WO2016047124A1 - Method for producing zeolite - Google Patents

Method for producing zeolite Download PDF

Info

Publication number
WO2016047124A1
WO2016047124A1 PCT/JP2015/004785 JP2015004785W WO2016047124A1 WO 2016047124 A1 WO2016047124 A1 WO 2016047124A1 JP 2015004785 W JP2015004785 W JP 2015004785W WO 2016047124 A1 WO2016047124 A1 WO 2016047124A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
nanozeolite
hydrothermal synthesis
slurry
value
Prior art date
Application number
PCT/JP2015/004785
Other languages
French (fr)
Japanese (ja)
Inventor
上野 巌
小杉 直貴
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015034014A external-priority patent/JP2016069266A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016047124A1 publication Critical patent/WO2016047124A1/en
Priority to US15/466,185 priority Critical patent/US10239760B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/14Type A

Definitions

  • the present disclosure relates to a method for producing fine zeolite having a nano particle size.
  • Patent Document 1 discloses a method for producing fine zeolite (nanozeolite) in which fine zeolite obtained by pulverizing zeolite is dispersed in an aluminosilicate solution having a specific composition and recrystallized.
  • the present disclosure provides a method for producing a fine zeolite having a particle size that is more excellent in moisture absorption characteristics and having a nano size.
  • the method for producing a nanozeolite according to the present disclosure includes a step of physically pulverizing a zeolite in which a ratio of a Na / Si value at a point having a depth of 10 nm from the surface to a Na / Si value on the surface is 90% or more; Crystallizing the physically ground zeolite.
  • FIG. 1 is a flowchart showing a method for producing nanozeolite according to Embodiment 1.
  • FIG. 2 is a diagram showing the relationship between the depth from the surface and the Na / Si value of zeolite and nanozeolite.
  • FIG. 3 is a schematic view for explaining a physical pulverization process of zeolite by a bead mill pulverizer.
  • FIG. 4 is a schematic diagram for explaining a hydrothermal synthesis process by an autoclave.
  • FIG. 5 is a schematic diagram for explaining an ion exchange process from sodium to magnesium.
  • FIG. 1 is a flowchart showing a method for producing nanozeolite according to Embodiment 1.
  • FIG. 2 is a diagram showing the relationship between the depth from the surface and the Na / Si value of zeolite and nanozeolite.
  • FIG. 3 is a schematic view for explaining a physical pulverization process of zeolite by a bead mill pulverizer.
  • FIG. 4
  • FIG. 6 is a diagram for explaining a difference in moisture absorption and desorption characteristics between a nanozeolite crystallized by hydrothermal synthesis treatment and a nanozeolite crystallized by heat treatment in the atmosphere.
  • FIG. 7 is a diagram for explaining a hydrothermal synthesis time effective for recrystallization of zeolite.
  • FIG. 8 is a diagram for explaining recrystallization of zeolite by hydrothermal synthesis.
  • FIG. 9 is a diagram for explaining the difference in recrystallization of zeolite due to the difference in the composition of the initial zeolite based on the measurement result of the hygroscopic desorption characteristics.
  • FIG. 7 is a diagram for explaining a hydrothermal synthesis time effective for recrystallization of zeolite.
  • FIG. 8 is a diagram for explaining recrystallization of zeolite by hydrothermal synthesis.
  • FIG. 9 is a diagram for explaining the difference in recrystallization of zeolite due to the difference in the
  • FIG. 10 is a diagram for explaining a difference in recrystallization of zeolite due to a difference in the composition of the initial zeolite based on the X-ray diffraction measurement result.
  • FIG. 11 is a diagram for explaining the replacement conditions in the ion exchange treatment from sodium to magnesium.
  • FIG. 12A is a view showing a scanning electron micrograph showing the particle structure of sodium-based zeolite as an initial input material.
  • FIG. 12B is a scanning electron micrograph showing the particle structure after physically pulverizing sodium-based zeolite.
  • FIG. 12C is a diagram showing a scanning electron micrograph showing the particle structure of a product obtained by subjecting sodium-based zeolite to physical pulverization and then hydrothermal synthesis treatment.
  • FIG. 12A is a view showing a scanning electron micrograph showing the particle structure of sodium-based zeolite as an initial input material.
  • FIG. 12B is a scanning electron micrograph showing the particle structure after physically pulverizing sodium
  • FIG. 13A is a view showing a scanning electron micrograph showing the particle structure of calcium-based zeolite as an initial input material.
  • FIG. 13B is a view showing a scanning electron micrograph showing the particle structure after physically pulverizing calcium-based zeolite.
  • FIG. 13C is a view showing a scanning electron micrograph showing the particle structure of a product obtained by subjecting a calcium-based zeolite to physical pulverization and then hydrothermal synthesis treatment.
  • FIG. 14 is a flowchart showing a method for producing nanozeolite when a drying step is not provided after the hydrothermal synthesis step.
  • FIG. 14 is a flowchart showing a method for producing nanozeolite when a drying step is not provided after the hydrothermal synthesis step.
  • FIG. 15 is a diagram for explaining a difference in recrystallization of zeolite depending on the presence or absence of a drying step after the hydrothermal synthesis step based on the X-ray diffraction measurement result.
  • FIG. 16 is a diagram for explaining the difference in recrystallization of zeolite depending on the presence or absence of the drying step after the hydrothermal synthesis step based on the measurement result of the moisture absorption and desorption characteristics.
  • FIG. 17 is a diagram for explaining an example of an application in which nano-zeolite is formed into a film.
  • FIG. 1 is a flowchart showing a method for producing nanozeolite according to Embodiment 1.
  • a method for producing nanozeolite will be described in order according to the flowchart shown in FIG.
  • a nanozeolite is a zeolite having a particle size of nano size, and in the present embodiment, a zeolite having a particle size of nano size is defined as nano zeolite.
  • a slurry is produced by mixing sodium-based zeolite (hereinafter referred to as Na-based zeolite) serving as a main raw material with H 2 O (S100).
  • Na-based zeolite serving as a main raw material
  • LTA A-type zeolite:
  • Na-based zeolite is used as the Na-based zeolite that is the initial input material.
  • the relationship between the depth from the surface and the Na / Si value, which is the composition ratio, satisfies a predetermined condition.
  • FIG. 2 is a diagram showing the relationship between the depth from the surface and the Na / Si value of zeolite and nanozeolite.
  • the vertical axis indicates the Na / Si value
  • the horizontal axis indicates the depth from the surface of the zeolite and nanozeolite (the surface depth is 0 nm, and the Na / Si value on the surface is 1). .00).
  • (A_int) is a plot of the Na / Si value with respect to the depth from the surface of the zeolite A
  • (B_int) is the Na / Si value with respect to the depth from the surface of the zeolite B. It is a plot. Zeolite A and zeolite B are both LTA, but the relationship between the depth from the surface and the Na / Si value is different. That is, the ratio of the Na / Si value at the point where the depth from the surface is 10 nm to the Na / Si value at the surface is 90% in the zeolite A, and the Na / Si value at the point where the depth from the surface is 30 nm. The percentage is 70%.
  • the comparison target zeolite B has a ratio of Na / Si value at a point where the depth from the surface is 10 nm to Na / Si value on the surface is 65%, and Na at a point where the depth from the surface is 30 nm.
  • the ratio of / Si value is also 65%.
  • (A_nano) is a plot of the Na / Si value versus the depth from the surface of the nanozeolite A produced from zeolite A
  • (B_nano) is the nanozeolite produced from zeolite B
  • B is a plot of Na / Si values versus depth from the surface.
  • nanozeolite B has a larger gradient of Na / Si value in the depth direction from the surface (Na / Si value is greatly reduced) than nanozeolite A.
  • the inventors have discovered that the gradient of Na / Si value with respect to the depth direction from the surface affects the hygroscopic properties of the nanozeolite, such as the depth from the surface and Na / Si, such as zeolite A. From the zeolite having a relationship with the value, it has been found that nano-zeolite having good moisture absorption characteristics can be produced.
  • zeolite A which is a Na-based zeolite, is used as an initial charging material. Thereby, as above-mentioned, the production
  • zeolite A initial particle size 5 ⁇ m, 100 g
  • H 2 O 100 g
  • zirconia (ZrO 2) cobblestone particle size 100 ⁇ m, 400 g
  • the particle diameter of Na-based zeolite as the initial input material is not particularly limited, and for example, a particle having a size of about 0.1 to 10 ⁇ m can be used.
  • FIG. 3 is a schematic view for explaining a physical grinding process of zeolite by a bead mill grinder.
  • physical pulverization by the bead mill pulverizer 100 is performed using a slurry tank 130 and a pipe 140.
  • the bead mill pulverizer 100 includes a rotary blade capable of physically pulverizing the input material. When the rotary blade rotates at high speed, the input material can be physically pulverized to the nanoscale.
  • the bead mill pulverizer 100 has a slurry supply port 110 and a slurry discharge port 120.
  • the slurry supply port 110 and the slurry discharge port 120 are each connected to a pipe 140.
  • a specific physical pulverization process by the bead mill pulverizer 100 will be described.
  • the bead mill pulverizer 100 is driven, and pulverization is performed for about 3 hours until the average particle size of zeolite A reaches 120 nm.
  • the slurry flow rate at this time is 10 kg / hour, and the slurry viscosity is 10 mPa / second.
  • the bead mill pulverizer 100 is connected to a slurry tank 130. By putting H 2 O into the slurry tank 130, the slurry circulates between the bead mill pulverizer 100 and the slurry tank 130 via the pipe 140.
  • the pipe 140 connected to the slurry tank 130 is once retracted from the slurry tank 130 to another storage container.
  • the bead mill pulverizer 100 is driven, the amount of slurry in the slurry tank 130 decreases.
  • 100 g of H 2 O is added to the slurry tank 130.
  • the driving of the bead mill pulverizer 100 is stopped. Thereby, the inside of the bead mill grinder 100 is washed with H 2 O.
  • the previously used zirconia cobblestone (particle size: 100 ⁇ m) is laminated on the bottom of the bead mill pulverizer 100, and this is taken out.
  • another new zirconia cobblestone (particle size 50 ⁇ m, 400 g) is charged from a cobblestone inlet (not shown) of the bead mill pulverizer 100.
  • the pipe 140 that has been withdrawn is reconnected to the slurry tank 130, and the slurry that has been withdrawn previously in the storage container is reintroduced into the slurry tank 130, and at the same time, the driving of the bead mill crusher 100 is resumed.
  • the previously used zirconia boulder (particle size 50 ⁇ m) is taken out of the bead mill pulverizer 100, and another new zirconia cobblestone (particle size 30 ⁇ m, 450 g) is put in instead.
  • 100 g of H 2 O is added, and pulverization is performed until the average particle size of zeolite A is less than 50 nm for about 1 hour.
  • the slurry flow rate at this time is 10 kg / hour, and the slurry viscosity is 4 mPa / second.
  • the average particle size of the pulverized Na-based zeolite is not particularly limited, but it is beneficial to be about 30 to 100 nm, for example.
  • the amorphous slurry immediately after being taken out from the bead mill pulverizer 100 is gelled. Therefore, before moving to the next step (hydrothermal synthesis step), this gelled amorphous slurry is placed on a pod stand and rotated. Thereby, gelatinization is relieved and an amorphous slurry comes to exhibit fluidity.
  • FIG. 4 is a schematic diagram for explaining a hydrothermal synthesis process (recrystallization process) by an autoclave.
  • the autoclave 200 is made of a stainless steel container.
  • amorphous slurry exhibiting fluidity generated in the previous step is put into a stainless steel container (SUS316, capacity 100 cc, temperature resistance 200 ° C., pressure resistance 50 MPa) constituting the autoclave 200.
  • the stainless steel container has a sealed structure that is sealed by a lid provided with a safety valve. Inside the stainless steel container, a fluororesin container is enclosed. The amorphous slurry is put into a fluorine resin container, and the stainless steel container is sealed. This is placed in a dryer and sealed, and the internal temperature of the dryer is set to 180 ° C. When heating is started, the inside of the dryer rises from room temperature 25 ° C. and reaches 180 ° C. after about 15 minutes.
  • the slurry is taken out from the autoclave 200.
  • a stainless steel container is taken out from the 180 ° C. chamber, and the stainless steel container is put into water (room temperature) and rapidly cooled. After confirming that the temperature of the stainless steel container has dropped to near room temperature, loosen the safety valve to leak the internal pressure and remove the lid.
  • the slurry is taken out into another fluororesin container. By adding water to the fluororesin container, the slurry near the bottom of the fluororesin container can also be taken out.
  • the slurry after hydrothermal synthesis in S120 is taken out and dried (S130).
  • the fluororesin container into which the taken slurry is put is covered with an aluminum foil to prevent bumping and dust mixing.
  • the fluororesin container is placed in a dryer and left at 180 ° C. for 2 to 3 hours.
  • the drying temperature for drying the slurry after hydrothermal synthesis is no particular limitation on the drying temperature for drying the slurry after hydrothermal synthesis, but it is beneficial to be about 150 to 200 ° C., for example.
  • the fluororesin container is taken out of the dryer and left to reach room temperature to obtain Na-based nanozeolite. Since the dry powder of the slurry is solidified in the fluororesin container, it is crushed in a mortar and the particle diameter is adjusted so that the average particle diameter is 50 nm through a mesh pass.
  • FIG. 5 is a schematic diagram for explaining an ion exchange process from sodium to magnesium.
  • the nanozeolite precipitates at the bottom of the glass container 210. Therefore, the supernatant liquid in the glass container 210 is discarded, and 200 g of H 2 O is put into the glass container 210 again.
  • a glass container 210 is placed on a hot plate and stirred for about 10 to 15 minutes with a rotor while heating to about 60 ° C.
  • the nanozeolite precipitates at the bottom of the glass container 210. Therefore, the supernatant liquid in the glass container 210 is discarded. This series of steps is repeated about 5 times. It is advantageous to adjust the temperature of the reaction system during the ion exchange treatment to about 40 to 80 ° C. and the treatment time to about 6 to 8 hours. Since the glass container 210 is transparent, it can be easily observed from the outside that the nanozeolite is precipitated.
  • the sodium (alkali metal) contained in the Na-based zeolite as the initial input material is likely to cause ion migration, and may cause defects when the obtained Na-based nanozeolite is applied to an electronic component.
  • the Mg-based nanozeolite obtained by ion exchange with magnesium (alkaline earth metal) having less ion migration than sodium is applied to an electronic component. This is more beneficial because there is no defect.
  • the nanozeolite precipitated on the bottom of the glass container 210 is transferred to the fluororesin container.
  • the fluororesin container is covered with aluminum foil to prevent bumping and dust mixing.
  • the fluororesin container is placed in a dryer and left at 180 ° C. for 2 to 3 hours for drying (S150).
  • the fluororesin container is taken out from the dryer and left until the fluororesin container reaches room temperature. Since the dry powder of the slurry is solidified in the fluororesin container, it is crushed in a mortar and the particle diameter is adjusted so that the average particle diameter is 50 nm through a mesh pass. Thereby, Mg-based nanozeolite can be obtained.
  • the drying temperature at the time of drying the slurry after ion exchange is not particularly limited, but it is beneficial to be about 150 to 200 ° C., for example.
  • FIG. 6 shows the difference in moisture absorption and desorption characteristics at 25 ° C. between nanozeolite crystallized by hydrothermal synthesis treatment of physically pulverized zeolite and nanozeolite crystallized by heat treatment in air. It is a figure for demonstrating.
  • the vertical axis Va (cm 3 (STP) / g) in FIG. 6 is a value obtained by converting the amount of moisture absorbed per 1 g of the sample into the volume of gas in the standard state (0 ° C., 1 atm). That is, Va represents the volume of water vapor that 1 g of zeolite adsorbs in the standard state.
  • the horizontal axis P / P 0 in FIG. 6 is the relative pressure, P 0 is the saturated vapor pressure (kPa) at the measurement temperature (25 ° C.), and P is the absolute pressure (kPa).
  • (A_int_d) and (A_int_a) plot the measurement results of zeolite A, which is the initial input material.
  • (A_nano1_d) and (A_nano1_a) are plots of measurement results of nanozeolite A produced by subjecting zeolite A to physical pulverization with a bead mill pulverizer and hydrothermal synthesis treatment (180 ° C., 15 hours).
  • (A_nano2_d) and (A_nano2_a) are plots of the measurement results of nanozeolite A produced by physically pulverizing zeolite A with a bead mill pulverizer and then heat-treating it in the atmosphere (400 ° C.).
  • (A_int_d), (A_nano1_d), and (A_nano2_d) are plots of desorption characteristics, and (A_int_a), (A_nano1_a), and (A_nano2_a) are plots of adsorption characteristics.
  • the hygroscopic property of the nanozeolite A is not expressed as much as the zeolite A as the initial input material.
  • nanozeolites A exhibiting the same hygroscopic property as zeolite A as the initial input material can be obtained by performing the hydrothermal synthesis treatment.
  • FIG. 7 is a diagram for explaining the hydrothermal synthesis time effective for recrystallization of physically pulverized zeolite based on the X-ray diffraction (hereinafter referred to as XRD) measurement result.
  • (A_int) is an XRD measurement result of the initial zeolite.
  • (A_nano1_x1) is an XRD measurement result of nanozeolite when hydrothermal synthesis is performed for 24 hours.
  • A_nano1_x2) is an XRD measurement result of the nanozeolite when hydrothermal synthesis is performed for 36 hours.
  • A_nano1_x3) is an XRD measurement result of nanozeolite when hydrothermal synthesis is performed for 48 hours.
  • the hydrothermal synthesis time is shorter than 48 hours.
  • the hydrothermal synthesis is performed by setting the hydrothermal synthesis time to a particularly useful 15 to 24 hours.
  • FIG. 8 is a diagram for explaining recrystallization of zeolite by hydrothermal synthesis based on the XRD measurement results.
  • (A_int) is an XRD measurement result of the initial zeolite A.
  • (A_nano1_y1) is an XRD measurement result of zeolite A immediately after being physically pulverized by a bead mill pulverizer.
  • (A_nano1_y2) is an XRD measurement result of nanozeolite A after physical pulverization with a bead mill and hydrothermal synthesis (180 ° C., 15 hours).
  • (A_nano1_y3) is an XRD measurement result of nanozeolite A after physical pulverization with a bead mill and heat treatment (400 ° C.) in the atmosphere.
  • the physically pulverized zeolite A can be effectively recrystallized by performing hydrothermal synthesis treatment (180 ° C., 15 hours) after physically pulverizing the zeolite A with a bead mill pulverizer. .
  • FIG. 9 is a diagram for explaining the difference in recrystallization of zeolite due to the difference in the composition of the initial zeolite based on the measurement result of the moisture absorption and desorption characteristics at 25 ° C.
  • the zeolite A and zeolite B which are both LTA, but have different Na / Si gradients in the depth direction from the surface, and the hygroscopic desorption characteristics of the produced nanozeolite A and nanozeolite B are shown. Yes.
  • (A_int_d) and (A_int_a) plot the measurement results of zeolite A, which is the initial input material.
  • (B_nano_d) and (B_nano_a) are plots of the measurement results of zeolite B, which is the initial input material.
  • (A_nano1_a) is a plot of measurement results of nanozeolite A produced by physical pulverization of zeolite A with a bead mill and then hydrothermal synthesis (180 ° C., 15 hours).
  • (B_nano1_d) and (B_nano1_a) are plots of the measurement results of nanozeolite B produced by hydrothermal synthesis (180 ° C., 15 hours) after physically pulverizing zeolite B with a bead mill pulverizer. Note that (A_int_d), (B_nano_d), and (B_nano1_d) are plots of desorption characteristics, and (A_int_a), (B_nano_a), (A_nano1_a), and (B_nano1_a) are plots of adsorption characteristics.
  • nanozeolite A exhibits moisture absorption characteristics equivalent to zeolite A, which is the initial input material.
  • nano-zeolite B has lower moisture absorption characteristics than zeolite B, which is the initial input material.
  • the gradient of Na / Si value with respect to the depth direction from the surface of the zeolite as the initial input material (the depth between the surface and the Na / Si value) (Relationship) is an important factor.
  • FIG. 10 is a diagram for explaining the difference in recrystallization of zeolite due to the difference in the initial zeolite composition based on the XRD measurement results. Specifically, XRD measurement results of zeolite A and zeolite B, which are both LTA, but have different Na / Si value gradients in the depth direction from the surface, and produced nanozeolite A and nanozeolite B are shown. Yes.
  • (A_int) is an XRD measurement result of zeolite A which is an initial input material.
  • B_int is an XRD measurement result of zeolite B which is the initial input material.
  • A_nano is an XRD measurement result of nanozeolite A produced by physically pulverizing zeolite A with a bead mill and then subjecting it to hydrothermal synthesis (180 ° C., 15 hours).
  • (B_nano) is an XRD measurement result of nano-zeolite B produced by physical pulverization of zeolite B with a bead mill pulverizer and hydrothermal synthesis treatment (180 ° C., 15 hours).
  • nanozeolite A shows the same XRD measurement results as zeolite A, which is the initial input material.
  • the nano-zeolite B has a different XRD measurement result from the zeolite B which is the initial input material.
  • FIG. 11 is a diagram for explaining the replacement conditions in the ion exchange treatment from sodium to magnesium.
  • the vertical axis represents the atomic concentration (%), and the horizontal axis represents the replacement condition.
  • Na is a plot of the atomic concentration of sodium under each substitution condition
  • Mg is a plot of the atomic concentration of magnesium under each substitution condition.
  • the atomic concentration of sodium is 10% and the atomic concentration of magnesium is 0%.
  • this nanozeolite A was put into a magnesium chloride (MgCl 2) aqueous solution and stirred at room temperature for 2 hours (substitution condition “RT”), the atomic concentration of sodium was 9%, and the atomic concentration of magnesium Is 1.5%.
  • substitution condition “boiled water bath” the atomic concentration of sodium is 4.5% and the atomic concentration of magnesium is 7%.
  • FIG. 12 is a scanning electron microscope (hereinafter referred to as SEM) photograph in the process of producing nanozeolite using Na-based zeolite as the initial input material.
  • FIG. 12A is an SEM photograph of Na-based zeolite as the initial input material.
  • FIG. 12B is an SEM photograph after physically pulverizing Na-based zeolite with a bead mill.
  • FIG. 12C is an SEM photograph of a product obtained by physically pulverizing Na-based zeolite with a bead mill and then subjecting it to hydrothermal synthesis (180 ° C., 15 hours).
  • the Na-based zeolite as the initial input material has a crystal structure.
  • the physical structure pulverizes the Na-based zeolite, but the crystal structure is lost.
  • FIG. 12C it can be seen that by performing a hydrothermal synthesis treatment, recrystallization is performed in a nano-structured state, and Na-based nanozeolite having the same crystal structure as the initial input material is generated.
  • FIGS. 13A to 13C are SEM photographs in the process of producing nano-zeolite when calcium-based zeolite (hereinafter referred to as Ca-based zeolite) is used as an initial input material as an example of alkaline earth metal-based zeolite instead of magnesium-based zeolite. is there.
  • FIG. 13A is an SEM photograph of Ca-based zeolite that is the initial input material.
  • FIG. 13B is an SEM photograph after physical pulverization of Ca-based zeolite with a bead mill.
  • FIG. 13C is an SEM photograph of a product obtained by physically pulverizing Ca-based zeolite with a bead mill and then subjecting it to hydrothermal synthesis (180 ° C., 15 hours).
  • the Ca-based zeolite as the initial input material has a crystal structure.
  • FIG. 13B it can be seen that by physically pulverizing, the Ca-based zeolite is nano-sized, but the crystal structure is lost.
  • FIG. 13C it is understood that the Ca-based zeolite is recrystallized by performing the hydrothermal synthesis treatment, but the product has a crystal structure different from that of the initial charge material.
  • FIG. 14 is a flowchart showing a method for producing nanozeolite when a drying step is not provided after the hydrothermal synthesis step.
  • Steps S200 to S220 in FIG. 14 correspond to steps S100 to S120 in FIG.
  • each step of S230 to S240 in FIG. 14 corresponds to each step of S140 to S150 in FIG. That is, in the flowchart shown in FIG. 14, the drying step (S130) after the hydrothermal synthesis step is deleted from the flowchart shown in FIG.
  • the inventors have found that the presence or absence of a drying step after the hydrothermal synthesis step affects the recrystallization of the zeolite. This will be described in detail below.
  • FIG. 15 is a diagram for explaining a difference in recrystallization of zeolite depending on the presence or absence of a drying step after the hydrothermal synthesis step based on the XRD measurement result.
  • (A_nano) is an XRD measurement result of nano-zeolite A produced by subjecting zeolite A to physical pulverization with a bead mill pulverizer and hydrothermal synthesis treatment (180 ° C., 15 hours).
  • A_nano_D is the result of XRD measurement of nanozeolite A produced by hydrothermal synthesis treatment (180 ° C., 15 hours) followed by drying treatment and further ion exchange treatment, as shown in the flowchart of FIG. It is.
  • A_nano_N is a result of XRD measurement of nanozeolite A produced by performing an ion exchange treatment without performing a drying treatment after a hydrothermal synthesis treatment (180 ° C., 15 hours) as shown in the flowchart of FIG. It is.
  • FIG. 16 is a diagram for explaining the difference in recrystallization of zeolite depending on the presence or absence of the drying step after the hydrothermal synthesis step, based on the measurement result of the moisture absorption and desorption characteristics at 25 ° C.
  • A_nano3_d and A_nano3_a are plots of the measurement results of the nanozeolite produced by hydrothermal synthesis treatment (180 ° C., 15 hours) followed by drying treatment, as shown in the flowchart of FIG. is there. As shown in the flowchart of FIG.
  • A_nano1_d and A_nano1_a are plots of the measurement results of the nanozeolite produced after the hydrothermal synthesis process (180 ° C., 15 hours) and without the drying process.
  • A_nano3_d and A_nano1_d are plots of desorption characteristics
  • A_nano3_a and A_nano1_a are plots of adsorption characteristics.
  • FIG. 17 is a diagram for explaining an example of an application in which nano-zeolite is formed into a film.
  • Zeolite exhibits a white color due to light scattering in the bulk, but the light transmittance can be improved by making it nano-sized and dispersed. Therefore, as shown in FIG. 17, there is an application example in which a resin composition in which nano-zeolite is dispersed in a resin is applied to a substrate, baked, and formed into a film.
  • the nanozeolite manufactured by the manufacturing method in the present disclosure can be used as a barrier thin film of an electronic component such as an organic light emitting diode that requires moisture resistance and water resistance.
  • the first embodiment described above is for exemplifying the technique in the present disclosure, and is not limited thereto, and various modifications, replacements, additions, omissions, etc. are made within the scope of the claims or an equivalent scope thereof.
  • the present invention can also be applied to other embodiments.
  • the nano-zeolite produced by the production method according to the present disclosure can be applied to various fields such as an electronic field, a packaging field, a clothing field, and a medical field such as a barrier thin film of an electronic component.
  • Bead Mill Crusher 110 Slurry Supply Port 120 Slurry Discharge Port 130 Slurry Tank 140 Pipe 200 Autoclave 210 Glass Container

