WO2016045508A1 - 新能源电站集中区域智能管控装置及方法 - Google Patents

新能源电站集中区域智能管控装置及方法 Download PDF

Info

Publication number
WO2016045508A1
WO2016045508A1 PCT/CN2015/089318 CN2015089318W WO2016045508A1 WO 2016045508 A1 WO2016045508 A1 WO 2016045508A1 CN 2015089318 W CN2015089318 W CN 2015089318W WO 2016045508 A1 WO2016045508 A1 WO 2016045508A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
plug
control
power generation
new energy
Prior art date
Application number
PCT/CN2015/089318
Other languages
English (en)
French (fr)
Inventor
唐成虹
谭阔
王劲松
Original Assignee
国电南瑞科技股份有限公司
国电南瑞南京控制系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电南瑞科技股份有限公司, 国电南瑞南京控制系统有限公司 filed Critical 国电南瑞科技股份有限公司
Publication of WO2016045508A1 publication Critical patent/WO2016045508A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a smart control device and method for a centralized area of a new energy power station, belonging to the technical field of new energy access and distribution network.
  • the object of the invention is to solve the problem of safety hazard caused by the large-scale disordered access of the new energy power station and the randomness and volatility of the new energy to the stable operation of the power grid, and realize the pair through the intelligent control device of the centralized area of the new energy power station.
  • the intelligent management, access stability control and energy optimization control functions of the new energy power station are of great significance for ensuring the stable operation of the power grid and have a good application prospect.
  • a smart energy plant centralized area intelligent control device comprises a chassis, a panel and a plug-in; the plug-in is plugged into a chassis back-board bus, and the plug-in comprises a power PWM plug-in, a control MCP plug-in, an AC plug-in, an open-in and a plug-in BIO plugin, fiber optic OTH plugin, serial COM plugin, wireless WX plugin, which:
  • Power PWM plug-in for providing device operating power and remote signaling power
  • Control MCP plug-in including management CPU and control CPU, wherein management CPU includes upper computer processing mode
  • management CPU includes upper computer processing mode
  • the upper computer processing module has a built-in FLASH area, and the allocation forwarding table is preset in the FLASH area, and the upper computer processing module is configured to receive the allocation command and forward the information to the deployment center according to the allocation forwarding table, and the management module is used to implement the area.
  • Centralized management and intelligent plan deployment integrated management; control CPU is used to implement access stability control and energy optimization control, and the control CPU and the management CPU perform real-time data interaction through the dual port RAM;
  • Collect AC plug-in for collecting bus, incoming line, centralized energy storage line current, voltage and all AC analog lines connected to new energy power station lines, filtering, mining, A/D conversion and analog quantity calculation, and pass
  • the CAN bus interacts with the control CPU of the MCP plug-in to perform analog calculations;
  • BIO plug-in Open and open the BIO plug-in for handling the remote signal and export control.
  • the collected switch is processed by remote signal and sent to the control CPU of the MCP plug-in through the CAN bus, and receives the control CPU of the MCP plug-in through the CAN bus.
  • Optical fiber OTH plug-in for communication with a remote new energy station grid-connected device via optical fiber
  • serial port COM plug-in is used for communication with the grid connection device and the energy storage management unit, the reactive power compensation management unit and the debugging tool of the short-distance new energy station through the cable;
  • Wireless WX plug-in for implementing wireless local area communication and GPRS communication with the grid interface device of the new energy station
  • the power PWM plug-in and the control MCP plug-in are fixedly inserted in the slots 1# and 2# of the chassis, and the remaining plug-ins are disposed in any slot position of the chassis.
  • the aforementioned fiber optic OTH plug-in includes an eight-way fiber optic Ethernet port.
  • the aforementioned serial COM plug includes 16 RS485 communication ports.
  • the aforementioned wireless WX plug-in includes 433M local area wireless communication and GPRS communication.
  • Intelligent control of new energy power station concentrated areas by using intelligent control devices in centralized areas of new energy power stations The method comprises intelligent management, access stability control and energy optimization control for a new energy power station;
  • the intelligent management of the new energy power station includes centralized management of new energy power stations in the region and integrated management of intelligent plan allocation.
  • the centralized management of the new energy power station in the area includes the following steps:
  • the intelligent control device selects the optical fiber OTH plug-in, the serial port COM plug-in or the wireless WX plug-in according to the communication medium of the connected new energy power station;
  • the intelligent control device performs communication parameter configuration through the liquid crystal interface
  • the power station information needs to be provided according to the configuration template
  • the MCP plug-in is configured to establish a communication connection with the new energy power station interface device by wire or wirelessly according to the communication parameter configuration in the step 12), and receive the power station information of the new energy power station interface device in real time and store the corresponding information in step 14).
  • the telemetry data is stored in the telemetry database
  • the remote data is stored in the remote database
  • the power generation data is stored in the electricity statistics database
  • the fault alarm data is stored in the fault alarm database;
  • the MCP plug-in manages the database of the step 14), the telemetry database sets a threshold value, and exceeds the threshold to generate a telemetry alarm record; the remote data has a change to generate a remote signal displacement record; Set the maximum power generation threshold, exceed the threshold to generate the power generation limit alarm record; if the telemetry and remote signal data of a power station is not received for three consecutive times, set the running status bad flag of the power station, otherwise set the running status health mark, And store the running status flag in the running state library;
  • the MCP plug-in is sent to the higher-level deployment center according to the allocation forwarding table of the FLASH area of the upper computer module, and the database data and the alarm record in the step 14);
  • the power generation statistical area, the monthly power generation statistical area cyclically saves the latest December power generation statistics of each power station;
  • the integrated management of intelligent plan deployment includes the following steps:
  • the upper computer module that controls the MCP plug-in receives the deployment command message of the upper computer in real time
  • the MCP plug-in will receive the command message for parsing, and after parsing correctly, the process proceeds to step 23);
  • the daily total power generation plan value is stored in the daily power generation plan allocation plan area of the FLASH area, and then proceeds to step 24); if it is the monthly power generation plan command, the total monthly power generation will be generated.
  • the planned value is stored in the monthly power generation planning area of the FLASH area, and proceeds to step 27), otherwise, it ends; 24) based on the daily power generation statistical area data of each power station FLASH area, the daily power generation estimation statistics of the power station are calculated, and the formula is:
  • wR k is estimated as the estimated daily power generation of the kth power station
  • wR ki is the daily power generation statistics of the i-th day of the kth power station
  • RAT k is the daily power distribution ratio of the kth power station
  • wR i is estimated as the estimated daily power generation of the i-th power station
  • m is the number of all power stations connected to the control device
  • WR k is planned as the daily power generation plan value of the kth power station, and the WR plan is always the daily total power generation plan value stored in the FLASH in the step 23);
  • wM k is estimated as the monthly power generation estimate of the kth power station
  • wM ki is the monthly power generation statistics of the i-th month of the kth power station
  • MAT k is the monthly power distribution ratio of the kth power station
  • wM i is estimated as the monthly power generation estimated value of the i-th power station
  • m is the number of all power stations connected to the control device
  • WM k plan WM plan total * MAT k
  • WM k plan is the monthly power generation plan value of the kth power station, and the WM plan is always the monthly total power generation plan value stored in FLASH in step 23);
  • the stability control of the access to the new energy power station includes the following steps:
  • the acquisition AC plug-in calculates the voltage, the 25th harmonic content of the incoming current, the 25th harmonic content of all outgoing line currents according to the collected bus voltage, incoming current and the line current of the incoming line, and calculates the total Active power, total reactive power, total power factor and active power, reactive power and power factor of all outgoing lines;
  • step 34) collecting the AC plug-in, transmitting the calculation result of step 33) to the MCP plug-in through the CAN bus;
  • the MCP plug-in detects the voltage amplitude, the voltage harmonic content, the total incoming current harmonic content rate and the total power factor in real time, and judges the incoming power quality indicator. If not, the process proceeds to step 36); otherwise, returns to step 32. );
  • the power quality control flag is set after a delay of 5 minutes; return to step 32);
  • the energy optimization control includes the following steps:
  • the host computer module that controls the MCP plug-in receives the power price spike, the peak time period, the valley time period and the time period information of the upper computer in real time;
  • the AC plug-in collects the analog line of the incoming line, and calculates the active power, reactive power, and power factor of the incoming line in real time;
  • M control (WR plan total - W spike - W peak - W valley - W flat ) * 60 / (24 * 60-T spike - T peak - T valley )
  • M is controlled as a centralized energy storage control target
  • WR plan is always the total power generation plan value
