WO2016046983A1 - Method of crystal growth - Google Patents

Method of crystal growth Download PDF

Info

Publication number
WO2016046983A1
WO2016046983A1 PCT/JP2014/075717 JP2014075717W WO2016046983A1 WO 2016046983 A1 WO2016046983 A1 WO 2016046983A1 JP 2014075717 W JP2014075717 W JP 2014075717W WO 2016046983 A1 WO2016046983 A1 WO 2016046983A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
container
crystal growth
purification
impurities
Prior art date
Application number
PCT/JP2014/075717
Other languages
French (fr)
Japanese (ja)
Inventor
崇章 石津
信也 小南
上野 雄一郎
喬之 神田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/075717 priority Critical patent/WO2016046983A1/en
Publication of WO2016046983A1 publication Critical patent/WO2016046983A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/02Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method without using solvents

Definitions

  • the present invention relates to a large and high purity crystal growth method.
  • semiconductor detectors tend to be employed as radiation detectors.
  • the semiconductor detector can convert incident radiation directly into an electrical signal. For this reason, by adopting the semiconductor detector, the radiation detector and the medical device can be miniaturized. Further, the semiconductor detector has a feature that the energy of radiation (for example, gamma rays) can be accurately measured.
  • Charge carriers generated in the semiconductor crystal are captured by impurities, crystal defects, and crystal interfaces present in the semiconductor crystal, or recombination is promoted. For this reason, the higher the impurity concentration in the semiconductor crystal and the higher the crystal defect density, the lower the charge carrier mobility. Further, the higher the impurity concentration in the semiconductor crystal and the higher the crystal defect density, the shorter the average life of the charge carriers.
  • the purity of the semiconductor crystal and the quality of the semiconductor crystal are very important for the semiconductor crystal used in the semiconductor detector.
  • a group III-V compound is housed in a crucible, a group III element is arranged on the top, and a liquid seal is formed on the top.
  • the crucible is sealed by arranging a material, and then the Group III element is melted by a heater, and the Group III-V compound is sequentially melted by the boundary surface where both the Group III elements are melted by melting the Group III element. And moving the melting zone below the group III-V compound and precipitating crystals of the group III-V compound to float above the melting zone. In this state, the crucible is placed in the crucible.
  • a method of growing a single crystal of the III-V compound semiconductor by arranging a seed crystal and bringing it into contact with the melting zone is disclosed (refer to the claims of Patent Document 1).
  • the rod-shaped body obtained is set again in a vertical belt melting refiner and purified again using a vertical belt melting device.
  • a zone melting purification apparatus that can be used for both vertical and horizontal types, can reduce the purification cost by zone melting purification, and is easy to maintain is disclosed. Specifically, a support portion of a rod-shaped body is formed on one end side and the other end side of the base, and a protective tube surrounding the rod-shaped body supported by the support portion is provided between the both support portions.
  • a high-frequency transformer is provided on the base so as to be movable in the longitudinal direction of the protective tube, and an induction heating coil that moves along the protective tube is connected to the high-frequency transformer, so that the high-frequency transformer is moved to the base.
  • a belt melting and purifying apparatus characterized in that, while a mechanism is provided, the base is provided so as to be movable up and down along a vertical plane including a protective tube (Patent Document 2 claims) reference).
  • Patent Document 1 when collecting impurities in the vertical direction, it is necessary to melt the central portion in a state where the upper and lower sides are solid during purification, and therefore, the crystal layer easily changes. There is a problem. In addition, the method described in Patent Document 1 has a problem that stress due to thermal expansion during melting is applied to the container.
  • the apparatus described in Patent Document 2 is an apparatus that performs rough purification that collects impurities in the horizontal direction of the left and right and main purification that collects impurities in the vertical and vertical directions, and requires a cooling time for the purified product to reverse the purification direction. Therefore, there is a problem that work efficiency is lowered.
  • the apparatus described in Patent Document 2 is an apparatus that once removes a crude product after purification in the left-right horizontal direction, and once again grips the crude product in the vertical direction and performs purification in the vertical direction. There is a problem that work efficiency decreases.
  • the apparatus described in Patent Document 2 performs purification in the vertical direction, there is also a problem that the crystal layer changes easily as in the method described in Patent Document 1.
  • Patent Document 2 is difficult to use depending on the type of the purified product because the crude purified product is once taken out.
  • the device described in Patent Document 2 is not a device that takes into account the isolation of a purified portion having a high purity because there is no description regarding the removal of the purified product.
  • the present invention solves the above-described conventional problems, and provides a highly efficient crystal growth method capable of isolating high-purity and high-quality crystals while increasing the purity of a semiconductor crystal raw material. This is the issue.
  • the crystalline raw material is accommodated in a tubular container with one end closed, and after the tubular container is substantially horizontal, the crystalline raw material accommodated in the tubular container is melted in a strip shape from one end to the other end.
  • the purification step of segregating impurities contained in the crystalline raw material to the other end of the crystalline raw material, partially melting the crystalline raw material segregated impurities.
  • the separation step for separating the purified raw material with few impurities and the impure raw material with many impurities and in the container in a substantially vertical direction, the purified raw material is in a molten state while the impure raw material is separated in a solidified state.
  • a crystal growth step of growing crystals by post-cooling is performed in the same container in this order.
  • the present invention it is possible to provide a high-efficiency crystal growth method in which a semiconductor crystal raw material is highly purified and can be isolated as a high-purity and high-quality crystal.
  • the first embodiment will be described in detail with reference to the drawings (FIGS. 1 to 5) as appropriate.
  • the first embodiment includes a purification step S1, a separation step S2, and a crystal growth step S3, which are performed in this order.
  • a purification step S1 a separation step S2
  • a crystal growth step S3 which are performed in this order.
  • a growing crystal is a thallium bromide (TlBr) crystal.
  • FIG. 2 shows an outline of the purification step S1 of thallium bromide 1 (compound semiconductor).
  • the purification step S1 of thallium bromide 1 uses thallium bromide 1 (compound semiconductor) using an elongated cylindrical container 2 and a heater 3 arranged so as to surround the container 2. This is a step of performing purification (purification).
  • the container 2 has a structure in which one end of a cylindrical quartz glass tube having both ends opened is sealed and a quartz glass tube 22 having a diameter smaller than that of the quartz glass tube is connected to the other end.
  • the quartz glass tube 22 connected to the other end serves as a raw material charging port, and also serves as a connecting portion with an internal pressure adjusting substance supply device (not shown) described later. Since the configuration of the container 2 is a simple cylindrical shape, the container 2 can be easily downsized. Moreover, when the shape of the container 2 is an elongated shape, it becomes easy to spread thinly in the container 2 in which the raw material is stored.
  • the sealing of the quartz glass tube is, for example, closing the quartz glass tube while melting it with a gas burner, and removing the excess quartz glass tube.
  • the container 2 is held by a container holding device 5.
  • a raw material fall prevention unit 23 is provided inside the container 2.
  • the raw material fall prevention unit 23 may be formed by bonding another quartz glass to the inner peripheral surface of the quartz glass tube, or may be formed by deforming a part of the quartz glass tube.
  • the raw material fall prevention unit 23 has a height of 1/8 or less of the diameter of the container 2 on the inner peripheral surface of the container 2 and is formed in a belt shape along the circumferential direction.
  • the heater 3 is a heating element that generates heat when energized, for example.
  • the heater 3 is installed in the heater moving device 4.
  • the heater moving device 4 includes a mechanism structure capable of moving the heater 3 along the axial direction (lateral direction in FIG. 2) of the cylindrical container 2, and the heater 3 is positioned at any position in the axial direction of the cylindrical container 2. At rest.
  • the heater moving device 4 may be disposed on the container holding device 5.
  • an auxiliary heater 32 is disposed on the upper side of the container 2.
  • the auxiliary heater 32 is a heating element that generates heat when energized, for example.
  • the auxiliary heater 32 raises the temperature of the entire container 2.
  • the auxiliary heater 32 is disposed only on the upper portion, but may be disposed so as to cover the entire container 2.
  • the heating output per unit area of the auxiliary heater 32 is smaller than that of the heater 3.
  • the auxiliary heater 32 may be capable of heating only a part of the container 2. By using the heater 3 and the auxiliary heater 32 at the same time, only a part of the thallium bromide 1 in the container 2 can be melted.
  • the container holding device 5 is a device that holds a container.
  • the container holding device 5 is preferably an apparatus that can rotate at least the direction of the container 2 from a substantially horizontal direction to a substantially vertical direction (around 90 °) while holding the container.
  • Examples of the container holding device 5 include a clamp that is rotatably attached to a stand.
  • the band gap of the molecular orbitals is large in order to reduce the influence of heat-induced carrier induction.
  • silicon that is not a compound semiconductor but has a band gap of 1.11 eV can be used as it is for a semiconductor detector at room temperature.
  • germanium which has a smaller band gap than silicon and has a band gap of 0.67 eV, needs to be cooled when used in a semiconductor detector at room temperature.
  • Examples of compound semiconductors that satisfy these conditions include cadmium telluride (CdTe), cadmium zinc telluride (CdZnTe), gallium arsenide (GaAs), mercury iodide (HgI 2 ), thallium bromide (TlBr), and the like.
  • CdTe cadmium telluride
  • CdZnTe cadmium zinc telluride
  • GaAs gallium arsenide
  • HgI 2 mercury iodide
  • TlBr thallium bromide
  • Many of the compound semiconductors listed here are composed of elements that require handling, and the compound itself requires handling.
  • the compound semiconductors listed here have characteristics such that a part of them vaporizes and sublimes during crystal growth because of a high vapor pressure.
  • the internal pressure adjusting substance is a substance that is supplied into the container 2 for the purpose of suppressing evaporation and sublimation of the compound semiconductor having a high vapor pressure through the purification step S1, the separation step S2, and the crystal growth step S3.
  • the internal pressure adjusting substance is preferably a substance that does not react with the substance to be purified, a substance composed of an element constituting the substance to be refined, a substance containing an element constituting the substance to be refined, or the like.
  • the internal pressure adjusting substance is preferably a substance made of an element constituting the substance to be purified because it does not become an impurity even when incorporated into the substance to be purified.
  • the internal pressure adjusting substance may be in the state of gas, liquid, or solid under normal temperature and pressure as long as it satisfies these conditions.
  • the internal pressure adjusting substance is preferably a gas at normal temperature that can be introduced into the container 2 as it is or a substance having a high vapor pressure.
  • a gas that does not react with the substance to be purified is a rare gas.
  • a rare gas, hydrogen bromide, bromine or the like can be used as the internal pressure adjusting substance, and bromine is preferred among them.
  • the purification step is a step of purifying the raw material by segregating impurities in the raw material of the compound semiconductor crystal.
  • thallium bromide which is a raw material for crystal of a compound semiconductor and is a target for purification (purification)
  • the amount of thallium bromide charged into the container 2 is an amount that is less than half the height of the container 2 placed substantially horizontally, and is about 1 ⁇ 4 from the bottom of the cylindrical portion of the container 2 placed substantially horizontally. An amount is preferred (see FIG. 2).
  • the auxiliary heater 32 heats the upper surface of the container 2 to make the temperature of the upper surface of the container 2 higher than the temperature of the lower surface of the container 2.
  • the quartz glass tube 22 of the container 2 is connected to the supply apparatus of an internal pressure adjusting substance. Subsequently, the internal pressure adjusting substance is supplied into the container 2 so that the inside of the container 2 is filled with the internal pressure adjusting substance. While the thallium bromide 1 is purified in the purification step S1, the suction state and the supply of the internal pressure adjusting substance are repeated to maintain the purity of the internal pressure adjusting substance in the container 2. The purity of the internal pressure adjusting substance may be maintained by continuing to supply the internal pressure adjusting substance into the container 2.
  • the structure and type of the supply device for the internal pressure adjusting substance are not limited as long as the internal pressure adjusting substance can be supplied into the container 2 at a predetermined pressure and a predetermined amount.
  • Examples of the supply device for the internal pressure adjusting substance include a cylinder filled with the internal pressure adjusting substance and a gas generator for generating a gas of the internal pressure adjusting substance.
  • Examples of the gas generator include a device that vaporizes a liquid or solid internal pressure adjusting substance under normal temperature and normal pressure by means such as heating, bubbling, decompression, and ultrasonic irradiation.
  • the heater 3 is moved by the heater moving device 4 to the side opposite to the quartz glass tube 22 connected to one end of the container 2 (right side toward the container 2 in FIG. 2).
  • the heater 3 is energized, and the heater 3 heats the portion of the thallium bromide 1 in the container 2 facing the heater 3, so that only the portion of the container 2 facing the heater 3 of the thallium bromide 1 is strip-shaped.
  • the heater moving device 4 causes the heated heater 3 to move toward the quartz glass tube 22 connected to one end of the container 2 (on the left side in FIG. 2 toward the container 2). It moves slowly while maintaining a belt-like melting state facing the heater 3.
  • the thallium bromide 1 opposite to the newly heated heater 3 is heated to a molten state.
  • the thallium bromide 1 is gradually cooled, so that the thallium bromide 1 gradually increases. It solidifies and becomes a crystal. That is, the band-shaped melted portion of thallium bromide 1 also moves from the sealing 21 side of the container 2 to the quartz glass tube 22 side (from the right side to the left side in FIG. 2) (see FIG. 2).
  • the moving speed of the heater 3 is, for example, 1 mm / h or more and 30 mm / h or less. In the case of thallium bromide, when the moving speed of the heater 3 exceeds 30 mm / h, the heating rate and the cooling rate are high, so that the crystal to grow does not become a single crystal.
  • the heater 3 When the heater 3 reaches the quartz glass tube 22 side of the container 2 (left side of the container in FIG. 2), impurities in the thallium bromide 1 gather on the quartz glass tube 22 side (left side of FIG. 2) of the thallium bromide 1. It is done. For this reason, the thallium bromide 1 has a high purity on the side of the sealing 21 and a low purity on the side of the quartz glass tube 22.
  • the heater 3 in the heated state is moved a plurality of times in one direction from the sealing 21 side of the thallium bromide 1 to the quartz glass tube 22 side, and the thallium bromide 1 is melted and recrystallized repeatedly, so that the odor The purity of thallium oxide is further improved.
  • the heater 3 reaching the quartz glass tube 22 side moves to the sealing 21 side (right side in FIG. 2) of the container 2 without melting the thallium bromide 1 in the container 2.
  • the heater 3 in a heated state moves slowly from the sealing 21 side of the container 2 to the quartz glass tube 22 side, and bromides in one direction from the sealing 21 side of the container 2 to the quartz glass tube 22 side.
  • Thallium 1 is melted and crystallized (solidified) again.
  • the sealing operation is an operation that prevents evaporation and sublimation of the raw material during or after the purification step S1, and prevents impurities from being mixed into the purified raw material.
  • the quartz glass tube 22 of the container 2 is sealed with a gas burner, and the container 2 is sealed.
  • the container 2 may be sealed using a sealing material. The sealing of the container 2 may be performed at the time when the volatile impurities are sufficiently reduced, even before (endway) the purification step S1.
  • the separation step S2 is a step of separating the purified raw material, which is a purified portion in which impurities in the compound semiconductor crystal raw material are reduced by the purification step, and the impure raw material, which is a portion in which impurities are segregated to increase impurities. .