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

 To provide a method for producing zeolite having better moisture-absorption properties. A method having a step for physically pulverizing zeolite in which the ratio of the Na/Si value at a point at a depth of 10 nm from the surface with respect to the Na/Si value on the surface is 90% or higher, and a step for crystallizing the physically pulverized zeolite. In particular, the zeolite provided for physical pulverization is such that the ratio of the Na/Si value at a point at a depth of 30 nm from the surface with respect to the Na/Si value on the surface is 70% or higher.

Description

ゼオライトの製造方法Method for producing zeolite
 本開示は、粒径がナノサイズの微細なゼオライトの製造方法に関する。 The present disclosure relates to a method for producing fine zeolite having a nano particle size.
 特許文献1は、ゼオライトを粉砕して得られる微細なゼオライトを、特定組成のアルミノシリケート溶液に分散させて再結晶させる、微細ゼオライト(ナノゼオライト)の製法を開示している。 Patent Document 1 discloses a method for producing fine zeolite (nanozeolite) in which fine zeolite obtained by pulverizing zeolite is dispersed in an aluminosilicate solution having a specific composition and recrystallized.
特開2011-246292号公報JP 2011-246292 A
 本開示は、より吸湿特性に優れた粒径がナノサイズの微細なゼオライトの製造方法を提供する。本開示におけるナノゼオライトの製造方法は、表面におけるNa/Si値に対する、該表面からの深さが10nmの地点のNa/Si値の割合が90%以上であるゼオライトを、物理粉砕するステップと、物理粉砕したゼオライトを、結晶化させるステップとを有する。 The present disclosure provides a method for producing a fine zeolite having a particle size that is more excellent in moisture absorption characteristics and having a nano size. The method for producing a nanozeolite according to the present disclosure includes a step of physically pulverizing a zeolite in which a ratio of a Na / Si value at a point having a depth of 10 nm from the surface to a Na / Si value on the surface is 90% or more; Crystallizing the physically ground zeolite.
 本開示における製造方法によれば、より吸湿特性に優れたナノゼオライトを製造することができる。 According to the production method of the present disclosure, it is possible to produce a nanozeolite with better moisture absorption characteristics.
図1は、実施の形態1に係るナノゼオライトの製造方法を示すフローチャートである。FIG. 1 is a flowchart showing a method for producing nanozeolite according to Embodiment 1. 図2は、ゼオライト及びナノゼオライトの、表面からの深さとNa/Si値との関係を示す図である。FIG. 2 is a diagram showing the relationship between the depth from the surface and the Na / Si value of zeolite and nanozeolite. 図3は、ビーズミル粉砕機によるゼオライトの物理粉砕工程を説明するための概略図である。FIG. 3 is a schematic view for explaining a physical pulverization process of zeolite by a bead mill pulverizer. 図4は、オートクレーブによる水熱合成工程を説明するための概略図である。FIG. 4 is a schematic diagram for explaining a hydrothermal synthesis process by an autoclave. 図5は、ナトリウムからマグネシウムへのイオン交換処理を説明するための概略図である。FIG. 5 is a schematic diagram for explaining an ion exchange process from sodium to magnesium. 図6は、水熱合成処理を施して結晶化させたナノゼオライトと大気中で熱処理を施して結晶化させたナノゼオライトとの、吸湿脱着特性の差異を説明するための図である。FIG. 6 is a diagram for explaining a difference in moisture absorption and desorption characteristics between a nanozeolite crystallized by hydrothermal synthesis treatment and a nanozeolite crystallized by heat treatment in the atmosphere. 図7は、ゼオライトの再結晶化に有効な水熱合成時間を説明するための図である。FIG. 7 is a diagram for explaining a hydrothermal synthesis time effective for recrystallization of zeolite. 図8は、水熱合成によるゼオライトの再結晶化を説明するための図である。FIG. 8 is a diagram for explaining recrystallization of zeolite by hydrothermal synthesis. 図9は、吸湿脱着特性の測定結果に基づいて、初期のゼオライトの組成の差異による、ゼオライトの再結晶化の差異を説明するための図である。FIG. 9 is a diagram for explaining the difference in recrystallization of zeolite due to the difference in the composition of the initial zeolite based on the measurement result of the hygroscopic desorption characteristics. 図10は、X線回折測定結果に基づいて、初期のゼオライトの組成の差異による、ゼオライトの再結晶化の差異を説明するための図である。FIG. 10 is a diagram for explaining a difference in recrystallization of zeolite due to a difference in the composition of the initial zeolite based on the X-ray diffraction measurement result. 図11は、ナトリウムからマグネシウムへのイオン交換処理における置換条件を説明するための図である。FIG. 11 is a diagram for explaining the replacement conditions in the ion exchange treatment from sodium to magnesium. 図12Aは、初期投入材料であるナトリウム系ゼオライトの粒子構造を示す走査電子顕微鏡写真を示す図である。FIG. 12A is a view showing a scanning electron micrograph showing the particle structure of sodium-based zeolite as an initial input material. 図12Bは、ナトリウム系ゼオライトを物理粉砕した後の粒子構造を示す走査電子顕微鏡写真を示す図である。FIG. 12B is a scanning electron micrograph showing the particle structure after physically pulverizing sodium-based zeolite. 図12Cは、ナトリウム系ゼオライトを物理粉砕した後に水熱合成処理を施して得られた生成物の粒子構造を示す走査電子顕微鏡写真を示す図である。FIG. 12C is a diagram showing a scanning electron micrograph showing the particle structure of a product obtained by subjecting sodium-based zeolite to physical pulverization and then hydrothermal synthesis treatment. 図13Aは、初期投入材料であるカルシウム系ゼオライトの粒子構造を示す走査電子顕微鏡写真を示す図である。FIG. 13A is a view showing a scanning electron micrograph showing the particle structure of calcium-based zeolite as an initial input material. 図13Bは、カルシウム系ゼオライトを物理粉砕した後の粒子構造を示す走査電子顕微鏡写真を示す図である。FIG. 13B is a view showing a scanning electron micrograph showing the particle structure after physically pulverizing calcium-based zeolite. 図13Cは、カルシウム系ゼオライトを物理粉砕した後に水熱合成処理を施して得られた生成物の粒子構造を示す走査電子顕微鏡写真を示す図である。FIG. 13C is a view showing a scanning electron micrograph showing the particle structure of a product obtained by subjecting a calcium-based zeolite to physical pulverization and then hydrothermal synthesis treatment. 図14は、水熱合成工程の後に乾燥工程を設けない場合のナノゼオライトの製造方法を示すフローチャートである。FIG. 14 is a flowchart showing a method for producing nanozeolite when a drying step is not provided after the hydrothermal synthesis step. 図15は、X線回折測定結果に基づいて、水熱合成工程の後の乾燥工程の有無による、ゼオライトの再結晶化の差異を説明するための図である。FIG. 15 is a diagram for explaining a difference in recrystallization of zeolite depending on the presence or absence of a drying step after the hydrothermal synthesis step based on the X-ray diffraction measurement result. 図16は、吸湿脱着特性の測定結果に基づいて、水熱合成工程の後の乾燥工程の有無による、ゼオライトの再結晶化の差異を説明するための図である。FIG. 16 is a diagram for explaining the difference in recrystallization of zeolite depending on the presence or absence of the drying step after the hydrothermal synthesis step based on the measurement result of the moisture absorption and desorption characteristics. 図17は、ナノゼオライトをフィルム化したアプリケーションの一例を説明するための図である。FIG. 17 is a diagram for explaining an example of an application in which nano-zeolite is formed into a film.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、発明者らは、当業者が本開示を充分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 In addition, the inventors provide the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims. Absent.
 (実施の形態1)
 実施の形態1は、本開示におけるナノゼオライトの製造方法の一例である。図1は、実施の形態1に係るナノゼオライトの製造方法を示すフローチャートである。図1に示すフローチャートに沿って、ナノゼオライトの製造方法を順に説明する。ナノゼオライトとは、粒径がナノサイズのゼオライトのことであり、以下本実施の形態では、粒径がナノサイズのゼオライトは、ナノゼオライトと定義する。
(Embodiment 1)
The first embodiment is an example of a method for producing nanozeolite in the present disclosure. FIG. 1 is a flowchart showing a method for producing nanozeolite according to Embodiment 1. A method for producing nanozeolite will be described in order according to the flowchart shown in FIG. A nanozeolite is a zeolite having a particle size of nano size, and in the present embodiment, a zeolite having a particle size of nano size is defined as nano zeolite.
 〔1.ゼオライト原料のスラリー生成〕
 まず、主原料となるナトリウム系ゼオライト(以下、Na系ゼオライトという)とHOとを混合することにより、スラリーを生成する(S100)。初期投入材料であるNa系ゼオライトとして、LTA(A型ゼオライト:|Na 12(HO)27[Al12Si1248)を用いる。そして、該Na系ゼオライトは、表面からの深さと組成比であるNa/Si値との関係が所定の条件を満足するものである。
[1. Zeolite raw material slurry generation)
First, a slurry is produced by mixing sodium-based zeolite (hereinafter referred to as Na-based zeolite) serving as a main raw material with H 2 O (S100). LTA (A-type zeolite: | Na + 12 (H 2 O) 27 | 8 [Al 12 Si 12 O 48 ] 8 ) is used as the Na-based zeolite that is the initial input material. In the Na-based zeolite, the relationship between the depth from the surface and the Na / Si value, which is the composition ratio, satisfies a predetermined condition.
 図2は、ゼオライト及びナノゼオライトの、表面からの深さとNa/Si値との関係を示す図である。図2において、縦軸はNa/Si値を示しており、横軸はゼオライト及びナノゼオライトの表面からの深さを示している(表面の深さを0nmとし、表面におけるNa/Si値を1.00としている)。 FIG. 2 is a diagram showing the relationship between the depth from the surface and the Na / Si value of zeolite and nanozeolite. In FIG. 2, the vertical axis indicates the Na / Si value, and the horizontal axis indicates the depth from the surface of the zeolite and nanozeolite (the surface depth is 0 nm, and the Na / Si value on the surface is 1). .00).
 図2において、(A_int)は、ゼオライトAの、表面からの深さに対するNa/Si値をプロットしたものであり、(B_int)は、ゼオライトBの、表面からの深さに対するNa/Si値をプロットしたものである。ゼオライトA及びゼオライトBは、共にLTAであるが、表面からの深さとNa/Si値との関係が異なっている。すなわち、ゼオライトAは、表面におけるNa/Si値に対する、表面からの深さが10nmの地点のNa/Si値の割合が90%で、表面からの深さが30nmの地点のNa/Si値の割合が70%である。一方、比較対象であるゼオライトBは、表面におけるNa/Si値に対する、表面からの深さが10nmの地点のNa/Si値の割合が65%で、表面からの深さが30nmの地点のNa/Si値の割合も65%である。 In FIG. 2, (A_int) is a plot of the Na / Si value with respect to the depth from the surface of the zeolite A, and (B_int) is the Na / Si value with respect to the depth from the surface of the zeolite B. It is a plot. Zeolite A and zeolite B are both LTA, but the relationship between the depth from the surface and the Na / Si value is different. That is, the ratio of the Na / Si value at the point where the depth from the surface is 10 nm to the Na / Si value at the surface is 90% in the zeolite A, and the Na / Si value at the point where the depth from the surface is 30 nm. The percentage is 70%. On the other hand, the comparison target zeolite B has a ratio of Na / Si value at a point where the depth from the surface is 10 nm to Na / Si value on the surface is 65%, and Na at a point where the depth from the surface is 30 nm. The ratio of / Si value is also 65%.
 図2において、(A_nano)は、ゼオライトAから生成されたナノゼオライトAの、表面からの深さに対するNa/Si値をプロットしたものであり、(B_nano)は、ゼオライトBから生成されたナノゼオライトBの、表面からの深さに対するNa/Si値をプロットしたものである。 In FIG. 2, (A_nano) is a plot of the Na / Si value versus the depth from the surface of the nanozeolite A produced from zeolite A, and (B_nano) is the nanozeolite produced from zeolite B. B is a plot of Na / Si values versus depth from the surface.
 図2に示されるように、ナノゼオライトBは、ナノゼオライトAと比べて、表面からの深さ方向に対するNa/Si値の勾配が大きい(Na/Si値が大きく減少している)ことがわかる。発明者らは、この表面からの深さ方向に対するNa/Si値の勾配が、ナノゼオライトの吸湿特性に影響を及ぼすことを発見し、例えばゼオライトAのような、表面からの深さとNa/Si値との関係を有するゼオライトからは、良好な吸湿特性を有するナノゼオライトの生成が可能であることを見出した。 As shown in FIG. 2, it can be seen that nanozeolite B has a larger gradient of Na / Si value in the depth direction from the surface (Na / Si value is greatly reduced) than nanozeolite A. . The inventors have discovered that the gradient of Na / Si value with respect to the depth direction from the surface affects the hygroscopic properties of the nanozeolite, such as the depth from the surface and Na / Si, such as zeolite A. From the zeolite having a relationship with the value, it has been found that nano-zeolite having good moisture absorption characteristics can be produced.
