WO2016046944A1 - Separation disk for oil separator, rotor for oil separator, and oil separator - Google Patents

Separation disk for oil separator, rotor for oil separator, and oil separator Download PDF

Info

Publication number
WO2016046944A1
WO2016046944A1 PCT/JP2014/075478 JP2014075478W WO2016046944A1 WO 2016046944 A1 WO2016046944 A1 WO 2016046944A1 JP 2014075478 W JP2014075478 W JP 2014075478W WO 2016046944 A1 WO2016046944 A1 WO 2016046944A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
oil
separation disk
rotor
disk
Prior art date
Application number
PCT/JP2014/075478
Other languages
French (fr)
Japanese (ja)
Inventor
耕作 石田
佳孝 渡辺
Original Assignee
東京濾器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京濾器株式会社 filed Critical 東京濾器株式会社
Priority to PCT/JP2014/075478 priority Critical patent/WO2016046944A1/en
Publication of WO2016046944A1 publication Critical patent/WO2016046944A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/14Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by rotating vanes, discs, drums or brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/08Rotary bowls
    • B04B7/12Inserts, e.g. armouring plates
    • B04B7/14Inserts, e.g. armouring plates for separating walls of conical shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil

Definitions

  • the present invention relates to an oil separator that separates a mist-like oil contained in a gas to be treated from a gas, a rotor used in the oil separator, and a separation disk that constitutes a part of the rotor.
  • An oil separator that separates mist oil contained in a gas to be treated from gas is known.
  • the oil separator described in Patent Document 1 separates mist-like oil from gas by centrifugal force using a rotor provided between the gas inlet and outlet.
  • This rotor is formed by laminating a plurality of separation disks.
  • This separation disk is constituted by a truncated cone-shaped plate member whose outer peripheral side portion is bent obliquely upward so that the upper side has a large diameter.
  • An opening penetrating in the plate thickness direction is formed in the inner peripheral side portion of the separation disk. For this reason, a space is formed in the inner peripheral side portion of the rotor.
  • crankcase gas (blow-by bus), which is the gas to be treated, is introduced into the space on the inner peripheral side of the rotor.
  • the crankcase gas introduced into this space is allowed to flow to the outer periphery of the rotor through the gap between the separation disks rotating at high speed, and the mist oil is aggregated and separated from the crankcase gas in this gap.
  • mist-like oil contained in the crankcase gas moves by centrifugal force and collides with and adheres to the surface of the separation disk.
  • the attached mist-like oil moves to the outer peripheral side of the rotor by centrifugal force.
  • the adhering mist-like oil is combined with other mist-like oil adhering to the surface of the separation disk in the same manner, and the volume is gradually increased.
  • oil mist contained in the crankcase gas is taken into the boundary layer formed on the surface of the separation disk as the separation disk rotates at high speed.
  • the oil mist taken into the boundary layer is coalesced with other oil mist taken in the same manner on the surface of the separation disk. Since the amount of oil mist contained in the crankcase gas is extremely small, in order to increase the separation efficiency of the mist-like oil, it is necessary to increase the diameter of the separation disk and take in a large amount of oil mist. As the diameter of the separation disk increases, there arises a problem that the oil separator increases in size.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to increase the separation efficiency when separating the mist oil contained in the gas to be treated from the gas.
  • the present invention introduces a gas to be treated including mist-like oil and separation oil into an inner circumferential space of a rotor rotatably provided with a spindle, and rotates the rotor.
  • a separation disk that is used in an oil separator that separates the mist-like oil from the gas to be treated and is stacked in the axial direction of the spindle to constitute a separation disk group included in the rotor, and in a radial direction
  • an outer peripheral side portion constituted by a plurality of inclined planes extending in an inclination direction between the thrust direction, and an inner peripheral side portion closer to the rotation center than the outer peripheral side portion, Protrusions that are in contact with the other separation disks adjacent in the stacking direction to form a separation space between the separation disks are provided, and a pair of adjacent the separation disks
  • the boundary of the oblique plane characterized in that the ridge portion extending in the inclined direction.
  • the present invention is used in an oil separator that separates the mist-like oil from the gas to be treated containing mist-like oil, and rotates together with the spindle in a state where the gas to be treated and the separation oil are introduced into the inner space.
  • a rotor that separates the mist-like oil from the gas to be treated the separation disk group including a plurality of separation disks stacked in the axial direction of the spindle, and the separation disk group A pair of holders sandwiched and held in the stacking direction of the separation disks, the separation disk including an outer peripheral side portion configured by a plurality of inclined planes extending in an inclination direction between a radial direction and a thrust direction, and the outer peripheral side An inner peripheral portion closer to the center of rotation than the portion, and the outer peripheral portion includes the other separation disc adjacent to the stacking direction.
  • a protrusion that forms a separation space in contact with the separation disk, and a ridge that extends in the inclination direction is provided at a boundary between a pair of adjacent inclined planes. .
  • the present invention also provides an oil separator that separates the mist-like oil from the gas to be treated containing mist-like oil, and rotates together with the spindle in a state where the gas to be treated and the separation oil are introduced into the inner circumferential space.
  • a rotor that separates the mist-like oil from the gas to be processed and the rotor includes a separation disk group including a plurality of separation disks stacked in an axial direction of the spindle, and the separation A pair of holders that hold the disk group in the stacking direction of the separation disk, and the separation disk is stacked in the axial direction of the spindle to constitute the separation disk group of the rotor.
  • an outer peripheral side portion constituted by a plurality of inclined planes extending in an inclination direction between the radial direction and the thrust direction.
  • An inner peripheral side portion closer to the rotation center than the outer peripheral side portion, and the outer peripheral side portion is in contact with the other separation disk adjacent in the stacking direction and has a separation space between the separation disk and the separation disk.
  • the protrusion to form is provided,
  • the ridge part extended in the said inclination direction is provided in the boundary of a pair of adjacent said inclination plane, It is characterized by the above-mentioned.
  • the separation oil forms an oil film on the disk surface by rotating the rotor at a high speed while the gas to be treated and the separation oil are introduced into the inner circumferential space of the rotor. .
  • the oil mist contained in process object gas is taken in into the boundary layer formed in the surface of an oil film.
  • the affinity is higher than that of the separation disk.
  • the boundary layer formed on the surface of the oil film can take in the oil mist more efficiently than the boundary layer formed on the surface of the separation disk.
  • the oil film that has taken in the oil mist moves toward the ridge portion, is collected at the ridge portion, and moves in the outer circumferential direction.
  • This oil film is discharged from the end of the ridge. Since the discharged oil is in the form of droplets, it is possible to prevent a problem that the taken-in oil mist is re-misted. As a result, the efficiency of separating mist oil can be increased.
  • the protrusion provided on the ridge portion of a certain separation disk is another separation disk adjacent in the stacking direction. Since the position in the circumferential direction is determined by abutting the ridge portion, unnecessary rattling in the separation disks can be suppressed, and the position in the circumferential direction of each separation disk constituting the separation disk group can be determined.
  • the contact area with the point-like protrusions at the ridge portion can be reduced, so that the collected oil can flow smoothly.
  • the separation space is secured while ensuring the area of the oil film formed on the surface of the separation disk. It can be secured.
  • the protrusion when the protrusion is constituted by a plurality of ribs and the ribs are provided on the inclined plane along the inclined direction, they are formed on the surface of the separation disk. Since the oil film can be collected by the ribs and can be discharged in the form of drops, it is possible to prevent a problem that the oil mist taken in becomes mist again.
  • the length of the inclined direction in the inclined plane is increased. Since the length can be increased, the formation area of the oil film can be expanded correspondingly, and the efficiency of separating the mist-like oil can be increased.
  • the separation efficiency when separating the mist oil contained in the gas to be treated from the gas, the separation efficiency can be increased.
  • FIG. 6B is a cross-sectional view taken along line AA shown in FIG. 6B.
  • FIG. 6B is a cross-sectional view taken along the line BB shown in FIG. 6B and showing only the cross-sectional shape.
  • FIG. 10A It is the G section enlarged view shown to FIG. 10B.
  • FIG. 10B is a sectional view taken along line FF shown in FIG. 10A. It is the H section enlarged view shown to FIG. 10B. It is a figure explaining arrangement
  • FIG. 14A It is the L section enlarged view shown to FIG. 14D. It is a graph which compares the separation efficiency in the case where the separation disk of 2nd Embodiment is used, and the case where the conventional separation disk is used. It is a perspective view explaining the separation disk of 3rd Embodiment. It is a perspective view explaining the separation disk of 4th Embodiment. It is a perspective view explaining the separation disk of 5th Embodiment. It is a top view explaining the separation disk of 5th Embodiment. It is a perspective view explaining the separation disk of 6th Embodiment. It is a top view explaining the separation disk of 6th Embodiment.
  • a closed crankcase ventilation system 1 (hereinafter referred to as a ventilation system 1) will be described as an example.
  • the ventilation system 1 includes an oil separator 2 and a breather pipe 3.
  • the oil separator 2 processes blow-by gas (corresponding to a processing target gas containing mist-like oil) discharged from the engine 4 to separate the mist-like oil.
  • the oil separator 2 is attached to the side surface of the engine 4.
  • the breather pipe 3 defines a flow path for reducing the treated blow-by gas discharged from the oil separator 2 to the intake-side flow path 6 of the engine 4.
  • blow-by gas is led out from the engine 4 through the gas lead-out pipe 5 and introduced into the oil separator 2.
  • the mist oil contained in the blowby gas is taken into the oil supplied from the engine 4 inside the oil separator 2 and returned to the engine 4 together with this oil.
  • the blowby gas after the treatment from which the mist-like oil has been removed is discharged from the oil separator 2 and then returned to the intake side flow path 6 through the breather pipe 3. Specifically, it is returned to a portion where the air filter 7 and the turbocharger 8 are connected in the intake side flow path 6.
  • the reduced blow-by gas is mixed with fresh air from the air filter 7 and compressed by the turbocharger 8. Thereafter, the blow-by gas is cooled by the charge cooler 9 and supplied to the engine 4.
  • the oil separator 2 includes a housing 11 having a lower case 12 and an upper case 13. Various components such as a rotor unit and a PCV valve are accommodated in an internal space (accommodating chamber) of the housing 11 (described later).
  • the lower case 12 is a portion that divides the lower portion of the housing 11, and is constituted by a box-shaped member with a bottom having an open upper surface.
  • a circular fitting portion 14 is provided at the upper end portion of the lower case 12 and is fitted to the lower end portion 15 of the upper case 13.
  • a communication tube portion 16 is provided on the back surface of the lower case 12 so as to face rearward.
  • the communication cylinder portion 16 is a cylindrical member that serves as an outlet for oil used in the oil separator 2. For this reason, the internal space of the communication cylinder part 16 is connected to the internal space of the engine 4.
  • a flange 17 coupled to the side surface of the engine 4 is provided at the distal end portion of the communication tube portion 16.
  • a suction pipe 18 projects from the upper left side of the lower case 12 toward the left side.
  • the gas outlet pipe 5 is connected to the suction pipe 18. Blow-by gas from the engine 4 is introduced into the oil separator 2 from the gas outlet pipe 5 through the suction pipe 18 by the intake pressure of the engine 4 or the pressure on the crankcase side. At this time, the intake pressure of the engine 4 and the pressure on the crankcase side are appropriately adjusted by the PCV valve.
  • the suction pipe 18 functions as a gas introduction part.
  • the joint portion 20 of the oil guide pipe 19 faces the bottom surface of the lower case 12.
  • the joint portion 20 is connected to one end of an oil supply pipe 21 shown in FIG.
  • the oil supply pipe 21 is for supplying oil sent from the engine 4 to the oil guide pipe 19.
  • the oil supplied to the oil guide pipe 19 is ejected from a nozzle 38 (see FIG. 5A) of the rotor unit 27 shown in FIG. 4 and used as power for rotating the rotor unit 27.
  • the oil sprayed from the nozzle 38 is also referred to as power oil.
  • This power oil is part of the lubricating oil used in the engine 4 and therefore has a temperature of about 80 to 110 ° C.
  • the upper case 13 is a member attached to the lower case 12 from above.
  • the upper case 13 includes a cylindrical main body cover 22 having a ceiling portion and a disk-shaped upper surface cover 23.
  • the main body cover 22 is attached to the lower case 12 in an airtight state.
  • the upper surface cover 23 is attached to the upper end portion of the main body cover 22 in an airtight state.
  • a cylindrical gas discharge portion 24 protrudes upward from the center portion of the top cover 23.
  • the gas discharge part 24 is a part for discharging blowby gas after processing.
  • the above-described breather pipe 3 is connected to the gas discharge portion 24 via an outlet pipe 25 bent in an L shape.
  • the left side corresponds to the front side of the oil separator 2
  • the right side corresponds to the rear side of the oil separator 2.
  • a PCV valve 26, a rotor unit 27, and a partition member 28 are disposed inside the housing 11.
  • the PCV valve 26 is disposed in the upper part of the housing 11. Specifically, the PCV valve 26 is attached between the main body cover 22 and the upper surface cover 23 so as to be covered with the upper surface cover 23.
  • the rotor unit 27 is disposed at an intermediate portion in the vertical direction of the housing 11. Specifically, the rotor unit 27 is disposed in an internal space defined by the main body cover 22 in a rotatable state.
  • the partition member 28 is disposed immediately below the rotor 31 constituting the rotor unit 27.
  • the partition member 28 is positioned in a state in which the flange portion 44 is sandwiched between the lower end portion 15 of the upper case 13 and the fitting portion 14 of the lower case 12.
  • a communication cylinder part 16 is integrally provided at the rear part of the lower case 12, and the internal space (other separation space SP ⁇ b> 3) of the lower case 12 and the internal space of the communication cylinder part 16 Is communicated.
  • the bottom surface of the lower case 12 is inclined downward toward the communication cylinder portion 16.
  • a cylindrical oil guide pipe 19 is provided upward from the bottom surface of the lower case 12.
  • a joint portion 20 is provided at the lower end of the oil guide pipe 19, and the upper end of the oil guide pipe 19 is fixed by a fixed frame 29.
  • the fixed frame 29 is a frame body attached to the inner peripheral side of the fitting portion 14, and is provided in a cross shape along the inner peripheral surface of the fitting portion 14 and on the inner side of the frame portion. And a cross. And the upper end of the oil guide pipe 19 is inserted in the through-hole 29a opened in the cross
  • the suction pipe 18 is provided on the left side surface of the lower case 12 at a height immediately below the fitting portion 14.
  • the internal space of the lower case 12 and the internal space of the suction pipe 18 are in communication. For this reason, blow-by gas is sucked into the internal space of the lower case 12 from the engine 4.
  • the power oil sprayed from the nozzle 38 is sprayed onto the inner wall surface of the tapered portion of the partition member 28. This power oil flows down along the inner wall surface of the tapered portion and the inner wall surface of the lower case 12. Since the temperature of the power oil becomes as high as 80 to 110 ° C., the oil separator 2 is heated from the lower case 12 side. Thereby, even if it is used in a cold district, it is possible to suppress the occurrence of malfunction of the oil separator 2 due to freezing or the like.
  • the rotor unit 27 is a mechanism for separating mist-like oil contained in blow-by gas, and includes a rotor 31, a spindle 32, and a spindle shaft 33.
  • the rotor 31 is a part that separates oil mist from blow-by gas, and includes a separation disk group 34, an upper holder 35, and a lower holder 36.
  • the separation disk group 34 includes a plurality of separation disks 51 stacked in the axial direction of the spindle 32. As shown in FIG. 7, the separation disk 51 has an outer peripheral side portion 52 constituted by a plurality of inclined planes 53 and an inner peripheral side portion 54 closer to the rotation center than the outer peripheral side portion 52. The separation disk 51 will be described in detail later.
  • the upper holder 35 is a member that holds a plurality of stacked separation disks 51 from the upper side
  • the lower holder 36 is a member that similarly holds the lower side from the lower side.
  • the upper holder 35 and the lower holder 36 correspond to a holder pair that holds the separation disk group 34 in the stacking direction of the separation disks 51.
  • the separation disks 51 are drawn with an interval therebetween, but the actual interval is extremely narrow, for example, 1 mm or less.
  • the rotor 31 has a cylindrical appearance, and the inner peripheral side serving as the center of rotation is hollow and penetrates in the vertical direction.
  • a spindle 32 is inserted into the inner circumferential space SP1, and the spindle 32 and the rotor 31 are coupled to each other.
  • the spindle 32 and the rotor 31 are coupled by joining the eight plate-like members 35 b constituting the disk holding portion 35 a to the peripheral surface of the spindle 32.
  • the disk holding portion 35a is inserted into the mounting opening 55 (see FIG. 7) of each separation disk 51.
  • the rotor 31 rotates about the axis of the spindle 32 together with the spindle 32.
  • a nozzle 38 protrudes from the peripheral surface of the spindle 32 below the rotor 31.
  • the nozzle 38 is a portion that injects oil supplied through the spindle shaft 33, and generates a driving force for rotating the spindle 32 and the rotor 31.
  • the nozzle 38 has a cylindrical nozzle body 38a whose base end is joined to the spindle 32 and whose tip is closed, and an injection port 38b provided at the tip of the nozzle body 38a. Yes.
  • the nozzle body 38 a is attached at an angle of 45 degrees obliquely downward with respect to the axial direction of the spindle 32.
  • Three nozzle bodies 38a are provided at intervals of 120 degrees in the circumferential direction.
  • the injection port 38b is provided on the side surface of the tip portion of the nozzle body 38a. Specifically, the injection port 38b is provided in a direction orthogonal to the axial direction of the nozzle body 38a and in a direction in which oil is injected in a substantially horizontal direction.
  • the spindle shaft 33 is a cylindrical member serving as a bearing for the spindle 32, and supports the spindle 32 in a rotatable state.
  • a first oil supply path 39 for supplying oil is formed inside the spindle shaft 33.
  • the lower end of the spindle shaft 33 is joined to the upper end of the oil guide pipe 19.
  • the oil supply pipe 21 is connected to the joint portion 20 of the oil guide pipe 19. For this reason, the oil supplied through the oil supply pipe 21 flows into the first oil supply path 39 after passing through the oil guide pipe 19.
  • a gap is formed between the spindle 32 and the spindle shaft 33 with the top and bottom sealed. This gap serves as the second oil supply path 40.
  • the second oil supply path 40 is in communication with the first oil supply path 39 and the nozzle 38 and is filled with oil supplied from the first oil supply path 39. A part of the oil supplied to the second oil supply passage 40 flows into the nozzle body 38a and is then injected from the injection port 38b as power oil.
  • the lower end of the second oil supply path 40 is sealed by a cylindrical lower seal member 41.
  • the upper end of the second oil supply path 40 is sealed by a cylindrical upper seal member 42.
  • oil pressure increases, a small amount of oil leaks from the gaps between the lower seal member 41 and the upper seal member 42 and the spindle 32.
  • oil of about 50 to 200 mL / min flows from the gap between the upper end of the spindle 32 and the upper seal member 42 to the rotor 31. It is introduced into the inner space SP1.
  • oil introduced from the upper end of the second oil supply path 40 into the inner circumferential space SP1 of the rotor 31 is referred to as separation oil.
  • the upper end of the second oil supply path 40 specifically, the gap between the upper end of the spindle 32 and the upper seal member 42, introduces an oil that introduces a part of the oil supplied to the second oil supply path 40 as separation oil. It corresponds to the part.
  • This separating oil is used for separating mist-like oil, but is a high temperature of 80 to 110 ° C. because it is a part of engine oil.