  • W peak is the total power generation statistics of the previous day peak time in the region
  • W peak is the total power generation statistics of the previous day peak time in the region.
  • W Valley before the area one day valley period total generating statistical data
  • W flat one day flat total generating statistics period of time before the region, T peak to peak period of time, T peak to peak period of time, T Valley, Valley times period of time;
  • step 56 In the flat time period, according to the energy storage control target for centralized energy storage control, if M control > 0, discharge control, M control ⁇ 0, charge control; and according to the acquisition and calculation value of step 52), real-time Calculate, count, and save the total power generation W flat for the flat period of the day;
  • the error of the energy storage control target is corrected according to the error of the M control and the M calculation calculated in real time, and the calculation formula is:
  • M' control M control + (M control - M calculation )
  • M' is controlled as the actual power generation control target of centralized energy storage
  • the communication parameter configuration includes a protocol selection and a parameter configuration
  • the protocol selection includes an IEC 61850 protocol, a 101 protocol, a 104 protocol, a modbus protocol, and a custom protocol
  • the parameter configuration includes an interface mode and a communication setting.
  • the interface modes include Ethernet, serial port, local area wireless and GPRS mode. Selecting different interface modes will automatically pop up the communication setting menu of this mode.
  • the power station information includes telemetry information, remote information, new energy generation capacity, load power, power station operation status, and fault alarm operation information of the power station.
  • the power quality parameter includes a voltage under-threshold threshold, a voltage over-high threshold, a harmonic content threshold, a power factor qualified threshold, and all outlet line setting power quality unqualified control parameters, wherein the electric energy Quality failure control parameters include alarms and trips.
  • the criterion for determining that the incoming power quality is unqualified is that the voltage amplitude is higher than the voltage over-high threshold set in the step 31), or the voltage amplitude is lower than the setting in the step 31). Voltage over If the low threshold, or the voltage harmonic content exceeds the harmonic content threshold, or the incoming current harmonic content exceeds the harmonic content threshold, or the total power factor is lower than the power factor qualified threshold, then the incoming line is judged. The power quality is unqualified.
  • the criterion for the failure of the outgoing power quality is that the outlet current harmonic content exceeds the harmonic content threshold or the power factor is lower than the power factor qualified threshold, and the outlet line is determined to be unqualified. line.
  • Intelligent management adopts regional centralized management and integrated planning and management to realize intelligent management of new energy concentrated areas, in which regional centralized management of telemetry, remote signaling, new energy generation and load of new energy power stations in the region Collecting, statistical analysis and forwarding of power, power station operation status, and fault alarm operation information, and generating power generation statistics, realizing effective centralized management of new energy power stations; planning to allocate integrated receiving and distribution plans and forming according to regional base station management The power generation statistics of the line are allocated for power generation planning to form power generation plans for each power station, and the planned deployment of new energy power generation is realized;
  • the access stability control of the present invention adopts reactive power compensation and power quality integrated control technology to solve the problem of security and stability brought about by the randomness and volatility of new energy to the power grid, based on all new energy access lines in the area. Analog local acquisition, calculation and power quality monitoring, through the reactive power compensation priority and power quality unqualified integrated control technology to ensure the stable operation of the power grid;
  • the energy optimization control of the present invention adopts a time-divisional energy control strategy and a closed-loop error correction technique to achieve the ideal effect of peak clipping and valley filling.
  • FIG. 1 is a schematic view showing the configuration of an intelligent control device for a centralized area of a new energy power station according to the present invention
  • FIG. 3 is a flow chart showing the stability control process of the intelligent control device for the centralized area of the new energy power station of the present invention
  • FIG. 4 is an energy optimization control flow of the intelligent control device for the centralized area of the new energy power station of the present invention.
  • the intelligent control device for the centralized area of the new energy power station of the present invention comprises a chassis, a panel and a plug-in. All the plug-ins are plugged into the backplane bus of the chassis, and the plug-in includes a power PWM plug-in, a control MCP plug-in, an AC plug-in, and an open BIO. Plug-ins, fiber optic OTH plug-ins, serial COM plug-ins, wireless WX plug-ins, the functions of each plug-in are as follows:
  • Power PWM plug-in for providing device operating power and remote signaling power.
  • Control MCP plug-in this plug-in is the main control plug-in for the control function, including management CPU and control CPU.
  • the management CPU includes the upper computer processing module and management module.
  • the upper computer processing module has built-in FLASH area.
  • the FLASH area is preset to set the forwarding table.
  • the machine processing module is configured to receive the deployment command and forward the information to the deployment center according to the deployment forwarding table.
  • the management module is used to implement regional centralized management and intelligent plan deployment integration management; the control CPU is used to implement access stability control and energy optimization control.
  • the control CPU and the management CPU perform real-time interaction of data through the dual port RAM.
  • Collect AC plug-in for collecting bus, incoming line, centralized energy storage line current, voltage and all AC analog lines connected to new energy power station lines, filtering, mining, A/D conversion and analog quantity calculation, and pass
  • the CAN bus interacts with the control CPU of the MCP plug-in to perform analog calculations.
  • the BIO plug-in is opened and opened for processing the remote signal and the exit control.
  • the collected switch is processed by the remote signal and sent to the control CPU of the MCP plug-in through the CAN bus, and the control CPU of the MCP plug-in is controlled by the CAN bus.
  • the exit control, the reactive power adjustment, the energy storage adjustment command, and the control commands that control the CPU are executed.
  • the optical fiber OTH plug-in includes an eight-way fiber-optic Ethernet port for communication with a grid-connected device of a long-distance new energy power station through an optical fiber.
  • the serial COM plug-in includes 16 RS485 communication ports for communication with the grid-connected device and energy storage management unit, reactive power compensation management unit and debugging tools of the new energy station.
  • Wireless WX plug-in including 433M local area wireless communication and GPRS communication, for implementing with new energy stations Wireless local area communication and GPRS communication of the grid connection device.
  • the above-mentioned power PWM plug-in and control MCP plug-in are fixedly inserted in the 1# and 2# slots of the chassis, and the remaining plug-ins are smart plug-ins, and the number of plug-ins can be selected according to requirements, and the smart plug-in performs telemetry messages through the CAN bus.
  • the transmission of the telecom message, the control message, and the command message can be configured in any slot position, thereby meeting the diversified requirements of the actual project site area for different power station access numbers and different access media.
  • FIG. 1 it is an embodiment of the intelligent control device for the centralized area of the new energy power station of the present invention, which has 13 plug-ins from left to right, and the plug-in configuration includes a power PWM plug-in (1 block) and a control MPU plug-in (1 block). ), analog acquisition AC plug-in (3 blocks), open BIO plug-in (3 blocks), optical OTH plug-in (2 blocks), serial COM plug-in (2 blocks), wireless WX plug-in (1 block). Each of the above plug-ins is plugged into the bus backplane of the chassis.
  • the intelligent management device, the access stability control and the energy optimization control of the concentrated area of the new energy power station can be realized by using the intelligent control device of the new energy power plant centralized area of the invention.
  • intelligent management realizes the integration of centralized management and intelligent planning of new energy power stations in the region, and regional centralized management of telemetry, remote signaling, new energy generation, load power, power plant operation status of new energy power stations in the region,
  • the fault alarm operation information is collected, and the information is forwarded according to the deployment forwarding table to the higher-level deployment system to realize centralized management of the new energy region, and on the other hand, the daily energy generation data and the monthly power generation data of the new energy line are counted to form power generation statistics.
  • the intelligent plan allocation management receives the upper-level daily deployment plan or the monthly deployment plan, and forms the daily power generation allocation plan and the monthly power generation allocation plan of each power station according to the daily power generation statistics or monthly power generation statistics of each line and performs intelligent plan allocation.
  • Centralized management of new energy power stations in the region includes the following steps:
  • the intelligent control device selects the optical fiber OTH plug-in, the serial port COM plug-in or the wireless WX plug-in according to the communication medium of the connected new energy power station;
  • the intelligent control device performs communication parameter configuration through the liquid crystal interface, including protocol selection and parameter configuration.