 実施の形態1において、Na系ゼオライトであるゼオライトAを初期投入材料として用いる。これにより、上記のとおり、良好な吸湿特性を有するナノゼオライトの生成が可能である。 In Embodiment 1, zeolite A, which is a Na-based zeolite, is used as an initial charging material. Thereby, as above-mentioned, the production | generation of the nanozeolite which has a favorable hygroscopic property is possible.
 図1に示されるように、ゼオライトA(初期粒径5μm、100g)とHO(100g)とを混合し、スラリーを生成する。そして、このスラリーにジルコニア(ZrO2)の玉石(粒径100μm、400g)を投入する。なお、初期投入材料としてのNa系ゼオライトの粒径には特に限定がなく、例えば0.1~10μm程度のものを用いることができる。 As shown in FIG. 1, zeolite A (initial particle size 5 μm, 100 g) and H 2 O (100 g) are mixed to form a slurry. Then, zirconia (ZrO 2) cobblestone (particle size 100 μm, 400 g) is charged into the slurry. The particle diameter of Na-based zeolite as the initial input material is not particularly limited, and for example, a particle having a size of about 0.1 to 10 μm can be used.
 〔2.ビーズミル粉砕機による粉砕〕
 続いて、S100にて生成したスラリーをビーズミル粉砕機に投入し、ゼオライトAの物理粉砕を行う(S110)。
[2. Grinding with a bead mill
Then, the slurry produced | generated in S100 is thrown into a bead mill grinder, and the physical grinding | pulverization of the zeolite A is performed (S110).
 図3は、ビーズミル粉砕機によるゼオライトの物理粉砕工程を説明するための概略図である。図3に示されるように、ビーズミル粉砕機100による物理粉砕は、スラリータンク130及びパイプ140を用いて行う。ビーズミル粉砕機100は、投入材料を物理粉砕可能な回転刃を内部に備えている。回転刃が高速回転することにより、投入材料をナノスケールにまで物理粉砕することができる。また、ビーズミル粉砕機100は、スラリー供給口110及びスラリー排出口120を有している。スラリー供給口110及びスラリー排出口120は、各々パイプ140に接続されている。以下、ビーズミル粉砕機100による具体的な物理粉砕工程について説明する。 FIG. 3 is a schematic view for explaining a physical grinding process of zeolite by a bead mill grinder. As shown in FIG. 3, physical pulverization by the bead mill pulverizer 100 is performed using a slurry tank 130 and a pipe 140. The bead mill pulverizer 100 includes a rotary blade capable of physically pulverizing the input material. When the rotary blade rotates at high speed, the input material can be physically pulverized to the nanoscale. The bead mill pulverizer 100 has a slurry supply port 110 and a slurry discharge port 120. The slurry supply port 110 and the slurry discharge port 120 are each connected to a pipe 140. Hereinafter, a specific physical pulverization process by the bead mill pulverizer 100 will be described.
 まず、ビーズミル粉砕機100を駆動し、約3時間、ゼオライトAの平均粒径が120nmになるまで粉砕作業を行う。このときのスラリー流量は10kg/時間、スラリー粘度は10mPa/秒である。 First, the bead mill pulverizer 100 is driven, and pulverization is performed for about 3 hours until the average particle size of zeolite A reaches 120 nm. The slurry flow rate at this time is 10 kg / hour, and the slurry viscosity is 10 mPa / second.
 ビーズミル粉砕機100は、スラリータンク130と連結されている。スラリータンク130にHOを投入することにより、スラリーが、ビーズミル粉砕機100とスラリータンク130との間を、パイプ140を介して巡回する。 The bead mill pulverizer 100 is connected to a slurry tank 130. By putting H 2 O into the slurry tank 130, the slurry circulates between the bead mill pulverizer 100 and the slurry tank 130 via the pipe 140.
 粉砕作業が2時間経過した時点で、スラリータンク130へと接続するパイプ140を、スラリータンク130から一度別の保管容器に退避させる。この間もビーズミル粉砕機100は駆動しているので、スラリータンク130内のスラリー量は減少していく。スラリータンク130内のスラリー量がゼロになった時点で、スラリータンク130にHOを100g追加投入する。そして、スラリータンク130内のHOが無くなった時点で、ビーズミル粉砕機100の駆動を停止させる。これにより、ビーズミル粉砕機100の内部がHOによって洗浄される。 When the pulverization operation has passed for 2 hours, the pipe 140 connected to the slurry tank 130 is once retracted from the slurry tank 130 to another storage container. During this time, since the bead mill pulverizer 100 is driven, the amount of slurry in the slurry tank 130 decreases. When the amount of slurry in the slurry tank 130 becomes zero, 100 g of H 2 O is added to the slurry tank 130. Then, when the H 2 O in the slurry tank 130 is exhausted, the driving of the bead mill pulverizer 100 is stopped. Thereby, the inside of the bead mill grinder 100 is washed with H 2 O.
 このとき、ビーズミル粉砕機100の底部に、先に使用したジルコニアの玉石(粒径100μm)が積層しているので、これを取り出す。一度ビーズミル粉砕機100の内部を水洗した後、ビーズミル粉砕機100の玉石投入口(図示せず)から新しい別のジルコニアの玉石(粒径50μm、400g)を投入する。そして、退避させていたパイプ140をスラリータンク130に再連結させ、先に保管容器に退避させていたスラリーをスラリータンク130へと再投入すると同時に、ビーズミル粉砕機100の駆動を再開する。この状態で約1時間、ゼオライトAの平均粒径が70nmになるまで粉砕作業を行う。このときのスラリー流量は10kg/時間、スラリー粘度は6mPa/秒である。 At this time, the previously used zirconia cobblestone (particle size: 100 μm) is laminated on the bottom of the bead mill pulverizer 100, and this is taken out. Once the inside of the bead mill pulverizer 100 is washed with water, another new zirconia cobblestone (particle size 50 μm, 400 g) is charged from a cobblestone inlet (not shown) of the bead mill pulverizer 100. Then, the pipe 140 that has been withdrawn is reconnected to the slurry tank 130, and the slurry that has been withdrawn previously in the storage container is reintroduced into the slurry tank 130, and at the same time, the driving of the bead mill crusher 100 is resumed. In this state, grinding is performed for about 1 hour until the average particle size of zeolite A reaches 70 nm. The slurry flow rate at this time is 10 kg / hour, and the slurry viscosity is 6 mPa / second.
 その後、先に使用したジルコニアの玉石(粒径50μm)をビーズミル粉砕機100から取り出し、代わりに、新しい別のジルコニアの玉石(粒径30μm、450g)を投入する。さらにHOを100g追加し、約1時間、ゼオライトAの平均粒径が50nm未満になるまで粉砕作業を行う。このときのスラリー流量は10kg/時間、スラリー粘度は4mPa/秒である。なお、粉砕されたNa系ゼオライトの平均粒径には特に限定がないが、例えば30~100nm程度であることが有益である。 Thereafter, the previously used zirconia boulder (particle size 50 μm) is taken out of the bead mill pulverizer 100, and another new zirconia cobblestone (particle size 30 μm, 450 g) is put in instead. Further, 100 g of H 2 O is added, and pulverization is performed until the average particle size of zeolite A is less than 50 nm for about 1 hour. The slurry flow rate at this time is 10 kg / hour, and the slurry viscosity is 4 mPa / second. The average particle size of the pulverized Na-based zeolite is not particularly limited, but it is beneficial to be about 30 to 100 nm, for example.
 そして、HOを100g追加し、ビーズミル粉砕機100からすべてのスラリーを取り出す。スラリーを取り出すときの工程は、上記と同様である。これにより、ゼオライトが100g、HOが計400gの無定形スラリー約500gが生成される。 Then, 100 g of H 2 O is added, and all the slurry is taken out from the bead mill pulverizer 100. The process for removing the slurry is the same as described above. As a result, about 500 g of an amorphous slurry having 100 g of zeolite and 400 g of H 2 O in total is generated.
 ビーズミル粉砕機100から取り出した直後の無定形スラリーは、ゲル化している。そのため、次工程(水熱合成工程)に移行する前に、このゲル化した無定形スラリーをポッド架台に載置して回転させる。これにより、ゲル化が緩和され、無定形スラリーは流動性を呈するようになる。 The amorphous slurry immediately after being taken out from the bead mill pulverizer 100 is gelled. Therefore, before moving to the next step (hydrothermal synthesis step), this gelled amorphous slurry is placed on a pod stand and rotated. Thereby, gelatinization is relieved and an amorphous slurry comes to exhibit fluidity.
 なお、上記各粉砕作業時のビーズミル粉砕機100の駆動時間、スラリー流量及びスラリー粘度は、粉砕後のNa系ゼオライトが所望の平均粒径となるように、各々適宜調整すればよい。 In addition, what is necessary is just to adjust suitably the drive time of the bead mill grinder 100 at the time of each said grinding | pulverization operation | work, slurry flow volume, and slurry viscosity, respectively so that Na type zeolite after a grinding | pulverization may become a desired average particle diameter.
 〔3.乾燥機内のオートクレーブでの水熱合成〕
 続いて、S110で生成した無定形スラリーを、乾燥機内のオートクレーブ200で水熱合成し、結晶化させる(S120)。なお、本開示において、結晶化を再結晶化ともいう。
[3. (Hydrothermal synthesis in the autoclave in the dryer)
Subsequently, the amorphous slurry produced in S110 is hydrothermally synthesized in the autoclave 200 in the dryer and crystallized (S120). In the present disclosure, crystallization is also referred to as recrystallization.
 図4は、オートクレーブによる水熱合成工程(再結晶化工程)を説明するための概略図である。オートクレーブ200は、ステンレススチール製容器からなる。 FIG. 4 is a schematic diagram for explaining a hydrothermal synthesis process (recrystallization process) by an autoclave. The autoclave 200 is made of a stainless steel container.
 まず、オートクレーブ200を構成するステンレススチール製容器(SUS316、容量100cc、耐温200℃、耐圧50MPa)に、前工程で生成された流動性を呈する無定形スラリー50gを投入する。ステンレススチール製容器は、安全弁を備えた蓋により密閉される密閉構造を有する。ステンレススチール製容器の内側には、フッ素樹脂製容器が内包されている。無定形スラリーをフッ素樹脂製容器内に投入し、ステンレススチール製容器を密閉する。これを乾燥機に配置して密閉し、乾燥機の庫内温度を180℃に設定する。加熱を開始すると、乾燥機内は、室温25℃から上昇し、約15分後には180℃に到達する。庫内温度を180℃に維持したまま、24時間放置する。これにより、無定形スラリーの水熱合成が行われる。なお、無定形スラリーの水熱合成が充分に行われる限り、水熱合成の温度(乾燥機の庫内温度)や時間には特に限定がないが、例えば150~200℃程度で、15~24時間程度であることが有益である。 First, 50 g of amorphous slurry exhibiting fluidity generated in the previous step is put into a stainless steel container (SUS316, capacity 100 cc, temperature resistance 200 ° C., pressure resistance 50 MPa) constituting the autoclave 200. The stainless steel container has a sealed structure that is sealed by a lid provided with a safety valve. Inside the stainless steel container, a fluororesin container is enclosed. The amorphous slurry is put into a fluorine resin container, and the stainless steel container is sealed. This is placed in a dryer and sealed, and the internal temperature of the dryer is set to 180 ° C. When heating is started, the inside of the dryer rises from room temperature 25 ° C. and reaches 180 ° C. after about 15 minutes. Leave the inside temperature at 180 ° C. for 24 hours. Thereby, hydrothermal synthesis of the amorphous slurry is performed. As long as the hydrothermal synthesis of the amorphous slurry is sufficiently performed, there is no particular limitation on the temperature of the hydrothermal synthesis (the temperature inside the dryer) and the time, but for example, about 150 to 200 ° C. and 15 to 24 It is beneficial to be on the order of hours.
 水熱合成が完了した後、オートクレーブ200からスラリーを取り出す。まず、180℃の庫内からステンレススチール製容器を取り出し、水(常温)中にステンレススチール製容器を投入して急冷する。ステンレススチール製容器の温度が室温近くまで低下したことを確認した後、安全弁を緩めて内圧をリークし、蓋を外す。ステンレススチール製容器に内包されているフッ素樹脂製容器に水を追加した後、別のフッ素樹脂製容器にスラリーを取り出す。フッ素樹脂製容器に水を追加することにより、フッ素樹脂製容器の底部近くのスラリーも取り出すことができる。 After the hydrothermal synthesis is completed, the slurry is taken out from the autoclave 200. First, a stainless steel container is taken out from the 180 ° C. chamber, and the stainless steel container is put into water (room temperature) and rapidly cooled. After confirming that the temperature of the stainless steel container has dropped to near room temperature, loosen the safety valve to leak the internal pressure and remove the lid. After adding water to the fluororesin container contained in the stainless steel container, the slurry is taken out into another fluororesin container. By adding water to the fluororesin container, the slurry near the bottom of the fluororesin container can also be taken out.
 〔4.乾燥〕
 続いて、S120で水熱合成を終えたスラリーを取り出し、乾燥を行う(S130)。まず、取り出したスラリーを投入したフッ素樹脂製容器にアルミニウム箔で蓋をして、突沸や粉塵混入を防止する。そして、フッ素樹脂製容器を乾燥機内に載置し、180℃で2~3時間放置する。なお、水熱合成を終えたスラリーを乾燥する際の乾燥温度には特に限定がないが、例えば150~200℃程度であることが有益である。