  • FIG. 3 shows an outline of the separation step S2 in this embodiment, and shows a state in which the thallium bromide 1 is separated in the container 2.
  • the separation step S ⁇ b> 2 is performed using a container 2 held in the vertical direction and a heater 3 that can move along the surface of the container 2.
  • FIG. 4 shows an outline after the separation step S2 in the present embodiment. As shown in FIG. 4, at the end of the separation step S ⁇ b> 2, the thallium bromide 1 is separated above and below the container 2.
  • thallium bromide 1 is kept in the same container 2 without being taken out from the container 2 even after the purification step S1 ends. Thereby, evaporation and sublimation of thallium bromide 1 are prevented, and purification efficiency is improved. In addition, work efficiency is improved because the work is performed in the same container.
  • the direction of the container 2 is changed by adjusting the container holding device 5 so that the sealing 21 side of the container 2 faces down.
  • the purity of the thallium bromide 1 in the container 2 decreases from the bottom to the top.
  • the boundary between the refined raw material where the impurities of thallium bromide 1 are reduced and the impure raw material where the impurities are increased by segregating impurities, for example, about 5 minutes from the top of thallium bromide 1 The heater 3 is arranged at the position 1.
  • the purity of the purified raw material is preferably as high as possible in consideration of obtaining a (single) crystal having a high purity in the crystal growth step S3.
  • the purity of the purified raw material (purified thallium bromide 11) is preferably 99% by mass or more, for example. However, the purity of the purified raw material may be appropriately determined as necessary.
  • the refined raw material is dissolved while the thallium bromide 1 is dissolved at the boundary by moving the heater 3 heated on the surface of the container 2 from the boundary toward the lower side of the container 2 (sealing 21 side). And impure raw materials are separated. At the same time, the heater 3 moves the refined thallium bromide 11 having a high purity below the boundary to the lower part of the container 2 (see FIG. 3).
  • solidified impure thallium bromide 12 having segregated impurities is present in the upper part of the container 2 (on the quartz glass tube 22 side), and purified purified thallium bromide 11 is present in the lower part of the container 2. (See FIG. 4).
  • the separation position (boundary) of thallium bromide 1 may be calculated from the segregation rate of impurities, or may be determined by measuring the purity of thallium bromide by conducting a preliminary experiment.
  • the separation of thallium bromide 1 may be performed by a method in which the heater 3 heats and dissolves the thallium bromide 1 at the boundary, moves the separated thallium bromide 11 to the lower part of the container 2 after separation. . Since the entire amount of the purified thallium bromide 11 is dissolved in the crystal growth step S3, the heater 3 only needs to move from the boundary to the middle of the lower side of the container 2 (side of the sealing 21).
  • the heater 3 moves from the lower side of the container 2 (sealing 21 side) and dissolves a high-purity portion of the purified thallium bromide 11 (for example, about half of thallium bromide 1)
  • the remaining thallium bromide 1 may be heated, dissolved, separated and moved at the boundary.
  • the impure thallium bromide 12 is prevented from being peeled off from the wall surface of the container 2 by the raw material fall prevention unit 23.
  • the thallium bromide is not taken out from the container 2 and is recrystallized in the subsequent crystal growth step S3 while the separated thallium bromide (purified thallium bromide 11) is contained in the container 2.
  • the separation step S2 by separating the purified thallium bromide 11 having a small amount of impurities from the thallium bromide 1, the impure thallium bromide 12 having a large amount of impurities can be easily maintained in a solidified state.
  • the separation step S2 since the separation step S2 is performed, thallium bromide is easily isolated from thallium bromide 1 in the form of high-purity crystals and is easily obtained.
  • FIG. 5 shows a container 2 containing thallium bromide 1 and a crystal growth apparatus 6 used in this embodiment.
  • the crystal growth apparatus 6 includes at least a heat insulating material 61, a heater 62, and an elevating mechanism 63.
  • the crystal growth apparatus 6 may be attachable to the container 2.
  • the heat insulating material 61 is disposed on the outer periphery of the heater 62.
  • the heat insulating material 61 reduces the electric power used by the heater 62 when keeping the container 2 at a high temperature, and at the same time, alleviates changes such as temperature changes of the thallium bromide 1 (raw material) sealed in the container 2 due to changes in the external environment. .
  • the heater 62 is disposed so as to surround the outer periphery of the container 2 in which the thallium bromide 1 is accommodated.
  • the elevating mechanism 63 holds the container 2 from the lower part (sealing 21 side). Further, the elevating mechanism 63 makes it possible to adjust the height position of the container 2 and appropriately perform heating by the heater 62. Any one of the heat insulating material 61, the heater 62, and the lifting mechanism 63 can be used as long as the purpose is achieved.
  • the crystal growth step S3 is a step of growing a single crystal from the purified raw material of the compound semiconductor crystal separated in the separation step S2.
  • the purified thallium bromide 1 is not taken out from the container 2 after the separation step S2 and is kept in the same container 2. Thereby, evaporation and sublimation of thallium bromide 1 are prevented, and purification efficiency is improved. In addition, work efficiency is improved because the work is performed in the same container.
  • the heater 62 heats and melts the purified thallium bromide 1 at the bottom of the container 2 (on the side of the seal 21).
  • the temperature of thallium bromide 1 melted by the heating of the heater 62 is preferably slightly higher than the melting point of thallium bromide 1.
  • the thallium bromide 1 is gradually crystallized from below.
  • the lifting mechanism 63 that holds the container 2 is adjusted, the position of the container 2 is lowered, and the lower part of the container 2 is separated from the heater 62. Thereby, the temperature of the thallium bromide 1 melted from the lower side of the container 2 is lowered.
  • An example of the cooling rate of thallium bromide 1 is 1 mm / h.
  • the container 2 may be separated from the heater 62 by moving the heater 62 to the upper part of the container 2 (on the side of the quartz glass tube 22) instead of moving the container 2 by the elevating mechanism 63.
  • the heater 62 composed of a plurality of heaters may produce a temperature gradient by heating the thallium bromide 1 while performing precise temperature adjustment.
  • a single crystal of thallium bromide 1 may be grown by a temperature gradient.
  • the crystal growth process is performed using the container 2 oriented in a substantially vertical direction, the grown thallium bromide crystal does not come out of the surface of the liquid layer, and the crystal defects are few. High crystals can be obtained.
  • the crystal is cylindrical and the temperature distribution is easily controlled, so that a large crystal growth is easily obtained.
  • a series of steps such as a purification step, a separation step, and a crystal growth step are performed in the same vessel (crucible) without removing the raw material (thallium bromide) from the vessel (crucible).
  • a series of operations such as refining and crystal growth can be facilitated even for raw materials that require careful handling.
  • the crystal growth step is preferably performed in a container 2 arranged in a substantially vertical direction.
  • the crystal growth direction of thallium bromide coincides with the direction in which the internal space of the container 2 spreads. That is, even if thallium bromide crystals grow in the crystal growth step, the grown thallium bromide crystals do not come out of the melt surface. Therefore, a high-quality thallium bromide single crystal having a reduced crystal defect density, high charge carrier mobility, and high quality can be obtained.
  • FIG. 6 shows an outline of the purification step S ⁇ b> 1 in this embodiment using the container 2 including the crystal purification unit 24 and the crystal growth unit 25.
  • FIG. 7 shows an outline after completion of the separation step S2 in the present embodiment.
  • the structure of the container to be used differs from 1st Embodiment.
  • symbol is attached
  • the container 2 used in the second embodiment includes a crystal purification unit 24 and a crystal growth unit 25.
  • the crystal refining unit 24 has a structure in which quartz glass tubes 22 and 26 having a diameter smaller than that of the quartz glass tube are connected to both ends of a cylindrical quartz glass tube having both ends opened.
  • the crystal growth unit 25 seals one end of a cylindrical quartz glass tube having both ends open (21), and connects the other end to a quartz glass tube 26 having a diameter smaller than that of the quartz glass tube.
  • the crystal purification unit 24 and the crystal growth unit 25 are connected by a quartz glass tube 26.
  • the crystal purification unit 24 and the crystal growth unit 25 do not have to have the same diameter, and it is preferable to reduce the diameter of the crystal purification unit 24 in order to improve the purification accuracy of thallium bromide 1 (raw material).
  • the container holding device 5 is adjusted, and the orientation of the container 2 is changed so that the crystal growth part 25 of the container 2 is positioned downward (see FIG. 7).
  • a boundary portion between the purified raw material where the impurities of the thallium bromide 1 are reduced and the impure raw material where the impurities are increased by segregating the impurities, for example, bromide The heater 3 is arranged at a position about one fifth from the top of the thallium 1.
  • the heater 3 heated on the surface of the container 2 moves slowly from the boundary toward the crystal growth portion 25 of the container 2, so that the thallium bromide 1 is separated and dissolved at the boundary.
  • the heater 3 moves the thallium bromide 1 having a high purity below the boundary to the crystal growth part 25 of the container 2 while dissolving it.
  • the heating movement of the heater 3 may be performed a plurality of times. First, the heater 3 may heat the thallium bromide 1 at the boundary, dissolve it, separate it, and move it to the crystal growth part 25 of the container 2.
  • solidified impure thallium bromide 12 having segregated impurities is present at the top of the container 2, and purified thallium bromide 11 is present in the crystal growth portion 25 of the container 2. It becomes.
  • the crystal growth step S3 of this embodiment is different from the first embodiment in that the purified thallium bromide 11 separated in the separation step S2 is melted and moved to the crystal growth portion 25, and then the crystal growth portion 25 and the crystal purification portion.
  • the quartz glass tube 26 that connects to 24 is sealed off.
  • FIG. 8 shows an outline of the purification step S1 in this embodiment using the container 2 including the crystal purification unit 27 and the trap unit 28.
  • FIG. 9 shows an outline after completion of the separation step S2 in the present embodiment.
  • the structure of the container to be used differs from 1st Embodiment.
  • symbol is attached
  • the container 2 used in the third embodiment includes a crystal purification unit 27 and a trap unit 28.
  • the trap portion 28 has a structure in which quartz glass tubes 22 and 29 having a diameter smaller than that of the quartz glass tube are connected to both ends of a cylindrical quartz glass tube having both ends opened. About one quarter of the crystal purification unit 27 on the trap unit 28 side is reduced in diameter toward the quartz glass tube 22 and has a gentle taper shape.
  • the crystal purification unit 27 and the trap unit 28 are connected by a quartz glass tube 22.
  • the crystal refinement part 27 and the trap part 28 do not have to have the same diameter, and it is preferable to increase the diameter of the trap part 28 in order to increase the surface area in order to improve the collection performance of the trap part 28.
  • the initial position of the heater 3 during the purification is the sealing 21 side of the crystal purification unit 27 (the right side in FIG. 8).
  • the temperature of the trap unit 28 is kept below the temperature of the crystal purification unit 27.
  • the vapor containing impurities generated in the crystal purification unit 27 is cooled and solidified by the trap unit 28. Since the amount of impure thallium bromide separated in the separation step S2 is reduced, the work time of the separation step S2 can be shortened. Further, thallium bromide and impurities are difficult to get out of the container 2. Therefore, an external internal pressure adjusting substance supply device or the like is hardly contaminated by thallium bromide or the like.
  • the separation step S2 is a step of separating the purified raw material, which is a portion in which impurities in the compound semiconductor crystal raw material are reduced by the purification step S1, and the impure raw material, which is a portion in which impurities are segregated to increase impurities.
  • This embodiment is different from the first embodiment in that the portion of the thallium bromide 1 segregated impurity is moved to the trap portion 28.
  • thallium bromide 1 is kept in the same container 2 without being taken out from the container 2 even after the purification step S1 ends. Thereby, evaporation and sublimation of thallium bromide 1 are prevented, and purification efficiency is improved. In addition, work efficiency is improved because the work is performed in the same container.
  • the direction of the container 2 is changed by adjusting the container holding device 5 so that the trap portion 28 of the container 2 is positioned downward (see FIG. 9).
  • the purity of the thallium bromide 1 in the container 2 increases from the bottom to the top.
  • the heater 3 is arranged on the surface of the container 2 at the boundary between the refined portion of the thallium bromide 1 and the portion where impurities are segregated, for example, about one-fourth from the bottom of the thallium bromide 1. Is done.
  • the heater 3 heated on the surface of the container 2 moves slowly from the boundary toward the trap portion 28, so that the thallium bromide 1 is dissolved and separated at the boundary.
  • the heater 3 moves the impure thallium bromide 12, which has a low purity below the boundary and segregates impurities, to the trap portion 28 while dissolving it.
  • the movement of the impure thallium bromide 12 also serves to clean the container 2 in order to dissolve impurities adhering to the container 2 during the movement.
  • the trap portion 28 side of the crystal purification unit 27 is reduced in diameter toward the quartz glass tube 22 and has a gentle taper shape, so that the impure thallium bromide 12 is easy to move and hardly remains in the crystal purification unit 27.
  • the quartz glass tube 22 that connects the crystal purification unit 27 and the trap unit 28 of the container 2 is sealed to prevent impurities remaining in the trap unit 28 from being mixed into the crystal purification unit 27 during crystal growth. But you can. Further, the thallium bromide 1 for crystal growth is difficult to evaporate and sublimate in the crystal purification unit 27.
  • Crystal growth process The procedure of the crystal growth step S3 is almost the same as in the first embodiment.
  • the direction of the container 2 is changed so that the crystal purification unit 27 of the container 2 faces down.
  • the heater 3 melts only the purified thallium bromide 1 left in the crystal purification unit 27 and moves it to the sealing 21 side of the crystal purification unit 27 (container 2).
  • An auxiliary heater 32 may be used to melt the thallium bromide 1.
  • a furnace core tube may be disposed around the container 2 (crucible) in order to perform operation more safely.
  • a raw material refining boat may be separately prepared in the (crystal refining unit 24) of the container 2 and used to relieve the stress applied to the container 2.
  • the heating device used in the first to third embodiments is not limited to a heating wire that generates heat when energized, and may be, for example, a high-frequency heating device.
  • the container holding device 5 may be composed of a plurality of parts.
  • the container used in the present invention may be the container 2 including the crystal purification unit 27, the crystal growth unit 25, and the trap unit 28 shown in FIG.
  • the crystal refining unit 27 has a structure in which, for example, quartz glass tubes 22 and 26 having a diameter smaller than that of the quartz glass tube are connected to both ends of a cylindrical quartz glass tube having both ends opened.
  • the crystal growth unit 25 has a structure in which, for example, one end of a cylindrical quartz glass tube whose both ends are released is sealed, and a quartz glass tube 26 having a diameter smaller than that of the quartz glass tube is connected to the other end.
  • the trap portion 28 has, for example, a structure in which quartz glass tubes 22 and 29 having a diameter smaller than that of the quartz glass tube are connected to both ends of a cylindrical quartz glass tube having both ends opened.
  • the crystal growth unit 25, the crystal purification unit 27, and the trap unit 28 are connected by quartz glass tubes 22 and 26 in this order.
  • the crystal growth unit 25 and the crystal purification unit 27 do not have to have the same diameter, and the crystal purification unit 27 preferably has a small diameter in order to improve the purification accuracy of thallium bromide 1 (raw material).
  • the raw material portion having a large amount of impurities is moved to the trap portion 28, and the purity of the raw material portion having a small amount of impurities is particularly high.
  • the portion can be moved to the crystal growth portion 25. That is, considering the concentration gradient of the purified raw material, it becomes possible to sort the purified raw material according to the degree of purification of the raw material.
  • thallium bromide is exemplified as the crystal to be grown.
  • the crystal to be grown is not limited to this.
  • various compound semiconductors such as cadmium telluride (CdTe), cadmium zinc telluride (CdZnTe), gallium arsenide (GaAs), mercury iodide (HgI 2 ), and the like. It can also be applied to (single) crystal growth other than compound semiconductors.