  • the protocol selection includes IEC61850 protocol, 101 protocol, 104 protocol, modbus protocol, and custom protocol; parameter configuration includes interface mode and communication settings, wherein the interface mode includes Ethernet, serial port, local area wireless network and GPRS mode, and select different interface modes.
  • the communication setting menu of this mode will pop up automatically.
  • selecting the Ethernet mode will pop up the IP address, subnet mask and network port enable setting menu;
  • selecting the serial port mode will automatically pop up the serial port baud rate, data bit, stop bit, Check digit and enable setting menu;
  • select GPRS mode will automatically pop up GPRS address, GPRS port number and enabled setting menu;
  • select 433M local area wireless network mode will automatically pop up the maximum number of connections and enable settings menu;
  • the power station information includes the telemetry information of the power station, the remote signal information, the new energy generation capacity, the load power, the power station operation status, and the fault alarm operation information.
  • the MCP plug-in is configured according to the communication parameters in step 12), establishes a communication connection with the new energy power station interface device by wire or wirelessly, receives the power station information of the new energy power station interface device in real time and stores it in the corresponding database in step 14).
  • the telemetry data is stored in the telemetry database
  • the telecom data is stored in the remote database
  • the power generation data is stored in the electricity statistics database
  • the fault alarm data is stored in the fault alarm database;
  • the MCP plug-in manages the database of step 14), the telemetry database sets the threshold value, and exceeds the threshold to generate the telemetry alarm record; the remote data changes to generate the remote signal displacement record; the power statistics database is set to the maximum The threshold of the power generation amount exceeds the threshold to generate the alarm record of the power generation; if the telemetry and remote signal data of a power station are not received for three consecutive times, the running status of the power station is marked as bad, otherwise the health status flag is set and the operating status is set. The flag is stored in the running state library;
  • the MCP plug-in is sent to the higher-level deployment center according to the allocation forwarding table of the FLASH area of the upper computer module, and the database data and the alarm record in step 14);
  • the integrated management of intelligent plan deployment includes the following steps:
  • the upper computer module that controls the MCP plug-in receives the deployment command message of the upper computer in real time
  • the MCP plug-in will receive the command message for parsing, and parse it correctly and enter the processing flow;
  • the daily total power generation plan value is stored in the daily power generation plan allocation plan area of the FLASH area, and then proceeds to step 24); if it is the monthly power generation plan command, the total monthly power generation will be generated.
  • the planned value is stored in the monthly power generation planning area of the FLASH area, and proceeds to step 27), otherwise, it ends; 24) based on the daily power generation statistical area data of each power station FLASH area, the daily power generation estimation statistics of the power station are calculated, and the formula is:
  • wR k is estimated as the estimated daily power generation of the kth power station
  • wR ki is the daily power generation statistics of the i-th day of the kth power station, The sum of the daily power generation data for the k-th power station for the last 60 days;
  • RAT k is the daily power distribution ratio of the kth power station
  • wR i is estimated as the estimated daily power generation of the i-th power station
  • m is the number of all power stations connected to the control device. The sum of the estimated daily power generation values of all power stations connected to the control device;
  • step 26 Allocating the daily total power generation plan value stored in the FLASH area in step 23) to each power station according to the proportion of step 25), forming the daily power generation plan value of each power station, proceeding to step 30), and the daily power generation plan of each power station The value is calculated as:
  • WR k is the daily power generation plan value of the kth power station, and the WR plan is always the daily total power generation plan value stored in the FLASH in step 23);
  • wM k is estimated as the monthly power generation estimate of the kth power station
  • wM ki is the monthly power generation statistics of the i-th month of the kth power station. The sum of the monthly power generation statistics for the k-th power station for the last 12 months;
  • MAT k is the monthly power distribution ratio of the kth power station
  • wM i is estimated as the monthly power generation estimated value of the i-th power station
  • m is the number of all power stations connected to the control device. The sum of the estimated monthly power generation values of all power stations connected to the control device;
  • the monthly total power generation plan value stored in the FLASH area in step 23) is allocated to each power station according to the proportion of step 28), forming a monthly power generation plan value of each power station, and proceeding to step 30), the daily power generation plan of each power station
  • the value is calculated as:
  • WM k plan WM plan total * MAT k
  • WM k is planned as the monthly power generation plan value of the kth power station, and the WM plan is always the monthly total power generation plan value stored in FLASH in step 23);
  • the access control stability of the new energy power station includes the following steps:
  • the power quality parameter includes the voltage too low threshold, the voltage over High threshold, harmonic content threshold, power factor qualified threshold and all outgoing line setting power quality unqualified control parameters, wherein the power quality unqualified control parameters include alarm and trip;
  • the acquisition AC plug-in calculates the voltage, the 25th harmonic content of the incoming current, the 25th harmonic content of all outgoing line currents according to the collected bus voltage, incoming current and the line current of the incoming line, and calculates the total Active power, total reactive power, total power factor and active power, reactive power, and power factor of all outgoing lines;
  • step 34) collecting the AC plug-in, transmitting the calculation result of step 33) to the MCP plug-in through the CAN bus;
  • the MCP plug-in controls the voltage, voltage harmonic content, total incoming current harmonic content rate and total power factor in real time, and judges the incoming power quality indicator. If not, the process proceeds to step 36); otherwise, returns to step 32).
  • the criterion for the failure of the incoming power quality is that the voltage amplitude is higher than the voltage over-high threshold set in step 31), or the voltage amplitude is lower than the voltage too low threshold set in step 31), or the voltage harmonic contains If the rate exceeds the harmonic content threshold, or the incoming current harmonic content exceeds the harmonic content threshold, or the total power factor is lower than the power factor qualified threshold, the incoming power quality is judged to be unqualified;
  • the power quality control flag is set after a delay of 5 minutes; return to step 32);
  • Control MCP plug-in for all power quality unqualified outlet lines are sorted according to the current harmonic content of the outgoing line from large to small, and the outgoing line with the largest current harmonic content rate is controlled according to the power quality of the line in step 31).
  • the configuration of the parameter is controlled. If the parameter is alarm, go to step 40). If it is trip, go to step 41); the criterion for unqualified power quality of the outgoing line is that the current harmonic content of the outgoing line exceeds the harmonic content threshold or power factor. If it is lower than the power factor qualified threshold, it is determined that the outgoing line is a power quality unqualified line;
  • the centralized reactive power compensation is preferentially performed according to the reactive power compensation strategy. If the indicator is still not met, the unqualified line is disconnected. It ensures the stable operation of the power grid and avoids the problem of frequent disconnection of the line caused by short-term fluctuations of new energy.
  • the energy optimization control of the new energy power station includes the following steps:
  • the upper computer module that controls the MCP plug-in receives the power price spike, peak time period and valley of the upper computer in real time. Time period and time period information;
  • the AC plug-in collects the analog line of the incoming line, and calculates the active power, reactive power, and power factor of the incoming line in real time;
  • M control (WR plan total - W spike - W peak - W valley - W flat ) * 60 / (24 * 60-T spike - T peak - T valley )
  • M is controlled as a centralized energy storage control target
  • WR plan is always the total power generation plan value
  • W peak is the total power generation statistics of the previous day peak time in the region
  • W peak is the total power generation statistics of the previous day peak time in the region.
  • W Valley front region one day valley period total generating statistics
  • W flat one day flat total generating statistics period before the region
  • T peak to peak period of time (minutes) T Valley is the valley time period (minutes);
  • step 56 In the flat time period, according to the energy storage control target for centralized energy storage control, if M control > 0, discharge control, M control ⁇ 0, charge control; and according to the acquisition and calculation value of step 52), real-time Calculate, count, and save the total power generation W flat for the flat period of the day;
  • the error of the energy storage control target is corrected according to the error of the M control and the M calculation calculated in real time, and the calculation formula is:
  • M' control M control + (M control - M calculation )
  • M' is controlled as the actual power generation control target of centralized energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种新能源电站集中区域智能管控装置及方法,实现了对新能源电站的智能化管理、接入稳定控制和能量优化控制,其中智能化管理包括区域集中管理和智能计划调配一体化管理,实现了对新能源电站的有序管理;接入稳定控制解决了由于新能源的波动性、随机性对电网稳定运行带来的安全隐患;能量优化控制采用分时段能量控制策略和实时闭环误差纠正技术达到了削峰填谷的理想效果。一体化实现技术不仅减少了装置数量,降低了成本,经济环保,而且不同功能之间实现了数据、信息和计算结果共享,实现了最优化控制,对保障电网的稳定运行和能量优化控制具有重要意义,具有良好的应用前景。

