WO2016045085A1 - 信道测量方法和装置 - Google Patents

信道测量方法和装置 Download PDF

Info

Publication number
WO2016045085A1
WO2016045085A1 PCT/CN2014/087544 CN2014087544W WO2016045085A1 WO 2016045085 A1 WO2016045085 A1 WO 2016045085A1 CN 2014087544 W CN2014087544 W CN 2014087544W WO 2016045085 A1 WO2016045085 A1 WO 2016045085A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
node
receiving node
receiving
codebook group
Prior art date
Application number
PCT/CN2014/087544
Other languages
English (en)
French (fr)
Inventor
刘建琴
刘江华
吴强
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201910635530.6A priority Critical patent/CN110391828B/zh
Priority to PCT/CN2014/087544 priority patent/WO2016045085A1/zh
Priority to CN201480035734.1A priority patent/CN105684336B/zh
Publication of WO2016045085A1 publication Critical patent/WO2016045085A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity

Definitions

  • the embodiments of the present invention relate to the field of wireless communications technologies, and in particular, to a channel measurement method and apparatus.
  • GSM Global System for Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the transmitting end pre-codes the data according to the codebook fed back by the receiving end to measure the channel, and then transmits the pre-encoded data through the antenna. Therefore, how to improve the accuracy of the measurement and feedback of the channel by the receiving end is directly Affect the accuracy and reliability of data transmission.
  • Embodiments of the present invention provide a channel measurement method and apparatus, which improve measurement of a channel and The accuracy of the feedback.
  • the first aspect provides a receiving node, including:
  • An acquiring module configured to obtain the number of codebooks in the codebook group to be measured, N ⁇ N ⁇ 1;
  • a measurement module configured to measure a channel, to obtain a codebook group of the channel, where the codebook group includes N codebooks;
  • a sending module configured to report information of the codebook group to the transmitting node.
  • the acquiring module is further configured to: after acquiring the number N of codebooks in the codebook group to be measured,
  • the M codebooks in the codebook space generate a codebook group space consisting of at least two codebook groups, each codebook group in the codebook group space being composed of N codebooks.
  • a part of the codebooks in the at least two codebook groups in the codebook group space are the same.
  • the sending module is configured to report the codebook group to the transmitting node Describe the index number in this group space.
  • the acquiring module is specifically configured to receive the transmitting node
  • the high layer signaling or the physical layer dedicated signaling is sent, where the high layer signaling or the physical layer dedicated signaling includes the N, and the high layer signaling includes a radio resource control RRC signaling or a medium access control MAC layer signaling.
  • the N is obtained from the high layer signaling or the physical layer dedicated signaling.
  • the measuring module is further configured to use i codes respectively
  • the obtaining module is specifically configured to determine, in the M results, a codebook group Z i with the best channel quality, and use the number i of the codebooks in the codebook group Z i as the codebook to be measured The number of codebooks in the group N;
  • the sending module is further configured to send a notification message to the transmitting node, where the notification message includes the N.
  • the receiving node further includes:
  • a receiving module configured to receive the N pieces of encoded data sent by the transmitting node, starting from time n, after the sending module reports the information of the codebook group to a transmitting node;
  • a demodulation module configured to demodulate the N encoded data to obtain the to-be-sent data.
  • the sending module is further configured to: when the receiving module starts from a time n, receive the sending by the sending node After the N encoded data, send a correct response confirmation message to the transmitting node at time n+N-1+m, or send an incorrect message to the transmitting node at time n+N-1+m
  • the m is a preset value.
  • the receiving module is further configured to send, by the sending module, the time at the time of n+N-1+m After receiving the incorrect acknowledgement acknowledgement message, the node receives the N coded data retransmitted by the transmitting node at time n+Rt, where t is a hybrid retransmission round trip delay, and R ⁇ 1.
  • the sending module is further used in the measuring module After the channel is measured to obtain a codebook group of the channel, a CQI based on the codebook group is sent to the transmitting node, and the CQI is an average calculated based on N codebooks in the codebook group.
  • the CQI is either a single CQI calculated based on any of the codebooks in the codebook group.
  • the second aspect provides a transmitting node, including:
  • a receiving module configured to receive information of a codebook group sent by a receiving node, where the codebook group includes N codebooks, N ⁇ 1;
  • the processing module is configured to perform precoding processing on the data to be sent by using the N codebooks in the codebook group to generate N encoded data.
  • the processing module is further configured to generate, by using the at least two codebook groups, the M codebooks in the codebook space of the transmitting node
  • the codebook space, each codebook group in the codebook group space is composed of N codebooks.
  • a part of the codebooks in the at least two codebook groups in the codebook group space are the same.
  • the receiving module is configured to receive the codebook group sent by the receiving node The index number in the codebook group space.
  • the transmitting node further includes: a sending module, configured to: Before the receiving module receives the information of the codebook group sent by the receiving node, sending the high layer signaling or the physical layer dedicated signaling to the receiving node, where the high layer signaling or the physical layer dedicated signaling includes In the above, the high layer signaling includes RRC signaling or MAC layer signaling, where the N is preset by the transmitting node.
  • the receiving module is further configured to send at a receiving and receiving node Before receiving the information of the codebook group, the N is sent by the receiving node, and the N is obtained after the receiving node measures the channel.
  • the sending module is further used in the processing module Performing precoding processing on the data to be transmitted by using the N codebooks in the codebook group, and generating N coded data, and then sequentially transmitting the data to the receiving node at N consecutive times from time n N encoded data.
  • the receiving module is further configured to start at the N consecutive times in the sending module from the time n After transmitting the N coded data to the receiving node, receiving a correct response confirmation message sent by the receiving node at time n+N-1+m, or receiving the time at n+N-1+m An incorrect response confirmation message sent by the receiving node, where m is a preset value.
  • the sending module is further configured to receive, by the receiving module, the receiving at the time of n+N-1+m After the incorrect acknowledgement acknowledgement message sent by the node, the N coded data is retransmitted to the receiving node at time n+Rt, where t is a hybrid retransmission round trip delay, R ⁇ 1.
  • the receiving module is further configured to send at a receiving and receiving node After receiving the information of the codebook group, receiving the codebook group sent by the receiving node CQI, the CQI is an average CQI calculated based on N codebooks in the codebook group or a single CQI calculated based on any codebook in the codebook group.
  • the third aspect provides a channel measurement method, including:
  • the receiving node obtains the number of codebooks in the codebook group to be measured, N ⁇ N ⁇ 1;
  • the receiving node measures the channel to obtain a codebook group of the channel, and the codebook group includes N codebooks;
  • the receiving node reports the information of the codebook group to the transmitting node.
  • the method further includes:
  • the receiving node generates, by the M codebooks in the codebook space of the receiving node, a codebook group space composed of at least two codebook groups, where each codebook group in the codebook group space is composed of N Codebook composition.
  • a part of the codebooks in the at least two codebook groups in the codebook group space are the same.
  • the receiving, by the receiving node, the information of the codebook group is sent to the transmitting node, including:
  • the receiving node reports, to the transmitting node, an index number of the codebook group in the codebook group space.
  • the receiving node acquires a code corresponding to the receiving node
  • the number N of codebooks in this group including:
  • the receiving node receives the high layer signaling or the physical layer dedicated signaling sent by the transmitting node, where the high layer signaling or the physical layer dedicated signaling includes the N, and the high layer signaling includes a radio resource control RRC Signaling or medium access control MAC layer signaling;
  • the receiving node acquires the N from the high layer signaling or the physical layer dedicated signaling.
  • the receiving node acquires a code corresponding to the receiving node
  • the number N of codebooks in this group including:
  • the receiving node determines, in the M results, a codebook group Z i with the best channel quality, and uses the number i of the codebooks in the codebook group Z i as the codebook in the codebook group to be measured. Number N;
  • the method further includes:
  • the receiving node sends a notification message to the transmitting node, where the notification message includes the N.
  • the receiving node reports the codebook group to the transmitting node After the information, it also includes:
  • the receiving node receives the N encoded data sent by the transmitting node;
  • the receiving node demodulates the N encoded data to obtain the to-be-sent data.
  • the receiving node after receiving the N pieces of encoded data sent by the transmitting node, starts from a time n ,Also includes:
  • the receiving node sends a correct response confirmation message to the transmitting node at time n+N-1+m, where m is a preset value;
  • the receiving node sends an incorrect response confirmation message to the transmitting node at time n+N-1+m.
  • the receiving node sends an incorrect response confirmation to the transmitting node at the time of n+N-1+m After the news, it also includes
  • the receiving node receives the N coded data retransmitted by the transmitting node at time n+Rt, where t is a hybrid retransmission round trip delay, and R ⁇ 1.
  • the receiving node performs measurement on the channel to obtain the channel After the codebook group, it also includes:
  • the fourth aspect provides a channel measurement method, including:
  • the transmitting node receives the information of the codebook group sent by the receiving node, where the codebook group includes N codebooks, N ⁇ 1;
  • the transmitting node performs precoding processing on the data to be sent by using the N codebooks in the codebook group to generate N encoded data.
  • the method further includes:
  • the transmitting node generates, by the M codebooks in the codebook space of the transmitting node, a codebook space composed of at least two codebook groups, where each codebook group in the codebook group space is composed of N codes This composition.
  • a part of the codebooks in the at least two codebook groups in the codebook group space are the same.
  • the sending, by the transmitting node, the information of the codebook group sent by the receiving node includes:
  • the transmitting node receives an index number of the codebook group sent by the receiving node in the codebook group space.
  • the transmitting node sends the high layer signaling or the physical layer dedicated signaling to the receiving node, where the high layer signaling or the physical layer dedicated signaling includes the N, and the high layer signaling includes a radio resource control RRC letter. Or the medium access control MAC layer signaling, so that the receiving node acquires the N from the high layer signaling or the physical layer dedicated signaling, where the N is preset by the transmitting node.
  • the transmitting node receives the codebook group sent by the receiving node Before the information, it also includes:
  • the transmitting node receives the N sent by the receiving node, and the N is obtained after the receiving node measures the channel.
  • the transmitting node uses the N in the codebook group Each codebook performs precoding processing on the data to be sent, and generates N encoded data. After that, it also includes:
  • the transmitting node sequentially transmits the N encoded data to the receiving node at N consecutive times starting from time n.
  • the transmitting node sends the N to the receiving node in sequence at N consecutive times starting from a time n After the encoded data, it also includes:
  • the transmitting node receives an incorrect response confirmation message sent by the receiving node at time n+N-1+m.
  • the transmitting node receives an incorrect acknowledgement sent by the receiving node at a time of n+N-1+m After the news, it also includes:
  • the transmitting node retransmits the N encoded data to the receiving node at a time of n+Rt, where t is a hybrid retransmission round trip delay, and R ⁇ 1.
  • the transmitting node receives the codebook group sent by the receiving node After the information, it also includes:
  • the channel measurement method and apparatus provided in this embodiment obtains the codebook group including N codebooks by obtaining the number N of codebooks in the codebook group, and then feeds back the codebook group to the transmitting node, so that the codebook group is fed back to the transmitting node.
  • the transmitting node uses the N codebooks in the codebook group to perform precoding processing on the data to be sent, and improves the accuracy of measuring and feedbacking the channel.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of a receiving node according to an embodiment of the present disclosure
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of a receiving node according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of data transmission and reception timing
  • FIG. 4 is a schematic diagram of data transmission and reception and retransmission timing
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a transmitting node according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of a transmitting node according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart of Embodiment 1 of a channel measurement method according to an embodiment of the present disclosure
  • FIG. 8 is a flowchart of Embodiment 2 of a channel measurement method according to an embodiment of the present disclosure
  • FIG. 9 is a flowchart of Embodiment 3 of a channel measurement method according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of Embodiment 4 of a channel measurement method according to an embodiment of the present disclosure.
  • FIG. 11 is a flowchart of Embodiment 5 of a channel measurement method according to an embodiment of the present disclosure.
  • FIG. 12 is a flowchart of Embodiment 6 of a channel measurement method according to an embodiment of the present invention.
  • multiple antenna elements can be used to virtually weight one antenna port to improve the antenna gain.
  • the M antenna elements are virtually weighted into one.
  • the antenna port is called a 1 drive M.
  • the accuracy of beam tracking needs to be high.
  • the change of the pitch angle of the user in the 1-8 layer in the building at the edge of the cell is taken as an example, as shown in Table 1.
  • the embodiments of the present invention provide a method and an apparatus for measuring and feeding, where a codebook space with a minimum granularity of a codebook group is predefined at a receiving end and a transmitting end, and a codebook group includes N codes.
  • the receiving end feeds back a codebook group containing N codebooks to the transmitting end based on the measurement of the channel, and the transmitting end pre-codes the same data in each of the codebook groups in the next N transmissions. After being weighted, it is sent to the receiving end, and the receiving end demodulates based on the data received N times, thereby obtaining data transmitted by the transmitting end. Since the codebook group includes N codebooks, when N is greater than 1, the codebook group fed back by the receiving end can better reflect the change of the channel than the feedback of one codebook, and the receiving end receives the transmitting end according to the codebook group. After multiple codebooks precode and transmit the same data, the demodulated data can better eliminate the influence of channel changes on the data. The more the number N of codebooks in the codebook group, the more accurate the channel quality of the feedback. When N is equal to 1, it is the measurement and feedback scheme that only feeds back one codebook.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of a receiving node according to an embodiment of the present invention. As shown in FIG. 1 , the receiving node in this embodiment includes:
  • the obtaining module 11 is configured to obtain the number N, N ⁇ 1 of the codebooks in the codebook group to be measured.
  • the receiving node provided in this embodiment may be any network node that has a channel measurement and feedback function in the network.
  • the receiving node may be a user equipment (User Equipment, UE).
  • UE User Equipment
  • the transmitting node that receives the feedback performs precoding processing on the data to be sent according to the codebook, and then sends the data to the receiving end.
  • the beam transmitted by the transmitting node is also narrowed accordingly to meet the needs of larger antenna gains, so that the accuracy of the beam needs to be improved, that is, the accuracy of the receiving node for measuring and feedback of the channel needs to be improved.
  • the receiving end can measure and feed back multiple codebooks in the time domain granularity, so that the transmitting node can use multiple codebooks to send the same data when transmitting multiple times, thereby being better. Match and cope with channel changes to improve the accuracy of the beam used for data transmission.
  • the number of codebooks in the codebook group that the receiving node measures and feeds back to the channel will directly affect the accuracy of channel measurement and feedback at high frequencies.
  • the receiving node provided in this embodiment includes an obtaining module 11 for acquiring the number N, N ⁇ 1 of the codebooks in the codebook group to be measured.
  • the size of N may be predefined by the receiving node and the transmitting node, and the size of N may be preset in the system configuration of the receiving node, and the obtaining module 11 obtains the size of N from the preset system configuration; or the size of N may be It is preset that in the system configuration of the transmitting node, the acquiring module 11 obtains the size of N from the configuration signaling sent by the transmitting node; or the size of the N is obtained by the obtaining module 11 measuring the channel.
  • the size of the N is dynamically configurable, and the obtaining module 11 obtains the number of N, which is a process of dynamically configuring N.
  • the receiving node will measure and feed back the channel according to the existing scheme of measuring and feeding back only one codebook.
  • the codebook group fed back by the receiving node can match and reflect the change of the channel more than feedback only one codebook.
  • the measurement module 12 is configured to measure a channel to obtain a codebook group of the channel, where the codebook group includes N codebooks.
  • the measurement module 12 That is, the channel is measured to obtain a codebook group corresponding to the channel, where the measured codebook group includes N codebooks.
  • a codebook space composed of a plurality of codebooks is stored, and there are a total of M codebooks in the codebook space, and N of the M codebooks are grouped, and the codebook space can be divided into P A codebook group in which codebooks in every two codebook groups can overlap each other.
  • the measurement module 12 selects one of the measured codebook groups with the best channel quality among the P codebook groups based on the measurement of the channel, that is, completes the codebook group selection after the channel measurement.
  • the number of codebooks M in the codebook space is 32, and 32 of the codebooks are numbered 0, 1, 2, ..., 31, respectively.
  • the number of Ns acquired by the acquisition module 11 is 4, and it is assumed that 32 codebooks in the codebook space correspond to 32 beams uniformly divided in the [0, 2 ⁇ ] space.
  • the entire codebook space is divided into 32 codebook groups, and the codebook numbers corresponding to the 32 codebook groups are respectively ⁇ 0, 1, 2, 3 ⁇ . , ⁇ 1, 2, 3, 4 ⁇ , ⁇ 2, 3, 4, 5 ⁇ , ..., ⁇ 30, 31, 0, 1 ⁇ , ⁇ 31, 0, 1, 2 ⁇ .
  • the measurement module 12 may measure the channel quality by using four codebooks in the 32 codebook groups based on the measurement reference signals sent by the transmitting node, and measure the channel by using four codebooks in each codebook group.
  • the sum of channel qualities is used as the channel quality corresponding to the codebook group, and the channel quality obtained by measuring the channel quality using each codebook may be, for example, a channel quality indicator (CQI).
  • the measurement module 12 further uses the capacity corresponding to the CQI measured by the channel quality of each codebook as the channel quality.
