WO2016047434A1 - Water-based ink composition for writing instruments - Google Patents

Water-based ink composition for writing instruments Download PDF

Info

Publication number
WO2016047434A1
WO2016047434A1 PCT/JP2015/075458 JP2015075458W WO2016047434A1 WO 2016047434 A1 WO2016047434 A1 WO 2016047434A1 JP 2015075458 W JP2015075458 W JP 2015075458W WO 2016047434 A1 WO2016047434 A1 WO 2016047434A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ink composition
cellulose
based ink
oxidized cellulose
Prior art date
Application number
PCT/JP2015/075458
Other languages
French (fr)
Japanese (ja)
Inventor
西島 千裕
範子 坂根
竹内 容治
有亮 中田
溝口 達也
Original Assignee
三菱鉛筆株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱鉛筆株式会社 filed Critical 三菱鉛筆株式会社
Publication of WO2016047434A1 publication Critical patent/WO2016047434A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/16Writing inks

Definitions

  • the present invention relates to a water-based ink composition for a writing instrument containing oxidized cellulose.
  • natural thickeners derived from cellulose are known as those obtained by physically finely processing cellulose itself, and powdered cellulose, fermented cellulose (bacterial cellulose), oxidized cellulose and the like are known.
  • water-based ink compositions using these celluloses include: 1) an aqueous ink composition containing an alkali metal salt or ammonium salt of carboxymethyl cellulose (CMC) having a degree of etherification of 1.5 or more ( For example, see Patent Document 1) 2) Water-based ballpoint pen ink composition characterized by comprising at least water, a colorant, and fermented cellulose (for example, see Patent Document 2), 3) Oxidized cellulose (cellulose) having specific physical properties
  • a water-based ink composition (for example, see Patent Document 3) containing at least one of a fiber), a colorant and a masking agent, and water is known.
  • the alkali metal salt or ammonium salt of CMC of Patent Document 1 has a high viscosity and does not improve the dispersion stability over time of pigments and the like.
  • the fermented cellulose in the aqueous ballpoint pen ink composition of Patent Document 2 is composed of delicate fibrous particles, and has a dry-up performance by forming a soft resin film (cellulose fiber film) on the tip of the chip.
  • a conventional shear thinning agent such as xanthan gum
  • the dispersion stability of pigments and the like over time is not improved.
  • the water-based ink composition containing oxidized cellulose of Patent Document 3 is superior to conventional thickening / gelling agents, and is not affected by the temperature, colorant, hiding agent characteristics, etc. It has excellent dispersibility of the masking agent and prevents sedimentation separation during storage, but it has the property that non-uniform viscosity distribution (viscosity difference) tends to occur over time. At present, there is a problem in that sufficient viscosity distribution stability over time, and consequently dispersion stability over time, cannot be achieved.
  • the aqueous ink composition for writing instruments using succinoglycan as a thickener includes, for example, a coloring agent, succinoglycan, water and a water-soluble organic solvent as essential components, and water is 50% by weight or more.
  • a water-based ink composition for a writing instrument containing an aqueous medium occupying the above (for example, see Patent Document 4) is known.
  • the water-based ink composition using succinoglycan disclosed in Patent Document 4 exhibits excellent properties in terms of dispersion stability of particles, the combined use with oxidized cellulose and the viscosity distribution over time due to the combined use. There is no description or suggestion about the point where uniformity (difference in viscosity) does not occur.
  • JP-A-62-124170 (Claims, Examples, etc.) JP 2013-91730 A (Claims, Examples, etc.) JP 2013-181167 A (Claims, Examples, etc.) JP-A-6-88050 (Claims, Examples, etc.)
  • the present invention is to solve this problem in view of the above-mentioned problems of the prior art and the current situation, and is a non-uniformity in viscosity distribution over time, which is a problem of aqueous ink compositions for writing instruments when oxidized cellulose is used ( It is an object of the present invention to provide a water-based ink composition for a writing instrument that suppresses the difference in the upper and lower viscosity), is excellent in stability of viscosity distribution over time, and is excellent in drawing quality.
  • the present inventors can obtain a water-based ink composition for a writing instrument for the above purpose by containing specific amounts of specific polysaccharides together with oxidized cellulose. As a result, the present invention has been completed.
  • the present invention resides in the following (1) to (3).
  • a water-based ink composition for a writing instrument comprising 0.05 to 1.5% by mass of oxidized cellulose and 0.005 to 1% by mass of succinoglycan.
  • a writing instrument comprising the water-based ink composition for a writing instrument described in (1) or (2) above.
  • the non-uniformity of viscosity distribution over time (viscosity difference), which is a problem of the oxidized cellulose-containing aqueous ink composition, is suppressed, and the viscosity distribution stability over time is excellent, and the drawn line quality is improved.
  • a water-based ink composition for a writing instrument that is superior to the above is provided.
  • the aqueous ink composition for a writing instrument of the present invention is characterized by containing 0.05 to 1.5% by mass of oxidized cellulose and at least 0.005 to 1% by mass of succinoglycan.
  • the oxidized cellulose used in the present invention has cellulose I type crystal structure and constitutes cellulose [(C 6 H 10 O 5 ) n: a natural polymer in which a number of ⁇ -glucose molecules are linearly polymerized by glycosidic bonds].
  • a part of the hydroxyl group (—OH group) of ⁇ -glucose is modified with at least one functional group of an aldehyde group (—CHO) and a carboxyl group (—COOH group).
  • Examples thereof include those obtained by oxidizing at least the hydroxyl group (—OH group) at the C 6 position of glucose to an aldehyde group (—CHO) and a carboxyl group (—COOH group).
  • the oxidized cellulose used in the present invention is a fiber obtained by surface-oxidizing a cellulose solid raw material derived from a natural product having an I-type crystal structure to a nano size.
  • cellulose derived from natural products which is a raw material
  • nanofibers called microfibrils are multi-bundled to form a higher order structure. It is something that cannot be done.
  • a part of the hydroxyl groups of the cellulose fiber is oxidized to introduce aldehyde groups and carboxyl groups, and the hydrogen bonds between the surfaces, which are the driving force of the strong cohesive force between the microfibrils, are weakened and dispersed. However, it is refined to nano size.
  • the effect of the present invention can be exerted by using the above-mentioned oxidized cellulose having the above physical properties and the specific carboxymethyl cellulose or a salt thereof described later.
  • the number average fiber diameter of the oxidized cellulose is 2 to 150 nm. Is desirable. From the viewpoint of dispersion stability, it is more preferable that the number average fiber diameter is 3 to 80 nm. By making the number average fiber diameter of this oxidized cellulose 2 nm or more, the function as a dispersion medium is exhibited, and conversely, by making the number average fiber diameter 150 nm or less, the dispersion stability of the cellulose fiber itself is further improved. be able to.
  • the number average fiber diameter can be measured, for example, as follows. That is, a sample diluted with water added to cellulose fibers is dispersed, cast onto a carbon film-coated grid that has been subjected to a hydrophilic treatment, and this is observed with a transmission electron microscope (TEM). From the obtained image, The number average fiber diameter can be measured and calculated.
  • oxidized cellulose used in the present invention is, for example, an oxidation process in which natural cellulose is used as a raw material, an N-oxyl compound is used as an oxidation catalyst in water, and the natural cellulose is oxidized by acting a co-oxidant to obtain a reactant fiber. It can be obtained by at least three steps: a reaction step, a purification step for obtaining a reactant fiber impregnated with water by removing impurities, and a dispersion step for dispersing the reactant fiber impregnated with water in a solvent.
  • natural cellulose means purified cellulose isolated from cellulose biosynthetic systems such as plants, animals, and bacteria-producing gels. More specifically, softwood pulp, hardwood pulp, cotton pulp such as cotton linter and cotton lint, non-wood pulp such as straw pulp and bagasse pulp, BC, cellulose isolated from sea squirt, and seaweed
  • the cellulose can be exemplified, but is not limited thereto.
  • Natural cellulose is preferably subjected to a treatment for increasing the surface area such as beating, whereby the reaction efficiency can be increased and the productivity can be increased.
  • the dispersion medium of natural cellulose in the reaction is water, and the concentration of natural cellulose in the reaction aqueous solution is arbitrary as long as the reagent can sufficiently diffuse, but usually about 5% with respect to the weight of the reaction aqueous solution. It is as follows.
  • N-oxyl compounds that can be used as an oxidation catalyst for cellulose have been reported (“Cellulose” Vol. 10, 2003, pages 335 to 341, using “TEMPO derivatives by I. Shibata and A. Isogai).
  • the article entitled “Catalyzed Oxidation of Cellulose: HPSEC and NMR Analysis of the Oxidation Products”) in particular, TEMPO (2,2,6,6-tetramethyl-1-piperidine-N-oxyl), 4-acetamido-TEMPO, 4-Carboxy-TEMPO and 4-phosphonooxy-TEMPO are preferable in the reaction rate at room temperature in water.
  • a catalytic amount is sufficient for the addition of these N-oxyl compounds, preferably 0.1 to 4 mmol / l, more preferably 0.2 to 2 mmol / l.
  • hypohalous acid or a salt thereof hypohalous acid or a salt thereof, perhalogen acid or a salt thereof, hydrogen peroxide, a perorganic acid, and the like
  • Hypohalites such as sodium hypochlorite and sodium hypobromite.
  • sodium hypochlorite it is preferable in terms of the reaction rate to advance the reaction in the presence of an alkali metal bromide such as sodium bromide.
  • the addition amount of the alkali metal bromide is about 1 to 40 times mol, preferably about 10 to 20 times mol for the N-oxyl compound.
  • the amount of co-oxidant added is preferably in the range of about 0.5 to 8 mmol with respect to 1 g of natural cellulose, and the reaction is completed within about 5 to 120 minutes and at most 240 minutes.
  • the pH of the aqueous reaction solution is preferably maintained in the range of about 8-11.
  • the temperature of the aqueous solution is arbitrary at about 4 to 40 ° C., but the reaction can be performed at room temperature, and the temperature is not particularly required to be controlled.
  • reactant fibers and compounds other than water contained in the reaction slurry such as unreacted hypochlorous acid and various by-products are removed from the system. Since it is not dispersed evenly to the nanofiber unit, a normal purification method, that is, washing with water and filtration are repeated to obtain a dispersion of high-purity (99% by mass or more) reactant fiber and water.
  • a normal purification method that is, washing with water and filtration are repeated to obtain a dispersion of high-purity (99% by mass or more) reactant fiber and water.
  • any apparatus can be used as long as it can achieve the above-described object, such as a method using centrifugal dehydration (for example, a continuous decanter).
  • the aqueous dispersion of the reactant fibers thus obtained has a solid content (cellulose) concentration in the range of approximately 10% to 50% by mass in the squeezed state.
  • a solid content concentration higher than 50% by mass is not preferable because extremely high energy is required for dispersion.
  • a dispersion of oxidized cellulose can be obtained by dispersing the reaction fiber (water dispersion) impregnated with water obtained in the above-described purification step in a solvent and performing a dispersion treatment, It can be set as the oxidized cellulose used by drying this dispersion.
  • the solvent as the dispersion medium is usually preferably water, but in addition to water, alcohols that are soluble in water depending on the purpose (methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl) Cellosolve, ethyl cellosolve, ethylene glycol, glycerin, etc.), ethers (ethylene glycol dimethyl ether, 1,4-dioxane, tetrahydrofuran, etc.), ketones (acetone, methyl ethyl ketone), N, N-dimethylformamide, N, N-dimethylacetamide Dimethyl sulfoxide or the like may be used.
  • alcohols that are soluble in water depending on the purpose methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl
  • Cellosolve ethyl cellosolve
  • the oxidized cellulose used may be a dispersion of the above oxidized cellulose.
  • the oxidized cellulose that can be used in the present invention is not limited to the above-described production method and the like, and some of the hydroxyl groups (—OH groups) of the cellulose are aldehyde groups (—CHO) and carboxyl groups (—COOH).
  • the production method is not particularly limited as long as it is modified with at least one functional group.
  • the aqueous ink composition for a writing instrument according to the present invention is characterized by containing at least 0.05 to 1.5% by mass of oxidized cellulose and 0.005 to 1% by mass of succinoglycan. Used as an ink composition for a writing instrument such as a ballpoint pen.