[4. Dry)
Subsequently, the slurry after hydrothermal synthesis in S120 is taken out and dried (S130). First, the fluororesin container into which the taken slurry is put is covered with an aluminum foil to prevent bumping and dust mixing. Then, the fluororesin container is placed in a dryer and left at 180 ° C. for 2 to 3 hours. There is no particular limitation on the drying temperature for drying the slurry after hydrothermal synthesis, but it is beneficial to be about 150 to 200 ° C., for example.
 その後、乾燥機内からフッ素樹脂製容器を取り出し、室温になるまで放置してNa系ナノゼオライトを得る。フッ素樹脂製容器内にスラリーの乾燥粉が固まっているので、乳鉢で解砕し、メッシュパスを通して平均粒径が50nmとなるように粒径を揃える。 Thereafter, the fluororesin container is taken out of the dryer and left to reach room temperature to obtain Na-based nanozeolite. Since the dry powder of the slurry is solidified in the fluororesin container, it is crushed in a mortar and the particle diameter is adjusted so that the average particle diameter is 50 nm through a mesh pass.
 〔5.ナトリウムからマグネシウムへのイオン交換〕
 続いて、S130で得られたNa系ナノゼオライトに対して、ナトリウムからマグネシウムへのイオン交換を行う(S140)。図5は、ナトリウムからマグネシウムへのイオン交換処理を説明するための概略図である。
[5. (Ion exchange from sodium to magnesium)
Subsequently, ion exchange from sodium to magnesium is performed on the Na-based nanozeolite obtained in S130 (S140). FIG. 5 is a schematic diagram for explaining an ion exchange process from sodium to magnesium.
 図5に示されるように、まず、ガラス製容器210内で、S130で得られたNa系ナノゼオライトの乾燥粉10gと、塩化マグネシウム30gと、400gのHOとを混合する。そして、ホットプレート上にガラス製容器210を載置し、60℃程度に加熱しながら、回転子により約半日間撹拌する。 As shown in FIG. 5, first, 10 g of the dried powder of Na-based nanozeolite obtained in S < b > 130, 30 g of magnesium chloride, and 400 g of H 2 O are mixed in a glass container 210. Then, the glass container 210 is placed on a hot plate and stirred for about half a day by a rotor while heating to about 60 ° C.
 撹拌を停止すると、ナノゼオライトはガラス製容器210の底に沈殿する。そこで、ガラス製容器210内の上澄み液を捨てて、再度200gのHOをガラス製容器210内に投入する。ホットプレート上にガラス製容器210を載置し、60℃程度に加熱しながら、回転子により10~15分間程度撹拌する。撹拌を停止すると、ナノゼオライトはガラス製容器210の底に沈殿する。そこで、ガラス製容器210内の上澄み液を捨てる。この一連の工程を約5回繰り返す。イオン交換処理の際の反応系の温度は、40~80℃程度に、処理時間は、6~8時間程度に調整することが有益である。なお、ガラス製容器210は透明であるので、ナノゼオライトが沈殿する様子を外部から容易に観察することができる。 When the stirring is stopped, the nanozeolite precipitates at the bottom of the glass container 210. Therefore, the supernatant liquid in the glass container 210 is discarded, and 200 g of H 2 O is put into the glass container 210 again. A glass container 210 is placed on a hot plate and stirred for about 10 to 15 minutes with a rotor while heating to about 60 ° C. When the stirring is stopped, the nanozeolite precipitates at the bottom of the glass container 210. Therefore, the supernatant liquid in the glass container 210 is discarded. This series of steps is repeated about 5 times. It is advantageous to adjust the temperature of the reaction system during the ion exchange treatment to about 40 to 80 ° C. and the treatment time to about 6 to 8 hours. Since the glass container 210 is transparent, it can be easily observed from the outside that the nanozeolite is precipitated.
 初期投入材料のNa系ゼオライトに含まれるナトリウム(アルカリ金属)は、イオン移動が生じやすく、得られるNa系ナノゼオライトを電子部品に適用した場合に、不良の原因となる恐れがある。実施の形態1に係るナノゼオライトの製造方法のように、ナトリウムよりもイオン移動が少ないマグネシウム(アルカリ土類金属)へとイオン交換をして得られるMg系ナノゼオライトは、電子部品に適用した場合に不良の発生がなく、より有益である。 The sodium (alkali metal) contained in the Na-based zeolite as the initial input material is likely to cause ion migration, and may cause defects when the obtained Na-based nanozeolite is applied to an electronic component. As in the method for producing nanozeolite according to Embodiment 1, the Mg-based nanozeolite obtained by ion exchange with magnesium (alkaline earth metal) having less ion migration than sodium is applied to an electronic component. This is more beneficial because there is no defect.
 〔6.乾燥〕
 続いて、S140において一連のイオン交換工程を約5回繰り返した後、ガラス製容器210の底に沈殿したナノゼオライトをフッ素樹脂製容器へと移す。このとき、フッ素樹脂製容器にアルミニウム箔で蓋をして、突沸や粉塵混入を防止する。そして、フッ素樹脂製容器を乾燥機内に載置し、180℃で2~3時間放置して乾燥を行う(S150)。乾燥が終了した後、乾燥機内からフッ素樹脂製容器を取り出し、フッ素樹脂製容器が室温になるまで放置する。フッ素樹脂製容器内にスラリーの乾燥粉が固まっているので、乳鉢で解砕し、メッシュパスを通して平均粒径が50nmとなるように粒径を揃える。これにより、Mg系ナノゼオライトを得ることができる。なお、イオン交換を終えたスラリーを乾燥する際の乾燥温度には特に限定がないが、例えば150~200℃程度であることが有益である。
[6. Dry)
Then, after repeating a series of ion exchange processes about 5 times in S140, the nanozeolite precipitated on the bottom of the glass container 210 is transferred to the fluororesin container. At this time, the fluororesin container is covered with aluminum foil to prevent bumping and dust mixing. Then, the fluororesin container is placed in a dryer and left at 180 ° C. for 2 to 3 hours for drying (S150). After the drying is completed, the fluororesin container is taken out from the dryer and left until the fluororesin container reaches room temperature. Since the dry powder of the slurry is solidified in the fluororesin container, it is crushed in a mortar and the particle diameter is adjusted so that the average particle diameter is 50 nm through a mesh pass. Thereby, Mg-based nanozeolite can be obtained. The drying temperature at the time of drying the slurry after ion exchange is not particularly limited, but it is beneficial to be about 150 to 200 ° C., for example.
 以下、上記のごとく製造したナノゼオライトに関する各種測定結果について説明する。 Hereinafter, various measurement results regarding the nanozeolite produced as described above will be described.
 図6は、物理粉砕したゼオライトを、水熱合成処理を施して結晶化させたナノゼオライトと、大気中で熱処理を施して結晶化させたナノゼオライトとの、25℃での吸湿脱着特性の差異を説明するための図である。図6の縦軸Va(cm(STP)/g)は、サンプル1gあたりの吸湿量を、標準状態(0℃、1atm)における気体の体積に換算した値である。すなわち、Vaは、ゼオライト1gが標準状態で吸着する水蒸気の体積を表している。図6の横軸P/Pは、相対圧であり、Pは測定温度(25℃)における飽和蒸気圧(kPa)、Pは絶対圧(kPa)である。 FIG. 6 shows the difference in moisture absorption and desorption characteristics at 25 ° C. between nanozeolite crystallized by hydrothermal synthesis treatment of physically pulverized zeolite and nanozeolite crystallized by heat treatment in air. It is a figure for demonstrating. The vertical axis Va (cm 3 (STP) / g) in FIG. 6 is a value obtained by converting the amount of moisture absorbed per 1 g of the sample into the volume of gas in the standard state (0 ° C., 1 atm). That is, Va represents the volume of water vapor that 1 g of zeolite adsorbs in the standard state. The horizontal axis P / P 0 in FIG. 6 is the relative pressure, P 0 is the saturated vapor pressure (kPa) at the measurement temperature (25 ° C.), and P is the absolute pressure (kPa).
 図6において、(A_int_d)及び(A_int_a)は、初期投入材料であるゼオライトAの測定結果をプロットしたものである。(A_nano1_d)及び(A_nano1_a)は、ゼオライトAをビーズミル粉砕機で物理粉砕した後、水熱合成処理(180℃、15時間)を施して生成したナノゼオライトAの測定結果をプロットしたものである。(A_nano2_d)及び(A_nano2_a)は、ゼオライトAをビーズミル粉砕機で物理粉砕した後、大気中で熱処理(400℃)を施して生成したナノゼオライトAの測定結果をプロットしたものである。なお、(A_int_d)、(A_nano1_d)及び(A_nano2_d)は脱離特性のプロットであり、(A_int_a)、(A_nano1_a)及び(A_nano2_a)は吸着特性のプロットである。 In FIG. 6, (A_int_d) and (A_int_a) plot the measurement results of zeolite A, which is the initial input material. (A_nano1_d) and (A_nano1_a) are plots of measurement results of nanozeolite A produced by subjecting zeolite A to physical pulverization with a bead mill pulverizer and hydrothermal synthesis treatment (180 ° C., 15 hours). (A_nano2_d) and (A_nano2_a) are plots of the measurement results of nanozeolite A produced by physically pulverizing zeolite A with a bead mill pulverizer and then heat-treating it in the atmosphere (400 ° C.). Note that (A_int_d), (A_nano1_d), and (A_nano2_d) are plots of desorption characteristics, and (A_int_a), (A_nano1_a), and (A_nano2_a) are plots of adsorption characteristics.
 図6に示されるように、大気中で熱処理を施した場合は、初期投入材料であるゼオライトAほどは、ナノゼオライトAの吸湿特性が発現されないことがわかる。一方、水熱合成処理を施すことにより、初期投入材料であるゼオライトAと同等の吸湿特性を呈するナノゼオライトAが得られることがわかる。 As shown in FIG. 6, it can be seen that when the heat treatment is performed in the air, the hygroscopic property of the nanozeolite A is not expressed as much as the zeolite A as the initial input material. On the other hand, it can be seen that nanozeolites A exhibiting the same hygroscopic property as zeolite A as the initial input material can be obtained by performing the hydrothermal synthesis treatment.
 図7は、X線回折(以下、XRDという)測定結果に基づいて、物理粉砕したゼオライトの再結晶化に有効な水熱合成時間を説明するための図である。図7において、(A_int)は、初期のゼオライトのXRD測定結果である。(A_nano1_x1)は、24時間水熱合成を行ったときのナノゼオライトのXRD測定結果である。(A_nano1_x2)は、36時間水熱合成を行ったときのナノゼオライトのXRD測定結果である。(A_nano1_x3)は、48時間水熱合成を行ったときのナノゼオライトのXRD測定結果である。 FIG. 7 is a diagram for explaining the hydrothermal synthesis time effective for recrystallization of physically pulverized zeolite based on the X-ray diffraction (hereinafter referred to as XRD) measurement result. In FIG. 7, (A_int) is an XRD measurement result of the initial zeolite. (A_nano1_x1) is an XRD measurement result of nanozeolite when hydrothermal synthesis is performed for 24 hours. (A_nano1_x2) is an XRD measurement result of the nanozeolite when hydrothermal synthesis is performed for 36 hours. (A_nano1_x3) is an XRD measurement result of nanozeolite when hydrothermal synthesis is performed for 48 hours.
 図7に示されるように、水熱合成時間が48時間を超えると、結晶構造に変化が生じることがわかる。したがって、水熱合成時間は48時間よりも短いことが有益であり、本開示では、特に有益な15~24時間に設定して水熱合成を行う。 As can be seen from FIG. 7, when the hydrothermal synthesis time exceeds 48 hours, the crystal structure changes. Therefore, it is beneficial that the hydrothermal synthesis time is shorter than 48 hours. In the present disclosure, the hydrothermal synthesis is performed by setting the hydrothermal synthesis time to a particularly useful 15 to 24 hours.
 図8は、XRD測定結果に基づいて、水熱合成によるゼオライトの再結晶化を説明するための図である。図8において、(A_int)は、初期のゼオライトAのXRD測定結果である。(A_nano1_y1)は、ビーズミル粉砕機で物理粉砕した直後のゼオライトAのXRD測定結果である。(A_nano1_y2)は、ビーズミル粉砕機で物理粉砕を行い、水熱合成処理(180℃、15時間)を施した後のナノゼオライトAのXRD測定結果である。(A_nano1_y3)は、ビーズミル粉砕機で物理粉砕を行い、大気中で熱処理(400℃)を施した後のナノゼオライトAのXRD測定結果である。 FIG. 8 is a diagram for explaining recrystallization of zeolite by hydrothermal synthesis based on the XRD measurement results. In FIG. 8, (A_int) is an XRD measurement result of the initial zeolite A. (A_nano1_y1) is an XRD measurement result of zeolite A immediately after being physically pulverized by a bead mill pulverizer. (A_nano1_y2) is an XRD measurement result of nanozeolite A after physical pulverization with a bead mill and hydrothermal synthesis (180 ° C., 15 hours). (A_nano1_y3) is an XRD measurement result of nanozeolite A after physical pulverization with a bead mill and heat treatment (400 ° C.) in the atmosphere.
 (A_int)に示されるように、初期のゼオライトAでは結晶性が認められる。しかしながら、ビーズミル粉砕機で物理粉砕した直後は、(A_nano1_y1)に示されるように、結晶性が失われていることがわかる。 As shown in (A_int), the initial zeolite A shows crystallinity. However, immediately after physical pulverization with a bead mill, it can be seen that the crystallinity is lost as shown in (A_nano1_y1).