Abstract

The present invention addresses the problem of providing a highly efficient method of crystal growth which highly purifies a semiconductor crystal material and with which high-purity high-quality crystals can be isolated. A method of crystal growth comprises the following steps performed in the following order in the same container: a refining step (S1) of placing a crystalline material (1) in a tubular container (2) that is closed at one end and substantially leveling the tubular container (2), then sequentially moving a portion of the crystalline material (1) placed in the tubular container (2) and melted into a belt shape from one end to the other end in a substantially horizontal direction to segregate impurities contained in the crystalline material (1) to the other end of the crystalline material (1); a separating step (S2) of partially melting the crystalline material (1) in which the impurities have been segregated to separate the same into a refined material (11) with less impurities and an impure material (12) with more impurities; and a crystal growth step (3) of cooling the refined material (11) after melting the same with the impure material separated in a solidified state and growing crystals in the container (2) positioned substantially vertical.

Description

結晶成長方法Crystal growth method
 本発明は、大型かつ高純度の結晶成長方法に関する。 The present invention relates to a large and high purity crystal growth method.
 近年、放射線を利用した医療用装置の開発において、放射線検出器として半導体検出器が採用される傾向にある。半導体検出器は、入射した放射線を直接電気信号に変換可能である。このため、半導体検出器を採用することによって、放射線検出器、並びに、医療用装置の小型化が可能となる。又、半導体検出器は、放射線(例えば、ガンマ線)のエネルギーを正確に測定することができるという特徴を有する。 Recently, in the development of medical devices using radiation, semiconductor detectors tend to be employed as radiation detectors. The semiconductor detector can convert incident radiation directly into an electrical signal. For this reason, by adopting the semiconductor detector, the radiation detector and the medical device can be miniaturized. Further, the semiconductor detector has a feature that the energy of radiation (for example, gamma rays) can be accurately measured.
 半導体検出器は、高電圧を印加して発生させた電場に置かれた半導体結晶に放射線が入射することで、放射線と半導体結晶との相互作用により生じる電荷キャリア(電子及び正孔)が電場により移動する原理に基づき、放射線の強度を電気信号(電流及び電荷等)に変換して取り出すものである。 In semiconductor detectors, when radiation is incident on a semiconductor crystal placed in an electric field generated by applying a high voltage, charge carriers (electrons and holes) generated by the interaction between the radiation and the semiconductor crystal are generated by the electric field. Based on the principle of movement, the intensity of radiation is converted into an electrical signal (current, charge, etc.) and extracted.
 半導体結晶中で生じる電荷キャリアは、半導体結晶中に存在する不純物、結晶欠陥、及び、結晶界面によって捕獲され、又は、再結合が促進される。このため、半導体結晶中の不純物濃度が高い程、又、結晶欠陥密度が高い程、電荷キャリアの移動度が低くなる。又、半導体結晶中の不純物濃度が高い程、又、結晶欠陥密度が高い程、電荷キャリアの平均寿命も短くなる。 Charge carriers generated in the semiconductor crystal are captured by impurities, crystal defects, and crystal interfaces present in the semiconductor crystal, or recombination is promoted. For this reason, the higher the impurity concentration in the semiconductor crystal and the higher the crystal defect density, the lower the charge carrier mobility. Further, the higher the impurity concentration in the semiconductor crystal and the higher the crystal defect density, the shorter the average life of the charge carriers.
 従って、半導体検出器に使用する半導体結晶は、半導体結晶の純度、及び、半導体結晶の質の高さが非常に重要になる。 Therefore, the purity of the semiconductor crystal and the quality of the semiconductor crystal are very important for the semiconductor crystal used in the semiconductor detector.
 半導体結晶である化合物半導体の結晶の精製方法、及び、単結晶の成長方法として、III-V族化合物をるつぼに収納してその上部にIII族元素を配し、さらにその上部には液体封止材を配して前記るつぼを封止し、次いで加熱ヒータにより前記III族元素を溶融させ、該III族元素の溶融により前記III-V族化合物を両者の接する境界面により順次溶融して溶融ゾーンを形成させ、該溶融ゾーンを前記III-V族化合物の下方へ移動させると共に前記III-V族化合物の結晶を析出させて前記溶融ゾーンの上方に浮上させるようにし、さらにこの状態で前記るつぼに種結晶を配して前記溶融ゾーンと接触させて前記III-V族化合物半導体の単結晶を成長させる方法が開示されている(特許文献1特許請求の範囲参照)。 As a method for purifying compound semiconductor crystals, which are semiconductor crystals, and a method for growing a single crystal, a group III-V compound is housed in a crucible, a group III element is arranged on the top, and a liquid seal is formed on the top. The crucible is sealed by arranging a material, and then the Group III element is melted by a heater, and the Group III-V compound is sequentially melted by the boundary surface where both the Group III elements are melted by melting the Group III element. And moving the melting zone below the group III-V compound and precipitating crystals of the group III-V compound to float above the melting zone. In this state, the crucible is placed in the crucible. A method of growing a single crystal of the III-V compound semiconductor by arranging a seed crystal and bringing it into contact with the melting zone is disclosed (refer to the claims of Patent Document 1).
 又、一定レベルの純度までの精製を横型の帯溶融精製装置を用いて精製した後、得られた棒状体を縦型の帯溶融精製装置にセットし直し、縦型の帯溶融装置で再び精製を行って所望のレベルの高純度化を行う方法が知られている。前記帯溶融精製を行う場合に、縦型と横型の両用に使用することができ、帯溶融精製による精製コストを低減することができるとともに、維持管理が容易な帯溶融精製装置が開示されている。具体的には、基台の一端側と他端側に棒状体の支持部が形成され、前記両支持部の間に前記支持部に支持される棒状体を囲む保護管が設けられるとともに、前記基台に保護管の長手方向に移動自在に高周波変成器が設けられ、この高周波変成器に保護管に沿って移動する誘導加熱コイルが接続され、前記基台に前記高周波変成器を移動させる移動機構が設けられる一方、前記基台が保護管を含む鉛直な面に沿って起倒自在に設けられてなることを特徴とする帯溶融精製装置が開示されている(特許文献2特許請求の範囲参照)。 In addition, after purifying to a certain level of purity using a horizontal belt melting refiner, the rod-shaped body obtained is set again in a vertical belt melting refiner and purified again using a vertical belt melting device. There is known a method of performing a desired level of high purity by performing the above. When performing the zone melting purification, a zone melting purification apparatus that can be used for both vertical and horizontal types, can reduce the purification cost by zone melting purification, and is easy to maintain is disclosed. . Specifically, a support portion of a rod-shaped body is formed on one end side and the other end side of the base, and a protective tube surrounding the rod-shaped body supported by the support portion is provided between the both support portions. A high-frequency transformer is provided on the base so as to be movable in the longitudinal direction of the protective tube, and an induction heating coil that moves along the protective tube is connected to the high-frequency transformer, so that the high-frequency transformer is moved to the base. There is disclosed a belt melting and purifying apparatus characterized in that, while a mechanism is provided, the base is provided so as to be movable up and down along a vertical plane including a protective tube (Patent Document 2 claims) reference).
特開平1‐103984号公報JP-A-1-103984 特開平2‐225391号公報JP-A-2-225391
 しかし、特許文献1に記載の方法は、上下方向に不純物を集める場合に、精製の際に上下が固体となっている状態において中央部分を溶融させる必要があるため、結晶の層変化が起り易いという問題がある。又、特許文献1に記載の方法は、溶融の際の熱膨張による応力が容器にかかるという問題がある。 However, in the method described in Patent Document 1, when collecting impurities in the vertical direction, it is necessary to melt the central portion in a state where the upper and lower sides are solid during purification, and therefore, the crystal layer easily changes. There is a problem. In addition, the method described in Patent Document 1 has a problem that stress due to thermal expansion during melting is applied to the container.
 特許文献2に記載の装置は、左右水平方向に不純物を集める粗精製と上下垂直方向に不純物を集める本精製を分けて行う装置であり、精製方向を反転する際に精製物の冷却時間が必要となるため、作業効率が低下するという問題がある。又、特許文献2に記載の装置は、左右水平方向への精製終了後粗精製物を一旦取り出し粗精製物を上下垂直方向に再度把持し直して上下垂直方向に精製を行う装置であるため、作業効率が低下するという問題がある。更に、特許文献2に記載の装置は、上下垂直方向に精製を行うため特許文献1に記載の方法と同様に、結晶の層変化が起こりやすいという問題もある。加えて、特許文献2に記載の装置は、粗精製物を一旦取り出すため、精製物の種類によっては使用が困難である。そして、特許文献2に記載の装置は、精製物の取り出しについて記載はなく、精製した純度の高い部分を単離することまで考慮した装置ではない。 The apparatus described in Patent Document 2 is an apparatus that performs rough purification that collects impurities in the horizontal direction of the left and right and main purification that collects impurities in the vertical and vertical directions, and requires a cooling time for the purified product to reverse the purification direction. Therefore, there is a problem that work efficiency is lowered. In addition, since the apparatus described in Patent Document 2 is an apparatus that once removes a crude product after purification in the left-right horizontal direction, and once again grips the crude product in the vertical direction and performs purification in the vertical direction. There is a problem that work efficiency decreases. Furthermore, since the apparatus described in Patent Document 2 performs purification in the vertical direction, there is also a problem that the crystal layer changes easily as in the method described in Patent Document 1. In addition, the apparatus described in Patent Document 2 is difficult to use depending on the type of the purified product because the crude purified product is once taken out. The device described in Patent Document 2 is not a device that takes into account the isolation of a purified portion having a high purity because there is no description regarding the removal of the purified product.
 本発明は、前記した従来の問題を解決するものであり、半導体結晶の原料の高純度化を行うと共に、高純度で質の高い結晶として単離可能である高効率の結晶成長方法を提供することを課題とする。 The present invention solves the above-described conventional problems, and provides a highly efficient crystal growth method capable of isolating high-purity and high-quality crystals while increasing the purity of a semiconductor crystal raw material. This is the issue.
 本発明は、結晶性原料を一端が閉ざされた管状容器に収容し、前記管状容器を略水平にした後、前記管状容器に収容した前記結晶性原料の一端から他端へ帯状に溶融させた部分を略水平方向に順次移動させて、前記結晶性原料に含まれる不純物を前記結晶性原料の前記他端に偏析させる精製工程と、不純物を偏析させた前記結晶性原料を部分融解して、不純物の少ない精製原料と、不純物の多い不純原料と、に分離する分離工程と、略垂直方向にした前記容器内において、前記不純原料は凝固状態で分離したまま、前記精製原料は溶融状態とした後冷却して結晶を成長させる結晶成長工程と、をこの順に同一の容器で行うことを特徴とする。 In the present invention, the crystalline raw material is accommodated in a tubular container with one end closed, and after the tubular container is substantially horizontal, the crystalline raw material accommodated in the tubular container is melted in a strip shape from one end to the other end. Sequentially moving the part in a substantially horizontal direction, the purification step of segregating impurities contained in the crystalline raw material to the other end of the crystalline raw material, partially melting the crystalline raw material segregated impurities, In the separation step for separating the purified raw material with few impurities and the impure raw material with many impurities, and in the container in a substantially vertical direction, the purified raw material is in a molten state while the impure raw material is separated in a solidified state. A crystal growth step of growing crystals by post-cooling is performed in the same container in this order.
 本発明によれば、半導体結晶の原料の高純度化を行うと共に、高純度で質の高い結晶として単離可能である高効率の結晶成長方法を提供できる。 According to the present invention, it is possible to provide a high-efficiency crystal growth method in which a semiconductor crystal raw material is highly purified and can be isolated as a high-purity and high-quality crystal.
本発明の第1実施形態の結晶成長方法のフローチャートである。It is a flowchart of the crystal growth method of 1st Embodiment of this invention. 本発明の第1実施形態における精製工程の概略を示す図である。It is a figure which shows the outline of the refinement | purification process in 1st Embodiment of this invention. 本発明の第1実施形態における分離工程の概略を示す図である。It is a figure which shows the outline of the isolation | separation process in 1st Embodiment of this invention. 本発明の第1実施形態における分離工程終了後の概略を示す図である。It is a figure which shows the outline after completion | finish of the isolation | separation process in 1st Embodiment of this invention. 本発明の第1実施形態における結晶成長工程の概略を示す図である。It is a figure which shows the outline of the crystal growth process in 1st Embodiment of this invention. 本発明の第2実施形態における精製工程の概略を示す図である。It is a figure which shows the outline of the refinement | purification process in 2nd Embodiment of this invention. 本発明の第2実施形態における分離工程の概略を示す図である。It is a figure which shows the outline of the isolation | separation process in 2nd Embodiment of this invention. 本発明の第3実施形態における精製工程の概略を示す図である。It is a figure which shows the outline of the refinement | purification process in 3rd Embodiment of this invention. 本発明の第3実施形態における分離工程の概略を示す図である。It is a figure which shows the outline of the isolation | separation process in 3rd Embodiment of this invention. 本発明の変形例における精製工程の概略を示す図である。It is a figure which shows the outline of the refinement | purification process in the modification of this invention.
 以下、本発明について、実施形態毎に適宜図面を参照しながら詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings as appropriate for each embodiment.
<第1実施形態>
 第1実施形態について、適宜図面(図1~図5)を参照しながら詳細に説明する。第1実施形態は、図1に示す様に、精製工程S1と、分離工程S2と、結晶成長工程S3とからなり、この記載順序で行う。本実施形態においては、例として、成長する結晶を臭化タリウム(TlBr)の結晶とした場合を説明する。
<First Embodiment>
The first embodiment will be described in detail with reference to the drawings (FIGS. 1 to 5) as appropriate. As shown in FIG. 1, the first embodiment includes a purification step S1, a separation step S2, and a crystal growth step S3, which are performed in this order. In the present embodiment, as an example, a case will be described in which a growing crystal is a thallium bromide (TlBr) crystal.
 図2は、臭化タリウム1(化合物半導体)の精製工程S1の概略を示す。図2に示す様に、臭化タリウム1の精製工程S1は、細長い円筒形状の容器2と、容器2を取り囲む様に配置されたヒータ3と、を使用して臭化タリウム1(化合物半導体)の精製(純化)を行う工程である。 FIG. 2 shows an outline of the purification step S1 of thallium bromide 1 (compound semiconductor). As shown in FIG. 2, the purification step S1 of thallium bromide 1 uses thallium bromide 1 (compound semiconductor) using an elongated cylindrical container 2 and a heater 3 arranged so as to surround the container 2. This is a step of performing purification (purification).
[容器]
 容器2は、例えば図2に示す様に、両端が解放した円筒形状の石英ガラス管の一端を封じ切り、他端に石英ガラス管よりも径が小さい石英ガラス管22を接続した構造を有する。他端に接続した石英ガラス管22は、原料投入口の役割を果たし、又、後記する内圧調整物質の供給装置(不図示)との接続部の役割も果たす。容器2の構成が単純な円筒形状であることにより、容器2が小型化しやすくなる。又、容器2の形状が細長い形状であることにより、原料が収容された容器2内で薄く広がりやすくなる。石英ガラス管の封じ切りとは、例えば、ガスバーナで石英ガラス管を溶かしながら閉じて、余分な石英ガラス管を除くことである。容器2は、容器保持装置5により保持される。
[container]
For example, as shown in FIG. 2, the container 2 has a structure in which one end of a cylindrical quartz glass tube having both ends opened is sealed and a quartz glass tube 22 having a diameter smaller than that of the quartz glass tube is connected to the other end. The quartz glass tube 22 connected to the other end serves as a raw material charging port, and also serves as a connecting portion with an internal pressure adjusting substance supply device (not shown) described later. Since the configuration of the container 2 is a simple cylindrical shape, the container 2 can be easily downsized. Moreover, when the shape of the container 2 is an elongated shape, it becomes easy to spread thinly in the container 2 in which the raw material is stored. The sealing of the quartz glass tube is, for example, closing the quartz glass tube while melting it with a gas burner, and removing the excess quartz glass tube. The container 2 is held by a container holding device 5.
 容器2の内部には原料落下防止部23が備えられている。原料落下防止部23は、石英ガラス管の内周面に別の石英ガラスを接着させることで形成されるものでもよいし、石英ガラス管の一部を変形させて形成されるものでもよい。原料落下防止部23は、例えば、容器2の内周面上に高さが容器2の直径の8分の1以下で、周方向に沿って帯状に形成されている。原料落下防止部23が容器2に備えられることで、容器2の向きを変更した場合でも臭化タリウム1(原料)の落下を防止する(詳細は後述する)。 A raw material fall prevention unit 23 is provided inside the container 2. The raw material fall prevention unit 23 may be formed by bonding another quartz glass to the inner peripheral surface of the quartz glass tube, or may be formed by deforming a part of the quartz glass tube. For example, the raw material fall prevention unit 23 has a height of 1/8 or less of the diameter of the container 2 on the inner peripheral surface of the container 2 and is formed in a belt shape along the circumferential direction. By providing the raw material fall prevention unit 23 in the container 2, the thallium bromide 1 (raw material) is prevented from dropping even when the orientation of the container 2 is changed (details will be described later).
[加熱装置]
 ヒータ3は、例えば、通電により発熱する発熱体である。ヒータ3は、ヒータ移動装置4に設置される。ヒータ移動装置4は、ヒータ3を円筒形状の容器2の軸方向(図2における横方向)に沿って移動可能な機構構造を備え、ヒータ3を円筒形状の容器2の軸方向の任意の位置で静止する。ヒータ移動装置4は、容器保持装置5上に配置されてもよい。