  • the content (solid content) of the oxidized cellulose is 0.05 to 1.5% by mass (hereinafter simply referred to as “%”), preferably in the aqueous ink composition for writing instruments (total amount). Is preferably 0.1 to 1.0%.
  • the content of oxidized cellulose is less than 0.05%, sufficient thickening action cannot be obtained, and precipitation of solids such as pigments may occur over time. On the other hand, if the content exceeds 1.5% Since the viscosity is increased, the phenomenon of broken lines in writing lines and ink ejection failure may occur.
  • Succinoglycan used as a thickener of the present invention is a kind of polysaccharide derived from microorganisms. In addition to saccharide units derived from galactose and glucose, succinic acid and pyruvic acid and acetic acid as an optional component or these It contains units derived from acid salts. Examples of succinoglycans that can be used include commercially available Leozan SH (manufactured by RHODIA). In the present invention, “succinoglycan” includes purified products and modified products.
  • the content of these succinoglycans is 0.005 to 1%, preferably 0.01 to 1%, based on the total amount of the aqueous ink composition.
  • the content is less than 0.005%, the effect of the present invention is not sufficiently exhibited.
  • the content exceeds 1%, the rheological properties are inhibited, which is not preferable.
  • the mass ratio of the oxidized cellulose and the succinoglycan is 30: 1 to 1: 2, more preferably 25: 1. It is desirable to set it to ⁇ 1: 2.
  • the aqueous ink composition for a writing instrument of the present invention contains at least a colorant and a water-soluble solvent in addition to the oxidized cellulose and succinoglycan.
  • Colorants that can be used include pigments and / or water-soluble dyes.
  • limiting in particular about the kind of pigment Arbitrary things can be used from the inorganic type and organic type pigment conventionally used for writing instruments, such as a water-based ballpoint pen.
  • inorganic pigments include carbon black and metal powder.
  • organic pigments include azo lakes, insoluble azo pigments, chelate azo pigments, phthalocyanine pigments, perylene and perinone pigments, anthraquinone pigments, quinacridone pigments, dye lakes, nitro pigments, and nitroso pigments.
  • phthalocyanine blue C.I. 74160
  • phthalocyanine green C.I. 74260
  • Hansa Yellow 3G C.I. 11670
  • disazo yellow GR C.I. 21100
  • permanent red 4R C.I. 12335
  • brilliant carmine 6B C.I. 15850
  • quinacridone red C.I. 46500
  • a plastic pigment composed of particles of styrene or acrylic resin can be used.
  • the hollow resin particles having voids inside the particles can be used as white pigments, or resin particles (pseudo pigments) dyed with a basic dye described later having excellent color development and dispersibility.
  • any of direct dyes, acid dyes, food dyes, and basic dyes can be used.
  • the direct dye include C.I. I. Direct Black 17, 19, 19, 22, 32, 38, 51, 71, C.I. I. Direct yellow 4, 26, 44, 50, C.I. I. Direct Red 1, 4, 23, 31, 37, 39, 75, 80, 81, 83, 225, 226, 227, C.I. I. Direct Blue 1, 15, 71, 86, 106, 119 and the like.
  • the acid dye include C.I. I. Acid Black 1, 2, 24, 26, 31, 31, 52, 107, 109, 110, 119, 154, C.I. I.
  • Examples of basic dyes include C.I. I. Basic Yellow 1, 2 and 21, C.I. I. Basic Orange 2, 14, 32, C.I. I. Basic Red 1, 2, 9, 9, 14 C.I. I. Basic Brown 12, Basic Black 2, 8 and the like.
  • Examples of the resin particles dyed with a basic dye include fluorescent pigments obtained by dyeing acrylonitrile copolymer resin particles with a basic fluorescent dye.
  • Specific product names include Sinloi Color SF Series (Sinloihi Co., Ltd.), NKW and NKP Series (Nippon Fluorochemicals Co., Ltd.).
  • the content in the total amount of the aqueous ink composition for writing instruments is usually 0.5 to 30%, preferably 1 It is in the range of ⁇ 15%. If the content of this colorant is less than 0.5%, coloring may be weak or the hue of the handwriting may not be known. On the other hand, if it exceeds 30%, writing defects may occur. This is not preferable.
  • water-soluble solvents examples include glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, polyethylene glycol, 3-butylene glycol, thiodiethylene glycol, glycerin, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, and the like. These can be used alone or in combination.
  • the content of the water-soluble solvent is preferably 5 to 40% in the total amount of the water-based ink composition for writing instruments.
  • the water-based ink composition for a writing instrument of the present invention includes the above-mentioned oxidized cellulose, succinoglycan, colorant, water-soluble solvent, and water as a balance (tap water, purified water, distilled water, ion-exchanged water, pure water)
  • a dispersant, a lubricant, a pH adjuster, a rust inhibitor, a preservative, a fungicide, and the like can be appropriately contained as long as the effects of the present invention are not impaired.
  • a dispersant When a pigment is used as the colorant, it is preferable to use a dispersant.
  • This dispersant acts on the pigment surface to improve the affinity with water and to stably disperse the pigment in water.
  • Nonionic, anionic surfactants and water-soluble resins are used.
  • a water-soluble polymer is preferably used.
  • Lubricants include nonionics such as fatty acid esters of polyhydric alcohols, higher fatty acid esters of sugars, polyoxyalkylene higher fatty acid esters, and alkyl phosphates, which are also used in pigment surface treatment agents, and alkyl sulfonic acids of higher fatty acid amides. Examples thereof include salts, anionic compounds such as alkyl allyl sulfonates, polyalkylene glycol derivatives, fluorosurfactants, and polyether-modified silicones.
  • pH adjusters examples include ammonia, urea, monoethanolamine, diethanolamine, triethanolamine, sodium tripolyphosphate, sodium carbonate, and alkali metal salts of phosphoric acid and alkali metal hydrates such as sodium hydroxide.
  • Etc. alkali metal salts of phosphoric acid and alkali metal hydrates such as sodium hydroxide.
  • rust preventives benzotriazole, tolyltriazole, dicyclohexylammonium nitrite, saponins, etc., as antiseptics or fungicides, phenol, sodium omadin, sodium benzoate, benzimidazole compounds, etc. Can be mentioned.
  • the water-based ink composition for writing instruments of the present invention is a combination of the above oxidized cellulose, succinoglycan, colorant, water-soluble solvent, and other components as appropriate according to the application of the ink for writing instruments (for ballpoint pens and marking pens).
  • the aqueous ink composition for writing instruments is prepared by stirring and mixing with a stirrer such as a homomixer, homogenizer or disper, and if necessary, by removing coarse particles in the ink composition by filtration or centrifugation. be able to.
  • a stirrer such as a homomixer, homogenizer or disper
  • the aqueous ink composition for a writing instrument can be prepared by filling an aqueous ballpoint pen provided with balls having a diameter of 0.18 to 2.0 mm.
  • the aqueous ballpoint pen to be used is not particularly limited as long as it has a ball having a diameter in the above-mentioned range.
  • the water-based ink composition is filled in an ink storage tube of a polypropylene tube, and a tip stainless tip (ball is A refilled water-based ballpoint pen with a super steel alloy) is desirable.
  • the method for producing a water-based ink composition for a writing instrument of the present invention can be produced without any particular change compared to other methods for producing a water-based ink composition. That is, the water-based ink composition for a writing instrument of the present invention includes a component such as a mixer, and a bead mill, a homomixer, a homogenizer, and a high-pressure homogenizer that can apply strong shearing to the components including the above-described oxidized cellulose and succinoglycan.
  • a thixotropic ink for example, a gel ink water-based ballpoint pen ink
  • a thixotropic ink can be produced by mixing and stirring by setting the stirring condition to a suitable condition using an ultrasonic homogenizer, a high-pressure wet medialess atomizer, or the like. it can.
  • the pH (25 ° C.) of the aqueous ink composition for a writing instrument of the present invention is adjusted to 5 to 10 by a pH adjuster or the like from the viewpoints of usability, safety, stability of the ink itself, and matching with the ink container. It is preferably adjusted, and more preferably 6 to 9.5.
  • the water-based ink composition for a writing instrument of the present invention is mounted on a ballpoint pen, a marking pen or the like having a pen tip such as a ballpoint pen tip, a fiber tip, a felt tip, or a plastic tip.
  • the water-based ink composition for writing instruments having the above composition is accommodated in a ballpoint pen ink container (refill), and is not compatible with the water-based ink composition housed in the ink container.
  • the ink follower include substances having a small specific gravity with respect to the water-based ink composition, such as polybutene, silicone oil, mineral oil, and the like.
  • the structure of the ballpoint pen and the marking pen is not particularly limited.
  • a collector structure in which the shaft tube itself is used as an ink container and the water-based ink composition for a writing instrument having the above configuration is filled in the shaft tube. It may be a direct liquid ballpoint pen or a marking pen provided.
  • the oxidized cellulose used has a low viscosity of 0.05 to 1.5% in the water-based ink composition for a writing instrument, the viscosity is high.
  • As a thickening and gelling agent for water-based ink compositions for writing instruments it exhibits a rheology control effect in a smaller amount than conventional fine cellulose and xanthan gum, and also exhibits this oxidation property.
  • the viscosity distribution over time is suppressed by adding 0.005 to 1% of succinoglycan in the ink composition.
  • a water-based ink composition for a writing instrument having excellent stability and line drawing quality can be obtained.
  • each water-based ink composition for a writing instrument is mixed with a composition shown in Table 1 below, specifically, a composition such as succinoglycan and a colorant. It was prepared by changing the stirring conditions (shearing force, pressure, stirring time) appropriately using a chemical conversion apparatus (Yoshida Kikai Kogyo Co., Ltd., Nano perenniala), mixing and stirring by a wet method, and filtering with a 10 ⁇ m bag filter.
  • the pH at room temperature (25 ° C.) of each water-based ink composition for writing instruments was measured with a pH meter (manufactured by HORIBA), and was within the range of 7.9 to 8.2.
  • Viscosity values of the aqueous ink compositions for writing instruments obtained in Examples 1 to 6 and Comparative Examples 1 to 4 were measured by the following method. When measuring the viscosity value, it is stored for 1 month at room temperature in a glass bottle 2.5 ⁇ 2.5 ⁇ 5 cm [ink filling height (height of the top surface filled with ink from the bottom in the glass bottle): 4 cm].
  • the ink near the top of the glass bottle (about 0.5 cm from the top of the ink filling height), and in the same way as above, the ink near the bottom of the glass bottle (about 0.5 cm from the bottom of the ink filling height)
  • the viscosity value at a shear rate of 38.3 s ⁇ 1 at 25 ° C. was measured with an EMD viscometer (manufactured by Tokyo Keiki Co., Ltd.).
  • the favorable viscosity distribution is preferably such that, under the above conditions, the upper / lower ratio (up / down) of the viscosity is in the range of 0.95 to 1.6, preferably 0.95 to 1.3.
  • the reaction product is filtered through a glass filter, washed with a sufficient amount of water and filtered five times to impregnate 25% by weight of water with a solid content of 25% by mass. Reactant fibers were obtained. Next, water was added to the reactant fiber to make a 2% by mass slurry, which was then treated with a rotary blade mixer for about 5 minutes. Since the viscosity of the slurry significantly increased with the treatment, water was gradually added and the dispersion treatment with the mixer was continued until the solid content concentration became 0.15% by mass.
  • the dispersion of oxidized cellulose having a cellulose concentration of 0.15% by mass thus obtained was subjected to removal of suspended solids by centrifugation, and then the concentration was adjusted with water to give a cellulose concentration of 0.1% by mass.
  • a transparent and slightly viscous dispersion of oxidized cellulose was obtained.
  • Oxidized cellulose obtained by drying this dispersion was used.
  • the oxidized cellulose shown to each Example etc. of Table 1 displays what was manufactured above by solid content concentration of each Example etc.
  • the number average fiber diameter of the oxidized cellulose obtained above was confirmed and measured by the following method.
  • a water-based ballpoint pen was produced using each ink composition obtained above. Specifically, using a shaft of a ballpoint pen [Mitsubishi Pencil Co., Ltd., trade name: Signo UM-100], an inner diameter of 4.0 mm, a length of 113 mm, an ink containing tube made of polypropylene, and a stainless tip (a cemented carbide ball, A water ballpoint pen is manufactured by filling each water-based ink with a refill consisting of a joint connecting the receiving tube and the tip with a ball diameter of 0.7 mm, and an ink follower mainly composed of mineral oil at the rear end of the ink. did.
  • the aqueous ink compositions for writing instruments of Examples 1 to 6 according to the present invention maintain satisfactory uniformity of viscosity distribution over time and are excellent in line drawing quality. It has been found.
  • An aqueous ink composition for writing instruments suitable for writing instruments such as water-based ballpoint pens and marking pens can be obtained.

