WO2016047437A1 - X-ray imaging device - Google Patents

X-ray imaging device Download PDF

Info

Publication number
WO2016047437A1
WO2016047437A1 PCT/JP2015/075528 JP2015075528W WO2016047437A1 WO 2016047437 A1 WO2016047437 A1 WO 2016047437A1 JP 2015075528 W JP2015075528 W JP 2015075528W WO 2016047437 A1 WO2016047437 A1 WO 2016047437A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
storage battery
ray
switch
ray imaging
Prior art date
Application number
PCT/JP2015/075528
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 永田
菱川 真吾
堂本 拓也
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2016550092A priority Critical patent/JPWO2016047437A1/en
Publication of WO2016047437A1 publication Critical patent/WO2016047437A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube

Definitions

  • the present invention relates to an X-ray imaging apparatus, and more particularly to a mobile X-ray imaging apparatus using a storage battery as a power source.
  • Mobile X-ray equipment that uses a storage battery as a power source is widely used because it can take X-ray pictures while visiting a hospital room in a hospital, making it easy to see patients who have difficulty moving. in use.
  • the storage battery used in this mobile X-ray imaging apparatus has a characteristic that the current that can be instantaneously released is limited, thereby limiting the power that can be used to generate X-rays. Therefore, in Patent Document 1, a large-capacity capacitor is provided between the storage battery and the X-ray tube, and an instantaneous large current that cannot be supplied directly from the storage battery is supplied from the capacitor to the X-ray tube.
  • Patent Document 2 in the configuration with a capacitor as in Patent Document 1, most of the charge accumulated in the capacitor is used to maintain the voltage of the capacitor, resulting in invalidity due to the gradual loss of charge.
  • a method is disclosed in which a step-down DC / DC converter is provided between a storage battery and a capacitor, and the capacitor voltage is stepped down by this converter to charge the storage battery again.
  • an object of the present invention is to provide a mobile X-ray imaging apparatus capable of collecting charges accumulated in a capacitor in a storage battery with a simpler configuration and with high efficiency.
  • a mobile X-ray imaging apparatus includes a storage battery, an X-ray tube device, a capacitor, and a recovery unit that recovers power stored in the capacitor to the storage battery, Prepare.
  • the recovery unit includes an inductor arranged in series with the capacitor, and the power stored in the capacitor is recovered in the storage battery by the resonance action of the LC circuit constituted by the inductor and the capacitor.
  • the charge stored in the capacitor can be collected in the storage battery with a simple configuration and with high efficiency by the above configuration.
  • Block configuration diagram of the X-ray high voltage generator of the mobile X-ray imaging device of FIG. (a) Configuration diagram of the X-ray high voltage generator according to the first embodiment, (b) Graph showing the voltage change of the capacitor 103 and the storage battery 101 of the X-ray high voltage generator according to the first embodiment, (c) Explanatory drawing which shows the operation
  • Operation flow diagram of mobile X-ray imaging apparatus of second embodiment (a) Configuration diagram of the X-ray high voltage generator according to the third embodiment, (b) Explanatory diagram showing an operation sequence (X-ray radiation amount is small) of the X-ray high voltage generator according to the third embodiment, (c) Explanatory diagram showing an operation sequence (a large amount of X-ray radiation) of the X-ray high voltage generator according to the second embodiment Operation flow diagram of mobile X-ray imaging apparatus of third embodiment
  • the X-ray imaging apparatus includes an X-ray tube device and an X-ray high voltage generator, and the X-ray high voltage generator is connected in parallel with a storage battery for storing electric power, and the storage battery, A capacitor that is charged by the storage battery and supplies power to the X-ray tube device during X-ray irradiation, and a recovery unit that recovers the power stored in the capacitor to the storage battery, the recovery unit, An inductor disposed in series with a capacitor is included, and the power stored in the capacitor is recovered in the storage battery by a resonance action of an LC circuit constituted by the inductor and the capacitor.
  • the recovery unit further includes a switch that connects the end of the inductor opposite to the end connected to the capacitor to the storage battery.
  • it further comprises a recovery control unit for turning on and off the switch, and the recovery control unit is turned off when a time half of a resonance period of the LC circuit has elapsed after the switch is turned on.
  • the storage battery has a configuration in which a plurality of power storage bodies are connected in series, and the inductor is connected to a connection portion between the power storage bodies that has a voltage approximately half of the output voltage of the entire storage battery. It is characterized by that.
  • the plurality of power storage units is an even number, the even number of power storage units is divided into a half number of power storage unit groups, and the inductor is connected to a connection portion between the two power storage unit groups. It is characterized by being.
  • a discharging unit is provided in parallel with the capacitor, and after the power stored in the capacitor is collected in the storage battery, the charging / disconnecting control of the discharging unit is performed so that the remaining power of the capacitor is consumed A control unit is provided.
  • a DC / DC converter is disposed in series with the storage battery and the capacitor between the storage battery and the capacitor, and the DC / DC converter includes a converter inductor, a diode, and a converter switch connected in series.
  • the inductor of the recovery unit also serves as the converter inductor of the DC / DC converter.
  • the recovery unit further includes a bypass switch for bypassing the diode of the DC / DC converter.
  • the storage battery is configured by connecting two or more power storage units in series, and the charging control unit connects the inductor between any of the power storage units in response to the voltage of the capacitor, The power stored in the capacitor is collected in the storage battery.
  • the charge / recovery selection circuit is arranged between the capacitor and the storage battery.
  • the charge / recovery selection circuit includes a diode and a charge / recovery selection switch arranged in parallel, and calculates a voltage drop amount of the capacitor during the X-ray irradiation from an X-ray irradiation condition. And a control unit that switches the charge / recovery selection switch based on the voltage drop amount.
  • the X-ray imaging apparatus includes an X-ray tube device 106 and an X-ray high voltage generator 713 as shown in FIG.
  • the X-ray high voltage generator 713 is connected in parallel to the storage battery 101 that stores power, and is charged by the storage battery 101 to supply power to the X-ray tube device 106 during X-ray irradiation.
  • a capacitor 103 to be supplied and a recovery unit 201 that recovers the electric power stored in the capacitor 103 to the storage battery 101 are provided.
  • the recovery unit 201 includes an inductor L arranged in series with the capacitor 103.
  • the recovery unit 201 recovers the power stored in the capacitor 103 to the storage battery 101 by the resonance action of the LC circuit configured by the inductor L and the capacitor 103.
  • the charge can be collected with high efficiency with a simple configuration.
  • FIG. 1 shows an example of the overall configuration of the X-ray imaging apparatus according to the first embodiment, and shows the configuration of the mobile X-ray imaging apparatus.
  • This mobile X-ray imaging apparatus includes a cart unit 701 having a wheel unit 702, a support column 703 erected on the cart unit 701, and an arm unit 704 that can be moved up and down on the support column 703.
  • the X-ray tube device 106 is provided at the tip of the arm unit 704 and irradiates the subject with X-rays.
  • the X-ray tube device 106 is moved to a predetermined position at the time of imaging by rotation around the axis of the column 703, raising and lowering of the arm unit 704, and expansion and contraction of the arm unit 704.
  • the X-ray high voltage generator 713 is disposed inside the carriage unit 701. Inside the carriage unit 701, in addition, a control unit 708 for controlling the X-ray high voltage generation unit 713, a storage unit 709 for storing a control operation sequence of the control unit 708, and the like, an X-ray for processing an X-ray image An image processing unit 710 and the like are arranged.
  • a console unit 711 for an operator of the mobile X-ray imaging apparatus to operate the apparatus and a display 712 for displaying an image from the X-ray image processing unit 710 are provided. ing.
  • the X-ray high voltage generator 713 includes the storage battery 101 described above, a capacitor 103 connected in parallel to the storage battery 101, and an inverter circuit connected in parallel to the capacitor 103.
  • the capacitor 103 is charged by the storage battery 101 as described above, and supplies power to the X-ray tube device 106 during X-ray irradiation. As a result, it is possible to supply the X-ray tube device 106 with larger power than that supplied only by the storage battery 101.
  • the inverter circuit 105 is connected in parallel to the X-ray tube 106a of the X-ray tube device 106, and supplies power (tube current and tube voltage) to the X-ray tube 106a.
  • the X-ray high voltage generation unit 713 includes a charge control unit 110, a recovery control unit 809, and a rotating anode inverter 107.
  • a power supply unit 801 and a voltage monitor 803 are connected in parallel.
  • the power supply unit 801 converts AC power supplied from the external power source 706 into DC power, and charges the storage battery 101.
  • the voltage monitor 803 detects the voltage of the storage battery 101.
  • the control unit 708 receives the voltage value detected by the voltage monitor 803 and controls the charge control unit 110.
  • the charging control unit 110 controls charging of the storage battery 101 so that desired power is charged in the storage battery 101.
  • a switch S1 is arranged between the storage battery 101 and the capacitor 103.
  • the collection control unit 809 controls charging from the storage battery 101 to the capacitor 103 and feeding from the storage battery 101 to the inverter circuit 105 by turning on and off the switch S1.
  • the recovery unit 201 recovers the electric power stored in the capacitor 103 to the storage battery 101.
  • the detailed configuration of the collection unit 201 will be described later.
  • a discharge circuit 104 is connected in parallel to the capacitor 103 between the capacitor 103 and the inverter circuit 105.
  • the discharge circuit 104 is a circuit that discharges the electric charge accumulated in the capacitor 103 as necessary.
  • the discharge circuit 104 may not be arranged.
  • an X-ray tube voltage monitor 807 for monitoring the supply voltage to the X-ray tube 106a is connected in parallel to the X-ray tube 106a.
  • the rotary anode inverter 107 is connected in parallel to the inverter circuit 105 between the inverter circuit 105 and the X-ray tube 106a.
  • the rotary anode inverter 107 receives a part of the output power of the inverter circuit 105, generates electric power for rotationally driving the anode of the X-ray tube 106a, and an anode rotation drive unit (not shown) in the X-ray tube device 106. ).
  • the inverter circuit 105 includes an inverter unit 804 that converts the output DC voltage of the capacitor 103 into a high-frequency AC voltage, and a high voltage generation unit 806 that boosts, rectifies, and smoothes the output AC voltage of the inverter unit 804.
  • the inverter unit 804 generates a tube voltage to be supplied to the X-ray tube 106a.
  • the inverter unit 804 generates an AC voltage for generating a desired tube voltage under the control of the control unit 708.
  • the inverter unit 804 is an inverter circuit using a plurality of combinations of semiconductor switches and diodes connected in antiparallel to the semiconductor switches. For example, an inverter circuit described in Patent Document 3 can be used.
  • the high voltage generation unit 806 includes a transformer and a rectifier, converts the AC output of the inverter unit 804 into a high voltage, and then rectifies to generate a DC high voltage (tube voltage).
  • the tube voltage generated by the inverter circuit 105 is supplied to the X-ray tube 106a to generate X-rays. X-rays are irradiated to the subject.
  • the control unit 708 is connected to a radiation switch 108 having a two-stage switch structure, and operates the rotary anode inverter 107 and the inverter unit 804 in accordance with the operation of the radiation switch 108 by the operator to rotate the anode. Electric power and tube voltage are generated at predetermined timings.
  • the configuration of the recovery unit 201 and the storage battery 101 will be described with reference to FIG.
  • the storage battery 101 has a configuration in which a plurality of power storage units 101a to 101l are connected in series to obtain a desired voltage.
  • the power storage bodies 101a to 101l for example, lead storage batteries can be used, respectively.
  • the recovery unit 201 is a circuit for recovering the power stored in the capacitor 103 to the storage battery 101 as described above, and the recovery unit 201 includes an inductor L and a switch S0.
  • One end of the inductor L is connected to the electrode plate side of the capacitor 103 on the side connected to the positive electrode of the storage battery 101.
  • FIG. 3 (a) it is connected in the middle of a circuit connecting the capacitor 103 and the positive electrode of the storage battery 101.
  • the other end of the inductor L is connected to the storage battery 101.
  • a switch S0 is arranged in the middle of the circuit connecting the other end of the inductor L and the storage battery 101.
  • the switch S0 is turned on / off by the collection control unit 809.
  • the switch S0 can also be disposed between the inductor L and the capacitor 103.
  • the position where the other end of the inductor L is connected to the storage battery 101 is a position in the storage battery 101 where the voltage is 1 ⁇ 2 of the total voltage of the storage battery 101.
  • the other end of the inductor is connected to the electrode plate of the power storage unit or a wiring connecting the power storage unit and the power storage unit.
  • the other end of the inductor L is half the power storage units 101a,. It is connected between two power storage unit groups (between power storage unit 101f and power storage unit 101g) divided into groups of (six).
  • FIG. 3 (c) shows a control operation sequence representing ON / OFF of the switches S1 and S0 and the voltage of the capacitor 103 at that time
  • FIG. 4 shows a control flow of the control unit 708 and the recovery control unit 809.
  • the operator connects the cable 707 to a commercial external power source 706 and charges the storage battery 101 to a predetermined voltage before using the mobile X-ray imaging apparatus.
  • the control unit 708 reads the program in the storage unit 709 and performs control as follows.
  • step 1001 the control unit 708 waits until the operator turns on the first-stage switch of the radiation switch 108.
  • the collection control unit 809 turns on the S0 switch and turns off the S1 switch
  • half of the storage battery group (storage bodies 101g to 101l) of the storage battery 101 is connected in series to the capacitor 103 via the inductor L of the recovery unit 201.
  • the capacitor 103 is charged by the power storage units 101g to 101l by the resonance action of the LC resonance circuit.
  • the charging by this LC resonance action will be described with reference to FIG.
  • the voltage of the entire storage battery 101 is Vb
  • the voltage Vh of the half power storage unit group (power storage units 101g to 101l) is Vb / 2.
  • the voltage Vc of the capacitor 103 changes by drawing a sine wave whose amplitude gradually attenuates due to the resonance action of the LC resonance circuit, and the maximum amplitude of the first cycle is It reaches twice the voltage Vh of the group (electric storage units 101g to 101l).
  • step 1003 under the control of the control unit 708, the recovery control unit 809 turns off the switch S0 when a time ⁇ that is 1/2 of the resonance period T has elapsed since the switch S0 was turned on. (Step 1004). Thereby, capacitor 103 is charged by half of the power storage unit group (power storage units 101g to 101l) to a voltage equal to voltage Vb of storage battery 101 as a whole.
  • the resonance period T of the LC circuit is expressed by the following formula.
  • T 2 ⁇ ⁇ (L ⁇ C) 0.5
  • L is the inductance of the inductor L
  • C is the capacitance of the capacitor.
  • the time ⁇ that is 1/2 of the resonance period T is calculated in advance using the above formula and stored in the storage unit 709.
  • the control unit 708 reads the time ⁇ from the storage unit 709 and controls the collection control unit 809.
  • the capacitor 103 charged to a voltage of 2V and the storage battery 101 of a voltage of 2V are connected in parallel to the inverter circuit 105, and power can be supplied from both. Therefore, the inverter circuit 105 can generate a tube voltage using both electric powers.
  • step 1007 if the rotational speed of the rotary anode reaches the specified rotational speed, the control unit 708 proceeds to step 1008, outputs a permission signal, and the operator can operate the second-stage switch of the radiation switch 108. Like that.
  • the control unit 708 causes the display 712 or the like to display a display informing the operator of the apparatus that the second-stage switch of the radiation switch 108 can be operated.
  • step 1009 the control unit 708 waits until the second-stage switch of the radiation switch 108 is turned on by the operator. If it is turned on, the control unit 708 proceeds to step 1010 and generates a tube voltage in the inverter circuit 105. Instruct. The inverter circuit 105 generates a tube voltage and supplies it to the X-ray tube 106a. Thereby, the X-ray tube 106a emits X-rays to the subject.
  • step 1010 power is supplied from the capacitor 103 and the storage battery 101 to the inverter circuit 105, and is used to generate a tube voltage.
  • the voltage of the capacitor 103 and the storage battery 101 is lowered, but the capacitor 103 still has a charge. If this charge is stored in the capacitor 103, it is gradually discharged and becomes reactive power.
  • the operation of collecting the charge remaining in the capacitor 103 in the storage battery 101 immediately after X-ray emission is performed.
  • the following steps 1011 to 1013 are performed.
  • FIG. 3 (c) for convenience of illustration, the voltage drop of the capacitor 103 after X-ray emission is omitted and shown as a constant value.
  • half of the storage battery group (storage batteries 101g to 101l) of the storage battery 101 is connected in series to the capacitor 103 via the inductor L of the recovery unit 201, and the LC resonance circuit is configured again.
  • the electric charge of the capacitor 103 is recovered by the power storage units 101g to 101l by the action of LC resonance.
  • the voltage Vc of the capacitor 103 and the voltage of the storage battery 101 are equal, and the voltage Vh of the half of the power storage unit group (power storage units 101g to 101l) is Vc / 2.
  • the voltage Vc of the capacitor 103 becomes zero when a time ⁇ that is 1 ⁇ 2 of the resonance period T has elapsed since the switch S0 was turned on.
  • the electric charge of the capacitor 103 has moved to half of the power storage unit group (power storage units 101g to 101l) and has been recovered by half of the power storage unit group (power storage units 101g to 101l).
  • step 1012 the control unit 708 instructs the recovery control unit 809 to turn off the switch S0 when the time ⁇ has elapsed since the switch S0 was turned on in step 1011.
  • the predetermined time ⁇ is calculated in advance as described above and stored in the storage unit 709.
  • the recovery unit 201 including the inductor L and the switch S0, only the on / off timing of the switch S0 is controlled, and the charge transfer action by the LC resonance is used.
  • the charge accumulated in the capacitor 103 can be collected in the storage battery 101.
  • the recovery unit 201 has a simple configuration including an inductor L and a switch S0.
  • the movement of charge due to LC resonance causes little loss of charge, and the charge of the capacitor 103 can be recovered to the storage battery 101 with high efficiency. it can.
  • FIG. 3B shows changes in the voltage Vc of the capacitor 103 and the voltage Vb of the storage battery 101 at that time.
  • the voltage Vc at the time of charging the capacitor 103 is constant even when the capacitor 103 is repeatedly charged and discharged, and the storage battery 101 It can be seen that the potential hardly changes. That is, it was confirmed that the charge of the capacitor 103 can be collected in the storage battery 101 with almost no loss, and the capacitor 103 can be charged again.
  • FIG. 6 (a) shows a configuration of a conventional X-ray high voltage generator that does not include the recovery unit 201.
  • FIGS. 6B and 6C correspond to FIGS. 3B and 3C of the first embodiment, respectively.
  • the X-ray high voltage generator of the comparative example does not include the recovery unit 201, so the discharge circuit 104 is indispensable. Discharges the charge remaining in the capacitor 103.
  • the entire storage battery 101 is connected in parallel to the capacitor 103, and the voltage Vc of the capacitor 103 is charged to the voltage Vb of the storage battery 101.
  • power can be supplied to the inverter circuit 105 from both the capacitor 106 and the storage battery 101.
  • step 2003 if the specified time required for charging has elapsed, steps 1006 to 1010 are performed, the anode of the X-ray tube 106a is rotated, and X-rays are emitted at the timing when the second switch of the radiation switch 108 is operated. Radiate.
  • the capacitor 103 is connected to the discharge circuit 104, and the voltage Vc of the capacitor 103 becomes 0 volts.
  • the electric charge accumulated in the capacitor 103 since the electric charge accumulated in the capacitor 103 is not collected, the electric charge is gradually discharged during the period when radiation is not performed, and becomes reactive power. Further, even when the discharge circuit 104 discharges, the charge accumulated in the capacitor 103 generates reactive power.
  • the charging of the capacitor 103 and the discharging of the discharging circuit 104 are repeated many times. As shown in FIG. 6 (b), the voltage Vb of the storage battery 101 decreases each time the capacitor 103 is charged and discharged, and accordingly, the voltage Vc when the capacitor 103 is charged also decreases. That is, it has been confirmed that reactive power is generated each time the capacitor 103 is charged and discharged.
  • the X-ray high voltage generator 713 of the mobile X-ray apparatus includes a step-up DC / DC converter 401 between the storage battery 101 and the capacitor 103. Is arranged.
  • the converter inductor L2 of the step-up DC / DC converter 401 is also used.
  • the step-up DC / DC converter 401 charges the capacitor 103 to a voltage higher than the output voltage of the storage battery 101.
  • the step-up DC / DC converter 401 has a configuration in which a converter inductor L2, a diode D, and a converter switch S6 connected in series are connected in parallel to a storage battery 101 and a capacitor 103. By turning off the converter switch S6, the inductor L2 and the diode D are connected in series to the storage battery 101 and the capacitor 103. With such a configuration, when the switch S6 is turned on, a current flows through the converter inductor L2 and energy is accumulated. Thereafter, when the switch S6 is turned off, the energy of the converter inductor L2 flows to the capacitor 103 via the diode D, and the capacitor 103 is charged. Therefore, the capacitor 103 is charged to the voltage Vc equal to or higher than the voltage Vb of the storage battery 101 by repeatedly turning on and off the switch S6.
  • the converter inductor L2 also serves as the inductor of the recovery unit 201.
  • the recovery unit 201 includes a bypass switch S7 arranged so as to bypass the diode D of the DC / DC converter.
  • the recovery unit 201 is a group of switches for connecting the end of the converter inductor L2 on the storage battery 101 side to any electrode plate in the storage battery 101 composed of a plurality of power storage units, or a connection part between the storage units.
  • 403 is further provided.
  • the switch group 403 is arranged in parallel with the switch S1, and the recovery control unit 809 switches either the switch S1 or the switch group 403 according to the boost condition of the boost DC / DC converter 401, that is, the voltage Vc of the capacitor 103. select.
  • the inductor L2 is connected to a position where the voltage is half the voltage Vc of the capacitor 103, and the charge recovery efficiency is optimized. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • steps 1000 and 1001 after the operator of the apparatus turns on the main switch of the apparatus, the control unit 708 waits until the operator turns on the first-stage switch of the radiation switch 108.
  • the control unit 708 proceeds to step 3002, and the collection control unit 809 turns on the switch S1 as shown in FIGS. 8B and 8C, and the switch S6 Are repeatedly turned on and off, and the voltage Vc of the capacitor 103 is charged to a desired voltage equal to or higher than the voltage Vb of the storage battery 101.
  • the switch S7 and the switch group 403 are kept off.
  • the step-up condition is controlled by the number of times the switch S6 is turned on / off.
  • FIG. 8 (b) shows a state in which the voltage Vc of the capacitor 103 has been boosted and charged to twice the total voltage Vb of the storage battery 101, and FIG. It shows a state where the battery is charged at 1 times the entire voltage Vb.
  • step 3003 when the specified time stored in the storage unit 709 has elapsed, the control unit 708 performs steps 1006 to 1010 to rotate the anode and output a permission signal as in the first embodiment. If the second switch of the radiation switch 108 is operated by the operator, X-rays are emitted. However, in the second embodiment, the radiation power is supplied to the inverter circuit 105 only from the capacitor 103.
  • the control unit 708 receives the voltage Vc of the capacitor 103 detected by the voltage monitor 803, and connects the switch connecting the inductor L2 to the position where the voltage becomes a half of the voltage Vc in the switch S1 and the switch group 403. Select from.
  • the control unit 708 selects the switch S1 and connects the inductor L2 at the position of the voltage (potential) Vb. As a result, as shown in FIG. 8 (b), the switch S1 is continuously maintained in the ON state.
  • a switch that connects the inductor L2 to the electrode plate of the electric storage body that has a voltage (potential) Vb / 2 that is half that of the storage battery 101 And turn it on as shown in FIG. 8 (c).
  • control unit 708 instructs the recovery control unit 809 to turn off the switch S6 and turn on the switch S7 in step 3010.
  • the switch selected in step 3009 is turned off. As a result, the voltage Vc of the capacitor 103 becomes zero, and the charge of the capacitor 103 is recovered by the storage battery 101.
  • the action of LC resonance at this time is the same as in the first embodiment.
  • the charge of the capacitor 103 is recovered to the storage battery 101 with high efficiency. can do. Further, since the inductor L2 in the step-up DC / DC converter 401 can also be used as the inductor of the recovery unit 201, the circuit configuration is simple.
  • a diode S501 and a switch S8 that is a charge / recovery selection switch are connected in parallel between the S1 switch of the X-ray high voltage generator 713 and the capacitor 103. It has a circuit.
  • the direction of the diode 501 is opposite to the direction of the current when charging the capacitor 103 from the storage battery 101.
  • the switch S8 is connected to the inductor L of the recovery unit 201.
  • the inductor L is connected to any electrode plate in the storage battery 101 made up of a plurality of power storage units, or a connection part between the power storage units, via the selection switch group 403. is there.
  • the charge remaining in the capacitor 103 immediately after the X-ray emission is collected in the storage battery 101.
  • the voltage Vc of the capacitor 103 decreases by dVc due to the X-ray emission
  • the charge from the storage battery 101 to the capacitor 103 is reduced.
  • dVc * Q / 2 is consumed as Joule heat when the charge Q moves. Therefore, in the third embodiment, when the X-ray radiation amount is smaller than a predetermined threshold value, the voltage drop amount dVc of the capacitor 103 is also small, so that the capacitor 103 is recharged from the storage battery 101 without collecting the charge. (FIG. 10 (b)).
  • the operation of the X-ray high voltage generator 713 of the third embodiment will be described with reference to FIG.
  • the same operations as those in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • step 1000 after the main switch of the apparatus is turned on, in step 4001, the control unit 708 receives the setting of the X-ray emission condition from the operator via the console unit 711 and the display 712.
  • the X-ray emission conditions to be set are, for example, tube voltage, tube current, X-ray emission time, presence / absence of repeated imaging.
  • step 1003 the control unit 708 waits until the specified time stored in the storage unit 709 elapses.
  • This specified time is a half of the resonance period T of the LC circuit similar to the first embodiment.
  • the voltage Vc of the capacitor 103 is held at the overall voltage Vb of the storage battery 101.
  • Steps 1005 to 1009 are performed, and similarly to the first embodiment, the control unit 708 rotates the anode, outputs a permission signal, and accepts the ON of the second-stage switch of the radiation switch 108 from the operator.
  • control unit 708 calculates voltage drop amount dVc of capacitor 103 due to X-ray radiation based on the X-ray radiation conditions input by the operator in step 4001. . It is determined whether or not the obtained voltage drop amount dVc is larger than the threshold value. If it is smaller than the threshold value, the process proceeds to step 4020, and the operation of recharging the capacitor 103 from the storage battery 101 after X-ray emission is performed as follows.
  • step 4020 the control unit 708 causes the collection control unit 809 to emit X-rays in step 4021 while the switch S8 and the switch S1 are on and the switch group 403 is off.
  • the switch S8 since the switch S8 is on, the diode 501 is bypassed, power is supplied from the capacitor 103 and the storage battery 101 to the inverter circuit 105, and X-rays are radiated by a circuit similar to the circuit of the first embodiment.
  • the voltage of the capacitor 103 decreases by dVc. Since switches S8 and S1 are on, capacitor 103 is recharged from storage battery 101 to voltage Vb of storage battery 101.
  • step 4022 the control unit 708 determines whether or not to repeat X-ray emission thereafter with reference to the X-ray emission conditions set by the operator. If there are repetitions, the process returns to step 4020 to emit X-rays again. If there is no X-ray emission, the process proceeds to step 4023, and the charge remaining in the capacitor 103 is recovered.
  • step 4023 the control unit 708 turns on one of the switch groups 403 and turns off the switches S8 and S1 via the collection control unit 809. Which of the switch groups 403 is selected is determined by monitoring the voltage of the capacitor 103 as in step 3009 in FIG. 9 of the second embodiment.
  • Step 4024 if the specified time (1/2 of the LC circuit resonance period T) stored in the storage unit 709 has elapsed, the control unit 708 proceeds to Step 4025, where the collection control unit Via the switch 809, the switch 403 and the switch S1 are turned off. As a result, the charge remaining in the capacitor 103 is recovered by the storage battery 101 with high efficiency, and the voltage Vc of the capacitor 103 becomes zero. Then, the process returns to step 4001.
  • Step 4030 if the voltage drop amount dVc of the capacitor 103 is greater than or equal to the threshold value in step 4011, the voltage drop of the capacitor 103 is large, and it is better to once collect the charge to the storage battery 101 by the collection unit 201 than to recharge. Since the loss due to Joule heat is small, the process proceeds to Step 4030.
  • step 4030 the control unit 708 turns off the switch S8 via the recovery control unit 809, and emits X-rays in step 4031 while the switch S1 is on and the switch group 403 is off. Since the direction of the diode 501 is opposite to the direction of current during charging, supply of current from the capacitor 103 to the inverter circuit 105 is not hindered. In addition, after the X-ray emission, the voltage of the capacitor 103 decreases by dVc, but since the switch S8 is in the OFF state, it is connected to the storage battery 101 via the diode 501, and the direction of the diode 501 is the current at the time of charging. Therefore, the capacitor 103 is not charged from the storage battery 101, and the voltage of the capacitor 103 continues to be lowered by the X-ray radiation.
  • step 4032 the control unit 708 instructs the collection control unit 809 to select one of the switch groups 403 to turn on and turn off the S1 switch. Switch S8 remains off. Which of the switch groups 403 is selected is determined by monitoring the voltage of the capacitor 103 as in step 3009 in FIG. 9 of the second embodiment.
  • Step 4035 the control unit 708 again selects and turns on the switch connected to the electrode plate having the potential of Vb / 2 of the storage battery 101 in the switch group 403 to the recovery control unit 809, and switches S1 and S8 Is left off, the capacitor 103 is charged again by the LC resonance action as in step 4003.
  • step 4036 if the specified time (1/2 of the resonance period T) stored in the storage unit 709 has elapsed, the control unit 708 proceeds to step 4037, turns off the switch 403, and switches the switches S1 and S8. turn on. Thereby, the voltage Vc of the capacitor 103 is charged up to the voltage Vb of the storage battery 101, and the voltage is maintained.
  • step 4038 the control unit 708 determines whether or not to repeat X-ray emission thereafter with reference to the X-ray emission conditions set by the operator. If there are repetitions, the process returns to step 4030 to emit X-rays again. If there is no X-ray emission, the process proceeds to step 4023, and the charge remaining in the capacitor 103 is recovered.
  • the threshold used in step 4011 includes Joule heat due to charge transfer when recharging without recovering the charge remaining in the capacitor 103, and charge transfer when recharging the charge once to zero and recharging the voltage.
  • the voltage drop amount dVc is set so that the Joule heat becomes equal.
  • the reactive power can be further reduced, and the power use efficiency of the X-ray imaging apparatus can be improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

This mobile X-ray imaging device comprises an X-ray high voltage generator and an X-ray tube assembly. The X-ray high voltage generator comprises a storage battery, a capacitor, and a recovering unit that recovers electrical power accumulated in the capacitor to the storage battery. The recovering unit comprises an inductor that is disposed in series with the capacitor. The electrical power accumulated in the capacitor is recovered to the storage battery by way of the resonance effect of a LC circuit comprising the inductor and the capacitor. Thus, a mobile X-ray imaging device can be configured to have a simple configuration.