[Heating device]
The heater 3 is a heating element that generates heat when energized, for example. The heater 3 is installed in the heater moving device 4. The heater moving device 4 includes a mechanism structure capable of moving the heater 3 along the axial direction (lateral direction in FIG. 2) of the cylindrical container 2, and the heater 3 is positioned at any position in the axial direction of the cylindrical container 2. At rest. The heater moving device 4 may be disposed on the container holding device 5.
 又、補助ヒータ32が、容器2の上側に配置される。補助ヒータ32は、例えば、通電により発熱する発熱体である。補助ヒータ32は、容器2全体の温度を上昇させる。本実施形態では補助ヒータ32は上部のみに配置しているが、容器2の全体を覆うように設置しても良い。補助ヒータ32の単位面積当たりの加熱出力は、ヒータ3よりも小さい。 Further, an auxiliary heater 32 is disposed on the upper side of the container 2. The auxiliary heater 32 is a heating element that generates heat when energized, for example. The auxiliary heater 32 raises the temperature of the entire container 2. In the present embodiment, the auxiliary heater 32 is disposed only on the upper portion, but may be disposed so as to cover the entire container 2. The heating output per unit area of the auxiliary heater 32 is smaller than that of the heater 3.
 更に、補助ヒータ32は、容器2の一部のみ加熱可能であってもよい。ヒータ3と補助ヒータ32とを同時に使用することにより、容器2内の臭化タリウム1の一部のみを融解させることが可能である。 Furthermore, the auxiliary heater 32 may be capable of heating only a part of the container 2. By using the heater 3 and the auxiliary heater 32 at the same time, only a part of the thallium bromide 1 in the container 2 can be melted.
[容器保持装置]
 容器保持装置5は、容器を保持する装置である。
 容器保持装置5は、容器を保持した状態で少なくとも容器2の向きを略水平方向から略垂直方向まで(90°前後)回転可能である装置が好ましい。
 容器保持装置5としては、例えば、スタンドに回転自在に取り付けたクランプ等が挙げられる。
[Container holding device]
The container holding device 5 is a device that holds a container.
The container holding device 5 is preferably an apparatus that can rotate at least the direction of the container 2 from a substantially horizontal direction to a substantially vertical direction (around 90 °) while holding the container.
Examples of the container holding device 5 include a clamp that is rotatably attached to a stand.
[化合物半導体]
 まず始めに、放射線検出器である半導体検出器に使用される化合物半導体に要求される条件は、放射線(例えば、ガンマ線)と相互作用を起こして、電荷キャリアを発生させるために、化合物の密度が大きいこと、かつ、化合物を構成する原子の原子番号が大きいことである。
[Compound semiconductor]
First of all, the conditions required for compound semiconductors used in semiconductor detectors, which are radiation detectors, are such that the density of the compound is such that it interacts with radiation (eg gamma rays) to generate charge carriers. It is large and the atomic number of the atoms constituting the compound is large.
 半導体検出器を常温(20℃~25℃)で使用する場合は、熱によるキャリア誘起の影響を小さくするために、分子軌道のバンドギャップが大きいことが好ましい。例えば、化合物半導体ではないが、バンドギャップが1.11eVであるシリコンは、常温で半導体検出器にそのまま使用可能である。しかし、シリコンよりもバンドギャップが小さく、バンドギャップが0.67eVであるゲルマニウムは、常温で半導体検出器に使用する場合は、冷却が必要になる。 When the semiconductor detector is used at room temperature (20 ° C. to 25 ° C.), it is preferable that the band gap of the molecular orbitals is large in order to reduce the influence of heat-induced carrier induction. For example, silicon that is not a compound semiconductor but has a band gap of 1.11 eV can be used as it is for a semiconductor detector at room temperature. However, germanium, which has a smaller band gap than silicon and has a band gap of 0.67 eV, needs to be cooled when used in a semiconductor detector at room temperature.
 これら条件を満たす化合物半導体としては、テルル化カドミウム(CdTe)、テルル化カドミウム亜鉛(CdZnTe)、砒化ガリウム(GaAs)、ヨウ化水銀(HgI)、臭化タリウム(TlBr)等が挙げられる。ここに挙げた化合物半導体は、取り扱いに注意を要する元素により構成されるものが多く、化合物自体も取り扱いに注意を要する。又、ここに挙げた化合物半導体は、蒸気圧が高いために結晶成長中に一部が蒸発、及び、昇華してしまう等の特徴を有する。 Examples of compound semiconductors that satisfy these conditions include cadmium telluride (CdTe), cadmium zinc telluride (CdZnTe), gallium arsenide (GaAs), mercury iodide (HgI 2 ), thallium bromide (TlBr), and the like. Many of the compound semiconductors listed here are composed of elements that require handling, and the compound itself requires handling. In addition, the compound semiconductors listed here have characteristics such that a part of them vaporizes and sublimes during crystal growth because of a high vapor pressure.
[内圧調整物質]
 内圧調整物質は、精製工程S1、分離工程S2、結晶成長工程S3を通じて、蒸気圧の高い化合物半導体の蒸発、及び、昇華を抑えることを目的として容器2内に供給される物質である。
[Internal pressure regulator]
The internal pressure adjusting substance is a substance that is supplied into the container 2 for the purpose of suppressing evaporation and sublimation of the compound semiconductor having a high vapor pressure through the purification step S1, the separation step S2, and the crystal growth step S3.
 内圧調整物質は、被精製物質と反応しない物質、被精製物質を構成する元素からなる物質、被精製物質を構成する元素を含む物質等が好ましい。内圧調整物質は、被精製物質を構成する元素からなる物質であれば、被精製物質に取り込まれても不純物とならないため好ましい。
 内圧調整物質は、これら条件を満たす物質であれば、常温常圧下で気体、液体、固体いずれの状態であっても構わない。内圧調整物質は、これら条件を満たす物質の中でも、そのまま容器2に導入可能な常温で気体、又は、蒸気圧が高い物質が好ましい。
The internal pressure adjusting substance is preferably a substance that does not react with the substance to be purified, a substance composed of an element constituting the substance to be refined, a substance containing an element constituting the substance to be refined, or the like. The internal pressure adjusting substance is preferably a substance made of an element constituting the substance to be purified because it does not become an impurity even when incorporated into the substance to be purified.
The internal pressure adjusting substance may be in the state of gas, liquid, or solid under normal temperature and pressure as long as it satisfies these conditions. Among the substances satisfying these conditions, the internal pressure adjusting substance is preferably a gas at normal temperature that can be introduced into the container 2 as it is or a substance having a high vapor pressure.
 被精製物質と反応しない気体の例としては、希ガスが挙げられる。臭化タリウムを精製する場合は、内圧調整物質として、例えば、希ガス、臭化水素、臭素等が使用可能であり、中でも、臭素が好ましい。 An example of a gas that does not react with the substance to be purified is a rare gas. When purifying thallium bromide, for example, a rare gas, hydrogen bromide, bromine or the like can be used as the internal pressure adjusting substance, and bromine is preferred among them.
[精製工程]
 精製工程は、化合物半導体の結晶の原料中の不純物を偏析させて原料を精製する工程である。
[Purification process]
The purification step is a step of purifying the raw material by segregating impurities in the raw material of the compound semiconductor crystal.
(準備)
 精製工程S1では、まず化合物半導体の結晶の原料であり精製(純化)の対象物質である臭化タリウムが、石英ガラス管22を経て容器2に投入される。容器2に投入する臭化タリウムの量は、略水平に置いた容器2の半分以下の高さとなる量とし、略水平に置いた容器2の円筒部分の下から1/4程度の高さとなる量が好ましい(図2参照)。
(Preparation)
In the refining step S <b> 1, first, thallium bromide, which is a raw material for crystal of a compound semiconductor and is a target for purification (purification), is charged into the container 2 through the quartz glass tube 22. The amount of thallium bromide charged into the container 2 is an amount that is less than half the height of the container 2 placed substantially horizontally, and is about ¼ from the bottom of the cylindrical portion of the container 2 placed substantially horizontally. An amount is preferred (see FIG. 2).
 次に、補助ヒータ32が容器2の上面を加熱して、容器2の下面の温度より容器2の上面の温度を高くする。これにより、蒸気圧が高い臭化タリウム1(精製対象物質)であっても、臭化タリウムの気体が容器2の上面で冷やされることにより生じる、容器2の上面内側への臭化タリウムの結晶の付着が回避できる。又、臭化タリウム1中に存在する不純物(例えば、ヨウ化タリウム(TlI))が容器2の上面内側に付着することが防止される。更に、精製が終了した臭化タリウム1の表面に不純物が付着することを防止する。 Next, the auxiliary heater 32 heats the upper surface of the container 2 to make the temperature of the upper surface of the container 2 higher than the temperature of the lower surface of the container 2. Thereby, even if it is thallium bromide 1 (substance to be purified) having a high vapor pressure, thallium bromide crystals inside the upper surface of the container 2 generated by cooling the gas of thallium bromide on the upper surface of the container 2. Can be avoided. Further, impurities (for example, thallium iodide (TlI)) present in the thallium bromide 1 are prevented from adhering to the inside of the upper surface of the container 2. Further, impurities are prevented from adhering to the surface of thallium bromide 1 after purification.
 そして、容器2の石英ガラス管22が内圧調整物質の供給装置に接続される。続けて、内圧調整物質が容器2内に供給されて、容器2内が内圧調整物質で満たされる様にする。
 精製工程S1において臭化タリウム1を精製する間は、吸引状態と内圧調整物質の供給を繰り返して容器2内の内圧調整物質の純度を維持する。容器2内に内圧調整物質を供給し続けて内圧調整物質の純度が維持されてもよい。
And the quartz glass tube 22 of the container 2 is connected to the supply apparatus of an internal pressure adjusting substance. Subsequently, the internal pressure adjusting substance is supplied into the container 2 so that the inside of the container 2 is filled with the internal pressure adjusting substance.
While the thallium bromide 1 is purified in the purification step S1, the suction state and the supply of the internal pressure adjusting substance are repeated to maintain the purity of the internal pressure adjusting substance in the container 2. The purity of the internal pressure adjusting substance may be maintained by continuing to supply the internal pressure adjusting substance into the container 2.
 容器2内の吸引と容器2内への内圧調整物質の供給とが繰り返されることにより、蒸気圧の高い蒸発しやすい不純物、昇華性不純物、蒸発、及び、昇華した臭化タリウム等は、内圧調整物質と共に石英ガラス管22を経て容器2の外へ運ばれる。
 容器2の内圧、内圧調整物質の量等は、容器2の形状、及び、大きさ、臭化タリウム1の量等に基づいて決定する。
By repeating the suction in the container 2 and the supply of the internal pressure adjusting substance into the container 2, impurities having a high vapor pressure that are easily evaporated, sublimable impurities, evaporation, and sublimated thallium bromide are adjusted to the internal pressure. The substance is transported out of the container 2 through the quartz glass tube 22.
The internal pressure of the container 2, the amount of the internal pressure adjusting substance, etc. are determined based on the shape and size of the container 2, the amount of thallium bromide 1 and the like.
 内圧調整物質の供給装置は、内圧調整物質を所定の圧力、所定の量で容器2内に供給することができる装置であれば、構造や種類に制限はない。内圧調整物質の供給装置は、例えば、内圧調整物質が充填されたボンベ、内圧調整物質の気体を発生させる気体発生装置が挙げられる。気体発生装置は、例えば、加熱、バブリング、減圧、超音波照射等の手段により常温常圧下で液体、固体の内圧調整物質を気化させる装置が挙げられる。 The structure and type of the supply device for the internal pressure adjusting substance are not limited as long as the internal pressure adjusting substance can be supplied into the container 2 at a predetermined pressure and a predetermined amount. Examples of the supply device for the internal pressure adjusting substance include a cylinder filled with the internal pressure adjusting substance and a gas generator for generating a gas of the internal pressure adjusting substance. Examples of the gas generator include a device that vaporizes a liquid or solid internal pressure adjusting substance under normal temperature and normal pressure by means such as heating, bubbling, decompression, and ultrasonic irradiation.
(精製)
 まず、ヒータ移動装置4により、ヒータ3は容器2の一端に接続した石英ガラス管22とは反対側(図2では容器2に向かって右側)に移動される。ヒータ3に通電して、ヒータ3が、容器2内の臭化タリウム1のヒータ3に相対する部分を加熱することで、容器2内の臭化タリウム1のヒータ3に相対する部分のみを帯状に融解する。
(Purification)
First, the heater 3 is moved by the heater moving device 4 to the side opposite to the quartz glass tube 22 connected to one end of the container 2 (right side toward the container 2 in FIG. 2). The heater 3 is energized, and the heater 3 heats the portion of the thallium bromide 1 in the container 2 facing the heater 3, so that only the portion of the container 2 facing the heater 3 of the thallium bromide 1 is strip-shaped. Melt to
 次に、ヒータ移動装置4により、加熱状態のヒータ3が容器2の一端に接続した石英ガラス管22に向けて(図2では容器2に向かって左側)、容器2内の臭化タリウム1のヒータ3に相対する帯状の融解状態を維持しつつゆっくり移動する。新たに加熱状態のヒータ3に相対する臭化タリウム1は加熱されて融解状態となる。 Next, the heater moving device 4 causes the heated heater 3 to move toward the quartz glass tube 22 connected to one end of the container 2 (on the left side in FIG. 2 toward the container 2). It moves slowly while maintaining a belt-like melting state facing the heater 3. The thallium bromide 1 opposite to the newly heated heater 3 is heated to a molten state.
 一方、加熱状態のヒータ3に相対しなくなり加熱されなくなった臭化タリウム1の部分(図2におけるヒータ3の右側)では、臭化タリウム1が冷却されることにより、臭化タリウム1が徐々に凝固し結晶となる。即ち、臭化タリウム1の帯状の融解部分も容器2の封じ切り21側から石英ガラス管22側へ(図2の右側から左側へ)移動する(図2参照)。 On the other hand, in the portion of thallium bromide 1 that is no longer opposed to the heated heater 3 and is no longer heated (on the right side of the heater 3 in FIG. 2), the thallium bromide 1 is gradually cooled, so that the thallium bromide 1 gradually increases. It solidifies and becomes a crystal. That is, the band-shaped melted portion of thallium bromide 1 also moves from the sealing 21 side of the container 2 to the quartz glass tube 22 side (from the right side to the left side in FIG. 2) (see FIG. 2).
 臭化タリウム1が加熱されて融解する際に臭化タリウム1中の不純物が液層に放出され、臭化タリウム1が冷却されて結晶化(凝固)する際に不純物が液層に残留する。このため、臭化タリウム1の再結晶化(再凝固)した部分の純度が向上する。ヒータ3の移動速度は、例えば、1mm/h以上30mm/h以下とする。なお、臭化タリウムの場合は、ヒータ3の移動速度が30mm/hを超えると加熱速度冷却速度が速いため、成長する結晶は単結晶とはならない。 When thallium bromide 1 is heated and melted, impurities in thallium bromide 1 are released into the liquid layer, and when thallium bromide 1 is cooled and crystallized (solidifies), the impurities remain in the liquid layer. For this reason, the purity of the recrystallized (re-solidified) portion of thallium bromide 1 is improved. The moving speed of the heater 3 is, for example, 1 mm / h or more and 30 mm / h or less. In the case of thallium bromide, when the moving speed of the heater 3 exceeds 30 mm / h, the heating rate and the cooling rate are high, so that the crystal to grow does not become a single crystal.
 そして、ヒータ3が容器2の石英ガラス管22側に(図2の容器左側)到達すると、臭化タリウム1中の不純物が臭化タリウム1の石英ガラス管22側(図2の左側)に集められる。このため、臭化タリウム1は、封じ切り21側の純度が高く、石英ガラス管22側の純度が低い状態となる。加熱状態のヒータ3が臭化タリウム1の封じ切り21側から石英ガラス管22側への一方向に複数回移動して、臭化タリウム1の融解と再結晶化が繰り返し行われることにより、臭化タリウムの純度が更に向上する。 When the heater 3 reaches the quartz glass tube 22 side of the container 2 (left side of the container in FIG. 2), impurities in the thallium bromide 1 gather on the quartz glass tube 22 side (left side of FIG. 2) of the thallium bromide 1. It is done. For this reason, the thallium bromide 1 has a high purity on the side of the sealing 21 and a low purity on the side of the quartz glass tube 22. The heater 3 in the heated state is moved a plurality of times in one direction from the sealing 21 side of the thallium bromide 1 to the quartz glass tube 22 side, and the thallium bromide 1 is melted and recrystallized repeatedly, so that the odor The purity of thallium oxide is further improved.
 具体的には、石英ガラス管22側に達したヒータ3が容器2内の臭化タリウム1を融解させることなく容器2の封じ切り21側(図2の右側)に移動する。次に、加熱状態のヒータ3が容器2の封じ切り21側から石英ガラス管22側へゆっくり移動して、容器2の封じ切り21側から石英ガラス管22側への一方向に向けた臭化タリウム1の融解と結晶化(凝固)を再度行う。
 この作業を複数回繰り返し行うことで、液層に拡散し難い不純物も臭化タリウム1のガラス管22側により移動し、臭化タリウム1の容器2の封じ切り21側の純度が更に向上する。
Specifically, the heater 3 reaching the quartz glass tube 22 side moves to the sealing 21 side (right side in FIG. 2) of the container 2 without melting the thallium bromide 1 in the container 2. Next, the heater 3 in a heated state moves slowly from the sealing 21 side of the container 2 to the quartz glass tube 22 side, and bromides in one direction from the sealing 21 side of the container 2 to the quartz glass tube 22 side. Thallium 1 is melted and crystallized (solidified) again.
By repeating this operation a plurality of times, impurities that are difficult to diffuse into the liquid layer also move on the glass tube 22 side of the thallium bromide 1, and the purity of the thallium bromide 1 container 2 on the sealing 21 side is further improved.
(封止作業)
 封止作業は、精製工程S1中、又は、精製工程S1後の原料の蒸発、及び、昇華を防止し、不純物が精製後の原料に混入することを防止する作業である。
(Sealing work)
The sealing operation is an operation that prevents evaporation and sublimation of the raw material during or after the purification step S1, and prevents impurities from being mixed into the purified raw material.
 臭化タリウム1の精製が終了した後、例えば、容器2の石英ガラス管22がガスバーナにより封じ切られて、容器2が封止される。又、容器2の封止は、シール材を使用して行ってもよい。
 容器2の封止は、精製工程S1の終了前(途中)であっても、揮発性不純物が十分に減少した時点で行ってもよい。
After the purification of thallium bromide 1 is completed, for example, the quartz glass tube 22 of the container 2 is sealed with a gas burner, and the container 2 is sealed. The container 2 may be sealed using a sealing material.
The sealing of the container 2 may be performed at the time when the volatile impurities are sufficiently reduced, even before (endway) the purification step S1.