Abstract

Provided is a water-based ink composition for writing instruments, said water-based ink for writing instruments containing oxidized cellulose and having suppressed non-uniformity of the viscosity distribution (viscosity differential) over time, excellent viscosity distribution stability over time, and excellent line quality. The water-based ink composition for writing instruments is characterized by at least containing 0.05-1.5% by mass of oxidized cellulose and 0.005-1% by mass of succinoglycan.

Description

筆記具用水性インク組成物Water-based ink composition for writing instruments
 本発明は、酸化セルロースを含有した筆記具用水性インク組成物に関する。 The present invention relates to a water-based ink composition for a writing instrument containing oxidized cellulose.
 従来より、筆記具用インク組成物に用いられる剪断減粘性を示す増粘剤としては、天然系、天然物を化学修飾した半合成系、石油化学原料から化学合成される合成系のものが知られている。 Conventionally, as a thickening agent exhibiting shear thinning used in ink compositions for writing instruments, natural systems, semi-synthetic systems obtained by chemically modifying natural products, and synthetic systems chemically synthesized from petrochemical raw materials are known. ing.
 これらの中でセルロース由来の天然系増粘剤としては、セルロースそのものを物理的に微細に加工したもので知られており、粉末セルロース、発酵セルロース(バクテリアセルロース)、酸化セルロースなどが知られている。
 これらのセルロースを利用した水性インク組成物としては、例えば、1)エーテル化度1.5以上のカルボキシルメチルセルロース(CMC)のアルカリ金属塩又はアンモニウム塩を含有することを特徴とする水性インク組成物(例えば、特許文献1参照)、2)少なくとも水、着色剤、発酵セルロースからなることを特徴とする水性ボールペン用インク組成物(例えば、特許文献2参照)、3)特定物性となる酸化セルロース(セルロース繊維)と、着色剤及び隠蔽剤の少なくとも一つと、水とを含有することを特徴とする水性インク組成物(例えば、特許文献3参照)などが知られている。
Among these, natural thickeners derived from cellulose are known as those obtained by physically finely processing cellulose itself, and powdered cellulose, fermented cellulose (bacterial cellulose), oxidized cellulose and the like are known. .
Examples of water-based ink compositions using these celluloses include: 1) an aqueous ink composition containing an alkali metal salt or ammonium salt of carboxymethyl cellulose (CMC) having a degree of etherification of 1.5 or more ( For example, see Patent Document 1) 2) Water-based ballpoint pen ink composition characterized by comprising at least water, a colorant, and fermented cellulose (for example, see Patent Document 2), 3) Oxidized cellulose (cellulose) having specific physical properties A water-based ink composition (for example, see Patent Document 3) containing at least one of a fiber), a colorant and a masking agent, and water is known.
 しかしながら、上記特許文献1のCMCのアルカリ金属塩又はアンモニウム塩は、粘性が高く、顔料などの経時的な分散安定性を良好とするものでなかった。また、上記特許文献2の水性ボールペン用インク組成物における発酵セルロースは、繊細な繊維性粒子からなるものであり、チップ先端に柔らかい樹脂皮膜(セルロース繊維の皮膜)を形成せしめることによりドライアップ性能を向上させるものであり、インク粘度の調整などは、従来の剪断減粘性付与剤(キサンタンガム等)を併用するものであり、顔料などの経時的な分散安定性を向上させるものでなかった。
 上記特許文献3の酸化セルロースを含有する水性インク組成物は、従来の増粘・ゲル化剤よりも優れたものであり、気温や着色剤、隠蔽剤の特性等に左右されず、着色剤や隠蔽剤の分散性に優れ、保存時の沈降分離が防止されたものであるが、経時的には粘度分布の不均一性(粘度の上下差)が発生しやすい性質を有しており、未だ十分な経時的な粘度分布安定性、ひいては経時的な分散安定性を達成できない点に課題があるのが現状である。
However, the alkali metal salt or ammonium salt of CMC of Patent Document 1 has a high viscosity and does not improve the dispersion stability over time of pigments and the like. In addition, the fermented cellulose in the aqueous ballpoint pen ink composition of Patent Document 2 is composed of delicate fibrous particles, and has a dry-up performance by forming a soft resin film (cellulose fiber film) on the tip of the chip. In order to improve the ink viscosity, a conventional shear thinning agent (such as xanthan gum) is used in combination, and the dispersion stability of pigments and the like over time is not improved.
The water-based ink composition containing oxidized cellulose of Patent Document 3 is superior to conventional thickening / gelling agents, and is not affected by the temperature, colorant, hiding agent characteristics, etc. It has excellent dispersibility of the masking agent and prevents sedimentation separation during storage, but it has the property that non-uniform viscosity distribution (viscosity difference) tends to occur over time. At present, there is a problem in that sufficient viscosity distribution stability over time, and consequently dispersion stability over time, cannot be achieved.
 一方、増粘剤としてサクシノグリカンを使用した筆記具用水性インク組成物としては、例えば、必須成分として、着色剤、サクシノグリカン、及び水と水溶性有機溶媒を含み、水が50重量%以上を占める水性媒体を含有してなる筆記具用水性インク組成物(例えば、特許文献4参照)が知られている。
 しかしながら、この特許文献4のサクシノグリカンを使用した水性インク組成物は、粒子の分散安定性という点において優れた性質を発現するものの、酸化セルロースとの併用、併用による経時的には粘度分布の均一性(粘度の上下差)が発生しない点などについて全く記載や示唆等は無いものである。
On the other hand, the aqueous ink composition for writing instruments using succinoglycan as a thickener includes, for example, a coloring agent, succinoglycan, water and a water-soluble organic solvent as essential components, and water is 50% by weight or more. A water-based ink composition for a writing instrument containing an aqueous medium occupying the above (for example, see Patent Document 4) is known.
However, although the water-based ink composition using succinoglycan disclosed in Patent Document 4 exhibits excellent properties in terms of dispersion stability of particles, the combined use with oxidized cellulose and the viscosity distribution over time due to the combined use. There is no description or suggestion about the point where uniformity (difference in viscosity) does not occur.
特開昭62-124170号公報(特許請求の範囲、実施例等)JP-A-62-124170 (Claims, Examples, etc.) 特開2013-91730号公報(特許請求の範囲、実施例等)JP 2013-91730 A (Claims, Examples, etc.) 特開2013-181167号公報(特許請求の範囲、実施例等)JP 2013-181167 A (Claims, Examples, etc.) 特開平6-88050号公報(特許請求の範囲、実施例等)JP-A-6-88050 (Claims, Examples, etc.)
 本発明は、上記従来技術の課題及び現状に鑑み、これを解消しようとするものであり、酸化セルロースを用いた場合の筆記具用水性インク組成物の課題である経時の粘度分布の不均一性(粘度の上下差)を抑制し、経時的な粘度分布安定性に優れると共に、描線品位に優れる筆記具用水性インク組成物を提供することを目的とする。 The present invention is to solve this problem in view of the above-mentioned problems of the prior art and the current situation, and is a non-uniformity in viscosity distribution over time, which is a problem of aqueous ink compositions for writing instruments when oxidized cellulose is used ( It is an object of the present invention to provide a water-based ink composition for a writing instrument that suppresses the difference in the upper and lower viscosity), is excellent in stability of viscosity distribution over time, and is excellent in drawing quality.
 本発明者らは、上記従来の課題等に鑑み、鋭意研究を行った結果、酸化セルロースと共に、特定の多糖類を各特定量含有することにより、上記目的の筆記具用水性インク組成物が得られることを見出し、本発明を完成するに至ったのである。 As a result of intensive studies in view of the above-described conventional problems and the like, the present inventors can obtain a water-based ink composition for a writing instrument for the above purpose by containing specific amounts of specific polysaccharides together with oxidized cellulose. As a result, the present invention has been completed.
 すなわち、本発明は、次の(1)~(3)に存する。
(1) 酸化セルロースを0.05~1.5質量%及びサクシノグリカンを0.005~1質量%少なくとも含有することを特徴とする筆記具用水性インク組成物。
(2) 前記酸化セルロースと前記サクシノグリカンの質量比率が30:1~1:2であることを特徴とする上記(1)に記載の筆記具用水性インク組成物。
(3) 上記(1)又は(2)に記載の筆記具用水性インク組成物を搭載したことを特徴とする筆記具。
That is, the present invention resides in the following (1) to (3).
(1) A water-based ink composition for a writing instrument comprising 0.05 to 1.5% by mass of oxidized cellulose and 0.005 to 1% by mass of succinoglycan.
(2) The aqueous ink composition for a writing instrument as described in (1) above, wherein the mass ratio of the oxidized cellulose and the succinoglycan is 30: 1 to 1: 2.
(3) A writing instrument comprising the water-based ink composition for a writing instrument described in (1) or (2) above.
 本発明によれば、酸化セルロース含有水性インク組成物の課題である経時的な粘度分布の不均一性(粘度の上下差)を抑制して、経時的な粘度分布安定性に優れると共に、描線品位に優れる筆記具用水性インク組成物が提供される。 According to the present invention, the non-uniformity of viscosity distribution over time (viscosity difference), which is a problem of the oxidized cellulose-containing aqueous ink composition, is suppressed, and the viscosity distribution stability over time is excellent, and the drawn line quality is improved. A water-based ink composition for a writing instrument that is superior to the above is provided.
 以下に、本発明の実施形態を詳しく説明する。
 本発明の筆記具用水性インク組成物は、酸化セルロースを0.05~1.5質量%及びサクシノグリカンを0.005~1質量%少なくとも含有することを特徴とするものである。
Hereinafter, embodiments of the present invention will be described in detail.
The aqueous ink composition for a writing instrument of the present invention is characterized by containing 0.05 to 1.5% by mass of oxidized cellulose and at least 0.005 to 1% by mass of succinoglycan.
<酸化セルロース>
 本発明に用いる酸化セルロースは、セルロースI型結晶構造を有すると共に、セルロース〔(C10)n:多数のβグルコース分子がグリコシド結合により直鎖状に重合した天然高分子〕を構成するβグルコースの水酸基(-OH基)の一部がアルデヒド基(-CHO)およびカルボキシル基(-COOH基)の少なくとも一つの官能基で変性したものであれば特に限定されず、例えば、上記βグルコースの少なくともC位の水酸基(-OH基)を酸化しアルデヒド基(-CHO)およびカルボキシル基(-COOH基)に変性したものが挙げられる。
<Oxidized cellulose>
The oxidized cellulose used in the present invention has cellulose I type crystal structure and constitutes cellulose [(C 6 H 10 O 5 ) n: a natural polymer in which a number of β-glucose molecules are linearly polymerized by glycosidic bonds]. There is no particular limitation as long as a part of the hydroxyl group (—OH group) of β-glucose is modified with at least one functional group of an aldehyde group (—CHO) and a carboxyl group (—COOH group). Examples thereof include those obtained by oxidizing at least the hydroxyl group (—OH group) at the C 6 position of glucose to an aldehyde group (—CHO) and a carboxyl group (—COOH group).