  • the partition member 28 is disposed between the rotor 31 and the nozzle 38, partitions the internal space of the housing 11 into an internal space of the lower case 12 and an internal space of the upper case 13, and blow-by gas in the lower case 12. Is a member that forms a flow path that guides the air to the inner circumferential space SP1 of the rotor 31.
  • the partition member 28 has an outer peripheral portion 43, a flange portion 44, and a tapered portion 45.
  • the outer peripheral portion 43 is a cylindrical portion and is formed so as to surround the lower end portion of the rotor 31 from the outside. In the middle of the outer peripheral portion 43 in the height direction, the flange portion 44 projects laterally. As described above, the flange portion 44 is a portion for positioning the partition member 28, and is sandwiched between the lower end portion 15 of the upper case 13 and the fitting portion 14 of the lower case 12.
  • the tapered portion 45 is provided on the inner peripheral side of the outer peripheral portion 43 and has a tapered shape that is gradually reduced in diameter from the lower end of the outer peripheral portion 43 upward. And the upper end opening 45a of the taper part 45 is arrange
  • a lower end portion of the spindle 32, a lower end portion of the spindle shaft 33, a nozzle 38, and a fixed frame 29 are arranged on the inner peripheral side of the tapered portion 45 and below the upper end opening.
  • part of the oil supplied from the engine 4 is injected from the nozzle 38 as power oil, as indicated by the arrow F1.
  • another part of the oil supplied from the engine 4 passes through the second oil supply path 40 as separation oil, and then, as shown by the arrow F2, the upper end of the second oil supply path 40 It is introduced from the (oil introduction part) into the space on the inner peripheral side of the rotor 31.
  • the power oil sprayed from the nozzle 38 collides with the inner wall surface of the taper portion 45 and flows down the inner wall surface as indicated by the arrow F3. Further, the motive power oil flows down through the internal space of the lower case 12. In the course of this flow, the power oil comes into contact with the blow-by gas, and the oil mist contained in the blow-by gas is primarily separated. The blow-by gas from which the oil mist is primarily separated rises on the inner peripheral side of the tapered portion 45 and is guided to the inner peripheral space SP1 of the rotor 31.
  • the blow-by gas from which the oil mist has been primarily separated flows into the inner circumferential space SP1 of the rotor 31 from the lower side, as indicated by the arrow F11.
  • the introduced separation oil is applied to the surface of the plate-like member 35b constituting the disc holding portion 35a as indicated by the arrow F4. It spreads along and flows into the separation space SP2 (the gap between the separation disks 51) from the edge of the mounting opening 55.
  • the blow-by gas also flows into the separation space SP2 from the edge of the mounting opening 55 as indicated by the arrow F12.
  • the separation oil that has flowed into the separation space SP2 has the separation disk 51 (rotor 31) rotated at a high speed in the direction indicated by the symbol R around the rotation axis AX.
  • An oil film OF is formed by spreading evenly over the entire surface of 51.
  • the blow-by gas flows while contacting the oil film OF formed on the surface of the separation disk 51, as indicated by the arrow F13.
  • the boundary layer BL is formed on the surface of the oil film OF.
  • the blow-by gas flows on the surface side of the boundary layer BL toward the outer peripheral edge of the separation disk 51.
  • the oil mist MS contained in the blow-by gas is applied to the boundary layer BL. It is captured.
  • the oil mist MS taken into the boundary layer BL is moved by the centrifugal force indicated by the symbol CF, and united with the oil film OF.
  • the oil film OF that has taken in the oil mist that is, the separation oil
  • the discharged oil droplets collide with the inner peripheral surface of the main body cover 22.
  • the members denoted by reference numeral 37 in FIG. 5C are connecting arms for connecting the upper holder 35 and the lower holder 36, and four members are provided at intervals of 90 degrees as shown in FIG. 6A. For this reason, there is a space between the connecting arms 37, and the oil droplets discharged from the outer peripheral edge of the separation disk 51 collide with the inner peripheral surface of the main body cover 22.
  • the oil droplets colliding with the inner peripheral surface of the main body cover 22 flow down while being combined with other oil droplets, as indicated by the arrow F6 in FIG. 5C. Then, it flows into the internal space of the lower case 12 through a drain hole (not shown) formed in the bottom of the partition member 28.
  • the separation oil that has flowed into the inner space of the lower case 12 is combined with the motive power oil and returned to the engine 4 through the communication cylinder portion 16.
  • the oil mist is derived from the lubricating oil in the same manner as the oil film OF (separation oil). For this reason, the oil mist has a higher affinity (wetting property) for the oil film OF than the separation disk 51. Thereby, the boundary layer BL formed on the surface of the oil film OF can take in the oil mist more efficiently than the boundary layer BL formed on the surface of the separation disk 51. As a result, even if the separation disk 51 is configured to have a small diameter, high separation efficiency can be obtained, and the oil separator 2 can be downsized.
  • water contained in the lubricating oil can be volatilized along with separation of the oil mist. That is, since the temperature of the separation oil is as high as 80 to 110 ° C., with respect to the oil film OF formed on the surface of the separation disk 51, the temperature of the oil film OF is also a sufficient temperature range for volatilizing water. In addition, since the oil film OF is also densely formed by the separation discs 51 stacked in a large number, the temperature of the oil film OF can be maintained. Furthermore, since the oil film OF is formed on the entire surface of the separation disk 51, a sufficient area is ensured in order to volatilize water efficiently. For these reasons, water contained in the lubricating oil can be volatilized efficiently. Thereby, the malfunction which an emulsion produces in lubricating oil can be suppressed.
  • the PCV valve 26 includes a diaphragm 46, an upper spring 47, and a lower spring 48.
  • the diaphragm 46 is a disc-shaped valve body, and is manufactured by molding rubber and resin.
  • the upper spring 47 and the lower spring 48 are elastic members for supporting the diaphragm 46 so as to be movable in the vertical direction. That is, the upper spring 47 is disposed above the diaphragm 46, and the lower spring 48 is disposed below the diaphragm 46.
  • the diaphragm 46 is sandwiched between the upper spring 47 and the lower spring 48 and supported in a movable state.
  • the diaphragm 46 moves up and down according to the intake side pressure of the engine 44 and the internal pressure of the crankcase, and adjusts the flow of blow-by gas. That is, the diaphragm 46 moves to the blow-by gas discharge side (upward) when the intake pressure (negative pressure) of the engine 4 is excessively large, and to the opposite side (downward) when the crankcase side pressure is high. Moving. Thereby, the flow volume of blow-by gas is adjusted appropriately. Further, the pressure of the engine 4 (crankcase) is also adjusted appropriately.
  • the blow-by gas after the treatment from which the oil mist has been removed is discharged from the outer peripheral edge of the separation disk 51 to the outside, and then rises inside the housing 11.
  • the blow-by gas after processing passes through the PCV valve 26, the gas discharge part 24, and the outlet pipe 25 and is discharged from the oil separator 2.
  • the blow-by gas discharged from the oil separator 2 is returned to the intake side flow path 6 through the breather pipe 3.
  • the inside of the oil separator 2 is heated by the separation oil or the power oil, the water volatilized from the oil film OF moves together with the blow-by gas without condensation, and is reduced to the intake side flow path 6. .
  • the rotor 31 includes a separation disk group 34, an upper holder 35, and a lower holder 36.
  • the upper holder 35 is a member that holds the separation disk group 34 from above
  • the lower holder 36 is also a member that holds the separation disk group 34 from below.
  • the separation disk 51 (separation disk 51 ⁇ / b> A of the first embodiment) constituting the separation disk group 34 rotates more than the outer peripheral side portion 52 constituted by the inclined plane 53 and the outer peripheral side portion 52. And an inner peripheral portion 54 on the center side.
  • the outer peripheral portion 52 has a shape in which trapezoidal plate members are connected in an umbrella shape. Accordingly, the surface of the plate member is an inclined plane 53.
  • a polygonal mounting opening 55 surrounded by a trapezoidal upper bottom portion is formed in the inner peripheral side portion 54.
  • a regular octagonal mounting opening 55 is formed in the inner peripheral side portion 54.
  • a large number of separation disks 51 are stacked so that the positions of the apexes of the mounting opening 55 in the circumferential direction are aligned. Accordingly, the inner circumferential space SP1 is partitioned by each mounting opening 55. Details of the separation disk 51 will be described later.
  • a disk holding portion 35a is provided at the rotation center portion of the upper holder 35 so as to face downward.
  • the disk holding portion 35a is composed of eight plate-like members 35b arranged at equal angular intervals from the rotation center of the rotor 31 in the radial direction. 8D, when the disk holding portion 35a is inserted into the inner circumferential space SP1 of the separation disk group 34, the side edges of the plate-like members 35b are in contact with the apexes of the mounting openings 55. Thereby, the shakiness of the circumferential direction in each separation disk 51 is controlled.
  • a plurality of connecting arms 37 for connecting to the upper holder 35 are provided on the outer peripheral edge of the lower holder 36.
  • four connection arms 37 are provided at intervals of 90 degrees in the circumferential direction.
  • a lateral arm 37 ′ curved along the circumferential direction is provided in the middle of the connecting arm 37 in the height direction.
  • This horizontal arm 37 ' connects a pair of adjacent connecting arms 37 to increase rigidity. Then, by joining the upper end of the connecting arm 37 to the upper holder 35, the separation disk group 34, the upper holder 35, and the lower holder 36 are integrated, and the rotor 31 is configured.
  • the separation disk 51 As shown in FIG. 9A, the separation disk 51A of the first embodiment is produced by joining eight trapezoidal plate portions in an umbrella shape. As a result, as shown in FIG. 9B, the separation disk 51A has a regular octagonal umbrella shape in plan view.
  • the separation disk 51A of the present embodiment has a diameter of 80 to 120 mm and a thickness of 0.3 to 0.4 mm, and is manufactured by resin molding.
  • the rotational radius direction of the separation disk 51A is defined as the radial direction ra and the axial direction of the spindle 32 is defined as the thrust direction th
  • the surface of each plate portion has the radial direction ra and the thrust direction.
  • An inclined plane 53 extending in the inclination direction in between the directions th is formed.
  • the outer peripheral side portion 52 of the separation disk 51 ⁇ / b> A has eight inclined planes 53.
  • the inner peripheral side portion 54 of the separation disk 51A has a regular octagonal mounting opening 55 surrounded by the upper bottom portion of each plate portion.
  • the boundary between adjacent inclined planes 53 is bent in a mountain shape, and a ridge 56 extending in the inclined direction in is formed.
  • Eight ridges 56 are formed for one separation disk 51A, and connect each vertex of the outer periphery of the disk from each vertex of the mounting opening 55 as shown in FIG. 9B.
  • a plurality of dot-like protrusions 57 are formed on the surface of the inclined plane 53.
  • the point-like protrusions 57 are in contact with the other separation disks 51A adjacent in the stacking direction to form a gap of 1 mm or less between the separation disks 51A, and correspond to the protrusions according to the present invention.
  • a separation space SP2 is formed between the separation disks 51A.
  • the dot-like projections 57 in this embodiment are half the thickness of the disk with the upper surface of the plate portion facing upward.
  • a part of the dot-like protrusion 57 is provided along the ridge 56.
  • four point-like protrusions 57 are provided for one ridge portion 56.
  • the dot-like projections 57 provided on the ridge portion 56 of a certain separation disk 51A contact the ridge portion 56 of another separation disk 51A adjacent to the upper side in the stacking direction from below. In contact with each other, the circumferential position of each separation disk 51A is determined. Thereby, unnecessary rattling in the separation disk 51A can be suppressed, and the circumferential position of each separation disk 51A constituting the separation disk group 34 can be determined.
  • FIG. 12 is a graph showing the test results of the separation efficiency of mist oil contained in blow biole.
  • the case where the separation disk 51A of the first embodiment (regular octagonal truncated cone type) described above is used is compared with the case where a general truncated cone type separation disk is used.
  • the separation disk 51A of the first embodiment achieved higher separation efficiency than the truncated cone type separation disk.
  • both the separation disc 51A of the first embodiment and the truncated cone type separation disc take in the oil mist into the separation oil (oil film OF) by the oil mist entering the boundary layer BL. They are common in that they are taken in by centrifugal force, and there is no difference between them.
  • the oil film OF that has taken in the oil mist moves toward the ridge 56 by the centrifugal force and is collected.
  • the collected oil flows toward the outer circumference along the downward slope of the ridge 56 and is discharged from the end of the ridge 56. Since the discharged oil is in the form of large droplets, it is possible to prevent a problem that the oil mist taken in becomes mist again.
  • the separation disk group 34 by forming the separation disk group 34 using the separation disk 51A of the first embodiment, it is possible to increase the separation efficiency of the mist oil.
  • the separation disk 51A of the first embodiment since a part of the point-like protrusion 57 is provided on the ridge portion 56, the point-like protrusion 57 is positioned in contact with the ridge portion 56 from below. Thereby, positioning in the circumferential direction of each separation disk 51A can be easily performed. Moreover, since it is the dotted
  • FIGS. 13A to 13C are a perspective view, a plan view, and a side view of the separation disk 51B of the second embodiment.
  • 14A to 14E are views for explaining a cross section of the separation disk 51B of the second embodiment. These drawings correspond to FIGS. 9A to 10E drawn for the separation disk 51A of the first embodiment.
  • the separation disk 51B of the second embodiment is different from the separation disk 51A of the first embodiment in that the outer peripheral side portion 52 is a regular 12-sided truncated pyramid shape.
  • the other configuration is the same as that of the separation disk 51A of the first embodiment.
  • the dot-like protrusions 57 are also used in the separation disk 51 of the second embodiment. That is, the ridge portion 56 is provided with four point-like protrusions 57, and the inclined plane 53 is provided with a plurality of point-like protrusions 57 arranged in a staggered manner. Further, a regular octagonal mounting opening 55 is provided for the inner peripheral side portion 54.
  • FIG. 15 is a graph showing a test result of the separation efficiency of the mist oil by the separation disk 51B of the second embodiment (regular dodecagonal frustum type).
  • the case where the separation disk 51B of the second embodiment is used is compared with the case where a general truncated cone type separation disk is used.
  • the contents of the test are the same as in the case where the separation disk 51A of the first embodiment is used, and the description thereof is omitted here.
  • the separation disk 51B of the second embodiment As shown in FIG. 15, it was found that when the separation disk 51B of the second embodiment is used, a higher separation efficiency than that of the truncated cone type separation disk can be obtained. That is, as the flow rate of blow-by gas increased to 100 L / min, 200 L / min, and 300 L / min, the separation disk 51B of the second embodiment achieved higher separation efficiency than the truncated cone type separation disk.
  • the oil film OF that has taken in the oil mist moves toward the ridge portion 56, is collected by the ridge portion 56, and moves in the outer peripheral direction. Since the oil discharged from the end of the ridge 56 is in the form of large droplets, it is considered that the trouble that the oil mist taken in becomes mist again is prevented.
  • the separation disk 51A of the first embodiment has higher oil mist separation efficiency in the high flow rate region than the separation disk 51B of the second embodiment. It was. This is considered due to the fact that the amount of oil collected in one ridge 56 is greater in the separation disk 51A of the first embodiment than in the separation disk 51B of the second embodiment. That is, regarding the oil droplets discharged from the ridge 56, it is considered that the separation disk 51A of the first embodiment is larger than the separation disk 51B of the second embodiment and is not easily misted.
  • FIG. 16A is a perspective view for explaining a separation disk 51C of the third embodiment.
  • FIG. 16B is a perspective view for explaining a separation disk 51D of the fourth embodiment.
  • the separation disk 51 of these embodiments is characterized by being configured by a plurality of ribs 58 with respect to a protrusion for forming a separation space SP2 between separation disks 51 adjacent in the stacking direction.
  • the separation disk 51C of the third embodiment is a regular octagonal truncated pyramid shape in plan view, like the separation disk 51A of the first embodiment, and one separation plane 53 is provided.
  • the ribs 58 are provided along the tilt direction in a state of penetrating the left and right centers of the tilt plane 53.
  • the separation disk 51D of the fourth embodiment has a regular dodecagonal truncated pyramid shape in plan view like the separation disk 51B of the second embodiment, and one separation plane 53 is provided for one inclined plane 53.
  • the ribs 58 are provided along the tilt direction in a state of penetrating the left and right centers of the tilt plane 53.
  • the oil film OF formed on the inclined plane 53 is also collected by the ribs 58. And since the collected oil can be discharged in the form of droplets, it is possible to prevent a problem that the oil mist taken in becomes mist again.
  • FIG. 17A and FIG. 17B are a perspective view and a plan view for explaining a separation disk 51E of the fifth embodiment.
  • FIGS. 17C and 17D are perspective views for explaining a separation disk 51F of the sixth embodiment.
  • the separation disks 51E and 51F of these embodiments are characterized in that the outer edge 59 of the inclined plane 53 connecting the outer peripheral side ends of a pair of adjacent ridges 56 protrudes in a mountain shape in the inclination direction. Yes. That is, the separation disk 51 of the fifth embodiment has eight ridges 56, but the outer edge 59 of the inclined plane 53 protrudes in a mountain shape, so that it is a regular hexagonal truncated pyramid in plan view. It is a type.
  • the separation disk 51 of the sixth embodiment has twelve ridges 56, but since the outer edge 59 of the inclined plane 53 protrudes in a mountain shape, a truncated pyramid having a regular 24-angle shape in plan view. It is a type. According to these separation discs 51, since the outer edge 59 of the inclined plane 53 protrudes in a mountain shape, the length of the inclined plane 53 in the inclined direction can be increased by the amount of protrusion. Thereby, the formation area of the oil film OF can be expanded, and the separation efficiency of the mist-like oil can be increased.
  • 18A and 18B are a perspective view and a plan view for explaining a separation disk 51G of the seventh embodiment.
  • 18C and 18D are perspective views for explaining the separation disk 51H of the eighth embodiment.
  • the separation disk 51 of these embodiments is characterized in that the outer edge 60 of the inclined plane 53 connecting the outer peripheral side ends of a pair of adjacent ridges 56 protrudes in an arc shape in the inclination direction. . That is, the separation disk 51 of the eighth embodiment has eight ridges 56, and the outer edge 60 of the inclined plane 53 protrudes in an arc shape. Thereby, it becomes a perfect circle shape by planar view. Further, the separation disk 51 of the sixth embodiment has twelve ridges 56, and the outer edge 60 of the inclined plane 53 protrudes in an arc shape.
  • the inventions described in the above embodiments can be combined as appropriate.
  • the ribs 58 provided on the separation disk 51 of the third and fourth embodiments may be used in place of the point-like protrusions 57 of the fifth to eighth embodiments.
  • the processing target gas is exemplified by blow-by gas.
  • any gas containing mist-like oil to be separated can be used as the processing target gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

The present invention addresses the problem of enhancing the efficiency of separation of mist-like oil from gas to be treated which contains the oil. The present invention provides a separation disk 51 used for an oil separator that is configured so that a rotor provided so as to be rotatable together with a spindle is rotated while gas to be treated and oil for separation are introduced in the inner peripheral space of the rotor, thereby separating mist-like oil from the gas to be treated, the separation disk 51 constituting a separation disk group 34 of the rotor. The separation disk 51 has: an outer peripheral portion 52 constituted by a plurality of sloped flat surfaces 53 extending in a tilted direction between the radial direction and the thrust direction; and an inner peripheral portion 54 located closer to the center of rotation than the outer peripheral portion 52. The separation disk 51 for an oil separator is characterized in that: the outer peripheral portion 52 is provided with a protrusion (point-like protrusion 57) that is in contact with another separation disk 51 adjacent, in a stack direction, to the separation disk 51 having the protrusion (point-like protrusion 57) thereon, thereby forming a separation space between the separation disks 51; and a ridge 56 extending in the tilted direction is provided at the boundary between a pair of adjacent sloped flat surfaces 53.