Description

X線撮影装置X-ray equipment
 本発明は、X線撮影装置に係り、特に蓄電池を電源に用いる移動型X線撮影装置に関する。 The present invention relates to an X-ray imaging apparatus, and more particularly to a mobile X-ray imaging apparatus using a storage battery as a power source.
 蓄電池を電源に用いる移動型のX線撮影装置は、病院内で病室を回診しながらX線写真の撮影を行うことができ、移動が困難な患者の診察を容易にするなどメリットが多いため広く使用されている。 Mobile X-ray equipment that uses a storage battery as a power source is widely used because it can take X-ray pictures while visiting a hospital room in a hospital, making it easy to see patients who have difficulty moving. in use.
 この移動型X線撮影装置で使用する蓄電池は、瞬間的に放出可能な電流が制限されるという特性があり、それによりX線の発生に使用可能な電力が制限される。このため、特許文献1では、蓄電池とX線管との間に大容量のコンデンサを設ける構成とし、蓄電池が直接供給できない瞬間的な大電流を、X線管にコンデンサから供給する。 The storage battery used in this mobile X-ray imaging apparatus has a characteristic that the current that can be instantaneously released is limited, thereby limiting the power that can be used to generate X-rays. Therefore, in Patent Document 1, a large-capacity capacitor is provided between the storage battery and the X-ray tube, and an instantaneous large current that cannot be supplied directly from the storage battery is supplied from the capacitor to the X-ray tube.
 また特許文献2では、特許文献1のようにコンデンサを備えた構成において、コンデンサで蓄積されている電荷のほとんどが、コンデンサの電圧維持に使用され、結果的に電荷が徐々に失われることにより無効電力が大きくなる問題を解決する技術を提供する。具体的には、蓄電池とコンデンサ間に降圧型DC/DCコンバータを設け、このコンバータによりコンデンサ電圧を降圧して蓄電池に再び充電する方式が開示されている。 Also, in Patent Document 2, in the configuration with a capacitor as in Patent Document 1, most of the charge accumulated in the capacitor is used to maintain the voltage of the capacitor, resulting in invalidity due to the gradual loss of charge. Provide technology to solve the problem of increasing power. Specifically, a method is disclosed in which a step-down DC / DC converter is provided between a storage battery and a capacitor, and the capacitor voltage is stepped down by this converter to charge the storage battery again.
特開平4-328298号公報Japanese Unexamined Patent Publication No. 4-328298 特開平5-36491号公報JP-A-5-36491 特開2005-94913号公報JP 2005-94913 A
 しかし、特許文献2のように降圧型DC/DCコンバータを用いる構成では、装置構成や制御が複雑であると共に、コンバータによる効率ロスにより、コンデンサに蓄積された電荷を高効率に回収することができなかった。 However, in the configuration using the step-down DC / DC converter as in Patent Document 2, the device configuration and control are complicated, and the efficiency stored in the capacitor can be recovered with high efficiency due to the efficiency loss due to the converter. There wasn't.
 よって、本発明の目的は、コンデンサに蓄積された電荷を、より簡易な構成で高効率に蓄電池に回収することができる移動型X線撮影装置を提供することにある。 Therefore, an object of the present invention is to provide a mobile X-ray imaging apparatus capable of collecting charges accumulated in a capacitor in a storage battery with a simpler configuration and with high efficiency.
 本発明に係る移動型X線撮影装置は、蓄電池と、X線管装置と、コンデンサと、このコンデンサに蓄えられた電力を前記蓄電池へ回収する回収部と、を有するX線高電圧発生部を備える。そして回収部は、コンデンサと直列に配置されたインダクタを含み、このインダクタと、コンデンサとにより構成されるLC回路の共振作用により、コンデンサに蓄積された電力を、蓄電池に回収する。 A mobile X-ray imaging apparatus according to the present invention includes a storage battery, an X-ray tube device, a capacitor, and a recovery unit that recovers power stored in the capacitor to the storage battery, Prepare. The recovery unit includes an inductor arranged in series with the capacitor, and the power stored in the capacitor is recovered in the storage battery by the resonance action of the LC circuit constituted by the inductor and the capacitor.
 本発明は、上記構成により、コンデンサに蓄積された電荷を、簡易な構成で高効率に蓄電池に回収することができる。 In the present invention, the charge stored in the capacitor can be collected in the storage battery with a simple configuration and with high efficiency by the above configuration.
本発明の第一実施形態に係る移動型X線撮影装置の全体構成を示す説明図Explanatory drawing which shows the whole structure of the mobile X-ray imaging apparatus which concerns on 1st embodiment of this invention. 図1の移動型X線撮影装置のX線高電圧発生部のブロック構成図Block configuration diagram of the X-ray high voltage generator of the mobile X-ray imaging device of FIG. (a)第一実施形態に係るX線高電圧発生部の構成図、(b)第一実施形態に係るX線高電圧発生部のコンデンサ103および蓄電池101の電圧変化を示すグラフ、(c)第一実施形態に係るX線高電圧発生部の動作シーケンスを示す説明図(a) Configuration diagram of the X-ray high voltage generator according to the first embodiment, (b) Graph showing the voltage change of the capacitor 103 and the storage battery 101 of the X-ray high voltage generator according to the first embodiment, (c) Explanatory drawing which shows the operation | movement sequence of the X-ray high voltage generation part which concerns on 1st embodiment. 第一実施形態の移動型X線撮影装置の動作フロー図Operation flow diagram of mobile X-ray imaging apparatus of first embodiment (a)最小電圧から昇圧する場合の、LC共振回路のコンデンサの電圧変化を示す説明図、(b)最大電圧から降圧する場合の、LC共振回路のコンデンサの電圧変化を示す説明図(a) Explanatory diagram showing the voltage change of the capacitor of the LC resonant circuit when boosting from the minimum voltage, (b) Explanatory diagram showing the voltage change of the capacitor of the LC resonant circuit when stepping down from the maximum voltage (a)比較例のX線高電圧発生部の構成図、(b)比較例のX線高電圧発生部のコンデンサ103および蓄電池101の電圧変化を示すグラフ、(c)比較例のX線高電圧発生部の動作シーケンスを示す説明図(a) Configuration diagram of the X-ray high voltage generator of the comparative example, (b) Graph showing the voltage change of the capacitor 103 and the storage battery 101 of the X-ray high voltage generator of the comparative example, (c) X-ray height of the comparative example Explanatory diagram showing the operation sequence of the voltage generator 比較例の移動型X線撮影装置の動作フロー図Operation flow diagram of mobile X-ray imaging device of comparative example (a)第二実施形態に係るX線高電圧発生部の構成図、(b)第二実施形態に係るX線高電圧発生部の動作シーケンス(2倍昇圧)を示す説明図、(c)第二実施形態に係るX線高電圧発生部の動作シーケンス(1倍昇圧)を示す説明図本発明の第二実施形態に係る移動型X線撮影装置を構成するX線高電圧発生部の構成図等(a) Configuration diagram of the X-ray high voltage generator according to the second embodiment, (b) Explanatory diagram showing the operation sequence (double boosting) of the X-ray high voltage generator according to the second embodiment, (c) Explanatory drawing showing the operation sequence (1 × boosting) of the X-ray high voltage generator according to the second embodiment Configuration of the X-ray high voltage generator constituting the mobile X-ray imaging apparatus according to the second embodiment of the present invention Figures etc. 第二実施形態の移動型X線撮影装置の動作フロー図Operation flow diagram of mobile X-ray imaging apparatus of second embodiment (a)第三実施形態に係るX線高電圧発生部の構成図、(b)第三実施形態に係るX線高電圧発生部の動作シーケンス(X線放射量が小さい)を示す説明図、(c)第二実施形態に係るX線高電圧発生部の動作シーケンス(X線放射量が大きい)を示す説明図(a) Configuration diagram of the X-ray high voltage generator according to the third embodiment, (b) Explanatory diagram showing an operation sequence (X-ray radiation amount is small) of the X-ray high voltage generator according to the third embodiment, (c) Explanatory diagram showing an operation sequence (a large amount of X-ray radiation) of the X-ray high voltage generator according to the second embodiment 第三実施形態の移動型X線撮影装置の動作フロー図Operation flow diagram of mobile X-ray imaging apparatus of third embodiment
 本発明に係るX線撮影装置は、X線管装置と、X線高電圧発生部とを備え、このX線高電圧発生部は、電力を蓄積する蓄電池と、前記蓄電池と並列に接続され、前記蓄電池によって充電されて、X線照射時に前記X線管装置へ電力を供給するコンデンサと、このコンデンサに蓄えられた電力を前記蓄電池へ回収する回収部と、を備え、前記回収部は、前記コンデンサと直列に配置されたインダクタを含み、このインダクタと、前記コンデンサとにより構成されるLC回路の共振作用により、前記コンデンサに蓄積された電力を、前記蓄電池に回収することを特徴とする。 The X-ray imaging apparatus according to the present invention includes an X-ray tube device and an X-ray high voltage generator, and the X-ray high voltage generator is connected in parallel with a storage battery for storing electric power, and the storage battery, A capacitor that is charged by the storage battery and supplies power to the X-ray tube device during X-ray irradiation, and a recovery unit that recovers the power stored in the capacitor to the storage battery, the recovery unit, An inductor disposed in series with a capacitor is included, and the power stored in the capacitor is recovered in the storage battery by a resonance action of an LC circuit constituted by the inductor and the capacitor.
 また、前記回収部は、前記インダクタの前記コンデンサに接続されている側の端部とは逆側の端部を前記蓄電池に接続するスイッチをさらに含むことを特徴とする。 Further, the recovery unit further includes a switch that connects the end of the inductor opposite to the end connected to the capacitor to the storage battery.
 また、前記スイッチをオンオフする回収制御部をさらに有し、前記回収制御部が、前記スイッチをオンした後、前記LC回路の共振周期の1/2の時間を経過したときにオフすることを特徴とする。 Further, it further comprises a recovery control unit for turning on and off the switch, and the recovery control unit is turned off when a time half of a resonance period of the LC circuit has elapsed after the switch is turned on. And
 また、前記蓄電池は、複数の蓄電体を直列に接続した構成であり、前記インダクタは、前記蓄電池全体の出力電圧の略1/2の電圧になる前記蓄電体同士の接続部に接続していることを特徴とする。 Further, the storage battery has a configuration in which a plurality of power storage bodies are connected in series, and the inductor is connected to a connection portion between the power storage bodies that has a voltage approximately half of the output voltage of the entire storage battery. It is characterized by that.
 また、前記複数の蓄電体は偶数個であり、これら偶数個の蓄電体を半分の個数の蓄電体群に分割し、これら二つの蓄電体群の間の接続部に、前記インダクタが接続していることを特徴とする。 Further, the plurality of power storage units is an even number, the even number of power storage units is divided into a half number of power storage unit groups, and the inductor is connected to a connection portion between the two power storage unit groups. It is characterized by being.
 また、前記コンデンサと並列に放電部を設け、前記コンデンサに蓄積された電力を、前記蓄電池に回収した後、前記コンデンサの残りの電力を消費するように、前記放電部の断接制御を行う充電制御部を備えることを特徴とする。 In addition, a discharging unit is provided in parallel with the capacitor, and after the power stored in the capacitor is collected in the storage battery, the charging / disconnecting control of the discharging unit is performed so that the remaining power of the capacitor is consumed A control unit is provided.
 また、前記蓄電池と前記コンデンサとの間には、前記蓄電池およびコンデンサと直列に、DC/DCコンバータが配置され、前記DC/DCコンバータは、直列に接続されたコンバータ用インダクタとダイオードとコンバータ用スイッチとを含み、前記回収部の前記インダクタは、前記DC/DCコンバータの前記コンバータ用インダクタを兼用することを特徴とする。 Further, a DC / DC converter is disposed in series with the storage battery and the capacitor between the storage battery and the capacitor, and the DC / DC converter includes a converter inductor, a diode, and a converter switch connected in series. The inductor of the recovery unit also serves as the converter inductor of the DC / DC converter.
 また、前記回収部は、前記DC/DCコンバータの前記ダイオードをバイパスするためのバイパス用スイッチをさらに有することを特徴とする。 In addition, the recovery unit further includes a bypass switch for bypassing the diode of the DC / DC converter.
 また、前記蓄電池は、二以上の蓄電体を直列に接続して構成され、前記充電制御部は、前記コンデンサの電圧に対応して、前記蓄電体のいずれかの間に前記インダクタを接続し、前記コンデンサに蓄積された電力を、前記蓄電池に回収することを特徴とする。 Further, the storage battery is configured by connecting two or more power storage units in series, and the charging control unit connects the inductor between any of the power storage units in response to the voltage of the capacitor, The power stored in the capacitor is collected in the storage battery.
 また、前記コンデンサから前記X線管装置へ電力を供給した後、前記コンデンサの電力を回収することなく前記蓄電池によって充電するか、前記コンデンサの電力を前記回収部により回収するかを選択するための、充電・回収選択用回路が、前記コンデンサと前記蓄電池の間に配置されていることを特徴とする。 In addition, after supplying power from the capacitor to the X-ray tube device, it is possible to select whether to charge by the storage battery without collecting the power of the capacitor or to collect the power of the capacitor by the collecting unit The charge / recovery selection circuit is arranged between the capacitor and the storage battery.
 また、前記充電・回収選択用回路は、並列に配置された、ダイオードと、充電・回収選択用スイッチとを含み、X線照射条件から前記X線照射時の前記コンデンサの電圧低下量を算出し、前記電圧低下量に基づいて、前記充電・回収選択用スイッチを切り替える制御部をさらに有することを特徴とする。 The charge / recovery selection circuit includes a diode and a charge / recovery selection switch arranged in parallel, and calculates a voltage drop amount of the capacitor during the X-ray irradiation from an X-ray irradiation condition. And a control unit that switches the charge / recovery selection switch based on the voltage drop amount.
 以下、添付図面を参照しながら、本発明の好適な実施形態についてより詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
 <第一実施形態>
 第一実施形態のX線撮影装置について、図1~図5を用いて説明する。
<First embodiment>
The X-ray imaging apparatus according to the first embodiment will be described with reference to FIGS.
 第一実施形態のX線撮影装置は、図1に示すように、X線管装置106と、X線高電圧発生部713とを備えている。図2のように、X線高電圧発生部713は、電力を蓄積する蓄電池101と、蓄電池101に並列に接続され、蓄電池101によって充電されて、X線照射時にX線管装置106へ電力を供給するコンデンサ103と、コンデンサ103に蓄えられた電力を蓄電池101へ回収する回収部201と、を備えている。図3(a)のように、回収部201は、コンデンサ103と直列に配置されたインダクタLを含む。 The X-ray imaging apparatus according to the first embodiment includes an X-ray tube device 106 and an X-ray high voltage generator 713 as shown in FIG. As shown in FIG. 2, the X-ray high voltage generator 713 is connected in parallel to the storage battery 101 that stores power, and is charged by the storage battery 101 to supply power to the X-ray tube device 106 during X-ray irradiation. A capacitor 103 to be supplied and a recovery unit 201 that recovers the electric power stored in the capacitor 103 to the storage battery 101 are provided. As shown in FIG. 3 (a), the recovery unit 201 includes an inductor L arranged in series with the capacitor 103.
 回収部201は、このインダクタLとコンデンサ103とにより構成されるLC回路の共振作用により、コンデンサ103に蓄積された電力を、蓄電池101に回収する。 The recovery unit 201 recovers the power stored in the capacitor 103 to the storage battery 101 by the resonance action of the LC circuit configured by the inductor L and the capacitor 103.
 LC回路の共振作用によりコンデンサに蓄積された電荷を蓄電池に回収することにより、簡易な構成で高効率に電荷を回収することができる。 By collecting the charge accumulated in the capacitor by the resonance action of the LC circuit in the storage battery, the charge can be collected with high efficiency with a simple configuration.