 本発明に用いる酸化セルロースは、I型結晶構造を有する天然物由来のセルロース固体原料を表面酸化し、ナノサイズにまで微細化した繊維である。一般に、原料となる、天然物由来のセルロースは、ほぼ例外なくミクロフィブリルと呼ばれるナノファイバーが多束化して高次構造を取っているため、そのままでは容易にはナノサイズにまで微細化して分散させることができないものである。本発明の酸化セルロースでは、セルロース繊維の水酸基の一部を酸化しアルデヒド基およびカルボキシル基を導入し、ミクロフィブリル間の強い凝集力の原動力となっている表面間の水素結合を弱めて、分散処理し、ナノサイズにまで微細化したものである。 The oxidized cellulose used in the present invention is a fiber obtained by surface-oxidizing a cellulose solid raw material derived from a natural product having an I-type crystal structure to a nano size. In general, cellulose derived from natural products, which is a raw material, has almost no exception, so that nanofibers called microfibrils are multi-bundled to form a higher order structure. It is something that cannot be done. In the oxidized cellulose of the present invention, a part of the hydroxyl groups of the cellulose fiber is oxidized to introduce aldehyde groups and carboxyl groups, and the hydrogen bonds between the surfaces, which are the driving force of the strong cohesive force between the microfibrils, are weakened and dispersed. However, it is refined to nano size.
 本発明では、上記物性の酸化セルロースと後述する特定のカルボキシメチルセルロース又はその塩を用いることで、本発明の効果を発揮できるものであり、好ましくは、酸化セルロースの数平均繊維径が2~150nmとなるものが望ましい。
 分散安定性の点から、更に好ましくは、数平均繊維径が3~80nmとなるものが望ましい。この酸化セルロースの数平均繊維径を2nm以上とすることにより、分散媒体としての機能を発揮せしめ、逆に数平均繊維径を150nm以下とすることにより、セルロース繊維そのものの分散安定性を更に向上させることができる。
 本発明において、上記数平均繊維径は、例えば、次のようにして測定することができる。すなわち、セルロース繊維に水を加え希釈した試料を分散処理し、親水化処理済みのカーボン膜被覆グリッド上にキャストして、これを透過型電子顕微鏡(TEM)で観察し、得られた画像から、数平均繊維径を測定算出することができる。
 また、上記特定のセルロース繊維を構成するセルロースが、天然物由来のI型結晶構造を有することは、例えば、広角X線回折像測定により得られる回折プロファイルにおいて、2シータ=14~17°付近と、2シータ=22~23°付近の2つの位置に典型的なピークを持つことから同定することができる。
In the present invention, the effect of the present invention can be exerted by using the above-mentioned oxidized cellulose having the above physical properties and the specific carboxymethyl cellulose or a salt thereof described later. Preferably, the number average fiber diameter of the oxidized cellulose is 2 to 150 nm. Is desirable.
From the viewpoint of dispersion stability, it is more preferable that the number average fiber diameter is 3 to 80 nm. By making the number average fiber diameter of this oxidized cellulose 2 nm or more, the function as a dispersion medium is exhibited, and conversely, by making the number average fiber diameter 150 nm or less, the dispersion stability of the cellulose fiber itself is further improved. be able to.
In the present invention, the number average fiber diameter can be measured, for example, as follows. That is, a sample diluted with water added to cellulose fibers is dispersed, cast onto a carbon film-coated grid that has been subjected to a hydrophilic treatment, and this is observed with a transmission electron microscope (TEM). From the obtained image, The number average fiber diameter can be measured and calculated.
The cellulose constituting the specific cellulose fiber has a natural product-derived type I crystal structure, for example, in the diffraction profile obtained by wide-angle X-ray diffraction image measurement, in the vicinity of 2 theta = 14 to 17 °. It can be identified by having typical peaks at two positions near 2 theta = 22 to 23 °.
 本発明に用いる酸化セルロースの製造は、例えば、天然セルロースを原料とし、水中においてN-オキシル化合物を酸化触媒とし、共酸化剤を作用させることにより該天然セルロースを酸化して反応物繊維を得る酸化反応工程、不純物を除去して水を含浸させた反応物繊維を得る精製工程、および水を含浸させた反応物繊維を溶媒に分散させる分散工程の少なくとも3つの工程により得ることができる。 The production of oxidized cellulose used in the present invention is, for example, an oxidation process in which natural cellulose is used as a raw material, an N-oxyl compound is used as an oxidation catalyst in water, and the natural cellulose is oxidized by acting a co-oxidant to obtain a reactant fiber. It can be obtained by at least three steps: a reaction step, a purification step for obtaining a reactant fiber impregnated with water by removing impurities, and a dispersion step for dispersing the reactant fiber impregnated with water in a solvent.
 上記酸化反応工程では、水中に天然セルロースを分散させた分散液を調製する。ここで、天然セルロースは、植物、動物、バクテリア産生ゲル等のセルロースの生合成系から単離した精製セルロースを意味する。より具体的には、針葉樹系パルプ、広葉樹系パルプ、コットンリンターやコットンリントのような綿系パルプ、麦わらパルプやバガスパルプ等の非木材系パルプ、BC、ホヤから単離されるセルロース、海草から単離されるセルロースなどを挙げることができるが、これに限定されるものではない。天然セルロースは好ましくは、叩解等の表面積を高める処理を施すと、反応効率を高めることができ、生産性を高めることができる。さらに、天然セルロースとして、単離、精製の後、ネバードライで保存していたものを使用するとミクロフィブリルの集束体が膨潤し易い状態であるため、やはり反応効率を高め、微細化処理後の数平均繊維径を小さくすることができ、好ましい。
 反応における天然セルロースの分散媒は水であり、反応水溶液中の天然セルロース濃度は、試薬の十分な拡散が可能な濃度であれば任意であるが、通常、反応水溶液の重量に対して約5%以下である。
In the oxidation reaction step, a dispersion liquid in which natural cellulose is dispersed in water is prepared. Here, natural cellulose means purified cellulose isolated from cellulose biosynthetic systems such as plants, animals, and bacteria-producing gels. More specifically, softwood pulp, hardwood pulp, cotton pulp such as cotton linter and cotton lint, non-wood pulp such as straw pulp and bagasse pulp, BC, cellulose isolated from sea squirt, and seaweed The cellulose can be exemplified, but is not limited thereto. Natural cellulose is preferably subjected to a treatment for increasing the surface area such as beating, whereby the reaction efficiency can be increased and the productivity can be increased. Furthermore, when natural cellulose that has been isolated and purified and stored in Never Dry is used, the microfibril bundles are likely to swell. The average fiber diameter can be reduced, which is preferable.
The dispersion medium of natural cellulose in the reaction is water, and the concentration of natural cellulose in the reaction aqueous solution is arbitrary as long as the reagent can sufficiently diffuse, but usually about 5% with respect to the weight of the reaction aqueous solution. It is as follows.
 また、セルロースの酸化触媒として使用可能なN-オキシル化合物は数多く報告されている(「Cellulose」Vol.10、2003年、第335~341ページにおけるI. Shibata及びA. Isogaiによる「TEMPO誘導体を用いたセルロースの触媒酸化:酸化生成物のHPSEC及びNMR分析」と題する記事)が、特にTEMPO(2,2,6,6-テトラメチル-1-ピペリジン-N-オキシル)、4-アセトアミド-TEMPO、4-カルボキシ-TEMPO、及び4-フォスフォノオキシ-TEMPOは水中常温での反応速度において好ましい。これらN-オキシル化合物の添加は触媒量で十分であり、好ましくは0.1~4mmol/l、さらに好ましくは0.2~2mmol/lの範囲で反応水溶液に添加する。 In addition, many N-oxyl compounds that can be used as an oxidation catalyst for cellulose have been reported (“Cellulose” Vol. 10, 2003, pages 335 to 341, using “TEMPO derivatives by I. Shibata and A. Isogai). The article entitled “Catalyzed Oxidation of Cellulose: HPSEC and NMR Analysis of the Oxidation Products”), in particular, TEMPO (2,2,6,6-tetramethyl-1-piperidine-N-oxyl), 4-acetamido-TEMPO, 4-Carboxy-TEMPO and 4-phosphonooxy-TEMPO are preferable in the reaction rate at room temperature in water. A catalytic amount is sufficient for the addition of these N-oxyl compounds, preferably 0.1 to 4 mmol / l, more preferably 0.2 to 2 mmol / l.
 共酸化剤として、次亜ハロゲン酸またはその塩、亜ハロゲン酸またはその塩、過ハロゲン酸またはその塩、過酸化水素、および過有機酸などが本発明において使用可能であるが、好ましくはアルカリ金属次亜ハロゲン酸塩、例えば、次亜塩素酸ナトリウムや次亜臭素酸ナトリウムである。次亜塩素酸ナトリウムを使用する場合、臭化アルカリ金属、たとえば臭化ナトリウムの存在下で反応を進めることが反応速度において好ましい。この臭化アルカリ金属の添加量は、N-オキシル化合物に対して約1~40倍モル量、好ましくは約10~20倍モル量である。一般に共酸化剤の添加量は、天然セルロース1gに対して約0.5~8mmolの範囲で選択することが好ましく、反応は約5~120分、長くとも240分以内に完了する。
 反応水溶液のpHは約8~11の範囲で維持されることが好ましい。水溶液の温度は約4~40℃において任意であるが、反応は室温で行うことが可能であり、特に温度の制御は必要としない。
As the co-oxidant, hypohalous acid or a salt thereof, hypohalous acid or a salt thereof, perhalogen acid or a salt thereof, hydrogen peroxide, a perorganic acid, and the like can be used in the present invention. Hypohalites such as sodium hypochlorite and sodium hypobromite. When sodium hypochlorite is used, it is preferable in terms of the reaction rate to advance the reaction in the presence of an alkali metal bromide such as sodium bromide. The addition amount of the alkali metal bromide is about 1 to 40 times mol, preferably about 10 to 20 times mol for the N-oxyl compound. In general, the amount of co-oxidant added is preferably in the range of about 0.5 to 8 mmol with respect to 1 g of natural cellulose, and the reaction is completed within about 5 to 120 minutes and at most 240 minutes.
The pH of the aqueous reaction solution is preferably maintained in the range of about 8-11. The temperature of the aqueous solution is arbitrary at about 4 to 40 ° C., but the reaction can be performed at room temperature, and the temperature is not particularly required to be controlled.
 精製工程においては、未反応の次亜塩素酸や各種副生成物等の反応スラリー中に含まれる反応物繊維と水以外の化合物を系外へ除去するが、反応物繊維は通常、この段階ではナノファイバー単位までばらばらに分散しているわけではないため、通常の精製法、すなわち水洗とろ過を繰り返すことで高純度(99質量%以上)の反応物繊維と水の分散体とする。該精製工程における精製方法は遠心脱水を利用する方法(例えば、連続式デカンダー)のように、上述した目的を達成できる装置であればどんな装置を利用しても構わない。
 こうして得られる反応物繊維の水分散体は絞った状態で固形分(セルロース)濃度としておよそ10質量%~50質量%の範囲にある。この後の工程で、ナノファイバーへ分散させる場合は、50質量%よりも高い固形分濃度とすると、分散に極めて高いエネルギーが必要となることから好ましくない。
In the refining process, reactant fibers and compounds other than water contained in the reaction slurry such as unreacted hypochlorous acid and various by-products are removed from the system. Since it is not dispersed evenly to the nanofiber unit, a normal purification method, that is, washing with water and filtration are repeated to obtain a dispersion of high-purity (99% by mass or more) reactant fiber and water. As the purification method in the purification step, any apparatus can be used as long as it can achieve the above-described object, such as a method using centrifugal dehydration (for example, a continuous decanter).
The aqueous dispersion of the reactant fibers thus obtained has a solid content (cellulose) concentration in the range of approximately 10% to 50% by mass in the squeezed state. In the subsequent step, when dispersing in nanofibers, a solid content concentration higher than 50% by mass is not preferable because extremely high energy is required for dispersion.
 さらに、本発明では、上述した精製工程にて得られる水を含浸した反応物繊維(水分散体)を溶媒中に分散させ分散処理を施すことにより、酸化セルロースの分散体を得ることができ、この分散体を乾燥させて用いる酸化セルロースとすることができる。