Description

オイルセパレータ用分離ディスク、オイルセパレータ用ローター、及びオイルセパレータOil separator separator disk, oil separator rotor, and oil separator
 本発明は、処理対象ガスに含まれるミスト状オイルをガスから分離するオイルセパレータ、このオイルセパレータに用いられるローター、及びこのローターの一部を構成する分離ディスクに関する。 The present invention relates to an oil separator that separates a mist-like oil contained in a gas to be treated from a gas, a rotor used in the oil separator, and a separation disk that constitutes a part of the rotor.
 処理対象ガスに含まれるミスト状オイルをガスから分離するオイルセパレータが知られている。例えば、特許文献1に記載のオイルセパレータは、ガスの流入口と排出口との間に設けられたローターにより、ミスト状オイルを遠心力によってガスから分離している。このローターは複数枚の分離ディスクを積層したものである。この分離ディスクは、上側が大径となるように外周側部分を斜め上方へ屈曲させた、円錐台形状の板状部材によって構成されている。分離ディスクの内周側部分には、板厚方向を貫通する開口が形成されている。このため、ローターの内周側部分には空間が形成されている。 An oil separator that separates mist oil contained in a gas to be treated from gas is known. For example, the oil separator described in Patent Document 1 separates mist-like oil from gas by centrifugal force using a rotor provided between the gas inlet and outlet. This rotor is formed by laminating a plurality of separation disks. This separation disk is constituted by a truncated cone-shaped plate member whose outer peripheral side portion is bent obliquely upward so that the upper side has a large diameter. An opening penetrating in the plate thickness direction is formed in the inner peripheral side portion of the separation disk. For this reason, a space is formed in the inner peripheral side portion of the rotor.
 このオイルセパレータでは、処理対象ガスであるクランクケースガス(ブローバイバス)をローターの内周側の空間に導入している。そして、この空間に導入したクランクケースガスを、高速で回転している分離ディスク同士の隙間を通じてローターの外周側へと流し、この隙間内でミスト状オイルを凝集させ、クランクケースガスから分離している。 In this oil separator, crankcase gas (blow-by bus), which is the gas to be treated, is introduced into the space on the inner peripheral side of the rotor. The crankcase gas introduced into this space is allowed to flow to the outer periphery of the rotor through the gap between the separation disks rotating at high speed, and the mist oil is aggregated and separated from the crankcase gas in this gap. Yes.
 すなわち、クランクケースガスに含まれるミスト状オイルは、分離ディスクの表面に沿って形成された境界層に達すると、遠心力によって移動して分離ディスクの表面に衝突して付着する。付着したミスト状オイルは、遠心力によってローターの外周側に移動する。その際、付着したミスト状オイルは、同じように分離ディスクの表面に付着した他のミスト状オイルと合体し、徐々に体積を増やしていく。 That is, when the mist-like oil contained in the crankcase gas reaches the boundary layer formed along the surface of the separation disk, it moves by centrifugal force and collides with and adheres to the surface of the separation disk. The attached mist-like oil moves to the outer peripheral side of the rotor by centrifugal force. At that time, the adhering mist-like oil is combined with other mist-like oil adhering to the surface of the separation disk in the same manner, and the volume is gradually increased.
特表2003-513792号公報Special table 2003-513792 gazette
 前述のオイルセパレータでは、分離ディスクの高速回転に伴って分離ディスクの表面に形成される境界層に、クランクケースガスに含まれるオイルミストが取り込まれる。そして、境界層に取り込まれたオイルミストは、同様にして取り込まれた他のオイルミストと、分離ディスクの表面で合体して凝集される。クランクケースガスに含まれるオイルミストは極めて少ない量であることから、ミスト状オイルの分離効率を高めるためには、分離ディスクの直径を大きくして多くのオイルミストを取り込む必要がある。分離ディスクの大径化に伴い、オイルセパレータが大型化してしまうという問題が生じる。 In the oil separator described above, oil mist contained in the crankcase gas is taken into the boundary layer formed on the surface of the separation disk as the separation disk rotates at high speed. The oil mist taken into the boundary layer is coalesced with other oil mist taken in the same manner on the surface of the separation disk. Since the amount of oil mist contained in the crankcase gas is extremely small, in order to increase the separation efficiency of the mist-like oil, it is necessary to increase the diameter of the separation disk and take in a large amount of oil mist. As the diameter of the separation disk increases, there arises a problem that the oil separator increases in size.
 本発明は、このような事情に鑑みてなされたものであり、本発明の目的は、処理対象ガスに含まれるミスト状オイルをガスから分離するに際し、分離効率を高めることにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to increase the separation efficiency when separating the mist oil contained in the gas to be treated from the gas.
 前述の目的を達成するため、本発明は、スピンドルと共に回転可能に設けられるローターの内周側空間に、ミスト状オイルを含む処理対象ガスと分離用オイルとを導入して前記ローターを回転させることで、前記処理対象ガスから前記ミスト状オイルを分離するオイルセパレータに用いられ、前記スピンドルの軸線方向に積層されることで、前記ローターが有する分離ディスク群を構成する分離ディスクであって、ラジアル方向とスラスト方向の間の傾斜方向に延びる複数の傾斜平面によって構成される外周側部分と、前記外周側部分よりも回転中心側の内周側部分とを有し、前記外周側部分には、前記積層方向に隣接する他の前記分離ディスクと接して当該分離ディスクとの間に分離空間を形成する突部が設けられ、隣り合う一対の前記傾斜平面の境界には、前記傾斜方向に延びる尾根部が設けられていることを特徴とする。 In order to achieve the above-mentioned object, the present invention introduces a gas to be treated including mist-like oil and separation oil into an inner circumferential space of a rotor rotatably provided with a spindle, and rotates the rotor. A separation disk that is used in an oil separator that separates the mist-like oil from the gas to be treated and is stacked in the axial direction of the spindle to constitute a separation disk group included in the rotor, and in a radial direction And an outer peripheral side portion constituted by a plurality of inclined planes extending in an inclination direction between the thrust direction, and an inner peripheral side portion closer to the rotation center than the outer peripheral side portion, Protrusions that are in contact with the other separation disks adjacent in the stacking direction to form a separation space between the separation disks are provided, and a pair of adjacent the separation disks The boundary of the oblique plane, characterized in that the ridge portion extending in the inclined direction.
 また、本発明は、ミスト状オイルを含む処理対象ガスから前記ミスト状オイルを分離するオイルセパレータに用いられ、前記処理対象ガスと分離用オイルが内周側空間に導入された状態でスピンドルと共に回転されることで、前記処理対象ガスから前記ミスト状オイルを分離するローターであって、前記スピンドルの軸線方向に積層された複数の分離ディスクによって構成された分離ディスク群と、前記分離ディスク群を前記分離ディスクの積層方向に挟んで保持するホルダ対とを有し、前記分離ディスクは、ラジアル方向とスラスト方向の間の傾斜方向に延びる複数の傾斜平面によって構成される外周側部分と、前記外周側部分よりも回転中心側の内周側部分とを有し、前記外周側部分には、前記積層方向に隣接する他の前記分離ディスクと接して当該分離ディスクとの間に分離空間を形成する突部が設けられ、隣り合う一対の前記傾斜平面の境界には、前記傾斜方向に延びる尾根部が設けられていることを特徴とする。 Further, the present invention is used in an oil separator that separates the mist-like oil from the gas to be treated containing mist-like oil, and rotates together with the spindle in a state where the gas to be treated and the separation oil are introduced into the inner space. A rotor that separates the mist-like oil from the gas to be treated, the separation disk group including a plurality of separation disks stacked in the axial direction of the spindle, and the separation disk group A pair of holders sandwiched and held in the stacking direction of the separation disks, the separation disk including an outer peripheral side portion configured by a plurality of inclined planes extending in an inclination direction between a radial direction and a thrust direction, and the outer peripheral side An inner peripheral portion closer to the center of rotation than the portion, and the outer peripheral portion includes the other separation disc adjacent to the stacking direction. A protrusion that forms a separation space in contact with the separation disk, and a ridge that extends in the inclination direction is provided at a boundary between a pair of adjacent inclined planes. .
 また、本発明は、ミスト状オイルを含む処理対象ガスから前記ミスト状オイルを分離するオイルセパレータであって、前記処理対象ガスと分離用オイルが内周側空間に導入された状態でスピンドルと共に回転されることで、前記処理対象ガスから前記ミスト状オイルを分離するローターを有し、前記ローターは、前記スピンドルの軸線方向に積層された複数の分離ディスクによって構成される分離ディスク群と、前記分離ディスク群を前記分離ディスクの積層方向に挟んで保持するホルダ対とを有し、前記分離ディスクは、前記スピンドルの軸線方向に積層されることで、前記ローターが有する分離ディスク群を構成するものであって、ラジアル方向とスラスト方向の間の傾斜方向に延びる複数の傾斜平面によって構成される外周側部分と、前記外周側部分よりも回転中心側の内周側部分とを有し、前記外周側部分には、前記積層方向に隣接する他の前記分離ディスクと接して当該分離ディスクとの間に分離空間を形成する突部が設けられ、隣り合う一対の前記傾斜平面の境界には、前記傾斜方向に延びる尾根部が設けられていることを特徴とする。 The present invention also provides an oil separator that separates the mist-like oil from the gas to be treated containing mist-like oil, and rotates together with the spindle in a state where the gas to be treated and the separation oil are introduced into the inner circumferential space. And a rotor that separates the mist-like oil from the gas to be processed, and the rotor includes a separation disk group including a plurality of separation disks stacked in an axial direction of the spindle, and the separation A pair of holders that hold the disk group in the stacking direction of the separation disk, and the separation disk is stacked in the axial direction of the spindle to constitute the separation disk group of the rotor. And an outer peripheral side portion constituted by a plurality of inclined planes extending in an inclination direction between the radial direction and the thrust direction. An inner peripheral side portion closer to the rotation center than the outer peripheral side portion, and the outer peripheral side portion is in contact with the other separation disk adjacent in the stacking direction and has a separation space between the separation disk and the separation disk. The protrusion to form is provided, The ridge part extended in the said inclination direction is provided in the boundary of a pair of adjacent said inclination plane, It is characterized by the above-mentioned.
 これらの発明によれば、処理対象ガスと分離用オイルがローターの内周側空間に導入された状態でローターが高速で回転されることにより、分離用オイルは、ディスク表面にオイル膜を形成する。そして、処理対象ガスに含まれるオイルミストは、オイル膜の表面に形成される境界層に取り込まれる。ここで、オイル膜は、オイルミストと同じオイルであることから、分離ディスクよりも親和性が高い。このため、オイル膜の表面に形成される境界層は、分離ディスクの表面に形成される境界層よりも、効率よくオイルミストを取り込むことができる。さらに、オイルミストを取り込んだオイル膜は、尾根部に向かって移動し、尾根部で集められて外周方向へ移動する。このオイル膜は、尾根部の端部から放出される。放出されたオイルは滴状になるため、取り込んだオイルミストが再度ミスト化される不具合を防止できる。その結果、ミスト状オイルの分離効率を高めることができる。 According to these inventions, the separation oil forms an oil film on the disk surface by rotating the rotor at a high speed while the gas to be treated and the separation oil are introduced into the inner circumferential space of the rotor. . And the oil mist contained in process object gas is taken in into the boundary layer formed in the surface of an oil film. Here, since the oil film is the same oil as the oil mist, the affinity is higher than that of the separation disk. For this reason, the boundary layer formed on the surface of the oil film can take in the oil mist more efficiently than the boundary layer formed on the surface of the separation disk. Further, the oil film that has taken in the oil mist moves toward the ridge portion, is collected at the ridge portion, and moves in the outer circumferential direction. This oil film is discharged from the end of the ridge. Since the discharged oil is in the form of droplets, it is possible to prevent a problem that the taken-in oil mist is re-misted. As a result, the efficiency of separating mist oil can be increased.
 前述の発明において、前記突部の少なくとも一部が、前記尾根部に設けられている場合には、或る分離ディスクの尾根部に設けられた突部が、積層方向に隣接する他の分離ディスクの尾根部に当接して周方向の位置を決めるので、分離ディスクにおける無用ながたつきを抑制でき、かつ、分離ディスク群を構成する各分離ディスクの周方向の位置を決めることができる。 In the above-described invention, when at least a part of the protrusion is provided on the ridge portion, the protrusion provided on the ridge portion of a certain separation disk is another separation disk adjacent in the stacking direction. Since the position in the circumferential direction is determined by abutting the ridge portion, unnecessary rattling in the separation disks can be suppressed, and the position in the circumferential direction of each separation disk constituting the separation disk group can be determined.
 前述の発明において、前記突部が複数の点状突起によって構成されている場合には、尾根部における点状突起との接触面積を少なくできるので、集められたオイルの流れを円滑にできる。 In the above-described invention, when the protrusion is constituted by a plurality of point-like protrusions, the contact area with the point-like protrusions at the ridge portion can be reduced, so that the collected oil can flow smoothly.
 前述の発明において、前記点状突起が、千鳥状に配置された状態で前記傾斜平面に設けられている場合には、分離ディスクの表面に形成されるオイル膜の面積を確保しつつ分離空間を確保できる。 In the above-described invention, when the point-like protrusions are provided on the inclined plane in a staggered manner, the separation space is secured while ensuring the area of the oil film formed on the surface of the separation disk. It can be secured.
 前述の発明において、前記突部が複数本のリブによって構成され、かつ、前記リブが前記傾斜平面の上に前記傾斜方向に沿って設けられている場合には、分離ディスクの表面に形成されるオイル膜をリブによって集めることができ、滴状にして放出できるので、取り込んだオイルミストが再度ミスト化する不具合を防止できる。 In the above-described invention, when the protrusion is constituted by a plurality of ribs and the ribs are provided on the inclined plane along the inclined direction, they are formed on the surface of the separation disk. Since the oil film can be collected by the ribs and can be discharged in the form of drops, it is possible to prevent a problem that the oil mist taken in becomes mist again.
 前述の発明において、隣り合う一対の前記尾根部の外周側端部同士を結ぶ前記傾斜平面の外縁が、前記傾斜方向に向かって山形に突出されている場合には、傾斜平面における傾斜方向の長さを長くすることでができるので、オイル膜の形成面積をその分拡張でき、ミスト状オイルの分離効率を高めることができる。 In the above-described invention, when the outer edge of the inclined plane connecting the outer peripheral side ends of the pair of adjacent ridges protrudes in a mountain shape toward the inclined direction, the length of the inclined direction in the inclined plane is increased. Since the length can be increased, the formation area of the oil film can be expanded correspondingly, and the efficiency of separating the mist-like oil can be increased.
 前述の発明において、隣り合う一対の前記尾根部の外周側端部同士を結ぶ前記傾斜平面の外縁が、前記傾斜方向に向かって円弧状に突出されている場合には、傾斜平面における傾斜方向の長さを長くすることでができるので、オイル膜の形成面積をその分拡張でき、ミスト状オイルの分離効率を高めることができる。 In the above-mentioned invention, when the outer edge of the inclined plane connecting the outer peripheral side ends of a pair of adjacent ridges is projected in an arc shape toward the inclined direction, Since the length can be increased, the formation area of the oil film can be expanded correspondingly, and the separation efficiency of the mist oil can be increased.
 本発明によれば、処理対象ガスに含まれるミスト状オイルをガスから分離するに際し、分離効率を高めることができる。 According to the present invention, when separating the mist oil contained in the gas to be treated from the gas, the separation efficiency can be increased.
閉鎖型クランクケース換気システムを示す概略図である。It is the schematic which shows a closed type crankcase ventilation system. オイルセパレータの正面図である。It is a front view of an oil separator. オイルセパレータの平面図である。It is a top view of an oil separator. オイルセパレータの全体を右側から見た縦断面図である。It is the longitudinal cross-sectional view which looked at the whole oil separator from the right side. オイルセパレータの下側部分を右側から見た縦断面図である。It is the longitudinal cross-sectional view which looked at the lower part of the oil separator from the right side. オイルセパレータのローター部分を正面側から見た縦断面図である。It is the longitudinal cross-sectional view which looked at the rotor part of the oil separator from the front side. ローターの内周側に形成された内周側空間、及び、分離ディスク同士の間に形成された分離空間を説明する部分拡大断面図である。It is a partial expanded sectional view explaining the inner peripheral side space formed in the inner peripheral side of a rotor, and the separation space formed between separation discs. オイルミストの取り込みを模式的に説明する図である。It is a figure which illustrates taking in of oil mist typically. PCVバルブの近傍を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the vicinity of a PCV valve | bulb. ローターの斜視図である。It is a perspective view of a rotor. ローターの平面図である。It is a top view of a rotor. ローターの正面図である。It is a front view of a rotor. 上部ホルダを外した状態のローターの斜視図である。It is a perspective view of the rotor of the state which removed the upper holder. 図6Bに示すA-A断面図である。FIG. 6B is a cross-sectional view taken along line AA shown in FIG. 6B. 図6Bに示すB-B断面図であって断面形状のみを示す図である。FIG. 6B is a cross-sectional view taken along the line BB shown in FIG. 6B and showing only the cross-sectional shape. 図6Bに示すC-C断面図である。It is CC sectional drawing shown to FIG. 6B. 図6Cに示すD-D断面図である。It is DD sectional drawing shown to FIG. 6C. 第1実施形態の分離ディスクの斜視図である。It is a perspective view of the separation disc of a 1st embodiment. 第1実施形態の分離ディスクの平面図である。It is a top view of the separation disc of a 1st embodiment. 第1実施形態の分離ディスクの側面図である。It is a side view of the separation disk of 1st Embodiment. 第1実施形態の分離ディスクの平面図であって断面の位置を示す図である。It is a top view of the separation disk of 1st Embodiment, and is a figure which shows the position of a cross section. 図10Aに示すE-E断面図である。It is EE sectional drawing shown to FIG. 10A. 図10Bに示すG部拡大図である。It is the G section enlarged view shown to FIG. 10B. 図10Aに示すF-F断面図である。FIG. 10B is a sectional view taken along line FF shown in FIG. 10A. 図10Bに示すH部拡大図である。It is the H section enlarged view shown to FIG. 10B. 尾根部に設けられた点状突起の配置、及び複数の分離ディスクにおける積層状態を説明する図である。It is a figure explaining arrangement | positioning of the dotted | punctate protrusion provided in the ridge part, and the lamination | stacking state in a some separation disc. 尾根部に設けられた点状突起の配置を説明する斜視図である。It is a perspective view explaining arrangement | positioning of the dotted | punctate protrusion provided in the ridge part. 第1実施形態の分離ディスクを用いた場合と、従来の分離ディスクを用いた場合における分離効率を比較するグラフである。It is a graph which compares the separation efficiency in the case where the separation disk of 1st Embodiment is used, and the case where the conventional separation disk is used. 第2実施形態の分離ディスクの斜視図である。It is a perspective view of the separation disk of 2nd Embodiment. 第2実施形態の分離ディスクの平面図である。It is a top view of the separation disk of 2nd Embodiment. 第2実施形態の分離ディスクの側面図である。It is a side view of the separation disk of 2nd Embodiment. 第2実施形態の分離ディスクの平面図であって断面の位置を示す図である。It is a top view of the separation disk of 2nd Embodiment, and is a figure which shows the position of a cross section. 図14Aに示すI-I断面図である。It is II sectional drawing shown to FIG. 14A. 図14Bに示すK部拡大図である。It is the K section enlarged view shown to FIG. 14B. 図14Aに示すJ-J断面図である。It is JJ sectional drawing shown to FIG. 14A. 図14Dに示すL部拡大図である。It is the L section enlarged view shown to FIG. 14D. 第2実施形態の分離ディスクを用いた場合と、従来の分離ディスクを用いた場合における分離効率を比較するグラフである。It is a graph which compares the separation efficiency in the case where the separation disk of 2nd Embodiment is used, and the case where the conventional separation disk is used. 第3実施形態の分離ディスクを説明する斜視図である。It is a perspective view explaining the separation disk of 3rd Embodiment. 第4実施形態の分離ディスクを説明する斜視図である。It is a perspective view explaining the separation disk of 4th Embodiment. 第5実施形態の分離ディスクを説明する斜視図である。It is a perspective view explaining the separation disk of 5th Embodiment. 第5実施形態の分離ディスクを説明する平面図である。It is a top view explaining the separation disk of 5th Embodiment. 第6実施形態の分離ディスクを説明する斜視図である。It is a perspective view explaining the separation disk of 6th Embodiment. 第6実施形態の分離ディスクを説明する平面図である。It is a top view explaining the separation disk of 6th Embodiment. 第7実施形態の分離ディスクを説明する斜視図である。It is a perspective view explaining the separation disk of 7th Embodiment. 第7実施形態の分離ディスクを説明する平面図である。It is a top view explaining the separation disk of 7th Embodiment. 第8実施形態の分離ディスクを説明する斜視図である。It is a perspective view explaining the separation disk of 8th Embodiment. 第8実施形態の分離ディスクを説明する平面図である。It is a top view explaining the separation disk of 8th Embodiment.
 以下、本発明の実施形態を図面に基づいて説明する。ここでは、閉鎖型クランクケース換気システム1(以下、換気システム1という。)を例に挙げて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, a closed crankcase ventilation system 1 (hereinafter referred to as a ventilation system 1) will be described as an example.
 図1に示すように、換気システム1は、オイルセパレータ2とブリーザーパイプ3とを有する。オイルセパレータ2は、エンジン4から排出されたブローバイガス(ミスト状オイルを含有する処理対象ガスに相当する。)を処理し、ミスト状オイルを分離する。本実施形態において、オイルセパレータ2はエンジン4の側面に取り付けられている。ブリーザーパイプ3は、オイルセパレータ2から排出された処理後のブローバイガスを、エンジン4の吸気側流路6に還元するための流路を区画する。 As shown in FIG. 1, the ventilation system 1 includes an oil separator 2 and a breather pipe 3. The oil separator 2 processes blow-by gas (corresponding to a processing target gas containing mist-like oil) discharged from the engine 4 to separate the mist-like oil. In the present embodiment, the oil separator 2 is attached to the side surface of the engine 4. The breather pipe 3 defines a flow path for reducing the treated blow-by gas discharged from the oil separator 2 to the intake-side flow path 6 of the engine 4.