[分離工程]
 分離工程S2は、精製工程により化合物半導体の結晶の原料中における不純物が減少した精製部分である精製原料と、不純物を偏析させて不純物が増加した部分である不純原料と、を分離する工程である。
[Separation process]
The separation step S2 is a step of separating the purified raw material, which is a purified portion in which impurities in the compound semiconductor crystal raw material are reduced by the purification step, and the impure raw material, which is a portion in which impurities are segregated to increase impurities. .
 図3は、本実施形態における分離工程S2の概略を示し、臭化タリウム1が容器2内で分離した状態を示す。分離工程S2は、図3に示す様に、垂直方向に保持された容器2と、容器2の表面に沿って移動可能なヒータ3等を使用して行う。図4は、本実施形態における分離工程S2終了後の概略を示す。図4に示す様に、分離工程S2終了時には、臭化タリウム1は、容器2の上下に分離している。 FIG. 3 shows an outline of the separation step S2 in this embodiment, and shows a state in which the thallium bromide 1 is separated in the container 2. As shown in FIG. 3, the separation step S <b> 2 is performed using a container 2 held in the vertical direction and a heater 3 that can move along the surface of the container 2. FIG. 4 shows an outline after the separation step S2 in the present embodiment. As shown in FIG. 4, at the end of the separation step S <b> 2, the thallium bromide 1 is separated above and below the container 2.
 まず、臭化タリウム1は、精製工程S1終了後も容器2から取り出さずに、同一の容器2に収容したままとする。これにより、臭化タリウム1の蒸発、及び、昇華が防止されて、精製効率が向上する。又、同一の容器で作業を行うため、作業効率も向上する。 First, thallium bromide 1 is kept in the same container 2 without being taken out from the container 2 even after the purification step S1 ends. Thereby, evaporation and sublimation of thallium bromide 1 are prevented, and purification efficiency is improved. In addition, work efficiency is improved because the work is performed in the same container.
 次に、容器2の封じ切り21側が下になる様に容器保持装置5を調節して容器2の向きを変える。この状態において容器2内の臭化タリウム1は、下から上になるに従い純度が低下している。
 そして、臭化タリウム1の不純物が減少した部分である精製原料と、不純物を偏析させて不純物が増加した部分である不純原料と、の境界、例えば、臭化タリウム1の上から約5分の1の位置にヒータ3が配置される。
Next, the direction of the container 2 is changed by adjusting the container holding device 5 so that the sealing 21 side of the container 2 faces down. In this state, the purity of the thallium bromide 1 in the container 2 decreases from the bottom to the top.
Then, the boundary between the refined raw material where the impurities of thallium bromide 1 are reduced and the impure raw material where the impurities are increased by segregating impurities, for example, about 5 minutes from the top of thallium bromide 1 The heater 3 is arranged at the position 1.
 精製原料の純度は、結晶成長工程S3にて純度の高い(単)結晶を得ることを考慮すると、可能な限り高いほうがよい。精製原料(精製臭化タリウム11)の純度は、例えば、99質量%以上が好ましい。しかし、精製原料の純度は、必要に応じて適宜決定してもよい。 The purity of the purified raw material is preferably as high as possible in consideration of obtaining a (single) crystal having a high purity in the crystal growth step S3. The purity of the purified raw material (purified thallium bromide 11) is preferably 99% by mass or more, for example. However, the purity of the purified raw material may be appropriately determined as necessary.
 更に、前記境界から容器2の下側(封じ切り21側)に向けて、容器2の表面上を加熱したヒータ3が移動することで、前記境界にて臭化タリウム1を溶解させつつ精製原料と不純原料とを分離する。同時に、ヒータ3が、前記境界以下の純度の高い精製臭化タリウム11を溶解させつつ容器2の下部に移動させる(図3参照)。 Furthermore, the refined raw material is dissolved while the thallium bromide 1 is dissolved at the boundary by moving the heater 3 heated on the surface of the container 2 from the boundary toward the lower side of the container 2 (sealing 21 side). And impure raw materials are separated. At the same time, the heater 3 moves the refined thallium bromide 11 having a high purity below the boundary to the lower part of the container 2 (see FIG. 3).
 これにより、容器2の上部(石英ガラス管22側)に不純物を偏析させた凝固した不純臭化タリウム12が存在し、容器2の下部に精製された精製臭化タリウム11が存在する状態となる(図4参照)。
 臭化タリウム1の分離位置(境界)は、不純物の偏析速度から計算して求めてもよいし、予備実験を行って臭化タリウムの純度を測定することにより求めてもよい。
As a result, solidified impure thallium bromide 12 having segregated impurities is present in the upper part of the container 2 (on the quartz glass tube 22 side), and purified purified thallium bromide 11 is present in the lower part of the container 2. (See FIG. 4).
The separation position (boundary) of thallium bromide 1 may be calculated from the segregation rate of impurities, or may be determined by measuring the purity of thallium bromide by conducting a preliminary experiment.
 臭化タリウム1の分離は、ヒータ3が、先に前記境界で臭化タリウム1を加熱し、溶解し、分離してから分離した精製臭化タリウム11を容器2の下部に移動させる方法でもよい。
 結晶成長工程S3で精製臭化タリウム11を全量溶解させるので、ヒータ3は、少なくとも前記境界から容器2の下側(封じ切り21側)の途中まで移動すればよい。
The separation of thallium bromide 1 may be performed by a method in which the heater 3 heats and dissolves the thallium bromide 1 at the boundary, moves the separated thallium bromide 11 to the lower part of the container 2 after separation. .
Since the entire amount of the purified thallium bromide 11 is dissolved in the crystal growth step S3, the heater 3 only needs to move from the boundary to the middle of the lower side of the container 2 (side of the sealing 21).
 ヒータ3が、容器2の下側(封じ切り21側)から移動して精製臭化タリウム11の中でも純度の高い部分(例えば、臭化タリウム1の半分程度)を先に溶解させた後、前記境界で残りの臭化タリウム1を加熱し、溶解し、分離し、移動させてもよい。
 なお、不純臭化タリウム12は、原料落下防止部23により容器2壁面から剥離しないようになっている。
After the heater 3 moves from the lower side of the container 2 (sealing 21 side) and dissolves a high-purity portion of the purified thallium bromide 11 (for example, about half of thallium bromide 1), The remaining thallium bromide 1 may be heated, dissolved, separated and moved at the boundary.
The impure thallium bromide 12 is prevented from being peeled off from the wall surface of the container 2 by the raw material fall prevention unit 23.
 続けて、臭化タリウムが容器2から取り出されることなく、容器2に収容されたまま、分離された臭化タリウム(精製臭化タリウム11)が続く結晶成長工程S3で再結晶される。 Subsequently, the thallium bromide is not taken out from the container 2 and is recrystallized in the subsequent crystal growth step S3 while the separated thallium bromide (purified thallium bromide 11) is contained in the container 2.
 分離工程S2において、臭化タリウム1から不純物の少ない精製臭化タリウム11を分離することにより、不純物の多い不純臭化タリウム12が凝固状態のまま維持されやすくなる。又、本実施形態は、分離工程S2を行うので臭化タリウム1から純度の高い結晶の形で臭化タリウムが単離しやすく、又、得られやすくなる。 In the separation step S2, by separating the purified thallium bromide 11 having a small amount of impurities from the thallium bromide 1, the impure thallium bromide 12 having a large amount of impurities can be easily maintained in a solidified state. In the present embodiment, since the separation step S2 is performed, thallium bromide is easily isolated from thallium bromide 1 in the form of high-purity crystals and is easily obtained.
[結晶成長装置]
 図5は、臭化タリウム1が収容された容器2と、本実施形態で使用する結晶成長装置6と、を示す。結晶成長装置6は、少なくとも断熱材61と、ヒータ62と、昇降機構63と、を備える。
 結晶成長装置6は、容器2に取り付け可能であってもよい。断熱材61は、ヒータ62の外周に配置されている。断熱材61は、容器2を高温に保つ際のヒータ62の使用電力を減らすと同時に、外部環境の変化による容器2に封入された臭化タリウム1(原料)の温度変化等の変化を緩和する。ヒータ62は、臭化タリウム1が収容された容器2の外周を囲むように配置されている。昇降機構63は、容器2を下部(封じ切り21側)から保持する。又、昇降機構63は、容器2の高さ位置を調整してヒータ62による加熱を適切に行うことを可能にする。断熱材61、ヒータ62、昇降機構63は、その目的を達する限り、任意のものが使用可能である。
[Crystal growth equipment]
FIG. 5 shows a container 2 containing thallium bromide 1 and a crystal growth apparatus 6 used in this embodiment. The crystal growth apparatus 6 includes at least a heat insulating material 61, a heater 62, and an elevating mechanism 63.
The crystal growth apparatus 6 may be attachable to the container 2. The heat insulating material 61 is disposed on the outer periphery of the heater 62. The heat insulating material 61 reduces the electric power used by the heater 62 when keeping the container 2 at a high temperature, and at the same time, alleviates changes such as temperature changes of the thallium bromide 1 (raw material) sealed in the container 2 due to changes in the external environment. . The heater 62 is disposed so as to surround the outer periphery of the container 2 in which the thallium bromide 1 is accommodated. The elevating mechanism 63 holds the container 2 from the lower part (sealing 21 side). Further, the elevating mechanism 63 makes it possible to adjust the height position of the container 2 and appropriately perform heating by the heater 62. Any one of the heat insulating material 61, the heater 62, and the lifting mechanism 63 can be used as long as the purpose is achieved.
[結晶成長工程]
 結晶成長工程S3は、分離工程S2で分離した化合物半導体の結晶の精製原料から単結晶を成長させる工程である。
[Crystal growth process]
The crystal growth step S3 is a step of growing a single crystal from the purified raw material of the compound semiconductor crystal separated in the separation step S2.
 まず、精製した臭化タリウム1は、分離工程S2終了後も容器2から取り出さずに、同一の容器2に収容したままとする。これにより、臭化タリウム1の蒸発、及び、昇華が防止されて、精製効率が向上する。又、同一の容器で作業を行うため、作業効率も向上する。 First, the purified thallium bromide 1 is not taken out from the container 2 after the separation step S2 and is kept in the same container 2. Thereby, evaporation and sublimation of thallium bromide 1 are prevented, and purification efficiency is improved. In addition, work efficiency is improved because the work is performed in the same container.
 次に、ヒータ62が、容器2の下部(封じ切り21側)にある精製した臭化タリウム1を加熱して融解させる。ヒータ62の加熱により融解した臭化タリウム1の温度は、臭化タリウム1の融点よりもわずかに高い温度が好ましい。 Next, the heater 62 heats and melts the purified thallium bromide 1 at the bottom of the container 2 (on the side of the seal 21). The temperature of thallium bromide 1 melted by the heating of the heater 62 is preferably slightly higher than the melting point of thallium bromide 1.
 そして、融解した臭化タリウム1の温度を容器2の下部に存在する臭化タリウム1から下げることにより、臭化タリウム1が下から徐々に結晶化する。具体的には、容器2を保持する昇降機構63が調節されて容器2の位置が下がり、容器2の下部がヒータ62から離れる。これにより、容器2の下部側から融解した臭化タリウム1の温度が下がる。この際、臭化タリウム1から単結晶を得るために、容器2の下部(封じ切り21側)の底に三角錐を設けて、1点から結晶の成長を開始させることが好ましい。
 臭化タリウム1の冷却速度は、遅いほど純度の高い結晶が得られる。臭化タリウム1の冷却速度は、例えば、1mm/hが挙げられる。
Then, by lowering the temperature of the molten thallium bromide 1 from the thallium bromide 1 existing in the lower part of the container 2, the thallium bromide 1 is gradually crystallized from below. Specifically, the lifting mechanism 63 that holds the container 2 is adjusted, the position of the container 2 is lowered, and the lower part of the container 2 is separated from the heater 62. Thereby, the temperature of the thallium bromide 1 melted from the lower side of the container 2 is lowered. At this time, in order to obtain a single crystal from thallium bromide 1, it is preferable to provide a triangular pyramid at the bottom of the lower part of container 2 (on the side of sealing 21) and start crystal growth from one point.
The slower the cooling rate of thallium bromide 1, the higher the purity of the crystal. An example of the cooling rate of thallium bromide 1 is 1 mm / h.
 又、昇降機構63が容器2を移動させるのではなく、ヒータ62が容器2の上部(石英ガラス管22側)に移動することにより、ヒータ62から容器2を離してもよい。
 更に、複数のヒータで構成されたヒータ62が、精密な温度調整を行いつつ臭化タリウム1を加熱して温度勾配を作り出してもよい。臭化タリウム1の単結晶が、温度勾配により成長してもよい。
Further, the container 2 may be separated from the heater 62 by moving the heater 62 to the upper part of the container 2 (on the side of the quartz glass tube 22) instead of moving the container 2 by the elevating mechanism 63.
Furthermore, the heater 62 composed of a plurality of heaters may produce a temperature gradient by heating the thallium bromide 1 while performing precise temperature adjustment. A single crystal of thallium bromide 1 may be grown by a temperature gradient.
 なお、不純臭化タリウム12は、原料落下防止部23に係止されているため、不純臭化タリウム12を容器2から取り出すことなく、結晶成長工程で臭化タリウム1(精製臭化タリウム11)の結晶成長が可能となる。 In addition, since the impure thallium bromide 12 is locked to the raw material fall prevention part 23, without removing the impure thallium bromide 12 from the container 2, thallium bromide 1 (purified thallium bromide 11) is obtained in the crystal growth step. Crystal growth becomes possible.
 本実施形態においては、結晶成長工程を略垂直方向に向けた容器2を使用して行うため、成長が進んだ臭化タリウムの結晶が液層表面より出ることもなく、結晶欠陥が少ない質の高い結晶を得ることができる。又、本実施形態においては、結晶が円筒形になり温度分布の制御が行い易く、大型の結晶成長が得られ易い。 In the present embodiment, since the crystal growth process is performed using the container 2 oriented in a substantially vertical direction, the grown thallium bromide crystal does not come out of the surface of the liquid layer, and the crystal defects are few. High crystals can be obtained. In the present embodiment, the crystal is cylindrical and the temperature distribution is easily controlled, so that a large crystal growth is easily obtained.
 本実施形態においては、精製工程、分離工程、結晶成長工程等一連の工程は、原料(臭化タリウム)を容器(坩堝)から取り出すことなく、同一の容器(坩堝)で行うことを特徴とする。一連の操作を閉鎖系とした同一の容器を使用して行うことにより、取り扱いに注意を要する原料であっても、精製、結晶成長等の一連の操作が容易になる。 In this embodiment, a series of steps such as a purification step, a separation step, and a crystal growth step are performed in the same vessel (crucible) without removing the raw material (thallium bromide) from the vessel (crucible). . By performing the series of operations using the same container in a closed system, a series of operations such as refining and crystal growth can be facilitated even for raw materials that require careful handling.
 結晶成長工程は、略垂直方向に配置した容器2内で行うことが好ましい。この様にすることで、臭化タリウムの結晶成長方向と、容器2の内部空間の広がる方向が一致する。つまり、結晶成長工程において、臭化タリウムの結晶が成長しても、成長した臭化タリウムの結晶が溶融液面から外に出ることはない。従って、結晶欠陥密度が低下した、電荷キャリアの移動度が高い、質が高い臭化タリウムの単結晶が得られる。 The crystal growth step is preferably performed in a container 2 arranged in a substantially vertical direction. By doing in this way, the crystal growth direction of thallium bromide coincides with the direction in which the internal space of the container 2 spreads. That is, even if thallium bromide crystals grow in the crystal growth step, the grown thallium bromide crystals do not come out of the melt surface. Therefore, a high-quality thallium bromide single crystal having a reduced crystal defect density, high charge carrier mobility, and high quality can be obtained.
<第2実施形態>
 第2実施形態について、図6、及び、図7を用いて説明する。図6は、結晶精製部24と結晶成長部25とを備える容器2を使用する本実施形態における精製工程S1の概略を示す。図7は、本実施形態における分離工程S2終了後の概略を示す。第2実施形態では、使用する容器の構成が第1実施形態と異なる。
 なお、前記した第1実施形態と同一の要素には同一の符号を付して重複する説明は省略する。
Second Embodiment
A second embodiment will be described with reference to FIGS. 6 and 7. FIG. 6 shows an outline of the purification step S <b> 1 in this embodiment using the container 2 including the crystal purification unit 24 and the crystal growth unit 25. FIG. 7 shows an outline after completion of the separation step S2 in the present embodiment. In 2nd Embodiment, the structure of the container to be used differs from 1st Embodiment.
In addition, the same code | symbol is attached | subjected to the element same as above-described 1st Embodiment, and the overlapping description is abbreviate | omitted.
[容器]
 第2実施形態で使用する容器2は、結晶精製部24と結晶成長部25とを備える。
 結晶精製部24は、例えば図6に示す様に、両端が解放した円筒形状の石英ガラス管の両端に石英ガラス管よりも径が小さい石英ガラス管22、26を接続した構造を有する。結晶成長部25は、例えば図6に示す様に、両端が解放した円筒形状の石英ガラス管の一端を封じ切り(21)、他端に石英ガラス管よりも径が小さい石英ガラス管26を接続した構造を有する。結晶精製部24と、結晶成長部25とは、石英ガラス管26により接続されている。結晶精製部24と、結晶成長部25とは、同じ径にする必要はなく、臭化タリウム1(原料)の精製精度を向上させるために、結晶精製部24の径を細くすることが好ましい。
[container]
The container 2 used in the second embodiment includes a crystal purification unit 24 and a crystal growth unit 25.
For example, as shown in FIG. 6, the crystal refining unit 24 has a structure in which quartz glass tubes 22 and 26 having a diameter smaller than that of the quartz glass tube are connected to both ends of a cylindrical quartz glass tube having both ends opened. For example, as shown in FIG. 6, the crystal growth unit 25 seals one end of a cylindrical quartz glass tube having both ends open (21), and connects the other end to a quartz glass tube 26 having a diameter smaller than that of the quartz glass tube. Has the structure. The crystal purification unit 24 and the crystal growth unit 25 are connected by a quartz glass tube 26. The crystal purification unit 24 and the crystal growth unit 25 do not have to have the same diameter, and it is preferable to reduce the diameter of the crystal purification unit 24 in order to improve the purification accuracy of thallium bromide 1 (raw material).
[精製工程]
 精製工程S1の手順は、第1実施形態とほぼ同一である。
 本実施形態では、臭化タリウム1(原料)は結晶精製部24に投入される(図6参照)。
 臭化タリウム1精製の際のヒータ3の初期位置は、結晶精製部24の結晶成長部25側とする。精製を行う際、結晶成長部25の温度も補助ヒータ32により少なくとも臭化タリウム1の凝固温度より高く保たれる。これにより、結晶性成長部25への臭化タリウム、及び、不純物の付着が防止される。
[Purification process]
The procedure of the purification step S1 is almost the same as in the first embodiment.
In this embodiment, thallium bromide 1 (raw material) is charged into the crystal purification unit 24 (see FIG. 6).