 ここで、分散媒としての溶媒は通常は水が好ましいが、水以外にも目的に応じて水に可溶するアルコール類(メタノール、エタノール、イソプロパノール、イソブタノール、sec-ブタノール、tert-ブタノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール、グリセリン等)、エーテル類(エチレングリコールジメチルエーテル、1,4-ジオキサン、テトラヒドロフラン等)、ケトン類(アセトン、メチルエチルケトン)やN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキサイド等を使用してもよい。また、これらの混合物も好適に使用できる。さらに、上述した反応物繊維の分散体を溶媒によって希釈、分散する際には、少しずつ溶媒を加えて分散していく、段階的な分散を試みると効率的にナノファイバーレベルの繊維の分散体を得ることができることがある。操作上の問題から、分散工程後の状態は粘性のある分散液あるいはゲル状の状態となるように分散条件を選択することができる。用いる酸化セルロースは、上記酸化セルロースの分散体でもよいものである。
 なお、本発明で用いることができる酸化セルロースは、上記製造法などに限定されるものでなく、上記セルロースの水酸基(-OH基)の一部がアルデヒド基(-CHO)およびカルボキシル基(-COOH基)の少なくとも一つの官能基で変性したものであればその製造法は特に限定されるものではない。
Furthermore, in the present invention, a dispersion of oxidized cellulose can be obtained by dispersing the reaction fiber (water dispersion) impregnated with water obtained in the above-described purification step in a solvent and performing a dispersion treatment, It can be set as the oxidized cellulose used by drying this dispersion.
Here, the solvent as the dispersion medium is usually preferably water, but in addition to water, alcohols that are soluble in water depending on the purpose (methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl) Cellosolve, ethyl cellosolve, ethylene glycol, glycerin, etc.), ethers (ethylene glycol dimethyl ether, 1,4-dioxane, tetrahydrofuran, etc.), ketones (acetone, methyl ethyl ketone), N, N-dimethylformamide, N, N-dimethylacetamide Dimethyl sulfoxide or the like may be used. Moreover, these mixtures can also be used conveniently. Furthermore, when diluting and dispersing the dispersion of the above-described reactant fibers with a solvent, the dispersion is gradually added by adding a solvent little by little. You may be able to get Due to operational problems, the dispersion conditions can be selected so that the state after the dispersion step is a viscous dispersion or gel. The oxidized cellulose used may be a dispersion of the above oxidized cellulose.
The oxidized cellulose that can be used in the present invention is not limited to the above-described production method and the like, and some of the hydroxyl groups (—OH groups) of the cellulose are aldehyde groups (—CHO) and carboxyl groups (—COOH). The production method is not particularly limited as long as it is modified with at least one functional group.
<筆記具用水性インク組成物>
 本発明の筆記具用水性インク組成物は、酸化セルロースを0.05~1.5質量%及びサクシノグリカンを0.005~1質量%少なくとも含有することを特徴とするものであり、例えば、水性のボールペンなどの筆記具用インク組成物として使用に供される。
 本発明において、上記酸化セルロースの含有量(固形分量)は、筆記具用水性インク組成物中(全量)に対して、0.05~1.5質量%(以下、単に「%」という)、好ましくは、0.1~1.0%とすることが望ましい。
 この酸化セルロースの含有量が0.05%未満では、充分な増粘作用が得られず、顔料などの固形分の経時的な沈降が発生することがあり、一方、1.5%を超えると、粘度が高くなるため、筆記描線の線割れ現象やインクの吐出不良が発生することがあるので好ましくない。
<Water-based ink composition for writing instruments>
The aqueous ink composition for a writing instrument according to the present invention is characterized by containing at least 0.05 to 1.5% by mass of oxidized cellulose and 0.005 to 1% by mass of succinoglycan. Used as an ink composition for a writing instrument such as a ballpoint pen.
In the present invention, the content (solid content) of the oxidized cellulose is 0.05 to 1.5% by mass (hereinafter simply referred to as “%”), preferably in the aqueous ink composition for writing instruments (total amount). Is preferably 0.1 to 1.0%.
If the content of oxidized cellulose is less than 0.05%, sufficient thickening action cannot be obtained, and precipitation of solids such as pigments may occur over time. On the other hand, if the content exceeds 1.5% Since the viscosity is increased, the phenomenon of broken lines in writing lines and ink ejection failure may occur.
 本発明の増粘剤として用いるサクシノグリカンは、微生物に由来する多糖類の一種であり、ガラクトースおよびグルコースから誘導される糖単位に加え、コハク酸およびピルビン酸および随意成分としての酢酸またはこれらの酸の塩から誘導される単位を含むものである。
 用いることができるサクシノグリカンとしては、例えば、市販のレオザンSH(RHODIA社製)が挙げられる。なお、本発明において「サクシノグリカン」とは、精製物及び変性物も含むものとする。
Succinoglycan used as a thickener of the present invention is a kind of polysaccharide derived from microorganisms. In addition to saccharide units derived from galactose and glucose, succinic acid and pyruvic acid and acetic acid as an optional component or these It contains units derived from acid salts.
Examples of succinoglycans that can be used include commercially available Leozan SH (manufactured by RHODIA). In the present invention, “succinoglycan” includes purified products and modified products.
 これらのサクシノグリカンの含有量は、水性インク組成物全量に対して、0.005~1%、好ましくは、0.01~1%とすることが望ましい。
 この含有量が0.005%未満であると、本発明の効果の発揮が不十分であり、一方、1%を超える場合は、レオロジー特性が阻害され、好ましくない。
 本発明において、本発明の効果を更に向上せしめる点から、好ましくは、前記酸化セルロースと前記サクシノグリカンの質量比率を30:1~1:2とすることが望ましく、更に好ましくは、25:1~1:2とすることが望ましい。
The content of these succinoglycans is 0.005 to 1%, preferably 0.01 to 1%, based on the total amount of the aqueous ink composition.
When the content is less than 0.005%, the effect of the present invention is not sufficiently exhibited. On the other hand, when the content exceeds 1%, the rheological properties are inhibited, which is not preferable.
In the present invention, from the viewpoint of further improving the effects of the present invention, it is preferable that the mass ratio of the oxidized cellulose and the succinoglycan is 30: 1 to 1: 2, more preferably 25: 1. It is desirable to set it to ˜1: 2.
 本発明の筆記具用水性インク組成物には、上記酸化セルロース、サクシノグリカンの他、少なくとも着色剤、水溶性溶剤が含有される。
 用いることができる着色剤としては、顔料及び/又は水溶性染料が挙げられる。顔料の種類については特に制限はなく、従来水性ボールペンなどの筆記具用に慣用されている無機系及び有機系顔料の中から任意のものを使用することができる。
The aqueous ink composition for a writing instrument of the present invention contains at least a colorant and a water-soluble solvent in addition to the oxidized cellulose and succinoglycan.
Colorants that can be used include pigments and / or water-soluble dyes. There is no restriction | limiting in particular about the kind of pigment, Arbitrary things can be used from the inorganic type and organic type pigment conventionally used for writing instruments, such as a water-based ballpoint pen.
 無機系顔料としては、例えば、カーボンブラックや、金属粉等が挙げられる。
 また、有機系顔料としては、例えば、アゾレーキ、不溶性アゾ顔料、キレートアゾ顔料、フタロシアニン顔料、ペリレン及びペリノン顔料、アントラキノン顔料、キナクリドン顔料、染料レーキ、ニトロ顔料、ニトロソ顔料などが挙げられる。具体的には、フタロシアニンブルー(C.I.74160)、フタロシアニングリーン(C.I.74260)、ハンザイエロー3G(C.I.11670)、ジスアゾイエローGR(C.I.21100)、パーマネントレッド4R(C.I.12335)、ブリリアントカーミン6B(C.I.15850)、キナクリドンレッド(C.I.46500)などが使用できる。
 また、スチレンやアクリル樹脂の粒子から構成されているプラスチックピグメントも使用できる。さらに、粒子内部に空隙のある中空樹脂粒子は白色顔料として、または、発色性、分散性に優れる後述する塩基性染料で染色した樹脂粒子(擬似顔料)等も使用できる。
Examples of inorganic pigments include carbon black and metal powder.
Examples of organic pigments include azo lakes, insoluble azo pigments, chelate azo pigments, phthalocyanine pigments, perylene and perinone pigments, anthraquinone pigments, quinacridone pigments, dye lakes, nitro pigments, and nitroso pigments. Specifically, phthalocyanine blue (C.I. 74160), phthalocyanine green (C.I. 74260), Hansa Yellow 3G (C.I. 11670), disazo yellow GR (C.I. 21100), permanent red 4R (C.I. 12335), brilliant carmine 6B (C.I. 15850), quinacridone red (C.I. 46500), etc. can be used.
Also, a plastic pigment composed of particles of styrene or acrylic resin can be used. Further, the hollow resin particles having voids inside the particles can be used as white pigments, or resin particles (pseudo pigments) dyed with a basic dye described later having excellent color development and dispersibility.
 水溶性染料としては、直接染料、酸性染料、食用染料、塩基性染料のいずれも用いることができる。
 直接染料としては、例えば、C.I.ダイレクトブラック17、同19、同22、同32、同38、同51、同71、C.I.ダイレクトエロー4、同26、同44、同50、C.I.ダイレクトレッド1、同4、同23、同31、同37、同39、同75、同80、同81、同83、同225、同226、同227、C.I.ダイレクトブルー1、同15、同71、同86、同106、同119などが挙げられる。
 酸性染料としては、例えば、C.I.アシッドブラック1、同2、同24、同26、同31、同52、同107、同109、同110、同119、同154、C.I.アシッドエロー7、同17、同19、同23、同25、同29、同38、同42、同49、同61、同72、同78、同110、同127、同135、同141、同142、C.I.アシッドレッド8、同9、同14、同18、同26、同27、同35、同37、同51、同52、同57、同82、同87、同92、同94、同115、同129、同131、同186、同249、同254、同265、同276、C.I.アシッドバイオレット18、同17、C.I.アシッドブルー1、同7、同9、同22、同23、同25、同40、同41、同43、同62、同78、同83、同90、同93、同103、同112、同113、同158、C.I.アシッドグリーン3、同9、同16、同25、同27などが挙げられる。
 食用染料としては、その大部分が直接染料又は酸性染料に含まれるが、含まれないものの一例としては、C.I.フードエロー3が挙げられる。
 塩基性染料としては、例えば、C.I.ベーシックエロー1、同2、同21、C.I.ベーシックオレンジ2、同14、同32、C.I.ベーシックレッド1、同2、同9、同14、C.I.ベーシックブラウン12、ベーシックブラック2、同8などが挙げられる。
 また、塩基性染料で染色した樹脂粒子としては、アクリロニトリル系共重合体の樹脂粒子を塩基性蛍光染料で染色した蛍光顔料などが挙げられる。具体的な商品名として、シンロイヒカラーSFシリーズ(シンロイヒ株式会社)、NKW及びNKPシリーズ(日本蛍光化学株式会社)などが挙げられる。
As the water-soluble dye, any of direct dyes, acid dyes, food dyes, and basic dyes can be used.
Examples of the direct dye include C.I. I. Direct Black 17, 19, 19, 22, 32, 38, 51, 71, C.I. I. Direct yellow 4, 26, 44, 50, C.I. I. Direct Red 1, 4, 23, 31, 37, 39, 75, 80, 81, 83, 225, 226, 227, C.I. I. Direct Blue 1, 15, 71, 86, 106, 119 and the like.
Examples of the acid dye include C.I. I. Acid Black 1, 2, 24, 26, 31, 31, 52, 107, 109, 110, 119, 154, C.I. I. Acid Yellow 7, 17, 19, 23, 25, 29, 38, 42, 49, 61, 72, 78, 110, 127, 135, 141, the same 142, C.I. I. Acid Red 8, 9, 9, 14, 26, 27, 35, 37, 51, 52, 57, 82, 87, 92, 94, 115, 129, 131, 186, 249, 254, 265, 276, C.I. I. Acid Violet 18, 17 and C.I. I. Acid Blue 1, 7, 9, 22, 23, 25, 40, 41, 43, 62, 78, 83, 90, 93, 103, 112, the same 113, 158, C.I. I. Acid Green 3, 9, 16, 25, 27 and the like.
Most of the food dyes are directly contained in the acid dyes or acid dyes. I. Food yellow 3 is mentioned.
Examples of basic dyes include C.I. I. Basic Yellow 1, 2 and 21, C.I. I. Basic Orange 2, 14, 32, C.I. I. Basic Red 1, 2, 9, 9, 14 C.I. I. Basic Brown 12, Basic Black 2, 8 and the like.
Examples of the resin particles dyed with a basic dye include fluorescent pigments obtained by dyeing acrylonitrile copolymer resin particles with a basic fluorescent dye. Specific product names include Sinloi Color SF Series (Sinloihi Co., Ltd.), NKW and NKP Series (Nippon Fluorochemicals Co., Ltd.).