  • a codebook group that best matches and reflects the channel characteristics is selected among the 32 codebook groups.
  • the sending module 13 is configured to report information of the codebook group to the transmitting node.
  • the sending module 13 sends the information of the codebook group measured by the measurement module 12 to the transmitting node, that is, the measurement and feedback of the channel are completed.
  • a codebook space composed of a plurality of codebooks is also stored, and each codebook and codebook number in the codebook space is the same as in the receiving node, so the transmitting module 13 transmits the code to the transmitting node.
  • the transmitting module 13 transmits the code to the transmitting node.
  • only the index or number of each codebook group needs to be sent to the transmitting node.
  • the transmitting node After the transmitting node receives the index or the number of the codebook group reported by the sending module 13, the N codebooks in the corresponding codebook group are used to precode the same data to be sent, and N codes are generated. Data, and send N encoded data in the next N transmissions.
  • the receiving node When the receiving node performs measurement and feedback processing on the channel, the receiving node measures and feedbacks A plurality of codebooks are included in each codebook group, and a plurality of codebooks in each codebook group are used for causing a transmitting node to perform multiple precoding processing on the same data and transmitting, so the receiving provided by the present embodiment
  • the node measures and feeds back a codebook group containing multiple codebooks to better match and reflect the channel state, thereby improving the accuracy of transmitting data by the transmitting node.
  • the receiving node provided in this embodiment obtains the codebook group including N codebooks by obtaining the number N of codebooks in the codebook group, and then feeds back the codebook group to the transmitting node, so that the transmitting node uses
  • the N codebooks in the codebook group are respectively pre-coded and transmitted after the data to be transmitted, which improves the accuracy of measuring and feedbackting the channel.
  • the obtaining module 11 is further configured to: after acquiring the number N of codebooks in the codebook group to be measured, M in the codebook space of the receiving node
  • the codebook generates a codebook group space consisting of at least two codebook groups, each codebook group in the codebook group space being composed of N codebooks.
  • the same codebook space is pre-configured, and the codebook space includes M codebooks.
  • the acquiring module 11 may generate the codebook group space composed of the plurality of codebook groups by using the M codebooks in the codebook space.
  • the codebook group space includes at least two codebook groups, and each codebook group in the codebook space group is composed of N codebooks. In this way, when the measurement module 12 measures the channel, each of the codebook groups in the codebook group space can be used to measure the channel separately, and it is no longer necessary to select N codebooks from the codebook space to form the codebook group.
  • the same codebook group space as that in the receiving node is generated according to the same policy as the receiving node, so that the receiving node only needs to report the codebook when reporting the measured codebook group information to the transmitting node.
  • the index number or number of the group in the codebook group space can be reduced, that is, the resources required for reporting the code group are reduced.
  • a part of codebooks in at least two codebook groups in the codebook group space are the same. That is to say, the codebooks included in each codebook group in the codebook group space generated by the obtaining module 11 can be multiplexed, so that more codebook groups can be generated by using M codebooks in the codebook space. .
  • the sending module 12 is specifically configured to report, to the transmitting node, an index number of the codebook group in the codebook group space.
  • the method for obtaining the number N of codebooks in the codebook group by the obtaining module 11 may be: acquiring module 11 acquires N from a preset system configuration; or acquiring module 11 Obtaining N from the signaling sent by the transmitting node; or acquiring the channel 11 and obtaining N according to the measurement result.
  • the receiving node and the transmitting node are pre-set with the number N of codebooks in the codebook group, and the obtaining module 11 obtains N from the preset system configuration, and then the sending module 13 reports to the transmitting node.
  • the transmitting node can also learn the number of Ns in the codebook group according to the preset system configuration, thereby extracting each codebook from the corresponding codebook group.
  • the acquiring module 11 receives the high layer signaling or the physical layer dedicated signaling sent by the transmitting node, where the high layer signaling is Or the physical layer-specific signaling includes the N, the high-level signaling includes RRC signaling or MAC layer signaling; and the N is obtained from the high-layer signaling or the physical layer-specific signaling.
  • the transmitting node is a base station in the network
  • the receiving node is a user equipment in the network
  • the base station stores various network configuration information
  • the base station sends the network configuration information to the user equipment by using signaling according to requirements.
  • the transmitting node is pre-set with N, and the transmitting node carries N in the high-layer signaling or physical layer signaling sent to the receiving node, and the receiving module 11 obtains N from the high-layer signaling or the physical layer signaling.
  • the high layer signaling here may be Radio Resource Control (RRC) signaling or Media Access Control (MAC) layer signaling.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the number of codebooks N in the preset codebook group is not in the transmitting node and the receiving node, and the measuring module 12 is further configured to use the i codebooks as the codebook group Z i to the channel respectively.
  • the M is the number of codebooks in the codebook space of the receiving node; the obtaining module 11 is specifically used in the M results.
  • determining channel quality of the best codebook i the Z group, the number of the Z group of the codebook in codebook i i as the code to be measured in this group codebook number N; sending module 13 is further configured to Sending a notification message to the transmitting node, the notification message including the N.
  • the number N of codebooks in the codebook group is a dynamic value
  • the acquisition module 11 in the receiving node determines the value of N according to the measurement of the channel by the measurement module 12, and then the transmitting module 13 passes the value of N.
  • a notification message is sent to the transmitting node.
  • the transmitting node can learn the N codebooks in the codebook group according to the preset system configuration. Since the number N of codebooks in the codebook group is obtained by the acquisition module 11 according to the measurement performed by the measurement module 12 on the channel, the number of Ns is related to the channel state, and the codebook group including N codebooks is also better. The state of the reaction channel.
  • the measurement module 12 can measure the channel carrier frequency to determine the value of N, so that the transmitting node can ensure the data is accurate. Under the premise of saving system resources as much as possible.
  • the transmitting module 13 then sends a notification message to the transmitting node, the notification message including the N.
  • FIG. 2 is a schematic structural diagram of Embodiment 2 of a receiving node according to an embodiment of the present invention. As shown in FIG. 2, the receiving node in this embodiment further includes:
  • the receiving module 14 is configured to receive, after the sending module 13 reports the information of the codebook group to the transmitting node, starting from the time n, receiving the N encoded data sent by the transmitting node.
  • the transmitting node After the sending module 13 reports the code group to the transmitting node, the transmitting node performs precoding processing on the same to-be-sent data using the N codebooks in the codebook group to obtain N coded data, and Starting from time n, N encoded data are sequentially transmitted to the receiving node at N consecutive times.
  • the receiving module 14 in the receiving node will receive N encoded data starting at time n.
  • the demodulation module 15 is configured to demodulate the N encoded data to obtain the to-be-sent data.
  • the demodulation module 15 can demodulate the N encoded data. Since the transmitting node is N coded data generated by using the codebook group containing N codebooks to encode the data to be transmitted, the codebook group including the N codebooks is sent by the receiving node to the transmitting node through the sending module 13. Therefore, the receiving node stores the codebook group, so that the demodulation module 15 can solve the N encoded data according to the codebook group. Tuned to get the data to be sent by the transmitting node.
  • the data to be transmitted sent by the transmitting node is encoded and transmitted using the codebook group including N codebooks, it is equivalent to transmitting the same data through different precoding weights, that is, simultaneously performing data in multiple directions.
  • the data is transmitted so that the receiving node demodulates and demodulates the data with high accuracy and reliability, and can greatly reduce the data transmission error caused by the angular deviation of the narrow beam.
  • [] denotes a matrix or a vector in this document; ⁇ denotes a set.
  • the codebook space B includes a total of 32 codebooks b 0 , b 1 , ..., b 31 , and each codebook group code The number N of this is 4.
  • n denotes the number of codebooks in the codebook space
  • X (k) denotes a codebook group composed of N codebooks
  • X (k) corresponds to a weighting matrix on the transmitting antennas
  • C denotes different
  • the X (k) consists of a set of codebook groups. After the receiving node obtains the number of N, the same codebook group X (k) can be generated according to a preset rule, and the same codebook group X (k) is taken as a set, that is, C, and the receiving node measures the channel.
  • an X (k) in C is selected as a measurement result and sent to the transmitting node (here, only the index or number corresponding to the X (k) can be transmitted).
  • the set C of the codebook group is generated according to the foregoing method.
  • the receiving node measures the channel, only the sequence number of X (k) in C is reported to the transmitting node, that is, the transmitting node is reported.
  • the corresponding codebook group may be any other form of codebook structure different from the above codebook form.
  • the codebook group design method given by formula (1) to formula (3) gives a specific design method of the codebook group in single codebook form, but in practical application, it can also be a codebook in the form of double codebook. group.
  • the matrix X 1 is determined according to ⁇ 1
  • the matrix X 2 is based on ⁇ 2 and Determining, ⁇ 1 represents the phase difference of the weighted values of the transmitted signals of the two adjacent antennas in the first antenna group of the transmitting node, and ⁇ 2 represents that the two adjacent antennas in the second antenna group of the transmitting node are for the same transmission.
  • the phase difference of the weight of the layer transmit signal Determining a phase difference between a first antenna group and a second antenna group for transmitting signal weight values for the same transmission layer, and M is a positive integer, M represents the number of phase differences between the first antenna group and the second antenna group for transmitting signal weighting values of the same transmission layer, and n is a non-negative integer smaller than M, and the first antenna group and the second antenna group belong to the same A multi-antenna system.
  • W 1 can be referred to as a first codebook
  • W 1 corresponding to X 1 ( ⁇ 1 ) reflects a long/average change of the channel.
  • W 2 may be referred to as a second codebook
  • W 2 corresponds to a A related short-term precoding matrix that reflects the short-term/instantaneous variation characteristics of the channel.
  • W code W may be present in a space designed as a code of a group consisting of a plurality of codebooks according space to eight transmit antennas as an example, assuming a The 32 codebook groups in formula (3) form a codebook group space B, and the 32 codebook groups in B further form 16 codebook groups corresponding to the first antenna group overlapping each other according to formula (5).
  • Each V (k) consists of four codebook groups in equation (4).
  • each V (k) is expanded according to formula (5) into a codebook group corresponding to the first antenna group and the second antenna group. all The composed codebook group space constitutes the codebook space of the first codebook in the dual codebook structure.
  • e i is the selected column vector
  • the i-th element in e i is 1 and the other elements are 0.
  • the e i selected is the codebook group in the set C 1 of the codebook group in the formula (7).
  • the codebook group in the set C 1 of the codebook group in the formula (7) For example, when the number of layers is 1, i.e. Rank1 the case, when the value of Y is e 1, which represents a group selected codebook set C 1 of the first group of codebook
  • the sending module 13 is further configured to: after the measurement module 12 measures the channel, obtain the matching of the channel, and apply the codebook group, send the CQI based on the codebook group to the transmitting node,
  • the CQI is an average CQI calculated based on N codebooks in the codebook group or a single CQI calculated based on any codebook in the codebook group.
  • CQI is a measure of the quality of wireless channel communication.
  • the CQI is capable of representing channel measurements for a given channel.
  • a high value CQI indicates that a channel has better communication quality and vice versa. Since the measurement module 12 obtains a codebook group consisting of N codebooks after channel measurement, a plurality of codebooks in the codebook group as a whole jointly reflect channel quality, and therefore, for the codebook group, Should only correspond to one CQI, not each codebook in the codebook group Corresponds to a CQI.
  • the CQI sent by the transmitting module 13 to the transmitting node is an average CQI calculated based on the CQI corresponding to the plurality of codebooks in the codebook group, or a single CQI calculated based on an arbitrary codebook in the codebook group.
  • the sending module 14 is further configured to: after receiving the N pieces of encoded data sent by the transmitting node, the receiving module 13 starts at time n, and then sends the transmitting node to the transmitting node at time n+N-1+m. A correct response confirmation message is sent, or an incorrect response confirmation message is sent to the transmitting node at time n+N-1+m.
  • the m is a preset value.
  • the m may be set to a time when the transmitting node receives and processes the Nth encoded data.
  • the time n is the time at which the transmitting node transmits the first codebook in the codebook group.
  • the receiving module 14 After the transmitting node receives the codebook group sent by the sending module 13, the receiving module 14 starts from the time n and receives the N encoded data sent by the transmitting node, and the receiving node should transmit to the receiving node.
  • the node feedbacks whether the response message is correctly received. If the channel measurement method of the codebook group is not used, that is, the receiving node only feeds back one codebook at a time, after receiving the data sent by the transmitting node according to the codebook encoding, the receiving node sends the data to the transmitting node after a certain time. Correct Acknowledgement (ACK) message or incorrect Acknowledgement (NACK) message.
  • ACK Acknowledgement
  • NACK incorrect Acknowledgement
  • the sending module 13 feeds back to the transmitting node a codebook group including N codebooks
  • the transmitting node encodes and transmits the same data using N codebooks in the codebook group
  • the receiving node is not sent to the transmitting node.
  • Each encoded data feeds back an ACK or NACK message, but after receiving N encoded data and demodulating the data to be transmitted, and then feeding back an ACK or NACK message to the transmitting node. That is to say, the receiving node only feeds back one ACK or NACK message for the data to be sent corresponding to one codebook group.
  • timing 31 is a downlink timing of a transmitting node when transmitting using a single codebook
  • timing 32 is an uplink timing of a receiving node when transmitting using a single codebook
  • timing 33 is a transmitting node when transmitting using a codebook group.
  • the downlink sequence, the timing 34 is the uplink timing of the receiving node when the codebook group is used for transmission, and the codebook group includes four codebooks as an example for description.
  • the transmitting node sends a coded data to the receiving node by using a Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the receiving node uses a physical uplink control channel.
  • Physical Uplink Control Channel PUCCH
  • PUCCH Physical Uplink Control Channel
  • Set each PDSCH or A single transmission of PUCCH takes up one moment.
  • the receiving node After receiving the data sent by the transmitting node, the receiving node needs to undergo demodulation and other processing to confirm whether the receiving is correct. Therefore, it is necessary to have a certain time interval, and the time interval is changed according to the capability of the receiving node, and the time is set in FIG. 4 moments.
  • the transmitting node transmits a coded data to the receiving node at the PDSCH 301, at intervals of 4, and at time 4, the receiving node sends an ACK or NACK message to the receiving node at PUCCH 302.
  • the receiving node will send an ACK or NACK message to the transmitting node at PUCCH 307.
  • the receiving module 14 starts from the time n, and after receiving the N pieces of encoded data sent by the transmitting node, the sending module 13 sends a correct response to the transmitting node at the time n+N-1+m.
  • a confirmation message where m is the time at which the transmitting node receives and processes the Nth encoded data.
  • the receiving module 13 is further configured to: after the sending module 14 sends an incorrect response confirmation message to the transmitting node at the time of n+N-1+m, receiving the retransmission of the transmitting node at the time of n+Rt.
  • the receiving node processes the received data, if the ACK message is sent to the transmitting node, the receiving is successful; if the NACK message is sent to the transmitting node, the receiving fails, if the transmitting node receives the NACK message. , you need to retransmit the data.
  • the time for the transmitting node to perform data retransmission is a Hybrid Automatic Repeat reQuest round trip time (RTT) after transmitting data to the receiving node. Then perform data retransmission.
  • RTT Hybrid Automatic Repeat reQuest round trip time
  • the transmitting node receives the NACK message after Data retransmission at n+Rt, where R ⁇ 1, optionally, Express Round up, t is the hybrid automatic repeat request round trip delay.
  • timing 31 is the downlink timing of the transmitting node when using a single codebook transmission
  • timing 32 is the uplink timing of the receiving node when using a single codebook transmission
  • timing 33 is using the codebook group transmission.
  • the downlink sequence of the transmitting node is timed
  • the timing 34 is the uplink timing of the receiving node when the codebook group is transmitted.
  • the codebook group includes four codebooks as an example for description. In 3, based on the data transmission and reception, the HARQ RTT is set to 8 times.
  • the transmitting node sends a coded data to the receiving node at the PDSCH 301, at intervals of 4 moments.
  • the receiving node will send an ACK or NACK message to the receiving node at the PUCCH 302. If the receiving node sends a NACK message on the PUCCH 302, the transmitting node retransmits to the receiving node at the PDSCH 401 at time 0 of the HARQ RTT2. data.
  • the transmitting node sequentially transmits the encoded data to the receiving node on the PDSCH 303, the PDSCH 304, the PDSCH 305, and the PDSCH 306 at intervals of four times.
  • the time 7 of the HARQ RTT1 receiving node sends an ACK or NACK message to the transmitting node at the PUCCH 307. If the receiving node sends a NACK message on the PUCCH 307, the transmitting node starts from time 0 of the HARQ RTT3, and sequentially on the PDSCH 402, the PDSCH 403, and the PDSCH. 404.
  • the PDSCH 405 retransmits the data to the receiving node.
  • the obtaining module 11 obtains the number N of codebooks in the codebook group to be measured, the manner of acquiring N from the preset system configuration is obtained; or the transmitting node is obtained from the transmitting node.
  • the acquisition module 11 is connected to the measurement module 12, and the measurement module 12 is connected to the transmission module 13. If the obtaining module 11 obtains the number N of the codebooks in the codebook group to be measured, the acquiring module 11 may directly connect to the sending module 13 when the measuring module 12 measures the channel and obtains N according to the measurement result.
  • connection relationship between the sending module 13, the receiving module 14, and the demodulating module 15 is only exemplary, and the sending module 13, the receiving module 14, and the demodulating module 15 can also directly Connection, or other possible form of connection.