The initial position of the heater 3 during the purification of thallium bromide 1 is the crystal growth unit 25 side of the crystal purification unit 24. When refining, the temperature of the crystal growth part 25 is also maintained at least higher than the solidification temperature of the thallium bromide 1 by the auxiliary heater 32. This prevents thallium bromide and impurities from adhering to the crystalline growth portion 25.
[分離工程]
 分離工程S2の手順は、第1実施形態とほぼ同一である。
[Separation process]
The procedure of the separation step S2 is almost the same as that in the first embodiment.
 まず、容器保持装置5が調節されて、容器2の結晶成長部25が下になる様に容器2の向きが変えられる(図7参照)。
 次に、容器2の表面上で、臭化タリウム1の不純物が減少した部分である精製原料と、不純物を偏析させて不純物が増加した部分である不純原料と、の境界部分、例えば、臭化タリウム1の上から約5分の1の位置にヒータ3が配置される。
First, the container holding device 5 is adjusted, and the orientation of the container 2 is changed so that the crystal growth part 25 of the container 2 is positioned downward (see FIG. 7).
Next, on the surface of the container 2, a boundary portion between the purified raw material where the impurities of the thallium bromide 1 are reduced and the impure raw material where the impurities are increased by segregating the impurities, for example, bromide The heater 3 is arranged at a position about one fifth from the top of the thallium 1.
 そして、前記境界から容器2の結晶成長部25に向けて、容器2の表面上において加熱したヒータ3がゆっくり移動することで、前記境界にて臭化タリウム1を溶解しつつ分離する。同時に、ヒータ3が、前記境界以下の純度の高い臭化タリウム1を溶解させつつ容器2の結晶成長部25に移動させる。ヒータ3の加熱移動は複数回行ってもよい。先にヒータ3が、前記境界で臭化タリウム1を加熱し、溶解し、分離してから容器2の結晶成長部25に移動させてもよい。 Then, the heater 3 heated on the surface of the container 2 moves slowly from the boundary toward the crystal growth portion 25 of the container 2, so that the thallium bromide 1 is separated and dissolved at the boundary. At the same time, the heater 3 moves the thallium bromide 1 having a high purity below the boundary to the crystal growth part 25 of the container 2 while dissolving it. The heating movement of the heater 3 may be performed a plurality of times. First, the heater 3 may heat the thallium bromide 1 at the boundary, dissolve it, separate it, and move it to the crystal growth part 25 of the container 2.
 これにより、図7に示す様に、容器2上部に不純物を偏析させた凝固した不純臭化タリウム12が存在し、容器2の結晶成長部25に精製された精製臭化タリウム11が存在する状態となる。 As a result, as shown in FIG. 7, solidified impure thallium bromide 12 having segregated impurities is present at the top of the container 2, and purified thallium bromide 11 is present in the crystal growth portion 25 of the container 2. It becomes.
[結晶成長工程]
(封止作業)
 本実施形態の結晶成長工程S3において第1実施形態と異なる点は、分離工程S2で分離した精製臭化タリウム11を融解させて結晶成長部25に移動した後、結晶成長部25と結晶精製部24とを接続する石英ガラス管26が封じ切られる点である。結晶成長部25と結晶精製部24とを接続する石英ガラス管26が封じ切られることで、容器2の体積が小さくなり、結晶化した臭化タリウムが蒸発、及び、昇華し難くなる。よって、臭化タリウムの保存性がより向上する。
[Crystal growth process]
(Sealing work)
The crystal growth step S3 of this embodiment is different from the first embodiment in that the purified thallium bromide 11 separated in the separation step S2 is melted and moved to the crystal growth portion 25, and then the crystal growth portion 25 and the crystal purification portion. The quartz glass tube 26 that connects to 24 is sealed off. By sealing the quartz glass tube 26 connecting the crystal growth unit 25 and the crystal purification unit 24, the volume of the container 2 is reduced, and the crystallized thallium bromide is difficult to evaporate and sublimate. Therefore, the storage stability of thallium bromide is further improved.
<第3実施形態>
 第3実施形態について、図8、及び、図9を用いて説明する。図8は、結晶精製部27とトラップ部28とを備える容器2を使用する本実施形態における精製工程S1の概略を示す。図9は、本実施形態における分離工程S2終了後の概略を示す。第3実施形態では、使用する容器の構成が第1実施形態と異なる。
 なお、前記した第1実施形態と同一の要素には同一の符号を付して重複する説明は省略する。
<Third Embodiment>
A third embodiment will be described with reference to FIGS. 8 and 9. FIG. 8 shows an outline of the purification step S1 in this embodiment using the container 2 including the crystal purification unit 27 and the trap unit 28. FIG. 9 shows an outline after completion of the separation step S2 in the present embodiment. In 3rd Embodiment, the structure of the container to be used differs from 1st Embodiment.
In addition, the same code | symbol is attached | subjected to the element same as above-described 1st Embodiment, and the overlapping description is abbreviate | omitted.
[容器]
 第3実施形態で使用する容器2は、結晶精製部27とトラップ部28とを備える。
 トラップ部28は、例えば図8に示す様に、両端が解放した円筒形状の石英ガラス管の両端に石英ガラス管よりも径が小さい石英ガラス管22、29を接続した構造を有する。結晶精製部27のトラップ部28側の約4分の1は、石英ガラス管22に向けて縮径して緩やかなテーパー状になっている。結晶精製部27と、トラップ部28とは、石英ガラス管22により接続されている。結晶精製部27と、トラップ部28とは、同じ径にする必要はなく、トラップ部28の捕集性能を向上させるため表面積を増加させるべく、トラップ部28の径を拡げることが好ましい。
[container]
The container 2 used in the third embodiment includes a crystal purification unit 27 and a trap unit 28.
For example, as shown in FIG. 8, the trap portion 28 has a structure in which quartz glass tubes 22 and 29 having a diameter smaller than that of the quartz glass tube are connected to both ends of a cylindrical quartz glass tube having both ends opened. About one quarter of the crystal purification unit 27 on the trap unit 28 side is reduced in diameter toward the quartz glass tube 22 and has a gentle taper shape. The crystal purification unit 27 and the trap unit 28 are connected by a quartz glass tube 22. The crystal refinement part 27 and the trap part 28 do not have to have the same diameter, and it is preferable to increase the diameter of the trap part 28 in order to increase the surface area in order to improve the collection performance of the trap part 28.
[精製工程]
 精製工程S1の手順は、第1実施形態とほぼ同一である。
 本実施形態では、図8に示す様に、臭化タリウム1(原料)はトラップ部28を経て、結晶精製部27に投入される。
[Purification process]
The procedure of the purification step S1 is almost the same as in the first embodiment.
In the present embodiment, as shown in FIG. 8, thallium bromide 1 (raw material) is introduced into the crystal purification unit 27 through the trap unit 28.
 精製の際のヒータ3の初期位置は、結晶精製部27の封じ切り21側(図8の右側)とする。精製を行う際、トラップ部28の温度は結晶精製部27の温度以下に保つ。結晶精製部27で発生した不純物を含む蒸気はトラップ部28にて冷却されて固化する。分離工程S2で分離する不純臭化タリウムの量が減少するため、分離工程S2の作業時間が短時間で済む。又、臭化タリウム、及び、不純物は、容器2の外に出て行き難くなる。従って、外部の内圧調整物質の供給装置等が臭化タリウム等により汚染され難くなる。 The initial position of the heater 3 during the purification is the sealing 21 side of the crystal purification unit 27 (the right side in FIG. 8). When performing the purification, the temperature of the trap unit 28 is kept below the temperature of the crystal purification unit 27. The vapor containing impurities generated in the crystal purification unit 27 is cooled and solidified by the trap unit 28. Since the amount of impure thallium bromide separated in the separation step S2 is reduced, the work time of the separation step S2 can be shortened. Further, thallium bromide and impurities are difficult to get out of the container 2. Therefore, an external internal pressure adjusting substance supply device or the like is hardly contaminated by thallium bromide or the like.
[分離工程]
 分離工程S2は、精製工程S1により化合物半導体の結晶の原料中における不純物が減少した部分である精製原料と、不純物を偏析させて不純物が増加した部分である不純原料と、を分離する工程である。
 本実施形態においては、臭化タリウム1の不純物を偏析させた部分がトラップ部28に移動される点が、第1実施形態とは異なる。
[Separation process]
The separation step S2 is a step of separating the purified raw material, which is a portion in which impurities in the compound semiconductor crystal raw material are reduced by the purification step S1, and the impure raw material, which is a portion in which impurities are segregated to increase impurities. .
This embodiment is different from the first embodiment in that the portion of the thallium bromide 1 segregated impurity is moved to the trap portion 28.
 まず、臭化タリウム1は、精製工程S1終了後も容器2から取り出さずに、同一の容器2に収容したままとする。これにより、臭化タリウム1の蒸発、及び、昇華が防止されて、精製効率が向上する。又、同一の容器で作業を行うため、作業効率も向上する。 First, thallium bromide 1 is kept in the same container 2 without being taken out from the container 2 even after the purification step S1 ends. Thereby, evaporation and sublimation of thallium bromide 1 are prevented, and purification efficiency is improved. In addition, work efficiency is improved because the work is performed in the same container.
 次に、容器2のトラップ部28が下になる様に容器保持装置5を調節して容器2の向きが変えられる(図9参照)。この状態において容器2中の臭化タリウム1は、下から上になるに従い純度が高くなっている。
 そして、容器2の表面で、臭化タリウム1の精製した部分と、不純物を偏析させた部分と、の境界、例えば、臭化タリウム1の下から約4分の1の位置にヒータ3が配置される。
Next, the direction of the container 2 is changed by adjusting the container holding device 5 so that the trap portion 28 of the container 2 is positioned downward (see FIG. 9). In this state, the purity of the thallium bromide 1 in the container 2 increases from the bottom to the top.
The heater 3 is arranged on the surface of the container 2 at the boundary between the refined portion of the thallium bromide 1 and the portion where impurities are segregated, for example, about one-fourth from the bottom of the thallium bromide 1. Is done.
 更に、前記境界からトラップ部28に向けて、容器2の表面上で加熱したヒータ3がゆっくり移動することで、前記境界にて臭化タリウム1を溶解させつつ分離する。同時に、ヒータ3が、前記境界以下の純度の低い、不純物を偏析させた部分である不純臭化タリウム12を溶解させつつトラップ部28に移動させる。不純臭化タリウム12の移動は、移動の際に容器2に付着した不純物を溶解するため、容器2の洗浄を兼ねる。結晶精製部27のトラップ部28側は、石英ガラス管22に向けて縮径して緩やかなテーパー状になっているため、不純臭化タリウム12が移動しやすく、結晶精製部27に残りにくい。 Furthermore, the heater 3 heated on the surface of the container 2 moves slowly from the boundary toward the trap portion 28, so that the thallium bromide 1 is dissolved and separated at the boundary. At the same time, the heater 3 moves the impure thallium bromide 12, which has a low purity below the boundary and segregates impurities, to the trap portion 28 while dissolving it. The movement of the impure thallium bromide 12 also serves to clean the container 2 in order to dissolve impurities adhering to the container 2 during the movement. The trap portion 28 side of the crystal purification unit 27 is reduced in diameter toward the quartz glass tube 22 and has a gentle taper shape, so that the impure thallium bromide 12 is easy to move and hardly remains in the crystal purification unit 27.
(封止作業)
 容器2の結晶精製部27とトラップ部28とを接続する石英ガラス管22が封じ切られることで、結晶成長の際にトラップ部28に残った不純物が、結晶精製部27に混入することを防いでもよい。又、結晶成長させる臭化タリウム1が結晶精製部27に蒸発、及び、昇華し難くなる。
(Sealing work)
The quartz glass tube 22 that connects the crystal purification unit 27 and the trap unit 28 of the container 2 is sealed to prevent impurities remaining in the trap unit 28 from being mixed into the crystal purification unit 27 during crystal growth. But you can. Further, the thallium bromide 1 for crystal growth is difficult to evaporate and sublimate in the crystal purification unit 27.
[結晶成長工程]
 結晶成長工程S3の手順は、第1実施形態とほぼ同一である。
 容器保持装置5を調節して、容器2の結晶精製部27が下になる様に容器2の向きが変えられる。ヒータ3が、結晶精製部27に残した精製された臭化タリウム1のみを融解させて結晶精製部27(容器2)の封じ切り21側に移動させる。補助ヒータ32が使用されて臭化タリウム1を融解させてもよい。
[Crystal growth process]
The procedure of the crystal growth step S3 is almost the same as in the first embodiment.
By adjusting the container holding device 5, the direction of the container 2 is changed so that the crystal purification unit 27 of the container 2 faces down. The heater 3 melts only the purified thallium bromide 1 left in the crystal purification unit 27 and moves it to the sealing 21 side of the crystal purification unit 27 (container 2). An auxiliary heater 32 may be used to melt the thallium bromide 1.
(変形例)
 実施形態1ないし実施形態3では使用していないが、より安全に操作を行うため、容器2(坩堝)の周りに炉心管が配置されてもよい。又、容器2の(結晶精製部24)内部に原料精製用ボートを別途用意し、使用して、容器2にかかる応力を緩和してもよい。
(Modification)
Although not used in the first to third embodiments, a furnace core tube may be disposed around the container 2 (crucible) in order to perform operation more safely. Further, a raw material refining boat may be separately prepared in the (crystal refining unit 24) of the container 2 and used to relieve the stress applied to the container 2.
 実施形態1ないし実施形態3で使用する加熱装置は、通電することで発熱する電熱線に限らず、例えば、高周波加熱装置であってもよい。
 容器保持装置5は、複数の部分から構成されていてもよい。
The heating device used in the first to third embodiments is not limited to a heating wire that generates heat when energized, and may be, for example, a high-frequency heating device.
The container holding device 5 may be composed of a plurality of parts.
 本発明で使用する容器は、図10に示す、結晶精製部27と、結晶成長部25と、トラップ部28とからなる容器2であってもよい。 The container used in the present invention may be the container 2 including the crystal purification unit 27, the crystal growth unit 25, and the trap unit 28 shown in FIG.
 結晶精製部27は、例えば、両端が解放した円筒形状の石英ガラス管の両端に石英ガラス管よりも径が小さい石英ガラス管22、26を接続した構造を有する。結晶成長部25は、例えば、両端が解放した円筒形状の石英ガラス管の一端を封じ切り、他端に石英ガラス管よりも径が小さい石英ガラス管26を接続した構造を有する。トラップ部28は、例えば、両端が解放した円筒形状の石英ガラス管の両端に石英ガラス管よりも径が小さい石英ガラス管22、29を接続した構造を有する。 The crystal refining unit 27 has a structure in which, for example, quartz glass tubes 22 and 26 having a diameter smaller than that of the quartz glass tube are connected to both ends of a cylindrical quartz glass tube having both ends opened. The crystal growth unit 25 has a structure in which, for example, one end of a cylindrical quartz glass tube whose both ends are released is sealed, and a quartz glass tube 26 having a diameter smaller than that of the quartz glass tube is connected to the other end. The trap portion 28 has, for example, a structure in which quartz glass tubes 22 and 29 having a diameter smaller than that of the quartz glass tube are connected to both ends of a cylindrical quartz glass tube having both ends opened.
 結晶成長部25と、結晶精製部27と、トラップ部28とは、この順に石英ガラス管22、26により接続されている。結晶成長部25と、結晶精製部27とは、同じ径にする必要はなく、臭化タリウム1(原料)の精製精度を向上させるために、結晶精製部27の径が細いことが好ましい。 The crystal growth unit 25, the crystal purification unit 27, and the trap unit 28 are connected by quartz glass tubes 22 and 26 in this order. The crystal growth unit 25 and the crystal purification unit 27 do not have to have the same diameter, and the crystal purification unit 27 preferably has a small diameter in order to improve the purification accuracy of thallium bromide 1 (raw material).
 図10に示す容器を使用することで、濃度勾配が大きい原料を精製する場合であっても、不純物の多い原料部分をトラップ部28に移動し、不純物の少ない原料部分の中でも、特に純度の高い部分を結晶成長部25に移動することが可能となる。即ち、精製した原料の濃度勾配を考慮し、原料の精製度に応じて精製した原料の分取が可能となる。 By using the container shown in FIG. 10, even when a raw material having a large concentration gradient is purified, the raw material portion having a large amount of impurities is moved to the trap portion 28, and the purity of the raw material portion having a small amount of impurities is particularly high. The portion can be moved to the crystal growth portion 25. That is, considering the concentration gradient of the purified raw material, it becomes possible to sort the purified raw material according to the degree of purification of the raw material.
 実施形態1ないし実施形態3では成長する結晶として臭化タリウムを例示した。しかし、成長する結晶はこれに限定されず、例えば、テルル化カドミウム(CdTe)、テルル化カドミウム亜鉛(CdZnTe)、砒化ガリウム(GaAs)、ヨウ化水銀(HgI)等の種々の化合物半導体のほか、化合物半導体以外の(単)結晶成長にも適用可能である。 In the first to third embodiments, thallium bromide is exemplified as the crystal to be grown. However, the crystal to be grown is not limited to this. For example, in addition to various compound semiconductors such as cadmium telluride (CdTe), cadmium zinc telluride (CdZnTe), gallium arsenide (GaAs), mercury iodide (HgI 2 ), and the like. It can also be applied to (single) crystal growth other than compound semiconductors.
 以上、本発明に係る結晶成長方法について、実施形態を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて改変や変更等することができることはいうまでもない。 As described above, the crystal growth method according to the present invention has been described in detail with reference to the embodiment. However, the scope of the present invention is not limited to the above-described content, and the scope of the right is based on the description of the claims. Must be interpreted. In addition, it cannot be overemphasized that the content of this invention can be changed or changed based on the above description.
1  原料(臭化タリウム)
11 精製原料(精製臭化タリウム)
12 不純原料(不純臭化タリウム)
2  容器
21 封じ切り
22 石英ガラス管
23 原料落下防止部
24 結晶精製部
25 結晶成長部
26 石英ガラス管
27 結晶精製部
28 トラップ部
29 石英ガラス管
3  ヒータ
32 補助ヒータ
4  ヒータ移動装置
5  容器保持装置
6  結晶成長装置
61 断熱材
62 ヒータ
63 昇降機構
1 Raw material (thallium bromide)
11 Purified raw material (purified thallium bromide)
12 Impure raw material (impure thallium bromide)
2 Container 21 Seal 22 Quartz glass tube 23 Raw material fall prevention unit 24 Crystal purification unit 25 Crystal growth unit 26 Quartz glass tube 27 Crystal purification unit 28 Trap unit 29 Quartz glass tube 3 Heater 32 Auxiliary heater 4 Heater moving device 5 Container holding device 6 Crystal Growth Device 61 Heat Insulating Material 62 Heater 63 Elevating Mechanism