 これらの着色剤は、それぞれ単独で用いてもよいし、2種類以上を組み合わせてもよく、筆記具用水性インク組成物全量中の含有量は、通常、0.5~30%、好ましくは、1~15%の範囲である。
 この着色剤の含有量が、0.5%未満では、着色が弱くなったり、筆跡の色相がわからなくなってしまうことがあり、一方、30%を超えて含有した場合に、筆記不良を生じることがあるので好ましくない。
These colorants may be used alone or in combination of two or more. The content in the total amount of the aqueous ink composition for writing instruments is usually 0.5 to 30%, preferably 1 It is in the range of ~ 15%.
If the content of this colorant is less than 0.5%, coloring may be weak or the hue of the handwriting may not be known. On the other hand, if it exceeds 30%, writing defects may occur. This is not preferable.
 用いることができる水溶性溶剤としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ポリエチレングリコール、3-ブチレングリコール、チオジエチレングリコール、グリセリン等のグリコール類や、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、単独或いは混合して使用することができる。この水溶性溶剤の含有量は、筆記具用水性インク組成物全量中、5~40%とすることが望ましい。 Examples of water-soluble solvents that can be used include glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, polyethylene glycol, 3-butylene glycol, thiodiethylene glycol, glycerin, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, and the like. These can be used alone or in combination. The content of the water-soluble solvent is preferably 5 to 40% in the total amount of the water-based ink composition for writing instruments.
 本発明の筆記具用水性インク組成物には、上記酸化セルロース、サクシノグリカン、着色剤、水溶性溶剤の他、残部として溶媒である水(水道水、精製水、蒸留水、イオン交換水、純水等)の他、本発明の効果を損なわない範囲で、分散剤、潤滑剤、pH調整剤、防錆剤、防腐剤もしくは防菌剤などを適宜含有することができる。 The water-based ink composition for a writing instrument of the present invention includes the above-mentioned oxidized cellulose, succinoglycan, colorant, water-soluble solvent, and water as a balance (tap water, purified water, distilled water, ion-exchanged water, pure water) In addition to water and the like, a dispersant, a lubricant, a pH adjuster, a rust inhibitor, a preservative, a fungicide, and the like can be appropriately contained as long as the effects of the present invention are not impaired.
 着色剤として顔料を用いた場合には、分散剤を使用することが好ましい。この分散剤は、顔料表面に吸着して、水との親和性を向上させ、水中に顔料を安定に分散させる作用をするものであり、ノニオン、アニオン界面活性剤や水溶性樹脂が用いられる。好ましくは水溶性高分子が用いられる。
 潤滑剤としては、顔料の表面処理剤にも用いられる多価アルコールの脂肪酸エステル、糖の高級脂肪酸エステル、ポリオキシアルキレン高級脂肪酸エステル、アルキル燐酸エステルなどのノニオン系や、高級脂肪酸アミドのアルキルスルホン酸塩、アルキルアリルスルホン酸塩などのアニオン系、ポリアルキレングリコールの誘導体やフッ素系界面活性剤、ポリエーテル変性シリコーンなどが挙げられる。
When a pigment is used as the colorant, it is preferable to use a dispersant. This dispersant acts on the pigment surface to improve the affinity with water and to stably disperse the pigment in water. Nonionic, anionic surfactants and water-soluble resins are used. A water-soluble polymer is preferably used.
Lubricants include nonionics such as fatty acid esters of polyhydric alcohols, higher fatty acid esters of sugars, polyoxyalkylene higher fatty acid esters, and alkyl phosphates, which are also used in pigment surface treatment agents, and alkyl sulfonic acids of higher fatty acid amides. Examples thereof include salts, anionic compounds such as alkyl allyl sulfonates, polyalkylene glycol derivatives, fluorosurfactants, and polyether-modified silicones.
 pH調整剤としては、アンモニア、尿素、モノエタノーアミン、ジエタノールアミン、トリエタノールアミンや、トリポリリン酸ナトリウム、炭酸ナトリウムなとの炭酸やリン酸のアルカリ金属塩、水酸化ナトリウムなどのアルカリ金属の水和物などが挙げられる。また、防錆剤としては、ベンゾトリアゾール、トリルトリアゾール、ジシクロへキシルアンモニウムナイトライト、サポニン類など、防腐剤もしくは防菌剤としては、フェノール、ナトリウムオマジン、安息香酸ナトリウム、ベンズイミダゾール系化合物などが挙げられる。 Examples of pH adjusters include ammonia, urea, monoethanolamine, diethanolamine, triethanolamine, sodium tripolyphosphate, sodium carbonate, and alkali metal salts of phosphoric acid and alkali metal hydrates such as sodium hydroxide. Etc. In addition, as rust preventives, benzotriazole, tolyltriazole, dicyclohexylammonium nitrite, saponins, etc., as antiseptics or fungicides, phenol, sodium omadin, sodium benzoate, benzimidazole compounds, etc. Can be mentioned.
 本発明の筆記具用水性インク組成物は、上記酸化セルロース、サクシノグリカン、着色剤、水溶性溶剤、その他の各成分を筆記具用(ボールペン用、マーキングペン用)インクの用途に応じて適宜組み合わせて、ホモミキサー、ホモジナイザーもしくはディスパー等の攪拌機により攪拌混合することにより、更に必要に応じて、ろ過や遠心分離によってインク組成物中の粗大粒子を除去すること等によって筆記具用水性インク組成物を調製することができる。
 水性ボールペン用では、該筆記具用水性インク組成物を、直径が0.18~2.0mmのボールを備えた水性ボールペン体に充填することにより作製することができる。
 用いる水性ボールペン体として、直径が上記範囲のボールを備えたものであれば、特に限定されず、特に、上記水性インク組成物をポリプロピレンチューブのインク収容管に充填し、先端のステンレスチップ(ボールは超鋼合金)を有するリフィールの水性ボールペンに仕上げたものが望ましい。
The water-based ink composition for writing instruments of the present invention is a combination of the above oxidized cellulose, succinoglycan, colorant, water-soluble solvent, and other components as appropriate according to the application of the ink for writing instruments (for ballpoint pens and marking pens). The aqueous ink composition for writing instruments is prepared by stirring and mixing with a stirrer such as a homomixer, homogenizer or disper, and if necessary, by removing coarse particles in the ink composition by filtration or centrifugation. be able to.
For an aqueous ballpoint pen, the aqueous ink composition for a writing instrument can be prepared by filling an aqueous ballpoint pen provided with balls having a diameter of 0.18 to 2.0 mm.
The aqueous ballpoint pen to be used is not particularly limited as long as it has a ball having a diameter in the above-mentioned range. In particular, the water-based ink composition is filled in an ink storage tube of a polypropylene tube, and a tip stainless tip (ball is A refilled water-based ballpoint pen with a super steel alloy) is desirable.
 本発明の筆記具用水性インク組成物の製造方法は、他の水性インク組成物の製造方法と比べて特に変わるところはなく製造することができる。
 すなわち、本発明の筆記具用水性インク組成物は、上述した酸化セルロース、サクシノグリカンを含む各成分をミキサー等、更に、例えば、強力な剪断を加えることができるビーズミル、ホモミキサー、ホモジナイザー、高圧ホモジナイザー、超音波ホモジナイザー、高圧湿式メディアレス微粒化装置等を用いて撹拌条件を好適な条件に設定等して混合攪拌することによって、チキソトロピー性インク(例えば、ゲルインク水性ボールペン用インク)を製造することができる。
 また、本発明の筆記具用水性インク組成物のpH(25℃)は、使用性、安全性、インク自身の安定性、インク収容体とのマッチング性の点からpH調整剤などにより5~10に調整されることが好ましく、更に好ましくは、6~9.5とすることが望ましい。
The method for producing a water-based ink composition for a writing instrument of the present invention can be produced without any particular change compared to other methods for producing a water-based ink composition.
That is, the water-based ink composition for a writing instrument of the present invention includes a component such as a mixer, and a bead mill, a homomixer, a homogenizer, and a high-pressure homogenizer that can apply strong shearing to the components including the above-described oxidized cellulose and succinoglycan. A thixotropic ink (for example, a gel ink water-based ballpoint pen ink) can be produced by mixing and stirring by setting the stirring condition to a suitable condition using an ultrasonic homogenizer, a high-pressure wet medialess atomizer, or the like. it can.
Further, the pH (25 ° C.) of the aqueous ink composition for a writing instrument of the present invention is adjusted to 5 to 10 by a pH adjuster or the like from the viewpoints of usability, safety, stability of the ink itself, and matching with the ink container. It is preferably adjusted, and more preferably 6 to 9.5.
 本発明の筆記具用水性インク組成物は、ボールペンチップ、繊維チップ、フェルトチップ、プラスチックチップなどのペン先部を備えたボールペン、マーキングペン等に搭載される。
 本発明におけるボールペンとしては、上記組成の筆記具用水性インク組成物をボールペン用インク収容体(リフィール)に収容すると共に、該インク収容体内に収容された水性インク組成物とは相溶性がなく、かつ、該水性インク組成物に対して比重が小さい物質、例えば、ポリブテン、シリコーンオイル、鉱油等がインク追従体として収容されるものが挙げられる。
 なお、ボールペン、マーキングペンの構造は、特に限定されず、例えば、軸筒自体をインク収容体として該軸筒内に上記構成の筆記具用水性インク組成物を充填したコレクター構造(インク保持機構)を備えた直液式のボールペン、マーキングペンであってもよいものである。
The water-based ink composition for a writing instrument of the present invention is mounted on a ballpoint pen, a marking pen or the like having a pen tip such as a ballpoint pen tip, a fiber tip, a felt tip, or a plastic tip.
As the ballpoint pen in the present invention, the water-based ink composition for writing instruments having the above composition is accommodated in a ballpoint pen ink container (refill), and is not compatible with the water-based ink composition housed in the ink container. Examples of the ink follower include substances having a small specific gravity with respect to the water-based ink composition, such as polybutene, silicone oil, mineral oil, and the like.
The structure of the ballpoint pen and the marking pen is not particularly limited. For example, a collector structure (ink holding mechanism) in which the shaft tube itself is used as an ink container and the water-based ink composition for a writing instrument having the above configuration is filled in the shaft tube. It may be a direct liquid ballpoint pen or a marking pen provided.
 このように構成される本発明の筆記具用水性インク組成物にあっては、用いる酸化セルロースが筆記具用水性インク組成物中に0.05~1.5%の低粘度であっても高い粘性を示し、かつ、セルロースに固有の高いチキソトロピーインデックスを示すため、筆記具用水性インク組成物の増粘・ゲル化剤として、従来の微細セルロースや、キサンタンガムより少量でレオロジーコントロール効果を発揮すると共に、該酸化セルロースを用いた場合における経時的な粘度分布の不均一性(粘度の上下差)をサクシノグリカンをインク組成物中に0.005~1%含有せしめることにより抑制して、経時的な粘度分布安定性に優れると共に、描線品位に優れる筆記具用水性インク組成物が得られることとなる。 In the water-based ink composition for a writing instrument of the present invention configured as described above, even if the oxidized cellulose used has a low viscosity of 0.05 to 1.5% in the water-based ink composition for a writing instrument, the viscosity is high. As a thickening and gelling agent for water-based ink compositions for writing instruments, it exhibits a rheology control effect in a smaller amount than conventional fine cellulose and xanthan gum, and also exhibits this oxidation property. When cellulose is used, the viscosity distribution over time is suppressed by adding 0.005 to 1% of succinoglycan in the ink composition. A water-based ink composition for a writing instrument having excellent stability and line drawing quality can be obtained.