 この換気システム1において、ブローバイガスは、ガス導出管5を通じてエンジン4から導出され、オイルセパレータ2へと導入される。そして、ブローバイガスに含まれるミスト状オイルは、オイルセパレータ2の内部でエンジン4から供給されたオイルに取り込まれ、このオイルと共にエンジン4へと戻される。一方、ミスト状オイルが除去された処理後のブローバイガスは、オイルセパレータ2から排出された後、ブリーザーパイプ3を通じて吸気側流路6に還元される。具体的には、吸気側流路6におけるエアフィルタ7とターボチャージャー8とを接続する部分に還元される。還元されたブローバイガスは、エアフィルタ7からの新鮮な空気と混合され、ターボチャージャー8で圧縮される。その後、ブローバイガスは、チャージクーラー9で冷却されて、エンジン4に供給される。 In this ventilation system 1, blow-by gas is led out from the engine 4 through the gas lead-out pipe 5 and introduced into the oil separator 2. The mist oil contained in the blowby gas is taken into the oil supplied from the engine 4 inside the oil separator 2 and returned to the engine 4 together with this oil. On the other hand, the blowby gas after the treatment from which the mist-like oil has been removed is discharged from the oil separator 2 and then returned to the intake side flow path 6 through the breather pipe 3. Specifically, it is returned to a portion where the air filter 7 and the turbocharger 8 are connected in the intake side flow path 6. The reduced blow-by gas is mixed with fresh air from the air filter 7 and compressed by the turbocharger 8. Thereafter, the blow-by gas is cooled by the charge cooler 9 and supplied to the engine 4.
 次に、オイルセパレータ2について説明する。図2に示すように、このオイルセパレータ2は、下側ケース12と上側ケース13を有するハウジング11を有している。そして、ハウジング11の内部空間(収容室)に、ローターユニットやPCVバルブといった各種の部品が収容されている(後述する)。 Next, the oil separator 2 will be described. As shown in FIG. 2, the oil separator 2 includes a housing 11 having a lower case 12 and an upper case 13. Various components such as a rotor unit and a PCV valve are accommodated in an internal space (accommodating chamber) of the housing 11 (described later).
 下側ケース12は、ハウジング11における下側部分を区画する部分であり、上面が開放された有底の箱状部材によって構成されている。そして、下側ケース12の上端部には円形の嵌合部14が設けられており、上側ケース13の下端部15と嵌め合わされる。これにより、下側ケース12と上側ケース13が気密状態で接続される。図4に示すように、下側ケース12の背面には連通筒部16が後方に向けて設けられている。この連通筒部16は、オイルセパレータ2で使用されたオイルの出口となる筒状部材である。このため、連通筒部16の内部空間は、エンジン4の内部空間に連通されている。図2及び図3に示すように、連通筒部16の先端部には、エンジン4の側面に結合されるフランジ17が設けられている。下側ケース12の左側上部には、左側方に向けて吸入パイプ18が突設されている。 The lower case 12 is a portion that divides the lower portion of the housing 11, and is constituted by a box-shaped member with a bottom having an open upper surface. A circular fitting portion 14 is provided at the upper end portion of the lower case 12 and is fitted to the lower end portion 15 of the upper case 13. Thereby, the lower case 12 and the upper case 13 are connected in an airtight state. As shown in FIG. 4, a communication tube portion 16 is provided on the back surface of the lower case 12 so as to face rearward. The communication cylinder portion 16 is a cylindrical member that serves as an outlet for oil used in the oil separator 2. For this reason, the internal space of the communication cylinder part 16 is connected to the internal space of the engine 4. As shown in FIGS. 2 and 3, a flange 17 coupled to the side surface of the engine 4 is provided at the distal end portion of the communication tube portion 16. A suction pipe 18 projects from the upper left side of the lower case 12 toward the left side.
 この吸入パイプ18にはガス導出管5が接続されている。エンジン4からのブローバイガスは、エンジン4の吸気圧力やクランクケース側の圧力により、ガス導出管5から吸入パイプ18を通ってオイルセパレータ2の内部に導入される。このとき、PCVバルブにより、エンジン4の吸気圧力やクランクケース側の圧力が適切に調整される。そして、吸入パイプ18はガス導入部として機能する。 The gas outlet pipe 5 is connected to the suction pipe 18. Blow-by gas from the engine 4 is introduced into the oil separator 2 from the gas outlet pipe 5 through the suction pipe 18 by the intake pressure of the engine 4 or the pressure on the crankcase side. At this time, the intake pressure of the engine 4 and the pressure on the crankcase side are appropriately adjusted by the PCV valve. The suction pipe 18 functions as a gas introduction part.
 図2及び図4に示すように、下側ケース12の底面には、オイル案内パイプ19のジョイント部20が臨んでいる。このジョイント部20は、図1に示すオイル供給パイプ21の一端に接続されている。オイル供給パイプ21は、エンジン4から送出されたオイルをオイル案内パイプ19へ供給するためのものである。オイル案内パイプ19へ供給されたオイルは、後述するように、図4に示すローターユニット27が有するノズル38(図5Aを参照)から噴射され、ローターユニット27を回転させるための動力として用いられる。便宜上、以下の説明において、ノズル38から噴射されたオイルのことを動力用オイルともいう。この動力用オイルは、エンジン4で用いられている潤滑オイルの一部であることから、80~110℃位の温度になっている。 As shown in FIGS. 2 and 4, the joint portion 20 of the oil guide pipe 19 faces the bottom surface of the lower case 12. The joint portion 20 is connected to one end of an oil supply pipe 21 shown in FIG. The oil supply pipe 21 is for supplying oil sent from the engine 4 to the oil guide pipe 19. As will be described later, the oil supplied to the oil guide pipe 19 is ejected from a nozzle 38 (see FIG. 5A) of the rotor unit 27 shown in FIG. 4 and used as power for rotating the rotor unit 27. For convenience, in the following description, the oil sprayed from the nozzle 38 is also referred to as power oil. This power oil is part of the lubricating oil used in the engine 4 and therefore has a temperature of about 80 to 110 ° C.
 図2に示すように、上側ケース13は、下側ケース12に上方から取り付けられる部材である。この上側ケース13は、天井部分を有する円筒状の本体カバー22と円盤状の上面カバー23とを有している。本体カバー22は下側ケース12に対して気密状態で取り付けられている。上面カバー23は、本体カバー22の上端部に気密状態で取り付けられている。また、図3にも示すように、上面カバー23の中心部には、円筒状のガス排出部24が上方に向けて突設されている。ガス排出部24は、処理後のブローバイガスを排出する部分である。このガス排出部24には、L字状に屈曲された出口パイプ25を介して、前述したブリーザーパイプ3が接続される。 2, the upper case 13 is a member attached to the lower case 12 from above. The upper case 13 includes a cylindrical main body cover 22 having a ceiling portion and a disk-shaped upper surface cover 23. The main body cover 22 is attached to the lower case 12 in an airtight state. The upper surface cover 23 is attached to the upper end portion of the main body cover 22 in an airtight state. As shown in FIG. 3, a cylindrical gas discharge portion 24 protrudes upward from the center portion of the top cover 23. The gas discharge part 24 is a part for discharging blowby gas after processing. The above-described breather pipe 3 is connected to the gas discharge portion 24 via an outlet pipe 25 bent in an L shape.
 次に、図4を参照し、オイルセパレータ2の内部構造について説明する。なお、図4において、左側はオイルセパレータ2の前側に相当し、同じく右側はオイルセパレータ2の後側に相当する。図4に示すように、ハウジング11の内部には、PCVバルブ26、ローターユニット27、及び区画部材28が配設されている。そして、PCVバルブ26は、ハウジング11における上部に配設されている。具体的には、PCVバルブ26は、本体カバー22と上面カバー23の間に、上面カバー23に覆われた状態で取り付けられている。ローターユニット27は、ハウジング11における上下方向の中間部分に配設されている。具体的には、ローターユニット27は、本体カバー22によって区画される内部空間に、回転可能な状態で配設されている。区画部材28は、ローターユニット27を構成するローター31の直下に配設されている。この区画部材28は、鍔部44が上側ケース13の下端部15と下側ケース12の嵌合部14に挟持された状態で位置決めされている。 Next, the internal structure of the oil separator 2 will be described with reference to FIG. In FIG. 4, the left side corresponds to the front side of the oil separator 2, and the right side corresponds to the rear side of the oil separator 2. As shown in FIG. 4, a PCV valve 26, a rotor unit 27, and a partition member 28 are disposed inside the housing 11. The PCV valve 26 is disposed in the upper part of the housing 11. Specifically, the PCV valve 26 is attached between the main body cover 22 and the upper surface cover 23 so as to be covered with the upper surface cover 23. The rotor unit 27 is disposed at an intermediate portion in the vertical direction of the housing 11. Specifically, the rotor unit 27 is disposed in an internal space defined by the main body cover 22 in a rotatable state. The partition member 28 is disposed immediately below the rotor 31 constituting the rotor unit 27. The partition member 28 is positioned in a state in which the flange portion 44 is sandwiched between the lower end portion 15 of the upper case 13 and the fitting portion 14 of the lower case 12.
 次に、図5Aを参照し、下側ケース12の内部構造について説明する。なお、図5Aにおいても、左側はオイルセパレータ2の前側に相当し、右側はオイルセパレータ2の後側に相当する。図5Aに示すように、下側ケース12の後部には連通筒部16が一体に設けられており、下側ケース12の内部空間(他の分離空間SP3)と連通筒部16の内部空間とが連通されている。下側ケース12の底面は、連通筒部16に向かって下り傾斜されている。そして、下側ケース12の底面から上方に向かって円筒状のオイル案内パイプ19が設けられている。オイル案内パイプ19の下端にはジョイント部20が設けられており、オイル案内パイプ19の上端は固定フレーム29によって固定されている。固定フレーム29は、嵌合部14の内周側に取り付けられた枠体であり、嵌合部14の内周面に沿った形状の枠部と、枠部の内側に十字状に設けられた十字部とを有している。そして、オイル案内パイプ19の上端は、十字部における交差部分に空けられた貫通孔29aに挿入されている。 Next, the internal structure of the lower case 12 will be described with reference to FIG. 5A. 5A, the left side corresponds to the front side of the oil separator 2, and the right side corresponds to the rear side of the oil separator 2. As shown in FIG. 5A, a communication cylinder part 16 is integrally provided at the rear part of the lower case 12, and the internal space (other separation space SP <b> 3) of the lower case 12 and the internal space of the communication cylinder part 16 Is communicated. The bottom surface of the lower case 12 is inclined downward toward the communication cylinder portion 16. A cylindrical oil guide pipe 19 is provided upward from the bottom surface of the lower case 12. A joint portion 20 is provided at the lower end of the oil guide pipe 19, and the upper end of the oil guide pipe 19 is fixed by a fixed frame 29. The fixed frame 29 is a frame body attached to the inner peripheral side of the fitting portion 14, and is provided in a cross shape along the inner peripheral surface of the fitting portion 14 and on the inner side of the frame portion. And a cross. And the upper end of the oil guide pipe 19 is inserted in the through-hole 29a opened in the cross | intersection part in a cross part.
 なお、図5Aには描かれていないが、吸入パイプ18は、嵌合部14の直下の高さで下側ケース12の左側面に設けられている。そして、下側ケース12の内部空間と吸入パイプ18の内部空間とが連通されている。このため、ブローバイガスは、エンジン4から下側ケース12の内部空間へ吸入される。また、ノズル38から噴射された動力用オイルは、区画部材28が有するテーパー部の内壁面に吹き付けられる。この動力用オイルは、テーパー部の内壁面や下側ケース12の内壁面に沿って流下する。そして、動力用オイルは、その温度が80~110℃と高くなるため、オイルセパレータ2を下側ケース12の側から加温する。これにより、寒冷地での使用であっても、凍結等によるオイルセパレータ2の動作不具合の発生を抑えることができる。 Although not illustrated in FIG. 5A, the suction pipe 18 is provided on the left side surface of the lower case 12 at a height immediately below the fitting portion 14. The internal space of the lower case 12 and the internal space of the suction pipe 18 are in communication. For this reason, blow-by gas is sucked into the internal space of the lower case 12 from the engine 4. The power oil sprayed from the nozzle 38 is sprayed onto the inner wall surface of the tapered portion of the partition member 28. This power oil flows down along the inner wall surface of the tapered portion and the inner wall surface of the lower case 12. Since the temperature of the power oil becomes as high as 80 to 110 ° C., the oil separator 2 is heated from the lower case 12 side. Thereby, even if it is used in a cold district, it is possible to suppress the occurrence of malfunction of the oil separator 2 due to freezing or the like.
 次に、図5Bを参照し、ローターユニット27について説明する。このローターユニット27は、ブローバイガスに含まれるミスト状オイルを分離するための機構であり、ローター31、スピンドル32、及びスピンドルシャフト33を有している。 Next, the rotor unit 27 will be described with reference to FIG. 5B. The rotor unit 27 is a mechanism for separating mist-like oil contained in blow-by gas, and includes a rotor 31, a spindle 32, and a spindle shaft 33.
 ローター31は、ブローバイガスからオイルミストを分離する部分であり、分離ディスク群34、上部ホルダ35、及び下部ホルダ36を有している。分離ディスク群34は、スピンドル32の軸線方向に積層された複数の分離ディスク51によって構成されている。図7に示すように、分離ディスク51は、複数の傾斜平面53によって構成される外周側部分52と、この外周側部分52よりも回転中心側の内周側部分54とを有している。なお、分離ディスク51については、後で詳しく説明する。 The rotor 31 is a part that separates oil mist from blow-by gas, and includes a separation disk group 34, an upper holder 35, and a lower holder 36. The separation disk group 34 includes a plurality of separation disks 51 stacked in the axial direction of the spindle 32. As shown in FIG. 7, the separation disk 51 has an outer peripheral side portion 52 constituted by a plurality of inclined planes 53 and an inner peripheral side portion 54 closer to the rotation center than the outer peripheral side portion 52. The separation disk 51 will be described in detail later.
 図5Bに示すように、上部ホルダ35は、積層された複数枚の分離ディスク51を上側から保持する部材であり、下部ホルダ36は、同じく下側から保持する部材である。これらの上部ホルダ35及び下部ホルダ36は、分離ディスク群34を分離ディスク51の積層方向に挟んで保持するホルダ対に相当する。なお、図5Bや図5Cでは、分離ディスク51同士の間隔を空けて描いているが実際の間隔は極めて狭く、例えば1mm以下に定められている。 As shown in FIG. 5B, the upper holder 35 is a member that holds a plurality of stacked separation disks 51 from the upper side, and the lower holder 36 is a member that similarly holds the lower side from the lower side. The upper holder 35 and the lower holder 36 correspond to a holder pair that holds the separation disk group 34 in the stacking direction of the separation disks 51. In FIG. 5B and FIG. 5C, the separation disks 51 are drawn with an interval therebetween, but the actual interval is extremely narrow, for example, 1 mm or less.
 このローター31は、筒状の外観をしており、回転中心となる内周側が中空とされて上下方向に貫通している。この内周側空間SP1にはスピンドル32が挿入されており、スピンドル32とローター31とは互いに結合されている。本実施形態では、ディスク保持部35aを構成する8枚の板状部材35bがスピンドル32の周面に接合されることで、スピンドル32とローター31が結合されている。そして、ディスク保持部35aは、各分離ディスク51の取付開口55(図7を参照)に挿入されている。これによりローター31は、スピンドル32と共にスピンドル32の軸線を中心に回転する。 The rotor 31 has a cylindrical appearance, and the inner peripheral side serving as the center of rotation is hollow and penetrates in the vertical direction. A spindle 32 is inserted into the inner circumferential space SP1, and the spindle 32 and the rotor 31 are coupled to each other. In the present embodiment, the spindle 32 and the rotor 31 are coupled by joining the eight plate-like members 35 b constituting the disk holding portion 35 a to the peripheral surface of the spindle 32. The disk holding portion 35a is inserted into the mounting opening 55 (see FIG. 7) of each separation disk 51. As a result, the rotor 31 rotates about the axis of the spindle 32 together with the spindle 32.
 スピンドル32におけるローター31よりも下側の周面からはノズル38が突設されている。このノズル38は、スピンドルシャフト33を通じて供給されたオイルを噴射する部分であり、スピンドル32やローター31を回転させるための駆動力を発生させる。本実施形態において、ノズル38は、基端がスピンドル32に接合され、先端が塞がれた円筒状のノズル本体38aと、ノズル本体38aの先端部に設けられた噴射口38bとを有している。ノズル本体38aは、スピンドル32の軸線方向に対して下向き斜め45度の角度で取り付けられている。そして、3本のノズル本体38aが周方向に120度間隔で設けられている。また、噴射口38bは、ノズル本体38aにおける先端部の側面に設けられている。詳しくは、噴射口38bは、ノズル本体38aの軸線方向と直交する向きであって、オイルが略水平方向に噴射される向きに設けられている。 A nozzle 38 protrudes from the peripheral surface of the spindle 32 below the rotor 31. The nozzle 38 is a portion that injects oil supplied through the spindle shaft 33, and generates a driving force for rotating the spindle 32 and the rotor 31. In the present embodiment, the nozzle 38 has a cylindrical nozzle body 38a whose base end is joined to the spindle 32 and whose tip is closed, and an injection port 38b provided at the tip of the nozzle body 38a. Yes. The nozzle body 38 a is attached at an angle of 45 degrees obliquely downward with respect to the axial direction of the spindle 32. Three nozzle bodies 38a are provided at intervals of 120 degrees in the circumferential direction. The injection port 38b is provided on the side surface of the tip portion of the nozzle body 38a. Specifically, the injection port 38b is provided in a direction orthogonal to the axial direction of the nozzle body 38a and in a direction in which oil is injected in a substantially horizontal direction.
 スピンドルシャフト33は、スピンドル32の軸受けとなる円柱状部材であり、スピンドル32を回転可能な状態で支持する。スピンドルシャフト33の内側には、オイルを供給するための第1オイル供給路39が形成されている。また、スピンドルシャフト33の下端は、オイル案内パイプ19の上端と接合されている。前述したように、オイル案内パイプ19のジョイント部20には、オイル供給パイプ21が接続されている。このため、オイル供給パイプ21を通じて供給されたオイルは、オイル案内パイプ19を通った後に第1オイル供給路39へ流入する。 The spindle shaft 33 is a cylindrical member serving as a bearing for the spindle 32, and supports the spindle 32 in a rotatable state. A first oil supply path 39 for supplying oil is formed inside the spindle shaft 33. The lower end of the spindle shaft 33 is joined to the upper end of the oil guide pipe 19. As described above, the oil supply pipe 21 is connected to the joint portion 20 of the oil guide pipe 19. For this reason, the oil supplied through the oil supply pipe 21 flows into the first oil supply path 39 after passing through the oil guide pipe 19.
 スピンドル32とスピンドルシャフト33の間には、上下をシールされた状態で隙間が形成されている。この隙間が第2オイル供給路40となっている。第2オイル供給路40は、第1オイル供給路39やノズル38と連通されており、第1オイル供給路39から供給されたオイルで満たされる。そして、第2オイル供給路40に供給されたオイルの一部は、ノズル本体38aに流入した後、動力用オイルとして噴射口38bから噴射される。 A gap is formed between the spindle 32 and the spindle shaft 33 with the top and bottom sealed. This gap serves as the second oil supply path 40. The second oil supply path 40 is in communication with the first oil supply path 39 and the nozzle 38 and is filled with oil supplied from the first oil supply path 39. A part of the oil supplied to the second oil supply passage 40 flows into the nozzle body 38a and is then injected from the injection port 38b as power oil.
 ここで、第2オイル供給路40の下端は、筒状の下側シール部材41によってシールされている。同様に、第2オイル供給路40の上端は、筒状の上側シール部材42によってシールされている。そして、オイル圧力の上昇に伴い、これらの下側シール部材41及び上側シール部材42とスピンドル32との隙間からは、少量のオイルが漏出される。本実施形態では、約2000Gの遠心力が発生する速度でローター31を回転させた場合に、50~200mL/min程度のオイルが、スピンドル32の上端と上側シール部材42の隙間から、ローター31の内周側空間SP1に導入される。 Here, the lower end of the second oil supply path 40 is sealed by a cylindrical lower seal member 41. Similarly, the upper end of the second oil supply path 40 is sealed by a cylindrical upper seal member 42. As the oil pressure increases, a small amount of oil leaks from the gaps between the lower seal member 41 and the upper seal member 42 and the spindle 32. In the present embodiment, when the rotor 31 is rotated at a speed at which a centrifugal force of about 2000 G is generated, oil of about 50 to 200 mL / min flows from the gap between the upper end of the spindle 32 and the upper seal member 42 to the rotor 31. It is introduced into the inner space SP1.
 便宜上、以下の説明では、第2オイル供給路40の上端からローター31の内周側空間SP1に導入されたオイルを、分離用オイルという。そして、第2オイル供給路40の上端、詳しくは、スピンドル32の上端と上側シール部材42の隙間は、第2オイル供給路40に供給されたオイルの一部を分離用オイルとして導入するオイル導入部に相当する。この分離用オイルは、ミスト状オイルの分離に用いられるものであるが、エンジンオイルの一部であるので80~110℃と高温である。このため、分離用オイルを内周側空間SP1に導入するとローター31及びその近傍が内部から加温され、寒冷地での使用であっても、凍結等によるオイルセパレータ2の動作不具合の発生を抑えることができる。 For convenience, in the following description, oil introduced from the upper end of the second oil supply path 40 into the inner circumferential space SP1 of the rotor 31 is referred to as separation oil. The upper end of the second oil supply path 40, specifically, the gap between the upper end of the spindle 32 and the upper seal member 42, introduces an oil that introduces a part of the oil supplied to the second oil supply path 40 as separation oil. It corresponds to the part. This separating oil is used for separating mist-like oil, but is a high temperature of 80 to 110 ° C. because it is a part of engine oil. For this reason, when the separating oil is introduced into the inner circumferential space SP1, the rotor 31 and the vicinity thereof are heated from the inside, and even when used in a cold region, the occurrence of malfunction of the oil separator 2 due to freezing or the like is suppressed. be able to.
 次に、区画部材28について説明する。区画部材28は、ローター31とノズル38の間に配置され、ハウジング11の内部空間を下側ケース12の内部空間と上側ケース13の内部空間とに区画し、かつ、下側ケース12のブローバイガスをローター31の内周側空間SP1へ案内する流路を形成する部材である。 Next, the partition member 28 will be described. The partition member 28 is disposed between the rotor 31 and the nozzle 38, partitions the internal space of the housing 11 into an internal space of the lower case 12 and an internal space of the upper case 13, and blow-by gas in the lower case 12. Is a member that forms a flow path that guides the air to the inner circumferential space SP1 of the rotor 31.