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a transmitting node according to an embodiment of the present invention. As shown in FIG. 5, the transmitting node in this embodiment includes:
  • the receiving module 51 is configured to receive information about a codebook group sent by the receiving node, where the codebook group includes N codebooks, where N ⁇ 1.
  • the transmitting node provided in this embodiment may be a centralized control node in the network.
  • the transmitting node may be a base station, such as an Evolved Node B (eNB).
  • eNB Evolved Node B
  • the transmitting node that receives the feedback performs precoding processing on the data to be sent according to the codebook, and then sends the data to the receiving end.
  • the beam sent by the transmitting node is also The strain is narrow to meet the needs of large antenna gain, so it is necessary to improve the accuracy of the beam, that is, the accuracy of the measurement and feedback of the channel by the receiving node needs to be improved.
  • the receiving end can measure and feed back multiple codebooks in the time domain granularity, so that the transmitting node can use multiple codebooks to send the same data when sending data multiple times, so that Better cope with and match channel changes, thereby improving the accuracy of the beam corresponding to the transmitted data.
  • the number of codebooks that the receiving node measures and feeds back to the channel will directly affect the accuracy of channel measurement and feedback.
  • the transmitting node provided in this embodiment includes a receiving module 51, configured to receive information of a codebook group sent by the receiving node, where the codebook group includes N codebooks.
  • the N is obtained by the sending node to the receiving node or the N is obtained by the receiving node measuring the channel, where N ⁇ 1.
  • N is equal to 1
  • the codebook group received by the receiving module 51 is only one codebook.
  • the codebook group received by the receiving module 51 can reflect and match the channel more than only one codebook. Changes.
  • a codebook space composed of a plurality of codebooks is stored, and there are a total of M codebooks in the codebook space, and N of the M codebooks are grouped, and the codebook space is divided into P codes. In this group, the codebooks in the two codebook groups can overlap each other.
  • the receiving node selects an optimal codebook group among the P codebook groups based on the measurement of the channel, that is, completes the optimal codebook group selection after the channel measurement.
  • a codebook space composed of a plurality of codebook groups is also stored, and each codebook group and the codebook group number in the codebook space are the same as in the receiving node, so the receiving module 51 only needs to receive the receiving node. The number of each codebook group sent can be.
  • the processing module 52 is configured to perform precoding processing on the data to be sent by using the N codebooks in the codebook group to generate N coded data.
  • the processing module 52 uses the N codebooks in the codebook group to perform precoding processing on the same data to be sent, respectively, to generate N codes.
  • the subsequent data, and the N encoded data are respectively transmitted in the next N transmissions, thus completing the transmission of the N times of data based on the precoding of the N codebooks in the codebook group.
  • the transmitting node Since the codebook group measured and fed back by the receiving node includes a plurality of codebooks, and the plurality of codebooks in the codebook group are used to cause the transmitting node to precode and transmit the same data, the transmitting node provided by the present embodiment
  • the codebook group that receives the measurement and feedback of the receiving node can better reflect and match
  • the channel state is allocated to improve the accuracy of the data transmitted by the transmitting node.
  • the transmitting node receives the codebook group sent by the receiving node, the codebook group includes N codebooks, and then uses the N codebooks in the codebook group to preprocess the data to be sent respectively.
  • the encoding process generates N encoded data, thereby improving the accuracy of measuring and feeding back the channel.
  • the processing module 52 is further configured to generate, by using the M codebooks in the codebook space of the transmitting node, a codebook space composed of at least two codebook groups, where Each codebook group in the codebook group space is composed of N codebooks.
  • the same codebook space is pre-configured, and the codebook space includes M codebooks.
  • the receiving node reports the measured codebook group to the transmitting node, if the content of the entire codebook group is reported, it needs to occupy more transmission resources. Therefore, the receiving node can report only the characteristics of the codebook group to the transmitting node. Related information, such as the index number or encoding of the codebook group.
  • the codebook space including the M codebooks is pre-stored.
  • the processing module 52 is further configured to generate the M codebooks in the codebook space by multiple A codebook group space composed of a codebook group, wherein the codebook group space includes at least two codebook groups, and each codebook group in the codebook space group is composed of N codebooks.
  • the receiving module 51 receives the information of the codebook group (for example, index number or code, etc.) sent by the receiving node, the corresponding codebook group can be found in the codebook group space.
  • the same codebook group space as in the transmitting node is also generated according to the same policy as the transmitting node. In this way, when the receiving node reports the information of the measured codebook group to the transmitting node, only the index number or number of the codebook group in the codebook group space needs to be reported, that is, the resources required for reporting the code group are reduced. .
  • a part of the codebooks in at least two codebook groups in the codebook group space are the same. That is to say, the codebooks included in each codebook group in the codebook group space generated by the processing module 52 can be multiplexed, so that more codebook groups can be generated by using M codebooks in the codebook space. .
  • the receiving module 51 is specifically configured to receive an index number of the codebook group sent by the receiving node in the codebook group space.
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of a transmitting node according to an embodiment of the present invention. As shown in FIG. 6 , the receiving node in this embodiment further includes:
  • the sending module 53 is configured to receive, by the receiving module 51, information of the codebook group sent by the receiving node.
  • the high-level signaling or the physical layer-specific signaling is sent to the receiving node, where the high-layer signaling or the physical layer-specific signaling includes the N, and the high-layer signaling includes an RRC signaling or a MAC layer signaling. Let N be preset by the transmitting node.
  • the receiving node before receiving the codebook group, the receiving node needs to obtain the number N of codebooks in the codebook group, and there are multiple methods for the receiving node to acquire N.
  • the method provided in this embodiment only the number N of codebooks in the codebook group is pre-set in the transmitting node, and the sending module 53 sends high-level signaling or physical layer-specific signaling to the receiving node, where the high-layer signaling is Or the physical layer-specific signaling includes the N, and the high-layer signaling includes RRC signaling or MAC layer signaling.
  • the receiving node receives the high layer signaling or the physical layer dedicated signaling sent by the sending module 53, the N can be obtained.
  • the receiving node has another method for acquiring N, and the receiving node may acquire N from the system configuration preset by the receiving node; or the receiving node obtains N according to the measurement result after measuring the channel. If the receiving node acquires N by using the method, the receiving module 51 needs to receive the N sent by the receiving node before receiving the information of the codebook group sent by the receiving node.
  • the receiving module 51 is further configured to: after receiving the information of the codebook group sent by the receiving node, receive the CQI sent by the receiving node based on the codebook group, where the CQI is based on the codebook group
  • the average CQI calculated by the N codebooks is either a single CQI calculated based on any codebook in the codebook group.
  • CQI is a measure of the quality of wireless channel communication.
  • the CQI is capable of representing channel measurements for a given channel.
  • a high value CQI indicates that a channel has good communication quality and vice versa.
  • the codebook group received by the receiving module 51 is a codebook group consisting of N codebooks, the plurality of codebooks in the codebook group collectively reflect the channel quality, so for the codebook group, only Should correspond to a CQI, rather than each CQI in the codebook group. Therefore, the CQI received by the receiving module 51 is an average CQI calculated based on the CQI corresponding to the plurality of codebooks in the codebook group, or a single CQI calculated based on an arbitrary codebook in the codebook group.
  • the sending module 53 is further configured to perform precoding processing on the data to be sent by the N codebooks in the codebook group by the processing module 52, and generate N encoded data, starting from the time n.
  • the N encoded data are sequentially transmitted to the receiving node at N consecutive times.
  • the processing module 52 uses the N codebooks in the codebook group, the data to be sent is performed.
  • the transmitting module 53 sequentially transmits N pieces of encoded data to the receiving node at N consecutive times starting from time n.
  • the receiving node receives the N encoded data, the N encoded data can be demodulated.
  • the transmitting node is N coded data generated by using a codebook group containing N codebooks to encode data to be transmitted, and the codebook group including N codebooks is sent by the receiving node to the transmitting node, the receiving node The codebook group is saved, so that the receiving node can demodulate the N encoded data according to the codebook group, thereby obtaining data to be transmitted by the transmitting node.
  • the sending module 53 Since the data to be transmitted sent by the sending module 53 is encoded and transmitted using the codebook group including N codebooks, it is equivalent to transmitting the same data through different precoding weights, so that the receiving node receives and demodulates.
  • the data is highly accurate and reliable, and can greatly reduce the data transmission error of narrower beams.
  • the receiving module 51 is further configured to: after the sending module 53 sequentially sends the N encoded data to the receiving node at N consecutive times starting at time n, at n+N-1+m Receiving a correct response confirmation message sent by the receiving node, or receiving an incorrect response confirmation message sent by the receiving node at time n+N-1+m, where m is a preset value, optionally, The m is a time at which the transmitting node receives and processes the Nth encoded data.
  • the receiving node should feed back to the transmitting node whether the response message is correctly received. . If the channel measurement method of the codebook group is not used, that is, the receiving node only feeds back one codebook at a time, after receiving the data sent by the transmitting node according to the codebook encoding, the receiving node sends the data to the transmitting node after a certain time. Correct Acknowledgement (ACK) message or incorrect Acknowledgement (NACK) message.
  • ACK Acknowledgement
  • NACK incorrect Acknowledgement
  • the receiving node feeds back to the transmitting node a codebook group including N codebooks
  • the transmitting module 53 encodes and transmits the same data using N codebooks in the codebook group
  • the receiving node is not sent to the transmitting node.
  • Each encoded data feeds back an ACK or NACK message, but after receiving N encoded data and demodulating the data to be transmitted, and then feeding back an ACK or NACK message to the transmitting node. That is to say, the receiving node only feeds back one ACK or NACK message for the data to be sent corresponding to one codebook group.
  • the receiving module 51 is in The n+N-1+m time receives the correct response confirmation message sent by the receiving node, or receives the incorrect response confirmation message sent by the receiving node at time n+N-1+m.
  • the sending module 53 is further configured to: after receiving the incorrect response confirmation message sent by the receiving node at the time n+N-1+m, the transmitting module 53 retransmits the receiving node to the receiving node at the time of n+Rt.
  • N encoded data, the t is a hybrid retransmission round trip delay, where R ⁇ 1, optionally,
  • the sending module 53 sends the data to the receiving node
  • the receiving module 51 receives the ACK message
  • the sending succeeds; if the receiving module 51 receives the NACK message, it indicates that the sending fails, and if the receiving module 51 receives the NACK.
  • the message requires retransmission of the data.
  • the time for the data retransmission by the sending module 53 is a Hybrid Automatic Repeat reQuest round trip time (RTT) after transmitting data to the receiving node. And then retransmit the data.
  • RTT Hybrid Automatic Repeat reQuest round trip time
  • the receiving module 51 receives the NACK message after considering the number of the codebooks.
  • the sending module 53 performs data retransmission at the time of n+Rt, where R ⁇ 1, optionally, Express Round up, t is the hybrid retransmission round trip delay.
  • FIG. 7 is a flowchart of Embodiment 1 of a channel measurement method according to an embodiment of the present invention. As shown in FIG. 7, the method in this embodiment includes:
  • Step S701 The receiving node acquires the number N, N ⁇ 1 of the codebooks in the codebook group to be measured.
  • Step S702 the receiving node measures the channel to obtain a codebook group of the channel, and the codebook group includes N codebooks.
  • Step S703 the receiving node reports the information of the codebook group to the transmitting node.
  • the channel measurement method provided in this embodiment is used to complete the processing of the receiving node shown in FIG. 1, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the method further includes: the receiving node generating, by the M codebooks in the codebook space of the receiving node, a codebook group composed of at least two codebook groups. Space, each codebook group in the codebook group space is composed of N codebooks.
  • a part of the codebooks in at least two codebook groups in the codebook group space are the same.
  • step S703 includes: the receiving node reporting, to the transmitting node, an index number of the codebook group in the codebook group space.
  • step S701 includes: the receiving node receives high layer signaling or physical layer specific signaling sent by the transmitting node, the high layer signaling or the physical layer dedicated signaling. Including the N, the high layer signaling includes RRC signaling or MAC layer signaling; and the receiving node acquires the N from the high layer signaling or the physical layer dedicated signaling.
  • the method further includes: the receiving node sending a notification message to the transmitting node, where the notification message includes the N. .
  • FIG. 8 is a flowchart of Embodiment 2 of a channel measurement method according to an embodiment of the present invention. As shown in FIG. 8, the method in this embodiment includes:
  • Step S801 the receiving node acquires the number N, N ⁇ 1 of the codebooks in the codebook group to be measured.
  • Step S802 the receiving node measures the channel to obtain a codebook group of the channel, and the codebook group includes N codebooks.
  • Step S803 the receiving node reports the information of the codebook group to the transmitting node.
  • Step S804 the receiving node starts receiving the N pieces of encoded data sent by the transmitting node, starting from time n.
  • Step S805 the receiving node demodulates the N encoded data to obtain the to-be-sent data.
  • FIG. 9 is a flowchart of Embodiment 3 of a channel measurement method according to an embodiment of the present invention. As shown in FIG. 9, the method in this embodiment includes:
  • Step S901 the receiving node acquires the number N, N ⁇ 1 of the codebooks in the codebook group to be measured.
  • Step S902 the receiving node measures the channel to obtain a codebook group of the channel, and the codebook group includes N codebooks.
  • Step S903 the receiving node reports the information of the codebook group to the transmitting node.
  • Step S904 the receiving node starts receiving the N pieces of encoded data sent by the transmitting node, starting from time n.
  • Step S905 the receiving node sends a correct response confirmation message to the transmitting node at the time of n+N-1+m, where m is a preset value, optionally, the m is received by the transmitting node. At The time to complete the Nth encoded data.
  • Step S906 the receiving node demodulates the N encoded data to obtain the to-be-sent data.
  • Step S907 the receiving node sends an incorrect response confirmation message to the transmitting node at time n+N-1+m.
  • Step S908 the receiving node receives the N coded data retransmitted by the transmitting node at time n+Rt, where t is a hybrid retransmission round-trip delay, where R ⁇ 1, optionally,
  • the method further includes: sending, by the receiving node, the sending node to The CQI of the codebook group, the CQI is an average CQI calculated based on N codebooks in the codebook group or a single CQI calculated based on any codebook in the codebook group.
  • FIG. 10 is a flowchart of Embodiment 4 of a channel measurement method according to an embodiment of the present invention. As shown in FIG. 10, the method in this embodiment includes:
  • Step S1001 The transmitting node receives the information of the codebook group sent by the receiving node, where N ⁇ 1.
  • Step S1002 The transmitting node performs precoding processing on the data to be sent by using the N codebooks in the codebook group to generate N encoded data.
  • the channel measurement method provided in this embodiment is used to complete the processing of the transmitting node shown in FIG. 5, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the method further includes: the transmitting node generating, by the M codebooks in the codebook space of the transmitting node, a codebook space composed of at least two codebook groups, the code Each codebook group in this group space consists of N codebooks.
  • a part of the codebooks in at least two codebook groups in the codebook group space are the same.
  • step S1001 includes: the transmitting node receiving an index number of the codebook group sent by the receiving node in the codebook group space.
  • the method further includes: the transmitting node sending high layer signaling or physical layer dedicated signaling to the receiving node, the high layer signaling or the physical layer dedicated letter
  • the N is included in the command, and the high layer signaling includes RRC signaling or MAC layer signaling. So that the receiving node acquires the N from the high layer signaling or the physical layer dedicated signaling.
  • the method further includes: the transmitting node receiving the N sent by the receiving node, where the N is obtained by the receiving node measuring the channel. .
  • FIG. 11 is a flowchart of Embodiment 5 of a channel measurement method according to an embodiment of the present invention. As shown in FIG. 11, the method in this embodiment includes:
  • Step S1101 The transmitting node receives the information of the codebook group sent by the receiving node, where N ⁇ 1.
  • Step S1102 The transmitting node performs precoding processing on the data to be sent by using the N codebooks in the codebook group to generate N encoded data.
  • Step S1103 The transmitting node sequentially sends the N encoded data to the receiving node at N consecutive times starting from time n.
  • FIG. 12 is a flowchart of Embodiment 6 of a channel measurement method according to an embodiment of the present invention. As shown in FIG. 12, the method in this embodiment includes:
  • Step S1201 The transmitting node receives the information of the codebook group sent by the receiving node, where N ⁇ 1.
  • Step S1202 The transmitting node performs precoding processing on the data to be sent by using the N codebooks in the codebook group to generate N encoded data.
  • Step S1203 The transmitting node sequentially sends the N encoded data to the receiving node at N consecutive times starting from time n.
  • Step S1204 The transmitting node receives a correct response confirmation message sent by the receiving node at time n+N-1+m, where m is a preset value, optionally, the m is received by the transmitting node. And processing the time to complete the Nth encoded data.
  • Step S1205 The transmitting node receives an incorrect response confirmation message sent by the receiving node at time n+N-1+m.
  • Step S1206 The transmitting node retransmits the N encoded data to the receiving node at a time of n+Rt, where t is a hybrid retransmission round-trip delay, where R ⁇ 1, optionally,
  • the method further includes:
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种信道测量方法和装置,一种接收节点,包括:获取模块,用于获取待测量的码本组中码本的数量N,N≥1;测量模块,用于对信道进行测量,得到所述信道的码本组,所述码本组包括N个码本;发送模块,用于向发射节点上报所述码本组的信息。本发明实施例提供的信道测量方法和装置,提高了对信道进行测量和反馈的精度。