Description

[根据细则37.2由ISA制定的发明名称] 新能源电站集中区域智能管控装置及方法 技术领域
本发明涉及一种新能源电站集中区域智能管控装置及方法,属于新能源接入和配电网技术领域。
背景技术
随着新能源的大力发展,新能源电站大规模接入配电网,目前对于新能源电站没有有效的管理装置,大量新能源电站处于无监管状态,新能源接入的无序性给电网管理带来很大问题,另外,由于新能源的随机性和波动性对电网的稳定也造成了安全隐患,亟需研究一种新能源电站集中区域智能管控装置,该装置不仅可以实现对区域新能源的集中管理,而且可以实现对新能源区域接入的稳定控制和能量控制技术,保障电网的稳定安全运行。
发明内容
本发明的目的在于解决由于新能源电站的大规模无序接入及新能源的随机性、波动性对电网的稳定运行造成的安全隐患问题,通过新能源电站集中区域智能管控装置,实现了对新能源电站的智能化管理、接入稳定控制和能量优化控制一体化功能,对保障电网的稳定运行具有重要意义,具有良好的应用前景。
为了实现上述目标,本发明采用如下的技术方案:
一种新能源电站集中区域智能管控装置,包括机箱、面板、插件;所述插件插接在机箱背板总线上,所述插件包括电源PWM插件、管控MCP插件、采集AC插件、开入开出BIO插件、光纤OTH插件、串口COM插件、无线WX插件,其中:
电源PWM插件,用于提供装置工作电源及遥信电源;
管控MCP插件,包括管理CPU和控制CPU,其中管理CPU包括上位机处理模 块和管理模块,上位机处理模块内置FLASH区,FLASH区内预先设置调配转发表,上位机处理模块用于接收调配命令并将信息根据调配转发表顺序转发至调配中心,管理模块用来实现区域集中管理及智能计划调配一体化管理;控制CPU用以实现接入稳定控制和能量优化控制,所述控制CPU和所述管理CPU通过双口RAM进行数据的实时交互;
采集AC插件,用于采集母线、进线、集中式储能线路电流、电压及所有接入新能源电站线路的交流模拟量,进行滤波、采保、A/D变换和模拟量计算,并通过CAN总线与管控MCP插件的控制CPU进行模拟计算量的交互;
开入开出BIO插件,用于处理遥信量及出口控制,将采集的开关量进行遥信处理后通过CAN总线发送到管控MCP插件的控制CPU,并通过CAN总线接收管控MCP插件的控制CPU的出口控制、无功调节、储能调节命令,并且执行控制CPU的控制命令;
光纤OTH插件,用于通过光纤实现与远距离新能源站并网接口装置的通讯;
串口COM插件,用于通过电缆实现与近距离新能源站并网接口装置及储能管理单元、无功补偿管理单元、调试工具的通讯;
无线WX插件,用于实现与新能源站并网接口装置的无线局域通讯和GPRS通讯;
所述电源PWM插件、管控MCP插件固定插接在机箱的1#、2#插槽位置,其余插件配置在机箱的任意插槽位置。
前述的光纤OTH插件包括八路光纤以太网口。
前述的串口COM插件包括16路RS485通讯口。
前述的无线WX插件包括433M局域无线通讯和GPRS通讯。
利用新能源电站集中区域智能管控装置对新能源电站集中区域进行智能管控的 方法,包括对新能源电站的智能化管理、接入稳定控制和能量优化控制;
所述对新能源电站的智能化管理包括对区域内新能源电站进行集中管理和进行智能计划调配一体化管理,
所述对区域内新能源电站进行集中管理包括以下步骤:
11)智能管控装置根据所接入的新能源电站的通信介质,选择光纤OTH插件、串口COM插件或无线WX插件;
12)智能管控装置通过液晶界面进行通信参数配置;
13)对于每个接入的新能源电站,需要按照配置模板提供电站信息;
14)管控MCP插件在初次上电或者配置模板更新时,自动对每个接入电站的配置模板进行解析,并在RAM区动态开辟遥测数据库、遥信数据库、电量统计数据库、运行状态库、故障告警信息库;
15)管控MCP插件按照所述步骤12)中的通信参数配置,通过有线或无线方式与新能源电站接口装置建立通讯连接,实时接收新能源电站接口装置的电站信息并存入步骤14)的相应的数据库中,其中遥测数据存入遥测数据库,遥信数据存入遥信数据库,发电量数据存入电量统计数据库,故障告警数据存入故障告警信息库;
16)管控MCP插件对所述步骤14)的数据库进行管理,遥测数据库设置越限阀值,超过该阀值生成遥测越限告警记录;遥信数据有变化生成遥信变位记录;电量统计数据库设置最大发电量阀值,超过该阀值生成发电量越限告警记录;如果连续三次未收到某电站的遥测和遥信数据信息,置该电站运行状态坏标志,否则置运行状态健康标志,并将运行状态标志存入运行状态库;
17)管控MCP插件按照其上位机模块FLASH区的调配转发表,将所述步骤14)中的数据库数据及告警记录发送给上级调配中心;
18)管控MCP插件在每天0:00时分,对前一天的电量统计数据库的电量进行统计分析,形成各新能源线路的日发电量数据和报表,存于上位机模块FLASH区的日发电统计区,该日发电统计区循环保存每个电站最新60天的日发电统计数据;
19)管控MCP插件在每月1日0:00时分,对上月的电量统计数据库的电量进行统计分析,形成各新能源线路的月发电量数据和报表,存于上位机模块FLASH区的月发电统计区,该月发电统计区循环保存每个电站最新12月发电统计数据;
所述进行智能计划调配一体化管理包括以下步骤:
21)管控MCP插件的上位机模块实时接收上位机的调配命令报文;
22)管控MCP插件将接收到命令报文进行解析,解析正确后进入处理流程步骤23);
23)判断如果收到的是日发电计划命令,则将日总发电计划值存储于FLASH区的日发电计划调配计划区,然后转入步骤24);如果是月发电计划命令,将月总发电计划值存储于FLASH区的月发电计划调配区,进入步骤27),否则,结束;24)根据每个电站FLASH区的日发电统计区数据进行该电站日发电量预估统计,公式为:
Figure PCTCN2015089318-appb-000001
其中,wRk估为第k个电站的日发电量预估值,wRki为第k个电站第i天的日发电量统计数据;
25)计算每个电站的日发电分配比例,公式为:
Figure PCTCN2015089318-appb-000002
其中,RATk为第k个电站的日发电分配比例,wRi估为第i个电站的日发电量预估 值,m为管控装置所接的所有电站数;
26)将所述步骤23)中FLASH区存储的日总发电计划值按所述步骤25)的比例分配到每个电站,形成每个电站的日发电计划值,进入步骤30),每个电站的日发电计划值计算公式为:
WRk计划=WR计划总*RATk
其中,WRk计划为第k个电站的日发电计划值,WR计划总为所述步骤23)中FLASH存储的日总发电计划值;
27)根据每个电站FLASH区的月发电统计区数据进行该电站月发电量预估统计,公式为:
Figure PCTCN2015089318-appb-000003
其中,wMk估为第k个电站的月发电量预估值,wMki为第k个电站第i个月的月发电统计数据;
28)计算每个电站的月发电分配比例,公式为:
Figure PCTCN2015089318-appb-000004
其中,MATk为第k个电站的月发电分配比例,wMi估为第i个电站的月发电量预估值,m为管控装置所接的所有电站数;
29)将所述步骤23)中FLASH区存储的月总发电计划值按所述步骤28)的比例分配到每个电站,形成每个电站的月发电计划值,进入步骤30),每个电站的日发电计划值计算公式为:
WMk计划=WM计划总*MATk
其中,WMk计划为第k个电站的月发电计划值,WM计划总为步骤23)中FLASH存储的月总发电计划值;
30)将日发电计划值或月发电计划值通过光纤OTH插件、串口COM插件或无 线WX插件发送到各新能源线路接口装置;
所述对新能源电站接入稳定控制包括以下步骤:
31)智能管控装置通过液晶配置电能质量参数,在管控MCP插件的FLASH区预先配置集中式无功补偿控制策略,并且置电能质量控制标志=0;
32)采集AC插件对母线电压、进线电流、所有接入出线线路的电流量进行模拟量采集;
33)采集AC插件根据采集的母线电压、进线电流和所接入出线线路电流计算电压、进线电流的25次谐波含有率、所有出线线路电流的25次谐波含有率,并计算总的有功功率、总无功功率、总功率因数及所有出线线路的有功功率、无功功率和功率因数;
34)采集AC插件将步骤33)的计算结果通过CAN总线传送到管控MCP插件;
35)管控MCP插件实时检测电压幅值、电压谐波含有率、总进线电流谐波含有率和总功率因数,并且判断进线电能质量指标,如果不合格进入步骤36);否则返回步骤32);
36)如果电能质量控制标志=0,进入步骤37);如果电能质量控制标志=1,进入步骤39);
37)根据步骤31)配置的集中式无功补偿控制策略,自动投切集中式无功补偿装置;
38)集中式无功补偿自动投切控制结束后,延时5分钟后置电能质量控制标志=1;返回步骤32);
39)管控MCP插件对所有电能质量不合格出线线路按照出线电流谐波含有率从大到小进行排序,对电流谐波含有率最大的出线线路按照步骤31)中该线路 的电能质量不合格控制参数的配置进行控制,如果该参数为告警进入步骤40),如果为跳闸,进入步骤41);