 以下、第一実施形態のX線撮影装置について具体的に説明する。図1は、第一実施形態のX線撮影装置の全体構成の一例であり、移動型X線撮影装置の構成を示している。この移動型X線撮影装置は、車輪部702を有する台車部701と、この台車部701に立設された支柱703と、この支柱703に昇降可能に備えられたアーム部704とを有する。 Hereinafter, the X-ray imaging apparatus of the first embodiment will be specifically described. FIG. 1 shows an example of the overall configuration of the X-ray imaging apparatus according to the first embodiment, and shows the configuration of the mobile X-ray imaging apparatus. This mobile X-ray imaging apparatus includes a cart unit 701 having a wheel unit 702, a support column 703 erected on the cart unit 701, and an arm unit 704 that can be moved up and down on the support column 703.
 X線管装置106は、アーム部704の先端に備えられ、被検体にX線を照射する。X線管装置106は、支柱703の軸心回りの回転、アーム部704の昇降およびアーム部704の伸縮により、撮影時に所定の位置に移動される。 The X-ray tube device 106 is provided at the tip of the arm unit 704 and irradiates the subject with X-rays. The X-ray tube device 106 is moved to a predetermined position at the time of imaging by rotation around the axis of the column 703, raising and lowering of the arm unit 704, and expansion and contraction of the arm unit 704.
 X線高電圧発生部713は、台車部701の内部に配置されている。台車部701の内部には、この他、X線高電圧発生部713等を制御する制御部708、制御部708の制御動作のシーケンス等を記憶する記憶部709、X線画像を処理するX線画像処理部710等が配置されている。 The X-ray high voltage generator 713 is disposed inside the carriage unit 701. Inside the carriage unit 701, in addition, a control unit 708 for controlling the X-ray high voltage generation unit 713, a storage unit 709 for storing a control operation sequence of the control unit 708, and the like, an X-ray for processing an X-ray image An image processing unit 710 and the like are arranged.
 また、台車部701の上面には、この移動型X線撮影装置の操作者が、装置を操作するためのコンソール部711や、X線画像処理部710からの画像を表示するディスプレイ712が備えられている。 On the top surface of the carriage unit 701, a console unit 711 for an operator of the mobile X-ray imaging apparatus to operate the apparatus and a display 712 for displaying an image from the X-ray image processing unit 710 are provided. ing.
 図2を用いて、X線高電圧発生部713の詳しい構成を説明する。X線高電圧発生部713は、上述した蓄電池101と、これに並列に接続されたコンデンサ103と、コンデンサ103に並列に接続されたインバータ回路とを備えている。コンデンサ103は、上述したように蓄電池101によって充電されて、X線照射時にX線管装置106へ電力を供給する。これにより、蓄電池101のみで供給するよりも大きな電力をX線管装置106に供給することができる。インバータ回路105は、X線管装置106のX線管106aに並列に接続され、X線管106aに電力(管電流および管電圧)を供給する。また、X線高電圧発生部713は、充電制御部110と、回収制御部809と、回転陽極用インバータ107を備えている。 The detailed configuration of the X-ray high voltage generator 713 will be described with reference to FIG. The X-ray high voltage generator 713 includes the storage battery 101 described above, a capacitor 103 connected in parallel to the storage battery 101, and an inverter circuit connected in parallel to the capacitor 103. The capacitor 103 is charged by the storage battery 101 as described above, and supplies power to the X-ray tube device 106 during X-ray irradiation. As a result, it is possible to supply the X-ray tube device 106 with larger power than that supplied only by the storage battery 101. The inverter circuit 105 is connected in parallel to the X-ray tube 106a of the X-ray tube device 106, and supplies power (tube current and tube voltage) to the X-ray tube 106a. The X-ray high voltage generation unit 713 includes a charge control unit 110, a recovery control unit 809, and a rotating anode inverter 107.
 蓄電池101には、電力供給部801と電圧モニタ803が並列に接続されている。電力供給部801は、外部電源706から供給される交流電力を直流電力に変換し、蓄電池101を充電する。電圧モニタ803は、蓄電池101の電圧を検出する。制御部708は、電圧モニタ803の検出した電圧値を受け取って、充電制御部110を制御する。充電制御部110は、蓄電池101に所望の電力が充電されるように蓄電池101の充電を制御する。 To the storage battery 101, a power supply unit 801 and a voltage monitor 803 are connected in parallel. The power supply unit 801 converts AC power supplied from the external power source 706 into DC power, and charges the storage battery 101. The voltage monitor 803 detects the voltage of the storage battery 101. The control unit 708 receives the voltage value detected by the voltage monitor 803 and controls the charge control unit 110. The charging control unit 110 controls charging of the storage battery 101 so that desired power is charged in the storage battery 101.
 蓄電池101とコンデンサ103との間には、スイッチS1が配置されている。回収制御部809は、スイッチS1をオンオフすることにより、蓄電池101からコンデンサ103への充電、および、蓄電池101からインバータ回路105への給電を制御する。 A switch S1 is arranged between the storage battery 101 and the capacitor 103. The collection control unit 809 controls charging from the storage battery 101 to the capacitor 103 and feeding from the storage battery 101 to the inverter circuit 105 by turning on and off the switch S1.
 蓄電池101とコンデンサ103の間には、上述した回収部201が配置されている。回収部201は、コンデンサ103に蓄えられた電力を蓄電池101へ回収する。回収部201の詳しい構成は後述する。 Between the storage battery 101 and the capacitor 103, the recovery unit 201 described above is arranged. The recovery unit 201 recovers the electric power stored in the capacitor 103 to the storage battery 101. The detailed configuration of the collection unit 201 will be described later.
 コンデンサ103とインバータ回路105の間には、放電回路104がコンデンサ103に並列に接続されている。放電回路104は、コンデンサ103に蓄積した電荷を必要に応じて放電させる回路である。放電回路104は、配置されていなくてもよい。 A discharge circuit 104 is connected in parallel to the capacitor 103 between the capacitor 103 and the inverter circuit 105. The discharge circuit 104 is a circuit that discharges the electric charge accumulated in the capacitor 103 as necessary. The discharge circuit 104 may not be arranged.
 インバータ回路105とX線管106aとの間には、X線管106aへの供給電圧をモニタするX線管用電圧モニタ807がX線管106aに並列に接続される。 Between the inverter circuit 105 and the X-ray tube 106a, an X-ray tube voltage monitor 807 for monitoring the supply voltage to the X-ray tube 106a is connected in parallel to the X-ray tube 106a.
 回転陽極用インバータ107は、インバータ回路105とX線管106aとの間に、インバータ回路105に並列に接続されている。回転陽極用インバータ107は、インバータ回路105の出力電力の一部を受け取ってX線管106aの陽極を回転駆動するための電力を生成し、X線管装置106内の陽極回転駆動部(不図示)に供給する。 The rotary anode inverter 107 is connected in parallel to the inverter circuit 105 between the inverter circuit 105 and the X-ray tube 106a. The rotary anode inverter 107 receives a part of the output power of the inverter circuit 105, generates electric power for rotationally driving the anode of the X-ray tube 106a, and an anode rotation drive unit (not shown) in the X-ray tube device 106. ).
 インバータ回路105は、コンデンサ103の出力直流電圧を高周波の交流電圧に変換するインバータ部804と、このインバータ部804の出力交流電圧を昇圧・整流・平滑化する高電圧発生部806と、を含む。インバータ部804は、X線管106aに供給する管電圧を発生する。インバータ部804は、制御部708の制御下で、所望の管電圧を発生させるための交流電圧を発生する。インバータ部804は、半導体スイッチと、半導体スイッチに逆並列に接続されたダイオードの組合せを複数用いたインバータ回路である。例えば、特許文献3に記載されているインバータ回路を用いることができる。高電圧発生部806は、変圧器と整流器とを含み、インバータ部804の交流出力を高電圧に変換したのち整流し、直流高電圧(管電圧)を生成する。 The inverter circuit 105 includes an inverter unit 804 that converts the output DC voltage of the capacitor 103 into a high-frequency AC voltage, and a high voltage generation unit 806 that boosts, rectifies, and smoothes the output AC voltage of the inverter unit 804. The inverter unit 804 generates a tube voltage to be supplied to the X-ray tube 106a. The inverter unit 804 generates an AC voltage for generating a desired tube voltage under the control of the control unit 708. The inverter unit 804 is an inverter circuit using a plurality of combinations of semiconductor switches and diodes connected in antiparallel to the semiconductor switches. For example, an inverter circuit described in Patent Document 3 can be used. The high voltage generation unit 806 includes a transformer and a rectifier, converts the AC output of the inverter unit 804 into a high voltage, and then rectifies to generate a DC high voltage (tube voltage).
 インバータ回路105が生成した管電圧は、X線管106aに供給され、X線を発生する。X線は、被検体に対して照射される。なお、制御部708には、2段スイッチ構造の放射スイッチ108が接続されており、操作者による放射スイッチ108の操作に応じて、回転陽極用インバータ107とインバータ部804を動作させて、陽極回転用電力と管電圧をそれぞれ所定のタイミングで発生させる。 The tube voltage generated by the inverter circuit 105 is supplied to the X-ray tube 106a to generate X-rays. X-rays are irradiated to the subject. The control unit 708 is connected to a radiation switch 108 having a two-stage switch structure, and operates the rotary anode inverter 107 and the inverter unit 804 in accordance with the operation of the radiation switch 108 by the operator to rotate the anode. Electric power and tube voltage are generated at predetermined timings.
 図3(a)を用いて、回収部201と蓄電池101の構成を説明する。蓄電池101は、所望の電圧を得るために、複数の蓄電体101a~101lを直列に接続した構成である。蓄電体101a~101lとしては、例えば、鉛蓄電池をそれぞれ用いることができる。 The configuration of the recovery unit 201 and the storage battery 101 will be described with reference to FIG. The storage battery 101 has a configuration in which a plurality of power storage units 101a to 101l are connected in series to obtain a desired voltage. As the power storage bodies 101a to 101l, for example, lead storage batteries can be used, respectively.
 回収部201は、上述のようにコンデンサ103に蓄えられた電力を蓄電池101へ回収するための回路であり、回収部201は、インダクタLとスイッチS0とを含む。インダクタLの一端は、コンデンサ103の極板のうち蓄電池101の正極に接続されている側の極板側に接続されている。例えば、図3(a)のように、コンデンサ103と蓄電池101の正極とを結ぶ回路の途中に接続されている。一方、インダクタLの他端は、蓄電池101に接続されている。インダクタLの他端と蓄電池101とを結ぶ回路の途中には、スイッチS0が配置されている。スイッチS0は、回収制御部809により、オンオフされる。なお、スイッチS0は、インダクタLとコンデンサ103との間に配置することも可能である。 The recovery unit 201 is a circuit for recovering the power stored in the capacitor 103 to the storage battery 101 as described above, and the recovery unit 201 includes an inductor L and a switch S0. One end of the inductor L is connected to the electrode plate side of the capacitor 103 on the side connected to the positive electrode of the storage battery 101. For example, as shown in FIG. 3 (a), it is connected in the middle of a circuit connecting the capacitor 103 and the positive electrode of the storage battery 101. On the other hand, the other end of the inductor L is connected to the storage battery 101. In the middle of the circuit connecting the other end of the inductor L and the storage battery 101, a switch S0 is arranged. The switch S0 is turned on / off by the collection control unit 809. The switch S0 can also be disposed between the inductor L and the capacitor 103.
 インダクタLの他端が蓄電池101に接続されている位置は、蓄電池101の全体電圧の1/2の電圧となる蓄電池101内の位置である。例えば蓄電体の極板、もしくは蓄電体と蓄電体とを結ぶ配線にインダクタの他端は接続されている。蓄電池101として、同容量の蓄電体101a、・・・、101lを偶数個(例えば12個)直列接続したものを用いる場合、インダクタLの他端は、蓄電体101a、・・・、101lを半数(6個)ずつの群に分割した二つの蓄電体群の間(蓄電体101fと蓄電体101gの間)に接続される。 The position where the other end of the inductor L is connected to the storage battery 101 is a position in the storage battery 101 where the voltage is ½ of the total voltage of the storage battery 101. For example, the other end of the inductor is connected to the electrode plate of the power storage unit or a wiring connecting the power storage unit and the power storage unit. In the case of using an even number (for example, twelve) power storage units 101a,..., 101l having the same capacity as the storage battery 101, the other end of the inductor L is half the power storage units 101a,. It is connected between two power storage unit groups (between power storage unit 101f and power storage unit 101g) divided into groups of (six).
 制御部708がスイッチS1をオフにし、回収制御部809がスイッチS0をオンにすると、インダクタLと、コンデンサ103と、蓄電池101の半数の蓄電体とにより、直列のLC回路が構成される。これにより、LC共振作用を利用して、コンデンサ103内に蓄えられた電力のほとんどを、蓄電池101に回収できる。よって、コンデンサ103の電力を高効率に蓄電池101に電力を回収することができる。具体的には、回収制御部809が、S0スイッチをオンした後、LC回路の共振周期の1/2の時間を経過したときにオフすることにより、コンデンサ103内に蓄えられた電力のほとんどを、蓄電池101に回収できる。 When the control unit 708 turns off the switch S1 and the recovery control unit 809 turns on the switch S0, a series LC circuit is configured by the inductor L, the capacitor 103, and half the storage battery 101. As a result, most of the electric power stored in the capacitor 103 can be recovered in the storage battery 101 using the LC resonance action. Therefore, the power of the capacitor 103 can be recovered to the storage battery 101 with high efficiency. Specifically, after the collection control unit 809 turns on the S0 switch and then turns off when a half of the resonance period of the LC circuit has elapsed, most of the power stored in the capacitor 103 is reduced. And can be collected in the storage battery 101.
 図3(c)および図4を用いて、第一実施形態のX線高電圧発生部713の制御動作について説明する。図3(c)は、スイッチS1,S0のオンオフとその時のコンデンサ103の電圧等を表す制御動作シーケンスを示し、図4は、制御部708および回収制御部809の制御フローを示す。 The control operation of the X-ray high voltage generator 713 of the first embodiment will be described with reference to FIG. 3 (c) and FIG. FIG. 3 (c) shows a control operation sequence representing ON / OFF of the switches S1 and S0 and the voltage of the capacitor 103 at that time, and FIG. 4 shows a control flow of the control unit 708 and the recovery control unit 809.
 操作者は、移動型X線撮影装置を使用する前に、ケーブル707を商用の外部電源706に接続し、蓄電池101を所定の電圧まで充電しておく。図4のように、ステップ1000において、装置の操作者が装置のメインスイッチをオンした場合、制御部708は、記憶部709のプログラムを読み込んで以下のように制御する。 The operator connects the cable 707 to a commercial external power source 706 and charges the storage battery 101 to a predetermined voltage before using the mobile X-ray imaging apparatus. As shown in FIG. 4, when the operator of the apparatus turns on the main switch of the apparatus in step 1000, the control unit 708 reads the program in the storage unit 709 and performs control as follows.
 ステップ1001において、制御部708は、操作者が放射スイッチ108の1段目スイッチをオンにするまで待機する。放射スイッチ108の1段目スイッチがオンになると、制御部708は、ステップ1002に進み、回収制御部809へ、S0スイッチをオンにし、S1スイッチをオフのままにするよう指示を出す(t=0)。回収制御部809が、S0スイッチをオンにし、S1スイッチをオフにすることにより、蓄電池101の半数の蓄電体群(蓄電体101g~101l)が回収部201のインダクタLを介してコンデンサ103に直列に接続され、LC共振回路を構成する。これにより、コンデンサ103は、LC共振回路の共振作用によって蓄電体101g~101lにより充電される。 In step 1001, the control unit 708 waits until the operator turns on the first-stage switch of the radiation switch 108. When the first stage switch of the radiation switch 108 is turned on, the control unit 708 proceeds to step 1002, and instructs the collection control unit 809 to turn on the S0 switch and leave the S1 switch off (t = 0). When the collection control unit 809 turns on the S0 switch and turns off the S1 switch, half of the storage battery group (storage bodies 101g to 101l) of the storage battery 101 is connected in series to the capacitor 103 via the inductor L of the recovery unit 201. To constitute an LC resonant circuit. Thereby, the capacitor 103 is charged by the power storage units 101g to 101l by the resonance action of the LC resonance circuit.