 この区画部材28は、外周部43と鍔部44とテーパー部45とを有している。外周部43は、円筒状をした部分であり、ローター31の下端部を外側から囲むように形成されている。外周部43における高さ方向の途中には、鍔部44が側方に張り出している。前述したように、この鍔部44は、区画部材28を位置決めする部分であり、上側ケース13の下端部15と下側ケース12の嵌合部14に挟持されている。テーパー部45は、外周部43の内周側に設けられており、外周部43の下端から上方に向けて次第に縮径されたテーパー形状をしている。そして、テーパー部45の上端開口45aは、ローター31の下端における面方向中心部に対して、下側から近接して配置されている。 The partition member 28 has an outer peripheral portion 43, a flange portion 44, and a tapered portion 45. The outer peripheral portion 43 is a cylindrical portion and is formed so as to surround the lower end portion of the rotor 31 from the outside. In the middle of the outer peripheral portion 43 in the height direction, the flange portion 44 projects laterally. As described above, the flange portion 44 is a portion for positioning the partition member 28, and is sandwiched between the lower end portion 15 of the upper case 13 and the fitting portion 14 of the lower case 12. The tapered portion 45 is provided on the inner peripheral side of the outer peripheral portion 43 and has a tapered shape that is gradually reduced in diameter from the lower end of the outer peripheral portion 43 upward. And the upper end opening 45a of the taper part 45 is arrange | positioned with respect to the center part of the surface direction in the lower end of the rotor 31 from the lower side.
 また、テーパー部45の内周側であって上端開口の下方には、スピンドル32の下端部、スピンドルシャフト33の下端部、ノズル38、及び、固定フレーム29が配置されている。図5Cに示すように、エンジン4から供給されたオイルの一部は、動力用オイルとして、符号F1の矢印で示すようにノズル38から噴射される。このとき、エンジン4から供給されたオイルの他の一部は、分離用オイルとして、第2オイル供給路40を通った後、符号F2の矢印で示すように、第2オイル供給路40の上端(オイル導入部)からローター31における内周側の空間に導入される。 Further, a lower end portion of the spindle 32, a lower end portion of the spindle shaft 33, a nozzle 38, and a fixed frame 29 are arranged on the inner peripheral side of the tapered portion 45 and below the upper end opening. As shown in FIG. 5C, part of the oil supplied from the engine 4 is injected from the nozzle 38 as power oil, as indicated by the arrow F1. At this time, another part of the oil supplied from the engine 4 passes through the second oil supply path 40 as separation oil, and then, as shown by the arrow F2, the upper end of the second oil supply path 40 It is introduced from the (oil introduction part) into the space on the inner peripheral side of the rotor 31.
 ノズル38から噴射された動力用オイルはテーパー部45の内壁面に衝突し、符号F3の矢印で示すようにこの内壁面を流下する。さらに動力用オイルは、下側ケース12の内部空間を流下する。この流下の過程で動力用オイルはブローバイガスと接触し、ブローバイガスに含まれるオイルミストが一次分離される。オイルミストが一次分離されたブローバイガスは、テーパー部45の内周側を上昇してローター31の内周側空間SP1へ誘導される。 The power oil sprayed from the nozzle 38 collides with the inner wall surface of the taper portion 45 and flows down the inner wall surface as indicated by the arrow F3. Further, the motive power oil flows down through the internal space of the lower case 12. In the course of this flow, the power oil comes into contact with the blow-by gas, and the oil mist contained in the blow-by gas is primarily separated. The blow-by gas from which the oil mist is primarily separated rises on the inner peripheral side of the tapered portion 45 and is guided to the inner peripheral space SP1 of the rotor 31.
 オイルミストが一次分離されたブローバイガスは、符号F11の矢印で示すように、ローター31の内周側空間SP1に下側から流入される。この内周側空間SP1では、ローター31が高速で回転していることから、符号F4の矢印で示すように、導入された分離用オイルがディスク保持部35aを構成する板状部材35bの表面に沿って拡がり、取付開口55の縁部から分離空間SP2(分離ディスク51同士の隙間)に流入される。ブローバイガスもまた、符号F12の矢印で示すように、取付開口55の縁部から分離空間SP2に流入される。 The blow-by gas from which the oil mist has been primarily separated flows into the inner circumferential space SP1 of the rotor 31 from the lower side, as indicated by the arrow F11. In this inner circumferential space SP1, since the rotor 31 rotates at a high speed, the introduced separation oil is applied to the surface of the plate-like member 35b constituting the disc holding portion 35a as indicated by the arrow F4. It spreads along and flows into the separation space SP2 (the gap between the separation disks 51) from the edge of the mounting opening 55. The blow-by gas also flows into the separation space SP2 from the edge of the mounting opening 55 as indicated by the arrow F12.
 図5Dに示すように、分離空間SP2に流入された分離用オイルは、回転軸AXを中心にして符号Rで示す方向に分離ディスク51(ローター31)が高速回転されていることから、分離ディスク51の表面全体に均等に拡がってオイル膜OFを形成する。そして、符号F13の矢印で示すように、ブローバイガスは、分離ディスク51の表面に形成されたオイル膜OFに接触しながら流れる。これにより、オイル膜OFの表面に境界層BLが形成される。そして、ブローバイガスは、境界層BLの表面側を分離ディスク51の外周縁に向かって流れるが、その際、符号F5の矢印で示すように、ブローバイガスに含まれるオイルミストMSが境界層BLに取り込まれる。境界層BLに取り込まれたオイルミストMSは、符号CFで示す遠心力によって移動し、オイル膜OFに合体される。 As shown in FIG. 5D, the separation oil that has flowed into the separation space SP2 has the separation disk 51 (rotor 31) rotated at a high speed in the direction indicated by the symbol R around the rotation axis AX. An oil film OF is formed by spreading evenly over the entire surface of 51. The blow-by gas flows while contacting the oil film OF formed on the surface of the separation disk 51, as indicated by the arrow F13. Thereby, the boundary layer BL is formed on the surface of the oil film OF. The blow-by gas flows on the surface side of the boundary layer BL toward the outer peripheral edge of the separation disk 51. At that time, as shown by the arrow F5, the oil mist MS contained in the blow-by gas is applied to the boundary layer BL. It is captured. The oil mist MS taken into the boundary layer BL is moved by the centrifugal force indicated by the symbol CF, and united with the oil film OF.
 オイルミストを取り込んだオイル膜OF、すなわち分離用オイルは、分離ディスク51の外周縁から滴状になって放出される。放出されたオイル滴は本体カバー22の内周面に衝突する。ここで、図5Cに符号37で示す部材は、上部ホルダ35と下部ホルダ36とを連結するための連結アームであり、図6Aに示すように90度間隔で4つ設けられている。このため、連結アーム37同士の間は空間となっており、分離ディスク51の外周縁から放出されたオイル滴は、本体カバー22の内周面に衝突する。 The oil film OF that has taken in the oil mist, that is, the separation oil, is discharged from the outer peripheral edge of the separation disk 51 in the form of drops. The discharged oil droplets collide with the inner peripheral surface of the main body cover 22. Here, the members denoted by reference numeral 37 in FIG. 5C are connecting arms for connecting the upper holder 35 and the lower holder 36, and four members are provided at intervals of 90 degrees as shown in FIG. 6A. For this reason, there is a space between the connecting arms 37, and the oil droplets discharged from the outer peripheral edge of the separation disk 51 collide with the inner peripheral surface of the main body cover 22.
 本体カバー22の内周面に衝突したオイル滴は、図5Cに符号F6の矢印で示すように、他のオイル滴と合体しつつ流下する。そして、区画部材28の底部に形成されたドレン孔(図示せず)を通じて下側ケース12の内部空間へ流入する。下側ケース12の内部空間へ流入した分離用オイルは動力用オイルと合体し、連通筒部16を通じてエンジン4に戻される。 The oil droplets colliding with the inner peripheral surface of the main body cover 22 flow down while being combined with other oil droplets, as indicated by the arrow F6 in FIG. 5C. Then, it flows into the internal space of the lower case 12 through a drain hole (not shown) formed in the bottom of the partition member 28. The separation oil that has flowed into the inner space of the lower case 12 is combined with the motive power oil and returned to the engine 4 through the communication cylinder portion 16.
 ここで、オイルミストは、オイル膜OF(分離用オイル)と同じく潤滑オイルを由来としている。このため、オイルミストは、分離ディスク51よりもオイル膜OFに対して高い親和性(ぬれ性)を有する。これにより、オイル膜OFの表面に形成される境界層BLは、分離ディスク51の表面に形成される境界層BLよりも、効率よくオイルミストを取り込むことができる。その結果、分離ディスク51を小径に構成しても高い分離効率を得ることができ、ひいてはオイルセパレータ2を小型化することができる。 Here, the oil mist is derived from the lubricating oil in the same manner as the oil film OF (separation oil). For this reason, the oil mist has a higher affinity (wetting property) for the oil film OF than the separation disk 51. Thereby, the boundary layer BL formed on the surface of the oil film OF can take in the oil mist more efficiently than the boundary layer BL formed on the surface of the separation disk 51. As a result, even if the separation disk 51 is configured to have a small diameter, high separation efficiency can be obtained, and the oil separator 2 can be downsized.
 また、このオイルセパレータ2では、オイルミストの分離と共に、潤滑オイルに含まれる水を揮発させることもできる。すなわち、分離用オイルの温度は80~110℃と高いため、分離ディスク51の表面に形成されたオイル膜OFに関し、オイル膜OFの温度も水分を揮発させるために十分な温度域になる。また、多数枚積層された分離ディスク51によってオイル膜OFも密に形成されていることから、オイル膜OFの温度を保持できる。さらに、オイル膜OFが分離ディスク51の表面全体に形成されていることから、水分を効率よく揮発させるために十分な面積が確保されている。これらの理由から、潤滑オイルに含まれる水を効率よく揮発させることができる。これにより、潤滑オイルにエマルジョンが生じる不具合を抑制できる。 Also, with this oil separator 2, water contained in the lubricating oil can be volatilized along with separation of the oil mist. That is, since the temperature of the separation oil is as high as 80 to 110 ° C., with respect to the oil film OF formed on the surface of the separation disk 51, the temperature of the oil film OF is also a sufficient temperature range for volatilizing water. In addition, since the oil film OF is also densely formed by the separation discs 51 stacked in a large number, the temperature of the oil film OF can be maintained. Furthermore, since the oil film OF is formed on the entire surface of the separation disk 51, a sufficient area is ensured in order to volatilize water efficiently. For these reasons, water contained in the lubricating oil can be volatilized efficiently. Thereby, the malfunction which an emulsion produces in lubricating oil can be suppressed.
 次に、PCVバルブ26について説明する。図5Eに示すように、PCVバルブ26は、ダイヤフラム46と、上側スプリング47と、下側スプリング48を備えている。 Next, the PCV valve 26 will be described. As shown in FIG. 5E, the PCV valve 26 includes a diaphragm 46, an upper spring 47, and a lower spring 48.
 ダイヤフラム46は、円盤状の弁体であり、ゴムと樹脂を成形することで作製されている。上側スプリング47及び下側スプリング48は、ダイヤフラム46を上下方向に移動可能な状態で支持するための弾性部材である。すなわち、上側スプリング47はダイヤフラム46の上方に配置され、下側スプリング48はダイヤフラム46の下方に配置されている。そして、これらの上側スプリング47と下側スプリング48によってダイヤフラム46を挟み、移動可能な状態で支持している。 The diaphragm 46 is a disc-shaped valve body, and is manufactured by molding rubber and resin. The upper spring 47 and the lower spring 48 are elastic members for supporting the diaphragm 46 so as to be movable in the vertical direction. That is, the upper spring 47 is disposed above the diaphragm 46, and the lower spring 48 is disposed below the diaphragm 46. The diaphragm 46 is sandwiched between the upper spring 47 and the lower spring 48 and supported in a movable state.
 ダイヤフラム46は、エンジン44の吸気側圧力やクランクケースの内圧に応じて上下方向に移動し、ブローバイガスの流れを調整する。すなわち、ダイヤフラム46は、エンジン4の吸気圧力(負圧)が過度に大きい場合にはブローバイガスの排出側(上方)に移動し、クランクケース側の圧力が高い場合には反対側(下方)に移動する。これにより、ブローバイガスの流量が適切に調整される。また、エンジン4(クランクケース)の圧力も適切に調整される。 The diaphragm 46 moves up and down according to the intake side pressure of the engine 44 and the internal pressure of the crankcase, and adjusts the flow of blow-by gas. That is, the diaphragm 46 moves to the blow-by gas discharge side (upward) when the intake pressure (negative pressure) of the engine 4 is excessively large, and to the opposite side (downward) when the crankcase side pressure is high. Moving. Thereby, the flow volume of blow-by gas is adjusted appropriately. Further, the pressure of the engine 4 (crankcase) is also adjusted appropriately.
 オイルミストが除去された処理後のブローバイガスは、分離ディスク51の外周縁から外側に排出された後、ハウジング11の内部を上昇する。そして、処理後のブローバイガスは、PCVバルブ26、ガス排出部24、及び出口パイプ25を通過してオイルセパレータ2から排出される。オイルセパレータ2から排出されたブローバイガスは、ブリーザーパイプ3を通じて吸気側流路6に還元される。なお、分離用オイルや動力用オイルによってオイルセパレータ2の内部が加温されているため、オイル膜OFから揮発した水分は結露せずにブローバイガスと共に移動し、吸気側流路6に還元される。 The blow-by gas after the treatment from which the oil mist has been removed is discharged from the outer peripheral edge of the separation disk 51 to the outside, and then rises inside the housing 11. The blow-by gas after processing passes through the PCV valve 26, the gas discharge part 24, and the outlet pipe 25 and is discharged from the oil separator 2. The blow-by gas discharged from the oil separator 2 is returned to the intake side flow path 6 through the breather pipe 3. In addition, since the inside of the oil separator 2 is heated by the separation oil or the power oil, the water volatilized from the oil film OF moves together with the blow-by gas without condensation, and is reduced to the intake side flow path 6. .
 次に、ローター31について詳細に説明する。図6A~図6Cに示すように、ローター31は、分離ディスク群34、上部ホルダ35、及び下部ホルダ36を有している。上部ホルダ35は、分離ディスク群34を上側から保持する部材であり、下部ホルダ36は、同じく下側から保持する部材である。 Next, the rotor 31 will be described in detail. As shown in FIGS. 6A to 6C, the rotor 31 includes a separation disk group 34, an upper holder 35, and a lower holder 36. The upper holder 35 is a member that holds the separation disk group 34 from above, and the lower holder 36 is also a member that holds the separation disk group 34 from below.
 図7に示すように、分離ディスク群34を構成する分離ディスク51(第1実施形態の分離ディスク51A)は、傾斜平面53によって構成される外周側部分52と、この外周側部分52よりも回転中心側の内周側部分54とを有している。そして、外周側部分52は台形状の板部材を傘状に繋げた形状をしている。これに伴い、板部材の表面が傾斜平面53となっている。また、内周側部分54には、台形の上底部分で囲まれた多角形状の取付開口55が形成されている。本実施形態では、外周側部分52において8枚の板部材が繋げられているので、内周側部分54には、正8角形状の取付開口55が形成される。そして、取付開口55が有する各頂点の周方向における位置が揃うように、多数枚の分離ディスク51が積層される。これに伴い、各取付開口55によって内周側空間SP1が区画される。なお、分離ディスク51の詳細については後で説明する。 As shown in FIG. 7, the separation disk 51 (separation disk 51 </ b> A of the first embodiment) constituting the separation disk group 34 rotates more than the outer peripheral side portion 52 constituted by the inclined plane 53 and the outer peripheral side portion 52. And an inner peripheral portion 54 on the center side. The outer peripheral portion 52 has a shape in which trapezoidal plate members are connected in an umbrella shape. Accordingly, the surface of the plate member is an inclined plane 53. In addition, a polygonal mounting opening 55 surrounded by a trapezoidal upper bottom portion is formed in the inner peripheral side portion 54. In this embodiment, since eight plate members are connected in the outer peripheral side portion 52, a regular octagonal mounting opening 55 is formed in the inner peripheral side portion 54. A large number of separation disks 51 are stacked so that the positions of the apexes of the mounting opening 55 in the circumferential direction are aligned. Accordingly, the inner circumferential space SP1 is partitioned by each mounting opening 55. Details of the separation disk 51 will be described later.
 図8A~図8Cに示すように、上部ホルダ35における回転中心部には、下方に向けてディスク保持部35aが設けられている。このディスク保持部35aは、ローター31の回転中心からラジアル方向に向けて、等角度間隔で配設された8枚の板状部材35bによって構成されている。そして、図8Dに示すように、分離ディスク群34の内周側空間SP1にディスク保持部35aが挿入されると、各板状部材35bの側縁が取付開口55の各頂点に接する。これにより、各分離ディスク51における周方向のがたつきが規制される。 As shown in FIGS. 8A to 8C, a disk holding portion 35a is provided at the rotation center portion of the upper holder 35 so as to face downward. The disk holding portion 35a is composed of eight plate-like members 35b arranged at equal angular intervals from the rotation center of the rotor 31 in the radial direction. 8D, when the disk holding portion 35a is inserted into the inner circumferential space SP1 of the separation disk group 34, the side edges of the plate-like members 35b are in contact with the apexes of the mounting openings 55. Thereby, the shakiness of the circumferential direction in each separation disk 51 is controlled.
 図6A,図6Cに示すように、下部ホルダ36の外周縁には、上部ホルダ35と連結するための連結アーム37が複数本設けられている。本実施形態では、4本の連結アーム37が周方向に90度間隔で設けられている。また、連結アーム37における高さ方向の中間には、周方向に沿って湾曲された横アーム37´が設けられている。この横アーム37´は、隣り合う一対の連結アーム37を連結し、剛性を高めるものである。そして、連結アーム37の上端を上部ホルダ35に接合することで、分離ディスク群34、上部ホルダ35、及び下部ホルダ36が一体化され、ローター31が構成される。 As shown in FIGS. 6A and 6C, a plurality of connecting arms 37 for connecting to the upper holder 35 are provided on the outer peripheral edge of the lower holder 36. In the present embodiment, four connection arms 37 are provided at intervals of 90 degrees in the circumferential direction. A lateral arm 37 ′ curved along the circumferential direction is provided in the middle of the connecting arm 37 in the height direction. This horizontal arm 37 'connects a pair of adjacent connecting arms 37 to increase rigidity. Then, by joining the upper end of the connecting arm 37 to the upper holder 35, the separation disk group 34, the upper holder 35, and the lower holder 36 are integrated, and the rotor 31 is configured.
 次に、分離ディスク51について説明する。図9Aに示すように、第1実施形態の分離ディスク51Aは、台形状の板部を8個傘状に接合して作製されている。これにより、図9Bに示すように、分離ディスク51Aは、平面視で正8角形状の傘型となる。本実施形態の分離ディスク51Aは、直径が80~120mm、厚みが0.3~0.4mmであり、樹脂の成型によって作製されている。 Next, the separation disk 51 will be described. As shown in FIG. 9A, the separation disk 51A of the first embodiment is produced by joining eight trapezoidal plate portions in an umbrella shape. As a result, as shown in FIG. 9B, the separation disk 51A has a regular octagonal umbrella shape in plan view. The separation disk 51A of the present embodiment has a diameter of 80 to 120 mm and a thickness of 0.3 to 0.4 mm, and is manufactured by resin molding.
 また、図9Cに示すように、分離ディスク51Aの回転半径方向をラジアル方向raと定義し、スピンドル32の軸線方向をスラスト方向thと定義したとき、各板部の表面は、ラジアル方向raとスラスト方向thの間の傾斜方向inに延びる傾斜平面53を構成する。このため、分離ディスク51Aの外周側部分52は、8個の傾斜平面53を有する。そして、図9Bに示すように、分離ディスク51Aの内周側部分54は、各板部の上底部分に囲まれた正8角形状の取付開口55を有する。 Further, as shown in FIG. 9C, when the rotational radius direction of the separation disk 51A is defined as the radial direction ra and the axial direction of the spindle 32 is defined as the thrust direction th, the surface of each plate portion has the radial direction ra and the thrust direction. An inclined plane 53 extending in the inclination direction in between the directions th is formed. For this reason, the outer peripheral side portion 52 of the separation disk 51 </ b> A has eight inclined planes 53. As shown in FIG. 9B, the inner peripheral side portion 54 of the separation disk 51A has a regular octagonal mounting opening 55 surrounded by the upper bottom portion of each plate portion.
 図9Aに示すように、分離ディスク51Aの外周側部分52において、隣り合う傾斜平面53同士の境界は山状に屈曲されており、傾斜方向inに延びる尾根部56が形成される。この尾根部56は、1つの分離ディスク51Aに対して8本形成され、図9Bに示すように、取付開口55の各頂点からディスク外周縁の各頂点を結んでいる。 As shown in FIG. 9A, in the outer peripheral side portion 52 of the separation disk 51A, the boundary between adjacent inclined planes 53 is bent in a mountain shape, and a ridge 56 extending in the inclined direction in is formed. Eight ridges 56 are formed for one separation disk 51A, and connect each vertex of the outer periphery of the disk from each vertex of the mounting opening 55 as shown in FIG. 9B.
 傾斜平面53の表面には、複数の点状突起57が形成されている。この点状突起57は、積層方向に隣接する他の分離ディスク51Aと当接し、分離ディスク51A同士の間に1mm以下の隙間を形成するものであり、本発明に係る突部に相当する。この点状突起57により、分離ディスク51A同士の間には分離空間SP2が形成される。そして、図10B,図10Dの断面図、及び図10C,図10Eの部分拡大断面図に示すように、本実施形態における点状突起57は、板部の上面を上側に向けてディスク厚の半分程度突出させると共に、板部の下面を上側に向けてディスク厚の半分程度に凹ませることで設けられている。あるいは、反対に、板部の上面を下側に向けてディスク厚の半分程度凹ませる共に、板部の下面を下側に向けてディスク厚の半分程度に突出させることで設けられている。そして、図9Aに示すように、これらの点状突起57は、千鳥状に配置された状態で傾斜平面53に設けられている。 A plurality of dot-like protrusions 57 are formed on the surface of the inclined plane 53. The point-like protrusions 57 are in contact with the other separation disks 51A adjacent in the stacking direction to form a gap of 1 mm or less between the separation disks 51A, and correspond to the protrusions according to the present invention. With the dot protrusions 57, a separation space SP2 is formed between the separation disks 51A. As shown in the sectional views of FIGS. 10B and 10D and partially enlarged sectional views of FIGS. 10C and 10E, the dot-like projections 57 in this embodiment are half the thickness of the disk with the upper surface of the plate portion facing upward. It is provided by being protruded to a certain extent and being recessed to about half of the disc thickness with the lower surface of the plate portion facing upward. Or, conversely, the upper surface of the plate part is recessed downward by about half of the disk thickness, and the lower surface of the plate part is protruded downward by about half of the disk thickness. And as shown to FIG. 9A, these dotted | punctate protrusions 57 are provided in the inclined plane 53 in the state arrange | positioned in zigzag form.
 点状突起57の一部は、尾根部56に沿って設けられている。図11Aに示すように、本実施形態では、1つの尾根部56に対して4つの点状突起57が設けられている。これにより、図11Bに示すように、或る分離ディスク51Aの尾根部56に設けられた点状突起57が、積層方向の上側に隣接する他の分離ディスク51Aの尾根部56に下側から当接し、各分離ディスク51Aにおける周方向の位置を決める。これにより、分離ディスク51Aにおける無用ながたつきを抑制でき、かつ、分離ディスク群34を構成する各分離ディスク51Aの周方向の位置を決めることができる。 A part of the dot-like protrusion 57 is provided along the ridge 56. As shown in FIG. 11A, in the present embodiment, four point-like protrusions 57 are provided for one ridge portion 56. As a result, as shown in FIG. 11B, the dot-like projections 57 provided on the ridge portion 56 of a certain separation disk 51A contact the ridge portion 56 of another separation disk 51A adjacent to the upper side in the stacking direction from below. In contact with each other, the circumferential position of each separation disk 51A is determined. Thereby, unnecessary rattling in the separation disk 51A can be suppressed, and the circumferential position of each separation disk 51A constituting the separation disk group 34 can be determined.