40)通过光纤OTH插件、串口COM插件或无线WX插件向新能源并网接口装置发出告警,并通过上位机模块向上级调配中心发告警命令,延时5分钟后,返回步骤32);
41)跳开新能源线路断路器,并将断路器变位遥信和原因通过上位机模块向上级调配中心发告警命令;延时5分钟后,返回步骤32);
所述能量优化控制包括以下步骤:
51)管控MCP插件的上位机模块实时接收上位机的电价尖峰、峰时间段、谷时间段和平时间段信息;
52)AC插件采集进线线路模拟量,并实时计算进线线路的有功功率、无功功率、功率因数;
53)在每天0:00计算储能控制目标,公式如下;
M控制=(WR计划总-W尖峰-W-W-W)*60/(24*60-T尖峰-T-T)
其中,M控制为集中式储能控制目标,WR计划总为日总发电计划值,W尖峰为区域内前一天尖峰时段总发电统计数据,W为区域内前一天峰时段总发电统计数据,W为区域内前一天谷时段总发电统计数据,W为区域内前一天平时间段总发电统计数据,T尖峰为尖峰时间段时间,T为峰时间段时间,T为谷时间段时间;
54)在尖峰、峰时间段,对集中式储能进行放电控制,对新能源电站接口装置发送最大发电计划命令,并根据步骤52)的采集和计算值,实时计算、统计和保存当天的尖峰时间段总发电量W尖峰、峰时间段总发电量W
55)在谷时间段,对集中式储能进行充电控制,对新能源电站接口装置发送最小发电计划命令,并根据步骤52)的采集和计算值,实时计算、统计和保存 当天的谷时间段总发电量W
56)在平时间段,按照储能控制目标对集中式储能控制,如果M控制>0,进行放电控制,M控制<0,进行充电控制;并根据步骤52)的采集和计算值,实时计算、统计和保存当天的平时间段总发电量W
57)在平时间段,AC插件实时采集集中式储能线路的电流和电压,计算储能线路的发电量值M计算
58)在平时间段,根据实时计算的M控制与M计算的误差对储能控制目标进行误差纠正,计算公式为:
M'控制=M控制+(M控制-M计算)
其中,M'控制为集中式储能的实际发电控制目标;
59)在平时间段,用M'控制控制目标对集中式储能控制,即M控制=M'控制,然后返回步骤56),达到闭环实时误差纠正的目标。
前述的步骤12)中,通信参数配置包括规约选择和参数配置,所述规约选择包括IEC61850规约、101规约、104规约、modbus规约、自定义规约;所述参数配置包括接口模式和通讯设置,所述接口模式包括以太网、串口、局域无线和GPRS模式,选择不同接口模式会自动弹出该模式的通讯设置菜单。
前述的步骤13)中,电站信息包括电站的遥测信息、遥信信息、新能源发电量、负荷电量、电站运行状态、故障告警运行信息。
前述的步骤31)中,电能质量参数包括电压过低阀值、电压过高阀值、谐波含有率阀值、功率因数合格阀值和所有出线线路设置电能质量不合格控制参数,其中,电能质量不合格控制参数包括告警和跳闸。
前述的步骤35)中,进线电能质量不合格的判断标准为电压幅值高于所述步骤31)中设置的电压过高阀值,或者电压幅值低于所述步骤31)中设置的电压过 低阀值,或者电压谐波含有率超过谐波含有率阀值,或者进线电流谐波含有率超过谐波含有率阀值,或者总功率因数低于功率因数合格阀值,则判断进线电能质量不合格。
前述的步骤39)中,出线电能质量不合格的判断标准为出线电流谐波含有率超过谐波含有率阀值或者功率因数低于功率因数合格阀值,则判断该出线线路为电能质量不合格线路。
本发明的有益之处在于:
1)智能化管理采用区域集中管理和计划调配一体化管理,实现了对新能源集中区域的智能化管理,其中区域集中管理对区域内新能源电站的遥测、遥信、新能源发电量、负荷电量、电站运行状态、故障告警运行信息进行收集、统计分析和转发,并且形成发电统计数据,实现了对新能源电站的有效集中管理;计划调配一体化接收调配计划并根据区域基站管理形成的各线路的发电统计数据进行发电计划分配,形成各电站发电计划,实现了新能源发电量的计划调配;
2)本发明的接入稳定控制采用无功补偿和电能质量综合控制技术,解决了新能源随机性和波动性对电网带来的安全稳定问题,其中基于对区域内所有新能源接入线路的模拟量就地采集、计算和电能质量监测,通过无功补偿优先和电能质量不合格综合控制技术,保障了电网的稳定运行;
3)本发明的能量优化控制采用分时段能量控制策略和闭环误差纠正技术,达到了削峰填谷的理想效果。
附图说明
图1本发明的新能源电站集中区域智能管控装置配置示意图;
图2本发明的新能源电站集中区域智能管控装置智能计划调配一体化管理流程;
图3本发明的新能源电站集中区域智能管控装置接入稳定控制流程;
图4本发明的新能源电站集中区域智能管控装置能量优化控制流程。
具体实施方式
现结合附图和具体实施方式对本发明作进一步详细说明。
本发明的新能源电站集中区域智能管控装置包括机箱、面板、插件,所有的插件均插接在机箱背板总线上,插件包括电源PWM插件、管控MCP插件、采集AC插件、开入开出BIO插件、光纤OTH插件、串口COM插件、无线WX插件,各插件的功能如下:
电源PWM插件,用于提供装置工作电源及遥信电源。
管控MCP插件,此插件是管控功能实现主体插件,包括管理CPU和控制CPU,其中管理CPU包括上位机处理模块和管理模块,上位机处理模块内置FLASH区,FLASH区内预先设置调配转发表,上位机处理模块用于接收调配命令并将信息根据调配转发表顺序转发至调配中心,管理模块用来实现区域集中管理及智能计划调配一体化管理;控制CPU用以实现接入稳定控制和能量优化控制,所述控制CPU和所述管理CPU通过双口RAM进行数据的实时交互。
采集AC插件,用于采集母线、进线、集中式储能线路电流、电压及所有接入新能源电站线路的交流模拟量,进行滤波、采保、A/D变换和模拟量计算,并通过CAN总线与管控MCP插件的控制CPU进行模拟计算量的交互。
开入开出BIO插件,用于处理遥信量及出口控制,将采集的开关量进行遥信处理后通过CAN总线发送到管控MCP插件的控制CPU,通过CAN总线接收管控MCP插件的控制CPU的出口控制、无功调节、储能调节命令,并且执行控制CPU的控制命令。
光纤OTH插件,包括八路光纤以太网口,用于通过光纤实现与远距离新能源电站并网接口装置的通讯。
串口COM插件,包括16路RS485通讯口,用于通过电缆实现与近距离新能源站并网接口装置及储能管理单元、无功补偿管理单元、调试工具的通讯。
无线WX插件,包括433M局域无线通讯和GPRS通讯,用于实现与新能源站 并网接口装置的无线局域通讯和GPRS通讯。
上述电源PWM插件、管控MCP插件固定插接在机箱的1#、2#插槽位置,其余插件均为智能插件,且插件的个数可根据需要选择,智能插件间通过CAN总线进行遥测报文、遥信报文、控制报文、命令报文的传输,插件可配置在任意插槽位置,从而可满足实际工程现场区域对于不同电站接入数量、不同接入介质的多样化需求。
如图1所示,为本发明的新能源电站集中区域智能管控装置的一个实施例,其从左向右共13块插件,插件配置包括电源PWM插件(1块)、管控MPU插件(1块)、模拟量采集AC插件(3块)、开入开出BIO插件(3块),光纤OTH插件(2块)、串口COM插件(2块)、无线WX插件(1块)。上述各插件插接在机箱的总线背板上。
利用本发明的新能源电站集中区域智能管控装置可以实现对新能源电站集中区域的智能化管理、接入稳定控制和能量优化控制。
其中,智能化管理实现了对区域内新能源电站集中管理和智能计划调配一体化功能,区域集中管理对区域内新能源电站的遥测、遥信、新能源发电量、负荷电量、电站运行状态、故障告警运行信息收集,将信息一方面根据调配转发表向上级调配系统转发,实现对新能源区域的集中管理,另一方面对新能源线路日发电数据和月发电数据进行统计,形成发电统计数据和曲线;智能计划调配管理接收上级日调配计划或月调配计划,根据各线路的日发电统计数据或月发电统计数据形成各电站日发电调配计划和月发电调配计划并进行智能计划分配。对区域内新能源电站进行集中管理包括以下步骤:
11)智能管控装置根据所接入的新能源电站的通信介质,选择光纤OTH插件、串口COM插件或无线WX插件;
12)智能管控装置通过液晶界面进行通信参数配置,包括规约选择和参数配置, 规约选择包括IEC61850规约、101规约、104规约、modbus规约、自定义规约;参数配置包括接口模式和通讯设置,其中,接口模式包括以太网、串口、局域无线网和GPRS模式,选择不同接口模式会自动弹出该模式的通讯设置菜单,比如选择以太网模式会弹出IP地址、子网掩码和网口使能的设置菜单;选择串口模式会自动弹出串口波特率、数据位、停止位、校验位和使能的设置菜单;选择GPRS模式会自动弹出GPRS地址、GPRS端口号和使能的设置菜单;选择433M局域无线网模式会自动弹出最大连接数和使能的设置菜单;
13)对于每个接入的新能源电站,需要按照配置模板提供电站信息,电站信息内容包括电站的遥测信息、遥信信息、新能源发电量、负荷电量、电站运行状态、故障告警运行信息。
14)管控MCP插件在初次上电或者配置模板更新时,自动对每个接入站的配置模板进行解析,并在RAM区动态开辟遥测数据库、遥信数据库、电量统计数据库、运行状态库、故障告警信息库;