 このLC共振作用による充電を図5を用いて説明する。ここで、蓄電池101全体の電圧をVbとすると、半数の蓄電体群(蓄電体101g~101l)の電圧Vhは、Vb/2である。コンデンサ103の電圧Vcは、図5(a)に示すように、LC共振回路の共振作用により、振幅が徐々に減衰する正弦波を描いて変化し、最初の1周期の最大振幅は、蓄電体群(蓄電体101g~101l)の電圧Vhの2倍に達する。よって、スイッチS0がオンになってから、共振周期Tの1/2の時間αが経過した時点で、コンデンサ103の電圧Vcは、蓄電体群(蓄電体101g~101l)の電圧Vhの2倍の電圧Vc=2・Vh=Vbまで充電される。 The charging by this LC resonance action will be described with reference to FIG. Here, assuming that the voltage of the entire storage battery 101 is Vb, the voltage Vh of the half power storage unit group (power storage units 101g to 101l) is Vb / 2. As shown in FIG. 5 (a), the voltage Vc of the capacitor 103 changes by drawing a sine wave whose amplitude gradually attenuates due to the resonance action of the LC resonance circuit, and the maximum amplitude of the first cycle is It reaches twice the voltage Vh of the group (electric storage units 101g to 101l). Therefore, when the time α that is 1/2 of the resonance period T has elapsed after the switch S0 is turned on, the voltage Vc of the capacitor 103 is twice the voltage Vh of the power storage group (power storage units 101g to 101l). Is charged up to Vc = 2 ・ Vh = Vb.
 よって、ステップ1003において、制御部708の制御下で回収制御部809は、スイッチS0がオンになってから、共振周期Tの1/2の時間αが経過したならば、スイッチS0をオフにする(ステップ1004)。これにより、コンデンサ103は、蓄電池101の全体の電圧Vbと等しい電圧まで、半数の蓄電体群(蓄電体101g~101l)によって充電される。 Therefore, in step 1003, under the control of the control unit 708, the recovery control unit 809 turns off the switch S0 when a time α that is 1/2 of the resonance period T has elapsed since the switch S0 was turned on. (Step 1004). Thereby, capacitor 103 is charged by half of the power storage unit group (power storage units 101g to 101l) to a voltage equal to voltage Vb of storage battery 101 as a whole.
 なお、LC回路の共振周期Tは以下の式で表される。 The resonance period T of the LC circuit is expressed by the following formula.
  T=2π・(L・C)0.5
 ここでLはインダクタLのインダクタンス、Cはコンデンサのキャパシタンスである。
T = 2π · (L · C) 0.5
Here, L is the inductance of the inductor L, and C is the capacitance of the capacitor.
 共振周期Tの1/2の時間αは、上記式を用いて予め計算により求めておき、記憶部709に格納しておく。制御部708は、記憶部709から時間αを読み出して、回収制御部809を制御する。 The time α that is 1/2 of the resonance period T is calculated in advance using the above formula and stored in the storage unit 709. The control unit 708 reads the time α from the storage unit 709 and controls the collection control unit 809.
 また、ステップ1004では、制御部708は、回収制御部809へ、スイッチS0をオフにすると同時に、スイッチS1をオンにするよう指示する(t=t2)。これにより、インバータ回路105には、電圧2Vに充電されたコンデンサ103と、電圧2Vの蓄電池101が並列に接続され、両者から電力を供給可能になる。よって、両者の電力を用いてインバータ回路105は、管電圧を生成することができる。 In step 1004, the control unit 708 instructs the collection control unit 809 to turn off the switch S0 and at the same time turn on the switch S1 (t = t2). As a result, the capacitor 103 charged to a voltage of 2V and the storage battery 101 of a voltage of 2V are connected in parallel to the inverter circuit 105, and power can be supplied from both. Therefore, the inverter circuit 105 can generate a tube voltage using both electric powers.
 ステップ1005において、制御部708は、ステップ1002(t=0)から所定の時間(>α)が経過したならば、ステップ1006に進んで回転陽極インバータ107を動作させる(t=t2とt3の間)。これにより、回転陽極インバータ107が動作し、X線管装置106の陽極が回転を開始し、所定の回転数に到達する。 In step 1005, if a predetermined time (> α) has elapsed from step 1002 (t = 0), the control unit 708 proceeds to step 1006 to operate the rotary anode inverter 107 (between t = t2 and t3). ). As a result, the rotary anode inverter 107 operates, and the anode of the X-ray tube device 106 starts to rotate and reaches a predetermined rotational speed.
 ステップ1007において、制御部708は、回転陽極の回転数が規定の回転数に到達したならば、ステップ1008へ進み、許可信号を出力し、放射スイッチ108の2段目スイッチを操作者が操作できるようにする。また制御部708は、本装置の操作者に、放射スイッチ108の2段目スイッチの操作が可能であることを知らせる表示をディスプレイ712等に表示させる。 In step 1007, if the rotational speed of the rotary anode reaches the specified rotational speed, the control unit 708 proceeds to step 1008, outputs a permission signal, and the operator can operate the second-stage switch of the radiation switch 108. Like that. In addition, the control unit 708 causes the display 712 or the like to display a display informing the operator of the apparatus that the second-stage switch of the radiation switch 108 can be operated.
 ステップ1009において、制御部708は、放射スイッチ108の2段目スイッチが、操作者によりオンされるまで待機し、オンされたならば、ステップ1010へ進み、インバータ回路105に管電圧を生成するよう指示する。インバータ回路105は、管電圧を生成し、X線管106aに供給する。これにより、X線管106aは、X線を被検体に放射する。 In step 1009, the control unit 708 waits until the second-stage switch of the radiation switch 108 is turned on by the operator. If it is turned on, the control unit 708 proceeds to step 1010 and generates a tube voltage in the inverter circuit 105. Instruct. The inverter circuit 105 generates a tube voltage and supplies it to the X-ray tube 106a. Thereby, the X-ray tube 106a emits X-rays to the subject.
 上記ステップ1010において、コンデンサ103および蓄電池101からインバータ回路105に電力が供給され、管電圧の生成に用いられる。X線放射後は、コンデンサ103および蓄電池101の電圧は低下しているが、コンデンサ103にはまだ電荷が残存している。この電荷をコンデンサ103に蓄積したままにしておくと、徐々に放電されて無効電力になるため、本実施形態では、X線放射後すぐにコンデンサ103に残存する電荷を蓄電池101に回収する動作を以下のステップ1011~1013にて行う。なお、図3(c)では、図示の都合上、X線放射後のコンデンサ103の電圧低下を省略して、一定値として示している。 In step 1010 described above, power is supplied from the capacitor 103 and the storage battery 101 to the inverter circuit 105, and is used to generate a tube voltage. After the X-ray emission, the voltage of the capacitor 103 and the storage battery 101 is lowered, but the capacitor 103 still has a charge. If this charge is stored in the capacitor 103, it is gradually discharged and becomes reactive power.Therefore, in this embodiment, the operation of collecting the charge remaining in the capacitor 103 in the storage battery 101 immediately after X-ray emission is performed. The following steps 1011 to 1013 are performed. In FIG. 3 (c), for convenience of illustration, the voltage drop of the capacitor 103 after X-ray emission is omitted and shown as a constant value.
 X線放射後、ステップ1011において、制御部708は、回収制御部809へ、S0スイッチをオンにし、S1スイッチをオフにする指示を出す(t=t5)。これにより、蓄電池101の半数の蓄電体群(蓄電体101g~101l)が回収部201のインダクタLを介してコンデンサ103に直列に接続され、再びLC共振回路が構成される。コンデンサ103の電荷は、LC共振の作用によって蓄電体101g~101lに回収される。 After X-ray emission, in step 1011, the control unit 708 instructs the recovery control unit 809 to turn on the S0 switch and turn off the S1 switch (t = t5). Thereby, half of the storage battery group (storage batteries 101g to 101l) of the storage battery 101 is connected in series to the capacitor 103 via the inductor L of the recovery unit 201, and the LC resonance circuit is configured again. The electric charge of the capacitor 103 is recovered by the power storage units 101g to 101l by the action of LC resonance.
 コンデンサ103の電圧Vcと蓄電池101の電圧は等しく、半数の蓄電体群(蓄電体101g~101l)の電圧Vhは、Vc/2である。図5(b)に示すように、LC共振回路の共振作用により、電圧は徐々に減少する正弦波を描いて変化し、最初の1周期の最小値は0[v]となる。よってスイッチS0がオンになってから、共振周期Tの1/2の時間αが経過した時点で、コンデンサ103の電圧Vcはゼロになる。この時点で、コンデンサ103の電荷は、半数の蓄電体群(蓄電体101g~101l)に移動し、半数の蓄電体群(蓄電体101g~101l)に回収されている。 The voltage Vc of the capacitor 103 and the voltage of the storage battery 101 are equal, and the voltage Vh of the half of the power storage unit group (power storage units 101g to 101l) is Vc / 2. As shown in FIG. 5 (b), due to the resonance action of the LC resonance circuit, the voltage changes in a sine wave that gradually decreases, and the minimum value of the first one period is 0 [v]. Therefore, the voltage Vc of the capacitor 103 becomes zero when a time α that is ½ of the resonance period T has elapsed since the switch S0 was turned on. At this time, the electric charge of the capacitor 103 has moved to half of the power storage unit group (power storage units 101g to 101l) and has been recovered by half of the power storage unit group (power storage units 101g to 101l).
 よって、制御部708は、ステップ1012において、ステップ1011でスイッチS0をオンにしてから時間αが経過したならば、ステップ1013で、回収制御部809にスイッチS0をオフにする指示を出す。なお、所定の時間αは、上述のように予め計算により求め、記憶部709に格納されている。制御部708は、記憶部709から時間αを読み出して、回収制御部809を制御し、S0スイッチをオフにする(図3(c)のt=t7)。そして、ステップ1001に戻り、操作者の放射スイッチ108の1段目スイッチの操作を待つ。 Therefore, in step 1012, the control unit 708 instructs the recovery control unit 809 to turn off the switch S0 when the time α has elapsed since the switch S0 was turned on in step 1011. The predetermined time α is calculated in advance as described above and stored in the storage unit 709. The control unit 708 reads the time α from the storage unit 709, controls the collection control unit 809, and turns off the S0 switch (t = t7 in FIG. 3 (c)). Then, the process returns to step 1001 to wait for the operation of the first-stage switch of the radiation switch 108 by the operator.
 ステップ1013の後に、コンデンサ103を放電回路104に接続するステップを追加することもできる。これにより、コンデンサ103にわずかに電荷が残った場合でもこれを確実に放電することができるため、つぎの充電時にLC共振の作用により、コンデンサ103の電圧Vcを、蓄電体群(蓄電体101g~101l)の電圧Vhの2倍の電圧Vc=2・Vh=Vbまで充電することができる。なお、ステップ1013の後は、コンデンサ103にはほとんど電荷は残っていないので、放電回路104内の抵抗の抵抗値は、従来の放電回路よりも小さいもので足りる。 It is possible to add a step of connecting the capacitor 103 to the discharge circuit 104 after the step 1013. As a result, even if a slight amount of electric charge remains in the capacitor 103, it can be reliably discharged. Therefore, the voltage Vc of the capacitor 103 is reduced by the action of LC resonance at the next charging time. It can be charged up to a voltage Vc = 2 · Vh = Vb which is twice the voltage Vh of 101l). After step 1013, since almost no electric charge remains in the capacitor 103, the resistance value of the resistor in the discharge circuit 104 may be smaller than that of the conventional discharge circuit.
 上述してきたように、本実施形態では、インダクタLとスイッチS0からなる回収部201を配置したことによって、スイッチS0のオンオフのタイミングを制御するのみで、LC共振による電荷の移動作用を利用して、コンデンサ103に蓄積した電荷を蓄電池101に回収することができる。この回収部201は、インダクタLとスイッチS0からなる簡単な構成であり、しかも、LC共振による電荷の移動は、電荷のロスが少なく、コンデンサ103の電荷を高効率で蓄電池101に回収することができる。 As described above, in the present embodiment, by arranging the recovery unit 201 including the inductor L and the switch S0, only the on / off timing of the switch S0 is controlled, and the charge transfer action by the LC resonance is used. The charge accumulated in the capacitor 103 can be collected in the storage battery 101. The recovery unit 201 has a simple configuration including an inductor L and a switch S0. In addition, the movement of charge due to LC resonance causes little loss of charge, and the charge of the capacitor 103 can be recovered to the storage battery 101 with high efficiency. it can.
 回収部201の回収効率を確認するために、図4のフローの動作においてステップ1010のX線の放射のみを行わず、他の各ステップを実行して、コンデンサ103への充電と蓄電池101への回収を何度も繰り返した。図3(b)に、そのときの、コンデンサ103の電圧Vcと、蓄電池101の電圧Vbの変化を示す。図3(b)のように、本実施形態のX線高電圧発生部713では、コンデンサ103の充電と放電を繰り返しても、コンデンサ103の充電時の電圧Vcは、一定であり、蓄電池101の電位もほとんど変化しないことがわかる。すなわち、コンデンサ103の電荷をほとんど損失なく蓄電池101に回収でき、再びコンデンサ103に充電できることが確認できた。 In order to confirm the recovery efficiency of the recovery unit 201, the X-ray emission of step 1010 is not performed in the operation of the flow of FIG. 4, but the other steps are executed to charge the capacitor 103 and to the storage battery 101. The collection was repeated many times. FIG. 3B shows changes in the voltage Vc of the capacitor 103 and the voltage Vb of the storage battery 101 at that time. As shown in FIG. 3 (b), in the X-ray high voltage generator 713 of the present embodiment, the voltage Vc at the time of charging the capacitor 103 is constant even when the capacitor 103 is repeatedly charged and discharged, and the storage battery 101 It can be seen that the potential hardly changes. That is, it was confirmed that the charge of the capacitor 103 can be collected in the storage battery 101 with almost no loss, and the capacitor 103 can be charged again.
 <比較例>
 比較例として、回収部201を備えない従来のX線高電圧発生部の構成を図6(a)に示す。図6(b)、図6(c)は、それぞれ第一実施形態の図3(b)、(c)に対応している。図6(a)のように、比較例のX線高電圧発生部は、回収部201を備えていないため、放電回路104が必須であり、メンテナンス時や、1日の撮影が終了した場合には、コンデンサ103に残存している電荷を放電する。
<Comparative example>
As a comparative example, FIG. 6 (a) shows a configuration of a conventional X-ray high voltage generator that does not include the recovery unit 201. FIGS. 6B and 6C correspond to FIGS. 3B and 3C of the first embodiment, respectively. As shown in FIG. 6 (a), the X-ray high voltage generator of the comparative example does not include the recovery unit 201, so the discharge circuit 104 is indispensable. Discharges the charge remaining in the capacitor 103.
 比較例の図6(a)のX線高電圧発生部の動作について、図7を用いて説明する。第一実施形態の図4のフローと同様の動作については、同じ符号を付して説明を省略し、異なる部分についてのみ説明する。ステップ1001において、操作者が放射スイッチの1段目スイッチをオンにした場合、制御部708は、ステップ2002に進み、S1スイッチをオンにし、S2スイッチをオフのままにする指示を出す(t=0)。S1スイッチをオン、S2スイッチをオフにすることで、蓄電池101の全体がコンデンサ103に並列に接続され、コンデンサ103の電圧Vcが、蓄電池101の電圧Vbまで充電される。これにより、コンデンサ106と蓄電池101の両方からインバータ回路105に電力を供給可能になる。 The operation of the X-ray high voltage generator in FIG. 6 (a) of the comparative example will be described with reference to FIG. The same operations as those in the flow of FIG. 4 of the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different portions will be described. In step 1001, when the operator turns on the first-stage switch of the radiation switch, the control unit 708 proceeds to step 2002 and issues an instruction to turn on the S1 switch and leave the S2 switch off (t = 0). By turning on the S1 switch and turning off the S2 switch, the entire storage battery 101 is connected in parallel to the capacitor 103, and the voltage Vc of the capacitor 103 is charged to the voltage Vb of the storage battery 101. As a result, power can be supplied to the inverter circuit 105 from both the capacitor 106 and the storage battery 101.