 物理粉砕した後に水熱合成を行うと、(A_nano1_y2)に示されるように、再び結晶性が認められることがわかる。一方、物理粉砕した後に大気中で熱処理を行った場合は、(A_nano1_y3)に示されるように、結晶性は失われたままであることがわかる。なお、ゼオライトAをビーズミル粉砕機で物理粉砕した後に、(i)電子レンジで加熱した場合、(ii)単に乾燥させた場合、(iii)180℃、8時間未満の条件で水熱合成を行った場合についても、(A_nano1_y3)のXRD測定結果と同様に結晶性は失われたままであることがわかる。 When hydrothermal synthesis is performed after physical pulverization, it can be seen that crystallinity is recognized again as indicated by (A_nano1_y2). On the other hand, when the heat treatment is performed in the air after the physical pulverization, the crystallinity remains lost as shown in (A_nano1_y3). In addition, after physically pulverizing zeolite A with a bead mill pulverizer, (i) when heated in a microwave oven, (ii) when simply dried, (iii) hydrothermal synthesis under conditions of 180 ° C. and less than 8 hours It can be seen that the crystallinity is still lost as in the case of the XRD measurement result of (A_nano1_y3).
 したがって、ゼオライトAをビーズミル粉砕機で物理粉砕した後に、水熱合成処理(180℃、15時間)を施すことで、物理粉砕したゼオライトAを有効に再結晶化させることが可能であることがわかる。 Therefore, it can be understood that the physically pulverized zeolite A can be effectively recrystallized by performing hydrothermal synthesis treatment (180 ° C., 15 hours) after physically pulverizing the zeolite A with a bead mill pulverizer. .
 図9は、25℃での吸湿脱着特性の測定結果に基づいて、初期のゼオライトの組成の差異による、ゼオライトの再結晶化の差異を説明するための図である。具体的には、共にLTAであるが、表面からの深さ方向に対するNa/Si値の勾配が異なるゼオライトA及びゼオライトB、並びに生成されたナノゼオライトA及びナノゼオライトBの吸湿脱着特性を示している。 FIG. 9 is a diagram for explaining the difference in recrystallization of zeolite due to the difference in the composition of the initial zeolite based on the measurement result of the moisture absorption and desorption characteristics at 25 ° C. Specifically, the zeolite A and zeolite B, which are both LTA, but have different Na / Si gradients in the depth direction from the surface, and the hygroscopic desorption characteristics of the produced nanozeolite A and nanozeolite B are shown. Yes.
 図9において、(A_int_d)及び(A_int_a)は、初期投入材料であるゼオライトAの測定結果をプロットしたものである。(B_nano_d)及び(B_nano_a)は、初期投入材料であるゼオライトBの測定結果をプロットしたものである。(A_nano1_a)は、ゼオライトAをビーズミル粉砕機で物理粉砕した後、水熱合成処理(180℃、15時間)を施して生成したナノゼオライトAの測定結果をプロットしたものである。(B_nano1_d)及び(B_nano1_a)は、ゼオライトBをビーズミル粉砕機で物理粉砕した後、水熱合成処理(180℃、15時間)を施して生成したナノゼオライトBの測定結果をプロットしたものである。なお、(A_int_d)、(B_nano_d)及び(B_nano1_d)は脱離特性のプロットであり、(A_int_a)、(B_nano_a)、(A_nano1_a)及び(B_nano1_a)は吸着特性のプロットである。 In FIG. 9, (A_int_d) and (A_int_a) plot the measurement results of zeolite A, which is the initial input material. (B_nano_d) and (B_nano_a) are plots of the measurement results of zeolite B, which is the initial input material. (A_nano1_a) is a plot of measurement results of nanozeolite A produced by physical pulverization of zeolite A with a bead mill and then hydrothermal synthesis (180 ° C., 15 hours). (B_nano1_d) and (B_nano1_a) are plots of the measurement results of nanozeolite B produced by hydrothermal synthesis (180 ° C., 15 hours) after physically pulverizing zeolite B with a bead mill pulverizer. Note that (A_int_d), (B_nano_d), and (B_nano1_d) are plots of desorption characteristics, and (A_int_a), (B_nano_a), (A_nano1_a), and (B_nano1_a) are plots of adsorption characteristics.
 図9に示されるように、ナノゼオライトAは、初期投入材料であるゼオライトAと同等の吸湿特性を呈している。一方、ナノゼオライトBは、初期投入材料であるゼオライトBと比べて吸湿特性が低下していることがわかる。これにより、有効な吸湿特性を呈するナノゼオライトを得るためには、初期投入材料であるゼオライトの、表面からの深さ方向に対するNa/Si値の勾配(表面からの深さとNa/Si値との関係)が重要なファクターであることがわかる。 As shown in FIG. 9, nanozeolite A exhibits moisture absorption characteristics equivalent to zeolite A, which is the initial input material. On the other hand, it can be seen that nano-zeolite B has lower moisture absorption characteristics than zeolite B, which is the initial input material. Thus, in order to obtain nano-zeolite exhibiting effective moisture absorption characteristics, the gradient of Na / Si value with respect to the depth direction from the surface of the zeolite as the initial input material (the depth between the surface and the Na / Si value) (Relationship) is an important factor.
 図10は、XRD測定結果に基づいて、初期のゼオライトの組成の差異による、ゼオライトの再結晶化の差異を説明するための図である。具体的には、共にLTAであるが、表面からの深さ方向に対するNa/Si値の勾配が異なるゼオライトA及びゼオライトB、並びに生成されたナノゼオライトA及びナノゼオライトBのXRD測定結果を示している。 FIG. 10 is a diagram for explaining the difference in recrystallization of zeolite due to the difference in the initial zeolite composition based on the XRD measurement results. Specifically, XRD measurement results of zeolite A and zeolite B, which are both LTA, but have different Na / Si value gradients in the depth direction from the surface, and produced nanozeolite A and nanozeolite B are shown. Yes.
 図10において、(A_int)は、初期投入材料であるゼオライトAのXRD測定結果である。(B_int)は、初期投入材料であるゼオライトBのXRD測定結果である。(A_nano)は、ゼオライトAをビーズミル粉砕機で物理粉砕した後、水熱合成処理(180℃、15時間)を施して生成したナノゼオライトAのXRD測定結果である。(B_nano)は、ゼオライトBをビーズミル粉砕機で物理粉砕した後、水熱合成処理(180℃、15時間)を施して生成したナノゼオライトBのXRD測定結果である。 In FIG. 10, (A_int) is an XRD measurement result of zeolite A which is an initial input material. (B_int) is an XRD measurement result of zeolite B which is the initial input material. (A_nano) is an XRD measurement result of nanozeolite A produced by physically pulverizing zeolite A with a bead mill and then subjecting it to hydrothermal synthesis (180 ° C., 15 hours). (B_nano) is an XRD measurement result of nano-zeolite B produced by physical pulverization of zeolite B with a bead mill pulverizer and hydrothermal synthesis treatment (180 ° C., 15 hours).
 図10に示されるように、ナノゼオライトAは、初期投入材料であるゼオライトAと同様のXRD測定結果を示している。一方、ナノゼオライトBは、初期投入材料であるゼオライトBとはXRD測定結果が異なっていることがわかる。これにより、有効に再結晶化したナノゼオライトを得るためには、初期投入材料であるゼオライトの、表面からの深さ方向に対するNa/Si値の勾配(表面からの深さとNa/Si値との関係)が重要なファクターであることがわかる。 As shown in FIG. 10, nanozeolite A shows the same XRD measurement results as zeolite A, which is the initial input material. On the other hand, it can be seen that the nano-zeolite B has a different XRD measurement result from the zeolite B which is the initial input material. Thereby, in order to obtain nano-zeolite that is effectively recrystallized, the gradient of Na / Si value with respect to the depth direction from the surface of the zeolite as the initial input material (the depth between the surface and the Na / Si value) (Relationship) is an important factor.
 図11は、ナトリウムからマグネシウムへのイオン交換処理における置換条件を説明するための図である。図11において、縦軸は原子濃度(%)を示しており、横軸は置換条件を示している。図11において、Naは、各置換条件におけるナトリウムの原子濃度をプロットしたものであり、Mgは、各置換条件におけるマグネシウムの原子濃度をプロットしたものである。 FIG. 11 is a diagram for explaining the replacement conditions in the ion exchange treatment from sodium to magnesium. In FIG. 11, the vertical axis represents the atomic concentration (%), and the horizontal axis represents the replacement condition. In FIG. 11, Na is a plot of the atomic concentration of sodium under each substitution condition, and Mg is a plot of the atomic concentration of magnesium under each substitution condition.
 図11に示されるように、イオン交換処理を行う前のナノゼオライトA(置換条件の「初期」)では、ナトリウムの原子濃度は10%であり、マグネシウムの原子濃度は0%である。次に、このナノゼオライトAを塩化マグネシウム(MgCl2)水溶液中に投入し、室温で2時間攪拌したとき(置換条件の「RT」)は、ナトリウムの原子濃度は9%であり、マグネシウムの原子濃度は1.5%である。さらに、水溶液を60~70℃に加熱して2時間攪拌したとき(置換条件の「湯煎」)は、ナトリウムの原子濃度は4.5%であり、マグネシウムの原子濃度は7%である。さらに、湯煎時に塩化マグネシウムを追添して2時間攪拌したとき(置換条件の「湯煎+MgCl2追加」)は、ナトリウムの原子濃度は2.2%であり、マグネシウムの原子濃度は9.5%である。以上の結果から、塩化マグネシウム水溶液を湯煎し、さらに塩化マグネシウムを追添したときに、ナノゼオライト中のナトリウムの原子濃度をより一層低くすることができる。このようなナノゼオライトを電子部品に適用したときには、不具合をさらに低減することができる。 As shown in FIG. 11, in the nanozeolite A before the ion exchange treatment (“initial stage of substitution conditions”), the atomic concentration of sodium is 10% and the atomic concentration of magnesium is 0%. Next, when this nanozeolite A was put into a magnesium chloride (MgCl 2) aqueous solution and stirred at room temperature for 2 hours (substitution condition “RT”), the atomic concentration of sodium was 9%, and the atomic concentration of magnesium Is 1.5%. Further, when the aqueous solution is heated to 60 to 70 ° C. and stirred for 2 hours (substitution condition “boiled water bath”), the atomic concentration of sodium is 4.5% and the atomic concentration of magnesium is 7%. Furthermore, when magnesium chloride was added during the hot water bath and stirred for 2 hours (substitution condition “hot water bath + MgCl 2 added”), the atomic concentration of sodium was 2.2% and the atomic concentration of magnesium was 9.5%. is there. From the above results, when the magnesium chloride aqueous solution is boiled and magnesium chloride is further added, the atomic concentration of sodium in the nanozeolite can be further reduced. When such a nanozeolite is applied to an electronic component, problems can be further reduced.
 図12は、Na系ゼオライトを初期投入材料としたときの、ナノゼオライトの製造過程における走査電子顕微鏡(以下、SEMという)写真である。図12Aは、初期投入材料であるNa系ゼオライトのSEM写真である。図12Bは、Na系ゼオライトをビーズミル粉砕機で物理粉砕した後のSEM写真である。図12Cは、Na系ゼオライトをビーズミル粉砕機で物理粉砕した後に、水熱合成処理(180℃、15時間)を施して得られた生成物のSEM写真である。 FIG. 12 is a scanning electron microscope (hereinafter referred to as SEM) photograph in the process of producing nanozeolite using Na-based zeolite as the initial input material. FIG. 12A is an SEM photograph of Na-based zeolite as the initial input material. FIG. 12B is an SEM photograph after physically pulverizing Na-based zeolite with a bead mill. FIG. 12C is an SEM photograph of a product obtained by physically pulverizing Na-based zeolite with a bead mill and then subjecting it to hydrothermal synthesis (180 ° C., 15 hours).
 図12Aに示されるように、初期投入材料であるNa系ゼオライトは、結晶構造を有することがわかる。しかしながら、図12Bに示されるように、物理粉砕することで、Na系ゼオライトはナノ化するものの、結晶構造は失われることがわかる。そして、図12Cに示されるように、水熱合成処理を施すことにより、ナノ化した状態で再結晶化し、初期投入材料と同様の結晶構造を有するNa系ナノゼオライトが生成されることがわかる。 As shown in FIG. 12A, it can be seen that the Na-based zeolite as the initial input material has a crystal structure. However, as shown in FIG. 12B, it can be seen that the physical structure pulverizes the Na-based zeolite, but the crystal structure is lost. Then, as shown in FIG. 12C, it can be seen that by performing a hydrothermal synthesis treatment, recrystallization is performed in a nano-structured state, and Na-based nanozeolite having the same crystal structure as the initial input material is generated.
 図13A~Cは、マグネシウム系ゼオライトに代わるアルカリ土類金属系ゼオライトの一例として、カルシウム系ゼオライト(以下、Ca系ゼオライトという)を初期投入材料としたときの、ナノゼオライトの製造過程におけるSEM写真である。図13Aは、初期投入材料であるCa系ゼオライトのSEM写真である。図13Bは、Ca系ゼオライトをビーズミル粉砕機で物理粉砕した後のSEM写真である。図13Cは、Ca系ゼオライトをビーズミル粉砕機で物理粉砕した後に、水熱合成処理(180℃、15時間)を施して得られた生成物のSEM写真である。 FIGS. 13A to 13C are SEM photographs in the process of producing nano-zeolite when calcium-based zeolite (hereinafter referred to as Ca-based zeolite) is used as an initial input material as an example of alkaline earth metal-based zeolite instead of magnesium-based zeolite. is there. FIG. 13A is an SEM photograph of Ca-based zeolite that is the initial input material. FIG. 13B is an SEM photograph after physical pulverization of Ca-based zeolite with a bead mill. FIG. 13C is an SEM photograph of a product obtained by physically pulverizing Ca-based zeolite with a bead mill and then subjecting it to hydrothermal synthesis (180 ° C., 15 hours).