Description

信道测量方法和装置 技术领域
本发明实施例涉及无线通信技术领域,尤其涉及一种信道测量方法和装置。
背景技术
频谱是无线通信中最重要的资源,现在主流的无线通信系统,例如全球移动通信(Global System for Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)2000/宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、长期演进(Long Term Evolution,LTE)系统等,通常都工作在3GHz以下的载频上。
随着智能终端的发展,特别是智能终端上视频业务的出现,当前使用的频谱资源已经难以满足用户对容量需求的爆炸式增长。因此,具有更大的可用带宽的高频频段(例如3GHz到200GHz),日益成为下一代无线通信系统的候选频段。但与现有无线通信系统所使用的频段不同的是,高频频段将导致更大路径损耗,特别是大气、植被等因素将对高频频段的无线传播带来更大的损耗。由于高频频段会产生更高的路径损耗,因此需要通过降低波束宽度的方法来提高天线的增益。
然而对于较窄的波束,较小的角度偏差就会带来较大的天线增益差,因此将较窄的波束应用于蜂窝通信时,波束跟踪(主要是波束赋形(Beamforming,BF))的准确度就变得尤其重要,否则将影响数据传输的准确性和可靠性。
发射端是根据接收端对信道进行测量后反馈的码本对数据进行预编码后,再将预编码后的数据通过天线发射出去的,因此如何提高接收端对信道进行测量和反馈的精度将直接影响到数据传输的准确性和可靠性。
发明内容
本发明实施例提供一种信道测量方法和装置,提高了对信道进行测量和 反馈的精度。
第一方面提供一种接收节点,包括:
获取模块,用于获取待测量的码本组中码本的数量N,N≥1;
测量模块,用于对信道进行测量,得到所述信道的码本组,所述码本组包括N个码本;
发送模块,用于向发射节点上报所述码本组的信息。
结合第一方面,在第一方面第一种可能的实现方式中,所述获取模块,还用于在获取所述待测量的码本组中码本的数量N之后,将所述接收节点的码本空间中的M个码本生成由至少两个码本组组成的码本组空间,所述码本组空间中的每个码本组由N个码本组成。
结合第一方面第一种可能的实现方式,在第一方面第二种可能的实现方式中,所述码本组空间中至少两个码本组中的一部分码本相同。
结合第一方面第一种或第二种可能的实现方式,在第一方面第三种可能的实现方式中,所述发送模块,具体用于向所述发射节点上报所述码本组在所述码本组空间中的索引号。
结合第一方面至第一方面第三种可能的实现方式中任一种可能的实现方式,在第一方面第四种可能的实现方式中,所述获取模块,具体用于接收所述发射节点发送的高层信令或物理层专用信令,所述高层信令或所述物理层专用信令中包括所述N,所述高层信令包括无线资源控制RRC信令或介质访问控制MAC层信令;从所述高层信令或所述物理层专用信令中获取所述N。
结合第一方面至第一方面第四种可能的实现方式中任一种可能的实现方式,在第一方面第五种可能的实现方式中,所述测量模块,还用于分别以i个码本为码本组Zi对信道进行测量,得到M个结果,i=1,2,…,M,所述M为所述接收节点的码本空间中的码本数量;
所述获取模块,具体用于在所述M个结果中确定信道质量最好的码本组Zi,将所述码本组Zi中码本的个数i作为所述待测量的码本组中码本的数量N;
所述发送模块,还用于向所述发射节点发送通知消息,所述通知消息包括所述N。
结合第一方面至第一方面第五种可能的实现方式中任一种可能的实现方式,在第一方面第六种可能的实现方式中,所述接收节点还包括:
接收模块,用于在所述发送模块向发射节点上报所述码本组的信息之后,从时刻n开始,接收所述发射节点发送的所述N个编码后的数据;
解调模块,用于将所述N个编码后的数据进行解调,得到所述待发送数据。
结合第一方面第六种可能的实现方式,在第一方面第七种可能的实现方式中,所述发送模块,还用于在所述接收模块从时刻n开始,接收所述发射节点发送的所述N个编码后的数据之后,在n+N-1+m时刻向所述发射节点发送正确的应答确认消息,或者在n+N-1+m时刻向所述发射节点发送不正确的应答确认消息,所述m为预设值。
结合第一方面第七种可能的实现方式,在第一方面第八种可能的实现方式中,所述接收模块,还用于所述发送模块在n+N-1+m时刻向所述发射节点发送接收不正确的应答确认消息之后,在n+Rt时刻接收所述发射节点重传的所述N个编码后的数据,所述t为混合重传往返时延,R≥1。
结合第一方面至第一方面第八种可能的实现方式中任一种可能的实现方式,在第一方面第九种可能的实现方式中,所述发送模块,还用于在所述测量模块对信道进行测量,得到所述信道的码本组之后,向所述发射节点发送基于所述码本组的CQI,所述CQI是基于所述码本组中的N个码本计算得到的平均CQI或者是基于所述码本组中任一码本计算得到的单个CQI。
第二方面提供一种发射节点,包括:
接收模块,用于接收接收节点发送的码本组的信息,所述码本组中包括N个码本,N≥1;
处理模块,用于使用所述码本组中的N个码本分别对待发送的数据进行预编码处理,生成N个编码后的数据。
结合第二方面,在第二方面第一种可能的实现方式中,所述处理模块,还用于将所述发射节点的码本空间中的M个码本生成由至少两个码本组组成的码本空间,所述码本组空间中的每个码本组由N个码本组成。
结合第二方面第一种可能的实现方式,在第二方面第二种可能的实现方式中,所述码本组空间中至少两个码本组中的一部分码本相同。
结合第二方面第一种或第二种可能的实现方式,在第二方面第三种可能的实现方式中,所述接收模块,具体用于接收所述接收节点发送的所述码本组在所述码本组空间中的索引号。
结合第二方面至第二方面第三种可能的实现方式中任一种可能的实现方式,在第二方面第四种可能的实现方式中,所述发射节点,还包括:发送模块,用于在所述接收模块接收接收节点发送的码本组之的信息前,向所述接收节点发送高层信令或物理层专用信令,所述高层信令或所述物理层专用信令中包括所述N,所述高层信令包括RRC信令或MAC层信令,所述N为所述发射节点预设的。
结合第二方面至第二方面第三种可能的实现方式中任一种可能的实现方式,在第二方面第五种可能的实现方式中,所述接收模块,还用于在接收接收节点发送的码本组的信息之前,接收所述接收节点发送的所述N,所述N为所述接收节点对信道进行测量后获取的。
结合第二方面至第二方面第五种可能的实现方式中任一种可能的实现方式,在第二方面第六种可能的实现方式中,所述发送模块,还用于在所述处理模块使用所述码本组中的N个码本分别对待发送的数据进行预编码处理,生成N个编码后的数据之后,从时刻n开始,在N个连续的时刻依次向所述接收节点发送所述N个编码后的数据。
结合第二方面第六种可能的实现方式,在第二方面第七种可能的实现方式中,所述接收模块,还用于在所述发送模块从时刻n开始,在N个连续的时刻依次向所述接收节点发送所述N个编码后的数据之后,在n+N-1+m时刻接收所述接收节点发送的正确的应答确认消息,或者在n+N-1+m时刻接收所述接收节点发送的不正确的应答确认消息,所述m为预设值。
结合第二方面第七种可能的实现方式,在第二方面第八种可能的实现方式中,所述发送模块,还用于所述接收模块在n+N-1+m时刻接收所述接收节点发送的不正确的应答确认消息之后,在n+Rt时刻向所述接收节点重传所述N个编码后的数据,所述t为混合重传往返时延,R≥1。
结合第二方面至第二方面第八种可能的实现方式中任一种可能的实现方式,在第二方面第九种可能的实现方式中,所述接收模块,还用于在接收接收节点发送的码本组的信息之后,接收所述接收节点发送的基于所述码本组 的CQI,所述CQI是基于所述码本组中的N个码本计算得到的平均CQI或者是基于所述码本组中任一码本计算得到的单个CQI。
第三方面提供一种信道测量方法,包括:
接收节点获取待测量的码本组中码本的数量N,N≥1;
所述接收节点对信道进行测量,得到所述信道的码本组,所述码本组包括N个码本;
所述接收节点向发射节点上报所述码本组的信息。
结合第三方面,在第三方面第一种可能的实现方式中,所述接收节点获取待测量的码本组中码本的数量N之后,还包括:
所述接收节点将所述接收节点的码本空间中的M个码本生成由至少两个码本组组成的码本组空间,所述码本组空间中的每个码本组由N个码本组成。
结合第三方面第一种可能的实现方式,在第三方面第二种可能的实现方式中,所述码本组空间中至少两个码本组中的一部分码本相同。
结合第三方面第一种或第二种可能的实现方式,在第三方面第三种可能的实现方式中,所述接收节点向发射节点上报所述码本组的信息,包括:
所述接收节点向所述发射节点上报所述码本组在所述码本组空间中的索引号。
结合第三方面至第三方面第三种可能的实现方式中任一种可能的实现方式,在第三方面第四种可能的实现方式中,所述接收节点获取与所述接收节点对应的码本组中码本的数量N,包括:
所述接收节点接收所述发射节点发送的高层信令或物理层专用信令,所述高层信令或所述物理层专用信令中包括所述N,所述高层信令包括无线资源控制RRC信令或介质访问控制MAC层信令;
所述接收节点从所述高层信令或所述物理层专用信令中获取所述N。
结合第三方面至第一方面第四种可能的实现方式中任一种可能的实现方式,在第三方面第五种可能的实现方式中,所述接收节点获取与所述接收节点对应的码本组中码本的数量N,包括:
所述接收节点分别以i个码本为码本组Zi对信道进行测量,得到M个结果,i=1,2,…,M,所述M为所述接收节点的码本空间中的码本数量;
所述接收节点在所述M个结果中确定信道质量最好的码本组Zi,将所述码本组Zi中码本的个数i作为所述待测量的码本组中码本的数量N;
所述方法还包括:
所述接收节点向所述发射节点发送通知消息,所述通知消息包括所述N。
结合第三方面至第三方面第五种可能的实现方式中任一种可能的实现方式,在第三方面第六种可能的实现方式中,所述接收节点向发射节点上报所述码本组的信息之后,还包括:
所述接收节点从时刻n开始,接收所述发射节点发送的所述N个编码后的数据;
所述接收节点将所述N个编码后的数据进行解调,得到所述待发送数据。
结合第三方面第六种可能的实现方式,在第三方面第七种可能的实现方式中,所述接收节点从时刻n开始,接收所述发射节点发送的所述N个编码后的数据之后,还包括:
所述接收节点在n+N-1+m时刻向所述发射节点发送正确的应答确认消息,所述m为预设值;
或者所述接收节点在n+N-1+m时刻向所述发射节点发送不正确的应答确认消息。
结合第三方面第七种可能的实现方式,在第三方面第八种可能的实现方式中,所述接收节点在n+N-1+m时刻向所述发射节点发送接收不正确的应答确认消息之后,还包括
所述接收节点在n+Rt时刻接收所述发射节点重传的所述N个编码后的数据,所述t为混合重传往返时延,R≥1。
结合第三方面至第三方面第八种可能的实现方式中任一种可能的实现方式,在第三方面第九种可能的实现方式中,所述接收节点对信道进行测量,得到所述信道的码本组之后,还包括:
所述接收节点向所述发射节点发送基于所述码本组的信道质量指示CQI,所述CQI是基于所述码本组中的N个码本计算得到的平均CQI或者是基于所述码本组中任一码本计算得到的单个CQI。
第四方面提供一种信道测量方法,包括:
发射节点接收接收节点发送的码本组的信息,所述码本组中包括N个码本,N≥1;
所述发射节点使用所述码本组中的N个码本分别对待发送的数据进行预编码处理,生成N个编码后的数据。
结合第四方面,在第四方面第一种可能的实现方式中,所述方法还包括:
所述发射节点将所述发射节点的码本空间中的M个码本生成由至少两个码本组组成的码本空间,所述码本组空间中的每个码本组由N个码本组成。
结合第四方面第一种可能的实现方式,在第四方面第二种可能的实现方式中,所述码本组空间中至少两个码本组中的一部分码本相同。
结合第四方面第一种或第二种可能的实现方式,在第四方面第三种可能的实现方式中,所述发射节点接收接收节点发送的码本组的信息,包括:
所述发射节点接收所述接收节点发送的所述码本组在所述码本组空间中的索引号。
结合第四方面至第四方面第三种可能的实现方式中任一种可能的实现方式,在第四方面第四种可能的实现方式中,发射节点接收接收节点发送的码本组的信息之前,还包括:
所述发射节点向所述接收节点发送高层信令或物理层专用信令,所述高层信令或所述物理层专用信令中包括所述N,所述高层信令包括无线资源控制RRC信令或介质访问控制MAC层信令,以使所述接收节点从所述高层信令或所述物理层专用信令中获取所述N,所述N为所述发射节点预设的。
结合第四方面至第四方面第三种可能的实现方式中任一种可能的实现方式,在第四方面第五种可能的实现方式中,所述发射节点接收接收节点发送的码本组的信息之前,还包括:
所述发射节点接收所述接收节点发送的所述N,所述N为所述接收节点对信道进行测量后获取的。
结合第四方面至第四方面第五种可能的实现方式中任一种可能的实现方式,在第四方面第六种可能的实现方式中,所述发射节点使用所述码本组中的N个码本分别对待发送的数据进行预编码处理,生成N个编码后的数据之 后,还包括:
所述发射节点从时刻n开始,在N个连续的时刻依次向所述接收节点发送所述N个编码后的数据。
结合第四方面第六种可能的实现方式,在第四方面第七种可能的实现方式中,所述发射节点从时刻n开始,在N个连续的时刻依次向所述接收节点发送所述N个编码后的数据之后,还包括:
所述发射节点在n+N-1+m时刻接收所述接收节点发送的正确的应答确认消息,所述m为预设值;
或者所述发射节点在n+N-1+m时刻接收所述接收节点发送的不正确的应答确认消息。
结合第四方面第七种可能的实现方式,在第四方面第八种可能的实现方式中,所述发射节点在n+N-1+m时刻接收所述接收节点发送的不正确的应答确认消息之后,还包括:
所述发射节点在n+Rt时刻向所述接收节点重传所述N个编码后的数据,所述t为混合重传往返时延,R≥1。
结合第四方面至第四方面第八种可能的实现方式中任一种可能的实现方式,在第四方面第九种可能的实现方式中,所述发射节点接收接收节点发送的码本组的信息之后,还包括:
所述发射节点接收所述接收节点发送的基于所述码本组的信道质量指示CQI,所述CQI是基于所述码本组中的N个码本计算得到的平均CQI或者是基于所述码本组中任一码本计算得到的单个CQI。
本实施例提供的信道测量方法和装置,通过获取码本组中码本的数量N,并对信道进行测量得到包括N个码本的码本组,然后向发射节点反馈该码本组,使发射节点使用该码本组中的N个码本分别对待发送的数据进行预编码处理后发送,提高了对信道进行测量和反馈的精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在 不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的接收节点实施例一的结构示意图;
图2为本发明实施例提供的接收节点实施例二的结构示意图;
图3为数据收发时序示意图;
图4为数据收发及重传时序示意图;
图5为本发明实施例提供的发射节点实施例一的结构示意图;
图6为本发明实施例提供的发射节点实施例二的结构示意图;
图7为本发明实施例提供的信道测量方法实施例一的流程图;
图8为本发明实施例提供的信道测量方法实施例二的流程图;
图9为本发明实施例提供的信道测量方法实施例三的流程图;
图10为本发明实施例提供的信道测量方法实施例四的流程图;
图11为本发明实施例提供的信道测量方法实施例五的流程图;
图12为本发明实施例提供的信道测量方法实施例六的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
对于高频波束而言,提高天线增益必然导致波束变窄,在多天线系统中,可以采用多个天线阵子虚拟加权合成一个天线端口的方法来提高天线增益,由M个天线阵子虚拟加权成一个天线端口称为1驱M。M的数量越多波束越窄,例如1驱16波束为6.5度,1驱32波束为3.2度,1驱64波束为1.6度。
若将较窄的波束应用于蜂窝通信,则波束跟踪的精确度需要很高。例如以不同小区半径下,小区边缘的楼房内1-8层中用户的俯仰角变化为例,如表1所示。
表1
层数 俯仰角(小区间距500米) 俯仰角(小区间距200米)
1层 0.3438度 0.8594度
2层 1.0312度 2.5766度
3层 1.7184度 4.2892度
4层 2.405度 5.9941度
5层 3.09度 7.6884度
6层 3.776度 9.3694度
7层 4.46度 11.0342度
8层 5.1428度 12.68度
从表1中可以看出,在小区间距500米的场景下,小区边缘的楼房内,相邻楼层的用户间俯仰角仅相差0.7度左右。若此时又使用较窄的波束,例如为1.6度,则较小角度的波束偏差就可能带来较大的天线增益差。
因此,对于较窄的波束,需要对信道质量进行更精确的测量和反馈,从而提高信号加权后对应波束的准确度和精度。
考虑到信道相干时间和载频频率是成反比的,高频下的信道相干时间相比低频成比例减小。而信道相干时间越短信道的时域响应变化越快,因此在相同的时域粒度下,反馈一个包含多个码本的码本组将比仅反馈一个码本更能准确反映信道的时域变化情况。基于上述原因,本发明实施例提供一种测量和反馈的方法和装置,在接收端和发射端分别预定义一套以码本组为最小粒度的码本空间,码本组中包括N个码本,接收端基于对信道的测量向发射端反馈包含N个码本的码本组,发射端在接下来的N次发送中分别以码本组中的各码本对相同的数据进行预编码加权后发送至接收端,接收端基于N次接收的数据进行解调,从而得到发射端所发送的数据。由于码本组中包括N个码本,当N大于1时,接收端反馈的码本组比反馈一个码本能够更好的反应信道的变化情况,而接收端接收到发射端根据码本组中的多个码本对相同的数据进行预编码并发送的数据后,解调得出的数据可以更好地消除信道变化对数据的影响。码本组中的码本数量N越多,则反馈的信道质量越准确,当N等于1时,即为目前仅反馈一个码本的测量和反馈方案。
图1为本发明实施例提供的接收节点实施例一的结构示意图,如图1所示,本实施例的接收节点包括:
获取模块11,用于获取待测量的码本组中码本的数量N,N≥1。
具体地,本实施例提供的接收节点可以为网络中的任意具有信道测量及反馈功能的网络节点,一般地,该接收节点可以为用户设备(User Equipment,UE)。
由于目前的信道信道测量方法中,接收节点每次对信道进行测量及反馈的仅为一个码本,接收到该反馈的发射节点根据该码本对待发送的数据进行预编码处理再发送到接收端。但随着高频的引入,发射节点发送的波束也相应变窄,以满足较大天线增益的需要,这样就需要提高波束的精度,也就是需要提高接收节点对信道进行测量和反馈的精度。考虑到频率、信道相干时间和时域响应的对应关系,在较低频率的载频上发送一次数据的时域粒度下,在较高频率的载频上可以发送多次数据,因此,在使用较高频率的载频发送数据时,接收端可以在该时域粒度下测量并反馈多个码本,使发射节点可以使用多个码本在多次发送时发送相同的数据,从而可以更好地匹配和应对信道变化,从而提高用于数据发射的波束的精度。接收节点对信道进行测量和反馈的码本组中的码本数量将直接影响高频下信道测量和反馈的精度。
因此,本实施例提供的接收节点包括获取模块11,用于获取待测量的码本组中码本的数量N,N≥1。N的大小可以是接收节点和发射节点预定义好的,则N的大小可以预设在接收节点的系统配置中,获取模块11从预设的系统配置中获取N的大小;或者N的大小可以预设在发射节点的系统配置中,获取模块11从发射节点发送的配置信令中获取N的大小;或者N的大小是由获取模块11对信道进行测量后获得的。
目前的信道信道测量方法中,接收节点每次仅会对信道测量并反馈固定的N=1个码本。但本实施例提供的接收节点中,N的大小是可以动态配置的,获取模块11获取N的数量即为动态配置N的过程。当获取模块11获取的N的数量等于1时,接收节点将按照现有的仅对信道测量并反馈一个码本的方案对信道进行测量和反馈。当获取模块获取的N的数量大于1时,则接收节点反馈的码本组就会比仅反馈一个码本更加能够匹配和反映信道的变化情况。
测量模块12,用于对信道进行测量,得到所述信道的码本组,所述码本组包括N个码本。
具体地,当获取模块11获取到码本组中码本的数量N后,测量模块12 即对信道进行测量,从而得到该信道对应的码本组,其中,测量得到的码本组中包括N个码本。
在接收节点中,保存有多个码本组成的码本空间,设码本空间中共有M个码本,将M个码本中的N个为一组,共可将码本空间分成P个码本组,其中每两个码本组中的码本可以相互交叠。测量模块12基于对信道的测量,在所述P个码本组中选择一个测量得到的信道质量最好的码本组,即完成了对信道测量后的码本组选择。
例如码本空间中码本M的个数为32,其中32个码本分别编号为0,1,2,…,31。获取模块11获取的N的数量为4,假定码本空间中的32个码本对应了[0,2π]空间内均匀分割的32个波束。以每相邻的4个码本为一组,则整个码本空间被分成了32个码本组,所述32个码本组对应的码本编号分别为{0,1,2,3}、{1,2,3,4}、{2,3,4,5}、…、{30,31,0,1}、{31,0,1,2}。测量模块12可以基于发射节点发送的测量参考信号,分别使用32个码本组中的4个码本对信道质量进行测量,以每个码本组中的4个码本对信道进行测量得到的信道质量之和作为该码本组对应的信道质量,其中使用每个码本对信道质量进行测量得到的信道质量例如可以是信道质量指示(Channel Quality Indicator,CQI)。或者测量模块12进一步地以每个码本对信道质量进行测量得到的CQI对应的容量作为信道质量。总之,测量模块12对信道测量后,在所述32个码本组中选择一个最能够匹配和反映信道特征的码本组。
发送模块13,用于向发射节点上报所述码本组的信息。
具体地,发送模块13将测量模块12测量到的码本组的信息发送给发射节点,即完成了信道的测量及反馈。在发射节点中,也保存有多个码本组成的码本空间,并且该码本空间中的各码本及码本编号与接收节点中相同,因此发送模块13在向发射节点发送所述码本组时,仅需向发射节点发送各码本组的索引或编号即可。
在发射节点接收到发送模块13上报的码本组的索引或编号后,即使用对应码本组中的N个码本分别对一个相同的待发送的数据进行预编码处理,生成N个编码后的数据,并在接下来的N次发送中分别发送N个编码后的数据。接收节点在对信道进行测量及反馈处理时,由于接收节点测量及反馈的 每个码本组中包括多个码本,并且所述每个码本组中的多个码本用于使发射节点对相同的数据进行多次预编码处理并发送,因此本实施提供的接收节点测量及反馈一个包含多个码本的码本组的方案可以更好地匹配和反映信道状态,从而提高发射节点发射数据的精度。
本实施例提供的接收节点,通过获取码本组中码本的数量N,并对信道进行测量得到包括N个码本的码本组,然后向发射节点反馈该码本组,使发射节点使用该码本组中的N个码本分别对待发送的数据进行预编码处理后发送,提高了对信道进行测量和反馈的精度。
进一步地,在图1所示实施例中,获取模块11,还用于在获取所述待测量的码本组中码本的数量N之后,将所述接收节点的码本空间中的M个码本生成由至少两个码本组组成的码本组空间,所述码本组空间中的每个码本组由N个码本组成。
具体地,在接收节点和发射节点中,都预设有相同的码本空间,该码本空间中包括M个码本。当获取模块11获取了待测量的码本组中的码本数量N之后,获取模块11即可将码本空间中的M个码本生成由多个码本组所组成的码本组空间,其中码本组空间中包括至少两个码本组,码本空间组中的每个码本组由N个码本组成。这样,当测量模块12对信道进行测量时,即可使用码本组空间中的各码本组分别对信道进行测量,而无需再从码本空间中选择N个码本组成码本组。同时在发射节点中,也根据与接收节点相同的策略生成与接收节点中相同的码本组空间,这样接收节点在向发射节点上报测量到的码本组的信息时,仅需上报该码本组在码本组空间中的索引号或编号即可,即减少了上报码本组所需的资源。
进一步地,在图1所示实施例中,所述码本组空间中至少两个码本组中的一部分码本相同。也就是说,获取模块11生成的码本组空间中的各码本组中所包含的码本是可以复用的,这样可以使用码本空间中的M个码本生成更多的码本组。
进一步地,在图1所示实施例中,发送模块12,具体用于向所述发射节点上报所述码本组在所述码本组空间中的索引号。
进一步地,在图1所示实施例中,获取模块11获取码本组中码本的数量N的方法可以为:获取模块11从预设的系统配置中获取N;或者获取模块11 从发射节点发送的信令中获取N;或者获取模块11对信道进行测量后根据测量结果获取N。
在一种实现方式中,接收节点和发射节点中都预设有码本组中码本的数量N,获取模块11从预设的系统配置中获取N,则当发送模块13向发射节点上报包括N个码本的码本组后,发射节点同样可以根据预设的系统配置获知码本组中N的数量,从而从对应的码本组中提取各码本。
在另一种实现方式中,只有发射节点中预设有码本组中码本的数量N,获取模块11接收所述发射节点发送的高层信令或物理层专用信令,所述高层信令或所述物理层专用信令中包括所述N,所述高层信令包括RRC信令或MAC层信令;从所述高层信令或所述物理层专用信令中获取所述N。一般地,发射节点为网络中的基站,而接收节点为网络中的用户设备,而基站中保存着各种网络配置信息,基站根据需要通过信令向用户设备发送网络配置信息。对应本发明实施例,发射节点中预设有N,发射节点在发往接收节点的高层信令或物理层信令中携带N,接收模块11从高层信令或物理层信令中获取N。这里的高层信令可以为无线资源控制(Radio Resource Control,RRC)信令或介质访问控制(Media Access Control,MAC)层信令。这样,当发送模块23向发射节点上报包括N个码本的码本组后,发射节点可以根据预设的系统配置获知码本组中N的数量,从而从码本组中提取各码本。
在另一种实现方式中,发射节点和接收节点中都没有预设码本组中码本的数量N,则测量模块12,还用于分别以i个码本为码本组Zi对信道进行测量,得到M个结果,i=1,2,…,M,所述M为所述接收节点的码本空间中的码本数量;获取模块11,具体用于在所述M个结果中确定信道质量最好的码本组Zi,将所述码本组Zi中码本的个数i作为所述待测量的码本组中码本的数量N;发送模块13,还用于向所述发射节点发送通知消息,所述通知消息包括所述N。也就是说,码本组中的码本数量N是动态的值,接收节点中的获取模块11根据测量模块12对信道进行测量的情况确定N的取值,然后发送模块13将N的值通过通知消息发送给发射节点。这样,当发送模块13向发射节点上报包括N个码本的码本组的信息后,发射节点可以根据预设的系统配置获知所述码本组中的N个码本。由于码本组中码本的数量N是获取模块11根据测量模块12对信道进行的测量获取的,因此N的数量是和信道 状态相关的,包括N个码本的码本组也能够更好的反应信道的状态。例如,由于码本组中的N个码本是用于使发射节点在N次发送中发送相同的数据,N的值越大则数据的准确性越高。另外,载频频率越高,则发送N次数据所需的时间就会越短,因此测量模块12可以对信道载频频率进行测量,从而确定N的取值,这样发射节点可以在保证数据准确的前提下尽量节约系统资源。
接收节点对N进行测量的具体方法为:测量模块12分别以i个码本为码本组Zi对信道进行测量,得到M个结果,i=1,2,…,M,所述M为所述接收节点的码本空间中的码本数量,即测量模块12遍历码本空间中所有码本组的组合,分别对以每个码本组对信道进行测量。然后获取模块11,在所述M个结果中确定信道质量最好的码本组Zi,将所述码本组Zi中码本的个数i作为所述待测量的码本组中码本的数量N,即得到码本组中码本的数量N。然后发送模块13,还要向所述发射节点发送通知消息,所述通知消息包括所述N。
图2为本发明实施例提供的接收节点实施例二的结构示意图,如图2所示,本实施例的接收节点在图1所示实施例的基础上,还包括:
接收模块14,用于在发送模块13向发射节点上报所述码本组的信息之后,从时刻n开始,接收所述发射节点发送的所述N个编码后的数据。
具体地,在发送模块13向发射节点上报码本组后,发射节点将会使用码本组中的N个码本对相同的待发送数据进行预编码处理,得到N个编码后的数据,并且从时刻n开始,在N个连续的时刻依次向接收节点发送N个编码后的数据。接收节点中的接收模块14将会在从时刻n开始,接收N个编码后的数据。
解调模块15,用于将所述N个编码后的数据进行解调,得到所述待发送数据。
具体地,当接收模块14接收到N个编码后的数据后,解调模块15即可对N个编码后的数据进行解调。由于发射节点是使用包含N个码本的码本组对待发送数据进行编码生成的N个编码后的数据,而包含N个码本的码本组是接收节点通过发送模块13发送给发射节点的,因此接收节点是保存有该码本组的,从而解调模块15可以根据该码本组对N个编码后的数据进行解 调,从而得到发射节点待发送的数据。
由于发射节点发送的待发送数据是使用了包括N个码本的码本组进行编码后传输的,相当于对相同的数据通过不同的预编码加权发送,即同时将数据向多个方向进行了发送,从而接收节点接收并解调得出的数据准确性和可靠性较高,并且能够大大降低较窄波束的由角度偏差所带来的数据传输误差。
本申请文件中[]表示矩阵或者向量;{}表示集合。
下面以4根发射天线为例,给出一种具体的码本组设计方法,设码本空间B共包括32个码本b0、b1、…、b31,每个码本组中码本的数量N为4。
Figure PCTCN2014087544-appb-000001
X(k)∈{[bkmod32 b(k+1)mod32 b(k+2)mod32 b(k+3)mod32]:k=0,1,K,31}   (2)
C={X(0),X(1),X(2),K,X(31)}   (3)
其中,
Figure PCTCN2014087544-appb-000002
m表示发射天线的数量,n表示码本空间中码本的数量,X(k)表示N个码本组成的码本组,X(k)对应发射端天线上的加权矩阵,C表示由不同的X(k)组成的一个码本组集合。接收节点获取N的数量后,即可根据预设的规则生成相同的码本组X(k),将相同的码本组X(k)作为一个集合,即C,接收节点在对信道进行测量后,选择C中的一个X(k)作为测量结果发送至发射节点(这里可以只发送所述X(k)对应的索引或编号即可)。实际上在发射节点中获取N后,根据上述方法生成码本组的集合C,接收节点对信道进行测量后,只需要向发射节点上报C中的X(k)的序号,即向发射节点上报了相应的码本组。此外公式(1)中的码本也可以是不同于上述码本形式的任意一种其他形式的码本结构。
公式(1)至公式(3)给出的码本组设计方法给出了单码本形式的码本组具体设计方法,但在实际应用中,还可以是一种双码本形式的码本组。
当码本空间中的码本W的结构为双码本形式时,其中,
Figure PCTCN2014087544-appb-000003
矩阵X1是根据θ1确定的,矩阵X2是根据θ2
Figure PCTCN2014087544-appb-000004
确定的,θ1表示发射节点第一天线组中的相邻两根天线针对同一传输层发射信号加权值的相位差,θ2表示发射节点第二天线组中的相邻两根天线针对同一传输层发射信号加权值的相位差,
Figure PCTCN2014087544-appb-000005
表示第一天线组和第二天线组针对同一传输层发射信号加权值的相位差,且
Figure PCTCN2014087544-appb-000006
M为正整数,M表示第一天线组和第二天线组针对同一传输层发射信号加权值的相位差个数,n为小于M的非负整数,第一天线组和第二天线组属于同一个多天线系统。
上述码本W也可表示为W=W1×W2的形式,其中,W1可以称为第一码本,W1对应一个与X11)相关的反映了信道长期/平均变化特征的宽带或长期的预编码矩阵,W2可以称为第二码本,W2对应一个与
Figure PCTCN2014087544-appb-000007
相关的反映了信道短期/瞬时变化特征的短期的预编码矩阵。
B=[X(0),X(1),X(2),K,X(31)]   (4)
V(k)∈{[X(2kmod32),X((2k+1)mod32),X((2k+2)mod32),X((2k+3)mod32)]:k=0,1,K,15}   (5)
Figure PCTCN2014087544-appb-000008
Figure PCTCN2014087544-appb-000009
若码本W的结构为双码本形式,则可以将W中的W1的码本空间设计为一个由多个码本组组成的一个码本空间,以8根发射天线为例,假定由公式(3)中的32个码本组组成一个码本组空间B,B中的32个码本组进一步根据公式(5)形成16个互相交叠的第一天线组对应的码本组的组块。每个V(k)由公式(4)中的4个码本组组成。而每个V(k)根据公式(5)扩展成由第一天线组和第二天线组对应的码本组
Figure PCTCN2014087544-appb-000010
所有
Figure PCTCN2014087544-appb-000011
组成的码本组空间构成双码本结构中第一码本的码本空间。
在设计W2时,考虑到传输层数,对于不同的传输层数,给出不同的设计方法,其中Rank1至Rank4表示传输层数1至传输层数4。
Rank1:
Figure PCTCN2014087544-appb-000012
Rank2:
Figure PCTCN2014087544-appb-000013
Rank3:
Figure PCTCN2014087544-appb-000014
Rank4:
Figure PCTCN2014087544-appb-000015
其中Y或Yp(p=1,2)为选择矩阵,而ei为选择列向量,ei中的第i个元素为1其他元素为0。ei所选择的是公式(7)中码本组集合C1中的码本组。例如当传输层数为1时,即Rank1的情况下,当Y的取值为e1时,表示其选择了码本组集合C1中的第一个码本组
Figure PCTCN2014087544-appb-000016
再例如当传输层数为2时,即Rank2的情况下,当Y的取值为(e2,e4)时,表示其选择了码本组集合C1中的第二个码本组
Figure PCTCN2014087544-appb-000017
和第四个码本组
Figure PCTCN2014087544-appb-000018
而C2中提取出选择矩阵Y或Yp(p=1,2)后的
Figure PCTCN2014087544-appb-000019
Figure PCTCN2014087544-appb-000020
等为第一天线组和第二天线组针对同一传输层发射信号加权值的相位差所对应的旋转矩阵。
接收节点在对信道进行测量后,选择C1中的一个
Figure PCTCN2014087544-appb-000021
以及C2中的一个W2共同作为测量结果发送至发射节点。实际上在发射节点中也是获取N后,根据上述方法生成码本组的集合C1和C2,接收节点对信道进行测量后,只需要向发射节点上报C1中的
Figure PCTCN2014087544-appb-000022
的序号以及C2中取值的序号,即向发射节点上报了相应的码本组。
进一步地,发送模块13,还用于在测量模块12对信道进行测量,得到所述信道的匹配和适用的码本组之后,向所述发射节点发送基于所述码本组的CQI,所述CQI是基于所述码本组中的N个码本计算得到的平均CQI或者是基于所述码本组中任一码本计算得到的单个CQI。
具体地,CQI是无线信道通信质量的一个测量指标。CQI能够代表一个给定信道的信道测量结果。通常,一个高值的CQI表示一个信道有较好的通信质量,反之亦然。由于测量模块12对信道测量后得到的是一个由N个码本组成的码本组,该码本组中的多个码本作为一个整体共同反映信道质量,因此对于该码本组而言,仅应该对应一个CQI,而不是码本组中的每个码本 对应一个CQI。因此发送模块13向发射节点发送的CQI是基于码本组中的多个码本对应的CQI计算得到的平均CQI,或者是基于码本组中的任意码本计算得到的单个CQI。
进一步地,发送模块14,还用于在接收模块13从时刻n开始,接收所述发射节点发送的所述N个编码后的数据之后,在n+N-1+m时刻向所述发射节点发送正确的应答确认消息,或者在n+N-1+m时刻向所述发射节点发送不正确的应答确认消息。所述m为预设值,可选地,所述m可以设为所述发射节点接收并处理完成第N个编码后的数据的时间。所述时刻n为发送节点发送码本组中第一个码本的时刻。
具体地,当发射节点接收到发送模块13发送的码本组后,接收模块14会从时刻n开始,接收所述发射节点发送的所述N个编码后的数据,此时接收节点应该向发射节点反馈是否正确接收的应答消息。若不采用码本组的信道测量方法,即接收节点每次仅反馈一个码本,则接收节点在接收到发射节点根据该码本编码后发送的数据后,经过若干时间,会向发射节点发送正确的应答确认(Acknowledgement,ACK)消息或不正确的应答确认(Negative Acknowledgement,NACK)消息。但若发送模块13向发射节点反馈的是包括N个码本的码本组,由于发射节点使用码本组中的N个码本编码并发送同一个数据,因此接收节点并不是对于发射节点发送的每个编码后的数据反馈ACK或NACK消息,而是在接收到N个编码后的数据,并通过解调得到待发送的数据后,再向发射节点反馈一个ACK或NACK消息。也就是说,接收节点对于一个码本组对应的待发送数据,仅反馈一个ACK或NACK消息。
图3为数据收发时序示意图,其中时序31为使用单码本传输时发射节点的下行时序,时序32为使用单码本传输时接收节点的上行时序,时序33为使用码本组传输时发射节点的下行时序,时序34为使用码本组传输时接收节点的上行时序,图3中以码本组中包括4个码本为例进行说明。在发射节点的下行时序中,发射节点使用一个物理下行共享信道(Physical Downlink Shared Channel,PDSCH)向接收节点发送一个编码后的数据,在接收节点的上行时序中,接收节点使用一个物理上行控制信道(Physical Uplink Control Channel,PUCCH)向发射节点反馈ACK或NACK信息。设每个PDSCH或 PUCCH的一次发射占用一个时刻。接收节点在接收到发射节点发送的数据后,需要经过解调等处理才能确认是否接收正确,因此需要有一定的时间间隔,这个时间间隔根据接收节点的能力变化,在图3中设该时间为4个时刻。
若采用单码本方案,在时刻0,发射节点在PDSCH 301向接收节点发送一个编码后的数据,间隔4个时刻,在时刻4接收节点会在PUCCH 302向接收节点发送ACK或NACK消息。若采用包括4个码本的码本组方案,从时刻0开始,发射节点依次在PDSCH 303、PDSCH 304、PDSCH 305、PDSCH306向接收节点发送编码后的数据,间隔4个时刻,在时刻7(7=0+4-1+4)接收节点会在PUCCH 307向发射节点发送ACK或NACK消息。经过总结可知,接收模块14从时刻n开始,接收所述发射节点发送的所述N个编码后的数据之后,发送模块13在n+N-1+m时刻向所述发射节点发送正确的应答确认消息,所述m为所述发射节点接收并处理完成第N个编码后的数据的时间。
进一步地,接收模块13,还用于发送模块14在n+N-1+m时刻向所述发射节点发送接收不正确的应答确认消息之后,在n+Rt时刻接收所述发射节点重传的所述N个编码后的数据,所述t为混合重传往返时延,这里R≥1,可选地,
Figure PCTCN2014087544-appb-000023
具体地,在接收节点对接收到的数据进行处理后,若向发射节点发送了ACK消息,即为接收成功;若向发射节点发送了NACK消息,则表示接收失败,若发射节点接收到了NACK消息,则需要进行数据的重传。在采用单码本的方案中,发射节点进行数据重传的时间为从向接收节点发送数据后,间隔一个混合自动重传请求(Hybrid Automatic Repeat reQuest)往返时延(Round Trip Time,RTT),然后进行数据重传。但在采用包括多码本的码本组方案时,由于码本组中码本的数量N是不确定的,因此考虑到码本数量较多的情况,发射节点在接收到NACK消息后,在n+Rt时刻进行数据重传,这里R≥1,可选地,
Figure PCTCN2014087544-appb-000024
Figure PCTCN2014087544-appb-000025
表示
Figure PCTCN2014087544-appb-000026
向上取整,t为混合自动重传请求往返时延。
图4为数据收发及重传时序示意图,其中时序31为使用单码本传输时发射节点的下行时序,时序32为使用单码本传输时接收节点的上行时序,时序33为使用码本组传输时发射节点的下行时序,时序34为使用码本组传输时接收节点的上行时序,图4中以码本组中包括4个码本为例进行说明。在 图3进行数据收发的基础上,设HARQ RTT为8个时刻,若采用单码本方案,在HARQ RTT1的时刻0,发射节点在PDSCH 301向接收节点发送一个编码后的数据,间隔4个时刻,在HARQ RTT1的时刻4接收节点会在PUCCH 302向接收节点发送ACK或NACK消息,若接收节点在PUCCH 302发送NACK消息,则发射节点在HARQ RTT2的时刻0,在PDSCH 401向接收节点重传数据。若采用包括4个码本的码本组方案,从HARQ RTT1的时刻0开始,发射节点依次在PDSCH 303、PDSCH 304、PDSCH 305、PDSCH306向接收节点发送编码后的数据,间隔4个时刻,在HARQ RTT1的时刻7接收节点会在PUCCH 307向发射节点发送ACK或NACK消息,若接收节点在PUCCH 307发送NACK消息,则发射节点从HARQ RTT3的时刻0开始,依次在PDSCH 402、PDSCH 403、PDSCH 404、PDSCH 405向接收节点重传数据。
需要说明的是,图1和图2所示接收节点中,若获取模块11获取待测量的码本组中码本的数量N的方式是从预设的系统配置中获取N;或者从发射节点发送的信令中获取N,则获取模块11与测量模块12连接,测量模块12与发送模块13连接。若获取模块11获取待测量的码本组中码本的数量N的方式是当测量模块12对信道进行测量后根据测量结果获取N,则获取模块11还可以直接与发送模块13连接。
需要说明的是,图2所示接收节点中,发送模块13、接收模块14、解调模块15的连接关系仅是示例性的,发送模块13、接收模块14、解调模块15还可以相互直接连接,或者其他可能的连接形式。
图5为本发明实施例提供的发射节点实施例一的结构示意图,如图5所示,本实施例的发射节点包括:
接收模块51,用于接收接收节点发送的码本组的信息,所述码本组中包括N个码本,N≥1。
具体地,本实施例提供的发射节点可以为网络中的集中控制节点,一般地,该发射节点可以为基站,例如演进型节点B(Evolved Node B,eNB)。
由于目前的信道信道测量方法中,接收节点每次对信道进行测量及反馈的仅为一个码本,接收到该反馈的发射节点根据该码本对待发送的数据进行预编码处理再发送到接收端。但随着高频的引入,发射节点发送的波束也相 应变窄,以满足大天线增益的需要,这样就需要提高波束的精度,也就是需要提高接收节点对信道进行测量和反馈的精度。考虑到频率、信道相干时间和时域响应的对应关系,在较低频率的载频上发送一次数据的时域粒度下,在较高频率的载频上可以发送多次数据,因此,在使用较高频率的载频进行数据传输时,接收端可以在该时域粒度下测量并反馈多个码本,使发射节点可以使用多个码本在多次发送数据时发送相同的数据,从而可以更好地应对和匹配信道变化,从而提高发送数据对应波束的精度。接收节点对信道进行测量和反馈的码本的数量将直接影响信道测量和反馈的精度。
因此,本实施例提供的发射节点包括接收模块51,用于接收接收节点发送的码本组的信息,所述码本组中包括N个码本。其中,所述N为所述发射节点向所述接收节点发送的或者所述N为所述接收节点对信道进行测量后获取的,N≥1。当N等于1时,接收模块51接收到的码本组仅为一个码本,只要N>1,则接收模块51接收的码本组就会比仅反馈一个码本更加能够反映和匹配信道的变化情况。
在接收节点中,保存有多个码本组成的码本空间,设码本空间中共有M个码本,将M个码本中的N个为一组,共将码本空间分成P个码本组,其中两个码本组中的码本可以相互交叠。接收节点基于对信道的测量,在P个码本组中选择一个最优的码本组,即完成了对信道测量后的最优码本组选择。在发射节点中,也保存有多个码本组组成的码本空间,并且该码本空间中的各码本组及码本组编号与接收节点中相同,因此接收模块51仅需接收接收节点发送的各码本组的编号即可。
处理模块52,用于使用所述码本组中的N个码本分别对待发送的数据进行预编码处理,生成N个编码后的数据。
具体地,在接收模块51接收到接收节点上报的码本组后,处理模块52即使用码本组中的N个码本分别对一个相同的待发送的数据进行预编码处理,生成N个编码后的数据,并在接下来的N次发送中分别发送N个编码后的数据,这样就完成了基于所述码本组中N个码本预编码后的N次数据的发射。由于接收节点测量及反馈的码本组中包括多个码本,并且码本组中的多个码本用于使发射节点对相同的数据进行预编码处理并发送,因此本实施提供的发射节点,通过接收接收节点测量及反馈的码本组可以更好地反映和匹 配信道状态,从而提高发射节点发射数据的精度。
本实施例提供的发射节点,通过接收接收节点发送的码本组,所述码本组中包括N个码本,然后使用所述码本组中的N个码本分别对待发送的数据进行预编码处理,生成N个编码后的数据,从而提高了对信道进行测量和反馈的精度。
进一步地,在图6所示实施例中,处理模块52,还用于将所述发射节点的码本空间中的M个码本生成由至少两个码本组组成的码本空间,所述码本组空间中的每个码本组由N个码本组成。
具体地,在接收节点和发射节点中,都预设有相同的码本空间,该码本空间中包括M个码本。接收节点向发射节点上报测量得到的码本组时,若上报整个码本组的内容,则需要占用较多的传输资源,因此,接收节点可以仅向发射节点上报能够表征码本组的特征的相关信息,例如码本组的索引号或编码等。但由于在接收节点和发送节点中,只预存有包括M个码本的码本空间,因此,在发射节点中,处理模块52还用于将码本空间中的M个码本生成由多个码本组所组成的码本组空间,其中码本组空间中包括至少两个码本组,码本空间组中的每个码本组由N个码本组成。这样,当接收模块51接收到接收节点发送的码本组的信息(例如索引号或编码等)后,即可在码本组空间中找到对应的码本组。同时在接收节点中,也根据与发射节点相同的策略生成与发射节点中相同的码本组空间。这样接收节点在向发射节点上报测量到的码本组的信息时,仅需上报该码本组在码本组空间中的索引号或编号即可,即减少了上报码本组所需的资源。
进一步地,在图6所示实施例中,所述码本组空间中至少两个码本组中的一部分码本相同。也就是说,处理模块52生成的码本组空间中的各码本组中所包含的码本是可以复用的,这样可以使用码本空间中的M个码本生成更多的码本组。
进一步地,在图6所示实施例中,接收模块51,具体用于接收所述接收节点发送的所述码本组在所述码本组空间中的索引号。
图6为本发明实施例提供的发射节点实施例二的结构示意图,如图6所示,本实施例的接收节点在图5所示实施例的基础上,还包括:
发送模块53,用于在接收模块51接收接收节点发送的码本组的信息之 前,向所述接收节点发送高层信令或物理层专用信令,所述高层信令或所述物理层专用信令中包括所述N,所述高层信令包括RRC信令或MAC层信令,所述N为所述发射节点预设的。
具体地,接收节点发送码本组之前,需要获取码本组中码本的数量N,其中接收节点获取N的方法有多种。在本实施例提供的方法中,只有发射节点中预设有码本组中码本的数量N,发送模块53向所述接收节点发送高层信令或物理层专用信令,所述高层信令或所述物理层专用信令中包括所述N,所述高层信令包括RRC信令或MAC层信令。当接收节点接收到发送模块53发送的高层信令或物理层专用信令后,即可获取N。
另外,接收节点还有另外的获取N的方法,接收节点可以从接收节点预设的系统配置中获取N;或者接收节点对信道进行测量后根据测量结果获取N。若接收节点采用这种方法获取N,则接收模块51在接收接收节点发送的码本组的信息之前,接收模块51还需要接收接收节点发送的所述N。
进一步地,接收模块51,还用于在接收接收节点发送的码本组的信息之后,接收所述接收节点发送的基于所述码本组的CQI,所述CQI是基于所述码本组中的N个码本计算得到的平均CQI或者是基于所述码本组中任一码本计算得到的单个CQI。
具体地,CQI是无线信道通信质量的一个测量指标。CQI能够代表一个给定信道的信道测量结果。通常,一个高值的CQI表示一个信道有有较好的通信质量,反之亦然。由于接收模块51接收的码本组是一个由N个码本组成的码本组,该码本组中的多个码本作为一个整体共同反映信道质量,因此对于该码本组而言,仅应该对应一个CQI,而不是码本组中的每个码本对应一个CQI。因此接收模块51接收的CQI是基于码本组中的多个码本对应的CQI计算得到的平均CQI,或者是基于码本组中的任意码本计算得到的单个CQI。
进一步地,发送模块53,还用于在处理模块52使用所述码本组中的N个码本分别对待发送的数据进行预编码处理,生成N个编码后的数据之后,从时刻n开始,在N个连续的时刻依次向所述接收节点发送所述N个编码后的数据。
具体地,当处理模块52使用码本组中的N个码本对待发送的数据进行 预编码处理,生成N个编码后的数据后,发送模块53从时刻n开始,在N个连续的时刻依次向接收节点发送N个编码后的数据。当接收节点接收到N个编码后的数据后,即可对N个编码后的数据进行解调。由于发射节点是使用包含N个码本的码本组对待发送数据进行编码生成的N个编码后的数据,而包含N个码本的码本组是接收节点发送给发射节点的,因此接收节点是保存有该码本组的,从而接收节点可以根据该码本组对N个编码后的数据进行解调,从而得到发射节点待发送的数据。
由于发送模块53发送的待发送数据是使用了包括N个码本的码本组进行编码后传输的,相当于对相同的数据通过不同的预编码加权发送,从而接收节点接收并解调得出的数据准确性和可靠性较高,并且能够大大降低较窄波束的数据传输误差。
进一步地,接收模块51,还用于在发送模块53从时刻n开始,在N个连续的时刻依次向所述接收节点发送所述N个编码后的数据之后,在n+N-1+m时刻接收所述接收节点发送的正确的应答确认消息,或者在n+N-1+m时刻接收所述接收节点发送的不正确的应答确认消息,所述m为预设值,可选地,所述m为所述发射节点接收并处理完成第N个编码后的数据的时间。
具体地,当发送模块53从时刻n开始,在N个连续的时刻依次向所述接收节点发送所述N个编码后的数据之后,此时接收节点应该向发射节点反馈是否正确接收的应答消息。若不采用码本组的信道测量方法,即接收节点每次仅反馈一个码本,则接收节点在接收到发射节点根据该码本编码后发送的数据后,经过若干时间,会向发射节点发送正确的应答确认(Acknowledgement,ACK)消息或不正确的应答确认(Negative Acknowledgement,NACK)消息。但若接收节点向发射节点反馈的是包括N个码本的码本组,由于发送模块53使用码本组中的N个码本编码并发送同一个数据,因此接收节点并不是对于发射节点发送的每个编码后的数据反馈ACK或NACK消息,而是在接收到N个编码后的数据,并通过解调得到待发送的数据后,再向发射节点反馈一个ACK或NACK消息。也就是说,接收节点对于一个码本组对应的待发送数据,仅反馈一个ACK或NACK消息。根据图4所示的数据收发时序示意图,可知,接收模块51,是在 n+N-1+m时刻接收所述接收节点发送的正确的应答确认消息,或者在n+N-1+m时刻接收所述接收节点发送的不正确的应答确认消息。
进一步地,发送模块53,还用于接收模块51在n+N-1+m时刻接收所述接收节点发送的不正确的应答确认消息之后,在n+Rt时刻向所述接收节点重传所述N个编码后的数据,所述t为混合重传往返时延,这里R≥1,可选地,
Figure PCTCN2014087544-appb-000027
具体地,在发送模块53向接收节点发送了数据后,若接收模块51接收到ACK消息,即为发送成功;若接收模块51接收到NACK消息,即表示发送失败,若接收模块51接收到了NACK消息,则需要进行数据的重传。在采用单码本的方案中,发送模块53进行数据重传的时间为从向接收节点发送数据后,间隔一个混合自动重传请求(Hybrid Automatic Repeat reQuest)往返时延(Round Trip Time,RTT),然后进行数据重传。但在采用包括多码本的码本组方案时,由于码本组中码本的数量N是不确定的,因此考虑到码本数量较多的情况,接收模块51在接收到NACK消息后,发送模块53在n+Rt时刻进行数据重传,这里R≥1,可选地,
Figure PCTCN2014087544-appb-000028
Figure PCTCN2014087544-appb-000029
表示
Figure PCTCN2014087544-appb-000030
向上取整,t为混合重传往返时延。可以参照图5所示的数据收发与重传时序示意图得到上述结果。
图7为本发明实施例提供的信道测量方法实施例一的流程图,如图7所示,本实施例的方法包括:
步骤S701,接收节点获取待测量的码本组中码本的数量N,N≥1。
步骤S702,所述接收节点对信道进行测量,得到所述信道的码本组,所述码本组包括N个码本。
步骤S703,所述接收节点向发射节点上报所述码本组的信息。
本实施例提供的信道测量方法用于完成图1所示的接收节点的处理,其实现原理和技术效果类似,此处不再赘述。
进一步地,图7所示实施例中,步骤S701之后,还包括:所述接收节点将所述接收节点的码本空间中的M个码本生成由至少两个码本组组成的码本组空间,所述码本组空间中的每个码本组由N个码本组成。
进一步地,图7所示实施例中,所述码本组空间中至少两个码本组中的一部分码本相同。
进一步地,图7所示实施例中,步骤S703,包括:所述接收节点向所述发射节点上报所述码本组在所述码本组空间中的索引号。
进一步地,图7所示实施例中,步骤S701,包括:所述接收节点接收所述发射节点发送的高层信令或物理层专用信令,所述高层信令或所述物理层专用信令中包括所述N,所述高层信令包括RRC信令或MAC层信令;所述接收节点从所述高层信令或所述物理层专用信令中获取所述N。
进一步地,图7所示实施例中,步骤S701,包括:所述接收节点分别以i个码本为码本组Zi对信道进行测量,得到M个结果,i=1,2,…,M,所述M为所述接收节点的码本空间中的码本数量;所述接收节点在所述M个结果中确定信道质量最好的码本组Zi,将所述码本组Zi中码本的个数i作为所述待测量的码本组中码本的数量N。在步骤S701之后,还包括:所述接收节点向所述发射节点发送通知消息,所述通知消息包括所述N。。
图8为本发明实施例提供的信道测量方法实施例二的流程图,如图8所示,本实施例的方法包括:
步骤S801,接收节点获取待测量的码本组中码本的数量N,N≥1。
步骤S802,所述接收节点对信道进行测量,得到所述信道的码本组,所述码本组包括N个码本。
步骤S803,所述接收节点向发射节点上报所述码本组的信息。
步骤S804,所述接收节点从时刻n开始,接收所述发射节点发送的所述N个编码后的数据。
步骤S805,所述接收节点将所述N个编码后的数据进行解调,得到所述待发送数据。
图9为本发明实施例提供的信道测量方法实施例三的流程图,如图9所示,本实施例的方法包括:
步骤S901,接收节点获取待测量的码本组中码本的数量N,N≥1。
步骤S902,所述接收节点对信道进行测量,得到所述信道的码本组,所述码本组包括N个码本。
步骤S903,所述接收节点向发射节点上报所述码本组的信息。
步骤S904,所述接收节点从时刻n开始,接收所述发射节点发送的所述N个编码后的数据。
步骤S905,所述接收节点在n+N-1+m时刻向所述发射节点发送正确的应答确认消息,所述m为预设值,可选地,所述m为所述发射节点接收并处 理完成第N个编码后的数据的时间。
步骤S906,所述接收节点将所述N个编码后的数据进行解调,得到所述待发送数据。
步骤S907,所述接收节点在n+N-1+m时刻向所述发射节点发送不正确的应答确认消息。
步骤S908,所述接收节点在n+Rt时刻接收所述发射节点重传的所述N个编码后的数据,所述t为混合重传往返时延,这里R≥1,可选地,
Figure PCTCN2014087544-appb-000031
进一步地,在图7至图9所示实施例中,所述接收节点对信道进行测量,得到所述信道的码本组的信息之后,还包括:所述接收节点向所述发射节点发送基于所述码本组的CQI,所述CQI是基于所述码本组中的N个码本计算得到的平均CQI或者是基于所述码本组中任一码本计算得到的单个CQI。
图10为本发明实施例提供的信道测量方法实施例四的流程图,如图10所示,本实施例的方法包括:
步骤S1001,发射节点接收接收节点发送的码本组的信息,N≥1。
步骤S1002,所述发射节点使用所述码本组中的N个码本分别对待发送的数据进行预编码处理,生成N个编码后的数据。
本实施例提供的信道测量方法用于完成图5所示的发射节点的处理,其实现原理和技术效果类似,此处不再赘述。
进一步地,图10所示实施例中,还包括:所述发射节点将所述发射节点的码本空间中的M个码本生成由至少两个码本组组成的码本空间,所述码本组空间中的每个码本组由N个码本组成。
进一步地,图10所示实施例中,所述码本组空间中至少两个码本组中的一部分码本相同。
进一步地,图10所示实施例中,步骤S1001,包括:所述发射节点接收所述接收节点发送的所述码本组在所述码本组空间中的索引号。
进一步地,图10所示实施例中,步骤S1001之前,还包括:所述发射节点向所述接收节点发送高层信令或物理层专用信令,所述高层信令或所述物理层专用信令中包括所述N,所述高层信令包括RRC信令或MAC层信令, 以使所述接收节点从所述高层信令或所述物理层专用信令中获取所述N。
进一步地,图10所示实施例中,步骤S1001之前,包括:还包括:所述发射节点接收所述接收节点发送的所述N,所述N为所述接收节点对信道进行测量后获取的。
图11为本发明实施例提供的信道测量方法实施例五的流程图,如图11所示,本实施例的方法包括:
步骤S1101,发射节点接收接收节点发送的码本组的信息,N≥1。
步骤S1102,所述发射节点使用所述码本组中的N个码本分别对待发送的数据进行预编码处理,生成N个编码后的数据。
步骤S1103,所述发射节点从时刻n开始,在N个连续的时刻依次向所述接收节点发送所述N个编码后的数据。
图12为本发明实施例提供的信道测量方法实施例六的流程图,如图12所示,本实施例的方法包括:
步骤S1201,发射节点接收接收节点发送的码本组的信息,N≥1。
步骤S1202,所述发射节点使用所述码本组中的N个码本分别对待发送的数据进行预编码处理,生成N个编码后的数据。
步骤S1203,所述发射节点从时刻n开始,在N个连续的时刻依次向所述接收节点发送所述N个编码后的数据。
步骤S1204,所述发射节点在n+N-1+m时刻接收所述接收节点发送的正确的应答确认消息,所述m为预设值,可选地,所述m为所述发射节点接收并处理完成第N个编码后的数据的时间。
步骤S1205,所述发射节点在n+N-1+m时刻接收所述接收节点发送的不正确的应答确认消息。
步骤S1206,所述发射节点在n+Rt时刻向所述接收节点重传所述N个编码后的数据,所述t为混合重传往返时延,这里R≥1,可选地,
Figure PCTCN2014087544-appb-000032
进一步地,在图10至图12所示实施例中,所述发射节点接收接收节点发送的码本组之后,还包括:
所述发射节点接收所述接收节点发送的基于所述码本组的CQI,所述CQI是基于所述码本组中的N个码本计算得到的平均CQI或者是基于所述码 本组中任一码本计算得到的单个CQI。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (40)

  1. 一种接收节点,其特征在于,包括:
    获取模块,用于获取待测量的码本组中码本的数量N,N≥1;
    测量模块,用于对信道进行测量,得到所述信道的码本组,所述码本组包括N个码本;
    发送模块,用于向发射节点上报所述码本组的信息。
  2. 根据权利要求1所述的接收节点,其特征在于,所述获取模块,还用于在获取所述待测量的码本组中码本的数量N之后,将所述接收节点的码本空间中的M个码本生成由至少两个码本组组成的码本组空间,所述码本组空间中的每个码本组由N个码本组成。
  3. 根据权利要求2所述的接收节点,其特征在于,所述码本组空间中至少两个码本组中的一部分码本相同。
  4. 根据权利要求2或3所述的接收节点,其特征在于,所述发送模块,具体用于向所述发射节点上报所述码本组在所述码本组空间中的索引号。
  5. 根据权利要求1~4任一项所述的接收节点,其特征在于,所述获取模块,具体用于接收所述发射节点发送的高层信令或物理层专用信令,所述高层信令或所述物理层专用信令中包括所述N,所述高层信令包括无线资源控制RRC信令或介质访问控制MAC层信令;从所述高层信令或所述物理层专用信令中获取所述N。
  6. 根据权利要求1~5任一项所述的接收节点,其特征在于,所述测量模块,还用于分别以i个码本为码本组Zi对信道进行测量,得到M个结果,i=1,2,…,M,所述M为所述接收节点的码本空间中的码本数量;
    所述获取模块,具体用于在所述M个结果中确定信道质量最好的码本组Zi,将所述码本组Zi中码本的个数i作为所述待测量的码本组中码本的数量N;
    所述发送模块,还用于向所述发射节点发送通知消息,所述通知消息包括所述N。
  7. 根据权利要求1~6任一项所述的接收节点,其特征在于,还包括:
    接收模块,用于在所述发送模块向发射节点上报所述码本组的信息之后,从时刻n开始,接收所述发射节点发送的所述N个编码后的数据;
    解调模块,用于将所述N个编码后的数据进行解调,得到所述待发送数据。
  8. 根据权利要求7所述的接收节点,其特征在于,所述发送模块,还用于在所述接收模块从时刻n开始,接收所述发射节点发送的所述N个编码后的数据之后,在n+N-1+m时刻向所述发射节点发送正确的应答确认消息,或者在n+N-1+m时刻向所述发射节点发送不正确的应答确认消息,所述m为预设值。
  9. 根据权利要求8所述的接收节点,其特征在于,所述接收模块,还用于所述发送模块在n+N-1+m时刻向所述发射节点发送接收不正确的应答确认消息之后,在n+Rt时刻接收所述发射节点重传的所述N个编码后的数据,所述t为混合重传往返时延,R≥1。
  10. 根据权利要求1~9任一项所述的接收节点,其特征在于,所述发送模块,还用于在所述测量模块对信道进行测量,得到所述信道的码本组之后,向所述发射节点发送基于所述码本组的信道质量指示CQI,所述CQI是基于所述码本组中的N个码本计算得到的平均CQI或者是基于所述码本组中任一码本计算得到的单个CQI。
  11. 一种发射节点,其特征在于,包括:
    接收模块,用于接收接收节点发送的码本组的信息,所述码本组中包括N个码本,N≥1;
    处理模块,用于使用所述码本组中的N个码本分别对待发送的数据进行预编码处理,生成N个编码后的数据。
  12. 根据权利要求11所述的发射节点,其特征在于,所述处理模块,还用于将所述发射节点的码本空间中的M个码本生成由至少两个码本组组成的码本空间,所述码本组空间中的每个码本组由N个码本组成。
  13. 根据权利要求12所述的发射节点,其特征在于,所述码本组空间中至少两个码本组中的一部分码本相同。
  14. 根据权利要求12或13所述的发射节点,其特征在于,所述接收模块,具体用于接收所述接收节点发送的所述码本组在所述码本组空间中的索引号。
  15. 根据权利要求11~14任一项所述的发射节点,其特征在于,还包括:发送模块,用于在所述接收模块接收接收节点发送的码本组的信息之 前,向所述接收节点发送高层信令或物理层专用信令,所述高层信令或所述物理层专用信令中包括所述N,所述高层信令包括无线资源控制RRC信令或介质访问控制MAC层信令,所述N为所述发射节点预设的。
  16. 根据权利要求11~14任一项所述的发射节点,其特征在于,所述接收模块,还用于在接收接收节点发送的码本组的信息之前,接收所述接收节点发送的所述N,所述N为所述接收节点对信道进行测量后获取的。
  17. 根据权利要求11~16任一项所述的发射节点,其特征在于,所述发送模块,还用于在所述处理模块使用所述码本组中的N个码本分别对待发送的数据进行预编码处理,生成N个编码后的数据之后,从时刻n开始,在N个连续的时刻依次向所述接收节点发送所述N个编码后的数据。
  18. 根据权利要求17所述的发射节点,其特征在于,所述接收模块,还用于在所述发送模块从时刻n开始,在N个连续的时刻依次向所述接收节点发送所述N个编码后的数据之后,在n+N-1+m时刻接收所述接收节点发送的正确的应答确认消息,或者在n+N-1+m时刻接收所述接收节点发送的不正确的应答确认消息,所述m为预设值。
  19. 根据权利要求18所述的发射节点,其特征在于,所述发送模块,还用于所述接收模块在n+N-1+m时刻接收所述接收节点发送的不正确的应答确认消息之后,在n+Rt时刻向所述接收节点重传所述N个编码后的数据,所述t为混合重传往返时延,R≥1。
  20. 根据权利要求11~19任一项所述的发射节点,其特征在于,所述接收模块,还用于在接收接收节点发送的码本组的信息之后,接收所述接收节点发送的基于所述码本组的信道质量指示CQI,所述CQI是基于所述码本组中的N个码本计算得到的平均CQI或者是基于所述码本组中任一码本计算得到的单个CQI。
  21. 一种信道测量方法,其特征在于,包括:
    接收节点获取待测量的码本组中码本的数量N,N≥1;
    所述接收节点对信道进行测量,得到所述信道的码本组,所述码本组包括N个码本;
    所述接收节点向发射节点上报所述码本组的信息。
  22. 根据权利要求21所述的方法,其特征在于,所述接收节点获取待测量的码本组中码本的数量N之后,还包括:
    所述接收节点将所述接收节点的码本空间中的M个码本生成由至少两个码本组组成的码本组空间,所述码本组空间中的每个码本组由N个码本组成。
  23. 根据权利要求22所述的方法,其特征在于,所述码本组空间中至少两个码本组中的一部分码本相同。
  24. 根据权利要求22或23所述的方法,其特征在于,所述接收节点向发射节点上报所述码本组的信息,包括:
    所述接收节点向所述发射节点上报所述码本组在所述码本组空间中的索引号。
  25. 根据权利要求21~24任一项所述的方法,其特征在于,所述接收节点获取与所述接收节点对应的码本组中码本的数量N,包括:
    所述接收节点接收所述发射节点发送的高层信令或物理层专用信令,所述高层信令或所述物理层专用信令中包括所述N,所述高层信令包括无线资源控制RRC信令或介质访问控制MAC层信令;
    所述接收节点从所述高层信令或所述物理层专用信令中获取所述N。
  26. 根据权利要求21~25任一项所述的方法,其特征在于,所述接收节点获取与所述接收节点对应的码本组中码本的数量N,包括:
    所述接收节点分别以i个码本为码本组Zi对信道进行测量,得到M个结果,i=1,2,…,M,所述M为所述接收节点的码本空间中的码本数量;
    所述接收节点在所述M个结果中确定信道质量最好的码本组Zi,将所述码本组Zi中码本的个数i作为所述待测量的码本组中码本的数量N;
    所述方法还包括:
    所述接收节点向所述发射节点发送通知消息,所述通知消息包括所述N。
  27. 根据权利要求21~26任一项所述的方法,其特征在于,所述接收节点向发射节点上报所述码本组的信息之后,还包括:
    所述接收节点从时刻n开始,接收所述发射节点发送的所述N个编码后的数据;
    所述接收节点将所述N个编码后的数据进行解调,得到所述待发送数据。
  28. 根据权利要求27所述的方法,其特征在于,所述接收节点从时刻n 开始,接收所述发射节点发送的所述N个编码后的数据之后,还包括:
    所述接收节点在n+N-1+m时刻向所述发射节点发送正确的应答确认消息,所述m为预设值;
    或者所述接收节点在n+N-1+m时刻向所述发射节点发送不正确的应答确认消息。
  29. 根据权利要求28所述的方法,其特征在于,所述接收节点在n+N-1+m时刻向所述发射节点发送接收不正确的应答确认消息之后,还包括
    所述接收节点在n+Rt时刻接收所述发射节点重传的所述N个编码后的数据,所述t为混合重传往返时延,R≥1。
  30. 根据权利要求21~29任一项所述的方法,其特征在于,所述接收节点对信道进行测量,得到所述信道的码本组之后,还包括:
    所述接收节点向所述发射节点发送基于所述码本组的信道质量指示CQI,所述CQI是基于所述码本组中的N个码本计算得到的平均CQI或者是基于所述码本组中任一码本计算得到的单个CQI。
  31. 一种信道测量方法,其特征在于,包括:
    发射节点接收接收节点发送的码本组的信息,所述码本组中包括N个码本,N≥1;
    所述发射节点使用所述码本组中的N个码本分别对待发送的数据进行预编码处理,生成N个编码后的数据。
  32. 根据权利要求31所述的方法,其特征在于,所述方法还包括:
    所述发射节点将所述发射节点的码本空间中的M个码本生成由至少两个码本组组成的码本空间,所述码本组空间中的每个码本组由N个码本组成。
  33. 根据权利要求32所述的方法,其特征在于,所述码本组空间中至少两个码本组中的一部分码本相同。
  34. 根据权利要求32或33所述的方法,其特征在于,所述发射节点接收接收节点发送的码本组的信息,包括:
    所述发射节点接收所述接收节点发送的所述码本组在所述码本组空间中的索引号。
  35. 根据权利要求31~34任一项所述的方法,其特征在于,发射节点接收接收节点发送的码本组的信息之前,还包括:
    所述发射节点向所述接收节点发送高层信令或物理层专用信令,所述高 层信令或所述物理层专用信令中包括所述N,所述高层信令包括无线资源控制RRC信令或介质访问控制MAC层信令,以使所述接收节点从所述高层信令或所述物理层专用信令中获取所述N,所述N为所述发射节点预设的。
  36. 根据权利要求31~34任一项所述的方法,其特征在于,所述发射节点接收接收节点发送的码本组的信息之前,还包括:
    所述发射节点接收所述接收节点发送的所述N,所述N为所述接收节点对信道进行测量后获取的。
  37. 根据权利要求31~36任一项所述的方法,其特征在于,所述发射节点使用所述码本组中的N个码本分别对待发送的数据进行预编码处理,生成N个编码后的数据之后,还包括:
    所述发射节点从时刻n开始,在N个连续的时刻依次向所述接收节点发送所述N个编码后的数据。
  38. 根据权利要求37所述的方法,其特征在于,所述发射节点从时刻n开始,在N个连续的时刻依次向所述接收节点发送所述N个编码后的数据之后,还包括:
    所述发射节点在n+N-1+m时刻接收所述接收节点发送的正确的应答确认消息,所述m为预设值;
    或者所述发射节点在n+N-1+m时刻接收所述接收节点发送的不正确的应答确认消息。
  39. 根据权利要求38所述的方法,其特征在于,所述发射节点在n+N-1+m时刻接收所述接收节点发送的不正确的应答确认消息之后,还包括:
    所述发射节点在n+Rt时刻向所述接收节点重传所述N个编码后的数据,所述t为混合重传往返时延,R≥1。
  40. 根据权利要求31~39任一项所述的方法,其特征在于,所述发射节点接收接收节点发送的码本组的信息之后,还包括:
    所述发射节点接收所述接收节点发送的基于所述码本组的信道质量指示CQI,所述CQI是基于所述码本组中的N个码本计算得到的平均CQI或者是基于所述码本组中任一码本计算得到的单个CQI。
PCT/CN2014/087544 2014-09-26 2014-09-26 信道测量方法和装置 WO2016045085A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910635530.6A CN110391828B (zh) 2014-09-26 2014-09-26 信道测量方法和节点、系统、可读存储介质
PCT/CN2014/087544 WO2016045085A1 (zh) 2014-09-26 2014-09-26 信道测量方法和装置
CN201480035734.1A CN105684336B (zh) 2014-09-26 2014-09-26 信道测量方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087544 WO2016045085A1 (zh) 2014-09-26 2014-09-26 信道测量方法和装置

Publications (1)

Publication Number Publication Date
WO2016045085A1 true WO2016045085A1 (zh) 2016-03-31

Family

ID=55580132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087544 WO2016045085A1 (zh) 2014-09-26 2014-09-26 信道测量方法和装置

Country Status (2)

Country Link
CN (2) CN105684336B (zh)
WO (1) WO2016045085A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282204B (zh) * 2017-01-05 2021-06-15 华为技术有限公司 通信方法、装置及系统
CN114844536A (zh) * 2019-06-06 2022-08-02 华为技术有限公司 一种信道测量方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101444056A (zh) * 2006-05-09 2009-05-27 交互数字技术公司 通用陆地无线电接入的可变反馈
CN102195758A (zh) * 2010-03-05 2011-09-21 株式会社Ntt都科摩 多用户预编码方法及系统、发射机和接收机
US8125884B1 (en) * 2007-07-11 2012-02-28 Marvell International Ltd. Apparatus for pre-coding using multiple codebooks and associated methods
CN103220090A (zh) * 2012-01-19 2013-07-24 中国移动通信集团公司 码本反馈方法及信号接收装置、信号发送方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008021062A1 (en) * 2006-08-11 2008-02-21 Interdigital Technology Corporation Wireless communication method and system for indexing codebook and codeword feedback
CN101291526B (zh) * 2007-04-18 2012-10-17 松下电器产业株式会社 减少信息反馈量的自适应调度方法和装置
CN101340219B (zh) * 2007-07-04 2012-10-03 华为技术有限公司 信道状态信息反馈方法及无线收发装置
KR101373951B1 (ko) * 2008-01-30 2014-03-13 엘지전자 주식회사 다중안테나 시스템에서 프리코딩 정보 전송방법
CN101771446B (zh) * 2008-12-29 2014-06-04 株式会社Ntt都科摩 一种多输入多输出信号处理方法、装置及系统
WO2011013887A1 (en) * 2009-07-30 2011-02-03 Lg Electronics Inc. Feedback scheme for multi-cell interference mitigation considering legacy mobile users
US8761086B2 (en) * 2009-11-02 2014-06-24 Qualcomm Incorporated Method and apparatus for hierarchical codebook design in wireless communication
JP5258002B2 (ja) * 2010-02-10 2013-08-07 マーベル ワールド トレード リミテッド Mimo通信システムにおける装置、移動通信端末、チップセット、およびその方法
CN102237975B (zh) * 2010-05-04 2013-10-02 华为技术有限公司 发送预编码矩阵索引及进行预编码的方法和装置
CN101931513B (zh) * 2010-05-18 2016-06-15 中兴通讯股份有限公司 信道状态信息的反馈方法及终端
CN102595488B (zh) * 2011-01-11 2016-05-11 上海贝尔股份有限公司 一种信道方向信息反馈方法及其设备
CN102916768B (zh) * 2012-09-19 2016-06-29 华为技术有限公司 高速专用物理控制信道的反馈方法、装置和系统
CN103973410B (zh) * 2013-02-01 2019-04-23 中兴通讯股份有限公司 信道信息反馈方法及装置、数据传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101444056A (zh) * 2006-05-09 2009-05-27 交互数字技术公司 通用陆地无线电接入的可变反馈
US8125884B1 (en) * 2007-07-11 2012-02-28 Marvell International Ltd. Apparatus for pre-coding using multiple codebooks and associated methods
CN102195758A (zh) * 2010-03-05 2011-09-21 株式会社Ntt都科摩 多用户预编码方法及系统、发射机和接收机
CN103220090A (zh) * 2012-01-19 2013-07-24 中国移动通信集团公司 码本反馈方法及信号接收装置、信号发送方法及装置

Also Published As

Publication number Publication date
CN110391828B (zh) 2021-02-23
CN105684336A (zh) 2016-06-15
CN105684336B (zh) 2019-07-19
CN110391828A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
US11705950B2 (en) Method and apparatus for resource-based CSI acquisition in advanced wireless communication systems
US20200014455A1 (en) Beam information feedback method and apparatus, and configuration information feedback method and apparatus
US11463142B2 (en) Method and apparatus for uplink control information omission
US11601169B2 (en) Method and apparatus for port selection in wireless communication systems
US20160065276A1 (en) Method For Feeding Back Information, UE and Base Station
US20240154668A1 (en) Method and apparatus for reciprocity based csi-rs transmission and reception
US20220069881A1 (en) Method and apparatus for csi reporting based on a codebook
US20220329303A1 (en) Method and apparatus for configuring csi reporting granularity
US11689268B2 (en) Method and apparatus for configuring parameters of a port selection codebook
CN109964414A (zh) 针对混合类a/b操作的高级csi报告
US20230239029A1 (en) Method and apparatus for compression-based csi reporting
US20220200683A1 (en) Method and apparatus for csi parameter configuration in wireless communication systems
US20220295499A1 (en) Method and apparatus for configuring a reference signal burst
US20230421228A1 (en) Method and apparatus for compression-based csi reporting
US20230328770A1 (en) Trp subset selection and reporting
US20230246687A1 (en) Method and apparatus for reporting of time-domain channel properties
WO2016045085A1 (zh) 信道测量方法和装置
US20220376759A1 (en) Method and apparatus for uci multiplexing
US20220239356A1 (en) Method and apparatus for csi reporting
US20220124537A1 (en) Method and apparatus for csi reporting based on a port selection codebook
US20220271811A1 (en) Method and apparatus for csi reporting
US20230403060A1 (en) Method and apparatus for csi reference resource and reporting window
US20230318793A1 (en) Method and apparatus for configuring semi-persistent csi-rs resources
US20240113756A1 (en) Method and apparatus for reporting of time-domain channel correlation properties
US20240154669A1 (en) Method and apparatus for csi reporting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902416

Country of ref document: EP

Kind code of ref document: A1