 ステップ2003において、充電に必要な規定時間が経過したならば、ステップ1006~1010を行い、X線管106aの陽極を回転させ、放射スイッチ108の2段目スイッチが操作されたタイミングでX線を放射する。 In step 2003, if the specified time required for charging has elapsed, steps 1006 to 1010 are performed, the anode of the X-ray tube 106a is rotated, and X-rays are emitted at the timing when the second switch of the radiation switch 108 is operated. Radiate.
 上記動作を繰り返し、1日のX線放射が完了した場合や、メンテナンスを行う場合には、ステップ2009に進み、制御部708は、S1スイッチをオフにし、S2スイッチをオンにする指示を出す(t=t6)。これにより、コンデンサ103は放電回路104と接続され、コンデンサ103の電圧Vcは0ボルトになる。 When the above operation is repeated and one-day X-ray emission is completed or maintenance is performed, the process proceeds to step 2009, and the control unit 708 issues an instruction to turn off the S1 switch and turn on the S2 switch ( t = t6). As a result, the capacitor 103 is connected to the discharge circuit 104, and the voltage Vc of the capacitor 103 becomes 0 volts.
 比較例では、コンデンサ103に蓄積した電荷を回収しないため、放射を行わない期間に電荷は徐々に放電され、無効電力となる。また、放電回路104で放電させた場合にもコンデンサ103に蓄積した電荷は無効電力が生じる。例えば、図7のフローの動作においてステップ1010のX線の放射のみを行わず、他の各ステップを実行して、コンデンサ103への充電と放電回路104での放電を何度も繰り返させた場合、図6(b)のように、蓄電池101の電圧Vbは、コンデンサ103の充電および放電のたびに低下し、それにともないコンデンサ103の充電時の電圧Vcも低下した。すなわち、コンデンサ103の充電および放電のそれぞれで無効電力が発生することが確認された。 In the comparative example, since the electric charge accumulated in the capacitor 103 is not collected, the electric charge is gradually discharged during the period when radiation is not performed, and becomes reactive power. Further, even when the discharge circuit 104 discharges, the charge accumulated in the capacitor 103 generates reactive power. For example, in the operation of the flow of FIG. 7, when only the X-ray emission of step 1010 is not performed, and other steps are executed, the charging of the capacitor 103 and the discharging of the discharging circuit 104 are repeated many times. As shown in FIG. 6 (b), the voltage Vb of the storage battery 101 decreases each time the capacitor 103 is charged and discharged, and accordingly, the voltage Vc when the capacitor 103 is charged also decreases. That is, it has been confirmed that reactive power is generated each time the capacitor 103 is charged and discharged.
 <第二実施形態>
 第二実施形態の移動型X線撮影装置について図8、図9を用いて説明する。
<Second embodiment>
A mobile X-ray imaging apparatus according to the second embodiment will be described with reference to FIGS.
 図8(a)に示したように、第二実施形態に係る移動型X線撮影装置のX線高電圧発生部713は、蓄電池101とコンデンサ103との間に、昇圧型DC/DCコンバータ401が配置されている。第二実施形態では、回収部201のインダクタLとして、昇圧型DC/DCコンバータ401のコンバータ用インダクタL2を兼用して用いる。 As shown in FIG. 8 (a), the X-ray high voltage generator 713 of the mobile X-ray apparatus according to the second embodiment includes a step-up DC / DC converter 401 between the storage battery 101 and the capacitor 103. Is arranged. In the second embodiment, as the inductor L of the recovery unit 201, the converter inductor L2 of the step-up DC / DC converter 401 is also used.
 昇圧型DC/DCコンバータ401は、蓄電池101の出力電圧よりも高い電圧までコンデンサ103を充電する。 The step-up DC / DC converter 401 charges the capacitor 103 to a voltage higher than the output voltage of the storage battery 101.
 昇圧型DC/DCコンバータ401は、直列に接続されたコンバータ用インダクタL2とダイオードDとコンバータ用スイッチS6とを、蓄電池101とコンデンサ103に並列に接続した構成である。コンバータ用スイッチS6をオフにすることにより、インダクタL2とダイオードDは、蓄電池101とコンデンサ103とに直列に接続される。このような構成により、スイッチS6をオンにすると、コンバータ用インダクタL2に電流が流れエネルギーが蓄積される。その後スイッチS6をオフにすると、コンバータ用インダクタL2のエネルギーが、ダイオードDを介してコンデンサ103に流れ、コンデンサ103が充電される。よって、スイッチS6のオンオフを繰り返すことにより、蓄電池101の電圧Vb以上の電圧Vcにコンデンサ103が充電される。 The step-up DC / DC converter 401 has a configuration in which a converter inductor L2, a diode D, and a converter switch S6 connected in series are connected in parallel to a storage battery 101 and a capacitor 103. By turning off the converter switch S6, the inductor L2 and the diode D are connected in series to the storage battery 101 and the capacitor 103. With such a configuration, when the switch S6 is turned on, a current flows through the converter inductor L2 and energy is accumulated. Thereafter, when the switch S6 is turned off, the energy of the converter inductor L2 flows to the capacitor 103 via the diode D, and the capacitor 103 is charged. Therefore, the capacitor 103 is charged to the voltage Vc equal to or higher than the voltage Vb of the storage battery 101 by repeatedly turning on and off the switch S6.
 コンバータ用インダクタL2は、回収部201のインダクタを兼用する。また、回収部201は、DC/DCコンバータのダイオードDをバイパスするように配置されたバイパス用スイッチS7を有する。さらに、回収部201は、コンバータ用インダクタL2の蓄電池101側の端部を、複数の蓄電体からなる蓄電池101内のいずれかの極板、もしくは蓄電体間の接続部に接続するためのスイッチ群403をさらに備えている。スイッチ群403は、スイッチS1と並列に配置され、回収制御部809は、昇圧型DC/DCコンバータ401の昇圧条件、すなわちコンデンサ103の電圧Vcに応じて、スイッチS1もしくはスイッチ群403のいずれかを選択する。これにより、コンデンサ103の電圧Vcの1/2の電圧となる位置にインダクタL2を接続し、電荷の回収効率を最適化する。他の構成は、第一実施形態と同様であるので説明を省略する。 The converter inductor L2 also serves as the inductor of the recovery unit 201. Further, the recovery unit 201 includes a bypass switch S7 arranged so as to bypass the diode D of the DC / DC converter. Further, the recovery unit 201 is a group of switches for connecting the end of the converter inductor L2 on the storage battery 101 side to any electrode plate in the storage battery 101 composed of a plurality of power storage units, or a connection part between the storage units. 403 is further provided. The switch group 403 is arranged in parallel with the switch S1, and the recovery control unit 809 switches either the switch S1 or the switch group 403 according to the boost condition of the boost DC / DC converter 401, that is, the voltage Vc of the capacitor 103. select. As a result, the inductor L2 is connected to a position where the voltage is half the voltage Vc of the capacitor 103, and the charge recovery efficiency is optimized. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
 第二実施形態のX線高電圧発生部713の動作について図9のフローおよび図8(b),(c)の制御動作シーケンスを用いて説明する。なお、図9のフローにおいて、第一実施形態の図4のフローと同一のステップについては、同一の符号を付し、説明を省略する。 The operation of the X-ray high voltage generator 713 of the second embodiment will be described using the flow of FIG. 9 and the control operation sequence of FIGS. 8 (b) and 8 (c). In the flow of FIG. 9, the same steps as those in the flow of FIG. 4 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 ステップ1000および1001において、装置の操作者が、装置のメインスイッチをオンにした後、制御部708は、操作者が放射スイッチ108の1段目スイッチをオンにするまで待機する。操作者が1段目スイッチをオンにした場合、制御部708は、ステップ3002に進み、回収制御部809により、図8(b)、(c)のように、スイッチS1をオンにし、スイッチS6のオンオフを繰り返し、蓄電池101の電圧Vb以上の所望の電圧までコンデンサ103の電圧Vcを充電する。このとき、スイッチS7およびスイッチ群403は、オフのままにする。昇圧条件は、スイッチS6のオンオフの回数によって制御される。図8(b)は、コンデンサ103の電圧Vcが蓄電池101の全体の電圧Vbの2倍まで昇圧されて充電された状態を示し、図8(c)は、コンデンサ103の電圧Vcが蓄電池101の全体の電圧Vbの1倍で充電された状態を示している。 In steps 1000 and 1001, after the operator of the apparatus turns on the main switch of the apparatus, the control unit 708 waits until the operator turns on the first-stage switch of the radiation switch 108. When the operator turns on the first-stage switch, the control unit 708 proceeds to step 3002, and the collection control unit 809 turns on the switch S1 as shown in FIGS. 8B and 8C, and the switch S6 Are repeatedly turned on and off, and the voltage Vc of the capacitor 103 is charged to a desired voltage equal to or higher than the voltage Vb of the storage battery 101. At this time, the switch S7 and the switch group 403 are kept off. The step-up condition is controlled by the number of times the switch S6 is turned on / off. FIG. 8 (b) shows a state in which the voltage Vc of the capacitor 103 has been boosted and charged to twice the total voltage Vb of the storage battery 101, and FIG. It shows a state where the battery is charged at 1 times the entire voltage Vb.
 ステップ3003において、制御部708は、記憶部709に記憶されている規定時間が経過したならば、第一実施形態と同様に、ステップ1006~1010を行って、陽極を回転させ、許可信号を出力し、放射スイッチ108の2段目スイッチが操作者によって操作されたならば、X線を放射する。ただし、第二の実施形態では、放射時の電力は、コンデンサ103のみからインバータ回路105に供給される。 In step 3003, when the specified time stored in the storage unit 709 has elapsed, the control unit 708 performs steps 1006 to 1010 to rotate the anode and output a permission signal as in the first embodiment. If the second switch of the radiation switch 108 is operated by the operator, X-rays are emitted. However, in the second embodiment, the radiation power is supplied to the inverter circuit 105 only from the capacitor 103.
 X線放射が終了したならば、回収部201によりコンデンサ103に残存する電荷を蓄電池101に回収する。すなわち、ステップ3009において、制御部708は、電圧モニタ803の検出したコンデンサ103の電圧Vcを受け取り、その1/2の電圧となる位置にインダクタL2を接続するスイッチをスイッチS1およびスイッチ群403の中から選択する。 When the X-ray emission is completed, the charge remaining in the capacitor 103 is collected in the storage battery 101 by the collection unit 201. That is, in step 3009, the control unit 708 receives the voltage Vc of the capacitor 103 detected by the voltage monitor 803, and connects the switch connecting the inductor L2 to the position where the voltage becomes a half of the voltage Vc in the switch S1 and the switch group 403. Select from.
 例えば、コンデンサ103の電圧Vcが、蓄電池101の電圧Vbの2倍である場合、制御部708はスイッチS1を選択し、電圧(電位)Vbの位置にインダクタL2を接続する。これにより、図8(b)のように、スイッチS1は、継続してオン状態が維持される。 For example, when the voltage Vc of the capacitor 103 is twice the voltage Vb of the storage battery 101, the control unit 708 selects the switch S1 and connects the inductor L2 at the position of the voltage (potential) Vb. As a result, as shown in FIG. 8 (b), the switch S1 is continuously maintained in the ON state.
 また、例えば、コンデンサ103の電圧Vcが、蓄電池101の電圧Vbと等しい場合には、その半分の電圧(電位)Vb/2となる蓄電体の極板にインダクタL2を接続するスイッチをスイッチ群403から選択して、図8(c)のようにオンにする。 Further, for example, when the voltage Vc of the capacitor 103 is equal to the voltage Vb of the storage battery 101, a switch that connects the inductor L2 to the electrode plate of the electric storage body that has a voltage (potential) Vb / 2 that is half that of the storage battery 101 And turn it on as shown in FIG. 8 (c).
 同時に制御部708は、ステップ3010で、スイッチS6をオフ、スイッチS7をオンにするよう回収制御部809に指示を出す。これにより、ダイオードDがバイパスされ、インダクタL2とコンデンサ103と蓄電池101によりLC回路が構成され、LC共振の作用により、コンデンサ103の電荷が、蓄電池101に回収される(t=t3)。 At the same time, the control unit 708 instructs the recovery control unit 809 to turn off the switch S6 and turn on the switch S7 in step 3010. Thereby, the diode D is bypassed, and the LC circuit is configured by the inductor L2, the capacitor 103, and the storage battery 101, and the charge of the capacitor 103 is recovered by the storage battery 101 by the action of LC resonance (t = t3).
 LC共振の周期Tの1/2の時間が経過したならば、ステップ3009で選択したスイッチをオフにする。これにより、コンデンサ103の電圧Vcがゼロになり、コンデンサ103の電荷が蓄電池101に回収される。このときのLC共振の作用は、第一実施形態と同じである。 If the time of 1/2 of the LC resonance period T has elapsed, the switch selected in step 3009 is turned off. As a result, the voltage Vc of the capacitor 103 becomes zero, and the charge of the capacitor 103 is recovered by the storage battery 101. The action of LC resonance at this time is the same as in the first embodiment.
 その後、ステップ1001に戻り、操作者の1段目SWの指示を待つ。 After that, return to Step 1001 and wait for the operator's first-stage SW instruction.
 このように第二実施形態は、昇圧型DC/DCコンバータ401を用いてコンデンサ103を充電するX線高電圧発生部713の場合であっても、高効率にコンデンサ103の電荷を蓄電池101に回収することができる。また、回収部201のインダクタとして、昇圧型DC/DCコンバータ401内のインダクタL2を兼用することができるので、回路構成が簡単である。 As described above, in the second embodiment, even in the case of the X-ray high voltage generator 713 that charges the capacitor 103 using the step-up DC / DC converter 401, the charge of the capacitor 103 is recovered to the storage battery 101 with high efficiency. can do. Further, since the inductor L2 in the step-up DC / DC converter 401 can also be used as the inductor of the recovery unit 201, the circuit configuration is simple.
 <第三実施形態>
 第三実施形態に係る移動型X線撮影装置を図10、図11を用いて説明する。図10(a)のように、第三実施形態では、X線高電圧発生部713のS1スイッチとコンデンサ103との間に、ダイオード501と充電・回収選択用スイッチであるスイッチS8を並列接続した回路を備えている。ダイオード501の向きは、蓄電池101からコンデンサ103を充電する際の電流の向きとは逆向きである。スイッチS8は、回収部201のインダクタLに接続されている。インダクタLは、第二実施形態と同様に、選択用スイッチ群403を介して、複数の蓄電体からなる蓄電池101内のいずれかの極板、もしくは蓄電体間の接続部に接続される構成である。
<Third embodiment>
A mobile X-ray imaging apparatus according to the third embodiment will be described with reference to FIGS. As shown in FIG. 10 (a), in the third embodiment, a diode S501 and a switch S8 that is a charge / recovery selection switch are connected in parallel between the S1 switch of the X-ray high voltage generator 713 and the capacitor 103. It has a circuit. The direction of the diode 501 is opposite to the direction of the current when charging the capacitor 103 from the storage battery 101. The switch S8 is connected to the inductor L of the recovery unit 201. As in the second embodiment, the inductor L is connected to any electrode plate in the storage battery 101 made up of a plurality of power storage units, or a connection part between the power storage units, via the selection switch group 403. is there.
 第一の実施形態では、X線放射後にすぐにコンデンサ103に残存した電荷を蓄電池101に回収したが、X線放射により、コンデンサ103の電圧VcがdVc低下した場合、蓄電池101からコンデンサ103に電荷を供給して、コンデンサ103を再充電することも可能である。コンデンサ103を再充電する場合、電荷Qが移動すると、dVc*Q/2がジュール熱として消費される。そのため、第三実施形態では、X線放射量が予め定めた閾値より小さい場合には、コンデンサ103の電圧低下量dVcも小さいため、電荷を回収することなく、蓄電池101からコンデンサ103に再充電する(図10(b))。 In the first embodiment, the charge remaining in the capacitor 103 immediately after the X-ray emission is collected in the storage battery 101. However, when the voltage Vc of the capacitor 103 decreases by dVc due to the X-ray emission, the charge from the storage battery 101 to the capacitor 103 is reduced. To recharge the capacitor 103. When the capacitor 103 is recharged, dVc * Q / 2 is consumed as Joule heat when the charge Q moves. Therefore, in the third embodiment, when the X-ray radiation amount is smaller than a predetermined threshold value, the voltage drop amount dVc of the capacitor 103 is also small, so that the capacitor 103 is recharged from the storage battery 101 without collecting the charge. (FIG. 10 (b)).