 図12は、ブローバイオイルに含まれるミスト状オイルの分離効率の試験結果を示すグラフである。この試験では、前述した第1実施形態(正8角形錐台型)の分離ディスク51Aを用いた場合と、一般的な円錐台型の分離ディスクを用いた場合における場合とを比較している。 FIG. 12 is a graph showing the test results of the separation efficiency of mist oil contained in blow biole. In this test, the case where the separation disk 51A of the first embodiment (regular octagonal truncated cone type) described above is used is compared with the case where a general truncated cone type separation disk is used.
 この試験では、1時間あたり5g(83mg/min)の量となるようにエンジンオイルをミスト化し、20L/minの希釈前ブローバイガスを生成した。そして、この希釈前ブローバイガスに対して新鮮な空気を追加して希釈し、40L/min,100L/min,170L/min,200L/min,250L/minの模擬ブローバイガスを得た。これらの模擬ブローバイガスを吸入パイプ18から導入し、出口パイプ25から排出された処理後ブローバイガスを採取して、含まれるオイルミストの濃度を測定した。そして、処理後ブローバイガスに含まれるオイルミストの濃度から分離効率を算出し、近似線を描いた。 In this test, engine oil was misted so that the amount became 5 g (83 mg / min) per hour, and 20 L / min pre-dilution blow-by gas was generated. And it diluted by adding fresh air with respect to this blowby gas before dilution, and obtained the simulated blowby gas of 40L / min, 100L / min, 170L / min, 200L / min, 250L / min. These simulated blow-by gases were introduced from the suction pipe 18, the treated blow-by gas discharged from the outlet pipe 25 was collected, and the concentration of the contained oil mist was measured. And separation efficiency was computed from the density | concentration of the oil mist contained in blowby gas after a process, and the approximate line was drawn.
 図12に示すように、第1実施形態の分離ディスク51Aを使用することにより、円錐台型の分離ディスクよりも高い分離効率が得られることが判った。特に、100L/min,200L/min,300L/minとブローバイガスの流速が高くなるほど、第1実施形態の分離ディスク51Aは、円錐台型の分離ディスクよりも高い分離効率を得た。 As shown in FIG. 12, it was found that by using the separation disk 51A of the first embodiment, a higher separation efficiency than that of the truncated cone type separation disk can be obtained. In particular, as the flow rate of blow-by gas increased to 100 L / min, 200 L / min, and 300 L / min, the separation disk 51A of the first embodiment achieved higher separation efficiency than the truncated cone type separation disk.
 これは、尾根部56による作用効果と考えられる。図5Dで説明したように、第1実施形態の分離ディスク51Aも円錐台型の分離ディスクも、オイルミストの分離用オイル(オイル膜OF)への取り込みは、境界層BLに入ったオイルミストが遠心力で取り込まれる点で共通しており、両者に差はない。 This is considered to be an effect of the ridge 56. As described with reference to FIG. 5D, both the separation disc 51A of the first embodiment and the truncated cone type separation disc take in the oil mist into the separation oil (oil film OF) by the oil mist entering the boundary layer BL. They are common in that they are taken in by centrifugal force, and there is no difference between them.
 ここで、第1実施形態の分離ディスク51Aでは、オイルミストを取り込んだオイル膜OFは、遠心力によって尾根部56に向かって移動して集められる。集められたオイルは、尾根部56の下り傾斜に沿って外周方向へ向かって流れ、尾根部56の端部から放出される。放出されたオイルは大きな滴状になるため、取り込んだオイルミストが再度ミスト化する不具合を防止できる。 Here, in the separation disc 51A of the first embodiment, the oil film OF that has taken in the oil mist moves toward the ridge 56 by the centrifugal force and is collected. The collected oil flows toward the outer circumference along the downward slope of the ridge 56 and is discharged from the end of the ridge 56. Since the discharged oil is in the form of large droplets, it is possible to prevent a problem that the oil mist taken in becomes mist again.
 一方、円錐台型の分離ディスクでは、分離ディスクの外周縁の全周から均等にオイル滴が放出される。放出されるオイル滴の大きさが小さいことから、本体カバー22の内壁面へ衝突した際に再度ミスト化されやすくなる。そして、模擬ブローバイガスの流量が多くなるに従って、再度ミスト化されたオイルが模擬ブローバイガスと共に移動したと考えられる。 On the other hand, in the truncated cone type separation disk, oil droplets are evenly discharged from the entire circumference of the outer peripheral edge of the separation disk. Since the size of the oil droplet to be discharged is small, the oil droplet is easily misted again when it collides with the inner wall surface of the main body cover 22. Then, it is considered that the oil that has been misted again moves together with the simulated blowby gas as the flow rate of the simulated blowby gas increases.
 このように、第1実施形態の分離ディスク51Aを用いて分離ディスク群34を構成することにより、ミスト状オイルの分離効率を高めることができる。そして、この第1実施形態の分離ディスク51Aでは、点状突起57の一部が尾根部56に設けられているので、この点状突起57が尾根部56に下側から接して位置決めされる。これにより、各分離ディスク51Aの周方向における位置決めを容易に行うことができる。また、点状突起57であることから、尾根部56における点状突起57との接触面積を少なくでき、集められたオイルの流れを円滑にできる。また、他の点状突起57は、千鳥状に配置された状態で傾斜平面53に設けられているので、分離ディスク51Aの表面に形成されるオイル膜OFの面積を確保しつつ分離空間SP2を確保できる。 Thus, by forming the separation disk group 34 using the separation disk 51A of the first embodiment, it is possible to increase the separation efficiency of the mist oil. In the separation disk 51A of the first embodiment, since a part of the point-like protrusion 57 is provided on the ridge portion 56, the point-like protrusion 57 is positioned in contact with the ridge portion 56 from below. Thereby, positioning in the circumferential direction of each separation disk 51A can be easily performed. Moreover, since it is the dotted | punctate protrusion 57, the contact area with the dotted | punctate protrusion 57 in the ridge part 56 can be decreased, and the flow of the collected oil can be made smooth. Further, since the other point-like protrusions 57 are provided on the inclined plane 53 in a staggered arrangement, the separation space SP2 is formed while ensuring the area of the oil film OF formed on the surface of the separation disk 51A. It can be secured.
 次に、図13A~図15を参照し、分離ディスク51の第2実施形態について説明する。ここで、図13A~図13Cは、第2実施形態の分離ディスク51Bの斜視図、平面図、及び側面図である。図14A~図14Eは第2実施形態の分離ディスク51Bの断面を説明する図である。これらの図は、第1実施形態の分離ディスク51Aについて描かれた図9A~図10Eに対応している。 Next, a second embodiment of the separation disk 51 will be described with reference to FIGS. 13A to 15. Here, FIGS. 13A to 13C are a perspective view, a plan view, and a side view of the separation disk 51B of the second embodiment. 14A to 14E are views for explaining a cross section of the separation disk 51B of the second embodiment. These drawings correspond to FIGS. 9A to 10E drawn for the separation disk 51A of the first embodiment.
 第2実施形態の分離ディスク51Bは、外周側部分52が正12角錐台型になっている点で第1実施形態の分離ディスク51Aと相違している。そして、それ以外の構成は、第1実施形態の分離ディスク51Aと同様である。例えば、分離空間SP2を形成するための突部に関し、第2実施形態の分離ディスク51でも点状突起57が用いられておる。すなわち、尾根部56には4つの点状突起57が設けられており、傾斜平面53には千鳥状に配置された状態で複数の点状突起57が設けられている。また、内周側部分54に関しては、正8角形状の取付開口55が設けられている。 The separation disk 51B of the second embodiment is different from the separation disk 51A of the first embodiment in that the outer peripheral side portion 52 is a regular 12-sided truncated pyramid shape. The other configuration is the same as that of the separation disk 51A of the first embodiment. For example, regarding the protrusions for forming the separation space SP2, the dot-like protrusions 57 are also used in the separation disk 51 of the second embodiment. That is, the ridge portion 56 is provided with four point-like protrusions 57, and the inclined plane 53 is provided with a plurality of point-like protrusions 57 arranged in a staggered manner. Further, a regular octagonal mounting opening 55 is provided for the inner peripheral side portion 54.
 図15は、第2実施形態(正12角形錐台型)の分離ディスク51Bによるミスト状オイルの分離効率の試験結果を示すグラフである。この試験では、第2実施形態の分離ディスク51Bを用いた場合と、一般的な円錐台型の分離ディスクを用いた場合における場合とを比較している。なお、試験内容については、第1実施形態の分離ディスク51Aを用いた場合と同じであるので、ここでは説明を省略する。 FIG. 15 is a graph showing a test result of the separation efficiency of the mist oil by the separation disk 51B of the second embodiment (regular dodecagonal frustum type). In this test, the case where the separation disk 51B of the second embodiment is used is compared with the case where a general truncated cone type separation disk is used. The contents of the test are the same as in the case where the separation disk 51A of the first embodiment is used, and the description thereof is omitted here.
 図15に示すように、第2実施形態の分離ディスク51Bを使用した場合、円錐台型の分離ディスクよりも高い分離効率が得られることが判った。すなわち、100L/min,200L/min,300L/minとブローバイガスの流速が高くなるほど、第2実施形態の分離ディスク51Bでは、円錐台型の分離ディスクよりも高い分離効率を得た。 As shown in FIG. 15, it was found that when the separation disk 51B of the second embodiment is used, a higher separation efficiency than that of the truncated cone type separation disk can be obtained. That is, as the flow rate of blow-by gas increased to 100 L / min, 200 L / min, and 300 L / min, the separation disk 51B of the second embodiment achieved higher separation efficiency than the truncated cone type separation disk.
 これも、尾根部56による作用効果と考えられる。第2実施形態の分離ディスク51Bでも、オイルミストを取り込んだオイル膜OFは、尾根部56に向かって移動し、尾根部56で集められて外周方向へ移動する。尾根部56の端部から放出されたオイルは大きな滴状になるため、取り込んだオイルミストが再度ミスト化する不具合が防止されたと考えられる。 This is also considered to be an effect of the ridge 56. Also in the separation disk 51B of the second embodiment, the oil film OF that has taken in the oil mist moves toward the ridge portion 56, is collected by the ridge portion 56, and moves in the outer peripheral direction. Since the oil discharged from the end of the ridge 56 is in the form of large droplets, it is considered that the trouble that the oil mist taken in becomes mist again is prevented.
 なお、図12の試験結果と図15の試験結果を比較すると、第1実施形態の分離ディスク51Aの方が、第2実施形態の分離ディスク51Bよりも高流量域におけるオイルミストの分離効率が高かった。これは、1つの尾根部56に集められるオイルの量に関して、第1実施形態の分離ディスク51Aの方が、第2実施形態の分離ディスク51Bよりも多かったことに起因すると考えられる。すなわち、尾根部56から排出されるオイル滴に関し、第1実施形態の分離ディスク51Aの方が、第2実施形態の分離ディスク51Bよりも大きく、ミスト化され難かったためと考えられる。 When comparing the test results of FIG. 12 and FIG. 15, the separation disk 51A of the first embodiment has higher oil mist separation efficiency in the high flow rate region than the separation disk 51B of the second embodiment. It was. This is considered due to the fact that the amount of oil collected in one ridge 56 is greater in the separation disk 51A of the first embodiment than in the separation disk 51B of the second embodiment. That is, regarding the oil droplets discharged from the ridge 56, it is considered that the separation disk 51A of the first embodiment is larger than the separation disk 51B of the second embodiment and is not easily misted.
 以上の実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれる。例えば、次のように構成してもよい。 The above description of the embodiment is intended to facilitate understanding of the present invention and does not limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof. For example, you may comprise as follows.
 図16Aは、第3実施形態の分離ディスク51Cを説明する斜視図である。また、図16Bは、第4実施形態の分離ディスク51Dを説明する斜視図である。これらの実施形態の分離ディスク51は、積層方向に隣接する分離ディスク51同士の間に分離空間SP2を形成するための突部に関し、複数本のリブ58によって構成されていることを特徴としている。 FIG. 16A is a perspective view for explaining a separation disk 51C of the third embodiment. FIG. 16B is a perspective view for explaining a separation disk 51D of the fourth embodiment. The separation disk 51 of these embodiments is characterized by being configured by a plurality of ribs 58 with respect to a protrusion for forming a separation space SP2 between separation disks 51 adjacent in the stacking direction.
 すなわち、第3実施形態の分離ディスク51Cは、第1実施形態の分離ディスク51Aと同様に平面視で正8角形状の角錐台型とされ、かつ、1つの傾斜平面53に対して1本のリブ58が、当該傾斜平面53の左右中央を貫く状態で傾斜方向に沿って設けられている。また、第4実施形態の分離ディスク51Dは、第2実施形態の分離ディスク51Bと同様に平面視で正12角形状の角錐台型とされ、かつ、1つの傾斜平面53に対して1本のリブ58が、当該傾斜平面53の左右中央を貫く状態で傾斜方向に沿って設けられている。これらの分離ディスク51C,51Dによれば、傾斜平面53に形成されるオイル膜OFが各リブ58でも集められる。そして、集めたオイルを滴状にして放出できるので、取り込んだオイルミストが再度ミスト化する不具合を防止できる。 That is, the separation disk 51C of the third embodiment is a regular octagonal truncated pyramid shape in plan view, like the separation disk 51A of the first embodiment, and one separation plane 53 is provided. The ribs 58 are provided along the tilt direction in a state of penetrating the left and right centers of the tilt plane 53. Further, the separation disk 51D of the fourth embodiment has a regular dodecagonal truncated pyramid shape in plan view like the separation disk 51B of the second embodiment, and one separation plane 53 is provided for one inclined plane 53. The ribs 58 are provided along the tilt direction in a state of penetrating the left and right centers of the tilt plane 53. According to these separation disks 51C and 51D, the oil film OF formed on the inclined plane 53 is also collected by the ribs 58. And since the collected oil can be discharged in the form of droplets, it is possible to prevent a problem that the oil mist taken in becomes mist again.
 図17A、及び図17Bは、第5実施形態の分離ディスク51Eを説明する斜視図、及び平面図である。また、図17C、及び図17Dは、第6実施形態の分離ディスク51Fを説明する斜視図である。これらの実施形態の分離ディスク51E,51Fは、隣り合う一対の尾根部56の外周側端部同士を結ぶ傾斜平面53の外縁59が、傾斜方向に向かって山形に突出されていることを特徴としている。すなわち、第5実施形態の分離ディスク51は、8本の尾根部56を有しているが、傾斜平面53の外縁59が山形に突出されているため、平面視では正16角形状の角錐台型とされている。また、第6実施形態の分離ディスク51は、12本の尾根部56を有しているが、傾斜平面53の外縁59が山形に突出されているため、平面視では正24角形状の角錐台型とされている。これらの分離ディスク51によれば、傾斜平面53の外縁59が山形に突出されているので、傾斜平面53における傾斜方向の長さを、突出された分だけ長くすることでができる。これにより、オイル膜OFの形成面積を拡張でき、ミスト状オイルの分離効率を高めることができる。 FIG. 17A and FIG. 17B are a perspective view and a plan view for explaining a separation disk 51E of the fifth embodiment. FIGS. 17C and 17D are perspective views for explaining a separation disk 51F of the sixth embodiment. The separation disks 51E and 51F of these embodiments are characterized in that the outer edge 59 of the inclined plane 53 connecting the outer peripheral side ends of a pair of adjacent ridges 56 protrudes in a mountain shape in the inclination direction. Yes. That is, the separation disk 51 of the fifth embodiment has eight ridges 56, but the outer edge 59 of the inclined plane 53 protrudes in a mountain shape, so that it is a regular hexagonal truncated pyramid in plan view. It is a type. Further, the separation disk 51 of the sixth embodiment has twelve ridges 56, but since the outer edge 59 of the inclined plane 53 protrudes in a mountain shape, a truncated pyramid having a regular 24-angle shape in plan view. It is a type. According to these separation discs 51, since the outer edge 59 of the inclined plane 53 protrudes in a mountain shape, the length of the inclined plane 53 in the inclined direction can be increased by the amount of protrusion. Thereby, the formation area of the oil film OF can be expanded, and the separation efficiency of the mist-like oil can be increased.
 図18A、及び図18Bは、第7実施形態の分離ディスク51Gを説明する斜視図、及び平面図である。また、図18C、及び図18Dは、第8実施形態の分離ディスク51Hを説明する斜視図である。これらの実施形態の分離ディスク51は、隣り合う一対の尾根部56の外周側端部同士を結ぶ傾斜平面53の外縁60が、傾斜方向に向かって円弧状に突出されていることを特徴としている。すなわち、第8実施形態の分離ディスク51は、8本の尾根部56を有しており、傾斜平面53の外縁60が円弧状に突出されている。これにより、平面視では正円形状となっている。また、第6実施形態の分離ディスク51は、12本の尾根部56を有しており、傾斜平面53の外縁60が円弧状に突出されている。これにより、平面視では正円形状となっている。これらの分離ディスク51G,51Hによれば、傾斜平面53の外縁60が円弧状に突出されているので、傾斜平面53における傾斜方向の長さを、突出された分だけ長くすることでができる。これにより、オイル膜OFの形成面積を拡張でき、ミスト状オイルの分離効率を高めることができる。 18A and 18B are a perspective view and a plan view for explaining a separation disk 51G of the seventh embodiment. 18C and 18D are perspective views for explaining the separation disk 51H of the eighth embodiment. The separation disk 51 of these embodiments is characterized in that the outer edge 60 of the inclined plane 53 connecting the outer peripheral side ends of a pair of adjacent ridges 56 protrudes in an arc shape in the inclination direction. . That is, the separation disk 51 of the eighth embodiment has eight ridges 56, and the outer edge 60 of the inclined plane 53 protrudes in an arc shape. Thereby, it becomes a perfect circle shape by planar view. Further, the separation disk 51 of the sixth embodiment has twelve ridges 56, and the outer edge 60 of the inclined plane 53 protrudes in an arc shape. Thereby, it becomes a perfect circle shape by planar view. According to these separation disks 51G and 51H, since the outer edge 60 of the inclined plane 53 protrudes in an arc shape, the length of the inclined plane 53 in the inclined direction can be increased by the amount of protrusion. Thereby, the formation area of the oil film OF can be expanded, and the separation efficiency of the mist-like oil can be increased.
 なお、前述の各実施形態に記載された発明は、適宜組み合わせることが可能である。例えば、第3実施形態や第4実施形態の分離ディスク51に設けられたリブ58を、第5実施形態~第8実施形態の点状突起57に代えて用いてもよい。 It should be noted that the inventions described in the above embodiments can be combined as appropriate. For example, the ribs 58 provided on the separation disk 51 of the third and fourth embodiments may be used in place of the point-like protrusions 57 of the fifth to eighth embodiments.
 また、前述の各実施形態において、処理対象ガスはブローバイガスを例示したが、分離対象となるミスト状オイルを含有するガスであれば、処理対象ガスとなり得る。 Further, in each of the above-described embodiments, the processing target gas is exemplified by blow-by gas. However, any gas containing mist-like oil to be separated can be used as the processing target gas.
1…閉鎖型クランクケース換気システム,2…オイルセパレータ,3…ブリーザーパイプ,4…エンジン,5…ガス導出管,6…吸気側流路,7…エアフィルタ,8…ターボチャージャー,9…チャージクーラー,11…ハウジング,12…下側ケース,13…上側ケース,14…下側ケースの嵌合部,15…上側ケースの下端部,16…連通筒部,17…フランジ,18…吸入パイプ,19…オイル案内パイプ,20…オイル案内パイプのジョイント部,21…オイル供給パイプ,22…本体カバー,23…上面カバー,24…ガス排出部,25…出口パイプ,26…PCVバルブ,27…ローターユニット,28…区画部材,29…固定フレーム,29a…固定フレームの貫通孔,31…ローター,32…スピンドル,33…スピンドルシャフト,34…分離ディスク群,35…上部ホルダ,35a…ディスク保持部,35b…板状部材,36…下部ホルダ,37…連結アーム,37´…横アーム,38…ノズル,38a…ノズル本体,38b…噴射口,39…第1オイル供給路,40…第2オイル供給路,41…下側シール部材,42…上側シール部材,43…区画部材の外周部,44…区画部材の鍔部,45…区画部材のテーパー部,45a…テーパー部の上端開口,46…PCVバルブのダイヤフラム,47…PCVバルブの上側スプリング,48…PCVバルブの下側スプリング,51…分離ディスク,51A…第1実施形態の分離ディスク,51B…第2実施形態の分離ディスク,51C…第3実施形態の分離ディスク,51D…第4実施形態の分離ディスク,51E…第5実施形態の分離ディスク,51F…第6実施形態の分離ディスク,51G…第7実施形態の分離ディスク,51H…第8実施形態の分離ディスク,52…外周側部分,53…傾斜平面,54…内周側部分,55…取付開口,56…尾根部,57…点状突起,58…リブ,59…山形に突出された傾斜平面の外縁,60…円弧状に突出された傾斜平面の外縁,SP1…内周側空間,SP2…分離空間,SP3…他の分離空間,OF…オイル膜,BL…境界層 DESCRIPTION OF SYMBOLS 1 ... Closed crankcase ventilation system, 2 ... Oil separator, 3 ... Breather pipe, 4 ... Engine, 5 ... Gas outlet pipe, 6 ... Intake side flow path, 7 ... Air filter, 8 ... Turbocharger, 9 ... Charge cooler , 11 ... Housing, 12 ... Lower case, 13 ... Upper case, 14 ... Lower case fitting part, 15 ... Lower end part of upper case, 16 ... Communication cylinder part, 17 ... Flange, 18 ... Suction pipe, 19 ... oil guide pipe, 20 ... joint part of oil guide pipe, 21 ... oil supply pipe, 22 ... main body cover, 23 ... top cover, 24 ... gas discharge part, 25 ... outlet pipe, 26 ... PCV valve, 27 ... rotor unit , 28 ... partition member, 29 ... fixed frame, 29a ... through hole in the fixed frame, 31 ... rotor, 32 ... spindle, 33 ... spindle 34, separation disk group, 35 ... upper holder, 35a ... disk holding part, 35b ... plate-like member, 36 ... lower holder, 37 ... coupling arm, 37 '... lateral arm, 38 ... nozzle, 38a ... nozzle body, 38b ... injection port, 39 ... first oil supply path, 40 ... second oil supply path, 41 ... lower seal member, 42 ... upper seal member, 43 ... outer peripheral part of partition member, 44 ... collar part of partition member, 45 ... Tapered portion of partition member, 45a ... Upper end opening of taper portion, 46 ... Diaphragm of PCV valve, 47 ... Upper spring of PCV valve, 48 ... Lower spring of PCV valve, 51 ... Separation disk, 51A ... First implementation Type separation disk, 51B ... separation disk of the second embodiment, 51C ... separation disk of the third embodiment, 51D ... separation disk of the fourth embodiment, 51E ... separation disk of the fifth embodiment, 51F ... separation disk of the sixth embodiment, 51G ... separation disk of the seventh embodiment, 51H ... separation disk of the eighth embodiment, 52 ... outer peripheral side part, 53 ... inclined plane, 54 ... Inner peripheral side part, 55 ... Mounting opening, 56 ... Ridge part, 57 ... Point-like projection, 58 ... Rib, 59 ... Outer edge of the inclined plane protruding in a mountain shape, 60 ... Inclined plane protruding in an arc shape Outer edge, SP1 ... inner space, SP2 ... separation space, SP3 ... other separation space, OF ... oil film, BL ... boundary layer