15)管控MCP插件按照步骤12)中的通信参数配置,通过有线或无线方式与新能源电站接口装置建立通讯连接,实时接收新能源电站接口装置的电站信息并存入步骤14)中相应的数据库中,其中,遥测数据存入遥测数据库,遥信数据存入遥信数据库,发电量数据存入电量统计数据库,故障告警数据存入故障告警信息库;
16)管控MCP插件对步骤14)的数据库进行管理,遥测数据库设置越限阀值,超过该阀值生成遥测越限告警记录;遥信数据有变化生成遥信变位记录;电量统计数据库设置最大发电量阀值,超过该阀值生成发电量告警记录;如果连续三次未收到某电站的遥测和遥信数据信息,置该电站运行状态坏标志,否则置运行状态健康标志,并将运行状态标志存入运行状态库;
17)管控MCP插件按照其上位机模块FLASH区的调配转发表,将步骤14)中的数据库数据及告警记录发送给上级调配中心;
18)管控MCP插件在每天0:00时分,对前一天的电量统计数据库的电量进行统计分析,形成各新能源线路的日发电量数据和报表,存于上位机模块FLASH区的日发电统计区,该日发电统计区循环保存每个电站最新60天的日发电统计数据;
19)管控MCP插件在每月1日0:00时分,对上月的电量统计数据库的电量进行统计分析,形成各新能源线路的月发电量数据和报表,存于上位机模块FLASH区的月发电统计区,该月发电统计区循环保存每个电站最新12月发电统计数据。如图2所示,进行智能计划调配一体化管理包括以下步骤:
21)管控MCP插件的上位机模块实时接收上位机的调配命令报文;
22)管控MCP插件将接收到命令报文进行解析,解析正确后进入处理流程;
23)判断如果收到的是日发电计划命令,则将日总发电计划值存储于FLASH区的日发电计划调配计划区,然后转入步骤24);如果是月发电计划命令,将月总发电计划值存储于FLASH区的月发电计划调配区,进入步骤27),否则,结束;24)根据每个电站FLASH区的日发电统计区数据进行该电站日发电量预估统计,公式为:
Figure PCTCN2015089318-appb-000005
其中,wRk估为第k个电站的日发电量预估值,wRki为第k个电站第i天的日发电量统计数据,
Figure PCTCN2015089318-appb-000006
为第k个电站最近60天日发电量数据的和;
25)计算每个电站的日发电分配比例,公式为:
Figure PCTCN2015089318-appb-000007
其中,RATk为第k个电站的日发电分配比例,wRi估为第i个电站的日发电量预估 值,m为管控装置所接的所有电站数,
Figure PCTCN2015089318-appb-000008
为管控装置所接的所有电站日发电量预估值的和;
26)将步骤23)中FLASH区存储的日总发电计划值按步骤25)的比例分配到每个电站,形成每个电站的日发电计划值,进入步骤30),每个电站的日发电计划值计算公式为:
WRk计划=WR计划总*RATk
其中,WRk计划为第k个电站的日发电计划值,WR计划总为步骤23)中FLASH存储的日总发电计划值;
27)根据每个电站FLASH区的月发电统计区数据进行该电站月发电量预估统计,公式为:
Figure PCTCN2015089318-appb-000009
其中,wMk估为第k个电站的月发电量预估值,wMki为第k个电站第i个月的月发电统计数据,
Figure PCTCN2015089318-appb-000010
为第k个电站最近12个月的月发电统计数据的和;
28)计算每个电站的月发电分配比例,公式为:
Figure PCTCN2015089318-appb-000011
其中,MATk为第k个电站的月发电分配比例,wMi估为第i个电站的月发电量预估值,m为管控装置所接的所有电站数,
Figure PCTCN2015089318-appb-000012
为管控装置所接的所有电站月发电预估值的和;
29)将步骤23)中FLASH区存储的月总发电计划值按步骤28)的比例分配到每个电站,形成每个电站的月发电计划值,进入步骤30),每个电站的日发电计划值计算公式为:
WMk计划=WM计划总*MATk
其中,WMk计划为第k个电站的月发电计划值,WM计划总为步骤23)中FLASH 存储的月总发电计划值;
30)将日发电计划值或月发电计划值通过光纤OTH插件、串口COM插件或无线WX插件发送到各新能源线路接口装置。
如图3所示,对新能源电站接入稳定控制包括以下步骤:
31)智能管控装置通过液晶配置电能质量参数,在管控MCP插件的FLASH区预先配置集中式无功补偿控制策略,并且置电能质量控制标志=0;电能质量参数包括电压过低阀值、电压过高阀值、谐波含有率阀值、功率因数合格阀值和所有出线线路设置电能质量不合格控制参数,其中,电能质量不合格控制参数包括告警和跳闸;
32)采集AC插件对母线电压、进线电流、所有接入出线线路的电流量进行模拟量采集;
33)采集AC插件根据采集的母线电压、进线电流和所接入出线线路电流计算电压、进线电流的25次谐波含有率、所有出线线路电流的25次谐波含有率,并计算总的有功功率、总无功功率、总功率因数及所有出线线路的有功功率、无功功率、功率因数;
34)采集AC插件将步骤33)的计算结果通过CAN总线传送到管控MCP插件;
35)管控MCP插件实时检测电压、电压谐波含有率、总进线电流谐波含有率和总功率因数,并且判断进线电能质量指标,如果不合格进入步骤36);否则返回步骤32)。进线电能质量不合格的判断标准为电压幅值高于步骤31)中设置的电压过高阀值,或者电压幅值低于步骤31)中设置的电压过低阀值,或者电压谐波含有率超过谐波含有率阀值,或者进线电流谐波含有率超过谐波含有率阀值,或者总功率因数低于功率因数合格阀值,则判断进线电能质量不合格;
36)如果电能质量控制标志=0,进入步骤37);如果电能质量控制标志=1,进入步骤39);
37)根据步骤31)配置的集中式无功补偿控制策略,自动投切集中式无功补偿装置;
38)集中式无功补偿自动投切控制结束后,延时5分钟后置电能质量控制标志=1;返回步骤32);
39)管控MCP插件对所有电能质量不合格出线线路按照出线电流谐波含有率从大到小进行排序,对电流谐波含有率最大的出线线路按照步骤31)中该线路的电能质量不合格控制参数的配置进行控制,如果该参数为告警进入步骤40),如果为跳闸,进入步骤41);出线电能质量不合格的判断标准为出线电流谐波含有率超过谐波含有率阀值或者功率因数低于功率因数合格阀值,则判断该出线线路为电能质量不合格线路;
40)通过光纤OTH插件、串口COM插件或无线WX插件向新能源并网接口装置发出告警,并通过上位机模块向上级调配中心发告警命令,延时5分钟后,返回步骤32);
41)跳开新能源线路断路器,并将断路器变位遥信和原因通过上位机模块向上级调配中心发告警命令;延时5分钟后,返回步骤32)。
上述的对新能源电站接入稳定控制过程中,当检测到电能质量不合格时,优先按照无功补偿策略进行集中式无功补偿,如果还是不能满足指标要求,再断开不合格线路,即保障了电网稳定运行,也避免了新能源短时波动而造成频繁断开线路问题。
如图4所示,对新能源电站能量优化控制包括以下步骤:
51)管控MCP插件的上位机模块实时接收上位机的电价尖峰、峰时间段、谷 时间段和平时间段信息;
52)AC插件采集进线线路模拟量,并实时计算进线线路的有功功率、无功功率、功率因数;
53)在每天0:00计算储能控制目标,公式如下;
M控制=(WR计划总-W尖峰-W-W-W)*60/(24*60-T尖峰-T-T)
其中,M控制为集中式储能控制目标,WR计划总为日总发电计划值,W尖峰为区域内前一天尖峰时段总发电统计数据,W为区域内前一天峰时段总发电统计数据,W为区域内前一天谷时段总发电统计数据,W为区域内前一天平时间段总发电统计数据,T尖峰为尖峰时间段时间(分钟),T为峰时间段时间(分钟),T为谷时间段时间(分钟);
54)在尖峰、峰时间段,对集中式储能进行放电控制,对新能源电站接口装置发送最大发电计划命令,并根据步骤52)的采集和计算值,实时计算、统计和保存当天的尖峰时间段总发电量W尖峰、峰时间段总发电量W
55)在谷时间段,对集中式储能进行充电控制,对新能源电站接口装置发送最小发电计划命令,并根据步骤52)的采集和计算值,实时计算、统计和保存当天的谷时间段总发电量W
56)在平时间段,按照储能控制目标对集中式储能控制,如果M控制>0,进行放电控制,M控制<0,进行充电控制;并根据步骤52)的采集和计算值,实时计算、统计和保存当天的平时间段总发电量W
57)在平时间段,AC插件实时采集集中式储能线路的电流和电压,计算储能线路的发电量值M计算
58)在平时间段,根据实时计算的M控制与M计算的误差对储能控制目标进行误差纠正,计算公式为:
M'控制=M控制+(M控制-M计算)
其中,M'控制为集中式储能的实际发电控制目标;
59)在平时间段,用M'控制控制目标对集中式储能控制,即M控制=M'控制,然后返回步骤56),达到闭环实时误差纠正的目标。
上述的对新能源电站能量优化控制过程中,通过尖峰、峰、谷、平时间段采用不同的储能控制策略,并采用闭环误差实时纠正技术,实现了削峰填谷的最优化控制。