 コンデンサ103の電荷を回収して0ボルトにしてから再充電するよりも、dVcだけを充電する方が、ジュール熱による電力消費が小さくなるためである。一方、X線放射量が閾値以上である場合は、コンデンサ103の電圧低下量dVcが大きいため、コンデンサ103に残存した電荷を一旦蓄電池101に回収し、その後再充電する(図10(c))。これにより、電荷移動によるジュール熱による損失まで含めて、損失する電力を低減し、省電力化を図る。 This is because the power consumption due to Joule heat is smaller when only dVc is charged than when the charge of the capacitor 103 is recovered and recharged to 0 volts. On the other hand, when the amount of X-ray radiation is greater than or equal to the threshold value, the voltage drop amount dVc of the capacitor 103 is large, so that the charge remaining in the capacitor 103 is once recovered in the storage battery 101 and then recharged (FIG. 10 (c)). . As a result, power loss is reduced, including power loss due to Joule heat due to charge transfer, and power saving is achieved.
 第三実施形態のX線高電圧発生部713の動作を図11を用いて説明する。第一および第二実施形態と同様の動作には、同じ符号を付して説明を省略する。 The operation of the X-ray high voltage generator 713 of the third embodiment will be described with reference to FIG. The same operations as those in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 ステップ1000において、装置のメインスイッチがオンにされた後、ステップ4001において、制御部708は、X線放射条件の設定を、コンソール部711やディスプレイ712を介して操作者から受け付ける。設定するX線放射条件は、例えば管電圧や管電流、X線放射時間、繰り返し撮影の有無などである。 In step 1000, after the main switch of the apparatus is turned on, in step 4001, the control unit 708 receives the setting of the X-ray emission condition from the operator via the console unit 711 and the display 712. The X-ray emission conditions to be set are, for example, tube voltage, tube current, X-ray emission time, presence / absence of repeated imaging.
 ステップ1001において、操作者が放射スイッチ108の1段目スイッチをオンにした場合、制御部708は、ステップ4003に進み、スイッチ群403のうち、Vb/2の電位の位置のスイッチをオンにし、S1スイッチをオフ、S8スイッチをオフにする(t=0)。これにより、第一実施形態と同様LC回路の共振作用で、コンデンサ103の電圧を蓄電池101の全体の電圧Vbと同電圧まで充電する。 In Step 1001, when the operator turns on the first-stage switch of the radiation switch 108, the control unit 708 proceeds to Step 4003 and turns on the switch at the position of the potential Vb / 2 in the switch group 403. Turn off the S1 switch and turn off the S8 switch (t = 0). Thereby, the voltage of the capacitor 103 is charged to the same voltage as the entire voltage Vb of the storage battery 101 by the resonance action of the LC circuit as in the first embodiment.
 ステップ1003において、制御部708は、記憶部709に記憶されている規定時間が経過するまで待機する。この規定時間は第一実施形態と同様のLC回路の共振周期Tの1/2の時間である。規定時間が経過すると制御部708は、ステップ3004に進み、回収制御部809へ、スイッチ群403をオフ、スイッチS1をオン、スイッチS8をオンにする指示を出す(t=t2)。これにより、コンデンサ103の電圧Vcが、蓄電池101の全体の電圧Vbで保持される。 In step 1003, the control unit 708 waits until the specified time stored in the storage unit 709 elapses. This specified time is a half of the resonance period T of the LC circuit similar to the first embodiment. When the specified time has elapsed, the control unit 708 proceeds to step 3004, and instructs the collection control unit 809 to turn off the switch group 403, turn on the switch S1, and turn on the switch S8 (t = t2). As a result, the voltage Vc of the capacitor 103 is held at the overall voltage Vb of the storage battery 101.
 この後、ステップ1005~1009を行って、第一実施形態と同様に制御部708は、陽極を回転させ、許可信号を出力し、放射スイッチ108の2段目スイッチのオンを操作者から受け付ける。 Thereafter, Steps 1005 to 1009 are performed, and similarly to the first embodiment, the control unit 708 rotates the anode, outputs a permission signal, and accepts the ON of the second-stage switch of the radiation switch 108 from the operator.
 2段目スイッチがオンされたならば、ステップ4011において、制御部708は、ステップ4001で操作者が入力したX線放射条件に基づいて、X線放射によるコンデンサ103の電圧低下量dVcを計算する。求めた電圧低下量dVcが閾値よりも大きいかどうか判定し、閾値よりも小さい場合、ステップ4020へ進み、X線放射後にコンデンサ103を蓄電池101から再充電する動作を以下のように行う。 If the second-stage switch is turned on, in step 4011, control unit 708 calculates voltage drop amount dVc of capacitor 103 due to X-ray radiation based on the X-ray radiation conditions input by the operator in step 4001. . It is determined whether or not the obtained voltage drop amount dVc is larger than the threshold value. If it is smaller than the threshold value, the process proceeds to step 4020, and the operation of recharging the capacitor 103 from the storage battery 101 after X-ray emission is performed as follows.
 すなわち、ステップ4020において、制御部708は、回収制御部809により、スイッチS8およびスイッチS1がオン、スイッチ群403がオフのまま、ステップ4021において、X線を放射させる。これにより、スイッチS8がオンのため、ダイオード501はバイパスされ、第一実施形態の回路と同様の回路で、コンデンサ103および蓄電池101からインバータ回路105に電力が供給され、X線が放射される。このとき、コンデンサ103の電圧は、dVcだけ下がる。スイッチS8およびS1がオンとなっているため、蓄電池101から蓄電池101の電圧Vbまでコンデンサ103は再充電される。 That is, in step 4020, the control unit 708 causes the collection control unit 809 to emit X-rays in step 4021 while the switch S8 and the switch S1 are on and the switch group 403 is off. Thereby, since the switch S8 is on, the diode 501 is bypassed, power is supplied from the capacitor 103 and the storage battery 101 to the inverter circuit 105, and X-rays are radiated by a circuit similar to the circuit of the first embodiment. At this time, the voltage of the capacitor 103 decreases by dVc. Since switches S8 and S1 are on, capacitor 103 is recharged from storage battery 101 to voltage Vb of storage battery 101.
 ステップ4022において、制御部708は、このあとX線の放射を繰り返すかどうかを、操作者から設定されたX線放射条件を参照して判断する。繰り返しがある場合、ステップ4020へもどり、再度X線の放射を行う。X線の放射がない場合、ステップ4023へ進み、コンデンサ103に残った電荷を回収する。 In step 4022, the control unit 708 determines whether or not to repeat X-ray emission thereafter with reference to the X-ray emission conditions set by the operator. If there are repetitions, the process returns to step 4020 to emit X-rays again. If there is no X-ray emission, the process proceeds to step 4023, and the charge remaining in the capacitor 103 is recovered.
 ステップ4023において、制御部708は、回収制御部809を介して、スイッチ群403のいずれかをオンにし、スイッチS8およびS1をオフにする。スイッチ群403のいずれを選択するかは、第二実施形態の図9のステップ3009と同様にコンデンサ103の電圧をモニタして行う。 In step 4023, the control unit 708 turns on one of the switch groups 403 and turns off the switches S8 and S1 via the collection control unit 809. Which of the switch groups 403 is selected is determined by monitoring the voltage of the capacitor 103 as in step 3009 in FIG. 9 of the second embodiment.
 これにより、回収部201を介して、コンデンサ103と蓄電池101とが接続され、LC共振作用により、コンデンサ103の電荷が蓄電池101へ回収される。ステップ4024において、制御部708は、記憶部709に記憶されている規定時間(LC回路の共振周期Tの1/2)が経過したならば、制御部708は、ステップ4025へ進み、回収制御部809を介して、スイッチ403およびスイッチS1をオフにする。これにより、コンデンサ103に残存していた電荷は、高効率で蓄電池101に回収され、コンデンサ103の電圧Vcはゼロになる。そして、ステップ4001に戻る。 Thus, the capacitor 103 and the storage battery 101 are connected via the recovery unit 201, and the charge of the capacitor 103 is recovered to the storage battery 101 by the LC resonance action. In Step 4024, if the specified time (1/2 of the LC circuit resonance period T) stored in the storage unit 709 has elapsed, the control unit 708 proceeds to Step 4025, where the collection control unit Via the switch 809, the switch 403 and the switch S1 are turned off. As a result, the charge remaining in the capacitor 103 is recovered by the storage battery 101 with high efficiency, and the voltage Vc of the capacitor 103 becomes zero. Then, the process returns to step 4001.
 一方、ステップ4011で、コンデンサ103の電圧低下量dVcが閾値以上に大きい場合は、コンデンサ103の電圧低下が大きく、再充電するよりも、一旦、回収部201により蓄電池101へ電荷を回収した方が、ジュール熱による損失が小さいため、ステップ4030へ進む。 On the other hand, if the voltage drop amount dVc of the capacitor 103 is greater than or equal to the threshold value in step 4011, the voltage drop of the capacitor 103 is large, and it is better to once collect the charge to the storage battery 101 by the collection unit 201 than to recharge. Since the loss due to Joule heat is small, the process proceeds to Step 4030.
 ステップ4030において、制御部708は、回収制御部809を介して、スイッチS8をオフにし、スイッチS1がオン、スイッチ群403がオフのまま、ステップ4031において、X線を放射させる。ダイオード501の向きは充電の際の電流の向きとは逆向きため、コンデンサ103からインバータ回路105への電流の供給は妨げない。また、X線放射後、コンデンサ103の電圧はdVc低下するが、スイッチS8がオフの状態であるので、ダイオード501を介して蓄電池101に接続されており、ダイオード501の向きが充電の際の電流の向きとは逆向きであるので、コンデンサ103は蓄電池101から充電されることがなく、コンデンサ103の電圧はX線の放射により下がった状態を継続する。 In step 4030, the control unit 708 turns off the switch S8 via the recovery control unit 809, and emits X-rays in step 4031 while the switch S1 is on and the switch group 403 is off. Since the direction of the diode 501 is opposite to the direction of current during charging, supply of current from the capacitor 103 to the inverter circuit 105 is not hindered. In addition, after the X-ray emission, the voltage of the capacitor 103 decreases by dVc, but since the switch S8 is in the OFF state, it is connected to the storage battery 101 via the diode 501, and the direction of the diode 501 is the current at the time of charging. Therefore, the capacitor 103 is not charged from the storage battery 101, and the voltage of the capacitor 103 continues to be lowered by the X-ray radiation.
 ステップ4032において、制御部708は、回収制御部809へ、スイッチ群403のいずれかを選択してオンにし、S1スイッチをオフにする指示を出す。スイッチS8はオフのままである。スイッチ群403のいずれを選択するかは、第二実施形態の図9のステップ3009と同様にコンデンサ103の電圧をモニタして行う。 In step 4032, the control unit 708 instructs the collection control unit 809 to select one of the switch groups 403 to turn on and turn off the S1 switch. Switch S8 remains off. Which of the switch groups 403 is selected is determined by monitoring the voltage of the capacitor 103 as in step 3009 in FIG. 9 of the second embodiment.
 これにより、コンデンサ103は、回収部201を介して蓄電池101と接続され、LC共振の作用により、コンデンサ103の電力が蓄電池101へ回収される(t=t5)。ステップ4033において、記憶部709に記憶されている規定時間(共振周期Tの1/2)が経過したならば、ステップ4034へ進み、制御部708は、回収制御部809を介して、スイッチ群403をオフにし、S1スイッチをオフのままにする(t=t7)。これにより、コンデンサ103に残存していた電荷は、高効率で蓄電池101に回収され、コンデンサ103の電圧Vcはゼロになる。 Thereby, the capacitor 103 is connected to the storage battery 101 via the recovery unit 201, and the power of the capacitor 103 is recovered to the storage battery 101 by the action of LC resonance (t = t5). In step 4033, if the specified time (1/2 of the resonance period T) stored in the storage unit 709 has elapsed, the process proceeds to step 4034, and the control unit 708 passes the switch group 403 via the recovery control unit 809. And turn off the S1 switch (t = t7). As a result, the charge remaining in the capacitor 103 is recovered by the storage battery 101 with high efficiency, and the voltage Vc of the capacitor 103 becomes zero.
 その後、ステップ4035において、制御部708は、回収制御部809へ、再びスイッチ群403のうち、蓄電池101のVb/2の電位の極板に接続するスイッチを選択してオンにし、スイッチS1およびS8はオフのままにすると、ステップ4003と同様に、LC共振作用により、コンデンサ103が再び充電される。ステップ4036において、制御部708は、記憶部709に記憶されている規定時間(共振周期Tの1/2)が経過したならば、ステップ4037へ進み、スイッチ403をオフにし、スイッチS1およびS8をオンにする。これにより、コンデンサ103の電圧Vcは、蓄電池101の電圧Vbまで充電され、その電圧が維持される。 After that, in Step 4035, the control unit 708 again selects and turns on the switch connected to the electrode plate having the potential of Vb / 2 of the storage battery 101 in the switch group 403 to the recovery control unit 809, and switches S1 and S8 Is left off, the capacitor 103 is charged again by the LC resonance action as in step 4003. In step 4036, if the specified time (1/2 of the resonance period T) stored in the storage unit 709 has elapsed, the control unit 708 proceeds to step 4037, turns off the switch 403, and switches the switches S1 and S8. turn on. Thereby, the voltage Vc of the capacitor 103 is charged up to the voltage Vb of the storage battery 101, and the voltage is maintained.
 ステップ4038において、制御部708は、このあとX線の放射を繰り返すかどうかを、操作者から設定されたX線放射条件を参照して判断する。繰り返しがある場合、ステップ4030へもどり、再度X線の放射を行う。X線の放射がない場合、ステップ4023へ進み、コンデンサ103に残った電荷を回収する。 In step 4038, the control unit 708 determines whether or not to repeat X-ray emission thereafter with reference to the X-ray emission conditions set by the operator. If there are repetitions, the process returns to step 4030 to emit X-rays again. If there is no X-ray emission, the process proceeds to step 4023, and the charge remaining in the capacitor 103 is recovered.
 ステップ4011で用いる閾値としては、コンデンサ103に残った電荷を回収することなく再充電する場合の電荷移動によるジュール熱と、電荷を一旦回収して電圧をゼロにして再充電する場合の電荷移動によるジュール熱とが等しくなるような電圧低下量dVcに設定されている。 The threshold used in step 4011 includes Joule heat due to charge transfer when recharging without recovering the charge remaining in the capacitor 103, and charge transfer when recharging the charge once to zero and recharging the voltage. The voltage drop amount dVc is set so that the Joule heat becomes equal.
 第三実施形態によれば、電荷移動によるジュール熱まで考慮して、ジュール熱が小さくなるように、コンデンサ103に残った電荷を一旦回収して再充電するか、回収せずに再充電するかを決定するため、無効電力をより小さくすることができ、X線撮影装置の電力利用効率の向上が図られる。 According to the third embodiment, considering the Joule heat due to the charge transfer, whether the charge remaining in the capacitor 103 is once collected and recharged or recharged without collecting so that the Joule heat becomes small. Therefore, the reactive power can be further reduced, and the power use efficiency of the X-ray imaging apparatus can be improved.
 101 蓄電池、103 コンデンサ、104 放電回路、105 インバータ回路、106 X線管、107 回転陽極用インバータ、201 回収部、401 DC/DCコンバータ、403 スイッチ群、701 台車部、702 車輪部、703 支柱、704 アーム部、706 外部電源、707 ケーブル、708 制御部、709 記憶部、710 X線画像処理部、711 コンソール部、712 ディスプレイ、713 X線高電圧発生部、801 電力供給部、803 コンデンサ用電圧センサ、804 インバータ部、806 高電圧発生部、807 電圧センサ、809 回収制御部 101 storage battery, 103 capacitor, 104 discharge circuit, 105 inverter circuit, 106 X-ray tube, 107 rotary anode inverter, 201 recovery unit, 401 DC / DC converter, 403 switch group, 701 bogie unit, 702 wheel unit, 703 post, 704 Arm unit, 706 External power supply, 707 cable, 708 control unit, 709 storage unit, 710 X-ray image processing unit, 711 console unit, 712 display, 713 X-ray high voltage generation unit, 801 power supply unit, 803 capacitor voltage Sensor, 804 inverter, 806 high voltage generator, 807 voltage sensor, 809 recovery controller