Claims (9)

  1.  スピンドルと共に回転可能に設けられるローターの内周側空間に、ミスト状オイルを含む処理対象ガスと分離用オイルとを導入して前記ローターを回転させることで、前記処理対象ガスから前記ミスト状オイルを分離するオイルセパレータに用いられ、前記スピンドルの軸線方向に積層されることで、前記ローターが有する分離ディスク群を構成する分離ディスクであって、
     ラジアル方向とスラスト方向の間の傾斜方向に延びる複数の傾斜平面によって構成される外周側部分と、前記外周側部分よりも回転中心側の内周側部分とを有し、
     前記外周側部分には、前記積層方向に隣接する他の前記分離ディスクと接して当該分離ディスクとの間に分離空間を形成する突部が設けられ、
     隣り合う一対の前記傾斜平面の境界には、前記傾斜方向に延びる尾根部が設けられていることを特徴とするオイルセパレータ用分離ディスク。
    A gas to be treated containing mist-like oil and separation oil are introduced into an inner circumferential space of a rotor that is rotatably provided with a spindle, and the rotor is rotated to rotate the mist-like oil from the gas to be treated. Separating discs used in oil separators to be separated and constituting a separating disc group possessed by the rotor by being stacked in the axial direction of the spindle,
    An outer peripheral side portion constituted by a plurality of inclined planes extending in an inclination direction between the radial direction and the thrust direction, and an inner peripheral side portion closer to the rotation center than the outer peripheral side portion,
    The outer peripheral side portion is provided with a protrusion that is in contact with the other separation disk adjacent in the stacking direction and forms a separation space between the separation disk,
    An oil separator separation disk, wherein a ridge portion extending in the tilt direction is provided at a boundary between a pair of adjacent tilt planes.
  2.  前記突部の少なくとも一部が、前記尾根部に設けられていることを特徴とする請求項1に記載のオイルセパレータ用分離ディスク。 2. The separation disk for an oil separator according to claim 1, wherein at least a part of the protrusion is provided on the ridge.
  3.  前記突部が複数の点状突起によって構成されていることを特徴とする請求項1又は2に記載のオイルセパレータ用分離ディスク。 3. The oil separator separation disk according to claim 1 or 2, wherein the protrusion is constituted by a plurality of point-like protrusions.
  4.  前記点状突起が、千鳥状に配置された状態で前記傾斜平面に設けられていることを特徴とする請求項3に記載のオイルセパレータ用分離ディスク。 4. The oil separator separation disk according to claim 3, wherein the dotted protrusions are provided on the inclined plane in a staggered arrangement.
  5.  前記突部が複数本のリブによって構成され、かつ、前記リブが前記傾斜平面の上に前記傾斜方向に沿って設けられていることを特徴とする請求項1又は2に記載のオイルセパレータ用分離ディスク。 The separation for an oil separator according to claim 1 or 2, wherein the protrusion is constituted by a plurality of ribs, and the ribs are provided on the inclined plane along the inclined direction. disk.
  6.  隣り合う一対の前記尾根部の外周側端部同士を結ぶ前記傾斜平面の外縁は、前記傾斜方向に向かって山形に突出されていることを特徴とする請求項1から5の何れか1項に記載のオイルセパレータ用分離ディスク。 6. The outer edge of the inclined plane that connects the outer peripheral side ends of a pair of adjacent ridges protrudes in a mountain shape toward the inclined direction. 6. Separation disc for oil separator as described.
  7.  隣り合う一対の前記尾根部の外周側端部同士を結ぶ前記傾斜平面の外縁は、前記傾斜方向に向かって円弧状に突出されていることを特徴とする請求項1から5の何れか1項に記載のオイルセパレータ用分離ディスク。 6. The outer edge of the inclined plane connecting the outer peripheral side ends of a pair of adjacent ridges protrudes in an arc shape toward the inclined direction. 6. Separation disc for oil separator as described in 1.
  8.  ミスト状オイルを含む処理対象ガスから前記ミスト状オイルを分離するオイルセパレータに用いられ、前記処理対象ガスと分離用オイルが内周側空間に導入された状態でスピンドルと共に回転されることで、前記処理対象ガスから前記ミスト状オイルを分離するローターであって、
     前記スピンドルの軸線方向に積層された複数の分離ディスクによって構成された分離ディスク群と、前記分離ディスク群を前記分離ディスクの積層方向に挟んで保持するホルダ対とを有し、
     前記分離ディスクは、ラジアル方向とスラスト方向の間の傾斜方向に延びる複数の傾斜平面によって構成される外周側部分と、前記外周側部分よりも回転中心側の内周側部分とを有し、
     前記外周側部分には、前記積層方向に隣接する他の前記分離ディスクと接して当該分離ディスクとの間に分離空間を形成する突部が設けられ、
     隣り合う一対の前記傾斜平面の境界には、前記傾斜方向に延びる尾根部が設けられていることを特徴とするオイルセパレータ用ローター。
    Used in an oil separator that separates the mist-like oil from the gas to be treated containing mist-like oil, and is rotated together with the spindle in a state where the gas to be treated and the separation oil are introduced into the inner circumferential space, A rotor for separating the mist oil from a gas to be treated,
    A separation disk group composed of a plurality of separation disks stacked in the axial direction of the spindle, and a holder pair that holds the separation disk group in the stacking direction of the separation disks;
    The separation disc has an outer peripheral side portion constituted by a plurality of inclined planes extending in an inclination direction between a radial direction and a thrust direction, and an inner peripheral side portion closer to the rotation center than the outer peripheral side portion,
    The outer peripheral side portion is provided with a protrusion that is in contact with the other separation disk adjacent in the stacking direction and forms a separation space between the separation disk,
    A rotor for an oil separator, wherein a ridge portion extending in the tilt direction is provided at a boundary between a pair of adjacent tilt planes.
  9.  ミスト状オイルを含む処理対象ガスから前記ミスト状オイルを分離するオイルセパレータであって、
     前記処理対象ガスと分離用オイルが内周側空間に導入された状態でスピンドルと共に回転されることで、前記処理対象ガスから前記ミスト状オイルを分離するローターを有し、
     前記ローターは、前記スピンドルの軸線方向に積層された複数の分離ディスクによって構成される分離ディスク群と、前記分離ディスク群を前記分離ディスクの積層方向に挟んで保持するホルダ対とを有し、
     前記分離ディスクは、前記スピンドルの軸線方向に積層されることで、前記ローターが有する分離ディスク群を構成するものであって、ラジアル方向とスラスト方向の間の傾斜方向に延びる複数の傾斜平面によって構成される外周側部分と、前記外周側部分よりも回転中心側の内周側部分とを有し、
     前記外周側部分には、前記積層方向に隣接する他の前記分離ディスクと接して当該分離ディスクとの間に分離空間を形成する突部が設けられ、
     隣り合う一対の前記傾斜平面の境界には、前記傾斜方向に延びる尾根部が設けられていることを特徴とするオイルセパレータ。
    An oil separator for separating the mist-like oil from a gas to be treated containing mist-like oil,
    A rotor that separates the mist-like oil from the processing target gas by rotating together with the spindle in a state where the processing target gas and the separation oil are introduced into the inner circumferential space;
    The rotor has a separation disk group composed of a plurality of separation disks stacked in the axial direction of the spindle, and a holder pair that holds the separation disk group sandwiched in the stacking direction of the separation disks,
    The separation disks are stacked in the axial direction of the spindle to constitute a separation disk group included in the rotor, and are constituted by a plurality of inclined planes extending in an inclination direction between a radial direction and a thrust direction. An outer peripheral side portion, and an inner peripheral side portion closer to the rotation center than the outer peripheral side portion,
    The outer peripheral side portion is provided with a protrusion that is in contact with the other separation disk adjacent in the stacking direction and forms a separation space between the separation disk,
    An oil separator, characterized in that a ridge portion extending in the tilt direction is provided at a boundary between a pair of adjacent tilt planes.
PCT/JP2014/075478 2014-09-25 2014-09-25 Separation disk for oil separator, rotor for oil separator, and oil separator WO2016046944A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075478 WO2016046944A1 (en) 2014-09-25 2014-09-25 Separation disk for oil separator, rotor for oil separator, and oil separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075478 WO2016046944A1 (en) 2014-09-25 2014-09-25 Separation disk for oil separator, rotor for oil separator, and oil separator

