前記コアに含まれる前記水溶性材料の前記コアの全体に対する体積比率が50%以上であることを特徴とする請求項1乃至5のいずれか1項に記載の造形粒子。 The shaped particle according to any one of claims 1 to 5, wherein a volume ratio of the water-soluble material contained in the core to the entire core is 50% or more.
  7.  前記シェルに最も多く含まれる材料の前記シェルの全体に対する体積比率が50%以上であることを特徴とする請求項1乃至6のいずれか1項に記載の造形粒子。 The shaped particle according to any one of claims 1 to 6, wherein a volume ratio of a material most contained in the shell to the entire shell is 50% or more.
  8.  前記コアに含まれる前記水溶性材料が、水溶性の無機材料、水溶性の炭水化物、ポリアルキレンオキシド、ポリビニルアルコール、ポリエチレングリコールのいずれかであることを特徴とする請求項1乃至7のいずれか1項に記載の造形粒子。 The water-soluble material contained in the core is any one of a water-soluble inorganic material, a water-soluble carbohydrate, polyalkylene oxide, polyvinyl alcohol, and polyethylene glycol. The shaped particle according to item.
  9.  前記シェルに最も多く含まれる材料が、有機物、金属、無機物、および有機・無機複合材料のいずれかであることを特徴とする請求項1乃至8のいずれか1項に記載の造形粒子。 The shaped particle according to any one of claims 1 to 8, wherein the material most contained in the shell is an organic substance, a metal, an inorganic substance, or an organic / inorganic composite material.
  10.  前記有機・無機複合材料が、シロキサン結合を主骨格とし、有機基からなる側鎖を有する化合物であることを特徴とする、請求項9に記載の造形粒子。 The shaped particle according to claim 9, wherein the organic / inorganic composite material is a compound having a siloxane bond as a main skeleton and a side chain composed of an organic group.
  11.  前記有機基からなる側鎖が、メチル基であることを特徴とする、請求項10に記載の造形粒子。 The shaped particle according to claim 10, wherein the side chain composed of the organic group is a methyl group.
  12.  前記コアに含まれる前記水溶性材料の水に対する溶解度が1より大きいことを特徴とする請求項1乃至11のいずれか1項に記載の造形粒子。 The shaped particle according to any one of claims 1 to 11, wherein the solubility of the water-soluble material contained in the core in water is greater than 1.
  13.  前記シェルに最も多く含まれる材料の水に対する溶解度が10より小さいことを特徴とする請求項1乃至12のいずれか1項に記載の造形粒子。 The modeling particle according to any one of claims 1 to 12, wherein the solubility of the material most contained in the shell in water is smaller than 10.
  14.  前記コアと前記シェルの主成分が、互いに異なることを特徴とする請求項1乃至13のいずれか1項に記載の造形粒子。 The shaped particles according to any one of claims 1 to 13, wherein main components of the core and the shell are different from each other.
  15.  前記コアに含まれる前記水溶性材料が複数種類あり、前記シェルに最も多く含まれる材料の水に対する溶解度が、前記コアに含まれるいずれの水溶性材料の水に対する溶解度より小さいことを特徴とする請求項1乃至14のいずれか1項に記載の造形粒子。 The water-soluble material contained in the core includes a plurality of types, and the solubility of water in the material most contained in the shell is smaller than the solubility in water of any water-soluble material contained in the core. Item 15. The shaped particle according to any one of Items 1 to 14.
  16.  前記コアまたは、前記シェルが熱可塑性材料を含有することを特徴とする請求項1乃至15のいずれか1項に記載の造形粒子。 The shaped particle according to any one of claims 1 to 15, wherein the core or the shell contains a thermoplastic material.
  17.  前記コアに含まれる水溶性材料が、熱可塑性材料であることを特徴とする請求項1乃至16のいずれか1項に記載の造形粒子。 The modeling particle according to any one of claims 1 to 16, wherein the water-soluble material contained in the core is a thermoplastic material.
  18.  体積基準の平均粒径が1μm以上100μm以下であることを特徴とする請求項1乃至17のいずれか1項に記載の造形粒子。 18. The shaped particle according to claim 1, wherein the volume-based average particle diameter is 1 μm or more and 100 μm or less.
  19.  平均円形度が0.85以上であることを特徴とする請求項1乃至18のいずれか1項に記載の造形粒子。 The shaped particle according to any one of claims 1 to 18, wherein the average circularity is 0.85 or more.
  20.  帯電の減衰速度αが、0.3未満であることを特徴とする請求項1乃至19のいずれか1項に記載の造形粒子。 The shaped particle according to any one of claims 1 to 19, wherein the charge decay rate α is less than 0.3.
  21.  前記シェルの体積抵抗率が10-3Ω・cmより大きいことを特徴とする請求項1乃至20のいずれか1項に記載の造形粒子。 The shaped particle according to any one of Claims 1 to 20, wherein the shell has a volume resistivity greater than 10 -3 Ω · cm.