 図13Aに示されるように、初期投入材料であるCa系ゼオライトは、結晶構造を有することがわかる。しかしながら、図13Bに示されるように、物理粉砕することで、Ca系ゼオライトはナノ化するものの、結晶構造は失われることがわかる。そして、図13Cに示されるように、水熱合成処理を施すことにより、Ca系ゼオライトは再結晶化するが、生成物は初期投入材料とは異なる結晶構造を有していることがわかる。 As shown in FIG. 13A, it can be seen that the Ca-based zeolite as the initial input material has a crystal structure. However, as shown in FIG. 13B, it can be seen that by physically pulverizing, the Ca-based zeolite is nano-sized, but the crystal structure is lost. Then, as shown in FIG. 13C, it is understood that the Ca-based zeolite is recrystallized by performing the hydrothermal synthesis treatment, but the product has a crystal structure different from that of the initial charge material.
 なお、ここでは、Ca系ゼオライトのSEM写真を示したが、同じアルカリ土類金属系ゼオライトであるマグネシウム系ゼオライトも、同様の結果を示す。 In addition, although the SEM photograph of Ca-type zeolite was shown here, the same result is shown also with the magnesium-type zeolite which is the same alkaline-earth metal type zeolite.
 この結果から、初期投入材料としてアルカリ土類金属系ゼオライトを用いても、所望の吸湿特性を有するナノゼオライトを得ることはできないことがわかる。Na系ゼオライトの場合は、ゲル化させた後に水熱合成処理を施すことにより、有効に結晶化させることができる。一方、アルカリ土類金属系ゼオライトの場合は、ゲル化せず、水熱合成処理を施して結晶化させたとしても、図13Cに示されるように、別の構造の、初期投入材料とは異なる特性を有する結晶へと変化してしまう。したがって、初期投入材料として、アルカリ土類金属系ゼオライトではなく、Na系ゼオライトを用い、生成したNa系ナノゼオライトを電子部品へ適用する際には、図11に示したようにナトリウムからマグネシウムへのイオン交換処理を行うことが有益であることがわかる。 From this result, it can be seen that even if alkaline earth metal-based zeolite is used as the initial input material, it is not possible to obtain nano-zeolite having desired moisture absorption characteristics. In the case of Na-based zeolite, it can be effectively crystallized by subjecting it to gelation followed by hydrothermal synthesis treatment. On the other hand, in the case of an alkaline earth metal-based zeolite, even if it is not gelled and crystallized by hydrothermal synthesis treatment, as shown in FIG. 13C, it is different from the initial charge material of another structure. It will change into a crystal having characteristics. Therefore, when using Na-based zeolite instead of alkaline earth metal-based zeolite as an initial input material and applying the produced Na-based nanozeolite to an electronic component, as shown in FIG. It can be seen that it is beneficial to perform an ion exchange treatment.
 図14は、水熱合成工程の後に乾燥工程を設けない場合のナノゼオライトの製造方法を示すフローチャートである。図14におけるS200~S220の各ステップは、図1におけるS100~S120の各ステップに対応する。また、図14にけるS230~S240の各ステップは、図1におけるS140~S150の各ステップに対応する。すなわち、図14に示されるフローチャートでは、図1に示されるフローチャートから水熱合成工程の後の乾燥工程(S130)が削除されている。発明者らは、水熱合成工程の後の乾燥工程の有無が、ゼオライトの再結晶化に影響を及ぼすことを見出した。これを以下に詳細に説明する。 FIG. 14 is a flowchart showing a method for producing nanozeolite when a drying step is not provided after the hydrothermal synthesis step. Steps S200 to S220 in FIG. 14 correspond to steps S100 to S120 in FIG. Further, each step of S230 to S240 in FIG. 14 corresponds to each step of S140 to S150 in FIG. That is, in the flowchart shown in FIG. 14, the drying step (S130) after the hydrothermal synthesis step is deleted from the flowchart shown in FIG. The inventors have found that the presence or absence of a drying step after the hydrothermal synthesis step affects the recrystallization of the zeolite. This will be described in detail below.
 図15は、XRD測定結果に基づいて、水熱合成工程の後の乾燥工程の有無による、ゼオライトの再結晶化の差異を説明するための図である。図15において、(A_nano)は、ゼオライトAをビーズミル粉砕機で物理粉砕した後、水熱合成処理(180℃、15時間)を施して生成したナノゼオライトAのXRD測定結果である。(A_nano_D)は、図1に示されるフローチャートのごとく、水熱合成処理(180℃、15時間)を施した後に乾燥処理を施し、さらにイオン交換処理を施して生成したナノゼオライトAのXRD測定結果である。(A_nano_N)は、図14に示されるフローチャートのごとく、水熱合成処理(180℃、15時間)を施した後に乾燥処理を行わず、イオン交換処理を施して生成したナノゼオライトAのXRD測定結果である。 FIG. 15 is a diagram for explaining a difference in recrystallization of zeolite depending on the presence or absence of a drying step after the hydrothermal synthesis step based on the XRD measurement result. In FIG. 15, (A_nano) is an XRD measurement result of nano-zeolite A produced by subjecting zeolite A to physical pulverization with a bead mill pulverizer and hydrothermal synthesis treatment (180 ° C., 15 hours). (A_nano_D) is the result of XRD measurement of nanozeolite A produced by hydrothermal synthesis treatment (180 ° C., 15 hours) followed by drying treatment and further ion exchange treatment, as shown in the flowchart of FIG. It is. (A_nano_N) is a result of XRD measurement of nanozeolite A produced by performing an ion exchange treatment without performing a drying treatment after a hydrothermal synthesis treatment (180 ° C., 15 hours) as shown in the flowchart of FIG. It is.
 (A_nano_D)に示されるように、水熱合成処理の後に乾燥処理を施した場合は、(A_nano)に示される結果と同等のXRD測定結果が得られる。一方、(A_nano_N)に示されるように、水熱合成処理の後に乾燥処理を行わなかった場合は、(A_nano)及び(A_nano_D)に示される結果とは異なるXRD測定結果が得られる。具体的には、(A_nano_N)に示されるXRD測定結果では、(A_nano)及び(A_nano_D)に示されるXRD測定結果では認められた一部のピークが消失している。このピークの消失は、吸湿特性の低下を意味する。したがって、水熱合成工程の後に乾燥工程を設けた場合には、水熱合成工程の後に乾燥工程を設けなかった場合よりも、より吸湿特性に優れたナノゼオライトが生成され得ることがわかる。 As shown in (A_nano_D), when a drying process is performed after the hydrothermal synthesis process, an XRD measurement result equivalent to the result shown in (A_nano) is obtained. On the other hand, as shown in (A_nano_N), when the drying process is not performed after the hydrothermal synthesis process, an XRD measurement result different from the results shown in (A_nano) and (A_nano_D) is obtained. Specifically, in the XRD measurement result indicated by (A_nano_N), some of the peaks recognized in the XRD measurement result indicated by (A_nano) and (A_nano_D) disappear. The disappearance of this peak means a decrease in moisture absorption characteristics. Therefore, it can be seen that when the drying step is provided after the hydrothermal synthesis step, nanozeolite with more excellent hygroscopic properties can be produced than when the drying step is not provided after the hydrothermal synthesis step.
 図16は、25℃での吸湿脱着特性の測定結果に基づいて、水熱合成工程の後の乾燥工程の有無による、ゼオライトの再結晶化の差異を説明するための図である。図16において、A_nano3_d及びA_nano3_aは、図1に示されるフローチャートのごとく、水熱合成処理(180℃、15時間)を施した後に乾燥処理を施して生成したナノゼオライトの測定結果をプロットしたものである。A_nano1_d及びA_nano1_aは、図14に示されるフローチャートのごとく、水熱合成処理(180℃、15時間)を施した後に乾燥処理を行わずに生成したナノゼオライトの測定結果をプロットしたものである。なお、A_nano3_d及びA_nano1_dは脱離特性のプロットであり、A_nano3_a及びA_nano1_aは吸着特性のプロットである。 FIG. 16 is a diagram for explaining the difference in recrystallization of zeolite depending on the presence or absence of the drying step after the hydrothermal synthesis step, based on the measurement result of the moisture absorption and desorption characteristics at 25 ° C. In FIG. 16, A_nano3_d and A_nano3_a are plots of the measurement results of the nanozeolite produced by hydrothermal synthesis treatment (180 ° C., 15 hours) followed by drying treatment, as shown in the flowchart of FIG. is there. As shown in the flowchart of FIG. 14, A_nano1_d and A_nano1_a are plots of the measurement results of the nanozeolite produced after the hydrothermal synthesis process (180 ° C., 15 hours) and without the drying process. A_nano3_d and A_nano1_d are plots of desorption characteristics, and A_nano3_a and A_nano1_a are plots of adsorption characteristics.
 図16に示されるように、水熱合成工程の後に乾燥工程を設けた場合には、水熱合成工程の後に乾燥工程を設けなかった場合よりも、より吸湿特性に優れたナノゼオライトが生成され得ることがわかる。 As shown in FIG. 16, when a drying step is provided after the hydrothermal synthesis step, nanozeolite with better moisture absorption characteristics is produced than when a drying step is not provided after the hydrothermal synthesis step. I know you get.
 以上のように、水熱合成処理の直後にナトリウムからマグネシウムへのイオン交換処理を施すよりも、水熱合成処理を施した後に乾燥処理を行い、次いでイオン交換処理を施した方が、所望の、より優れた吸湿特性を呈するナノゼオライトを得ることができる。 As described above, rather than performing an ion exchange treatment from sodium to magnesium immediately after the hydrothermal synthesis treatment, it is preferable to perform the drying treatment after the hydrothermal synthesis treatment and then the ion exchange treatment. Thus, a nanozeolite exhibiting more excellent hygroscopic properties can be obtained.
 図17は、ナノゼオライトをフィルム化したアプリケーションの一例を説明するための図である。ゼオライトは、バルクでは光散乱により白色を呈しているが、ナノ化して分散させることにより、光透過性を向上させることができる。そこで、図17に示されるように、ナノゼオライトを樹脂に分散させた樹脂組成物を、基材に塗布して焼成し、フィルム化する応用例がある。これにより、本開示における製造方法により製造されるナノゼオライトを、有機発光ダイオード等の、耐湿性や耐水性が必要な電子部品のバリア薄膜として活用することができる。 FIG. 17 is a diagram for explaining an example of an application in which nano-zeolite is formed into a film. Zeolite exhibits a white color due to light scattering in the bulk, but the light transmittance can be improved by making it nano-sized and dispersed. Therefore, as shown in FIG. 17, there is an application example in which a resin composition in which nano-zeolite is dispersed in a resin is applied to a substrate, baked, and formed into a film. Thereby, the nanozeolite manufactured by the manufacturing method in the present disclosure can be used as a barrier thin film of an electronic component such as an organic light emitting diode that requires moisture resistance and water resistance.
 (その他の実施の形態)
 以上のように、本開示における技術の例示として、実施の形態1を説明した。そのために、添付図面および詳細な説明を提供した。
(Other embodiments)
As described above, the first embodiment has been described as an example of the technique in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、必須な構成要素だけでなく、上記技術を例示するために、必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Therefore, among the constituent elements described in the accompanying drawings and the detailed description, not only essential constituent elements but also non-essential constituent elements may be included to exemplify the above technique. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上記実施の形態1は、本開示における技術を例示するためのものであるから、これに限定されず、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態1で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。 Further, the first embodiment described above is for exemplifying the technique in the present disclosure, and is not limited thereto, and various modifications, replacements, additions, omissions, etc. are made within the scope of the claims or an equivalent scope thereof. The present invention can also be applied to other embodiments. Moreover, it is also possible to combine each component demonstrated in the said Embodiment 1, and it can also be set as a new embodiment.
 本開示における製造方法により製造されるナノゼオライトは、例えば、電子部品のバリア薄膜といった電子分野、包装分野、衣料分野、医療分野等の各種分野への適用が可能である。 The nano-zeolite produced by the production method according to the present disclosure can be applied to various fields such as an electronic field, a packaging field, a clothing field, and a medical field such as a barrier thin film of an electronic component.
100 ビーズミル粉砕機
110 スラリー供給口
120 スラリー排出口
130 スラリータンク
140 パイプ
200 オートクレーブ
210 ガラス製容器
100 Bead Mill Crusher 110 Slurry Supply Port 120 Slurry Discharge Port 130 Slurry Tank 140 Pipe 200 Autoclave 210 Glass Container