Claims (11)

  1.  X線管装置と、X線高電圧発生部とを備え、
     このX線高電圧発生部は、電力を蓄積する蓄電池と、前記蓄電池と並列に接続され、前記蓄電池によって充電されて、X線照射時に前記X線管装置へ電力を供給するコンデンサと、このコンデンサに蓄えられた電力を前記蓄電池へ回収する回収部と、を備え、
     前記回収部は、前記コンデンサと直列に配置されたインダクタを含み、このインダクタと、前記コンデンサとにより構成されるLC回路の共振作用により、前記コンデンサに蓄積された電力を、前記蓄電池に回収することを特徴とするX線撮影装置。
    An X-ray tube device and an X-ray high voltage generator,
    The X-ray high voltage generator includes a storage battery for storing power, a capacitor connected in parallel with the storage battery, charged by the storage battery, and supplying power to the X-ray tube device during X-ray irradiation, and the capacitor A recovery unit for recovering the electric power stored in the storage battery,
    The recovery unit includes an inductor arranged in series with the capacitor, and recovers the power stored in the capacitor to the storage battery by a resonance action of an LC circuit constituted by the inductor and the capacitor. X-ray imaging device.
  2.  請求項1に記載のX線撮影装置において、
     前記回収部は、前記インダクタの前記コンデンサに接続されている側の端部とは逆側の端部を前記蓄電池に接続するスイッチをさらに含むことを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 1,
    The X-ray imaging apparatus, wherein the recovery unit further includes a switch that connects an end of the inductor opposite to an end connected to the capacitor to the storage battery.
  3.  請求項2に記載のX線撮影装置において、
     前記スイッチをオンオフする回収制御部をさらに有し
     前記回収制御部が、
     前記スイッチをオンした後、前記LC回路の共振周期の1/2の時間を経過したときにオフすることを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 2,
    A recovery control unit for turning on and off the switch;
    An X-ray imaging apparatus, wherein after turning on the switch, the X-ray imaging apparatus is turned off when a half of a resonance period of the LC circuit has elapsed.
  4.  請求項3に記載のX線撮影装置において、
     前記蓄電池は、複数の蓄電体を直列に接続した構成であり、
     前記インダクタは、前記蓄電池全体の出力電圧の略1/2の電圧になる前記蓄電体同士の接続部に接続していることを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 3,
    The storage battery is configured by connecting a plurality of power storage units in series,
    The X-ray imaging apparatus according to claim 1, wherein the inductor is connected to a connection portion between the power storage units that has a voltage that is approximately a half of an output voltage of the entire storage battery.
  5.  請求項4に記載のX線撮影装置において、
     前記複数の蓄電体は偶数個であり、これら偶数個の蓄電体を半分の個数の蓄電体群に分割し、これら二つの蓄電体群の間の接続部に、前記インダクタが接続していることを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 4,
    The plurality of power storage units is an even number, the even number of power storage units is divided into a half number of power storage unit groups, and the inductor is connected to a connection portion between the two power storage unit groups. X-ray imaging device.
  6.  請求項1に記載のX線撮影装置において、
     前記コンデンサと並列に放電部を設け、
     前記コンデンサに蓄積された電力を、前記蓄電池に回収した後、前記コンデンサの残りの電力を消費するように、前記放電部の断接制御を行う充電制御部を備えることを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 1,
    A discharge part is provided in parallel with the capacitor,
    An X-ray imaging system comprising: a charge control unit that controls connection / disconnection of the discharge unit so that the power stored in the capacitor is collected in the storage battery and then the remaining power of the capacitor is consumed. apparatus.
  7.  請求項1に記載のX線撮影装置において、
     前記蓄電池と前記コンデンサとの間には、前記蓄電池およびコンデンサと直列に、DC/DCコンバータが配置され、
     前記DC/DCコンバータは、直列に接続されたコンバータ用インダクタとダイオードとコンバータ用スイッチとを含み、
     前記回収部の前記インダクタは、前記DC/DCコンバータの前記コンバータ用インダクタを兼用することを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 1,
    Between the storage battery and the capacitor, a DC / DC converter is disposed in series with the storage battery and the capacitor,
    The DC / DC converter includes a converter inductor and a diode connected in series, and a converter switch,
    The X-ray imaging apparatus according to claim 1, wherein the inductor of the recovery unit also serves as the converter inductor of the DC / DC converter.
  8.  請求項7に記載のX線撮影装置において、
     前記回収部は、前記DC/DCコンバータの前記ダイオードをバイパスするためのバイパス用スイッチをさらに有することを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 7,
    The X-ray imaging apparatus, wherein the recovery unit further includes a bypass switch for bypassing the diode of the DC / DC converter.
  9.  請求項6に記載のX線撮影装置において、
     前記蓄電池は、二以上の蓄電体を直列に接続して構成され、
     前記充電制御部は、前記コンデンサの電圧に対応して、前記蓄電体のいずれかの間に前記インダクタを接続し、
     前記コンデンサに蓄積された電力を、前記蓄電池に回収することを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 6,
    The storage battery is configured by connecting two or more power storage units in series,
    The charge control unit connects the inductor between any of the power storage units in response to the voltage of the capacitor,
    An X-ray imaging apparatus, wherein power stored in the capacitor is collected in the storage battery.
  10.  請求項1に記載のX線撮影装置において、
     前記コンデンサから前記X線管装置へ電力を供給した後、前記コンデンサの電力を回収することなく前記蓄電池によって充電するか、前記コンデンサの電力を前記回収部により回収するかを選択するための、充電・回収選択用回路が、前記コンデンサと前記蓄電池の間に配置されていることを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 1,
    After supplying power from the capacitor to the X-ray tube device, charging for selecting whether to charge the storage battery without recovering the power of the capacitor or to recover the power of the capacitor by the recovery unit An X-ray imaging apparatus, wherein a recovery selection circuit is disposed between the capacitor and the storage battery.
  11.  請求項10に記載のX線撮影装置において、
     前記充電・回収選択用回路は、並列に配置された、ダイオードと、充電・回収選択用スイッチとを含み、
     X線照射条件から前記X線照射時の前記コンデンサの電圧低下量を算出し、前記電圧低下量に基づいて、前記充電・回収選択用スイッチを切り替える制御部をさらに有することを特徴とするX線撮影装置。
    In the X-ray imaging apparatus according to claim 10,
    The charge / recovery selection circuit includes a diode and a charge / recovery selection switch arranged in parallel,
    An X-ray characterized by further comprising a control unit that calculates a voltage drop amount of the capacitor during the X-ray irradiation from an X-ray irradiation condition, and switches the charge / recovery selection switch based on the voltage drop amount. Shooting device.
PCT/JP2015/075528 2014-09-26 2015-09-09 X-ray imaging device WO2016047437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016550092A JPWO2016047437A1 (en) 2014-09-26 2015-09-09 X-ray equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014196776 2014-09-26
JP2014-196776 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047437A1 true WO2016047437A1 (en) 2016-03-31