  22.  請求項1乃至21のいずれか1項に記載の造形粒子を含む粉体。 A powder containing the shaped particles according to any one of claims 1 to 21.
  23.  製造直後の状態の粉体と、25℃、湿度55%の環境下に7時間静置した後の粉体との間で、平均粒径の5乃至7倍のメッシュサイズの篩を通した際にメッシュ上に残る材料の重量変化が20%以下であることを特徴とする請求項21に記載の粉体。 When passing through a sieve having a mesh size 5 to 7 times the average particle size between the powder immediately after production and the powder after standing for 7 hours in an environment of 25 ° C. and 55% humidity The powder according to claim 21, wherein the weight change of the material remaining on the mesh is 20% or less.
  24.  前記重量変化が5%以下であることを特徴とする請求項23に記載の粉体。 The powder according to claim 23, wherein the weight change is 5% or less.
  25.  立体物の製造方法であって、
     構造材粒子とサポート材粒子とを配置して粒子層を形成する工程と、
     前記粒子層を積層して造形物を形成する工程と、
     前記造形物の前記サポート材粒子からなる部分を、水を含む溶媒に接触させて除去する工程と、を有し、
     前記サポート材粒子として、請求項1乃至21のいずれか1項に記載の造形粒子を用いることを特徴とすることを特徴とする立体物の製造方法。
    A manufacturing method of a three-dimensional object,
    Arranging the structural material particles and the support material particles to form a particle layer;
    Laminating the particle layer to form a shaped article;
    A step of removing the part made of the support material particles of the shaped article by contacting with a solvent containing water, and
    The method for producing a three-dimensional object according to any one of claims 1 to 21, wherein the shaped particles according to any one of claims 1 to 21 are used as the support material particles.
  26.  前記粒子層を形成する工程は、転写体の上に粒子層を形成する工程であって、
     構造材粒子とサポート材粒子のうち、一方が配置されてなる粒子層を前記転写体に転写する工程と、他方の粒子が配置されてなる粒子層を前記転写体に転写する工程と、を含むことを特徴とする請求項25に記載の立体物の製造方法。
    The step of forming the particle layer is a step of forming a particle layer on the transfer body,
    A step of transferring one of the structural material particles and the support material particles to the transfer body, and a step of transferring the particle layer having the other particles to the transfer body. The method for producing a three-dimensional object according to claim 25.
  27.  粒子層の前記転写体への転写は、静電力を利用して行われることを特徴とする請求項26に記載の立体物の製造方法。 27. The method for producing a three-dimensional object according to claim 26, wherein the transfer of the particle layer to the transfer body is performed using an electrostatic force.
  28.  前記粒子層を積層して造形物を形成する工程が、前記粒子層に熱エネルギーを与えて積層する工程であることを特徴とする請求項25乃至27のいずれか1項に記載の立体物の製造方法。 28. The step of laminating the particle layer to form a shaped object is a step of laminating the particle layer by applying thermal energy to the three-dimensional object according to any one of claims 25 to 27. Production method.
PCT/JP2015/076472 2014-09-24 2015-09-17 Modeling particles used for manufacturing three-dimensional object, powder including same, and method for manufacturing three-dimensional object using same WO2016047549A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/467,909 US10322573B2 (en) 2014-09-24 2017-03-23 Constituent particles used for production of three-dimensional object, powder including constituent particles, and method for producing three-dimensional object from constituent particles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-194014 2014-09-24
JP2014194014 2014-09-24
JP2015178950A JP2016064649A (en) 2014-09-24 2015-09-10 Modeling particle used for manufacturing three-dimensional object, powder including the same, and method for manufacturing three-dimensional object using the same
JP2015-178950 2015-09-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/467,909 Continuation US10322573B2 (en) 2014-09-24 2017-03-23 Constituent particles used for production of three-dimensional object, powder including constituent particles, and method for producing three-dimensional object from constituent particles