 次に、実施例及び比較例により本発明を更に詳細に説明するが、本発明は下記実施例等に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.
〔実施例1~6及び比較例1~4〕
 下記物性となる酸化セルロースを用いて、下記表1に示す配合組成、具体的には、サクシノグリカン、着色剤などの配合組成により各筆記具用水性インク組成物の所定量を高圧湿式メディアレス微粒化装置(吉田機械興業社製、ナノヴェイタ)を用いて撹拌条件(剪断力、圧力、撹拌時間)を適宜変動させて湿式法で混合撹拌し、10μmのバッグフィルターで濾過することにより調製した。各筆記具用水性インク組成物の室温(25℃)下のpHをpH測定計(HORIBA社製)で測定したところ、7.9~8.2の範囲内であった。
[Examples 1 to 6 and Comparative Examples 1 to 4]
Using oxidized cellulose having the following physical properties, a predetermined amount of each water-based ink composition for a writing instrument is mixed with a composition shown in Table 1 below, specifically, a composition such as succinoglycan and a colorant. It was prepared by changing the stirring conditions (shearing force, pressure, stirring time) appropriately using a chemical conversion apparatus (Yoshida Kikai Kogyo Co., Ltd., Nanovaita), mixing and stirring by a wet method, and filtering with a 10 μm bag filter. The pH at room temperature (25 ° C.) of each water-based ink composition for writing instruments was measured with a pH meter (manufactured by HORIBA), and was within the range of 7.9 to 8.2.
 上記実施例1~6及び比較例1~4で得られた筆記具用水性インク組成物について、下記方法で粘度値を測定した。
 粘度値の測定に際しては、ガラス瓶2.5×2.5×5cm〔インク充填高さ(ガラス瓶内の底部からインクが充填された上面の高さ):4cm〕にて室温下で一ヶ月間保管した後、シリンジを用いてガラス瓶上部付近(インク充填高さ上部より0.5cm付近)のインクをとり、また、上記と同様にガラス瓶下部付近(インク充填高さ底部より0.5cm付近)のインクをとり、EMD型粘度計(東京計器社製)により、25℃における剪断速度38.3s-1の粘度値を測定した。なお、本発明において、良好な粘度分布としては、上記条件下では、粘度の上下比(上/下)が0.95~1.6の範囲となるものが好ましく、0.95~1.3の範囲となるものは特に好ましい。以下の判定(評価)基準で評価した。
 判定(評価)基準:
   ○:粘度の上下比が0.95以上~1.3以下
   △:粘度の上下比が1.3超過1.6以下
   ×:粘度の上下比が0.95未満、または1.6超過
 次に、上記実施例1~6及び比較例1~4で得られた筆記具用水性インク組成物について、下記方法により水性ボールペンを作製して、下記評価方法で描線品位(曳糸性)の評価を行った。
 これらの結果を下記表1に示す。
Viscosity values of the aqueous ink compositions for writing instruments obtained in Examples 1 to 6 and Comparative Examples 1 to 4 were measured by the following method.
When measuring the viscosity value, it is stored for 1 month at room temperature in a glass bottle 2.5 × 2.5 × 5 cm [ink filling height (height of the top surface filled with ink from the bottom in the glass bottle): 4 cm]. After that, use a syringe to remove the ink near the top of the glass bottle (about 0.5 cm from the top of the ink filling height), and in the same way as above, the ink near the bottom of the glass bottle (about 0.5 cm from the bottom of the ink filling height) The viscosity value at a shear rate of 38.3 s −1 at 25 ° C. was measured with an EMD viscometer (manufactured by Tokyo Keiki Co., Ltd.). In the present invention, the favorable viscosity distribution is preferably such that, under the above conditions, the upper / lower ratio (up / down) of the viscosity is in the range of 0.95 to 1.6, preferably 0.95 to 1.3. Those in the range are particularly preferred. The evaluation was made according to the following judgment (evaluation) criteria.
Judgment (evaluation) criteria:
○: Viscosity ratio is 0.95 to 1.3 or less △: Viscosity ratio is more than 1.3 and less than 1.6 ×: Viscosity ratio is less than 0.95 or more than 1.6 With respect to the aqueous ink compositions for writing instruments obtained in Examples 1 to 6 and Comparative Examples 1 to 4, an aqueous ballpoint pen was prepared by the following method, and the drawing quality (threading property) was evaluated by the following evaluation method. It was.
These results are shown in Table 1 below.
〔用いた酸化セルロース〕
 乾燥重量で2g相当分の未乾燥の亜硫酸漂白針葉樹パルプ(主に1000nmを超える繊維径の繊維から成る)、0.025gのTEMPOおよび0.25gの臭化ナトリウムを水150mlに分散させた後、13質量%次亜塩素酸ナトリウム水溶液を、1gのパルプに対して次亜塩素酸ナトリウムの量が2.5mmolとなるように次亜塩素酸ナトリウムを加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10.5に保った。pHに変化が見られなくなった時点で反応終了と見なし、反応物をガラスフィルターにてろ過した後、十分な量の水による水洗、ろ過を5回繰り返し、固形分量25質量%の水を含浸させた反応物繊維を得た。
 次に、該反応物繊維に水を加え、2質量%スラリーとし、回転刃式ミキサーで約5分間の処理を行った。処理に伴って著しくスラリーの粘度が上昇したため、少しずつ水を加えていき固形分濃度が0.15質量%となるまでミキサーによる分散処理を続けた。こうして得られたセルロース濃度が0.15質量%の酸化セルロースの分散体に対して、遠心分離により浮遊物の除去を行った後、水による濃度調製を行ってセルロース濃度が0.1質量%の透明かつやや粘調な酸化セルロースの分散体を得た。この分散体を乾燥させて得られた酸化セルロースを用いた。なお、表1の各実施例等に示した酸化セルロースは、上記で製造したものを各実施例等の固形分濃度で表示したものである。
[Oxidized cellulose used]
After dispersing dry sulphite bleached softwood pulp equivalent to 2 g dry weight (mainly consisting of fibers with a fiber diameter greater than 1000 nm), 0.025 g TEMPO and 0.25 g sodium bromide in 150 ml water, A 13% by mass sodium hypochlorite aqueous solution was added with sodium hypochlorite so that the amount of sodium hypochlorite was 2.5 mmol with respect to 1 g of pulp to initiate the reaction. During the reaction, a 0.5 M aqueous sodium hydroxide solution was added dropwise to keep the pH at 10.5. When the pH no longer changes, the reaction is considered to be complete, the reaction product is filtered through a glass filter, washed with a sufficient amount of water and filtered five times to impregnate 25% by weight of water with a solid content of 25% by mass. Reactant fibers were obtained.
Next, water was added to the reactant fiber to make a 2% by mass slurry, which was then treated with a rotary blade mixer for about 5 minutes. Since the viscosity of the slurry significantly increased with the treatment, water was gradually added and the dispersion treatment with the mixer was continued until the solid content concentration became 0.15% by mass. The dispersion of oxidized cellulose having a cellulose concentration of 0.15% by mass thus obtained was subjected to removal of suspended solids by centrifugation, and then the concentration was adjusted with water to give a cellulose concentration of 0.1% by mass. A transparent and slightly viscous dispersion of oxidized cellulose was obtained. Oxidized cellulose obtained by drying this dispersion was used. In addition, the oxidized cellulose shown to each Example etc. of Table 1 displays what was manufactured above by solid content concentration of each Example etc.
 上記で得た酸化セルロースの数平均繊維径は、下記方法により、確認、測定した。
<数平均繊維径>
 酸化セルロースの数平均繊維径を、次のようにして測定した。
 すなわち、酸化セルロースに水を加え希釈した試料をホモミキサーを用いて12000rpmで15分間分散した後、親水化処理済みのカーボン膜被覆グリッド上にキャストして、これを透過型電子顕微鏡(TEM)で観察し、得られた画像から、数平均繊維径を測定算出した。その結果、数平均繊維径は約140nmであった。
The number average fiber diameter of the oxidized cellulose obtained above was confirmed and measured by the following method.
<Number average fiber diameter>
The number average fiber diameter of the oxidized cellulose was measured as follows.
That is, a sample diluted with water added to oxidized cellulose was dispersed at 12000 rpm for 15 minutes using a homomixer, then cast on a carbon film-coated grid that had been subjected to a hydrophilic treatment, and this was measured with a transmission electron microscope (TEM). The number average fiber diameter was measured and calculated from the observed and obtained images. As a result, the number average fiber diameter was about 140 nm.
<セルロースI型結晶構造の確認>
 用いる酸化セルロースがI型結晶構造を有することの確認を次のようにして行った。
 すなわち、広角X線回折像測定により得られた回折プロファイルにおいて、2シータ=14~17°付近と、2シータ=22~23°付近の2つの位置に典型的なピークを持つことからI型結晶構造を有することを確認した。
<Confirmation of cellulose I type crystal structure>
It was confirmed as follows that the oxidized cellulose used had an I-type crystal structure.
That is, in the diffraction profile obtained by wide-angle X-ray diffraction image measurement, since there are typical peaks at two positions near 2 theta = 14 to 17 ° and 2 theta = 22 to 23 °, the type I crystal It was confirmed to have a structure.
(水性ボールペンの作製)
 上記で得られた各インク組成物を用いて水性ボールペンを作製した。具体的には、ボールペン〔三菱鉛筆株式会社製、商品名:シグノUM-100〕の軸を使用し、内径4.0mm、長さ113mmポリプロピレン製インク収容管とステンレス製チップ(超硬合金ボール、ボール径0.7mm)及び該収容管と該チップを連結する継手からなるリフィールに上記各水性インクを充填し、インク後端に鉱油を主成分とするインク追従体を装填し、水性ボールペンを作製した。
(Production of water-based ballpoint pen)
A water-based ballpoint pen was produced using each ink composition obtained above. Specifically, using a shaft of a ballpoint pen [Mitsubishi Pencil Co., Ltd., trade name: Signo UM-100], an inner diameter of 4.0 mm, a length of 113 mm, an ink containing tube made of polypropylene, and a stainless tip (a cemented carbide ball, A water ballpoint pen is manufactured by filling each water-based ink with a refill consisting of a joint connecting the receiving tube and the tip with a ball diameter of 0.7 mm, and an ink follower mainly composed of mineral oil at the rear end of the ink. did.
〔描線品位(曳糸性)の評価方法〕
 この水性ボールペンを用いて、原稿用紙に「GDP」と筆記を行い、下記評価基準に基づいて評価を行った。
 評価基準:
   ◎:描線に糸状の汚れの問題等は全くなく、優れた描線と認められる。
   ○:描線に糸状の汚れが僅かに認められる。
   △:描線に糸状の汚れが少量認められる。
   ×:描線に糸状の汚れが多量に認められる。
[Evaluation method of drawing quality (spinning)]
Using this water-based ballpoint pen, “GDP” was written on the manuscript paper, and evaluation was performed based on the following evaluation criteria.
Evaluation criteria:
A: There is no problem of thread-like dirt on the drawn line, and it is recognized as an excellent drawn line.
○: Slight thread-like stains are observed on the drawn lines.
Δ: A small amount of thread-like dirt is observed on the drawn line.
X: A large amount of thread-like dirt is recognized in the drawn line.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から明らかなように、本発明となる実施例1~6の筆記具用水性インク組成物は、満足のいく経時的な粘度分布の均一性が保たれると共に、描線品位に優れることが判明した。 As is apparent from the results in Table 1 above, the aqueous ink compositions for writing instruments of Examples 1 to 6 according to the present invention maintain satisfactory uniformity of viscosity distribution over time and are excellent in line drawing quality. It has been found.
 水性のボールペン、マーキングペンなどの筆記具に好適な筆記具用水性インク組成物が得られる。 An aqueous ink composition for writing instruments suitable for writing instruments such as water-based ballpoint pens and marking pens can be obtained.