Claims (7)

  1.  結晶性原料を一端が閉ざされた管状容器に収容し、前記管状容器を略水平にした後、前記管状容器に収容した前記結晶性原料の一端から他端へ帯状に溶融させた部分を略水平方向に順次移動させて、前記結晶性原料に含まれる不純物を前記結晶性原料の前記他端に偏析させる精製工程と、
     不純物を偏析させた前記結晶性原料を部分融解して、不純物の少ない精製原料と、不純物の多い不純原料と、に分離する分離工程と、
     略垂直方向にした前記容器内において、前記不純原料は凝固状態で分離したまま、前記精製原料は溶融状態とした後冷却して結晶を成長させる結晶成長工程と、
     をこの順に同一の容器で行うことを特徴とする結晶成長方法。
    The crystalline raw material is housed in a tubular container with one end closed, and the tubular container is made substantially horizontal, and then the portion of the crystalline raw material housed in the tubular container melted in a band from one end to the other is made substantially horizontal. A purification step of sequentially moving in the direction to segregate impurities contained in the crystalline raw material to the other end of the crystalline raw material;
    A separation step of partially melting the crystalline raw material in which impurities are segregated to separate a purified raw material with less impurities and an impure raw material with more impurities;
    In the container in a substantially vertical direction, while the impure raw material is separated in a solidified state, the purified raw material is brought into a molten state and then cooled to grow crystals, and
    Are performed in the same container in this order.
  2.  前記分離工程は、前記結晶性原料を前記容器内で前記精製原料と、前記不純原料と、に分離する工程であり、
     前記精製工程、前記分離工程、前記結晶成長工程を連続して行う
     ことを特徴とする請求項1に記載の結晶成長方法。
    The separation step is a step of separating the crystalline raw material into the purified raw material and the impure raw material in the container,
    The crystal growth method according to claim 1, wherein the purification step, the separation step, and the crystal growth step are continuously performed.
  3.  前記容器は、細管形状の原料精製部と、前記原料精製部以上の内径を有する結晶成長部と、を備え、
     前記原料精製部と、前記結晶成長部と、が縮径部で連結されており、
     前記原料精製部において前記精製工程を行い、
     前記精製原料を前記結晶成長部に移動させた後、前記結晶成長部において前記結晶成長工程を行う
     ことを特徴とする請求項1に記載の結晶成長方法。
    The container includes a raw material refinement unit having a thin tube shape, and a crystal growth unit having an inner diameter equal to or larger than the material refinement unit,
    The raw material refinement section and the crystal growth section are connected by a reduced diameter section,
    Performing the purification step in the raw material purification section;
    The crystal growth method according to claim 1, wherein the crystal growth step is performed in the crystal growth part after the purified raw material is moved to the crystal growth part.
  4.  前記容器は、細管形状の原料精製部と、前記原料精製部の温度以下に冷却するトラップ部と、を備え、
     前記原料精製部と、前記トラップ部と、が縮径部で連結されており、
     前記原料精製部において前記精製工程を行い、
     前記不純原料を前記トラップ部に移動させた後、前記原料精製部において前記結晶成長工程を行う
     ことを特徴とする請求項1に記載の結晶成長方法。
    The container includes a raw material purification unit having a thin tube shape, and a trap unit that cools to a temperature equal to or lower than the temperature of the raw material purification unit.
    The raw material purifying section and the trap section are connected by a reduced diameter section,
    Performing the purification step in the raw material purification section;
    The crystal growth method according to claim 1, wherein the crystal growth step is performed in the raw material purification unit after the impure material is moved to the trap unit.
  5.  結晶性原料を一端が閉ざされた管状容器に収容し、前記管状容器を略水平にした後、前記管状容器に収容した前記結晶性原料の一端から他端へ帯状に溶融させた部分を略水平方向に順次移動させて、前記結晶性原料に含まれる不純物を前記結晶性原料の前記他端に偏析させる精製工程と、
     不純物を偏析させた前記結晶性原料を部分融解して、不純物の少ない精製原料と、不純物の多い不純原料と、に分離する分離工程と、
     略垂直方向にした前記容器内において、前記精製原料は溶融状態とした後冷却して結晶を成長させる結晶成長工程と、をこの順に同一の容器で連続して行う結晶成長方法であって、
     前記容器は、細管形状の原料精製部と、前記原料精製部の温度以下に冷却するトラップ部と、を備え、
     前記原料精製部と、前記トラップ部と、が縮径部で連結されており、
     前記原料精製部において前記精製工程を行い、
     前記分離工程は、前記結晶性原料を前記原料精製部内で前記精製原料と、前記不純原料と、に分離する工程であり、
     前記不純原料を前記トラップ部に移動させた後、前記トラップ部を前記容器から分離し、
     前記原料精製部において前記結晶成長工程を行う
     ことを特徴とする結晶成長方法。
    The crystalline raw material is housed in a tubular container with one end closed, and the tubular container is made substantially horizontal, and then the portion of the crystalline raw material housed in the tubular container melted in a band from one end to the other is made substantially horizontal. A purification step of sequentially moving in the direction to segregate impurities contained in the crystalline raw material to the other end of the crystalline raw material;
    A separation step of partially melting the crystalline raw material in which impurities are segregated to separate a purified raw material with less impurities and an impure raw material with more impurities;
    In the container in a substantially vertical direction, the refined raw material is a crystal growth method in which the refined raw material is melted and then cooled to grow crystals to continuously grow in the same container in this order,
    The container includes a raw material purification unit having a thin tube shape, and a trap unit that cools to a temperature equal to or lower than the temperature of the raw material purification unit.
    The raw material purifying section and the trap section are connected by a reduced diameter section,
    Performing the purification step in the raw material purification section;
    The separation step is a step of separating the crystalline raw material into the purified raw material and the impure raw material in the raw material purification unit,
    After moving the impure material to the trap part, the trap part is separated from the container,
    The crystal growth method, wherein the crystal growth step is performed in the raw material purification unit.
  6.  前記容器内の前記精製原料の移動は、前記精製原料を溶解することにより行い、
     前記容器内の前記不純原料の移動は、前記不純原料を溶解することにより行う
    ことを特徴とする請求項1ないし請求項5のいずれか一項に記載の結晶成長方法。
    The movement of the purified raw material in the container is performed by dissolving the purified raw material,
    The crystal growth method according to any one of claims 1 to 5, wherein the impurity raw material in the container is moved by dissolving the impurity raw material.
  7.  前記容器は、内部に収容した前記結晶性原料、前記精製原料、前記不純原料のいずれか一つ以上の落下を防止する原料落下防止部を備える
     ことを特徴とする請求項6に記載の結晶成長方法。
    The crystal growth according to claim 6, wherein the container includes a raw material fall prevention unit that prevents any one or more of the crystalline raw material, the refined raw material, and the impure raw material contained therein. Method.
PCT/JP2014/075717 2014-09-26 2014-09-26 Method of crystal growth WO2016046983A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075717 WO2016046983A1 (en) 2014-09-26 2014-09-26 Method of crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075717 WO2016046983A1 (en) 2014-09-26 2014-09-26 Method of crystal growth