Claims (4)

  1.  表面におけるNa/Si値に対する、前記表面からの深さが10nmの地点のNa/Si値の割合が90%以上であるゼオライトを、物理粉砕するステップと、
    前記物理粉砕したゼオライトを、結晶化させるステップと
    を有する、ゼオライトの製造方法。
    Physically pulverizing zeolite having a Na / Si value ratio of 90% or more at a point having a depth of 10 nm from the surface with respect to the Na / Si value on the surface;
    And a step of crystallizing the physically pulverized zeolite.
  2.  前記物理粉砕に供するゼオライトは、前記表面におけるNa/Si値に対する、前記表面からの深さが30nmの地点のNa/Si値の割合が70%以上である、請求項1に記載のゼオライトの製造方法。 2. The production of zeolite according to claim 1, wherein the zeolite used for the physical pulverization has a ratio of Na / Si value at a point where the depth from the surface is 30 nm to the Na / Si value on the surface is 70% or more. Method.
  3.  前記結晶化は、水熱合成処理により行う、請求項1又は2に記載のゼオライトの製造方法。 The method for producing a zeolite according to claim 1 or 2, wherein the crystallization is performed by a hydrothermal synthesis treatment.
  4.  表面におけるNa/Si値に対する、前記表面からの深さが10nmの地点のNa/Si値の割合が90%以上であるゼオライトを物理粉砕し、前記物理粉砕したゼオライトを、結晶化させるゼオライトの製造方法。 Manufacture of zeolite for physically pulverizing zeolite having a Na / Si value of 90% or more at a depth of 10 nm from the surface relative to Na / Si value on the surface, and crystallizing the physically pulverized zeolite Method.
PCT/JP2015/004785 2014-09-26 2015-09-18 Method for producing zeolite WO2016047124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/466,185 US10239760B2 (en) 2014-09-26 2017-03-22 Method for producing zeolite