Claims (10)

  1. 一种新能源电站集中区域智能管控装置,其特征在于:包括机箱、面板、插件;所述插件插接在机箱背板总线上,所述插件包括电源PWM插件、管控MCP插件、采集AC插件、开入开出BIO插件、光纤OTH插件、串口COM插件、无线WX插件,其中:
    电源PWM插件,用于提供装置工作电源及遥信电源;
    管控MCP插件,包括管理CPU和控制CPU,其中管理CPU包括上位机处理模块和管理模块,上位机处理模块内置FLASH区,FLASH区内预先设置调配转发表,上位机处理模块用于接收调配命令并将信息根据调配转发表顺序转发至调配中心,管理模块用来实现区域集中管理及智能计划调配一体化管理;控制CPU用以实现接入稳定控制和能量优化控制,所述控制CPU和所述管理CPU通过双口RAM进行数据的实时交互;
    采集AC插件,用于采集母线、进线、集中式储能线路电流、电压及所有接入新能源电站线路的交流模拟量,进行滤波、采保、A/D变换和模拟量计算,并通过CAN总线与管控MCP插件的控制CPU进行模拟计算量的交互;
    开入开出BIO插件,用于处理遥信量及出口控制,将采集的开关量进行遥信处理后通过CAN总线发送到管控MCP插件的控制CPU,并通过CAN总线接收管控MCP插件的控制CPU的出口控制、无功调节、储能调节命令,并且执行控制CPU的控制命令;
    光纤OTH插件,用于通过光纤实现与远距离新能源站并网接口装置的通讯;
    串口COM插件,用于通过电缆实现与近距离新能源站并网接口装置及储能管理单元、无功补偿管理单元、调试工具的通讯;
    无线WX插件,用于实现与新能源站并网接口装置的无线局域通讯和GPRS通讯;
    所述电源PWM插件、管控MCP插件固定插接在机箱的1#、2#插槽位置,其余插件配置在机箱的任意插槽位置。
  2. 根据权利要求1所述的一种新能源电站集中区域智能管控装置,其特征在于,所述光纤OTH插件包括八路光纤以太网口。
  3. 根据权利要求1所述的一种新能源电站集中区域智能管控装置,其特征在于,所述串口COM插件包括16路RS485通讯口。
  4. 根据权利要求1所述的一种新能源电站集中区域智能管控装置,其特征在于,所述无线WX插件包括433M局域无线通讯和GPRS通讯。
  5. 利用权利要求1或4中任意一项所述的新能源电站集中区域智能管控装置对新能源电站集中区域进行智能管控的方法,其特征在于:包括对新能源电站的智能化管理、接入稳定控制和能量优化控制;
    所述对新能源电站的智能化管理包括对区域内新能源电站进行集中管理和进行智能计划调配一体化管理,
    所述对区域内新能源电站进行集中管理包括以下步骤:
    11)智能管控装置根据所接入的新能源电站的通信介质,选择光纤OTH插件、串口COM插件或无线WX插件;
    12)智能管控装置通过液晶界面进行通信参数配置;
    13)对于每个接入的新能源电站,需要按照配置模板提供电站信息;
    14)管控MCP插件在初次上电或者配置模板更新时,自动对每个接入电站的配置模板进行解析,并在RAM区动态开辟遥测数据库、遥信数据库、电量统计数据库、运行状态库、故障告警信息库;
    15)管控MCP插件按照所述步骤12)中的通信参数配置,通过有线或无线方式与新能源电站接口装置建立通讯连接,实时接收新能源电站接口装置的电站 信息并存入步骤14)的相应的数据库中,其中遥测数据存入遥测数据库,遥信数据存入遥信数据库,发电量数据存入电量统计数据库,故障告警数据存入故障告警信息库;
    16)管控MCP插件对所述步骤14)的数据库进行管理,遥测数据库设置越限阀值,超过该阀值生成遥测越限告警记录;遥信数据有变化生成遥信变位记录;电量统计数据库设置最大发电量阀值,超过该阀值生成发电量越限告警记录;如果连续三次未收到某电站的遥测和遥信数据信息,置该电站运行状态坏标志,否则置运行状态健康标志,并将运行状态标志存入运行状态库;
    17)管控MCP插件按照其上位机模块FLASH区的调配转发表,将所述步骤14)中的数据库数据及告警记录发送给上级调配中心;
    18)管控MCP插件在每天0:00时分,对前一天的电量统计数据库的电量进行统计分析,形成各新能源线路的日发电量数据和报表,存于上位机模块FLASH区的日发电统计区,该日发电统计区循环保存每个电站最新60天的日发电统计数据;
    19)管控MCP插件在每月1日0:00时分,对上月的电量统计数据库的电量进行统计分析,形成各新能源线路的月发电量数据和报表,存于上位机模块FLASH区的月发电统计区,该月发电统计区循环保存每个电站最新12月发电统计数据;
    所述进行智能计划调配一体化管理包括以下步骤:
    21)管控MCP插件的上位机模块实时接收上位机的调配命令报文;
    22)管控MCP插件将接收到命令报文进行解析,解析正确后进入处理流程步骤23);
    23)判断如果收到的是日发电计划命令,则将日总发电计划值存储于FLASH区 的日发电计划调配计划区,然后转入步骤24);如果是月发电计划命令,将月总发电计划值存储于FLASH区的月发电计划调配区,进入步骤27),否则,结束;
    24)根据每个电站FLASH区的日发电统计区数据进行该电站日发电量预估统计,公式为:
    Figure PCTCN2015089318-appb-100001
    其中,wRk估为第k个电站的日发电量预估值,wRki为第k个电站第i天的日发电量统计数据;
    25)计算每个电站的日发电分配比例,公式为:
    Figure PCTCN2015089318-appb-100002
    其中,RATk为第k个电站的日发电分配比例,wRi估为第i个电站的日发电量预估值,m为管控装置所接的所有电站数;
    26)将所述步骤23)中FLASH区存储的日总发电计划值按所述步骤25)的比例分配到每个电站,形成每个电站的日发电计划值,进入步骤30),每个电站的日发电计划值计算公式为:
    WRk计划=WR计划总*RATk
    其中,WRk计划为第k个电站的日发电计划值,WR计划总为所述步骤23)中FLASH存储的日总发电计划值;
    27)根据每个电站FLASH区的月发电统计区数据进行该电站月发电量预估统计,公式为:
    Figure PCTCN2015089318-appb-100003
    其中,wMk估为第k个电站的月发电量预估值,wMki为第k个电站第i个月的月发电统计数据;
    28)计算每个电站的月发电分配比例,公式为:
    Figure PCTCN2015089318-appb-100004
    其中,MATk为第k个电站的月发电分配比例,wMi估为第i个电站的月发电量预估值,m为管控装置所接的所有电站数;
    29)将所述步骤23)中FLASH区存储的月总发电计划值按所述步骤28)的比例分配到每个电站,形成每个电站的月发电计划值,进入步骤30),每个电站的日发电计划值计算公式为:
    WMk计划=WM计划总*MATk
    其中,WMk计划为第k个电站的月发电计划值,WM计划总为步骤23)中FLASH存储的月总发电计划值;
    30)将日发电计划值或月发电计划值通过光纤OTH插件、串口COM插件或无线WX插件发送到各新能源线路接口装置;
    所述对新能源电站接入稳定控制包括以下步骤:
    31)智能管控装置通过液晶配置电能质量参数,在管控MCP插件的FLASH区预先配置集中式无功补偿控制策略,并且置电能质量控制标志=0;
    32)采集AC插件对母线电压、进线电流、所有接入出线线路的电流量进行模拟量采集;
    33)采集AC插件根据采集的母线电压、进线电流和所接入出线线路电流计算电压、进线电流的25次谐波含有率、所有出线线路电流的25次谐波含有率,并计算总的有功功率、总无功功率、总功率因数及所有出线线路的有功功率、无功功率、功率因数;
    34)采集AC插件将步骤33)的计算结果通过CAN总线传送到管控MCP插件;
    35)管控MCP插件实时检测电压幅值、电压谐波含有率、总进线电流谐波含 有率和总功率因数,并且判断进线电能质量指标,如果不合格进入步骤36);否则返回步骤32);
    36)如果电能质量控制标志=0,进入步骤37);如果电能质量控制标志=1,进入步骤39);
    37)根据步骤31)配置的集中式无功补偿控制策略,自动投切集中式无功补偿装置;
    38)集中式无功补偿自动投切控制结束后,延时5分钟后置电能质量控制标志=1;返回步骤32);
    39)管控MCP插件对所有电能质量不合格出线线路按照出线电流谐波含有率从大到小进行排序,对电流谐波含有率最大的出线线路按照步骤31)中该线路的电能质量不合格控制参数的配置进行控制,如果该参数为告警进入步骤40),如果为跳闸,进入步骤41);
    40)通过光纤OTH插件、串口COM插件或无线WX插件向新能源并网接口装置发出告警,并通过上位机模块向上级调配中心发告警命令,延时5分钟后,返回步骤32);
    41)跳开新能源线路断路器,并将断路器变位遥信和原因通过上位机模块向上级调配中心发告警命令;延时5分钟后,返回步骤32);
    所述能量优化控制包括以下步骤:
    51)管控MCP插件的上位机模块实时接收上位机的电价尖峰、峰时间段、谷时间段和平时间段信息;
    52)AC插件采集进线线路模拟量,并实时计算进线线路的有功功率、无功功率和功率因数;
    53)在每天0:00计算储能控制目标,公式如下;
    M控制=(WR计划总-W尖峰-W-W-W)*60/(24*60-T尖峰-T-T)
    其中,M控制为集中式储能控制目标,WR计划总为日总发电计划值,W尖峰为区域内前一天尖峰时段总发电统计数据,W为区域内前一天峰时段总发电统计数据,W为区域内前一天谷时段总发电统计数据,W为区域内前一天平时间段总发电统计数据,T尖峰为尖峰时间段时间(单位:分钟),T为峰时间段时间(单位:分钟),T为谷时间段时间(单位:分钟);
    54)在尖峰、峰时间段,对集中式储能进行放电控制,对新能源电站接口装置发送最大发电计划命令,并根据步骤52)的采集和计算值,实时计算、统计和保存当天的尖峰时间段总发电量W尖峰、峰时间段总发电量W
    55)在谷时间段,对集中式储能进行充电控制,对新能源电站接口装置发送最小发电计划命令,并根据步骤52)的采集和计算值,实时计算、统计和保存当天的谷时间段总发电量W
    56)在平时间段,按照储能控制目标对集中式储能控制,如果M控制>0,进行放电控制,M控制<0,进行充电控制;并根据步骤52)的采集和计算值,实时计算、统计和保存当天的平时间段总发电量W
    57)在平时间段,AC插件实时采集集中式储能线路的电流和电压,计算储能线路的发电量值M计算
    58)在平时间段,根据实时计算的M控制与M计算的误差对储能控制目标进行误差纠正,计算公式为:
    M'控制=M控制+(M控制-M计算)
    其中,M'控制为集中式储能的实际发电控制目标;
    59)在平时间段,用M'控制控制目标对集中式储能控制,即M控制=M'控制,然后返回步骤56),达到闭环实时误差纠正的目标。
  6. 根据权利要求5所述的智能管控方法,其特征在于,所述步骤12)中,通信参数配置包括规约选择和参数配置,所述规约选择包括IEC61850规约、101规约、104规约、modbus规约、自定义规约;所述参数配置包括接口模式和通讯设置,所述接口模式包括以太网、串口、局域无线和GPRS模式,选择不同接口模式会自动弹出该模式的通讯设置菜单。
  7. 根据权利要求5所述的智能管控方法,其特征在于,所述步骤13)中,电站信息包括电站的遥测信息、遥信信息、新能源发电量、负荷电量、电站运行状态、故障告警运行信息。
  8. 根据权利要求5所述的智能管控方法,其特征在于,所述步骤31)中,电能质量参数包括电压过低阀值、电压过高阀值、谐波含有率阀值、功率因数合格阀值和所有出线线路设置电能质量不合格控制参数,其中,电能质量不合格控制参数包括告警和跳闸。
  9. 根据权利要求5或8所述的智能管控方法,其特征在于,所述步骤35)中,进线电能质量不合格的判断标准为电压幅值高于所述步骤31)中设置的电压过高阀值,或者电压幅值低于所述步骤31)中设置的电压过低阀值,或者电压谐波含有率超过谐波含有率阀值,或者进线电流谐波含有率超过谐波含有率阀值,或者总功率因数低于功率因数合格阀值,则判断进线电能质量不合格。
  10. 根据权利要求5所述的智能管控方法,其特征在于,所述步骤39)中,出线电能质量不合格的判断标准为出线电流谐波含有率超过谐波含有率阀值或者功率因数低于功率因数合格阀值,则判断该出线线路为电能质量不合格线路。
PCT/CN2015/089318 2014-09-23 2015-09-10 新能源电站集中区域智能管控装置及方法 WO2016045508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410491505.2A CN104319876B (zh) 2014-09-23 2014-09-23 一种新能源电站集中区域智能管控装置及方法
CN2014104915052 2014-09-23

Publications (1)

Publication Number Publication Date
WO2016045508A1 true WO2016045508A1 (zh) 2016-03-31

Family

ID=52375075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089318 WO2016045508A1 (zh) 2014-09-23 2015-09-10 新能源电站集中区域智能管控装置及方法

Country Status (2)

Country Link
CN (1) CN104319876B (zh)
WO (1) WO2016045508A1 (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870789A (zh) * 2016-06-06 2016-08-17 镇江加勒智慧电力科技股份有限公司 数据中心母线系统
CN107203179A (zh) * 2017-06-23 2017-09-26 零点创新科技有限公司 加油加气站检测与综合智能控制装置及其控制预警方法
CN107681975A (zh) * 2017-08-21 2018-02-09 珠海格力电器股份有限公司 监控发电站的方法、装置和系统
CN109065975A (zh) * 2018-07-12 2018-12-21 国网四川省电力公司阿坝供电公司 一种直流系统化管理系统及其控制方法
CN109742835A (zh) * 2019-03-15 2019-05-10 王龙 一种船舶供电设备及船舶充电系统
CN109842141A (zh) * 2019-03-04 2019-06-04 曹麾 低压台区峰谷负荷平衡智能管理方法
CN110311947A (zh) * 2019-05-17 2019-10-08 中国电力科学研究院有限公司 一种新能源用电比例信息推送方法及系统
CN110414743A (zh) * 2019-08-06 2019-11-05 南瑞集团有限公司 一种适用于园区的综合能源管控方法及系统
CN110649190A (zh) * 2019-08-16 2020-01-03 国网江苏省电力有限公司 一种磷酸铁锂储能电站火灾模型及火灾模拟方法
CN110854803A (zh) * 2019-11-20 2020-02-28 上海欣能信息科技发展有限公司 一种具有误接线保护报警的遥信信号采集系统
CN111130220A (zh) * 2020-01-15 2020-05-08 青海绿能数据有限公司 一种分布式光伏电站信息采集与监控的装置
CN112149952A (zh) * 2020-08-14 2020-12-29 中国地质大学(武汉) 一种母线槽和pdu集中管理系统
CN112505486A (zh) * 2020-12-03 2021-03-16 山西世纪中试电力科学技术有限公司 源荷储一体化并网电能质量测试系统
CN113572262A (zh) * 2021-07-16 2021-10-29 国网江西省电力有限公司供电服务管理中心 一种低压物联感知终端的拓扑发送和识别方法
CN113852350A (zh) * 2021-09-29 2021-12-28 中国华能集团清洁能源技术研究院有限公司 一种光伏电站监控运维系统
CN113946941A (zh) * 2021-09-24 2022-01-18 绍兴大明电力建设有限公司 一种配电站房物联采集模型的生成方法及装置
CN114037099A (zh) * 2021-11-10 2022-02-11 江苏慧智能源工程技术创新研究院有限公司 基于工业园区的智能储能电站运维系统
CN115395661A (zh) * 2022-09-28 2022-11-25 国家电投集团广西电力有限公司运营服务分公司 基于电力专网构建的新能源远程集控中心通信系统
CN116231868A (zh) * 2023-03-23 2023-06-06 北京东华博泰科技有限公司 基于物联网的水电安全监控系统
CN116742810A (zh) * 2023-08-09 2023-09-12 安徽百胜电子系统集成有限责任公司 一种智能变电站辅助系统综合监控装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319876B (zh) * 2014-09-23 2016-05-04 国电南瑞科技股份有限公司 一种新能源电站集中区域智能管控装置及方法
CN105515043A (zh) * 2015-12-14 2016-04-20 北京天诚同创电气有限公司 风电场电网、风机和网络的故障预警方法、装置及系统
CN105958647A (zh) * 2016-06-15 2016-09-21 国家电网公司 主动配电网综合量测调控装置及方法
CN109544184B (zh) * 2018-11-27 2021-04-06 湖南共睹互联网科技有限责任公司 基于物联网的交易保障数据监测方法、终端及存储介质
CN111327116A (zh) * 2020-03-23 2020-06-23 浙江同济科技职业学院 一种微电网储能控制系统、方法、智能终端
CN116662312A (zh) * 2023-04-24 2023-08-29 广东电网有限责任公司茂名供电局 一种基于大数据的接地数据修正方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080097655A1 (en) * 2006-10-19 2008-04-24 Tigo Energy, Inc. Method and system to provide a distributed local energy production system with high-voltage DC bus
WO2009056662A1 (es) * 2007-11-02 2009-05-07 Huerto Fotovoltáico Montesol, S.L. Sistema para la monitorización de instalaciones solares fotovoltáicas
CN103545926A (zh) * 2013-10-10 2014-01-29 国家电网公司 一种分布式电源并网接口装置
CN103812217A (zh) * 2014-01-22 2014-05-21 联合光伏(深圳)有限公司 光伏电站智能集中监控和管理的方法和系统
JP2014147235A (ja) * 2013-01-29 2014-08-14 Solar Energy Solutions Inc 太陽光発電監視方法
CN104319876A (zh) * 2014-09-23 2015-01-28 国电南瑞科技股份有限公司 一种新能源电站集中区域智能管控装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080097655A1 (en) * 2006-10-19 2008-04-24 Tigo Energy, Inc. Method and system to provide a distributed local energy production system with high-voltage DC bus
WO2009056662A1 (es) * 2007-11-02 2009-05-07 Huerto Fotovoltáico Montesol, S.L. Sistema para la monitorización de instalaciones solares fotovoltáicas
JP2014147235A (ja) * 2013-01-29 2014-08-14 Solar Energy Solutions Inc 太陽光発電監視方法
CN103545926A (zh) * 2013-10-10 2014-01-29 国家电网公司 一种分布式电源并网接口装置
CN103812217A (zh) * 2014-01-22 2014-05-21 联合光伏(深圳)有限公司 光伏电站智能集中监控和管理的方法和系统
CN104319876A (zh) * 2014-09-23 2015-01-28 国电南瑞科技股份有限公司 一种新能源电站集中区域智能管控装置及方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870789A (zh) * 2016-06-06 2016-08-17 镇江加勒智慧电力科技股份有限公司 数据中心母线系统
CN107203179A (zh) * 2017-06-23 2017-09-26 零点创新科技有限公司 加油加气站检测与综合智能控制装置及其控制预警方法
CN107203179B (zh) * 2017-06-23 2023-02-28 零点创新科技有限公司 加油加气站检测与综合智能控制装置及其控制预警方法
CN107681975A (zh) * 2017-08-21 2018-02-09 珠海格力电器股份有限公司 监控发电站的方法、装置和系统
CN109065975A (zh) * 2018-07-12 2018-12-21 国网四川省电力公司阿坝供电公司 一种直流系统化管理系统及其控制方法
CN109842141A (zh) * 2019-03-04 2019-06-04 曹麾 低压台区峰谷负荷平衡智能管理方法
CN109742835A (zh) * 2019-03-15 2019-05-10 王龙 一种船舶供电设备及船舶充电系统
CN110311947A (zh) * 2019-05-17 2019-10-08 中国电力科学研究院有限公司 一种新能源用电比例信息推送方法及系统
CN110414743A (zh) * 2019-08-06 2019-11-05 南瑞集团有限公司 一种适用于园区的综合能源管控方法及系统
CN110649190A (zh) * 2019-08-16 2020-01-03 国网江苏省电力有限公司 一种磷酸铁锂储能电站火灾模型及火灾模拟方法
CN110854803A (zh) * 2019-11-20 2020-02-28 上海欣能信息科技发展有限公司 一种具有误接线保护报警的遥信信号采集系统
CN111130220A (zh) * 2020-01-15 2020-05-08 青海绿能数据有限公司 一种分布式光伏电站信息采集与监控的装置
CN111130220B (zh) * 2020-01-15 2023-06-06 青海绿能数据有限公司 一种分布式光伏电站信息采集与监控的装置
CN112149952A (zh) * 2020-08-14 2020-12-29 中国地质大学(武汉) 一种母线槽和pdu集中管理系统
CN112505486A (zh) * 2020-12-03 2021-03-16 山西世纪中试电力科学技术有限公司 源荷储一体化并网电能质量测试系统
CN112505486B (zh) * 2020-12-03 2024-02-20 山西世纪中试电力科学技术有限公司 源荷储一体化并网电能质量测试系统
CN113572262B (zh) * 2021-07-16 2023-08-11 国网江西省电力有限公司供电服务管理中心 一种低压物联感知终端的拓扑发送和识别方法
CN113572262A (zh) * 2021-07-16 2021-10-29 国网江西省电力有限公司供电服务管理中心 一种低压物联感知终端的拓扑发送和识别方法
CN113946941A (zh) * 2021-09-24 2022-01-18 绍兴大明电力建设有限公司 一种配电站房物联采集模型的生成方法及装置
CN113946941B (zh) * 2021-09-24 2024-05-14 绍兴大明电力建设有限公司 一种配电站房物联采集模型的生成方法及装置
CN113852350A (zh) * 2021-09-29 2021-12-28 中国华能集团清洁能源技术研究院有限公司 一种光伏电站监控运维系统
CN113852350B (zh) * 2021-09-29 2023-11-03 中国华能集团清洁能源技术研究院有限公司 一种光伏电站监控运维系统
CN114037099A (zh) * 2021-11-10 2022-02-11 江苏慧智能源工程技术创新研究院有限公司 基于工业园区的智能储能电站运维系统
CN115395661A (zh) * 2022-09-28 2022-11-25 国家电投集团广西电力有限公司运营服务分公司 基于电力专网构建的新能源远程集控中心通信系统
CN116231868A (zh) * 2023-03-23 2023-06-06 北京东华博泰科技有限公司 基于物联网的水电安全监控系统
CN116231868B (zh) * 2023-03-23 2023-10-03 北京东华博泰科技有限公司 基于物联网的水电安全监控系统
CN116742810A (zh) * 2023-08-09 2023-09-12 安徽百胜电子系统集成有限责任公司 一种智能变电站辅助系统综合监控装置
CN116742810B (zh) * 2023-08-09 2023-10-10 安徽百胜电子系统集成有限责任公司 一种智能变电站辅助系统综合监控装置

Also Published As

Publication number Publication date
CN104319876A (zh) 2015-01-28
CN104319876B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2016045508A1 (zh) 新能源电站集中区域智能管控装置及方法
CN202443306U (zh) 智能楼宇能效综合监控管理系统
CN108539750A (zh) 一种基于稳控技术的精准负荷控制系统及方法
CN202085196U (zh) 一种家庭智能用能监控系统
WO2014090018A1 (zh) 一种基于iec61850标准的智能配电终端
CN109327323B (zh) 一种新能源并网电力通信网规划和优化方法及系统
CN103248122A (zh) 电力故障主动上报系统
CN105116809A (zh) 一种用户可自定义的智能微电网负荷控制系统及方法
CN107681783A (zh) 一种精准切负荷控制系统控制终端
CN106451770B (zh) 一种基于配电系统低容错监控信息交互系统
CN104319774A (zh) 智能社区的监控方法和装置
CN108173261A (zh) 新能源并网有功高可靠性自动控制系统
CN103199529A (zh) 基于iec61850标准的微网综合协调控制架构
CN108054772A (zh) 一种储能监控系统
CN105553807A (zh) 一种具有环网通信结构的10kV低压智能配电网系统
CN105048630A (zh) 一种基于数据自动分析系统的智能调度控制系统及方法
CN107425601A (zh) 一种家居主机以及负荷监控管理方法
CN110927447A (zh) 一种基于多芯模组化的台区六分线损监测装置和监测方法
CN105938346A (zh) 防窃电电力计量用智能采集终端系统
CN104283222A (zh) 一种地区电网无功电压控制系统
CN103259873A (zh) 一种通过前置机对风电场设备采集数据和控制的方法及系统
CN102427253B (zh) 电动汽车充放电监控中心与充电站当地监控之间的通讯方法
CN211480995U (zh) 分布式资源聚合装置及系统
CN205453295U (zh) 一种电力调度自动化二次设备运行监测报警系统
CN109004751B (zh) 一种轻量级分布式能源网关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843533

Country of ref document: EP

Kind code of ref document: A1