Publications (1)

Publication Number Publication Date
WO2016047549A1 true WO2016047549A1 (en) 2016-03-31

Family

ID=55581076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076472 WO2016047549A1 (en) 2014-09-24 2015-09-17 Modeling particles used for manufacturing three-dimensional object, powder including same, and method for manufacturing three-dimensional object using same

Country Status (1)

Country Link
WO (1) WO2016047549A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170217087A1 (en) * 2016-01-28 2017-08-03 Nozomu Tamoto Solid freeform fabrication material, solid freeform fabrication material set, and method of manufacturing solid freeform fabrication object
US10759002B2 (en) 2014-03-18 2020-09-01 Kabushiki Kaisha Toshiba Stack forming apparatus and manufacturing method of stack formation
CN113458324A (en) * 2021-06-11 2021-10-01 无锡卡仕精密科技有限公司 Machining method of allowance-free blisk of aero-engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330743A (en) * 2003-05-12 2004-11-25 Fuji Photo Film Co Ltd Method for manufacturing three-dimensional shaped article
JP2007301945A (en) * 2006-05-15 2007-11-22 Univ Of Tokyo Three-dimensional structure and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330743A (en) * 2003-05-12 2004-11-25 Fuji Photo Film Co Ltd Method for manufacturing three-dimensional shaped article
JP2007301945A (en) * 2006-05-15 2007-11-22 Univ Of Tokyo Three-dimensional structure and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10759002B2 (en) 2014-03-18 2020-09-01 Kabushiki Kaisha Toshiba Stack forming apparatus and manufacturing method of stack formation
US20170217087A1 (en) * 2016-01-28 2017-08-03 Nozomu Tamoto Solid freeform fabrication material, solid freeform fabrication material set, and method of manufacturing solid freeform fabrication object
CN113458324A (en) * 2021-06-11 2021-10-01 无锡卡仕精密科技有限公司 Machining method of allowance-free blisk of aero-engine

Similar Documents

Publication Publication Date Title
JP2016064649A (en) Modeling particle used for manufacturing three-dimensional object, powder including the same, and method for manufacturing three-dimensional object using the same
JP6700745B2 (en) Powder, thermoplastic composition, and method for producing three-dimensional object
JP5858954B2 (en) Toner for electrostatic latent image development
JP5869450B2 (en) Evaluation method of difficulty in peeling of shell layer from toner core particles in toner for developing electrostatic latent image
CN103576480B (en) Toner, developer, toner cartridge, handle box and image forming apparatus
JP2015011123A (en) Toner for electrostatic latent image development
WO2016084928A1 (en) Powder, thermoplastic composition, and method for manufacturing three-dimensional object
WO2016047549A1 (en) Modeling particles used for manufacturing three-dimensional object, powder including same, and method for manufacturing three-dimensional object using same
US9459547B2 (en) Capsule toner for developing electrostatic charge image and method of manufacturing the same
US9535352B2 (en) Electrostatic latent image developing toner and manufacturing method of the same
JP2015118370A (en) Toner for electrostatic charge image development, and manufacturing method of toner for electrostatic charge image development
JP5979642B2 (en) Toner for electrostatic latent image development
JP5836332B2 (en) Toner for electrostatic latent image development
JP6794105B2 (en) Particle swarms used to manufacture three-dimensional objects, and methods for manufacturing three-dimensional objects using them
JP6500739B2 (en) Toner for developing electrostatic latent image
JP5972237B2 (en) Toner for electrostatic latent image development
JP2018176504A (en) Molding particle, powder, and method for producing solid matter
JP6100711B2 (en) Toner for electrostatic latent image development
JP2018083370A (en) Shaping-particle manufacturing method, shaping particle, powder, and three-dimensional object manufacturing method
JP6269528B2 (en) Toner for developing electrostatic latent image and method for producing the same
JP6323350B2 (en) Positively charged toner for electrostatic latent image development
JP6046684B2 (en) Positively charged electrostatic latent image developing toner
EP2713209A1 (en) Carrier and two-component developer
JP2022018292A (en) Toner and method for manufacturing toner
JP6237555B2 (en) Toner for electrostatic latent image development

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844040

Country of ref document: EP

Kind code of ref document: A1