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-196561 2014-09-26
JP2014196561 2014-09-26
JP2015034014A JP2016069266A (en) 2014-09-26 2015-02-24 Production process for nano-zeolite
JP2015-034014 2015-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/466,185 Continuation US10239760B2 (en) 2014-09-26 2017-03-22 Method for producing zeolite

Publications (1)

Publication Number Publication Date
WO2016047124A1 true WO2016047124A1 (en) 2016-03-31

Family

ID=55580671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004785 WO2016047124A1 (en) 2014-09-26 2015-09-18 Method for producing zeolite

Country Status (1)

Country Link
WO (1) WO2016047124A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246292A (en) * 2010-05-24 2011-12-08 Yokohama National Univ Method of manufacturing fine zeolite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246292A (en) * 2010-05-24 2011-12-08 Yokohama National Univ Method of manufacturing fine zeolite

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
S. L. SUIB ET AL.: "Ion Scattering Spectroscopy and Secondary Ion Mass Spectrometry (ISS/SIMS) Studies of Zeolites", JOURNAL OF CATALYSIS, vol. 84, 1983, pages 410 - 422 *
T. WAKIHARA ET AL.: "Bead-Milling and Postmilling Recrystallization: An Organic Template-free Methodology for the Production of Nano-zeolites", CRYSTAL GROWTH & DESIGN, vol. 11, 2011, pages 9 55 - 958 *
T. WAKIHARA ET AL.: "Top-down Tuning of Nanosized Zeolites by Bead-milling and Recrystallization", JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, vol. 56, 2013, pages 206 - 213 *

Similar Documents

Publication Publication Date Title
US10239760B2 (en) Method for producing zeolite
UA125518C2 (en) Process for the production of geopolymer or geopolymer composite
JPWO2018186308A1 (en) Spherical crystalline silica particles and method for producing the same
JP2008100903A (en) Alpha-alumina powder
Cho et al. Yolk–shell structured Gd 2 O 3: Eu 3+ phosphor prepared by spray pyrolysis: the effect of preparation conditions on microstructure and luminescence properties
JP2006028354A (en) Phosphor and manufacturing method of phosphor
CN111825111B (en) Preparation method for improving thermal stability of magnesium-aluminum hydrotalcite
CN106573787B (en) Composition and its manufacturing method including the silicotitanate with SITINAKITE structure
JP5512958B2 (en) Method for producing nanophosphor particles
Yin et al. Salt-assisted rapid transformation of NaYF 4: Yb 3+, Er 3+ nanocrystals from cubic to hexagonal
Gao et al. Hydrothermally derived NaLuF 4: Yb 3+, Ln 3+(Ln 3+= Er 3+, Tm 3+ and Ho 3+) microstructures with controllable synthesis, morphology evolution and multicolor luminescence properties
Cho et al. Large-scale production of fine-sized Zn 2 SiO 4: Mn phosphor microspheres with a dense structure and good photoluminescence properties by a spray-drying process
JP5115039B2 (en) Low soda fine aluminum hydroxide and method for producing the same
WO2016047124A1 (en) Method for producing zeolite
WO2015031445A1 (en) Facile preparation method of silicon materials for li-ion and solar cell application
KR101323104B1 (en) Manufacturing method of LiFePO4 cathode active material for lithium battery
WO2017169425A1 (en) Production method for zeolite powder
JP6441366B2 (en) Method for producing single crystal MgTiO3 flakes
JP6509668B2 (en) Method of manufacturing aluminum borate whisker
CN105664846B (en) A kind of preparation method of gas dehydration molecular sieve desiccant
CN111481740A (en) High-dispersity amorphous calcium phosphate nano powder and preparation method and application thereof
KR101397154B1 (en) Chlorosilicate phosphor and preparing method of the same
JP6391986B2 (en) Beta-type zeolite and method for producing the same
WO2018124018A1 (en) Pearlite and method for producing same, and water treatment method and water treatment material
EP3385226B1 (en) Beta zeolite and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844316

Country of ref document: EP

Kind code of ref document: A1