Publications (1)

Publication Number Publication Date
WO2016046944A1 true WO2016046944A1 (en) 2016-03-31

Family

ID=55580504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075478 WO2016046944A1 (en) 2014-09-25 2014-09-25 Separation disk for oil separator, rotor for oil separator, and oil separator

Country Status (1)

Country Link
WO (1) WO2016046944A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175324A1 (en) * 2016-04-06 2017-10-12 東京濾器株式会社 Oil separator
CN109681289A (en) * 2019-01-24 2019-04-26 宁波立达智能控制技术有限公司 Centrifugal oil-air separator separate sheet and its gs-oil separator
CN109890510A (en) * 2016-10-31 2019-06-14 阿法拉伐股份有限公司 The stacking of separator disk
US10537842B2 (en) 2015-06-09 2020-01-21 Cummins Filtration Ip, Inc. Systems and methods for utilizing a low-friction rotating coalescer contact seal
US10543442B2 (en) 2015-03-30 2020-01-28 Cummins Filtration Ip, Inc. Multiple stage rotating coalescer devices
WO2020026407A1 (en) * 2018-08-02 2020-02-06 東京濾器株式会社 Oil separator
US10682601B2 (en) 2015-08-28 2020-06-16 Cummins Filtration Ip, Inc. Rotating coalescing element with directed liquid drainage and gas outlet
US10711669B2 (en) 2016-04-28 2020-07-14 Cummins Filtration Ip, Inc. Inside-out rotating coalescer with gas exit through hollow shaft
US10960411B2 (en) 2011-08-10 2021-03-30 Alfa Laval Corporate Ab Separation disc for a centrifugal separator and a method for manufacturing the separation disc
US10974182B2 (en) 2015-08-21 2021-04-13 Cummins Filtration Ip, Inc. High speed rotating crankcase ventilation filter media and media pack
US11027291B2 (en) 2016-10-31 2021-06-08 Alfa Laval Corporate Ab Separation disc for a centrifugal separator having spacing members with a triangular shape
US11123753B2 (en) 2016-10-31 2021-09-21 Alfa Laval Corporate Ab Centrifugal separator with disc having regions of different densities of spacing members
US11446598B2 (en) 2017-06-20 2022-09-20 Cummins Filtration Ip, Inc. Axial flow centrifugal separator
WO2023030926A1 (en) * 2021-09-02 2023-03-09 Gea Westfalia Separator Group Gmbh Separation disc, separation disc stack, and centrifuge having said separation disc stack
US11918948B2 (en) 2015-06-09 2024-03-05 Cummins Filtration Ip, Inc. Systems and methods for rotating coalescers maintaining positive recirculation through a dynamic seal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117625A (en) * 1995-10-24 1997-05-06 Tokai Rubber Ind Ltd Oil recovery device
JP2005507310A (en) * 2001-11-01 2005-03-17 アルファ ラヴァル コーポレイト アクチボラゲット Device for purifying liquid and gas simultaneously
JP2005515065A (en) * 2002-01-25 2005-05-26 アルファ ラヴァル コーポレイト アクチボラゲット A device that purifies liquid and gas simultaneously
JP2005139903A (en) * 2003-11-04 2005-06-02 Toyota Industries Corp Oil separator
US20100180854A1 (en) * 2007-07-13 2010-07-22 Dieter Baumann Separator for separating oil mist from the crankcase ventilation gas of an internal combustion engine, and functional module and internal combustion engine comprising a separator
JP2010537803A (en) * 2007-08-28 2010-12-09 アルファ ラヴァル ツムバ アクチボラゲット Centrifuge and method for purifying gas
JP2012532743A (en) * 2009-07-10 2012-12-20 アルファ・ラバル・コーポレイト・エービー Gas purifier separator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117625A (en) * 1995-10-24 1997-05-06 Tokai Rubber Ind Ltd Oil recovery device
JP2005507310A (en) * 2001-11-01 2005-03-17 アルファ ラヴァル コーポレイト アクチボラゲット Device for purifying liquid and gas simultaneously
JP2005515065A (en) * 2002-01-25 2005-05-26 アルファ ラヴァル コーポレイト アクチボラゲット A device that purifies liquid and gas simultaneously
JP2005139903A (en) * 2003-11-04 2005-06-02 Toyota Industries Corp Oil separator
US20100180854A1 (en) * 2007-07-13 2010-07-22 Dieter Baumann Separator for separating oil mist from the crankcase ventilation gas of an internal combustion engine, and functional module and internal combustion engine comprising a separator
JP2010537803A (en) * 2007-08-28 2010-12-09 アルファ ラヴァル ツムバ アクチボラゲット Centrifuge and method for purifying gas
JP2012532743A (en) * 2009-07-10 2012-12-20 アルファ・ラバル・コーポレイト・エービー Gas purifier separator

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10960411B2 (en) 2011-08-10 2021-03-30 Alfa Laval Corporate Ab Separation disc for a centrifugal separator and a method for manufacturing the separation disc
US10543442B2 (en) 2015-03-30 2020-01-28 Cummins Filtration Ip, Inc. Multiple stage rotating coalescer devices
US11918948B2 (en) 2015-06-09 2024-03-05 Cummins Filtration Ip, Inc. Systems and methods for rotating coalescers maintaining positive recirculation through a dynamic seal
US10537842B2 (en) 2015-06-09 2020-01-21 Cummins Filtration Ip, Inc. Systems and methods for utilizing a low-friction rotating coalescer contact seal
US10974182B2 (en) 2015-08-21 2021-04-13 Cummins Filtration Ip, Inc. High speed rotating crankcase ventilation filter media and media pack
US11701606B2 (en) 2015-08-21 2023-07-18 Cummins Filtration Ip, Inc. High speed rotating crankcase ventilation filter media and media pack
US10682601B2 (en) 2015-08-28 2020-06-16 Cummins Filtration Ip, Inc. Rotating coalescing element with directed liquid drainage and gas outlet
US11964224B2 (en) 2015-08-28 2024-04-23 Cummins Filtration Ip, Inc. Rotating coalescing element with directed liquid drainage and gas outlet
US11504665B2 (en) 2015-08-28 2022-11-22 Cummins Filtration Ip, Inc. Rotating coalescing element with directed liquid drainage and gas outlet
CN109070098B (en) * 2016-04-06 2020-07-14 东京滤器株式会社 Oil separator
CN109070098A (en) * 2016-04-06 2018-12-21 东京滤器株式会社 Oil eliminator
WO2017175324A1 (en) * 2016-04-06 2017-10-12 東京濾器株式会社 Oil separator
JPWO2017175324A1 (en) * 2016-04-06 2018-08-23 東京濾器株式会社 Oil separator
US11156137B2 (en) 2016-04-28 2021-10-26 Cummins Filtration Ip, Inc. Inside-out rotating coalescer with gas exit through hollow shaft
US10711669B2 (en) 2016-04-28 2020-07-14 Cummins Filtration Ip, Inc. Inside-out rotating coalescer with gas exit through hollow shaft
US10927730B2 (en) 2016-04-28 2021-02-23 Cummins Filtration Ip, Inc. Inside-out rotating coalescer with gas exit through hollow shaft
US11448107B2 (en) 2016-04-28 2022-09-20 Cummins Filtration Ip, Inc. Inside-out rotating coalescer with gas exit through hollow shaft
US10960412B2 (en) 2016-10-31 2021-03-30 Alfa Laval Corporate Ab Separation disc for a centrifugal separator having spot-formed spacing members
US11123753B2 (en) 2016-10-31 2021-09-21 Alfa Laval Corporate Ab Centrifugal separator with disc having regions of different densities of spacing members
US11027291B2 (en) 2016-10-31 2021-06-08 Alfa Laval Corporate Ab Separation disc for a centrifugal separator having spacing members with a triangular shape
US11660613B2 (en) 2016-10-31 2023-05-30 Alfa Laval Corporate Ab Separation disc for a centrifugal separator having spacing members with a triangular shape
CN109890510A (en) * 2016-10-31 2019-06-14 阿法拉伐股份有限公司 The stacking of separator disk
US11446598B2 (en) 2017-06-20 2022-09-20 Cummins Filtration Ip, Inc. Axial flow centrifugal separator
US11951431B2 (en) 2017-06-20 2024-04-09 Cummins Filtration Ip, Inc. Axial flow centrifugal separator
JP7022831B2 (en) 2018-08-02 2022-02-18 東京濾器株式会社 Oil separator
JPWO2020026407A1 (en) * 2018-08-02 2021-03-11 東京濾器株式会社 Oil separator
WO2020026407A1 (en) * 2018-08-02 2020-02-06 東京濾器株式会社 Oil separator
CN109681289B (en) * 2019-01-24 2024-01-09 宁波立达智能控制技术有限公司 Separator for centrifugal oil-gas separator and oil-gas separator thereof
CN109681289A (en) * 2019-01-24 2019-04-26 宁波立达智能控制技术有限公司 Centrifugal oil-air separator separate sheet and its gs-oil separator
WO2023030926A1 (en) * 2021-09-02 2023-03-09 Gea Westfalia Separator Group Gmbh Separation disc, separation disc stack, and centrifuge having said separation disc stack

Similar Documents

Publication Publication Date Title
WO2016046944A1 (en) Separation disk for oil separator, rotor for oil separator, and oil separator
JP6286530B2 (en) Oil separator
US9987579B2 (en) Oil separator
JP6268302B2 (en) Oil separator
US10513955B2 (en) Oil separator
JP6336037B2 (en) Oil separator
JP6322715B2 (en) Method for separating mist oil and oil separator
JP6255476B2 (en) Oil separator
JPWO2016139716A1 (en) Separation disc and oil separator
JP6934471B2 (en) Oil separator
WO2016035204A1 (en) Oil separator
WO2014155614A1 (en) Oil separator
EP3266523B1 (en) Oil separator
JPWO2017203565A1 (en) Separation disk laminate
WO2020026407A1 (en) Oil separator
CN107073379B (en) The separation method and oil eliminator of mist of oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP