WO2016045236A1 - 一种地下管线标识与实时测深系统 - Google Patents

一种地下管线标识与实时测深系统 Download PDF

Info

Publication number
WO2016045236A1
WO2016045236A1 PCT/CN2015/000669 CN2015000669W WO2016045236A1 WO 2016045236 A1 WO2016045236 A1 WO 2016045236A1 CN 2015000669 W CN2015000669 W CN 2015000669W WO 2016045236 A1 WO2016045236 A1 WO 2016045236A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
pipeline
radio frequency
identification
radar
Prior art date
Application number
PCT/CN2015/000669
Other languages
English (en)
French (fr)
Inventor
解思亮
Original Assignee
青岛厚科信息工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛厚科信息工程有限公司 filed Critical 青岛厚科信息工程有限公司
Publication of WO2016045236A1 publication Critical patent/WO2016045236A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations

Definitions

  • the invention relates to the field of underground pipeline identification and depth measurement, in particular to underground pipeline identification and real-time sounding system based on radio frequency and radar technology.
  • the present invention provides an identification and measurement system capable of measuring the depth of an underground pipeline and its surrounding environment in real time.
  • the underground pipeline identification and real-time sounding system of the present invention comprises a pipeline, an identification tape laid on the pipeline, and a detector, wherein the identification tape is internally encapsulated with a layer of aluminum foil, and an electronic identifier is disposed above the identification belt, and the electronic identification
  • the device is internally provided with an RFID electronic tag
  • the detector includes a radio frequency module, a radar detection module, a data processing module and a display module; the radio frequency module and the radar detection module are respectively connected with the data processing module, and the radio frequency module and the radar detection module operate independently;
  • the instrument is provided with an RF module and a radar detection module switch;
  • the radio frequency module transmits a radio frequency signal and receives a response signal reflected by the identification band; and transmits the information returned by the read electronic identifier to the data processing module;
  • the radar detecting module transmits a radar wave and receives a radar wave returned by the secondary radiation of the aluminum foil on the marked belt;
  • the data processing module includes a radio frequency mode and a radar mode; when in the radio frequency mode, the data processing module receives the data information transmitted by the radio frequency module for decoding, and interprets the built-in pipeline information of the electronic identifier; the data processing module calls the electromagnetic wave pre-written in the ROM.
  • the display module is configured to display information on the RFID electronic tag decoded by the data processing module, the electronic identifier depth h1, h2 calculated by the data processing module, and the pipeline depth h.
  • the RFID electronic tag is pre-configured with pipeline information.
  • radio frequency module and the radar detecting module separately and independently detect, and the working steps are:
  • the radio frequency module perform rough positioning according to the preset electronic identifier information, and then perform radio frequency matching with the electronic identifier to reach the determined position, measure the buried depth h1 of the electronic identifier by radio frequency, and read the electronic identification.
  • the preset pipeline information in the device can be read in real time through the display module;
  • the display module can observe the change of the real-time buried depth h2 of the identification tape, and indirectly infer whether the soil layer structure around the pipeline has undergone major changes. Further, the electronic markers are spaced apart on the identification tape according to the location to be identified.
  • the thin aluminum foil has a width of 10 to 20 cm, and a more preferred thin aluminum foil has a width of 15 cm.
  • Both the RF signal and the radar signal are electromagnetic waves, but the frequency bands used are different. If the RF reading, writing, and depth-detecting operations are performed simultaneously with the radar sounding operation, interference may occur between them. Therefore, the two detection methods are performed independently.
  • the electronic identifier is substantially positioned by the preset position information, and then the electronic marker is accurately searched and positioned using the radio frequency signal, and the current depth data and preset information of the electronic marker are read, and the radar module is switched.
  • the depth of the marking strip is obtained by detecting the depth of the aluminum foil on the marking strip, and the state of the subterranean soil layer is estimated.
  • the beneficial effects of the present invention are: real-time measurement and display of underground pipeline marking and its current buried depth can be realized, the measurement process is simpler and more feasible, saving manpower and material input of measurement, reducing detection Cost; high measurement accuracy; combined with two measurement methods: RF measurement and radar measurement.
  • Management and construction excavation have important auxiliary and guiding functions; combined with the trace strips with aluminum foil, it can realize the estimation of underground soil structure, prevent the occurrence of disaster accidents, and have high protection for people's lives and property. Practical meaning.
  • Figure 1 is a working principle diagram of the present invention.
  • 1-detector 2-electronic marker
  • 3-marker belt 4-pipeline.
  • An underground pipeline identification and real-time sounding system includes a pipeline, a marking tape laid 30-70 cm above the pipeline, and a detector, wherein the marking tape is internally encapsulated with a layer of aluminum foil, and the width of the aluminum foil is 10-20 cm, preferably 15 cm.
  • the electronic tag 2 is fixed on the upper side of the identification tape 3.
  • the electronic tag 2 is provided with an RFID electronic tag.
  • the RFID electronic tag is a passive electronic tag and is provided with pipeline information.
  • the preset pipeline information includes the laying time of the pipeline. , buried depth, the distance from the pipeline to the marking belt.
  • the detector comprises a radio frequency module, a radar detection module, a data processing module and a display module; the radio frequency module and the radar detection module are respectively connected with the data processing module, the radio frequency module and the radar detection module operate independently; the radio frequency module and the radar are arranged on the detector Detection module switching switch;
  • the radio frequency module includes two parts, a radio frequency signal transmitting and receiving, respectively for transmitting an electromagnetic wave signal and receiving a response signal returned by the electronic identifier, and transmitting the information returned by the read electronic identifier to the data processing module;
  • the radar detecting module comprises a transmitting unit and a receiving unit, respectively for transmitting a radar wave and receiving a radar wave signal returned by the secondary radiation of the aluminum foil on the marked strip;
  • the data processing module includes a radio frequency mode and a radar detection mode.
  • the data processing module receives the data information transmitted by the radio frequency module for decoding, and the data of the built-in pipeline information of the electronic identifier that the well will interpret
  • the electromagnetic wave velocity, the electronic identifier, and the pipeline depth calculation program written in advance in the ROM are combined, and the average frequency of the electromagnetic wave V t is calculated by combining the radio frequency signal transmission time t 1 of the log recording and the time t 2 of receiving the response signal, respectively.
  • the data processing module retrieves the recorded radar wave transmission time t 3 and the radar wave return time t 4 , and calls the radar wave velocity and the marker band depth calculation program in the ROM, respectively.
  • the electromagnetic wave velocity can be obtained by the dielectric constant method, the reflection coefficient method, or the known depth can be used to reverse the average velocity. These calculation methods have been described in detail in the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种地下管线标识与实时测深系统,属于管线标识与深度测量领域,提供一种能够实时测量地下管线深度及其周围环境状况的标识与测量系统。该系统包括管线、铺设在管线上方的标识带,以及探测仪,所述标识带内部封装一层铝箔,标识带上方设有电子标识器,电子标识器内部设有RFID电子标签,所述探测仪包括射频模块、雷达探测模块、数据处理模块和显示模块;射频模块和雷达探测模块分别与数据处理模块连接,射频模块与雷达探测模块独立运行;探测仪上设有射频模块和雷达探测模块切换开关。能够实现对地下管线进行标识及其当前埋深的实时测量与显示,测量过程更加简便、可行,节省测量的人力和物力投入,减少检测成本。

Description

一种地下管线标识与实时测深系统 技术领域
本发明涉及地下管线标识与深度测量领域,具体地说,基于射频与雷达技术的地下管线标识与实时测深系统。
背景技术
随着社会的高速发展,地下管线的类型和数量呈增多趋势,后续施工时,急需获得地下已埋设的管线的基本信息及其当前埋深,虽然管线在埋设之初就设定了埋深并将信息记录归档,但是随着时间推移,人员切换频繁,信息交接不全面,导致早期管线信息丢失,再加上由于自然原因如雨水冲刷,或人为原因如施工等的影响,管道的埋深也会发生变化,后期施工过程中如无法及时得知管线当前的深度,施工过程中难免会对管线造成破坏,带来不必要的麻烦;而且由于地下环境复杂,特别是管线铺设过程中对管线周围的土层结构也会造成影响,管线埋设后,由于土层的塌陷或是管道泄漏导致管线周围土层流失形成地下空洞,给地面上的人以及其它设施带来潜在的威胁。
现阶段常用的地下管线标识方式主要有两种:一是在地面设置警示标志;二是在地下埋设警示物,如行踪标识带或电子标识器。无论选用哪种方式都无法实时反映管线信息以及管线周围环境情况。
发明内容
为解决上述问题,本发明提供一种能够实时测量地下管线深度及其周围环境状况的标识与测量系统。
本发明所述的地下管线标识与实时测深系统,包括管线、铺设在管线上方的标识带,以及探测仪,所述标识带内部封装一层铝箔,标识带上方设有电子标识器,电子标识器内部设有RFID电子标签,所述探测仪包括射频模块、雷达探测模块、数据处理模块和显示模块;射频模块和雷达探测模块分别与数据处理模块连接,射频模块与雷达探测模块独立运行;探测仪上设有射频模块和雷达探测模块切换开关;
所述射频模块,发射射频信号和接收经标识带反射回来的应答信号;并将读取到的电子标识器返回的信息传输到数据处理模块;
所述雷达探测模块,发射雷达波和接收经标识带上铝箔二次辐射返回的雷达波;
数据处理模块,包括射频模式和雷达模式;处于射频模式时,数据处理模块接收射频模块传输来的数据信息进行解码,解读出电子标识器内置管线信息;数据处理模块调用ROM中预先写入的电磁波波速、电子标识器深度、管线深度计算程序,结合系统日志记录的射频信号发射时间t1和接收到应答信号时间t2,分别计算得到电磁波平均速度Vt和电子标识器深度h1=(t2-t1)Vt/2、管线深度h=h1+d,其中d为电子标识器到管线的距离,在解码的电子标识器返回的信息中;处于雷达模式时,数据处理模块调取日志记录的雷达波发射时间t3和雷达波返回的时间t4,并调用ROM中的雷达波波速、标识带深度计算程序,分别计算得到雷达波平均速度Vs,以及标识带深度h2=(t4-t3)Vs/2。
显示模块,用于显示数据处理模块解码的RFID电子标签上的信息、数据处理模块计算得到的电子标识器深度h1、h2和管线深度h。
进一步的,所述RFID电子标签上预设有管线信息。
进一步的,所述射频模块与雷达探测模块分别、独立进行探测,其工作步骤是;
(1)开启射频模块,根据预置的电子标识器信息进行粗略定位,然后通过与电子标识器进行射频匹配进达到确定位,通过射频方式对电子标识器埋深h1进行测算并读取电子标识器内预置的管线信息,通过显示模块可以实时读取;
(2)切换到雷达模块,沿标识带进行探测,通过显示模块可以观察标识带实时埋深h2的变化情况,间接推断管线周围土层结构是否发生过重大变化。进一步的,根据需要标识的位置,电子标识器在标识带上间隔设置。
优选的,所述薄层铝箔的宽度为10~20cm,更为优选的薄层铝箔的宽度为15cm。
射频信号与雷达信号都是电磁波,只是使用的频率波段不同,若射频读写、探深操作与雷达探深操作同时进行的话相互之间可能会发生干扰,所以两种探测方式独立进行,先使用射频模式,通过预置的位置信息对电子标识器进行大体上定位,然后使用射频信号对电子标识器进行精确的搜寻定位并读取电子标识器当前的深度数据以及预置信息,切换到雷达模块,通过探测标识带上铝箔的深度得到标识带的埋深,估测地下土层的状态。
与现有技术相比,本发明的有益效果是;能够实现对地下管线进行标识及其当前埋深的实时测景与显示,测量过程更加简便、可行,节省测量的人力和物力投入,减少检测成本;测量精度高;射频测量与雷达测量两种测量方式结合,不仪可以获知当前电子标识器内预置的管线信息,还可以测算出管线的实时埋深,对非开挖式的管线普查管理与施工挖掘有重要的辅助和指导作用;结合附有铝箔的行踪标识带,可以实现对地下土层结构的估测,防止灾害性事故的发生,对保障人们的生命财产安全具有很高的实用意义。
附图说明
图1为本发明工作原理图。
其中,1-探测仪;2-电子标识器;3-标识带;4-管线。
具体实施方式
下面结合附图和实施例对本发明做进一步解释。
一种地下管线标识与实时测深系统,包括管线、铺设在管线上方30~70cm的标识带,以及探测仪,所述标识带内部封装一层铝箔,铝箔的宽度为10~20cm,优选15cm,标识带3上方固定电子标识器2,电子标识器2内部设有RFID电子标签,所述RFID电子标签为无源电子标签,并预设有管线信息,所预设的管线信息包括管线的铺设时间、埋深、管线到标识带的距离。所述探测仪包括射频模块、雷达探测模块、数据处理模块和显示模块;射频模块和雷达探测模块分别与数据处理模块连接,射频模块与雷达探测模块独立运行;探测仪上设有射频模块和雷达探测模块切换开关;
所述射频模块,包括射频信号发射与接收两部分,分别用于发射电磁波信号和接收电子标识器返回的应答信号,并将读取到的电子标识器返回的信息传输到数据处理模块;
所述雷达探测模块,包括发射单元和接收单元,分别用于发射雷达波和接收经标识带上铝箔二次辐射返回的雷达波信号;
所述数据处理模块,包括射频模式和雷达探测模式,探测仪工作于射频模式时,数据处理模块接收到射频模块传输来的数据信息进行解码,井将解读出的电子标识器内置管线信息等数据,同时调用ROM中预先写入的电磁波波速、电子标识器、管线深度计算程序,结合日志记录的射频信号发射时间t1和接收到应答信号时间t2,分别计算得到电磁波平均速度Vt,和电子标识器深度h1=(t2-t1)Vt/2、管线深度h=h1+d,其中d为电子标识器到管线的距离,包含在电子标识器预置管线信息中,通过射频模块读取、数据处理模块解码得到;
同理,探测仪工作在雷达模式时,数据处理模块调取日志记录的雷达波发射时间t3和雷达波返回的时间t4,并调用ROM中的雷达波波速、标识带深度计算程序,分别计算得到雷达波平均速度V8,以及标识带深度h2=(t4-t3)Vs/2。
其中电磁波波速可以通过介电常数法,反射系数法来求取,也可以利用已知深度来反求平均速度,这些计算方法在现有技术中已经详细的介绍。

Claims (7)

  1. 一种地下管线标识与实时测深系统,包括管线、铺设在管线上方的标识带,以及探测仪,其特征在于,所述标识带内部封装一层铝箔,标识带上方设有电子标识器,电子标识器内部设有RFID电子标签,所述探测仪包括射频模块、雷达探测模块、数据处理模块和显示模块;射频模块和雷达探测模块分别与数据处理模块连接,射频模块与雷达探测模块独立运行;探测仪上设有射频模块和雷达探测模块切换开关;
    所述射频模块,发射射频信号和接收经标识带反射回来的应答信号;并将读取到的电子标识器返回的信息传输到数据处理模块;
    所述雷达探测模块,发射雷达波和接收经标识带上铝箔二次辐射返回的雷达波;
    数据处理模块,包括射频模式和雷达模式;处于射频模式时,数据处理模块接收射频模块传输来的数据信息进行解码,解读出电子标识器内置管线信息;数据处理模块调用ROM中预先写入的电磁波波速、电子标识器深度、管线深度计算程序,结合系统日志记录的射频信号发射时间t1和接收到应答信号时间t2,分别计算得到电磁波平均速度Vt和电子标识器深度h1=(t2-t1)Vt/2、管线深度h=h1+d,其中d为电子标识器到管线的距离,在解码的电子标识器返回的信息中;处于雷达模式时,数据处理模块调取日志记录的雷达波发射时间t3和雷达波返回的时间t4,并调用ROM中的雷达波波速、标识带深度计算程序,分别计算得到雷达波平均速度Vg,以及标识带深度h2=(t4-t3)VB/2。
    显示模块,用于显示数据处理模块解码的RFID电子标签上的信息、数据处理模块计算得到的电子标识器深度h1、h2和管线深度h。
  2. 根据权利要求1所述的地下管线标识与实时测深系统,其特征在于,所述RFID电子标签上预设有管线信息。
  3. 根据权利要求1所述的地下管线标识与实时测深系统,其特征在于,所述射频模块与雷达探测模块分别、独立进行探测。
  4. 根据权利要求3所述的地下管线标识与实时测深系统,其特征在于,所述管线实时测深系统的工作步骤是:
    (1)开启射频模块,根据预置的电子标识器信息进行粗略定位,然后通过与电子标识器进行射频匹配进达到确定位,通过射频方式对电子标识器埋深h1进行测算并读取电子标识器内预置的管线信息,通过显示模块可以实时读取;
    (2)切换到雷达模块,沿标识带进行探测,通过显示模块可以观察标识带实时埋深h2的变化情况,间接推断管线周围土层结构是否发生过重大变化。
  5. 根据权利要求4所述的地下管线标识与实时测深系统,其特征在于,电子标识器在标识带上间隔设置。
  6. 根据权利要求4所述的地下管线标识与实时测深系统,其特征在于,所述薄层铝箔的宽度为10~20cm。
  7. 根据权利要求4所述的地下管线标识与实时测深系统,其特征在于,所述薄层铝箔的宽度为15cm。
PCT/CN2015/000669 2014-09-28 2015-09-28 一种地下管线标识与实时测深系统 WO2016045236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410507737.2 2014-09-28
CN201410507737.2A CN104239921B (zh) 2014-09-28 2014-09-28 一种地下管线标识与实时测深装置

Publications (1)

Publication Number Publication Date
WO2016045236A1 true WO2016045236A1 (zh) 2016-03-31

Family

ID=52227944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000669 WO2016045236A1 (zh) 2014-09-28 2015-09-28 一种地下管线标识与实时测深系统

Country Status (2)

Country Link
CN (1) CN104239921B (zh)
WO (1) WO2016045236A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3228980A1 (de) * 2016-04-08 2017-10-11 Siemens Aktiengesellschaft Schichtdickenmessung von erdabdeckungen
CN111125278A (zh) * 2019-11-22 2020-05-08 中蔷(上海)电子系统工程有限公司 一种地下管网监测管理系统
CN115199888A (zh) * 2022-07-13 2022-10-18 唐山达实物探有限责任公司 一种地下管线勘探测量装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104239921B (zh) * 2014-09-28 2018-01-30 青岛厚科信息工程有限公司 一种地下管线标识与实时测深装置
CN106488178B (zh) * 2015-08-26 2019-02-12 深圳市燃气集团股份有限公司 一种带摄像头的地下电子标签探测仪
CN105447538B (zh) * 2015-11-13 2019-01-08 成都市卓新实业有限公司 一种内置有芯片的法兰
CN105299478B (zh) * 2015-11-13 2017-08-29 成都市卓新实业有限公司 一种能够快速读出法兰及管线累计使用时间的方法
CN105654249A (zh) * 2016-02-01 2016-06-08 武汉邮电科学研究院 用于地下管线管理与决策系统的实体标识管理方法及装置
CN106501681A (zh) * 2016-12-07 2017-03-15 国网上海市电力公司 一种便携式地线探测仪
CN108036199B (zh) * 2017-12-05 2019-09-13 英业达科技有限公司 管线漏水无线侦测系统及其方法
CN109409146A (zh) * 2018-09-27 2019-03-01 北京计算机技术及应用研究所 一种利用射频识别标记道路的方法和系统
CN109669221B (zh) * 2019-02-23 2020-10-02 克拉玛依友诚实验检测分析有限责任公司 一种油田地下金属管线探测系统
CN109884717A (zh) * 2019-03-22 2019-06-14 中国科学技术大学 一种地下管线探测设备
CN111679268B (zh) * 2020-06-18 2022-05-10 苏州市测绘院有限责任公司 一种地下管线探测方法
CN115248454B (zh) * 2022-07-05 2024-01-16 北京市燃气集团有限责任公司 一种基于电子标识器的地下管道定位系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271314A (ja) * 2006-03-30 2007-10-18 Japan Radio Co Ltd 地中探査レーダにおける管径推定方法
CN101915941A (zh) * 2010-08-09 2010-12-15 深圳市杰瑞特科技有限公司 地下管道定位方法及其系统
CN201892750U (zh) * 2010-10-20 2011-07-06 解思光 地下埋设物标识装置及标识系统
CN103064123A (zh) * 2012-12-21 2013-04-24 杭州德豪环保材料有限公司 一种地下管线定位方法及装置
CN103603690A (zh) * 2013-11-14 2014-02-26 中国矿业大学 一种地质雷达探测顶板离层与事故预警的方法
CN103793733A (zh) * 2014-02-26 2014-05-14 锦瀚智慧管网技术有限公司 一种基于rfid的管道识别系统
CN104239921A (zh) * 2014-09-28 2014-12-24 青岛厚科信息工程有限公司 一种地下管线标识与实时测深系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2700873Y (zh) * 2004-04-12 2005-05-18 叶其存 铝箔探测警示带
CN101079095A (zh) * 2007-05-29 2007-11-28 无锡晶尧科技有限公司 隐蔽物体的快速定位方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271314A (ja) * 2006-03-30 2007-10-18 Japan Radio Co Ltd 地中探査レーダにおける管径推定方法
CN101915941A (zh) * 2010-08-09 2010-12-15 深圳市杰瑞特科技有限公司 地下管道定位方法及其系统
CN201892750U (zh) * 2010-10-20 2011-07-06 解思光 地下埋设物标识装置及标识系统
CN103064123A (zh) * 2012-12-21 2013-04-24 杭州德豪环保材料有限公司 一种地下管线定位方法及装置
CN103603690A (zh) * 2013-11-14 2014-02-26 中国矿业大学 一种地质雷达探测顶板离层与事故预警的方法
CN103793733A (zh) * 2014-02-26 2014-05-14 锦瀚智慧管网技术有限公司 一种基于rfid的管道识别系统
CN104239921A (zh) * 2014-09-28 2014-12-24 青岛厚科信息工程有限公司 一种地下管线标识与实时测深系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3228980A1 (de) * 2016-04-08 2017-10-11 Siemens Aktiengesellschaft Schichtdickenmessung von erdabdeckungen
WO2017174426A1 (de) * 2016-04-08 2017-10-12 Siemens Aktiengesellschaft Schichtdickenmessung von erdabdeckungen
US11022426B2 (en) 2016-04-08 2021-06-01 Siemens Energy Global GmbH & Co. KG Layer thickness measurement of soil covering
CN111125278A (zh) * 2019-11-22 2020-05-08 中蔷(上海)电子系统工程有限公司 一种地下管网监测管理系统
CN115199888A (zh) * 2022-07-13 2022-10-18 唐山达实物探有限责任公司 一种地下管线勘探测量装置

Also Published As

Publication number Publication date
CN104239921A (zh) 2014-12-24
CN104239921B (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
WO2016045236A1 (zh) 一种地下管线标识与实时测深系统
WO2016045588A2 (zh) 基于射频识别技术的管线标识与实时测深系统
US11624851B1 (en) Electronic marker devices and systems
CN107290744B (zh) 冰厚水深综合探测雷达系统及方法
WO2016045235A1 (zh) 一种基于雷达探测技术的标识带实时测深系统
US6700526B2 (en) Method and apparatus for identifying buried objects using ground penetrating radar
Xiang et al. GPR evaluation of the Damaoshan highway tunnel: A case study
CN105301662B (zh) 小孔径大埋深地下管线检测方法
CN103323881A (zh) 地下管线综合测量工法
CN103149504A (zh) 一种电力电缆故障位置快速定位装置及方法
CN107271539A (zh) 一种海底油气管道漏磁/甚低频接收检测定位方法及装置
CN101713493B (zh) 一种管道内检测装置的定位装置和定位系统
CN104316044A (zh) 一种配变台区集中器精确定位导航方法
CN103884968A (zh) 基于gps同步授时的xlpe电缆局部放电定位方法
CN103823157A (zh) 基于gps同步授时的xlpe电缆局部放电定位装置
KR102002480B1 (ko) 관망의 유지관리탐사 시스템
CN117270069A (zh) 一种埋地光缆的探测定位系统和方法
CN112761046A (zh) 一种市政道路路面检测装置及检测方法
KR20030030594A (ko) 지중 매설물 위치 인식시스템
CN111679268B (zh) 一种地下管线探测方法
CN115859081A (zh) 一种管线的可视化探测方法及装置
US20080129534A1 (en) Method and Device for Localizing Anomalies Located Inside a Hollow Structure Located on Bare Ground and/or Buried
US3116452A (en) Eddy current type pipeline flaw testing and flaw location marking device
GB2457661A (en) Locating defects in a pipeline
CN211293285U (zh) 超常大埋深地下管道探测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844012

Country of ref document: EP

Kind code of ref document: A1