Family

ID=55580964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075528 WO2016047437A1 (en) 2014-09-26 2015-09-09 X-ray imaging device

Country Status (2)

Country Link
JP (1) JPWO2016047437A1 (en)
WO (1) WO2016047437A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018015080A (en) * 2016-07-26 2018-02-01 富士フイルム株式会社 Radiation irradiation device
JP2020078743A (en) * 2016-07-26 2020-05-28 富士フイルム株式会社 Radiation irradiation device
JP2021061236A (en) * 2019-09-19 2021-04-15 ジーイー・プレシジョン・ヘルスケア・エルエルシー Systems and methods for powering imaging system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060023A (en) * 2012-09-18 2014-04-03 Hitachi Medical Corp X-ray high voltage generator, and mobile x-ray fluoroscopic imaging apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060023A (en) * 2012-09-18 2014-04-03 Hitachi Medical Corp X-ray high voltage generator, and mobile x-ray fluoroscopic imaging apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018015080A (en) * 2016-07-26 2018-02-01 富士フイルム株式会社 Radiation irradiation device
CN107647876A (en) * 2016-07-26 2018-02-02 富士胶片株式会社 Radiation device
JP2020078743A (en) * 2016-07-26 2020-05-28 富士フイルム株式会社 Radiation irradiation device
JP2021061236A (en) * 2019-09-19 2021-04-15 ジーイー・プレシジョン・ヘルスケア・エルエルシー Systems and methods for powering imaging system
JP7119038B2 (en) 2019-09-19 2022-08-16 ジーイー・プレシジョン・ヘルスケア・エルエルシー Systems and methods for powering imaging systems

Also Published As

Publication number Publication date
JPWO2016047437A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
US6169782B1 (en) X-ray system with internal power supply including battery power and capacitively stored power
EP2351525B1 (en) Battery-type x-ray imaging apparatus
CN103220977B (en) Mobile X-ray apparatus
CN205092768U (en) Circuit is collected to energy
WO2016047437A1 (en) X-ray imaging device
JP2010273827A (en) Movable x-ray equipment and method for x-ray photographing of the same
US9374879B2 (en) X-ray equipment
JP5570746B2 (en) X-ray computed tomography system
JP2005094862A (en) Contactless power feeding method and apparatus
JP6573026B2 (en) X-ray equipment
JP5586096B2 (en) Power converter
JP5685449B2 (en) X-ray high voltage apparatus and X-ray CT apparatus
JP6095281B2 (en) X-ray generator and mobile X-ray imaging apparatus
JP2016073382A (en) X-ray photographing device
CN115549267A (en) Charge-discharge multiplexing circuit, control method thereof and portable air conditioner
JP2020115901A (en) Mobile x-ray imaging device
JP6054110B2 (en) X-ray high voltage generator and mobile X-ray fluoroscopic apparatus
JP2616543B2 (en) Inverter type X-ray high voltage device
JP5791153B2 (en) Power storage device
JP2010229731A (en) Control device for hybrid construction machinery
JP6491977B2 (en) X-ray high voltage device
JP2023044246A (en) Electronic apparatus
JP2014113310A (en) X-ray diagnostic imaging apparatus
JP2014060023A5 (en)
JP2009148120A (en) Charger and control method of charger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550092

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844911

Country of ref document: EP

Kind code of ref document: A1