Claims (3)

  1.  酸化セルロースを0.05~1.5質量%及びサクシノグリカンを0.005~1質量%少なくとも含有することを特徴とする筆記具用水性インク組成物。 A water-based ink composition for a writing instrument comprising 0.05 to 1.5% by mass of oxidized cellulose and 0.005 to 1% by mass of succinoglycan.
  2.  前記酸化セルロースと前記サクシノグリカンの質量比率が30:1~1:2であることを特徴とする請求項1に記載の筆記具用水性インク組成物。 The water-based ink composition for a writing instrument according to claim 1, wherein the mass ratio of the oxidized cellulose to the succinoglycan is 30: 1 to 1: 2.
  3.  請求項1又は2に記載の筆記具用水性インク組成物を搭載したことを特徴とする筆記具。 A writing instrument comprising the water-based ink composition for a writing instrument according to claim 1 or 2 mounted thereon.
PCT/JP2015/075458 2014-09-25 2015-09-08 Water-based ink composition for writing instruments WO2016047434A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014195540A JP6393568B2 (en) 2014-09-25 2014-09-25 Water-based ink composition for writing instruments
JP2014-195540 2014-09-25

Publications (1)

Publication Number Publication Date
WO2016047434A1 true WO2016047434A1 (en) 2016-03-31

Family

ID=55580961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075458 WO2016047434A1 (en) 2014-09-25 2015-09-08 Water-based ink composition for writing instruments

Country Status (3)

Country Link
JP (1) JP6393568B2 (en)
TW (1) TWI683865B (en)
WO (1) WO2016047434A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11697743B2 (en) * 2016-12-05 2023-07-11 Pentel Kabushiki Kaisha Ink composition, writing instrument and method for producing ink composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6846195B2 (en) * 2016-12-27 2021-03-24 株式会社パイロットコーポレーション Aqueous ink composition for writing tools and writing tools using it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031465A (en) * 2005-07-22 2007-02-08 Pilot Ink Co Ltd Ink composition for discoloring ball point pen, discoloring ball point pen using the same and writing utensil set
JP2013181167A (en) * 2012-03-05 2013-09-12 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous ink composition and writing instrument using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031465A (en) * 2005-07-22 2007-02-08 Pilot Ink Co Ltd Ink composition for discoloring ball point pen, discoloring ball point pen using the same and writing utensil set
JP2013181167A (en) * 2012-03-05 2013-09-12 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous ink composition and writing instrument using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11697743B2 (en) * 2016-12-05 2023-07-11 Pentel Kabushiki Kaisha Ink composition, writing instrument and method for producing ink composition

Also Published As

Publication number Publication date
JP6393568B2 (en) 2018-09-19
JP2016065174A (en) 2016-04-28
TW201627425A (en) 2016-08-01
TWI683865B (en) 2020-02-01

Similar Documents

Publication Publication Date Title
JP6202965B2 (en) Water-based ink composition for writing instruments
JP5545775B2 (en) Aqueous ink composition and writing instrument using the same
JP6339914B2 (en) Water-based ink composition for writing instruments
JP6334139B2 (en) Water-based ink composition for writing instruments
JP6393568B2 (en) Water-based ink composition for writing instruments
JP6571455B2 (en) Water-based ink composition for writing instruments
JP6322451B2 (en) Writing instrument
JP2015174993A (en) Aqueous ink composition for writing instrument
JP2017048274A (en) Aqueous ink composition for writing instrument
JP2017125135A (en) Aqueous ink composition for writing instruments
JP2017105907A (en) Aqueous ink composition for writing instrument
JP6712465B2 (en) Aqueous ink composition for writing instruments
JP6571496B2 (en) Water-based ink composition for writing instruments
JP6647018B2 (en) Aqueous ink composition for writing implements
JP6180293B2 (en) Water-based ink composition for writing instruments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844817

Country of ref document: EP

Kind code of ref document: A1