Publications (1)

Publication Number Publication Date
WO2016046983A1 true WO2016046983A1 (en) 2016-03-31

Family

ID=55580542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075717 WO2016046983A1 (en) 2014-09-26 2014-09-26 Method of crystal growth

Country Status (1)

Country Link
WO (1) WO2016046983A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610073A (en) * 1992-06-26 1994-01-18 Hitachi Cable Ltd Method and apparatus for refining high purity copper
JP2001240497A (en) * 2000-02-29 2001-09-04 Kobe Steel Ltd Method and equipment for manufacturing single crystal fluoride
WO2010013484A1 (en) * 2008-08-01 2010-02-04 株式会社アルバック Method for refining metal
JP2011525168A (en) * 2008-06-20 2011-09-15 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Melt refining and transportation system
JP2013064182A (en) * 2011-09-16 2013-04-11 Sumitomo Chemical Co Ltd Method for producing aluminum material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610073A (en) * 1992-06-26 1994-01-18 Hitachi Cable Ltd Method and apparatus for refining high purity copper
JP2001240497A (en) * 2000-02-29 2001-09-04 Kobe Steel Ltd Method and equipment for manufacturing single crystal fluoride
JP2011525168A (en) * 2008-06-20 2011-09-15 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Melt refining and transportation system
WO2010013484A1 (en) * 2008-08-01 2010-02-04 株式会社アルバック Method for refining metal
JP2013064182A (en) * 2011-09-16 2013-04-11 Sumitomo Chemical Co Ltd Method for producing aluminum material

Similar Documents

Publication Publication Date Title
CN101871123A (en) Method and device for growing cadmium zinc telluride crystals in mobile tellurium solvent melting zone
US20100140558A1 (en) Apparatus and Method of Use for a Top-Down Directional Solidification System
US20210222320A1 (en) Method of Producing a Single-Crystal
KR20110003322A (en) Single crystal manufacturing apparatus and single crystal manufacturing method
CN102220644B (en) Method for improving performance of cadmium zinc telluride crystal
Tonn et al. Czochralski growth of lead iodide single crystals: Investigations and comparison with the Bridgman method
WO2016046983A1 (en) Method of crystal growth
JP6162625B2 (en) Crystal growth crucible, crystal growth apparatus and crystal growth method provided therewith
CN105133004B (en) A kind of USb2The flux growth method of monocrystalline and the product of preparation
US11326270B2 (en) Single-crystal production equipment and single-crystal production method
US20130011320A1 (en) Method for purifying silicon
US4721539A (en) Large single crystal quaternary alloys of IB-IIIA-SE2 and methods of synthesizing the same
CN100408731C (en) Method and appts. of using molten lead iodide to grow monocrystal
Tonn et al. Removal of oxidic impurities for the growth of high purity lead iodide single crystals
JPH054895A (en) Production of single crystal and apparatus therefor
KR101411275B1 (en) The appratus of silicon for solar cell and the method thereof
US20070111489A1 (en) Methods of producing a semiconductor body and of producing a semiconductor device
TWI689635B (en) Indium phosphide single crystal and indium phosphide single crystal substrate
JP6230031B2 (en) Method for producing silicon carbide single crystal
Cornet et al. Improvements in the purification of Cadmium Telluride by zone refining
Hayashi et al. Growth of ultra‐high purity PbI2 single crystal:(1) Preparation of high purity PbI2
CN116926653A (en) Device and method for growing all-inorganic perovskite halide optical fiber crystal by mold embedding method in high flux
JP2005200279A (en) Method for manufacturing silicon ingot and solar battery
JP2018203586A (en) Production method and apparatus of thallium bromide product
Zappettini 8.1 Applications and requirements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP